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Preface

The aim of this paper is to study an existence theory
of solutions of boundary problems for general linear differential
equations. There are many methods to prove the existence of
solutions. But they canChot be applied equally to all types of
boundary problems, such as elliptic, evolutional, or mixed type
problems. In this paper the author,fries to lay the foundations
of a method which can be applied to variqus types of boundary
problems. Especially we have obtained existence theorems for

elliptic boundary problems in non-cempact manifolds, evolutional
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boundary problems with Cauchy data given on the characteristic
boundary, and similar ones with respect to Schwartz' distributions.
Moreover our techniques may be applied to mixed type problems for
evolution or Tricomi equations.

Qur approach is fairly different from a traditional one.
We do not use completions of function spaces with respect to a
norm. We deal with many local spaces of distributions directly,
which are endowed with the structure of Frechet or more complex
locally convex spaces. TFirst we improve Treves' conditions ([25]
of surjectivity of a continuous linear mapping on a Frechet space
to another, so that they can be applied more directly to closed
linear operators appearing in-our problems. Employing the |
calculations in Chapter two, we can immediately write a necessary
and sufficient condition for the solvability of each suitably
posed boundary problem. It consists of two kinds of conditions.
One is on the semi-global existence of solutions, that is, the
existence in any relatively compact open subset. An equivalent
condition is given as a collection of inequalities for the dual
opefator with respect to some kinds of norms, such as Sobolev ones.
The other condition is called T-convexity, which is a generaliza-
tion of the classical P-convexity condition for linear differential
equations with ﬁo boundary conditions (cf. Malgrange [17], Treves
[25], and Hormander [13]). This guarantees a possibility that a
global solution can be constructed by approximations using semi=
global solutions.

We explain the plan of this paper. In Chapter I we
develop an existence theory for linear equations in locally convex
spaces. In the next Chapter II we introduce the function space

F(SL, W.;E). Roughly speaking, this consists of distribution
1
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sections of the vectof,bundlgﬁE, which can be extended through a
part @ of the boundar& ofrfi to belong to the function space F,
and which vanishes outside the part W, of w. We prove some
properties of these spaces in order to apply the main theorem of
Chapter I. After that we can immediately obtain necessary and
sufficient conditions for the solvability of many boundary
problems. Using these results we study elliptic boundary problems
in Chapter III, where we prove the existence of solutions in non-
compact manifolds. Chapter IVAis devoted to the study of boundary
problems of evolution type. 1In these cases we recognize important
roies piayed by differential operators on the boundary, which are
induced by theroriginal differential operator and a normal vector
field on the boundary. When we want to reduce a Cauchy type
condition to the property that functions belong‘to our function
spaces, especially to‘C“(fi, aﬁ), we have to solve such differential
equations on the boundary.b,We can solve many kinds of Cauchy problems
with daté given on characteristic boundaries. Especially the
Goursat problem is solved. 1In Chapter V we study the existence
of distribution solutions. Many difficulties arise from the
complicéted topological structures of the spaces of distributions.
For a more detailed description of the contents we refer to the
introductions of each chapter.

Finally the author would like to thank Professor K. Yosida

for his stimulative advice in the early stage of this work. Thanks

are also due to Professor H. Komatsu for many valuable suggestions.
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Chapter I. Fundamental Yemmas in locélly convex spaces.

§1.0. Introduction.

This chapter is devoted to the study of abstract existence
theory for linear equations. The results of this chapter form a
basis of the subsequent three chapters. Combining Theorem 1.2.1.
and the calculations in Chapter II, we can immediately obtain
rcondifions for the solvability of linear equations. Our main
theorem is a generalization of a result due to Treves[ 257 and
Harvey ([ 7 ], and ih many cases their- result is sufficient for our
use. They gave conditions for a linear operator to be surjective.
But we encounter many cases where_the range of the operator has
some kinds of compatibility conditions. 1In such instances our
theorem can be used. . Typical examples are overdetermined systems
of linear differential equations with constant coefficients (see
Ehrenpreis [ 5 ] and Hormander[ 9 ]). We can explain the serious
gap beiweeh determined systems and overdetermined ones from our
point of view. In the overdetermined case we havé to find a new
element z' in the estimate (1.2.2) of Theorem 1.2.i. This causes
a very hard problem.

Now in section 1.1. we make some definitions and preliminary
propositions for the next chapter. We have to calculate the norm
(1.1.1) in many concrete cases and this will be done in Chapter II.

In section 1.2. we state our main theorem and its proof
vwill be given in section 1.3. 1Its essential part is contained in
the proof of the open mapping theorem, where the step by step

- construction of a solution is done (see Ptak[ 21 ]).

Our task is to reform the conditions to be more manageable.
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§1.1. Preliminaries

Let E and F be (Hausdorff) lécally c‘bnvex spacés, and
T‘ a densely defined linear operator of E into F. Let E' be the
dual space of E. We denote the value of X' < E' at x =L by
<X, X'>. The absolute value {x'[ of x'€E' is defined by the
equality [X'[’(x)::]< X, x'>{,, for x€E. It is obvious

that |x'| is a continuous seminorm on E. Let D(T), R(T), t

T
represent the domain, the range, and the dual operator of T
respectively. By Spec E we denote the set of all continuous
seminorms on E. For every seminorm pedpecE and a constant
C>0, we define C+p by (C-p)(x)==C-p(x) for x<eE. Tor p, q e
e Spec E, we write p=q if 0 p(x) = olx) for x<E.
We call a3 a basis of continuous seminorms on E if and only if 23
is a subset of SpecE and to each peSpecE there exist qeég and .
a constant C > 0 such that p=C-q. For x'e E' and peSpeck,
we write ,

n"x'{{p::_inf{c >0; {X'[éC-p}. (1.1.1)
If there exists no such positive constant C, we set j{x‘[[p== co, -

For any seminorm peSpec E, let Ep be the normed space E/Ker p

with the norm induced by p. Here we denote by Kerp the kernel

A
of p, or the set of all xeE such that p(x)=0. Let Ep and EIID
be the completion and the dual space of Ep respectively. It is

easy to verify that (1.1.1) is a norm in the Banach space of all

x'e€ E' such that (1.1.1) is finite, which is isomorphic to the-
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Banach space El'f In the following we identify these two spaces.

Proposition 1.1.1. Let E, F, G be locally cngOX spaces

such that F is a rubspace of & and there exists a continuous open
linear surjection § of F onto G. Ve denote the natural injection
of F into E by 7. For every peSpecE we write

p*(z)‘_—.: inf{p(y); j*éF and P(y)= z}, z &G, (1.1.2)
Then p* is a continuous seminorm on.G, and the set of all such
p* (peSpecE) is equal to Spec G. Moreover if /3 1is a basis of
Spec B, then p* (ped) form a basis of Spec G.

Talke two seminorms p, qe&SpecE such that q==p*of on

F. Then f induces an isomorphism of Gp* onto F! , and

p¥e p
f 1@ t'z induces an epimorphism, i.e. an open continuous linear

surjection, of Ec’1 onto GI')*. Hence for any z'e G];)* we have

“z'[[p*.-_—:inf{ﬂx'!q; x'€ L' and ’L(x ) = f(z )} (1.1

Proof. Let peSpecE. Then p* is a seminorm on G.
Since @ is open, there exists a seminorm re Spec G such that the
following holds. If zeG and r(z)= 1, then there exists yeF
such that p(y) =1 and P(y) = z. Hence it follows from (1.1.2)
that p*(z) £ 1. Thus we haﬁe proved that p* is continuous.

Next take a seminorm re Spec G. Then rep is an element
of SpecF and hence re§ is equal to pe? for some pe&Spec k.

Therefore it follows that r = p¥*. lMoreover there exist p1ed3 and
pgc jp1 in B, hence

a constant C >0 such that/\rof = C- "Pie - Then we obtain

r(z)gc'inf{p1(y); yeF and f(y):z}

=C- pl(z), z&G.

