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Semisimple degree of symmetry of manifolds with
n n
the homotopy type of S 1 X ... X S k( n, = 1,2,3)
pu X , &
—;’3‘2/-‘?7:4’2 //Z%P gm ( Tsuyoshi Watabe)
In this talk, I report some results about the degree of
symmetry of certain manifolds. Here the degree of symmetry

of a manifold M is, by definition, the maximum of dimension of
compact connected Lie groups which act on M topologically and
almost effectively. We also define the semisimple degree of
symmetry of M by the maximum of dimension of compact connected
semisimple Lie groups which act on M topologically and almost
effectively. Recently many authors studied the degree of symm-
etry of manifolds with large low homotopy or cohomology such
as Ak—manifolds([S]), hyperaspherical manifolds ([6],[7]) or
manifolds with the Property Pr,s( r=1,2)([1]). Being moti-
vated by these works, I am interested in studying the degree of
symmetry of manifolds of following type.

1. r

(1) M is a closed topological manifold with a map £:M — (S87)

bl (82)S of non-zero degree.

3. s

)
(S3)S"

(2) M has the same integral cohomology ring as (S
)
(3) M is homotopy equivalent to (Sl)r X (SZ)S X

(ry 0,
s" 2 0). Put s = s' + s".
We obtain the following results.

A. Let M be a topological manifold of type 1,2, or 3.

Then S3 is only the compact simply connected Lie group which

acts on M topologically and almost effectively.

B. Let M be as in A. If a compact connected Lie group

G acts on M topologically and almost effectively, then G is

locally isomorphic to T x (SB)V, where
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i) u+v_Er+ 2s
ii) vsSs
iii) u+ v €2s if M is of type 1 and the Euler charac-

teristic of M is non-zero.

C. Let M be a topological manifold of type 1 and L an

orientable closed manifold which is not a rational homology

sphere with dim L = dim M. Then the connected sum L # M has

zero semisimple degree of symmetry.

These results are partly based on a joint work with K.
‘Saito. In this talk, I shall give an outline of the proof of
results A and B. From now on, I consider only topdlogical
manifolds and topological almost effective actions, and H*( )

denotes rational cohomology.

1. Leray spectral sequence.

The proof is based on the Leray spectral sequence of the

orbit map. We recall some basic results about the Leray spec-
tral sequence of the orbit map. Let M be a closed manifold or
a covering of a closed manifold. We may treat more general

space, but it is sufficient for us to consider only manifolds
as above. Assume a compact connected Lie group G acts on M.

Let @ :M -2 M/G be the orbit map and { Epéq, er the Leray»

spectral sequence of the orbit map [T . Recall that

(1) Eg’q = HP(M/G,Hq(?E )}, where Hq("E') is the sheaf gene-
rated by the presheaf U* — Hq( Kfl(U*)) for open set U* in M/G.
(2) The edge homomorphism e:H9 (M) —=> Eoéq is given by e(a)
(x*) = i;(a), where iX:G(x) —3 M is the inclusion.

(3) The stalk of HY( o ) at x* is HY(G(x)).

The following Propositions are basic for the proof.

- 2 —
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Proposition 1. Let k be the dimension of a principal orbit.

If there is a point x in M such that Hk(G(x)) = 0, then the

edge homomorphism e:Hk(M)“'9 Eg’k is trivial. In particular,
0,k _
we have Eoo = 0.
Remark. The hypothesis can be replaced by the following;

There is a point x in M such that i;:Hk(M)'—? Hk(G(x))

is trivial.

Proposition 2. Let M be a closed manifold with a map

f:M —> (Sl)r X (83)s of non-zero degree. Assume SU(3) or

Sp(2) acts on M with a finite principal isotropy subgroup.

Then there is a singular orbit.

Proposition 3. Let M be a closed manifold of type 2 or

3. If SU(2) acts on M with a finite principal isotropy sub-

group and a singular orbit, then there is a point x whose iso-

tropy subgroup is a torus.

