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On the existence of weak solutions of

stationary Boussinesq equation
Hiroko MORIMOTO (BRAEK'¥ %3P #£% % %)

81. Notations and results.

In this paper, we discuss the existence of weak solutions

of equations which describe the motion of fluid of natural

convection {(Boussinesq approximation) in a bounded domain @ in

Rn, 2 £ n. We consider the following system of differential

equations which is called stationary Boussinesq equation:

(u*v)u = = % Vp + v Au + 8 g 6 ,

(1-1 divu=20, in Q

(u-v)8 = x A9 ,

- o
where u-v = ? u. 8Xj°

) préssure , 8 is the temperature, g is the gravitational vector

Here u is the fluid velosity, p is the

function, and p(density), v(kinematic ﬁisdosity), B(coefficient
of volume expansion), K{(thermal conductivity) are positive
constants. We study this system of equations with mixed
boundary condition for 6.

In the previous paperl 8], we treated this problem only for
the case n = 3. By using the Galerkin method, we can show the
existence of weak solution, for any integer n greater than or
équal to 2. Some uniQuéness result is also bbtained.

Let 8Q (the boundary of Q) be devided into two parts ), I

such that
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N =r,ur,, rnr, = ¢.
The boundary conditions are as follows.

u = 0, =Eat onr19

0
(1-2)
= 28 _
1.1 - 0, en - 0 ’ on r2,

where £ is a given function on 'y, n is the outer normal vector

to 2Q. If we can find a function 8,5 defined on Q, of class

C2(Q)n Cc'(Q), satisfying @y, = £ on I'; and %; 8o = 0 on Iy,

then we can transform the equations (1-1),(1-2) for u and

9 =0- 6, and we obtain the following:
1

(u-v)u = - 5 VP + vau + Bgl + Bgly , in Q ,
divu=20,’ in Q ,
(1-3) (u-v)d = kA§ - (u'v¥8y + x ABy in Q ,
u=20, =0 |, on Iy,

- g _
u=0, on = o, on I>.

For the domain ), we assume:

Condition(H)

Q is a bounded domain in Rn with C? Boundary. The
boundary 90 of Q is devided as follows:

8 =T, ury, , Iy NIz = ¢ , measure of 'y # 0,

and the intersection Fln Fz is a n-1 dimensional C! manifo{d.

In order to state the definition of weak solution and our

result, we introduce some

Function spaces :
Do = {vector function @GCQ(Q)|Supp o cQ , div ¢=0 in Q)
H = completion of D, under the L2(Q)-norm
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= completion of D  under the H! (Q)-norm

+ ful, n

v
V = completion of D, under the norm “U"H1(Q) Loy

Do = { scalar function ¢ € C ()|
® = 0 in a neighborhood of I'y} ,
W = completion of Dy under the H!(Q)-norm

¥ = completion of Dy under the norm "uHHl(Q)+ ﬂuHLn(Q).

Consider L? inner product of the first equation of (1-3) wi{h v
in V " and the third equation of (1-3) with T in V. Then we

obtain:

Auxiliary problem: Find u € V and § € W satisfying

( v(Vu,vv) + B(u,u,v) = (Bg@,v) -(BgBgy,v) = 0 ,

for all v in V ,

(1-4)< ,
K(v8,vt) + b(u,¥,T) + b(u,84,T) + K(V4y,VT) = O,
K for atl T in W ,

where

B(u,v,w) = ((u-VYv,w)

n ' avi(x)
=Jq 2 4y T w0 dx,
i, i=1 J

and

b(u,8,t) = ((u*¥)¥8,1)

n

fQ > uj(x) Qgizl T(x) dx .

=1 J

Now, we define the weak solution of (1-1),(1-2).

Definition 1. The pair of functions {u,9) is called a weak

solution of (1-1),(1-2), if there exists a function 84 in ci()
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such that ue€ v, 6 - 0, € W, 65 = E on I, g; 8o = 0 on Ty,

and, (u,¥) (¥ = 0 - 0y) satisfies (1-4).