-7 .-
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Therefore the former part of Propoéition 1.1.1. is proved.
Let p, neSpecE and q= p* p on I'. Then for any x'e

e}é(‘{ we have
t 'y ' ,
%2 (= )HQ“?.':“X 1{‘q°1§=!jxj‘q<oo,

and hence it follows that 'L(}\ e ! = F! . Therefore t’z

Qe p¥e p

induces a contlnuous linear operator of E ﬁc'g into I'! fyler)

ge ’ ge1’

the‘inequali'ty ]y']'g'ﬂy'nqoz-qa'z holds. Hence from the Hshn-
Banach theorem there exists x'<E' such that Ixt =y Iqe‘L .q on E
- - . i : : o t '
and X'e 7 =y'. Then we have ”X'Hqéﬁy'ﬂqoz and 72 (x')y::y".
Therefore ,t7, induces an epimorphism of E! onto F"1 oq *
: Now take z'eGI') Then for every yeF we obtain
<, P> = [<Py), 2 >]
= [ 2] prp¥e £
= ] Z'Hp*-Q(Y)..'
‘Hence it follows that bpzyer . and PP =]z
’ qo‘z Go'l == p*
t s . s
Therefore 9 induces a continuous linear operator of GI')* into Féo'z. .
Ify el"' Xop * ‘the inequality |y'| §'—”y'”p*of -p¥e p
implies that ’Kerf’ C Kery'. Then there exists z'«G' such that .
2'e p = y" . Hence it follows that y'=— tf (z') and
= O . ' = .o
Iz “p*_.lnf{c >0; |<z, z >f_____C pT(z) for all ZEG}
,==inf{C >0; }<y, y'>l_-s_C-p*°j3(y) for all yeF}

=—"y'“p*. P



L
Thus we have proved that tf induces an isomorphism of G!, onto

Fé;i , and this completes the proof.

Proposition 1.1.2. Let Ej’ j=1,2,+-,1l be locally

convex spaces, and F their product space. Let J3j be a basis of

Specﬁﬁ for each j=1,2,**,1. Then the following seminorms in T
' = 5 B., j=
) L) )= = p.(X. . L, jJ=1,2,"""
(XJ)'——-—;q(<XJ)> J==1p3 J)’ pJe i’ J 1y <y L
form 'a basis of SpecF. Moreover we have the following isomorphism

f}( )
F' o= E.) .
q j=1 J pj v

The proof of this proposition is easy and then we omit it.

§1.2. The main theorenm

Let T be a densely defined linear operator of E into T,

and N a subset of F.

Definition 1.2.1. The pair (E, N) is called T-convex
if ‘for every seminorm pe Spec E there exists a seminorm
qesSpecF such that the following holds. If y'eD(®T) and

utT(y')”p is finite, then y' vanishes on NKergq,

This definition is a generalization of the P-convexity
condition found by‘Malgrange[17] in the theory of general partial
differential equations and then generalized by Treves [25] in the
theory of locally convex spaces.  The following theoreﬁ is a

generalization of their results. The essential part of the proof

-9 -
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has been already well-known in the study of thec open mapping

theorem (cf. Ptak [21 7).

Theorem 1.2.1. Let E and F be Frechet spaces, T a
densely defined closed linear operator of E into F, and N a closed

subspace of F containing the range R(T) of T. Let B and BF

be bases of continuous seminorms on E and F respectivély. Then
R(T)==N if and only if the following conditions (1) and (2) hold.
Moreover (2) and (3) are equivalent.

(1) The pair (E, N) is T-convex.

(2) For every yeN and qe JBF there exists xeD(T) such
that gq(y=—T(x))=0.

(3) For every seminorms peBE and g€ JSF there exist
re 135. and a positive constant C such that the following is true.

To every y‘éD(tT), which vanishes in Kerq, there exists z'eD(tT),

which also vanishes in Ker q, such that

<Yy, Y>=<y, 2'> for all yeN, (1.2.1)

and

el =sclfrz0l,. (1.2.2)

Remark 1.2.2. If E is a B-complete space (cf. [21 ])
and N is a barrelled subspace of F containing R(T), then the

conclusion of the theorem is also true.

Corollary 1.2.3. Let E and F be Frechet spaces, and T
a densely defined closed linear operator of E into F. Let dSE

and BF be bases of continuous semi-norms on E and F respectively.

Then the range of T is closed if and only if the follo;ning two

- 10 -
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conditions (1) and (2) hold. Under these conditions the range of

T is equal to the polar of the kernel of 'T.

(1) For every pe /3 there exists qeo’BF such that
y'eD(tT) and Ht'l‘(y')llp<oo implies the existence of z’eD(tT),

which satisfies 'T(y')== "T(z') and z'==0 in Kergq.

(2) For every seminorms peJ3E and qeigF there exist
a seminorm rc—::?SF and. a positive constant C such that the following

is true. For every y'eD(tT), which vanishes in Ker'q, there exists
another z'eD(tT), which also vanishes in Ker q, such that
br(yr) = ®(2') and

Izl = clfrzn.

This corollary follows from the above theorem. Its

simple proof may be left to the reader.

§1.3. The proof of Theorem 1.2.1.
(I) Conditions (1) and (2) imply R(T)== N.

Let U be a neighbourhood of O in E. Then there exists
a seminorm pe Spec E such f;hat its closed unit ball Bp—-:{XG.E; p(x)éi}

is contained in U. Let B be a subset of N defined by
— . 1 t ] ! t
B={yeN; <y, ¥ >|= [ *r(y ){fp for any y'€ D("T) . (1.3.1)

From the T-convexity of (E, N) there exists q&Spec F corresponding

to p.

- 11 =
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Now take an element y in N. From the condition (2),
there exists xeD(T) such that g(y—D(x))=0. Then y—T(x)

Suppose
A y! 'e D(*T) and HtT(y')ﬂp is finite,
>'!

‘¢hen < y=T(x), y'>==0. Hence we obtain

is contalned in N/\Ker q.

<y, y' > =<0, y'>|=]|<x, ‘ry")>|

= p(x)- HJCT(.V')Hp (1.3.2)
accord1&%{::0 or =0,
Taking A =p(x)" -—_-1 we have Ay&€B. Thus we have proved

that B is absorbing in N. ’I‘herefore B is a barrel in N. Since
N is a barrelled space, B is a neighbourhood of O in N.

Next we prove that B is contained in [T(Bp)JN—’ the
closure of T(Bp) in N. Take an glement y&eN which | does not
belong to [T(BP)JN. Then by Mazur's theorem there exists z'&N!'
such that |<y, 2'>| =1 and |z'|==1 [T(BP)JN. From the

Hahn-Banach theorem z'! is equal to the restriction of some y'e !

to N. Then |<v, y'>} —1 and fy'l =1 ,[T(BP)JN, which implies

tvhat <T(x), y'>lép(x) for all x=D(T). Iience the linear
functional x+—><T(x), y'> is continuous linear on D(T), and ‘
then there exists x'&E' such that <T(x), y'>=<x, x'> for
all xeD(T). Therefore y' belongs to D(tT) and t‘I‘(y')== x!'.
Since ltT(y')l = p, Wwe have

”t'l‘(y')f[p;_—<_—1<[<y, y'=>.

Then y does not belong to B.
We have proved that BCCT(BP)]NC[T(U)]N" so that.

‘[T(U)]N is a neighbourhood of O in N. Therefore T is almost open

-12 -
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as an operator of ¥ into N. Since E i B-complete, we can conclude

that ®(T)==N (cf. Ptdk [21] and Mochizuki [19 J).

(II) The relation R(T)==N implies the conditions (1)
and (2).

The condition (2) is trivial. Let peSpec B. Let B be
the subset of N defined by (1.3.1). Then B is absorbing in N.
In fact take an element yeN. Trom the hypothesis there exists
x&€D(T) such that y =T(x). Then we have the same ineguality as
(1.3.2) for every y'e D(tT). Hence Ay is contained in B if we
take ;t--...—:p(x)"'1 or A =1, |

Since N is barrelled and B is a barrel in Y, the set B
is a neighbourhood of O in N. Let 9, be the seminorm on N defined
by _ |

0, (y) =1inf{C >0; yeC-B}, yeN.

Then g is a continuous seminorm on N and hence it is the restriction

of some q € SpecF to N.

