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A MINIMIZATION METHOD FOR SIMULTANEOUS COMPUTATION
OF SEVERAL EIGENVECTORS

Shigeru Ando
§1. Introduction

In this paper we propose an iterative method for copmputing
simul taneously several eigenvectors with the least eigenvalues
based on the notion of function minimization. The problem we
treat is A x = A B x with the matrix A symmetric and the
matrix B symmetric positive definite, where the large
dimensionality and sparceness of A and B inhibits those
methods which require modifications of the whole entries of A
and B. This kind of problems ariée naturally from finite—element
discretization of linear oscillation of continuums.

As we are not solving linear systems of equation in the
iteration processes, band structure of A and B 1s out of our
concern. Operations needed in the iterations are, matrix-by-vector
multiplications, inner—product operations and small size eigen-~-
computations whose dimensionality does not exceed twice the number
of eigenpairs to be found out.

We proceed the iteration seeking to minimize a criterion
function J, a generalization of the Rayleigh quotient, which
applies to linear subspaces rather than to single vectors. So,
our method is another kind of “subspace iteration method®, althogh
that word has so far been confined to that method based on inverse
iteration due to Bathe and Wilson [11.

This criterion function is one that has been used extensively

in the field of statistical discriminant analysis as the scatter
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criterion of extracted features, and part of the results in 8§82 1is,
though in somewhat different form, found in Fukunaga [2]. An
interesting relationship between the optimal Bayes features and
the scatter criterions applied to general nonlinear features has

been reported in Fukunaga and Ando [33.

§2. The criterion J

We denote by V the n-dimensinal real linear space of all
column n-vectors, and by <., > the inner pfoduCt in V . We
assume that A and B are symmetric n-by-n matrices and B is
positive definite. In the subsequent discussions we shall simply
refer as 'eigenvalue’ and "eigenuctor® to the solution 1, x of the
generalized eigenproblem A x = A2 B x.

When xl,xz;..,xk are members of V, we denote by
Alxqyseesx. > and Blxqs..,x > the k-by-k matrix whose i-j
component is (Axi,xj) and <Bxi,xj> respectively, Obviously,
A{xl,..,xk} and B{xl,..,xk) are symmetric and, if Xq9eesXp
are linearly independent, B{xy,..,x > 1is positive definite. Ue
also write A{X3, BIX> for Alxqs..cox rs Bixqseerx 3 with the
n—by—-k matrix X = Exl,..,xk]. Then, in matrix notations,

ACXY = TX A X, BXXD) =Tt™BX.
For U, a k—-dimensional linear subspace of V, we define
JU) = trace(Blxy,.vrx > F Alxgseerxd)
where x4,..,x, 1is a basis of U. Note that J is just the
Rayleigh quotient of Xq when k = 1.
That this J does not depend on the choice of bésis could be

stated as the following PROPOSITION 1. The proof is

straightforward and so is omitted.
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PROPOSITION 1.
Let Y = XH where X and Y are n-by-k rank k matrix and
H is a k-by-k non-singular matrix. Then
trace(BCX3™L ACXD) = traceB(Y>™1 Acy)) .
The following two PROPOSITIONs are essential not only in the
proof of the THEOkEH 1 but also in éStab]ishing'minimization

algorithms.

PROPOSITION 2.

When X is a n-by-k rank k matrix,

d trace(B{X3 ™Y ACXD) = 2 trace(tdX (A X - B X BOG™L atxy) Boxa ™1y,

Proof
Let P = AXY, Q = B{XD.
aAs dP = d@alp = daalerp+adwate,

da”lpy =aq! (ap - da a1 Py,
Since "trace" is a linear operation,

d trace(@ ! P) = trace(d@™l P))

trace((dP - da @1 Py @71y,
While, we have |
d ACX> = tdXx A X + ™ A dx =2 tdx A X
and similarly
d B(X>» = 2 tdx B X

which are to be substituted into the last equation.

PROPOSITION 3.
Any k—~dimensional subsapace U has such a basis Xq9 00X

that B{xl,..xk} is the identity and A(xl,.‘,xk} is diagonal.
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Proof

Let g A{Y1’-O’Yk}’ g = B{Y1,oo,yk} Uith some basis ylyoovyk

~

of U. As A and B are symmetric and B is positive definite, we

can choose such k linearly independent column k-vecteos SqseesS,

that
<Asi’8j> = ﬂiéij and (Bsi,sj> = uiﬁij
as the solution of the “smaller' eigenproblem A s; = 4;A s,
Let Xi = Ey1’00,>’k35i For‘ i B 1,00,",
then

(Axi,xj> = (A[yl,..,ykjsi,Eyl,..,yk]sj>

i

<t[y1,..,yk]AEyi,..,ykJsi,sj>

(Asi.sj> = uiﬁij .

