GENERAL ELEMENTS OF IDEALS IN LOCAL RINGS

David Rees (Exeter, England)

In many situations arising in the theory of local rings, it is necessary to make use of elements $\mathbf{x}_1,\dots,\mathbf{x}_s$ of ideals \mathcal{O}_1 , ..., \mathcal{O}_s which are sufficiently general in some sence, depending on the particular situation involved. The purpose of this lecture is to describe a general set-up in which such general elements can be defined which satisfy the required conditions in most such situations and to give an illustration of its application.

We suppose that (Q, m, k) is a local ring of dimension d. We first construct the general extension Q_g of Q. Let X_1, X_2, \ldots be a countable sequence of indeterminates over Q. Then Q_g is the localisation of $Q[X_1, X_2, \ldots]$ at the prime ideal $m[X_1, X_2, \ldots]$. It follows from a general result of Grothendieck that Q_g is noetherian (alternatively one can prove that if Ω is a finitely generated ideal of Q_g , then $\bigcap_{n=1}^{\infty} (\Omega + m_g^n) = \Omega$, and then, observing that the completion of Q_g is noetherian, use the above to show that if $\Omega \cdot \overline{Q}_g = \sigma \cdot \overline{Q}_g$ where $\sigma \cdot$ is a finitely generated ideal of Q_g contained in σ , then $\Omega = \sigma \cdot$.

Now suppose that α_1,\ldots,α_s are ideals of Q, and that α_i has a basis a_{i1},\ldots,a_{im_i} . Write $M_i=m_1+\ldots+m_i$. Then we term x_1,\ldots,x_s an independent set of general elements of α_1,\ldots,α_s if there exists an automorphism T of Q_q over Q such that

$$T(x_i) = \sum_{j=1}^{m_i} X_{M_{i-1}+j} a_{ij}$$
 (i = 1,...,s).

It is a simple matter to prove that this definition is independent of the choice of bases of Ω_1,\ldots,Ω_s . It also follows that the ideal $(x_1,\ldots,x_s)\cap Q$ of Q and the Q-algebra $Q_g/(x_1,\ldots,x_s)$ (to within isomorphism as a Q-algebra) depend only on the ideals Ω_1,\ldots,Ω_s . I will only consider the first in the case when the ideals Ω_1,\ldots,Ω_s are all equal to Ω . Let $a(\alpha)$ denote the analytic spread of Ω , and $v(\Omega)$ the minimal number of generators of Ω . Then

- i) if s < a(n), the ideal $(x_1, ..., x_s) \cap Q$ is nilpotent;
- ii) if $s = a(\pi)$, $(x_1, ..., x_s)$ is a reduction of αQ_g and hence $(x_1, ..., x_s) \supseteq \alpha^n Q_g$ for n large, and hence $(x_1, ..., x_s) \cap Q$ contains a power of α ;
 - iii) if $s \gg v(\alpha)$, we have $(x_1, \ldots, x_s) \cap Q = \alpha$.

Now we consider the second. In this case we will be concerned with the case when s=d-1 or d, and the ideals $\mathcal{O}_1,\dots,\mathcal{O}_s$ are all \mathcal{W} -primary. Let N be any integer and define Q_N to be the ring $Q[Y_1,\dots,Y_N]$ localised at $w[Y_1,\dots,Y_N]$, Y_1,\dots,Y_N being indeterminates over Q. If we replace Y_i by X_i , it is clear that we can consider Q_N as a subring of Q_g . Now suppose that \mathcal{O}_i is any ideal of Q_g . Then for some N, \mathcal{O}_i is generated by elements of the sub-ring Q_N of Q_g and therefore $\mathcal{O}_i = (\mathcal{O}_i \cap Q_N)Q_g$. Now we have an isomorphism of $(Q_g)_N \to Q_g$ in which X_i maps to X_{N+i} and $Y_i \to X_i$ for $i=1,\dots,N$. It follows that Q_g/\mathcal{O}_i is isomorphic to

