ooooboooao
484 0 19830 22-30

22

GENERAL ELEMENTS OF IDEALS IN LOCAL RINGS
David Rees (Exeter, England)

In many situations arising in the theory of local rings, it
is necessary to make use of elements XyreeorXg of ideals Ot,,
...,OLS which are sufficiently general in some sence, depending
on the particular situation involved. The purpose of this lecture
is to describe a general set-up in which such general elements |
can be defined which satisfy the required conditions in most

such situations and to give an illustration of its application.

We suppose that (Q,m, k) is a local ring of dimension d.
We first construct the general extension Qg of Q. Let Xl,Xz,...
be a countable sequencg of indeterminates over Q. Then‘Qg is the
localisation of Q[Xl’xz""] at the prime ideal 4%[X1,X2,...].
It follows from a general result of Grothendieck that Qg is noether-
ian (alternatively one can prove that if Ot is a finitely generated
ideal of Q_, then n;jl(oz +m ") = 0L, and then, observing that
the completion of Qg is noetherian, use the above to show that
if opﬁg = (nﬂﬁé where o' is a finitely generated ideal of Qg
contained in ot, then (L =o0u'.)

Now suppose that 0@1,...,0ps are ideals of Q, and that OIi
has a basis a.;,...,a,. . Write M. = m, + ... + m.. Then we
il im, i 1 b
term Xqyre--rX  an independent set of general elements of ml""’OLs

if there exists an automorphism T of Qg over Q such that
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m.

1
T(x,) = I~ X . oA, .
1 -1 Mj-1™ 13

(i =1,...,8).
It is a simple matter to prove that this definition is independent
of the choice of bases of OLl,...;(ns. It also follows that the

ideal (x ,xs)(\Q of Q and the Q-algebra Qg/(xl,...,xs)

17

(to within isomorphism as a Q-algebra) depend only on the ideals
OLl,...,

ideals @,,...,(ms are all equal to ¢Ot. Let af(¢) denote the

OLS. I will only consider the first in the case when the

analytic spread of ¢, and v((.) the minimal number of genera-
tors of 0. Then
i) 1if s < a(olf, the ideal (xl,...,xs)p\Q is nilpotent;
ii)- if s = a(o), (xl,...,xs) is a reduction of OLQg and hence

(xl,...,x - mPngkfor n large, and hence (xl,...,xs)r\Q ~contains

s)
a power of (v ;

iii) if s Z» v(or), we have (xl,-..,xs)n Q= 0.

Now we consider the second. 1In this case we will be concerned
with the case when s = d-1 or 4, and the ideals Oll,...,OLs are :
all M -primary. Let N be any integer and define QN to be the ring

Q[Yl,...,YN] localised at /m{Yl,...,YN], Y "”’YN being inde-

1

terminates over Q. If we replace Yi by Xi' it is clear that we
canvconsider QN as a subring of Qg' Now éﬁppose that v is any
ideal of Qg' Then for some N, (v is generated by elements of the
sub~-ring QN of Qg and therefore o1 = (Ov(\QN)Qg. Now we have an

isomorphism of (Qg)N > Qg in which X, maps to X and Y, > X,

N+1 i

for i =1,...,N. It follows that Qg/m, is isomorphic to
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(Qg)N/(xf, where OL* is an ideal of (Qg)N meeting Qg in (Q(\GL)Qg-
The case that will concern us is when O is generated by general

elements x of M -primary ideals Olq,..., 004 ; of Q.

R

For simplicity of exposition, we will restrict ourselves to the
case when Q is a domain. Then Qg/(xl”"’xd—l) is a local ring

of dimension 1. Now suppose N (i =1,...,4-1) is a set of

independent general elements of the ideals C%l, ai,..., d_l,cna_l.
Now choose N so that the elements yi,zi (L =1,...,d-1) are all
contained in the sub-ring QN of Qg' Then it is not difficult to

prove that the elements w, =y, - X (i=1,...,d-1) form a

N+i%i
set of independent general elements of (%l,..., &Erl' We further

note that for each i, the elements yi'zl""’zd—l generate an
M@Qg-primary ideal of Qg' We now guote a general result which

will be proved in an appendix:

Let Q be a local domain of dimension d, and let yi,zi (i =

1,...,d-1) be elements of Q such that yi,z +5%3.1 generate an

15"
M -primary ideal for each i.. Then, i1f B is the ring
Wyy/2y5 - +595.17/2q.1

i) B/mB is isomorphic to k[Xl,...,Xd_l], where Xk = Q/mt,
and Xl""’Xd—l are indeterminates over k;

ii) if L denotes B localised at the prime ideal
Mp[yl/zl;...,yd_l/zd_lj, and Q(X) denotes the ring Q[Xl,...,Xd_lj
localised at ww{Xl,...,Xd_l], where Xl”"’xd~l are indeterminates
over Q, then the kernel of the homomorphism of Q(X) onto L in
which X; > y,/z; (i =1,...,d-1) 1is a prime ideal B containing

