Rational Smith Equivalence of Representations

Ted Petrie
Rutgers University and
University of Tokyo

§ 1. Statement of results.

A famous theorem of Atiyah-Bott and Milnor asserts that if a finite group G acts smoothly on a closed rational homotopy sphere Σ with $\Sigma^G = p \cup q$, then the representations of G on $T_p\Sigma$ and $T_q\Sigma$ are equal provided the action is semi-free. This is a report on joint work in progress with K.H. Dovermann where we show that for many cyclic groups of odd order, the result is false if the semi-free assumption is deleted. This is a prelude to our study where rational homotopy sphere is replaced by homotopy sphere. The author wishes to emphasize that proofs of results stated here exist in outline form only; so there may be some changes before the results obtain final form.

Let V be a representation of G and E an acyclic G space on which G acts freely. A smooth G manifold W is said to be V framed if there is a stable G vector bundle isomorphism $\beta: E \times TW \rightarrow E \times W \times V$. These bundles are G vector bundles over $E \times W$. There is an obvious notion of framed cobordism for V framed manifolds. Such a cobordism is said to be rel $\{W^H \mid H \subset G \mid H \neq 1\}$ if it is a product on H fixed sets for $H \neq 1$. By definition W is framed if it is framed for some V.

Let U and V be representations of G. Write U $_{\widetilde{Q}}$ V if there is a rational homotopy sphere Σ with G action such that $\Sigma^G = p \cup q \quad T_p \Sigma = U$, $T_q \Sigma = V$. We define a set S_1 of divisors of |G|, a subgroup $\overline{R}(G)$ of the complex representation ring of G and a homomorphism

$$\lambda : \overline{R}(G) \rightarrow \prod_{d \in S_1} \mathbb{C}^X / \mathbb{Z}_2 = \Gamma.$$

Here $\mathbb{C}^{\mathbf{X}} = \mathbb{C} - 0$ and \mathbf{Z}_2 is the subgroup of $\mathbb{IC}^{\mathbf{X}}$ generated by $(-1, -1, \cdots -1) = -\underline{1}$. Note Γ is a multiplicative group.

Theorem A: If $z \in Ker(\lambda)$, then there are representations U and V of G such that r(z) = U - V and $U \approx V$. Here $r : R(G) \to RO(G)$ denotes "realification".

For cyclic groups with at least four distinct primes dividing |G|, Ker λ is non zero. In fact it's usually large. The main geometric ingredient in the proof of Theorem A is this theorem:

Theorem B: Let G be cyclic of odd order. Suppose W is a closed 4k dimensional framed manifold with G action such that

- i) $\dim W^G = 0$
- ii) For H \subset G , H \neq 1, the Euler characteristic of W H $_\chi(W^H)$ is 2 and dim W H < $\frac{1}{2}$ dim W
- iii) Sign (G,W) = 0

Then W is framed cobordant to W' $rel\{W^H \mid H \subset G, H \neq 1\}$ and W' is a rational homotopy sphere.

Corollary C: W^G consists of 2 points p and q and $T_p \sum_{Q} T_q \sum_{Q}$.

§ 2. Outline of ideas used in theorems A and B.

We briefly indicate the ideas used in A) and B). This requires additional notation. Let Λ be Z or Q and n be an even integer. Let $W_n(G,\Lambda)$ be the equivariant Witt ring denoted by $W_n(\Lambda,G)$ in [ACH]. Briefly $W_n(G,\Lambda)$ consists of equivalence classes of pairs (M,ϕ) where M is a Λ torsion free $\Lambda(G)$ module and ϕ is a non singular, G invariant Λ valued bilinear form which satisfies $\phi(x,y)=(-1)^{n/2}\phi(y,x) \quad \text{for } x,y\in M. \quad \text{If } W \text{ is a closed manifold of dimension } n \text{ with } G \text{ acting preserving orientation, then } [W]_{\Lambda} \in W_n(G,\Lambda) \text{ is the class of } (H^{n/2}(W,\Lambda)/\text{Torsion},\phi_W) \text{ where } \phi_W \text{ is the cup product bilinear form on } W. We remark that [W]_{\Lambda} \text{ depends only on the } G \text{ cobordism class of } W. \text{ Note this key observation:}$