Now let y be an element of N/\Kerq and: y' an element

ot D(*r) such that ”tT(y')"p is finite. Since y belongs to the

kernel of Qs there exists a sequence of positive constants Cn>O,
nw==1,2,***, tending to O as n tends to infinity, such that

YeCn'B, n==1,2,"". Then we have
<v, y'>l§=—_0n-]ftT(y')”p

and the second term tends to O as n becomes large. Hence it
follows that <y, y'> =0. We have thus proved that (E, N) is

T-convex.

- 13 -



(III) The condition (2) implies (3).

Let pe d3F and ge JESF. We denote tle ce2nonicel epimorphism
of F onto F/Kerq by . Let Tq= PeT. Since § is open, the

image P (N) is also a barrelled space. From the condition (2)

we have R(Tq)—_—_-_ ?(N). Then from the open mapping theorem Tq is
an open mapping of E onto Q(N). Hence Tq(Bp) is a neighbourhood

of 0 in P(N). We define the seminorm r_ on PN) by

o}
ro(yg)= 1nf{C > 03 yqéc-Tq(Bp)},’ Y € pN).

Then r, is a continuous seminorm on g’(N). From Proposition 1.1.1.

there exist reBF and a constant C07O such that r, gcdr*

on f(N), where r¥ is defined by
*(y )..-—._-inf{r(y); yeF and P(y)l=y }, y eF/Kerq.
'q } q q

Let y'e D(tT) and <y, y'> =0 for all yesKerg. ILet

-~

YyE€N and f’(y)eC"I‘q(Bp), Then there exists x&D(T) such that

p(x)=1 and P(y)==C: PoT(x). Then it follows that y—C:-T(x) e

< Ker g and hence we have |

< ¥, >l =cl<i(x), y'> =cl<x, "y )>|
=c-[*rty0],-

Therefore we obtain

IA

<V, V'>|=r,e S’(Y)'NtT(Y')”p

Cor 70 Py [Py,

A

for all yeN. From the Hahn-Banach- theorem there exists z'&TF'

- 14 -



such that z'==y' in N and
<y, z'>|=2C r*o_?(y)-HtT'(y')N
’ - 0 P

for 211 y&F. Then z' vanishes on Kerq and for every xeD(T)
we have <x, tT(y')>--—:—<'I'(x), z'>. Hence it follows that z'e

eD(tT) and tT(z')=t’[‘(y'). rloreover we have
t . t
“ Z'”récou T(y' )”p"—co“ T(z' )”p'
Therefore the condition (3) holds.
(IV) The condition (3) implies (2).

Let q& By. Take a seminorm peJ3E and define the set
B' by '
. t ey t
B! _—.—.{yqe. f(N), {< g y('! >‘§H Tq(yé)}[p vfor all 'y('leD( Tq)}.

Then we can easily obtain the fact that B' is equal to

{f(y); yeN and |<y, y'>| g___}!t'l‘(y')”p it y'en(tr)
* and y' vanishes in Ker’q}.

We can prove that B' is absorbing in f(N). In fact let yeN.
From the condition (3) there exist re BF. and a constant C>>0
such that the conclusin of (3) holds. Then for any y'eD(tT),

, t
which is equal to zero on Ker q, we obtain for some z'eD( T)

<y, v'>|= <y, 2> =Wz, =

—_<—_—C'I‘(b’)”tT(z')”p——-c-r(y)“t'r(y')"p.
Hence we have Af(y)e&B' for some A.

- 15 -
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We have proved that B' is a barrél in Q(X), and then
B' is a neighbourhood of O in ¢(N), Moreover as in the proof

. T 3 ] [ ] )

of (I) we can prove the inclusion B C[Tq(Bp):[ P (N) Therefore
the set [Tq(Bp)].f(N? is a neighbourhood of O in $(N). In other
word T_ is almost open; and hence the range of Tq is equal to

‘?(N). Then the condition (2) is valid and the proof is complete.

- Figure (see section 2.2.)
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Chapter II. The spaces F(&, @ ;E).

§2.0. Introduction.

In this chapter we define our basic spaces and prove some
of their properfieskin order to apply Theorem 1.2.1. Roughly
speaking, :}(fi,cui;E) is the space of all distribution sections
of the vector bundle E, which can be extended from w to be an
element of 7 and vanishes outside the subset au] of the boundary.
This function space plays a central role in the following chapters,
where a unified treatment of boundary problems for linear differential
equations will be done. Because the topological structure of
5(}5; “H;E) is very complicated, we have to solve many delicate
problems.

In the first section we state some elementary facts on
the spaces of sections of vector bundles. Sometimes we will have
to calculate on local coordinate patches. In section 2 we define
9(fi,601;E) and show that our definition is independent of the
choiée of subsidiary sets. Section 3 is devoted to the study of
d”(ff,aﬁ;E),.whiéh consists of C” sections. In section 4 we
study Sobolev spaces, but we have to impose some restrictions on
the boundary, that is, we have to assume curve segment property.
The author has not succeeded in proving Proposition 2..4.1. without
‘this hypothesis. Section 5 is preliminary for the consideration
of linear differential equations with constant coefficients in
Chapter IV.

having

Aftegﬂfinished the calculations of this chapter, we can

apply Theorem 1.2.1. and immediately obtain conditions for the

solvability of boundary problems. We will meet many such applications

in later chapters.
- 17 -
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§2.1. TI'reliminaries.

Let M be a a--comipact C* manifold (without boundary)
of dimension n. Take a family X of C°° coordinate systems ¥
on M. Then ¥ is adiffeomorphism of an open subset Uk ‘of M onto
%(U,;)Cmn. We can chooce them such that {Uy; Xe%} is a
locally finite open covering of M. Tix a family of functions
xxecg‘(ux) such that 0= Xp(x)= 1 and %Cp(,f(x)-———-u xel.

In the following sections E denotes an N-dimensional
complex C* vector bundle over M. Let 7t be the projection of E
onto M,v and | By, xe) a family of C*° coordinate charts over X .
Then §k is a diffeomorphism of Upx @Y onto f](Ux). If gx%) is

the ¢ transition function on Ux/'\U?c’: then.we have

By(x, W) = Fp(X, Eppr(x)ew) - (2.1.1)

for all xelyUx and weah,
By C*(1; E) we denote the space of all C*> sections of
E over M with the usual topology (cf. Schwartz (22]). Then it is
icomorphic (as.locally convex spaces) to . the spade of all
L N . . .
families (u,,) e Tl ¢*x(u, ))" which satisfy the following
9%/ xe } xey x v

relations:

u%/=‘-(gk,xo;c'~_])-(uxo(ﬂcﬁd—1)) on x'(Uy AUx’). (2.1.2)

The latter space is endowed with the weakest locally convex
topology such that the mapping (Uxlieqc —>u,. eC V(U)W is

continuous for all xe)}{. This correspondence is given by the

- 18 -



following relations:

u(x)= Fyp(x, wen(x)), for all xelp. (2.1.3)

Proposition 2.1.1. The space C°(M; E) is Frechet-
Schwartz, i. e. a 1limit of a compact (or completely continuous)
projective sequence of locally convex spaces (cf. (14 ] and the

references therein).

Proof. Take a sequence Kj, j=1,2,+- of compact subsets

‘of M such that each Kj is contained in the interior of K and

J+1
the union of all r:_j is equal to if. Let X; be the space of all

Cj sections of E over Kj such that they can be extended as cY
sections of E over M. The topology of Xj is induced by the
restriction mapping of CJ(M; E) onto Xj' Let ?j be the restriction
map of Xj into Xj-d' Then ‘?j is a compact operator. In fact

we can use local coordinates to reduce the problem to that in ji2a
Then the Ascoli-Arzela theorem can be used. We leave the details

to the reader.

P
Then the sequence x1<—-§—x2<;£é-x3<£aﬁ— v . is

compact and its limit space can be identified with c(M; E).

By Co(M; E) we denote the space of all C” cross sections
of E over I with compact support. This space has the usual
Schwartz topology. Let L) be the volume bundle of M, and E¥ the
dual bundle of E. Then the space §'(M; E) of all distribﬁtion
sections of E over M is defined as the dual space of d:(M; o).