. - - _ - / .
the ideal % (yl P STERERI S zd_le_l) and B/¥% is

annihilated by a power of M.
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Applying this result, we see that, replacing Q by Qg and
giving YirZ; their original meaning, the ring L obtained in this
sitgation is isomorphic to Qg/(xl,;..,xd_l):mbn if n is large
enough. '

It follows that we can consider L in two ways, first as a
homomofphic image of Qg,‘and second as a local ring containing Qg
and contained in its field of fractions Fg. Further the maximal
ideal of L is mL and N&L(\Qg = M»Qg. Now L is lfdimensional.
Hence, by the Krull-Akizuki theorem, the integral closure L* of
L in Fg is the intersection of a finite set(of dis;rete yalpatién

rings. Let the associated valuations be V Vq and let their

17
restriction to the field of fractions F of Q be Vl"”’vq' »Then

vl,...,vq are independent of the choice of the‘elements,yi,zi-

Now we must digress to consider valuations on Qg‘ Suppose
that V is a valuation 2 0 on Qg' and > 0 on mng, and : taking
integer values. If Kv»is the residue field of V,~then»Kv is-~an
extension of k. , and an old result of Zariski states that .

tr.deg K KV < d-1. Now let v be the restriction of V to F. Then
g

it is quite easy to prove that

P tr.dengm.’

tr.degk Kv
g9

Now I recall another old result, due in this case to
Northcott. Let K denote the residue field of L (which is a pure
transcendental extension of kg of transcendence degree d-1).

Now the valuations Vi already referred to have an extension to

-4 -
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the completion L of L which we denote by V‘i, and each such ex-
tension \7i takes the value » on a minimal prime ideal ‘,}3'i of L.
Let cSi denote the length of the primary component of (0) in f

with assc_)g;:iated prime ‘X}i. Then if x ¢ L,

e(xL) = 2(L/xL) =
i

I ~.Q

where e(+) is the multiplicitv.

Now we turn to multiplicities and degree functions. Follow-

ing Teissier, we will use mixed multiplicities. Let OLyres-r0Lg

be d Mm-primary ideals of Q, and let M be a finitely generated

Q-module. Then we define e(0ly,eeuy Oqi M) as  e(xXy,...,X4iM)

where Xqre-.rXgq are indepéndent genéral elements of OLl, ceey OLg-

Then we have the result that if L is as described earlier,
e(Olyr-ver Oy = e(de) = ef O’LdL),

the latter following since x.L is a reduction of mdL. Further

d
this latter remark also implies that, if Vi, \f have the meanings
given earlier, then Vi(xd) = Vi( md) where the latter denotes the
minimum value of vi(x) on obd.i: We further note that
e (7(1;..., md; M) is a symmetric function of 011,..., OLd and,
if mé is another M~—primary ideal of Q, then
v . — . ',
e(mll‘°‘l Oldmd r M) e(a-l""l Otd ! M) +e(ol,l""l ULdIM)
we can now write down a formula for the multiplicity symbol
q
e(mll"'lold ; Q) =§- Gi[K‘]-: K] Vi(ULd)
i=1 i
and similar formulae arising from the symmetry of the éymbol.

However this formula attains its full force if we introduce

-5-
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degree functions. We define the degree function d((ll,...,OLd_l;x
where x is an element of Q to be e(ﬂi,---,(ﬂé_l;Q') where Q'= Q/x
and (Ri = (mi + xQ)/xQ. If Q is a domain, this can also be
written as e(xl,...,xd_l,x;Q) and we obtain the expression
/ q
d((nl,...,(xa_l;x) = é{i Gi[KVi:K] vi(x).

APPENDIX
First we prove a lemma which is well known.

LEMMA. Let B be a noether domain, y,z elements of B such that
(y,z) has height 2. Let B' be the ring Bly/z] and let P be
the kernel of the map B[Y] » B’ in which Y > y/z.; Then ﬂk |
contains w = zY - y, and

wB[Y]:(zm,ym) = q3
if m is sufficiently large. Further, if mwm is any primé ideai
of B containing (y,z), then B'/MMB{;; (B/m) [X], ‘where X‘is aﬁ'

indeterminate over B'/mB'.

