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ON THE CANONICAL MODULES

§%ﬁ§_fl4fg 5%,ﬂl %%"‘ ( Yéichi Aoyama )

A ring will always méan a commutative noetherian ring with
unit. Let R be a ring, M a finitely generated R -module and
N a submodule of M . We denote by MinR(M) the set of miniﬁal
elements in SuppR(M) and put UM(N) = N Q where Q funs thro-
ugh all the primary components of N in M -such that. dim M/Q.
= dim M/N . Let T be an R-module and a an ldeal of R
ER(T) denotes an injective envelope of T and ﬂHi(T) is the
1i-th local cohomology module of T with respect go a . We de-
note by " the Jacobsoh radical adic completion over a semi-loc-
al ring. For a ring R , Q(R) denotes the total;quotient ring

of R . Throughout this note A denotes a local ring of dimens-

ion d and with maximal ideal m .

Definition([7, Definition 5.6]). An A-module K is called a

~

canonical module of A if I{®A§,= HomA(Hi(A),EA(A/g))

For elementary properties of canonical modules, we refer the
reader to [6, 86], [7, 5 Vortrag und 6 Vortrag] and [2, §1]. It
is not obvious that the localization of a canonical module 1s a

canonical module of the localization rihg, which was known only
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for local rings with dualizing complexes, and Ogoma [9] showed
that there is a.non—acceptable (hence without dualizing complex)
local ring with canonical module. Our purposes are to prove that
KE is a canonical module of AQ for every p in SuppA(K) (

A is a local ring with canonical module K ) and to consider en-

domorphism rings of canonical modules.

Lemma 1(Corollary to [5, Theorem 1]). Let B be a faithfully

flat local A - algebra with maximal ideal n . Then:

(1) If B/mB 1s an artinian Gorenstein ring, then EA<A/Q)Q%XB
F Eg(B/n)

(2) If T 4is an A -module such that 'P@AEEE EB(B/Q) s, then

T = EA(A/g) and B/mB is an artinian Gorenstein ring.

Theorem 2([4]). Assume that A has a canonical module K and
let B Dbe a faithfully flat local A -algebra. Then the follow-
ing are equivalent:

(a) B/mB 1is a Gorenstein ring.

(b) K®, B is a canonical module of B and B/mB is a Cohen-

Macaulay ring.

(Proof) Suppose that B/mB 1is a Cohen-Macaulay ring and let v
seeesYn, be a system of elements in n , the maximal ideal of B
, which is a maximal B/mB - regular sequence ( r = dim B/mB ).

Let R = A[Xl""’Xr] with indeterminates X

(g,xl,...,Xr) 10
X, over A and let f be the natural A-algebra homomorphism

from R to ‘B such that f(X;) = yi for i =1,...,0 . Then

f 1is a flat local homomorphism. By [7, Korollar 5.12], C ==I{®A

R 1s a canonical module of R . Hence we may assume that B/mB
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is artinian. Furthermore we may assume that A and B are both
complete. In this case it is shown that I(@AIB is a canonical
module of B if and only if EA(A/Q)Q%XB = EB(B/E) ([2, Proof
of Proposition 4.1]). Hence the assertion follows from Lemma 1.

(Q.E.D.)

Suppose that A has a canonical module K . Let M be a

finitely generated A -module and h the natural map from M

M
to HomA(HomA(M,K),K)

Proposition 3([2, (1.11)]). The foilowing are equivalent:

(a) The map h is an isomorphism.

M
(b) # .is (S,) and dim A/p = d for every p in Min,(M)

Corollary 4([1, Proposition 2]). A = HomA(K,K) if and only if

A s (S,).

Next we show some elementary properties of the endomorphism-
ring of a canonical module. Assume that A has a canonical mod -

ule XK and put H = EndA(K)

Theorem 5([2, Theorem 3.2]). The following statements hold for .

H

(l) H is a semi-local ring which is a finitely generated A -
module and A/U<C H < Q(A/U) where U = UA(O) = annA(K)

(2) Every maximal chain of prime ideals in H 1is of length d

(3) # is (s,).

(4) For every maximal ideal n of H , Kn is a canonical mod-
ule of Hn . (K is an H-module by t;e usual way.)

(5) dimA'Coker(A-+H) <d-2 .