Now, we state our results.
Theorem 1
Let @ be a bounded domain in Rn with C? boundary satisfying

the condition (H). If the function g(x) is in Lm(Q) and £ is

of class Cf(FT),then there exists a weak solution of (1-1),(1-2).

Remark 1 ,

Generaly, VYV c v n Ln(Q{ and W ¢ W n L. For 2 < n < 4,
V=Vand W=w (c.f.Mfsudaf7], Gigal3] ). Therefore our
theorem-contains the result of [8].

Let g = HgHLw(Q) , and c¢,c;,Cc> be constants in Lemma 3
(§2>. As for the uniqueness, we have:

Theorem 2

The weak solution {(u,9) of (1-1),(1-2) satisfying
(i) uwelLl@, 6eL,
(11> chul + EEoSCiC2— 4oy ¢ v, whenn =3,
((ii)! cﬂu"p + ﬁgmgﬁlgg_ ueup < vy, for some p > 2, when n = 2 )
is , if it exists, unique.
Remark 2

The condition (i) is automatically satisfied when 2 < n £ 4.

Remark 3

If we set

Re = % Han (Reynolds number),



Ra = LEnCCi1C2_

VK nenn (Rayleigh number),

then the condition (ii) reads as
Re + Ra < 1.

See also JosephlI5].

§2. Some lemmas.

In this section, we prepare some lemmas.
Lemma 1

V and W are separable Banach spaces.
Proof. A subset of separable metric space is separable(e.g.
Brezis(21). 1f we show V n L"©Q) is separable, Lemma is
proved. We can identify V n L"(Q) as a subset

9

= 9 9 . n
F - ((V, axlv, L] ’ axnv)’ v e V n L (Q)}

of LP(Q)x L2(Q)x-++x L2(Q). Since the latter space is

'separable, the set F is also separable and Lemma 1 is proved.

Lemma 2 (Sobolev)

Sobolev space H1(Q) is continuously imbedded in Lq(Q);

where q = nfg for n 2 3, and + ® > q 2 1 for n = 2,

For the proof , see Adams([11].

Lemma 3 (Poincare)

There exist constants ¢;, ¢z, ¢ depending on Q and n

such that
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(i) flull < c,livul for Yu €V ,
(ii) lul . < clvul for Yu €V, q = =22 (n23),
q n-2
q = 4 (n=2),
(iii) et < c,livel for Y0 € W.

These constants are used in the statement of Theorem 2.
For the proof of (i),(iii), see Morimoto[8]. (ii) follows

from (i) and Lemma 2.

By Holder's inequality and Lemmas 2,3, we have:

Lemma 4

Let n 2 3. There exists a constant Cp depending on @ and

n such that
|B(u,v,w)| < cBHVu““Vvﬂ“w“n
for Yu € V,Yv € HI(Q),"w € L),
Jo(u,0,v)| < cBHVuHHVGHHtHn

for Yu € V,v¥0 € H1 (@ ,"t € LM,

hold.

Using the integration by parts, we obtain:
Lemma 5
(i) B(u,v,w) = - B(u,w,V) for Yu eV, Yv,w € H! n L"
holds. In particular,'

B(u,v,v) = 0 for Yuev, Yve H nL" .
(i) B(u,G,t) = - b(u,t,08) for Y u €V, v 0,t € H' n L,
holds. In particular,

"b(u,8,8) = 0 for Yuev, Y eeH nL"



Lemma 6 (Whitney)
Let Q be a bounded domain in R™ with C2 boundary . If &
is a C! function defined on 8Q, then for any positive number g

and' any p 2 1, there exists an extension 8, of £ such that

8, € C'(RM,

- 98,y _
90 - g P an - O on SQ,
(4] .
I 0"p < &
Proof. It is well known as Whitney's extension theorem(see
Malgrangel61]). In the case n = 3, we can prove it

directly( Morimoto[81), and it is easy to extend to the general

case.

§3. Proof bf Theorem 1.