The case that will concern us is when α is generated by general elements x_1,\dots,x_{d-1} of m-primary ideals $\alpha_1,\dots,\alpha_{d-1}$ of Q. For simplicity of exposition, we will restrict ourselves to the case when Q is a domain. Then $Q_g/(x_1,\dots,x_{d-1})$ is a local ring of dimension 1. Now suppose y_i,z_i $(i=1,\dots,d-1)$ is a set of independent general elements of the ideals $\alpha_1,\alpha_1,\dots,\alpha_{d-1},\alpha_{d-1}$. Now choose Q so that the elements Q of Q. Then it is not difficult to prove that the elements Q of Q. Then it is not difficult to prove that the elements Q of Q

Let Q be a local domain of dimension d, and let y_i, z_i (i = 1,...,d-1) be elements of Q such that $y_i, z_1, \ldots, z_{d-1}$ generate an W-primary ideal for each i. Then, if B is the ring $Q[y_1/z_1, \ldots, y_{d-1}/z_{d-1}],$

- i) B/wB is isomorphic to $k[X_1, ..., X_{d-1}]$, where k = Q/w, and $X_1, ..., X_{d-1}$ are indeterminates over k;
- ii) if L denotes B localised at the prime ideal $w[y_1/z_1,\ldots,y_{d-1}/z_{d-1}]$, and Q(X) denotes the ring Q[X₁,...,X_{d-1}] localised at $w[X_1,\ldots,X_{d-1}]$, where X_1,\ldots,X_{d-1} are indeterminates over Q, then the kernel of the homomorphism of Q(X) onto L in which $X_i \to y_i/z_i$ (i = 1,...,d-1) is a prime ideal \mathfrak{X} containing the ideal $\mathfrak{X} = (y_1-z_1X_1,\ldots,y_{d-1}-z_{d-1}X_{d-1})$ and $\mathfrak{P}/\mathfrak{X}$ is annihilated by a power of w.

Applying this result, we see that, replacing Ω by Ω_g and giving y_i, z_i their original meaning, the ring L obtained in this situation is isomorphic to $\Omega_g/(x_1, \ldots, x_{d-1}): m^n$ if n is large enough.

It follows that we can consider L in two ways, first as a homomorphic image of Q_g , and second as a local ring containing Q_g and contained in its field of fractions F_g . Further the maximal ideal of L is wL and $wL \cap Q_g = wQ_g$. Now L is 1-dimensional. Hence, by the Krull-Akizuki theorem, the integral closure L* of L in F_g is the intersection of a finite set of discrete valuation rings. Let the associated valuations be V_1, \ldots, V_q and let their restriction to the field of fractions F of Q be v_1, \ldots, v_q . Then v_1, \ldots, v_q are independent of the choice of the elements y_i, z_i .

Now we must digress to consider valuations on Q_g . Suppose that V is a valuation $\geqslant 0$ on Q_g , and $\geqslant 0$ on $\mathcal{M}Q_g$, and taking integer values. If K_V is the residue field of V, then K_V is an extension of k_g , and an old result of Zariski states that tr.deg k_g $K_V \leqslant d-1$. Now let v be the restriction of V to F. Then it is quite easy to prove that

$$\text{tr.deg}_{k_{g}} K_{V} \geqslant \text{tr.deg}_{k} K_{V}.$$

Now I recall another old result, due in this case to Northcott. Let K denote the residue field of L (which is a pure transcendental extension of $k_{\rm g}$ of transcendence degree d-1). Now the valuations $V_{\rm i}$ already referred to have an extension to

the completion \overline{L} of L which we denote by \overline{V}_i , and each such extension \overline{V}_i takes the value ∞ on a minimal prime ideal \Re_i of \overline{L} . Let δ_i denote the length of the primary component of (0) in \overline{L} with associated prime \Re_i . Then if $x \in L$,

$$e(xL) = \ell(L/xL) = \sum_{i=1}^{q} \delta_{i}[K_{V_{i}}:K] V_{i}(x)$$

where e(·) is the multiplicity.