(Proof) We may assume that’ annA(K) = UA(O) =0
(1) Let p be a prime ideal of A with dim A/p = d and g

a minimal prime ideal of pA . Then dim /g =4 and K  1is a

te]

N

canonical module of ﬁq . Since dim ﬁq =0, K, Eﬁ(ﬁ/g)

12

; A =R K = E, (A by Lemma 1(2). Let Ass(A)
Since KR®A Aq Kq > X5 A( /p) y

p = - = t
= {pl,...,pé} and 8 = A\\,kG_pi , the set of non-zerodivisors
p. p. 4R

of A . 8Since K 1is torsion free, so is H - and the natural map
_ t ot
H — S™'H is injective. Since STk 2 @ K. = @ E,(A/p,)
1 t i=1 By i=1 "1
STTH 2 Hom, (s71K,s7YK) = @ A 2 Q(a)
A i=1 By
(2) Because A is unmizxed.
(3) Because K is (Sg).
(4) The map hey : K — HomA(H,K) is an isomorphism by Proposit-

ion 3. Hence the assertion follows from [7, Satz 5.12] and (3).
(5) We may assume that A 1s complete. Let p be a primt ide-
al such that height p < 1 . Then Ap is Cohen-Macaulay and KE

is a canonical module of Ap because A 1is complete and UA(O)

=0 . Hence A ’Hp , that is, Coker(A~H) = 0 , which means

dim, Coker(A - H) d-2 . (Q.E.D.)

A

IA

Theorem 6([2, Theorem 4.27). Let ’(A,Q) — (B,n) Dbe a flat loc-
al homomorphism and M an A -module. If ]W@AES is a canonical

module of B , then M 1s a canonical module of A

Corollary 7([2, Corollary 4.3]). Assume that A has a canonical

module X and let p be an element of Supp,(XK) . Then Kp is

a canonical module of Ap and ﬁq/gﬁq 1s a Gorenstein ring for

every minimal prime ideal g of BA

Before proving Theorem 6, we show two lemmas.
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Lemma 8. Assume that A 1is complete. Let T be a finitely ge-
nerated (S,) A-module such that dim A/p = d for every p in
MinA(T) and Hg(T) = EA(A/Q) . Then T 4is a canonical module

of A . 1In this case A is (82).

(Proof) By Proposition 3, the map h is an isomorphism. Since

T
Hom, (T,K) 2 HomA(Hg(T),EA(A/@)) = Hom, (E, (A/m),E,(A/m)) = A , T

= HomA(A,K) 5 K , a canonical module of A . (Q.E.D.)

Lemma 9. Let R be a finite over-ring of A such that dim,

R/A < d-2 and dim Rp'= d for every maximal ideal p of R .

If T is a finitely generated R -module such that 'Tb is a ca-

nonical module of Rp for every maximal ideal p “of R , then

T , as an A - module, 1s a canonical module of A

(Proof) We may assume that A 1is complete. For every maximal
ideal p of R, HomA(R,K)p is a canonical module of Rp, by

[7, Satz 5.12] ( K 1is a canonical module of A ). Hence Tp =
HomA(R,K)p for every maximal ideal p of R~ and thereforeT*T~.
= HomA(R,K) . Since dim, R/A <d-2 , we haVe 'HOmA(R/A,K) = 0
and Exti(R/A,K) =‘O (ef. [2? (1.1001). Hence, from the exact
sequence 0 — A — R ¥f:R/A — 0 , we have HomA(R,K) § ﬁ§mA(A,

K) = K , a canonical module of A . (Q.E.D.)

(Proof of Theorem 6) We may assume that A and B are both co-
- mplete and mB 1s n-primary. Let K (resp. L ) Dbe a canon-

ical module of A (resp. B ).

~

(I) The case that B 1is (82): Since B 1is (82), B HomB(L,L)

~ ~

. d ~ . d = d = d
, i.e., H (L) = Ep(B/n) . Since H, (M) @) B = H/ (M8, B) Hy (1)

~

Eg(B/n) , Hg(m); E,(A/m) by Lemma 1(2). Since L 1is (S,),

e
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so is M . Since ASSB(L) = { g € Spec(B) | dim B/g = d } , Ass

e

K by

A(M) = { p € Spec(A) | dim A/p = & } . Hence we have M
Lemma 8.
(II) The general case: Since AssA(M) = { p & Spec(A) | dim A/p

= d } and -Mp = EA(A/B) for every p in AssA(M) (cf. Proof

of Theorem 5(1)), we have annA(M) = UA(O) . Hence we may assume
that UA(O),= 0 and UB(D) = 0. Put R = EndA(M) and S = End
B(L) . Since RQ%XB = S 1is a finite over-ring of B, R is a

finite over-ring of A . For every maximal ideal p of R,
dim Rp = d Dbecause A 1s unmixed. We have dim, R/A < d-2

because dimg S/B <d-2 . Let p Dbe a maximal ideal of R and

a maximal ideal of S 1yi over . Si M ® S =1L
9—_ i 0 ying e _p_ ince E R g _‘1

is a canonical module of Sq by Theorem 5(4) and Sg is (82) by

Theorem 5(3), M is a canonical module of Rp by the case (I).