2. Outline of the proof.

Now using Propositions above one can prove the result A

as follows. It is sufficient to show that SU(3) or Sp(2)
cannot acts on M. Assume SU(3) or Sp(2) acts on M.

The case where M is of type 1. Construct a T°-bundle
'ﬁ/over M as follows. Put Ni = (Sl)r (83)i (Sz)s_i.
Then Ni can be considered as a Tl—bundle over Ni—l' Let Ml
be the pull-back of the bundle Nl'—7 NO by the map f and f1
the bundle map Ml - Nl covering f. Inductively one can
define a sequence of manifolds and maps, MO = M, Ml’ ey Ms’
fo = £, fl, . fS such that

(1) fi:Mi - N, is a map of non-zero degree.

(2) The following diagram is commutative;
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b
Miqg — N.
£ i-1
i-1
. ~A
Define M = Ms and £ =.fS:ﬁJ-9 NS = (Sl)r p:4 (S3)S. It is well

known that the action 95 :G XM — M is lifted over Mi,»which
is denoted by ¢7i’ where G = SU(3) or Sp(2). Let K = 8U(2)
or Sp(l) be the standard subgroup of G and #’or(} i the res-
triction of ¢7 or qbi. One can prove the following

Proposition 4. {- is almost free, i.e. all isotropy sub-

groups are finite, where ¢J= ¥ .

P
(=]

. . ~ ~ i
This means that the orbit map [f : M —>» M/K behaves as if

it were a fiber bundle in rational coefficients. It is not

0,3
2

is surjective, where i Epéq,drj is the Leray spectral sequence

of the map U . In fact, assume the coﬁtrary. Since dim Eg’3

~
difficult to see that the edge homomorphism e:H3(M)~—§ E

: ~
is proved to be one, e is trivial. Hence we have HB(M/K) =

~
Ezéo = 53(M) via the homomorphism 7z *, which is proved by

the standard spectral sequence arguments. It is easy to see
that Hl(M/K) = Hl(M) via ﬁ;*.' Now these lead immediately to

P4
a contradiction. It follows that H* (M) = H*(M/K) & H*(S>)

~
and that i;:H3(M) -2 H;(K(x)) is non-trivial for every point

~/
x in M. Consider the diagram;

It follows that j*X is non-trivial. In particular, we have

~ . )
H3(G(x)) # 0 for every point x in M. This means that GX is
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finite, which contradicts Proposition 2.

The case where M is of type 2 or 3. As before, one can

] —
construct a T° -bundle M over M, which is homotopy equivalent

to (Sl)r X (S3)S. If M admits an action of G = SU(3) or Sp(2)
then M does also. Then we may assume M is homotopy equivalent
to (Sl)r bte (S3)S. Let K, ¢>, ¢> be as before. It is easy

to see that y’ has a finite pricipal isotropy subgroup. It follows
from Proposition 3 that there is a point X whose isotropy
subgroup is a torus. Let T and C be a maximal torus and the
center of K, respectively. Then one can prove the following
Proposition 5. (1) _1\_'13% 1\_/13 g_- M.
ny n

(2) s (sHTxs 'k ... x5%(n =1, 3), where X 3°Y_

means that X and Y have the same cohomology rings.

Now one can lead to a contradiction as follows. For sim-
plicity, consider the case r = 0. Consider the following

diagrams;

(1) H3(M,M-MC) —> H3(M) A B3 -y — w5, m-MS)

\/l*

H (RK(x))
3, i c 2 C
2) BV 3,M-v6) — ™) — 1™ (u-Mt) — S (M, M-M0)
{n Sl
H3(MC) — H3(M) where m = dim M.
C C 3 . 3 C
It can be shown that M-M /av'(M~M y/K x S~ and hence 1§:H (M-M7)

—> H3(K(x)) is non-trivial for every point x in M-MC.