Similarly

(Bxi,xj> (Bsi,sj> = 8., .,

1)
The purport of Propositin 3 is what is known as "Rayleigh-Ritz
analysis”'. We shall subsequently call "A-B-eigenbasis” or simply
‘eigenbasis’ of U, such a basis of U that possesses the property
treated in PROPOSITION 3. You should note here that the diagonal
elements of the diagonal matrix A{xq,..,x > when XgseesX, is an

eigenbasis of U are the Rayleigh quotients of X490 X

THEOREM 1.

J(U) is stationary if and only if U is spanned by some k
linearly independent eigenvectors, and then its value is just the
sum of the corresponding eigenvalues.

Proof
As trace(®™ Q) is equal to the sum of the products of

corresponding entries of matrix P and Q, trace(tdP Q) vanishes if
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and only if Q is the zero matrix. PROPOSITION 2, hence, tells us
that d trace(B{X>™1 A{X)) = 0 if and only if
AX-BXBXLaAX =0.
If we choose an A-B-eigenbasis xq,..,x, of U then
BUxqsevrxd L Alxgsenrxd = diaglhy,es A
where 11""1k are the Rayleigh quotients of Xq9eesXp o So the
above reads

A x-i - lj B Xj = 0 .For‘ j=1,oo’k .
Thus, d J{U) = 0 means that XqseesX, are eigenvectors with
eigenvalues 11""1k ,

and then

JU) = trace(diag(ll,..,lk)) = 11+12+...+1k .

COROLLARY
J(U) takes on its minimum value when U is spanned by the k
eigenvectors with the k least eigenvalues and the minimum value is

just the sum of the k least eigenvalues.

Proof Immediate from THEOREM 1.

Now we have reached to the conclusion that, to find the
subspace spanned by the k eigenvectors with the least k
eigenvalues, it suffices to minimize J . QOur task now is to find

out an algorithm for minimization of J .

§3. Minimization algorithm

Since trace(¥dX R) is the sum of the products of the
corresponding entries of dX and R, PROPOSITION 2 tells us that,
in terms of some basis xq,..,x  of U and the matrix

X=Ex1,..,xk], the gradient (precisely half the gradient but as we
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concern only to the direction it makes no difference) of J(U) is
represented by
R=(AX-8xB00O1axy soo™t |
By that R represents the gradient of J , we mean that slight
modification of U in the steepest descend direction of J(U) is
realised by slight displacement of each basis of U proportional to
each column vector of R .,
In particular, if we choose an eigenbasis x4,..,x. of U, the
gradient reduces to
R=AX-BX diag(dy,..,4.) ,
where A4,..,4 are the Rayleigh quotients of x4,..,x.,. One can
write down this with each column vector r. of R as the following.

J
F-=AX--<AXJ,XJ-> BXj ‘FOI" ,j=190o,k .

J J

This may be expressed that the gradient of J(U) is represented
by the matrix whose each column vectors are the residuals (in the
eigenproblem sense) of the each elements of an eigenbasis of U.
With this terminology, THEOREM 1 may be re—-expressed that J(U) is
stationary if and only if the residual of each element of the
eigenbasis of U vanishes.

Our minimization algorithm is to be worked out based on this
information. For example, if the steepest-descend method were to

be adopted, the above information is interpreted as the following

steps 0 - 4.

0) Choose some lineraly independent vectors y.,..,¥, as the
basis of the starting subspace U.

1) Find an eigenbasis x4,..,x, of U by solving the k-dimensional
eigenproblem introduced in the proof of PROPOSITION 3 .

2) Calculate the residuals Fiseesli of XqseesX) and if all
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of them are sufficiently small then end.
3) Let Dxq%,..,x. %1 = Dxqyeesx 1 + € Lryyeeyr dy where t is to
be chosen so as to minimize
J = trace(Blxg%, v, X071 Alxy%, .0 yx %3).
4) Let the next U be that subspace spanned by Xq¥s 00y %) ¥ and

gO to 10

Although we shall not adopt the steepest—descend method in
itself, we shall use the above steps 0 to 4 as the point of
departure, revising them step by step. First, step 3 is to be

revised as follows.