2.1 $[W]_{\mathbf{Z}} = 0$ if W is a rational homology sphere. In the case |G| is odd [ACH] give necessary and sufficient conditions that $[W]_{\mathbf{Z}} = 0$ which we exploit. To do this we henceforth suppose G is an odd order cyclic group and W is a closed oriented smooth G manifold of dimension 4k and in addition we assume dim $W^G = 0$. In this case there is a simple formula for the torsion signatures $\{w_p(G, W) \mid p \text{ is a prime which divides } |G| \}$. Note that in the notation of [ACH] $w_p(G, W) = f(T, p)$ where T generates G. See [ACH] pages 149-151. Let p be a prime which divides |G| and let P be

the p Sylow subgroup of G. Call p good if there is no integer x such that $-1 \equiv p^X mod | G/H |$; otherwise p is bad.

Lemma 2.3. Under the above assumptions on W, $w_p(G, W) = 0$ if p is good and $w_p(G, W) = \sum_{x \in WG} \frac{1}{2} (\dim T_x W - \dim T_x W^P) \mod 2$ if p is bad. (See 2.20)

Proof: This is immediate from [ACH, 1.8 p.141 and 3.5 p.149].

We emphasize that $w_p(G, W) \in \mathbf{Z}_2$ for each prime p which divides |G|. These invariants are all functions of $[W]_2$.

Theorem 2.4. [ACH, 3.6 p.151] [W]_Z = 0 iff Sign(G, W) = 0 and $w_p(G, W) = 0$ for all p which divide |G|.

Corollary 2.5. If W is a rational homology sphere with $W^G = x \cup y \quad (\text{2 points}) \,, \quad \text{then} \quad \frac{1}{2} (\dim \, T_x W^P - \dim \, T_y W^P) \equiv \, 0 \, (\text{2}) \quad \text{for each p Sylow subgroup for which p is bad.}$

Proof: This is immediate from 2.3 using the fact that $\dim\, T_{_{\mathbf{X}}}W$ and $\dim\, T_{_{\mathbf{Y}}}W^{\mathrm{P}}$ are even.

Corollary 2.5 gives an especially simple necessary condition that the representations U and V of G occur as $(T_xW,\,T_yW)$ for some smooth action of G on a rational homology sphere W with $W^G=x \cup y$. Actually much more stringent necessary conditions come from the condition Sign $(G,\,W)=0$. In fact if we add the condition that W be framed, all $w_D(G,\,W)$ vanish. Here is the argument:

Theorem 2.6. Suppose W is framed and $W^G = x \cup y$, then $w_p(G, W) = 0$ for all p which divide |G|.

Proof: The results of Atiyah in [A] assert:

+)
$$\operatorname{Ker}(R(G) \to K_{G}(E) = K(E/G) = \widehat{R}(G))$$

= $\operatorname{Ker}(R(G) \xrightarrow{\operatorname{res}} \mathbb{I} R(P))$
P Sylow

(The P component of res is $(res)_P = res_P$ where $res_P : R(G) \rightarrow R(P)$ is restriction to P C G.) Clearly $T_XW - T_YW \in Ker(R(G) \rightarrow K_G(E))$ if W is framed; so $T_XW - T_YW \in Ker(R(G) \xrightarrow{res} \prod_{P \ Sylow} R(P))$. Now the assertion $W_P(G, W) = 0$ follows from 2.3. (See 2.19)

Corollary 2.8. Let W be a framed G manifold with $W^G = p \cup g$. Then $[W]_{\mathbf{Z}} = 0$ iff Sign(G, W) = 0.

Now we discuss framed manifolds and equivariant surgery. The process of equivariant framed surgery is well understood when G acts freely on W. (See e.g. [W]). We treat this case first. Suppose G acts freely on W and $\beta: TW \cong (W \times V) \text{ is a stable G vector bundle isomorphism for some representation V of G. Call β a strong framing of W. Then for any <math>x \in \pi_j(W)$ $j \leq n/2$ $(n = \dim W)$, there is a G immersion (imbedding if j < n/2) $1: G \times S^j \times D^{n-j} \to W \text{ such that } 1 \mid S^j \text{ represents } x. \text{ If } 1$ is a G imbedding, there is a strong framing \$\beta'\$ of W' = W-interior $(G \times S^j \times D^{n-j}) \cup G \times D^{j+1} \times S^{n-j-1}$ which agrees with \$\beta\$ over W-interior $(G \times S^j \times D^{n-j})$. This construction $(W, \beta) \longmapsto (W', \beta')$ is called equivariant surgery and may be used to kill $\pi_j(W)$ for j < n/2. In fact W is

strongly framed cobordant to a manifold W" with $\pi_j(W")=0$ for j< n/2. For elaboration of these ideas, see [PR]. This discussion generalizes as follows:

<u>Lemma 2.9</u>. Suppose W is framed and dim W^H < $\frac{1}{2}$ dim W whenever H \neq 1. Then W is framed cobordant rel{W^H|H \neq 1} to a manifold W" with π_{j} (W") = 0 for j < n/2. (n = dim W).

Proof: Here is an outline: Let $W^* = W - UW^H_{j+1}$; so G acts $H^{\pm 1}$ freely on W^* . This means the projection of $E \times W^*$ on W^* is a G homotopy equivalence and this means that framing and strong framing of W^* is the same notion. Next note that the inclusion $W^* \to W$ induces an isomorphism in homotopy in dimensions not exceeding n/2; so any class $x \in \pi_j(W)$ j < n/2 comes from a class $x' \in \pi_j(W^*)$. Now note that the framing of W gives a framing of W^* ; so W^* is strongly framed. Thus we may apply the above discussion to W^* and x'. This provides a G imbedding of $G \times S^j \times D^{n-j}$ in $W^* \subset W$, so we can form W' = W-interior $(G \times S^j \times D^{n-j}) \cup G \times D^{j+1} \times S^{n-j-1}$ as before. (Observe that $W^{H} = W^H$ for all $H \neq 1$. This is the reason that the cobordism asserted is $rel\{W^H \mid H \neq 1\}$.

Lemma 2.10. Suppose $\chi(W^H)=2$ for all $H\neq 1$ and $\widetilde{H}_j(W,\mathbb{Q})=0$ for j< n/2 $n=\dim W.$ Then $H_{n/2}(W,\mathbb{Q})$ and $H^{n/2}(W,\mathbb{Q})$ are free $\mathbb{Q}(G)$ modules.

<u>Proof:</u> By hypothesis dim $W^G = 0$; so W^G is non empty. Let $x \in W^G$ and let V be the representation T_xW . Set n=2k and $S = S(V \oplus \mathbb{R})$ where \mathbb{R} is the trivial one dimensional real

representation and $S(V \oplus \mathbb{R})$ is the unit sphere of $V \oplus \mathbb{R}$. The Thom map $f: W \to S$ obtained by collapsing the exterior of an invariant disk centered at x has degree 1. Let M_f be the mapping cone of f. Then $\chi(M_f^H) = 1$ for $H \neq 1$ (because degree f = 1 and $\chi(W^H) = \chi(S^H) = 2$ for $H \neq 1$). In addition $\widetilde{H}_i(M_f, \mathbb{Q}) = 0$ for $i \neq k+1$. These two properties imply that $H_{k+1}(M_f, \mathbb{Q}) \cong H_k(W, \mathbb{Q})$ is a free $\mathbb{Q}(G)$ module. (See [0])

The obstruction to converting a framed manifold W satisfying:

2.11 dim $W^H < \frac{1}{2} \dim W$ and $\chi(W^H) = 2$ for $H \neq 1$.

into a rational homology sphere Σ using equivariant surgery is an element $\sigma(W) \in L(\mathbb{Q}(G))$. Here $L(\mathbb{Q}(G))$ is an abbreviation for the Wall group $L_n^h(\mathbb{Q}(G), 1)$. Briefly this is an abelian group consisting of equivalence classes of triples (M, λ, μ) where M is a free $\mathbb{Q}(G)$ module, λ is a non singular, G invariant, \mathbb{Q} valued bilinear form which satisfies $\lambda(x, y) = (-1)^{n/2}\lambda(y, x)$ for x, $y \in M$ and μ is an associated quadratic form. (See $[W, \S 5]$ for notation). If W satisfies 2.11, it is framed cobordant to a manifold W'' which also satisfies 2.11 and in addition, $\pi_j(W'') = 0$ for j < n/2 (2.9). By 2.10 $M = H^{n/2}(W'', \mathbb{Q})$ is a free $\mathbb{Q}(G)$ module. Then $\sigma(W)$ is the class of $(H^{n/2}(W'', \mathbb{Q}), \phi_{W''}, \mu_{W''})$ where $\mu_{W''}$ is the self intersection form of W'' (See $[W, \S 5]$).