Proof. Let f(Y) be a polynomial of degree r over B such that
f(y/z) = 0. Then we can write £(Y) = F(Y,1) where F(Y,2) is
a homogeneous polynomial over B of degreé r such that F(y,z) = 0.
Then | |

zYF (Y, 2)

F(zY,22Z)

F(yZ+(zY¥-v2),2Z)

F(yZ,zZ) + (zY-y2Z)G(Y,2) by Taylor's Theore

Z'Fly,z) + (2Y-yZ)G(Y,Z)

whence, by putting Z = 1, we see that zrf(Y) € wB[Y]. Also,

yEE(Y) = (yF-2"YH)£(Y) + YT 2TE(Y) € wBI[Y].

-6-
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But as the ascending sequence of ideals wB[Y]:(yr,zr) becomes

stationary for large r, it follows that

q} = wB[Y]:(ym,zm) - m large.

Hence.x} is the radical of wB[Y] and since y,z € M/, W € mBI[Y],

i.e. q}CAWB[Y], which proves the result.
We now come to the main result of this appendix.

THEOREM. Let (Q, m,k) be a local domain of dimension d 2 2, and
let Y25 (i = 1,...,d-1) be elements of W such that
(yi,zl,...,zd_l)»is My -primary for i =1,...,d-1. ‘Let u, =
Yi/zi_ and B #»ngl’f"’ud—l]' Thgn

17 r¥g-1]

B/mB <X kI[X
are indeterminates over k, implying that wmwB

wherg Xl'f"'del

is prime.

Further let L = B and let Q ]

B Qenote Q[Xl,...,x

d-1 d-1
localised at 4w{Xl,...,Xd_l]. Let ¢ denote the kernel of the

homomorphism Qd-l + L in which Xi > ou,. Let w, = -y

z2.X. .
1 11 1

and let aﬁ be the ideal (wl”°"wd—l

) .. Then for r large,
c ,
m R X
Proof. The proof will be by induction on d, the case d=2
following from the lemma. Now suppose that d > 2. Write Q' for

Q[ud_l] localised at m[u which is prime by the lemma. We

d_l] r
first prove that (yi,zl,.,.,zd_z)Q' is M&Q'fprimary for i =
l,,,.(df2. ‘Now, by the lemma, Q' ~ Q(Xd_l)/q3', where 0(Xy_;)
. . s .
denotes Q[Xd—l] locallsed.at ww{xd_ll, and Q} is the radlcal of
wg_1Q(X5_ ;). Hence it will be sufficient to show that

(wd_l,yi,zl;...)zd_z) is mwQ(Xd_l)—primary. Write
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€, = yiQ(Xd_l) + 2,0(Xq ) + ... F zd—'ZQ(Xd—l)'

Then the minimal prime ideals of Ci are generated by elements of

0 and so can only contain Wa_1 if it contains Yg-1'2 Since

a-1-

c. + zd_lQ(Xd_l) is m-primary, dim ¢, =1, and since w

i d—i

belongs to no minimal prime of Ci' the result now follows.
Now we consider the first statement of the theorem. It is

clearly equivalent to the statement that if f£(X ) is a

RARREE W]
polynomial over Q such that f(ul""’ud—l) = 0, then all the
coefficients of f belong to m. Suppose there is a coefficient
of £ not in m. Then if we consider the polynomial
f(Xl""’Xd—Z’ud—l) as a polynomial with coefficients in Q',
then the lemma implies that this has a coefficient not in mQ'.
But Q' has dimension d-1 and the conditions of the theorem
apply. Hence by our inductive hypothesis f(ul,...,ud_l) # 0.
We are now in a position to construct L. Consider the

homomorphism Q + L. This can be factored as the product of

a-1

the homomorphism 04-1 ~ in which X and the

L
Qa-2 a-1 "~ Ya-1
homomorphism Q'd__2 + L. Denote by 0} the kernel of the homo-
morphism Qd—l > Q'd_z. Applying the inductive hypothesis to
the second factor, we see that, for r large,
r
me R C O] + (Wyreeerwy_ )

while, by the lemma,

m m
(Yg-1 7 2g-1 )9 € ¥g-19%-1°

Hence

m

m r
(yd_l ’ Zd“l ) m {[} C (wl'...’wd"l) = \%‘

But by reordering the suffixes 1,...,d-1, we can replace d—i

on the left hand side by i (i =1,...,d-2). .Hence if m,r are

B
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large enough,

m m m m r ‘
(yl reeer¥gLy ¢ 2y reeerZ3.7 ) ?} - ;f

and the result follows since the first factor is m —-primary.