By &'(M; E) we denote the space of all distribution sectionc
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in 9'(M; E) with compact support. As locally convex spaces
D'(M; E) is isomorphic to the dual space of C:(I‘-I; T). Similarly
E'(M; B) is isomorphic. to the dual space. of C™(M; E) as locally
convex spaces. In fact it is enough to remark that C™(M; E) and
c™(M; E*@{)) are isomorphic. The space H'(il; E) is canonically
isomorphic to the space of all families (uoc)xex e_xUK,g'(x(Ux))H
satisfying the same relations (2.1.2). Then we can choose the
duality bracket such that the following relation holds:

<%, u >=k§;—»{<(%,(o7c“l)3‘;c, ('xx¢x‘1)ux> (2.1.4)
for all c]V’ec‘;’(l&i,,E) and ue ®'(M; E).

Let s€R. We define the Sobolev norm of ue &'(R") by

hull gy = (J1aE)] 201415 2)%48) /2 (2.1.5)
if the integral is finite, where (f)=<e X5, u>, and
'§3 _—.=(27c)‘nd§. If the integral (2.1L5)" diverges, then we write

Uuu(s):w. We define the Sobolef no?m of ue £'(¥; E) by
Il u”(s)=(,£:?j[” (%k'kﬂ)uzﬂfs))]/a. (2.1.6)

By H%s)(b«i; I) we denote the space of all ue &'(}; E) such that
its norm Hu”(s) is finite. By H%Z?(M; E) we denote the space of

all ue @ "(M; E) such that ?-ueH%S)(M; E) for every e C':(M).

This space is endowed with the family of seminorms uo——a}[?-uﬂ(s),
?eC':(M). Then this is a Frechet space and its dual space is

H(fs)(M; E) with respect to the following duality bracket:
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. ~1 =1 . .
<u, V>"‘k§j'c<(xx°% MWye, (Kpeo2< vy > (2.1.41)
loc

for any ueH(S)(M; E) and veH‘(ES)(M; E). DBoth spaces H(S)(m; )
’ loc,,. e {oy. .
and H(s)(M, E) do not depend on the choice of JC and {X,; X €X].

From (2.1.4') and (2.1.6') we obtain
<, v =Tuf gy I vl e (2.1.7)

for every ueH(g)(M; E) and veH(ES)(M; E). The set of seminorms

on C (M; E):

u;—-——>"<}>-u‘]‘(s), se® and ?ECZO(M)

s . . P’y (-]
is a basis of continuous seminorms on C (}¥; E).

S2.2. The definition of the spaces F(J, w.; B).

Let £ be an open subset of M, and (W an oren subset of
the topological boundary &£ of £2 in M. Take a subset a)] of W,

We make the following definitions:

ﬁ:_f}_ua}’ a)aza)\w], . :_—-Intw(wj\(ﬁ)o),

Jo

— — U =.,0 — | = \0
wjj*‘wj\(w'jo ()%, a)J.B__Intw(_wj,\(Q) )y

— =0 . .
Woy=wWy AWy J=1,2. (2.2.1)

o’——, © represent the interior, the closure, and the boundary

lHere
in M respectively. On the other hand Int,,, 9(0 represent the
interior and the boundary in @. Then each a)j is the disjoint

union of five sets a)jo, C()jj, ij’ “)33' ijjh'
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If 4 has the curve segment property at every point of

w”\/maz (Definition 2.4.1.), then

Proposition 2.2.1. 'there exist ‘three open subset Lo

g

Y_QI, QZ' of M, which satisfy the following conditions:

, : (See the figure
(M NCQ.CQ, j=1,2.
J
on page 16)

(2) 2= 2782,

(3) .QOCE1U§2'

W) 2, 00 = a)

(5) Q5 oR=wiV wys =12
(6) W, =(TLNIZ)s j=A1,2-

(7) U)ko/\(ﬂj\_gz')—;c}é , i k.

Since there is no difficulty in the proof, we leave it
as an exefbisa ‘to the reader. As will be shown in the following
discussions, the choice of .Qj does not affect the results.

By ﬁj we denote the union of ﬂj and ité boundai‘y in
_Qo. Fix three open scts 'Qo’ DT , .Qa which satisfy the
conditions of Proposition 2.2.1. Let '}'(_QO; E) be a subspace
of ,8'(.52_0; E) with a locally convex topology. Let P be the

restriction operator of F({2_; E) into ' (521; E). To every

ue ?(_Qo; E) its restriction $(u) is also denoted by u]_Q .
1

Definition 2.2.1. By Qﬁ(ﬁ]; E) we denote the range
of ¢, i.e. the set of all ue »'(S2;; E) such that there exists

ve ?(.Q_o; E) and its restriction to 1'2.1 is equal to u. This space
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is equipped with the strongest locally convex topology ruch that
f is continuous.

Definition 2.2.2. If 'cow is void, the space
35(_67_,, Wy E) is defined as the set of all distribution sections

in 3‘(§1; E) with its support in f1. rthis space has the natural

topology as a subspace of ?(ﬁl; E).

Definition 2.2.3. 2y C({Z, w,; E) we d‘enote; the space
of all C* functions u in C”(fil; E) with its support in XL such
that P(u) vanishes in a)]5 for any linear differential operator
P (with ¢* coefficients) in CM(SZ}; E). This space has the
natural topology as a subspace of C”(ﬁ]; B). If 602 is void, We

use the notation 8”(fi; E) instead of C”(ﬁ, W, BE).

Definition 2.2.4. If W,y is void, the cpace #£1,; B)
is defined as the set of all distribution sections in ?(I?.O; E)
with its support in ﬁa. This space is endowed with the topology ‘

as a subspace of ?(Qo; E).

From Definition 2.2.3. the space 8“(ﬁ2; E) is the
collection of all functions u in C”(_Q_O;‘E) such that its support
is contained in .ﬁa and P(u) is equal to zero in 6()15 for any

differential operator P in C"(QO; E).

Proposition 2.2.2. The restriction operatoz; f induces

an epimorphism of ’5%(.62; E) onto F(SI, w,; E).
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,Probf, ‘In fact the set of all u in ?(ﬂ.o; E) whose
restriction to 57.1 belongs to F(L2, @,; E) is equal to FH(Il,; E).

Then the remaining part of the proof is obvious.

Proposition 2.2.3. 1If 9(&2_0; E) induces a sheaf of

C:’ modules over 5.7_0, then the Spacej\\/is independent of the choice

. — ~
of ﬂ 91, SZZ/"/ 5;(‘?29 a)1; E)

“except”a neighbourhood of @’
i1

Proof: ‘It is enough to notice that every distribution

section in P, @,; E) can be modified outside $7 and can ve

extended to an element off 7("1\7'1\(9.&?_\0))) whiqh vanishes outside
a neighbourhood of_ﬁ in £2 . The details will be left to the

reader.

Almost all spécés which we study in the following sections

satisfy the above condition. Since a)m and «)ZL+ does not affect

the definition of F(SI, w.; E), we can assume them to be void.

§2.3. The spaces C (L, W i B).

1

We assume in this section that the sets @,,, @z, wau
are voidf, since -they have no meaning in the following discussions. -

Then we have @ . (?-2-.)0——:- 0)13.

Proposition 2.3.1. The space C ({2, @,; E) is isomorphic

to  the closure in Cw(ﬁ; E) of the set of all functions ¢ in

(f;(ﬁ; £) such that the closure of supp 9 in .&'2_0 does not meet

with (4)1 .
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Proof. Let §, be the restriction mapping of Cw(fiT; E)
onto (‘”(5"7'_' E). Then the restriction of ﬂ to “w(_Q a} i E) is

by the open mapping theorem this is
injective, and hence, an icomorphism of C e W, ; E) onto

A
?1(Cm(ﬁ, w]; E)). Therefore it is enough to prove that any
function in‘ Pl(Coo(fL/, @, 5 E)) can be approximéted by functions <
in C:’(fi; E) such that thé closure of supp¢g in {2 does not meet
with (.()1 .

Let u be a function in 91(Cw(§, @,; E)). Then there

~exists ve8°°(f\2;‘; E) such that vjn=u. Using a partition of unity
su.bordinate to a family of coordinate neighbourhoods, it is .enough
to make an approximation in each coordinate neighbourhood. = Then
we can use an approximation by multiplying certain C‘”cutof‘f
functions (e.g. Schwartz [ 22 ] p-93-94). Hence we have a sequence

of functions v(‘j), j=1,2,~-r in Cg (Q. E) such that v(j) tends

2)
to v in Cm(ﬂo; E) as j tends to infinity. Then the restriction

of v(j) to fL gives the required approximation of u, and the proof
is complete.