Now we turn to multiplicities and degree functions. Following Teissier, we will use mixed multiplicities. Let α_1,\ldots,α_d be d w-primary ideals of Q, and let M be a finitely generated Q-module. Then we define $e(\alpha_1,\ldots,\alpha_d;M)$ as $e(x_1,\ldots,x_d;M)$ where x_1,\ldots,x_d are independent general elements of α_1,\ldots,α_d . Then we have the result that if L is as described earlier,

$$e(\alpha_1, \ldots, \alpha_d) = e(x_dL) = e(\alpha_dL),$$

the latter following since x_dL is a reduction of \mathfrak{A}_dL . Further this latter remark also implies that, if V_i , v_i have the meanings given earlier, then $V_i(x_d) = v_i(\mathfrak{A}_d)$ where the latter denotes the minimum value of $v_i(x)$ on \mathfrak{A}_d . We further note that $e(\mathfrak{A}_1,\ldots,\mathfrak{A}_d;M)$ is a symmetric function of $\mathfrak{A}_1,\ldots,\mathfrak{A}_d$ and, if \mathfrak{A}_d is another M-primary ideal of Q, then

 $e(\mathfrak{A}_1,\ldots,\mathfrak{A}_d\mathfrak{A}_d';M)=e(\mathfrak{A}_1,\ldots,\mathfrak{A}_d;M)+e(\mathfrak{A}_1,\ldots,\mathfrak{A}_d';M)$ we can now write down a formula for the multiplicity symbol

$$e(\mathfrak{A}_1, \dots, \mathfrak{A}_d ; Q) = \sum_{i=1}^q \delta_i[K_{V_i} : K] v_i(\mathfrak{A}_d)$$

and similar formulae arising from the symmetry of the symbol.

However this formula attains its full force if we introduce

degree functions. We define the degree function $d(\Omega_1, \ldots, \Omega_{d-1}; x)$ where x is an element of Q to be $e(\alpha_1', \ldots, \alpha_{d-1}; Q')$ where Q' = Q/x and $\alpha_1' = (\alpha_1 + xQ)/xQ$. If Q is a domain, this can also be written as $e(x_1, \ldots, x_{d-1}, x; Q)$ and we obtain the expression

$$d(\Omega_1, ..., \Omega_{d-1}; x) = \sum_{i=1}^{q} \delta_i [K_{V_i} : K] V_i(x).$$

APPENDIX

First we prove a lemma which is well known.

LEMMA. Let B be a noether domain, y,z elements of B such that (y,z) has height 2. Let B' be the ring B[y/z] and let \mathcal{P} be the kernel of the map $B[Y] \rightarrow B'$ in which $Y \rightarrow y/z$. Then \mathcal{P} contains w = zY - y, and

$$wB[Y]:(z^{m},y^{m}) = P$$

if m is sufficiently large. Further, if m is any prime ideal of B containing (y,z), then $B'/mB'\cong (B/m)[X]$, where X is an indeterminate over B'/mB'.

<u>Proof.</u> Let f(Y) be a polynomial of degree r over B such that f(y/z) = 0. Then we can write f(Y) = F(Y,1) where F(Y,Z) is a homogeneous polynomial over B of degree r such that F(y,z) = 0. Then

$$z^{r}F(Y,Z) = F(zY,zZ) = F(yZ+(zY-yZ),zZ)$$

= $F(yZ,zZ) + (zY-yZ)G(Y,Z)$ by Taylor's Theore
= $Z^{r}F(y,z) + (zY-yZ)G(Y,Z)$

whence, by putting Z = 1, we see that $z^r f(Y) \in wB[Y]$. Also, $y^r f(Y) = (y^r - z^r Y^r) f(Y) + Y^r z^r f(Y) \in wB[Y]$.

But as the ascending sequence of ideals $wB[Y]:(y^r,z^r)$ becomes stationary for large r, it follows that

$$\mathfrak{P} = wB[Y]: (y^m, z^m)$$
 m large.

Hence \mathcal{R} is the radical of wB[Y] and since $y,z \in \mathcal{W}$, $w \in \mathcal{M}B[Y]$, i.e. $\mathfrak{P} \subset WB[Y]$, which proves the result.

We now come to the main result of this appendix.