3’) Let Ex1*,oo,xk*‘] = EXi,oo,Xk,rlgoo,rk] C ’ Uher‘e the 2k"

by~k matrix

Cl,l’ooc, Cl’k
C = .o ce e is to be chosen so that J be minimized.

C2k,1°°** “2k,k

It may be obvious that, with this revised step, one goes closer
to the goal in each iteration than with the original step 3. The
main purpose of this revision, however, is to make simpler the
minimization task in each iteration, which may sound paradoxical
since the number of parameters to be determined increases so much.
In fact the revised minimization step 3’ is itself an
eigenproblem, and so is handled in a uniform manner.

Since the purport of step 3° is to seek for a k—-dimensional
subspace which minimizes J within the 2k-dimensional subspace
spanned by xj's and rj's, we can make use of THEOREM 1 and its

CORCLLARY in the inverse direction. Namely, we can soluve this

problem by solving 2k-dimensional eigenproblem when 2k is small
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enough to apply some known fuil-matrix algorithm.

Let 75-= A{xi,..,xk,rl,..,rk} and g = B(X1’00,Xk’r1,at,rk}o
Then  Alxg*,..,x %) = ACCY and  Blxg%,..,x ¥} = B(C) and
Jixg*, 00 yx %) = trace(B(CY™L ACCY).

As is known from the THEOREM 1 and its COROLLARY, J is
minimized when and only when C = Cci,..,ckj where CqyseesC are the
eigenvectors with the least k eigenvalues 11<..<ik of the
eigenﬁrob]em

Ac. = ljg c

J J*

This Zk“dimensionai eigenproblem can be handlied with, say, the
generalized Jacobi method [11].

In addition, with Xq ¥y 005 %) * thus constructed, the next step 1
is no longer necessary as xq¥,..,x % itself make an eigenbasis of
the new U, since

ulﬁij and

<Axi*,xj*> (Aci,cj>

<Bxi*.xJ~*> (BCi,Cj> lj .

Another revision is one that is motivated from the congruent-—
gradient method. As is well known, steepest-descend method is in
general rather poorly convergent, which is still the case in our
revised step 3. So we shall adopt as the search direction, not
R = Erl,..,rj], but P = Epl,..,pkj as 1s defined below, and let Z
and g be A(xl,..,xk,pl,..,pk} and B{xi,..,xk,pl,..,pk}
respectively.

We define p:. =r. + B.Ax. for j=i,..,k where Ax. is the
J J J J J

last correction of X i.e. the difference between the current

and the previous X and Bj is to be determined so that Pj be

orthogonal to Arj, the difference between the current and the

previous r.. Namely, 8. =

i i —(rj,Arj>/<ij,Arj> « {(You know this

can be applied only from the second iteration, so the first pj's




-~ are to be just the rj's.)

According to the mean-value theorem, Arj is an approximation of
the current Hessian by the last correction, and so the
p = Epl""pkj thus determined is an approximation of the
congruent—gradient direction.

The next revision is, as it should be, the deflation.
Convergence speeds of XqseesX, are not equal. In our experiences,
smaller eigenvalues and their corresponding eigenvectors converge
faster in most cases. At the point when some x. has almost

J

converged, p: is so small that positive-definiteness of

J
é = B{xl,..,xk,pl,..,pk} becomes numerically uncertain and so the
generalized-Jacobi process might fail. So, as soon as some X has
reached to some prescribed level of convergence, Pj should be
eliminated from the construction of g and g + Then the
dimensionality of E and g reduces by one, serving also to save
the subsequent processing time.

The last account is about the choice strategy of the starting
subspace. As we are treating 2k—-dimensional eigenproblems in each
iteration, for no reasons should we spare the same effort at the
beginning. 2k—-dimensional Rayleigh—-Ritz analysis leads us to a
fairly good initial approximation of the lowest—spectral
k-dimensional subspace‘ue are seeking for if the 2k-dimmensional
vectors are chosen carefully.

In the experiments, we adopted trigonometrical functions>of
lower frequencies. Considerations of the shapé of the‘domain and
the boundary conditions gave us useful guidelines to determine
parameters of these 2k trigonometrical functions. If the global

shapes of the eigenfunctions have been already approximated to

some extent, local modifications along with the iterations are
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very fast to converge, as our matrices (linear operators) A, B are
“local”.
Note that, after this Rayleigh-Ritz analysis, an eigenbasis of
the starting subspace is already found.