Theorem 2.3.2. The space C”(ff., w.; E) is separable
Frechefl«lontel and ej(f}i, w,; E) is separable complete bornological
Montel. HMoreover the dual space of C (&2, Wi E) is isomorphic
to &'(ﬁ, Ws; E).

Proof. TFrom Proposition 2.1.1. the space C”(QO; E)

' o
is Frechet-Schwartz, (FS) for short. Since C“(lﬁl‘._a; E) is a closed
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subspace of C”(Qb; E), it is also (FS). From Proposition 2.2.2.
’ ' ~ . (0] o~
the restriction mapping [ induces an epimorphism P of Cw(_Q.Z; E)

onto c¥(£L, @,; E). Hence the space C (57, Wy E) is also (FS),

and then it is separable Frechet Montel (see [14 J and the references

therein). Moreover its dual space C™(&, w,; E)' is isomorphic
to the polar ovf Ker ?J—'—:{?e 8”(fl’2; E) ; ?[Q1== O} in
(&5 B

The dual space of 8”(522, E) is isomorphic to the
quotient space of C (.Qo; E)'! = &' (,Qo; E) by the polar of
8”(‘5"7’.2; E). A distribution section u in 5,'(_(2_0; E) belongs to
the polar of 8“(_('\1'2; E) if and only if < ¢ , u>=0 for every
?eg"‘(ﬁa; E). But from Proposition 2.3.1. it is equivalent tg)
say that u vanishes in -Qa. In fact to every ?é8°"(f‘z’2; E) there
exists a sequence of functions 333., j=1,2,-*- 1in C:(_Q_Z; E) such
that ?j converges to < in C”(SZO; E). If u is equal to zero in

‘QZ’ then it follows that <3’j, u>>==0. Hence we have
<9, u>=j§rg°<?j, u>==0,
O Lt ' Do
Therefore the dual space of C“(&?_a; E) is isomorphic to &' (£2,;E).
~ O fa’yd P
Next the polar of Ker  in C”(.Qa;E)' = &' (L2,5;E) is
the space of all ue a'(ﬁa;E) such that suppucﬁ In fact it

is enough to use Proposition 2.3.1. with respect to C (.Q \.Q.],E)

A

We have thus proved that the dual space of al@vi w];E) is
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isomorphic to = &'(§I, w,;E). Since g' (&, wy;E) is the dual

of a (FS) space, it is separable complete bornologicél Montel,

and this completes the proof.

Let € =C"(£2,;E) and g.-:c""(fi, @ ;E). If 7 is the
Q ~
natural injection of C"(.D.Z;E) into £ and P is the restriction
Opo, & V
mapping of C ('Q‘Z;E) onto gz , then we are in the same situation

\
as in Proposition 1.1.1. Let se®R and QCEC(?(.S?_O),./'\/VWe define

(We can assume that X does not vanish:‘

two »semlnorms on & by in the interior of supp X .

p(P)=|x Pfgy, for all peC(R;E),  (2.3.1)
and

Q(T)=—'inf{ﬂ'x'7/‘//(s); "L)LSCM(-Q.O;E) and Y= in .Q]},
(2.3.2)

for all ?EC“(.Q_O;E). Then p¥e P(?)=q(?) for every e
eC™(§L,;E). Here p¥ is defined by (1.1.2), i.e.
29

PH(§) = int{p¥); peCEE) and %=P(P ), (2.3.3)

for all :Pec”(ﬁ, @,;E). We have to study the Banach space g;*

Proposition 2.5.3.‘ Let K; be a compact set contained

in the interior of K= supp X. Then the Banach space
{uenf__,(£2,;8); suppu = I Ak } (2.3.4)
(-s) =503 ®/3 SUPP INH =

is continuously imbedded into 5(’1 and 5-('1 is continuously. imbedded

into the Banach space

{ueHc(:_S)(.SZD;E); suppu; ﬁ1/\K}, | (2.3.5)
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Where both spaces (2.3.4) and (2.3.5) are endowed with the norm
” ’ ﬂ(-s)i
Proof. Let ueH?_S)(QO;E) and suppucﬁﬂ/\KT. ‘There
exists X & C:(_Q_O) such that X - X ==1 in a neighbourhood of K-
Then 9(0-'9( ==1 in a neighbourhood of suppu. ILet <P, ’Z/’ECM(_QO;E)

and Y= in {L,. Then we have

<P, uD>=<?P, u>=< X XY u>=LnY, Ku>,

‘and hence with some constant C > 0,

l<T y U >,§. llx'?lbﬂ(s).”?co'uU(-s)éC ”xw&s)”uﬁ(-s) ’

Therefore we obtain for every ?éC”(QO;E),

<, u>[=c-a(e)[uf_g-
Then it follows that ue £y and Jul = Cllull(-g)-
Next suppose that ue 8&. Then u belongs to g'ar

o= a‘(SZo;E). " In addition we have for every ?GC‘:(QO;E),

<%, u> =q(9)[uf,
'éllu”q-inf{-ﬂx-’ﬂks); Y02, ;E) and p=9 in 2, }
= | uly % Fls)
= culy 19cs)-
where C is a positive constant. Hence it follows that ueH({_ y(£2,;
;E) and “u”(_s>écuu”q with another constant C. Moreover it can

be shown that the support of u is contained in ﬁ.‘/\K.' In fact
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4
let <9 be a C*® section in C:;(_Q_O';E) which is equal to zero in an
open neighbourhood U of .ﬁv\ K. There exists a function o in
C”(S?_O) such that « ==1 in a neighbourhood of ﬁ1 and =0 in
" a neighbourhood of K\U. Let % =& ¢. Then it follows that
'l/)o= P in a neighbourhood of .ﬁ:] and 'ZPO=O in a neighbourhood
of K == supp X. Hence we obtain

<9, u>|=
éuu”q-inf{”%%{ks); Y EC™(SL;E) and P=¢ in Q,}
=] lelq'””"/’o”(s)

= Q.

Therefore it follows that <<, u>==0 and the required inclusion

suppuCﬁlAK holds. This finishes the proof.

Theorem 2.3%.4. Let K1 be a compact set contained in the
interior of K== supp X. Then the Banach space
{u e gj'(ﬁ, WZ;E); suppuc:i"\?:/\K1 and u:—.v{QZ
for some ver_s)(.Q.o;E)} (2.3.6)
is continuously imbedded in to QI')*,where the space (2.3.6) is

endowed with the norm

inf ; HS _\(£2 ;E) and u= . (2.3.7)
int{[v] gy VEH{_g)(2iE) and v V}QE}

Moreover the Banach space QI'J* is continuously imbedded into

{u e e (f):, @Z;E)‘; suppquZ,/\K‘ and u == VI‘QZ .
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for some veHc(:_s>(.Qo;E)}. (2.3.8)

with the same norm (2.3.7).

Proof. Let K2 be a compact set such that its interior

contains K] and it is contained in the interior of K. Talie a
function 9 in C:(_QP) such that supp ¢ CTK, and P==1 in a
neighbourhood of K1 Let EB’ G1 , GLF be three Banach spaces
defined by (2.3.5), (2.3.6), (2.3.8) respectively. In addition
we define the following Banach spaces:
E, = ueH((:_s)(Ilo;E); Qa/\suppucﬁR/\K1},
Eal_—_—.{uEH%_s)(Qo;E); suppucﬁﬂ’\Ka},
EL+=={ueH?_s)(,QO;E); -Q-Z/\ sSupp u CﬁRAK},
@, _-—..{v E.E,'(ﬁ, WyE); V=W ‘QZ and supp W 51/\1{2
for some weH%_Q(.Q&E)},

GB______{veau (ﬁ_" a)a;E); V= WI‘QZ and supprﬁ’.‘/\K

for some weH?_s) (SZO;E)} )

where E,, E,, E, are endowed with the norm Il - ”(_S), gnd Gpy G

are endowed with the norm (2.3.7). From Proposition 1.1.1. the

~restriction mapping )O/ induces an epimorphism of 8(‘1 onto gll’f“
Trom the previous Proposition 2.3%.3. the Banach space 'E2 is
continuously embedded into 8(’1 and ‘5!1 is vcontinuously embedded
into EB' BYy A VWe dénote the linear mapping of E1 into EZ defined
by A(u)=P-u, u€E,. Then A is continuous linear and we have
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the following commutative diagram:

The restriction mapping § induces five epimorphisms . Three
upper inclusions and A are continuous. Therefore the four
lower inclusions are also continuous, and then the theorem is

proved.