Since K acts on M with a singular orbit, j; is trivial for

every point x in M. These arguments lead to a contradiction
. 4

as follows. If dim MC<: m - 4, then H3(M,M—MC) = H (M,M—MC)

— 5 —
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= 0 and hence i* is an isomorphism. This is clearly a contra-

diction. If dim MC =m - 2, then H4(M,M—MC)’= H2(MC) = 0.

It is easy to see that i; is trivial. Assume dim MC =m - 4.
Let bl’ ceer bs E-H3(M) be generators of H*(M). It follows

C

from (1) and (2) that i*(b,) = JT *(c;), c, e H>((M-M"/K) and

we may assume i* (b ) # 0. Then we have

1v+-
0 # i*(by ... by ;) =gp*(cy -.. c ;) =0,

since Y 3(M-MC) /K) = 0.

Next we shall prove result B. By the argument in [7],
one can prove the “following

Proposition 6. Let M be a closed manifold of type 1, 2,

or 3. Assume a compact connected semisimple Lie group G, acts

on M. Then we have dim M/Gl’z r.

Let G, = (su(2))Y act on M and By

subgroup. It is clear that dim Hl.g V. It follows from

a principal isotropy

Proposition 6 that dim M/Gl = dim M - dim Gl/H 2r. Since

1

dim Hy £ v, we have r+ 2s - 3v + v> r, and hence v £ s.

The case where M is of type 1. Assume that M has non-

. . , \ n .
zero Euler characteristic and admits an action of T . Since

the action has non-empty fixed point set, the map evx:Tn—ﬁ> M

defined by evx(g) = gx induces the trivial homomorphism evX*:
T[l(Tn) - Tfl(M). Then it follows from the same arguments
as in [7] that the action of T" is lifted over M', where M'

is the pull-back of the covering R® —> N = (Sl)r by the map

pr. f:M — (Sl)r X (SZ)S;‘f"> (Sl)rand dim M/Tnég r.

This implies that 2s 2 n.

The case where M is of type 2 or 3. One can prove the

__6._
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following
Proposition 7. Let X be a closed (r+3s)-dimensional
manifold with X~ (sH)¥ x (s%)5. If (r+s)-dimensional torus

Q
T acts on X almost freely, then X/T has non-zero Euler charac-

teristic.

It follows from this Proposition that if an n-dimensional
torus T acts on X almost freely, then n is at most r+s.

Now assume an n-dimensional torus T acts on M. Then

we can decompose ™ as a product ™ = Tl b4 Tzsuch that Tl acts
T
on M with a fixed point and T2 acts on M 1 almost freely.

Note that the homomorphism evf: Til(Tl)"a ‘I&(M) induced by
T

the map evX:Tl —> M is trivial for x in M l. It is known that

the action of Tl is lifted over Ef( = the universal covering
of M). Then the same argument of the proof of Proposition
5 shows that MTl’E/ (Sl)a b (53)b, where a+b = r+s and r & a.
Let dim T, = t. Then it follows that 2t § dim M - dim w L
=r + 3s - (a+3b) = 2(s-b), i.e.t X s - b. It follows that

n-tf% a+ b, which means that n {a+ s r+2s -b Sr+

2s.
Finally we shall prove that if Gl = SU(2)(1) X ... X SU
(2)(n) acts on M, then we have n é S. One can prove the following
Proposition 8. Let X be a closed (r+3s)-dimensional
manifold with x~(sH) T x (s})S.  1f ¢ = (su(2)* acts on x

Z

almost freely, then we have k i s.

It follows from this Proposition that if Gl acts on M

almost freely, then n 5 S. Assume the action is not almost

(1)

freely. Then there is an index t such that T = T X ... X

(t+1) (n)

r(t) has a fixed point and G, = SU(2) x SU(2)

2
acts on MT almost freely. Here T(l) is a maximal torus of SU(

2y (1)
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As noted above, we have MT/EJ (Sl)a X (S3)b and hence Proposition
8 shows that n - t{ b. This implies that n £ s as follows.

It follows from a result in [2] that dim M - dim MT;? 2t.

Since a + b = r + s, we have t X s - b, which implies that n& s.
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