The following is the resultant algorithm of what we have set

forth.

0) Choose some linearly indepent vectors YooY Carry out

Rayleigh—~Ritz analysis for these yj’s s 1.0, with g = A{yl,..,ka}

and é = B{yl,..,ka} , solve the eigenproblem g c; = ljg c; where

11<..<12k and cj's are to be normalized so that (gcj,cj> =1,

and let x; = Eyl""Yijcj for j = 1,..,k.

Initialize the “deflation counter® m to be 1.

1) Calculate the residuals ry = ij - ljij for j = mys.rk,

where lj = (ij,xj>/<8xj,xj> are already at hand with the
preceding eigenvalue computation. Let new m be the least j such

that magnitude of i exceeds some prescribed small number €. If

no such j is found then stop.

2) 1If for the first time here then let P; =r; else let

Py =r; + Bijj for | = m,..,k, where Bj = -(rj,Arj>/<ij,Arj>

and ij = current X, - previous X and
Arj = current ry - previous ri o
3) Let A = AlxqrevsxgsPpseesp)  and
§ = B{xl,..,xk,pm,...pk} and solve the eigenproblem
g c; = ljg c; 11<"<lk<“<12k—m+1’ normalising cj's so that
(BCJ,Cj) =1 .

...10_
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/d) Let xj* = [xi,..,xk,pm,..,pklcj for j = 1,;.,k, and go to 1
with the xj*'s as the new xj's.

Note that, if we retain ij's, ij's, Apj's and Bpj's each
time in somewhere, there is no need of matrix multiplication in
computing ij*'s and ij*'s, since
Ax % = EAxi,..,Axk,Apm,..,Akacj and

L%
BxJ

and B by pj's are necessary, the number of which is reducing as

EBxl,..,Bxk,Bpm,..,Bpk]cj respectively. Only A by pj's
deflation proceeds.

§4. An experiment

We applied the above algorithm to a simple test problem. The
test problem is the 2-dimensional Helmholtz equation

Uy F Uy Aa =0 .,

The domain and the boundary condition are as depicted in Fig 1.
We adopted, for simplicity, discretization via triangular linear
elements, as are shown also in Fig 1, giving rize to the stiffness
matrix A and the consistent mass matrix B. The degree of
freedom, or the number of nodal points which are not on the
Dirichliet boundary is 214. The number of the off-diagonal
entries is 1158 in both A and B. Ue executed‘a FORTRAN program
which implimented the‘a1gorithm described in the last section in
three cases, i.e. with k = 8, 12, 20, where k »is the number of
eigenpairs to be found out.

We chose 2k trigonometrical functions at the nodal points and

carried out a Rayleigh—-Ritz analysis to aquire an initial

approximation of the lowest—spectral k dimensinal subspace. The
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parameters were chosen with a consideration of the feature of the
boundary condition. The following is the 40 functions we used when
k = 20,

u ?i+j+1(x,y) = sin((2i+1) n(1-%x)/4) cos(jnaly—-1)/2)
for i = 0,..,5 and j = 0,..,6, <Ud1 and ugp are not used).
Only the numbering is different when k = 8 and k = 12.

We judged the convergence of an eigenpair when the square-sum
of the components of each residual vector has become less than
10—5. Though we cannot offer theoretical accounts for this
convergence criterion, seven decimal digits in the eigenvalues and
four decimal digits in the components of eigenvectors has become
‘stationary at the point when this criterion has been satisfied.

The following is the number of iterations and the elapsed CPU
time before the convergence of all the k eigenpaires. VAX11/780
with floating-point hardware option, somewhere around 1.0 mips
performance, has been used in this experiment. The whole

computations has been carried out in double precision floating-

point arithmetic, with 56-bit fractional part.

iteration CPU time
k= 8 20 87 sec.
k =12 17 165 sec.
k = 20 16 521 sec.

Resultant eigenvalues are listed below.

0.42791 2.77336 4.31649 2.54730 11.58713
19.01808 19.82062 22.95112 26.82124 28.02605
31.38743 35.79016  43.22530 43.61609 47.1984¢
52.99571 64.74309 65.43948 69.25672 73.13649

_12_
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Dirichlet boundary
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Neumann boundary

Fig 1.
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