Proposition 2.3%.5. Let K' be a compact subset of .QO

. . . . . oo .
such that its interior contains K =supp X. Then every C  sectibon

in Cm(fi, a)1 ;E) which is equal to zero in SZAI(' is contained in

Ker p¥ . Every element of I{erp*is" equal to zero in _Q/\ K.

Moreover every distribution section in a’(_fz, CUE;E) is equal to
zero in Ker;f" if and only if its support is contained in f?.v/\ X.
Proof. Let 9 be a section in (L, @w, ;E) which
Qoo, A
vanishes in QA K'. Then there exists P < C°({L,;E) such that

P = ’2/»0 1-37-1 and % =0 in K. Hence we have

pHPI= [x- [ (5y=0-

Next suppose that $&C™&L, @,;E) and p*(P)==0. Take any C~
K
section in Cf;(j?_/\ KO;E), where K° is the interior of K == supp X.

A

Then K is equal to the closure of K°, Since X does not vanish

in a neighbourhood of supp X, there exists Je eC:(.D_/\KO;E) such
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that =9(‘6 in 2. 1If 3&658;’6@2;}3) and P =3bk21,’ then
we obtain
<, > = <X, p> =I|<g, x3>
= I/P”(-s)‘}/%"#”(s)'

Then it follows that
<o, 3> = | /GI[(_S)'P*(T)?‘—O-

Hence we have <X, ‘}’> ==(Q for any such X . Therefore P is
equal to zero in _Q/\Ko and then in 'Q‘/\ K. The remaining part

of the proposition is obvious.

8)

§2.4. The spaces H%Oc(ﬁ’, 70)1 s E).

For the sake of simplicity we assume in this section
that the intersection of # and ($3)° is void. Take three open

sets SL , .9_1, SZZ satisfying the conditions of Proposition 2.2.1.

Since we cannot use the cut-off approximation as in §2.3., we

" make the following definition:

~Definition 2.4.1. We say that @ has the curve segment

property at xe @ (with respect to f2) if ' there exist
an open neighbourhood V of x in _(20 and a real everywhere non-
vanishing C* vector field X on V such that any integral curve

of X in V from any point of wnV is contained in 25V,

If @ has the curve segment property at x with respect
to £2, then it also has the same property at x with respect to

.Q.o\ﬁ. ‘In fact every integral curve of —X in V from x is

T



contained in V \ $L.
If w has the curve segment property at x=w, then wve

cen choose a sufficiently emall neighbourhood V of x in _Qo and

a local chart 2 :V——> (V)<= ®R® such that to every point

N = %(a)/\ V) the set

Jtze 2(V); y'= z' and v, < 7‘n}

is contained in %(Qn V). Here we write y =(y1 ST ,yn) and
V! o= (y], '“’yn . ). In order to prove this fact we only have
to solve a simple ordinary differential equation, and we leave

it to the reader.

Proposition 2.4.1. Let seR. If w has the curve

segment i)rOperty at o W, ~then the set
{?Gcz(ﬁﬁE); Eﬁ'ﬁ?n(ﬂ1\ﬁ)== c;b} c(2.4.0)
is dense ian%gg(ﬁ, w,;E).
Proof. Trom the hypothesis there exist a locally
finite open covering (V) o e p Of Wy in _Q_O and a family of

local charts %X:Vx-—--%?(o((Vo()CH?n such that to every

ye?f“((a)/\vo() the set
{ze%o((VD(); y'=2' and yn<zn} (2.4.2)

is contained in D(x('_'QAVD(). Then 1t is possible to choose __(21
{Ze 2 (Vee); y'= 2' and z_<< y } _ bX,Q,
such that the ret , is confained’in ¢, (82, A V) for all
. ‘ I O([\

Yy € W,,- Take a locally finite open covering (Vﬁ),@eB o'f
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\/ 3 — ) T m : :

Q\( Y,V) in $2 such that w, NVs= ¢ for all p<b. Then using
oo c s - . - .

a C partition of unity subordinate to (V"()o(eAVB’ e can reduce

the problem to that in each V,, o(eAuB. Therefore it is enough
to make an approximation in each Vx_%.D(;((V‘;(), X< A. Then we can
use an approximation by translation. After that we can use
convolution by the usual C®® functions and the‘n' we obtain a
required approximation (see the proof of Proposition 2.5.5.).

We leave the details of the proof as an exercise for the reader.
Theorem 2.4.2. Let se®. We assume that « has the
curve segment property and 'Q'Z can be selected such that its

boundary in ‘Qo also has the curve segment property at every their

point. Then H%gg(fi, w];E) is a Frechet space and its dual space

is weak"«-:bsomorphic to . H?_S)(ﬁ, wa;E).

Proof. Since H%Z%(QO;E) is a Frechet space, H:(Lgc);(ﬁ,

, LUT;E) is also a Frechet space. Let 7 be the natural injection
of I?I%‘:()"(ﬁa;E) into H:(Lg();(.QO;E). Then its dual map t’L is a
weak*—homomorphism of H:(ng(ﬂo;E)' = H‘(:__S)(_QO;E) onto g%gg(ﬁa;E)'.
Let PZ be the restriction map of Hc(:_‘s)(.Q.o;E) onto H((:_s)(fia;E).
Then for every ueH((:_s)(.Qo;E) we have t’L(u):==0 if and only if
Pz(u)=0. In fact we have tq,(u):—-_o if and only if <9, u>=0 .
for all ?é%%gg(ﬁ:a;m,and the latter cond.itioh is equivalent
with P5(u)==0 from Proposition 2.4.1. Therefore there exists

(0] P
a weak*—isomorphism of H%:;(ﬁa;E)' onto H((:-s)<‘Q-2;E)'

sy -
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: . ! W b . Qloc, & ...
Now the dual of the restriction mapplng/\of H(P)(_D_a;m)

onto 11%2?(_{”2“_, (u1;E) gives a vveak*—iSornorphism of H%gg(ﬁ/, @, ;B!

: o1 c ~ | .
into H(gg(ﬁ ;E)'%H(_S)(QE;E). Because ’53 is an oper‘l mapping,

the range of t)o is equal to the polar of Ker . Then u belongs
to the range of ty if and only if <9, u> =0 for every

0 ~
P H%gg(ﬂ_a;lﬂ) which is equal to zero in QV From Iroposition

2.4.1. the latter condition is equivalent with the inclusion

relation suppuc:ﬁ. Therefore the range of tf is equal to

H‘(’_S)(f‘i, W,;E), and the proof is finished.

Theorem 2.4.3%3. Let s,teR. If K is a compact subsetl

of fi, and s<C t, then the inclusion mapping of the Banach space
{ueH?t)(ﬁ, w1;E); suppuCK} (2.4.3)
into the Banach space
{ueH?s)(ﬁ, 0)1;E); suppuCK} (2.4.4)
is completely continuous. Here (2.4.3) is given the norm
inf{ﬂvﬂ(t); veH((:t)(.QO;E) and u=v|nl}, (2.4.5)

and (2.4.4) is given the similar one.

Conversely if the inclusion mapping is completely
continuous for ome K with interior points, then if_f follows that
s<<t.

Proof. Let 72X be a function in C‘:(QO) such that X =1

in a neighbourhood of K. Let V be the closed unit ball in the
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Banach space (2.4.3). Then to each u &V there exists ﬁesH?t)(SZ

,'.1)

%+ U for all ueV. Then it follows that $(V)==V and V is a
bounded set in the Banach space

o
{VEH(t)(Qo;E); supp v < supp X },

which has the norm Hvﬂ(t). Hence V is precompact in the Banach.