Hence we have that M is a canonical module of A by Lemma 9.

.(Q.E.D.)

Remark. Goto (Nihon University) proved the following lemma and

gave another proof of Theorem 6. ([3, Appendix])

Lemma. Let (A,m) — (B,n) be a flat local homomorphism
sﬁch that mB 1is gg-priméry. If there is a finitely gene-
rated A-module T such that 'T®AE3 is a canonical module

of B , then B/mB 1s a Gorenstein ring.

By virtue of Corollary 7, we can prove the following propos-
ition by induction on dim A (c¢f. [1, Proof of Proposition 2]).
Assume that A has a canonical module K . For a finitely gene-

rated A -module M , hM denotes the natural map from M to



HomA(HomA(M,K),K)

Proposition 10([2, Proposition 4.47). The following are equival-

ent:

(a) - The map h is an isomorphism.

M
(b) M is (8,) and dim A/p

d for every p 1in MinA(M)

(¢) M is (82) and dim A/p d for every p in MinA(M)

Corollary 11([9, Proposition 4.2] and [4]). The following are

equivalent:
(a) A = HomA(K,K)
(b) & 1is (8,).

(e) A is (S2).

Remark. The implication (c¢) =(a) was first proved by Ogoma (Koc-

hi University), not by induction. (See [9, §4]. ecf. [3, (1)

Corollary 12([4]). Assume that A has a canonical module and

dim A/p = 4 for every p in Min(A) . Then the (8,)-locus of

A is open in Spec(A)

Corollary 13([4]). Assume that A has a canonical module. Let

(A,m) —+>(B,g) be a flat local homomorphism such that B/mB is

a Gorenstein ring.

(1) Let M be a finitely generated (82) A - module such that
dim A/p = d for every p in MinA(M) . Then M®,B is (S2)
and dim B/g = dim B for every g in MinBUW®AEN

(2) If A 1is (82), then B 1is also (82).

Next we show that the endomorphism ring of a canonical modu-

le is characterized by the properties described in Theorem 5.
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Theorem 1u<tu]). Assume that A has a canonical module K
Let R be a ring satisfying the following conditions:
(1) R is a finite (82) over-ring of A/UA(O) s
(ii) For every maximal ideal n of R , dim Rn =d , and

(i1) dimA Coker(A-+R) < d-2
Then R = EndA(K) as A -algebras.

(Proof) We may assume that UA(O) =0 . Put L = HomA(R,K)
Then Ln is a canonicél module of Rn for every maximalyidealv
n of E . By Lemma 9, we have L = E . From this isomorphism,
we have an A - algebra iéomorphism EndA(K) > EndA(L) ; Since

EndA(K) is commutative, so 1is EndA(L) and 'EndA(L) = EndR(L)

Since R 1is (Sz), R = EndR(L) . Hence we have R = EndA(K) as

A-algebras. (Q.E.D.).

In the following we assume that A has a canonical module

K, d3>2 and UA(O)‘= 0. Put H= EndA(K) and c = A:, H,

A
the conductor. Let’” T be the ¢ -transform of A , i.e., T'=
{ xe Q(a) | gtx C A for some t } . Let g be a prime ideal

of & containing gﬁ and p an associated prime ideal of ﬁq .

Since Uy(0) = U,(0)A = 0 and height ¢ 2 2 , we have dim ﬁq/g
> 2 . Hence by [8, Proposition(2.7)] we have:
(15.1) T is a finitely generated A - module.

The following two assertions are obvious:

(15.2) d:’LmA T/A £ d-2 .-

(15.3) T is (82).

Hence, from Theorem 14, we obtain the following



~

Proposition 16([4]). T = H as A-algebras.

We denote by A% the global transform of A , i.e., A% =
{ x e Q(a) | @FX € A for some t } . Since UA(O) =0 and d
z 2 , A8 s a finitely genérated A - module by [8, Proposition

(2.3)1.

Corollary 17([4]). A® 2 H as A - algebras if and only if depth

=
v

min { 2 , dim Ap } for every non-maximal prime ideal p of
A . In particular, if H;(A) is of finite length for i # 4 ,

A 2 H as A - algebras.
Fhime University
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