Under our assumptions on 3R and £, we have an éxtension 0o
of € (Lemma 6), and.we study the equation (1-4). Using the
Galerkin method, we construct approximate solutions of (1-4).
Let (wj) be a sequence of functions in D, , linearly independent
and total in V. We can assume (V9,90 = 8,y without loss of

generality. Let {wjf be a sequence of functions in Dg,

linearly independent and total in W. We can assume (ij,vwk) =

sjkf Since V (resp. W ) is separable and Do (resp. Dy ) is
dense there, we can find these functions. We put
m m
u™=3 g, 0™ =3 g
ji=1 j=1 !

and we consider the following system of equations:
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(3-1) v(Vu(m),V¢j) + ((u(m)-v)u(m),¢j) - (Bge(m),¢j) - (B&80,9;)

= 0, 1< §j < m.
(3-2) x(ve(m),ij) . <(u(m)-V)e(m’,¢j) . ((u(m)°V)90.¢j)f

+ x<veo,w«j) = 0, 1 < j < m.
(m) e(m)

Substituting into these equations, we obtain:

u
-3y 1 . -1 -
(3-3) &, + REQ BB (0 V20,00 - | E Ensk (BBY @)

1
v(BgGO’@j)

. . l_ .
(3-4) B L+ kEQ EyEmak (P V¥, ¥ )

’ ].Sj‘m,

+

R~ ©

+(V90,ij) = 0, 1 <3j<m.
The left hand side of (3-3),(3-4) determines a polynomial which

we denote by

Ej = Pj(€1:&2""'s§2m) ’ 1 < j £ 2m .

Pj is a polynomial in & = (&1,-",€2m) of degree 2. Let P be a
mapping trom RZ® to RZ™ defined by P(£) = (P (E), <+, P, (E)).
Then the fixed point £ of P, if it exists, is a solution of
(3-3),(3-4). We show the existence of a fixed point of P.

Let £ = £(X) be any solution of & = XP(£), 0 < x £ 1. First we

treat the case n 2 3.

L (m) 2
SlE. 12 = vu "2 = A 3 P (E)E,
j=1 J S j=1 J J .
= - 2 . A8
- ) j,é’ﬂgjﬁkgl((¢k V)¢Q’¢j) + v j§k€M+k€j(gwk’¢j)

+ —&%— 2 £,(880,9,)
: .
- - %((u(m)-V)u(m),u(m)) . A_%{(ge(m)’u(m))+ (gGo,u(m))}
< 2B ey 4 ngomr 1™y
< Aﬁﬁmﬁl (e 178 ™+ goshr v ™y,

where we have used Lemmas_4,5. Thereby,
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(3-5) Ivu™y < L%gwgi (e 1v0 ™y & e ).

Similarly,

m

Slg , 12 = 1ve ™2 = 4
j=1 J j=

. 2 gk§m+9_€m+j((¢k.V)¢Q’ ‘l’j)
J,k,ﬂ . ’
+2 Sk (P, DY .,80) - 22 & (V8o , V¥ )
K e keme i Tk jrYo G oo 02 V¥ j
= -2 (™ eme™ g My ™ 0™ 0011 -1(ve,,v0 ™)

1 M3

Pows B0,

]
1
= P

A {(m) (m) (m)
< K lu nzn/(n_z)nve uneonn + 2llve tivdol

; (by Holder's inequality)
< 22 vu™uuve ™uneon + atvaotive ™y

{(by Lemma 3).

For n = 2, we have

1v6 ™2 < 22 yva ™ pive ™ uneons + xiveonIve ™y,

Thereby, R
(3-6) Ive ™y < 2¢ 1951 Iva ™+ X 1ve,l.

where p = n when n 2 3, and p = 4 when n = 2.. Substituting

(3-6) into (3-5), we obtain:

g ' 2 » o .
C(1- Sséﬁzﬁ&wi— 1961, > Iva ™ < &Qtﬁﬂw (coxllv8oll + W8>,
Ac&ording to Lemma 6, we can choose 8, such that

_ . _ cecicoBg ‘ 1
(3-7) 1 XU ueonp > 5

holds. Then, we have
(3-8) Ivu‘™y < BACBE. (o apva,l + HGoD)

< lstﬁgm (colv8oll + U861 = py.