There is an obvious homomorphism $\rho:L(\mathbb{Q}(G))\to W_n(G,\mathbb{Q})$ which sends $\sigma(W)$ to $[W]_{\mathbb{Q}}.$ Because n is 0 mod 4, ρ is

injective. We can now give a proof of Theorem B.

<u>Proof of Theorem B</u>: By i) and ii), W^G consists of two points x and y. By 2.8 $[W]_{\mathbf{Z}} = 0$ and this implies that $[W]_{\mathbb{Q}} = 0$. But $[W]_{\mathbb{Q}} = \rho \sigma(W)$. Since ρ is injective, $\sigma(W) = 0$. Since $\sigma(W)$ is the obstruction to converting W to a rational homology sphere Γ and since $\sigma(W) = 0$, Γ exists.

Now we turn to the discussion of Theorem A. We view the cyclic group G as the subgroup of $\mathbb{C}^X=\mathbb{C}-0$ consisting of the |G|th roots of unity. Let t^i denote the complex one dimensional representation of G on which $g \in G$ acts on $v \in t^i$ by $g(v) = g^i \cdot v$ i.e. complex multiplication by g^i . A complex representation V of G may be uniquely written as $V = \int_{i=0}^{|G|-1} a_i t^i$ for some integers $a_i \geq 0$. For $g \in G$, $v^g = \{v \in V | gv = v\}$. When $v^g = 0$, we can define this complex number:

2.12
$$v(V)(g) = \prod_{i=0}^{|G|-1} \left(\frac{1+g^{i}}{1-g^{i}}\right)^{a_{i}} \in \mathbb{C}^{x}.$$

The assumption $V^g = 0$ means the denominator does not vanish. These complex numbers appear in the Atiyah Singer index formula for Sign(g, W) when dim $W^g = 0$. Here is a discussion of this point. Suppose $W^g = W^G$. (By hypothesis dim $W^G = 0$.) Let $x \in W^G$. Since G preserves orientation, there is complex representation of G whose realification is T_xW . Choose one T_xW for which the orientation given by the complex structure agrees with the given orientation on T_xW . Then

2.13
$$\operatorname{Sign}(g, W) = \sum_{x \in W} (\widetilde{T}_{x}W) (g).$$

We remark that if V and V' are two complex representations whose realifications are both T_X^W , then $\nu(V')(g) = \pm \nu(V)(g)$; so there is a sign ambiguity for the right hand side of 2.13 as a function of the <u>real</u> representation T_X^W . This is ambiguity disappears when orientation is accounted for in the way mentioned. Another relevant elementary point is that if $r(V) = T_X^W$, there is a complex representation V' such that r(V') = r(V) and $\nu(V')(g) = -\nu(V)(g)$ for all g for which $\dim V^g = 0$.

Theorem B is used in the proof of Theorem A. To use Theorem B for this purpose we need to produce a framed manifold W with $W^G = x \cup y$ (two points) and Sign(G, W) = 0. Let $V = \widetilde{T_X}W$ and $U = \widetilde{T_Y}W$ and let g be an element of G for which $W^G = 0$. Then $V^G = 0 = V^G$ and

$$Sign(q, W) = v(V)(q) + v(U)(q).$$

so

2.14 0 = Sign(g, W) iff
$$v(V)(g)/v(U)(g) = -1$$
.

In summary we have obtained these conditions on two representations U and V of G:

Lemma 2.15. Let W be a framed G manifold with $W^G = x \cup y$, $\widetilde{T_XW} = V$, $\widetilde{T_YW} = U$ and Sign(G, W) = 0. Then

(i) $V - U \in Ker(R(G) \xrightarrow{res} \Pi R(P))$ and P Sylow

(ii)
$$v(V)(g)/v(U)(g) = -1$$
 whenever $W^g = W^G$.

(Note this implies
$$U^g = V^g = 0$$
.)