" space

?

{veni y(L2,;8); suppvcsuppxJ.

Therefore V = f(V) is precompact in (2.L4.4).

The latter part of the theorem is obvious,

Using the same argument as in Theorem 2.3.4. and

Proposition 2.3%.5. we can prove the following theoren:

Theorem 2.4.4. Suppose that @ has the curve segment
property at every its point and we can choose SZE such that its
boundary in ILO also has the same property at every its point.
Let seR and ’X_GCS’(QO). Take a compact set K, in the interior

of K= suppX. Let p* be the seminorm in %’,=H:(Lg():(ﬁ’., @W,;iB)

- 36 -



5%
defincd. by

loc o g
(S>( O’E) and U.=VIQ1},
(2.4.6)

for all uéH%gg(fi, @,;E). Then the Banach space (2.3.6) is

pPru) = inf{ ][X-v”(s>; vel

continuously embecded into gé*, and 9'1'7* is continuously embedded
into the Banach space (2.3.8). Moreover if ueH?_s)(_ﬁ:, CUZ;E)
and suppucﬁnKP then u is equal to zero in Ker p*. If u is

equal to zero in Ker—p*, then it follows that suppu_Cﬁ.AK.

§2.5. The spaces agéoli(ﬁ, w1) when M = R,
b

In this section we assume that M=R" and E is the
trivial line bundle ®®x @. As in the previous section we also

assume that W A (T2)%°=dd. Take three open scts Q2 , (2., £2
N p o) 17772

satisfying the conditions of Proposition 2.2.1.
We use the notations of Hormander [ 8 ]. Let 1= p <oco
and ke K(R™), the set of all temperate weight functions. Then

: /
@p | 15 defined as the space of all distributions ued (R®) such
, .

that its Fourier transform i is a function and
fuly o= CJleCg 80| Pag) P00, (251

For the sake of simplicity we assume that ¢ has the

segment property defined as follows:

Definition 2.5.1. We say that W has the segment property
at xsw 1if . there exist a neighbourhood V of x and a

vector eeR" such that for every ye waV and O0<< £ < 1
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Ve s Q/\V.

We can repeat the same argument as in section 2./. and

obtain the following four propositions:

Proposition 2.5.1. If w has the segment property at

every point of a)1, then the cset
{? = C':;’(Sl1 ); supp g /\(.Q]\Q) = CF}
. . loc, & |
is dense in Gp,k('Q" W, ).
Theorem 2.5.2. ﬁéoi(ﬁ', 601) iz a Frechet space. If
9

W has the segment property at every its point and we can choose

‘QZ such that its boundary in Qo also has the same property at

every its poinf, then the dual space of B%Of{(ﬁ; éU'T) is weak™ -
. )

. , : c ] 1
1som.orphic‘ to d3p, ,1/k(§’ (UZ), where -p—-!-? =1.

Theorem 2.5.3. Take two temperate weight functions

ky, ke ((RY). If
k2(§ )/k1(’§' )'--—éO, as § —>09, (2.5.2)

then for every compact subset K of ﬁ the inclusion mapping of

the Banach space
3 {ueig- ¢ (L, w,); su uC_K} (2.5.3)
7 p,k1 » Ve 75 bp e D
into the Banach space
@ fad
{ueﬁp,ka(ara)ﬂ; vsuppuCK} (2.5.4)
is completely continuous. Here the former space is endowed with
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the norm ‘
; ol . ¢ _ u=v! }
1nf{”vhp’k1, Vé@p,k1(Qo) and d”"vl.Q_] -
and the latter space is endowed with thc similar one.
Conversely if the inclusion mapping is completely
continuous for one set K with interior points, then the condition

(2.5.2) holds. /

Theorem 2.5.4. Suppose that @ has the segment propofty

at every its point.and we can choose 'QZ such that its‘b’gi)undary
in _Qo also has the same property at every its point. Let

1= p< oo, L =1, and ke X(R"). Take a function X in

p " p

C?(QO) and a compact subset K, of the interior of K = supp X.

1

Define the seminorm p* in Q:@%"f{(ﬁ,w?) by
’

for all ue@%oﬁ(ﬁ ,ﬁw1). Then the Banach space'
?

c ~r . ~
{ueBp',T/k(Q’wz)’ suppuCKV\.Q and u==v!_(22
c
for some ve@p',l/k(go)} (2.5.5}
is continuously imbedded into gx')*,_and éfé* is coptinuously
imbedded into the Banach space
{uEB ¢ (5L, w.); su-npuCK L and U=V '
p',‘l/k » Mol j2 N - ‘QZ
) | . _
for some veﬁSp,’]/k(SZO)}. (2.5.6)
Here (2.5.5) and (2.5.6) is endowed with the norm

inf{uvnp,"/k; Véﬁpfﬂ/k(Qé) and u==v/_Q'2}.
- 39 -



28

. . c &y o & -
Moreover if ue d8p, ,’r/k(‘Q" @,) and .guppuc:.Q/\h1 ,

then u vanishes in Ker pX. If u vanishes in Ker p*¥, then it

follows that suppuC ﬁ/\ K.

Proposition 2.5.5. Suppose that we can choose I?.] such
that the boundary of 57_1 in Slo has the segment property at every
its point. Let K and K' be two compact subset of _Q_O such that

K is contained in the interior of K'. Then there is a positive

constant C such-that for every function u in C:’(fl’, W, ), whose

support is contained in ﬁnK, the following inequalities hold:

}

inf{)}v”p’k; ve:—c:(.(zo), supp v CK', and u=-—v}_Ql}

inf{){v!{’p’k; veagg’k(ﬂo) and u=v ]_Q]

(i

A

C-inf{llv[]p’k; veB;,k('Qo) and u== v’ﬂ'l}' (2.5.7)

Proof. It is possible to take any _Q] , because the
inequalities (2.5.7) are essentially independent of .Q1 . Then
from the hy'pothesis we can take Q1 whose boundary in ‘Qo has

the segment property at every its point. Choose two compact sets
K, and K, such that each K, Ky K5 is contained in the interior
OfK]’ KZ’ K respectively. Let X be a function in C:(H?n) such
that j?((x)dx =1.. Set QCE(X)._——_ g;“x(x/g> for €>0.

: finite number of,

From the selection of _(21 there exist a )~ open sets

A

VT’ VZ’ e, Vl’ which is contained in XK', and the same number of

vectors eél, @5y @) in ®R® such that Vj's are a covering of
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KZ/\ .QQO-Ql and
JA _(2 Q +£@ CK'O\Q]7 o< £<1 and J—-—1,c.,"',l.

Then there exist functions P, 3’2,"', Py in C (_Q. ) such that

supp ?J' v

3 j=133.==1 in a neighbourhood ’of‘ 1*1/\847_ 'Q‘I' and

-0

(supp <j>J.)\Q1 -+ a-eejCK.O\ﬁ1, 0<<E<K1/2 and j=1,2,-,1.
| (2.5.8)
Moreover take functions 3’1+1 RN ?m in C:(_Qo) such that

supp ?jAQQOQ]_—.—.-.sL , 3___[_}.1 cerm,

and
Z ? =1 1nK

j=1
Since the first inequality in (2.5.7) is trivial, it

remains to prove the second inequality in (2.5;7).” Now let

uec':(ﬁ, wl) and sSupp uC.SZ/\K. Then there exists a function

Y y
u, in CO(_Q_O) such that u.—-:-.uo‘&21

function v in B; k(‘Qo) su‘ch that U= v I.Q . If we write
’ 1

and supp uOC K1 . Take any

sz?‘j(v—uo>, J=1,2,-"-,m,
then it follows that w.ed3.% (L2 ) and
J P,k "0
SUPPWJ.C,(SUPP ?J)\QT’ J=1,2,",m, (2'5'9)
Here we define translation operators by
,t(é])(?)(x): ?(X—E:@ej)» c_?ec':(mn) and xeR",

for eeR and j==1,2,-**,L. Tor distributions ue@'.(mn) we
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define 'c(&j?(u) by

<9, "ng)(u)>=<’cf_je_(?), u>, Pec(RY).