THEOREM. Let (Q, m, k) be a local domain of dimension $d \ge 2$, and let y_i, z_i (i = 1,...,d-1) be elements of w such that $(y_i, z_1, \dots, z_{d-1})$ is \mathcal{M} -primary for $i = 1, \dots, d-1$. Let $u_i = 1, \dots, d-1$ y_i/z_i and $B = Q[u_1, \dots, u_{d-1}]$. Then

$$B/mB \cong k[X_1, \dots, X_{d-1}]$$

where X_1, \dots, X_{d-1} are indeterminates over k, implying that wis prime.

Further let L = B_{mB} and let Q_{d-1} denote $Q[X_1, \dots, X_{d-1}]$ localised at $w[X_1, ..., X_{d-1}]$. Let \mathcal{P} denote the kernel of the homomorphism $Q_{d-1} \rightarrow L$ in which $X_i \rightarrow u_i$. Let $w_i = z_i X_i - y_i$ and let \mathfrak{X} be the ideal (w_1, \ldots, w_{d-1}) . Then for relarge,

$$m^r \mathcal{P} \subset \mathcal{X}$$

<u>Proof</u>. The proof will be by induction on d, the case d=2following from the lemma. Now suppose that d > 2. Write Q' for ${\bf Q}[{\bf u}_{d-1}]$ localised at ${\bf w}[{\bf u}_{d-1}]$, which is prime by the lemma. We first prove that $(y_1, z_1, ..., z_{d-2})Q'$ is mQ'-primary for i =1,...,d-2. Now, by the lemma, $Q'\cong Q(X_{d-1})/\mathfrak{P}'$, where $Q(X_{d-1})$ denotes $Q[X_{d-1}]$ localised at $w[X_{d-1}]$, and p' is the radical of $w_{d-1}Q(X_{d-1})$. Hence it will be sufficient to show that $(w_{d-1}, y_i, z_1, \dots, z_{d-2})$ is $mQ(X_{d-1})$ -primary. Write

$$C_i = y_i Q(X_{d-1}) + z_1 Q(X_{d-1}) + \dots + z_{d-2} Q(X_{d-1})$$
.

Then the minimal prime ideals of C_i are generated by elements of Q and so can only contain w_{d-1} if it contains y_{d-1}, z_{d-1} . Since $C_i + z_{d-1}Q(X_{d-1})$ is w-primary, dim $C_i = 1$, and since w_{d-1} belongs to no minimal prime of C_i , the result now follows.

Now we consider the first statement of the theorem. It is clearly equivalent to the statement that if $f(X_1,\ldots,X_{d-1})$ is a polynomial over Q such that $f(u_1,\ldots,u_{d-1})=0$, then all the coefficients of f belong to m. Suppose there is a coefficient of f not in m. Then if we consider the polynomial $f(X_1,\ldots,X_{d-2},u_{d-1})$ as a polynomial with coefficients in Q', then the lemma implies that this has a coefficient not in mQ'. But Q' has dimension d-l and the conditions of the theorem apply. Hence by our inductive hypothesis $f(u_1,\ldots,u_{d-1}) \neq 0$.

We are now in a position to construct L. Consider the homomorphism $Q_{d-1} \to L$. This can be factored as the product of the homomorphism $Q_{d-1} \to Q'_{d-2}$ in which $X_{d-1} \to u_{d-1}$ and the homomorphism $Q'_{d-2} \to L$. Denote by Q the kernel of the homomorphism $Q_{d-1} \to Q'_{d-2}$. Applying the inductive hypothesis to the second factor, we see that, for r large,

$$w^r \mathcal{P} \subset \mathcal{O} + (w_1, \dots, w_{d-2})$$

while, by the lemma,

$$(y_{d-1}^{m}, z_{d-1}^{m}) \circ (x_{d-1}^{m}) \circ$$

Hence

$$(y_{d-1}^{m}, z_{d-1}^{m}) m^{r} \mathcal{P} \subset (w_{1}, \dots, w_{d-1}) = \mathcal{X}.$$

But by reordering the suffixes 1,...,d-1, we can replace d-1 on the left hand side by i (i = 1,...,d-2). Hence if m,r are

large enough,

$$(y_1^m, \ldots, y_{d-1}^m, z_1^m, \ldots, z_{d-1}^m) m^r p \subset \mathfrak{X}$$

and the result follows since the first factor is m-primary.