Lemma 2.15 and the discussion preceeding it lead to sufficient conditions that two representations U and V occur (stably) as $T_x \Sigma$ and $T_y \Sigma$ for some rational homology sphere Σ with $\Sigma^G = x \cup y$. We discuss this point.

Let S_1 be the set of divisors d of |G| such that |G|/d is a prime power and let S_2 be the set of divisors d of |G| such that |G|/d is divisible by at most three distinct primes. Let

2.16 $\overline{R}(G) = \{U - V \in R(G) \text{ such that i-iii hold}\}.$

i)
$$V^g = U^g = 0$$
 whenever $g \in G$ and $|g| \in S_1$

ii)
$$\dim V^g = \dim U^g$$
 whenever $|g| \in S_2$

iii)
$$V - U \in Ker(R(G) \xrightarrow{res} I R(P))$$

P Sylow

We define the homomorphism λ in Theorem A.

$$\lambda : \overline{\mathbb{R}}(G) \longrightarrow \underset{S_1}{\mathbb{I}} \mathbb{C}^{\mathbb{X}}/\mathbf{Z}_2.$$

If $d \in S_1$, the d th coordinate of λ is

$$\lambda_{d}(V - U) = \nu(V)(g)/\nu(V)(g)$$
 $g = \exp(2\pi i/d) \in G.$

We can only very briefly discuss the points of the proof of Theorem A. If $z \in \text{Ker } \lambda$, there is a manifold W satisfying the assumptions of Theorem B and in addition $W^G = x \cup y$ and $T_x W - T_y W = r(z)$. Theorem A follows from this and Corollary C. Here are the essential points: There are complex representations U and V of G satisfying 2.16 i-iii and in

addition

2.17 i)
$$r(V - U) = r(z)$$

ii)
$$\lambda (V - U) = -\underline{1}.$$

(If $\lambda(z) = -1$, V - U = z. If $\lambda(z) = 1$, then V - U is not z, but r(V - U) = r(z). This is related to the discussion after 2.13.) Use 2.16 i) and the methods of [P] to produce manifolds X(V) and X(U) with these properties:

- 2.18 i) $X(V)^G = x \text{ (one point)}, X(U) = y \text{ (one point)}$
 - ii) $X(V)^g = X(V)^G$ and $X(U)^g = X(U)^G$ whenever $|g| \in S_1$.
 - iii) TX(V) and TX(U) are stably G isomorphic to $X(V) \times V$ and $X(U) \times U$ respectively.

By 2.16 iii) and 2.6 +), $W = X(V) \coprod X(U)$ is framed; moreover, $X^g = X \cup Y$ whenever $|g| \in S_1$ and $\widetilde{T_X}W = V$, $\widetilde{T_Y}W = U$ by construction. (Note 2.18 iii) which implies $T_XW = r(V)$ and $T_YW = r(U)$.) Whenever $|g| \in S_1$, Sign(g, W) = 0 because $\lambda_{|g|}(V - U) = \nu(V)(g)/\nu(U)(g) = -1$. See 2.14. Of course the condition Sign(G, W) = 0 requires Sign(g, W) = 0 for all $g \in G$ not just $g \in G$ with $|g| \in S_1$. The fact that Sign(g, W) = 0 for $|g| \notin S_1$ and the other properties of W required for Theorem B are consequences of other properties of the construction of W which we omit.

- 2.19 At some points in text we do not distinguish between real and complex representations. Since G is cyclic this should cause no problem.
- 2.20 The assumption $\dim W = 4k$ may be dropped.

References

- 1) [ACH] Alexander J., Conner P. and Hamrick G., Odd order group actions and Witt Classification of inner products, Springer Lecture Notes 625 (1977)
- 2) [A] Atiyah, M. F., <u>Characters and cohomology</u>, Inst. Hautes E'tudes Sci. Publ. Math. No.9 (1961)
- 3) [0] Oliver, R., Fixed point sets of group actions on finite acyclic complexes, Comm. Math. Helv. 50 (1975)
- 4) [P] Petrie, T., One fixed point action on spheres I, Adv. in

 Math. 46 (Oct. 1982)
- 5) [PR] Petrie T. and Randall J., <u>Transformation groups on</u> manifolds, Decker Lecture series, Fall (1983)
- 6) [W] Wall, C.T.C., <u>Surgery on Compact Manifolds</u>, Academic Press (1970)