Similarly, using (3-7), we have:

i

3-9> 1ve ™y < 20ve.l + lzueou 05

c

Note that p; and p, are constants independent of X and m.
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Thereby the solution € of € = AP(£) satisfies:

2m

2 8. 12 < p} + p2 = p2 , for 0 < Ya < 1.

i=1 |

Leray-Schauder's Theorem[ 41 tells us the existence of a fixed
point-of the mapping P: & = P(£), such that |[&]| < p. Thus we
have obtained the solutions u(m),ﬂ(m) of (3-1),(3-2).

Moreover, they satisfy the estimates:

(m)

tvu™1 <oy, 16 ™1 < p,

Since V (resp.W) is compactly imbedded in Ho (resp. L2), we
can choose subsequences of {u(m)},{e(m)} which we denote by the
same symbols, and elements u € V, 8 € W such that the following

convergences hold:

(3-10) u(m) — u weakly in V, strongly in Ho

(3-11) 8™ — @ weakly in W, strongly in L2(Q).
For these convergent sequences, the following lemma holds:
Lemma 7

B(u(m),u(m),v) —— B(u,u,v) , for Yv € D,

bw™,0™ )y —— b(u,8,t) , for YT € Dg.

The proof is found in [9] and omitted. Using this lemma for
(3-1),(3-2), we find

(3-12) v(Vu,Vy)+B(u,u,v)—(Bg9,v)- (BgBo,v) =0

(3-13) K(v8,vt)+b(u,B8,T)+b(u,08p,T)+ K(V0y,VT) =0

hold for v = ¢j, T = ¢j , Yi . By Lemma 4, we see the linear

functional
v — B(u,u,v) (resp. T — b(u,0,t) )
is continuous in Ln . Thereby the linear functional

v — the left hand side of (3-12)

- 10 -



(resp. t — the left hand side of (3-13) )

is continuous in V n LM (resp. w n L" ).  Since ()
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(resp.(wj}) is total in V (resp.W ) , (3—12)(resp.(3-13)) holds
for any v in V (resp.W). Thereby {u,0} is a required weak
solution.

§4. Proof of Theorem 2.

Let {u,,0,}, i=1,2, be weak solutions of (1-1),(1-2)
satisfying (i),(ii). For i = 1,2, there is a function 6o 1’
satiéfying the condition in Definition 1. Then ui and
0, - 80" satisfy (1-4>.  Since 8017 - 0,7 is 0 on Ty, it
belongs to W. Thereby, 8; - 0, is also in W. Put u = uy- us

0 = 0;,- 0,. Then, they satisfy the following:

v(vu,vv) + B(u,u;,v) + B(up,u,v) - (8gu,v) = 0, v € V,

(4-1)
' K(v0,vt) + b(u,8;,T) + b{us,8,t) = 0, Yt € W.

Here we have used Lemma 5. From the condition (i), we see

ueV, 0€¥W.
Therefore, we can take v = u,t = 9, and we have

vivull?2 + B(u,u,,u)-8g(8,u) = O,

(4-2)
klvol? + b(u,8,,6) = 0.

‘Let n 2= 3. Making use of the Holder's inequality and

Lemma 5 to estimate (4-2), we have
viivall? < lflull, Ivull Hulﬂn + Bgmﬂeﬂﬂuﬂ ,

2n/(n-2)
klvolz < Hull fvoll uelnn .

2n/(n-2)

- 11 -
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By Lemma 3, we estimate the right hand side of the above
equations, and we obtain:
vivul < cllullln Ivull + Bg_cicolvel ,
kivell < clo, 1 Ivual.
Thereby,
vIvul < (el + —BE=CC182— yg,y ) jvul
holds. Since u; , 9; satisfy the condition (ii):
clluyll + —BEeCC1C2— g,y <y,
therefore lvul= WIvel = 0. Since u = 0 on‘aQ and 6 = 0 on [y,
we see u = 0, 0= 0 in Q. Thereby u;= up, , 8; = 95, in Q
When n = 2, we have
vivul?2 < Huﬂp.HVuH Hulﬂp + g _lolilull ,
kllvel? < “u“p,HVGH H61Hp
where 1/p + 1/p' = 1/2. We discuss in a similar way to the

case n 2 3, and we have u = 0, 68 = 0. “Theorem is proved.
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