From (2.5.8) and (2.5.9) we have
supp Wy + v CK'° \&,, o<e<1/2 and y=1,2,--- 4,

and hence it follows that

supp n:(g)(wj)CK'o\ﬁ1, 0 <e<<i1/2 and j==1,2,:*-,4.

Then there is a constant 80 > 0 such that
(3) 0910
Te (wy)k K &C (K ‘521)
for every 0 <<e<<1/2, 0<< S‘<SO, j=1,2,*+-,1, and moreover
W x. e K'° I.), j=la41,--,n
j* S E fo] ] b J » ’ i

Now ‘define the functions ve's by

4 oy m
v o= u Al Iy x X+ S Wk K
=3 0 i e DR e M

. oo, :
Then it follows that Ve.s 500(9—0>; suppv, ¢ < XK', u=va'$[9_] ,

and in addition

" Ve,s ” p,k =

‘ m L' .
=] —jZ.__qWJ‘”p,k'{'%”wj - TESJ)(WJ)* Xs ”p,k |

L
+§11!ij — Wik Xs ” p,k

=z gpd,pt - -

j=l
. m
= c-llvllp,k"‘é”wj* e orpx Kyt 2o I v L

- b2 - (2.5.10)



bl
where the positive constant C is independent of u and v. Since

the last two te‘rm of (2.5.10) tends to zero as g, § —>0, we obtain

Timjv,. | =< Clvi
8-—;%“ e,gup’k——-—' l[ i[p’k’

§~»0

and then the proof is complete.

e N rd AN . <~ \
(e s <0 N9/

Remark. For many reasons the following definition of
'35(_(’\2/, a)1;E) is better than that in sectior§/2.2. We need not assume

that (()13 is void..

. . . : [¥) )
Definition 2.2.4'. By 95(_(47: ;E) we denote the closure
of Cog(_Q_;E) in ?(Q_O;E). This space has the natural topology as

a closed subspace of F(LL. ;E).

0’
If F(M;E) induces a sheaf of Cgomodules over M, the

[ —~ - ~S
definition}\f}"(ﬂ_;E) (and F() ;E) also) does not depend on the

choice of SZO.
Definition 2.2.2'. By F(I,w,;E) we denote the space

[e] ~ - ’ :
P (F(S15;E)), that is, the space of all distribution sections ue
e@'(&lﬁE) which is the restriction of some v :7’?(522;1'3) to 9‘1'

Using Whitney's theorem [28] (also [18]), we can easily
prove that C°° (ﬁ,aJ?;E) does not depend on the choice of 12, Q1 ,
and ‘Q‘Z'
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Chapter iiI. Elliptic boundary problems.

§3.0. Introduction.

This chapter deals with boundary problems mainly for
elliptic differential equations. Some results are not restricted
to elliptic operators. If we combine the results of Chapter I and
II, we immediately obtain necessary‘and‘Sufficiedf conditions for
solvability of equations (Lemma 3.2.2., 3.3.2., etc.). They are
constructed by two types of*conditions. One is on semi-global
solvability, that is, whetﬁer the eqﬁation is solvable in any
compact subset. ’We can write necessary estimates using Sobolev
norms. --The other condition is on the relation between the boundary
and the characteristics of the differential operator. They are
represented using support of distribution sections. These facts
are essentially well-known if the boundary is void (e.g.[ 8 ]).

In section one we prove some préliminary propositions.
Reduction of the problem to the usual form is done. In the next
section we treat differential equations in the space (L E).
This is an almost trivial generalization of the classical theory
of differential equations without boundary conditions. We have
to study differential equations in the boundary which is induced
by the boundary conditions. 1In section 3 we state and explain our
main theorem of this chapter (Theorem 3;3.1.). We can prove the
existence of solutions for eiliptic boundary problems ih non-compact
manifolds. Unlike the case of compact manifolds, solutions always
exist. The last section is devoted to the proof. We can shorten

the proof using parametricies for elliptic boundary operators.

-.L',[_.__
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§3.1. Preliminaries.

Let M be a ¢ -compact C™ manifold of dimension n. Let
52 be an open subset of M, @ an open subset of the boundary of
fL in M. We assume in this chapter that @ is smooth, that is,
@ is an n—1 dimensional submanifold of M. Write (I =0QVw as

before. Now take an open subset _Qo of M such that {J is contained
in _Q.o and the intersection of D_O and the boundary of 2 in M is

equal to @W. Let E and E' be two complex c* vector bundles on M.

As in section 2.1. fix the duality between C::(M;E) and O'(M;E),

etc. Take a nontangential real C*® vector field 2 in a neighbour-
hood of @. Fix connections for each E and E'. By D,, and D}, we
denote differentiations in the direction ¥ of C” sections of E and
E' respectively. Thus D), is a first order linear difforential
principal

operator from E to E in a neighbourhood U of w and its/\symbol is

<V(x),&€> , xe€U and §fe T):((M), By R we denotes the trace

operator of C*({;E) onto C (w ;E), the space of all C* sections

of E]a) over w . Here Elw denotes the bundle obtained by restrict-
ing B to w . By R'" we denote the trace operator of C”(ﬁ;E‘) onto
C°°( W;E'). Then the composition ReD,, is a continuous linear
operator of C¥({Y;E) onto C™(w ;E), and similar for R'eD!. For

any s>3/2 we can extend these operators as continuous operators

loc, . loc (1) o ‘ loc,a .1y ;Loc
of H(‘S)(_Q_,E) onto H(s-}/z)‘w ;E) and of H(s)(ﬂ ;E') onto h(s_3/2)

(w;E') respectively.
Now consider a linear differential operator P from E to
E', i.e. a continuous linear operator of C™(M;E) into ¢(M;E)

such that supp P(u) CC suppu for all ueC”(M;E). Then to every‘

...1+5-
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local chart %:U,(——->9f(U,C)CERn there exists a matrix P of usual

differential operators with C°° coefficients in %(U,.) such that
(P(u)),. ="P(uy) in 2(U,), ueC (MG;E), (3.1.1)

where u,cand (P(u)),. are defined by (2.1.3) with respect to some .
local charts of E and E' over o< respectively. Then we have the
following proposition. We omit the proof, because we will use a

similar argument in the proof of Proposition 4.1.1,

Proposition 3.1.1. If P is of finite order in a
neighbourhood of w, there exists a positive integer £ and linear

differential operators with C° coefficients Ad, A1 y Tt ’AL from

E]’w “to E"la) such that Aﬁ,is not identically equal to zero and
. 1 3 00, O
R'oP(u)r—ZAjoRng(u), useC(fL;E). (3.1.2)
j=0

This representation is unique.

Suppose that N=N' and P is an elliptic operator of

“order m in 52.0, that is, its principal symbol Pm(x, E) is a
bijective mapping of E, into E}'c for every xe{lo and every
non-zero ‘geT;':(.Qo). Here E, is the space of all fibers at x.
i‘hen it follows that £ =m and 4 is a zeroth order isomorphism

:of C”(w;E) onto C”(w;E').

Consider another complex c* vector bundle E'' and a
linear differential operator B from E to E'' which is of finite
~order in a neighbourhood of @. Let R'' be the trace operator of

C“(fi;E") onto CT(w ;E''). Write
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id

D,

m % e O : m D2

R = and B (DV):: Y
0 R m-1

Proposition 3.1.2. Under the above conditions there
exist two differential operators B, from Ei(u to E"[w and B

M ve
from E |, toE lw , such that the operator
(P,R''eB): C (£ ;E)~sC (B ) xC(w;E)
is decomposed as the composition of three operators:

'R"0B==T3°T2°‘I‘1. (3.1.3)

Here we have
7, = (P, RB"(D,)): Co(T ) ——>C (S E ) x ¢ (w E)D

id. © ‘ oo
T2=( ): Coo_(_Q;E')wa(aJ;E)m——--é-C”(_Q_;E')xCM(a/ ;Ev)
O Bw ‘

1 O o0, v - 0o, A (=
T, = : C (S2;EY)xC (W ;B )——>C (23E')xC (w;E'!).
>Ry 1 .

™ ]
Am"

Proof. From Proposition 3.1.1. we have two decompositions

3 3
R'eP = =, As°ReD;,

Jj=0
and
= K
R'"'eB == °eReD™,
k=0 B 4

Because Am is a bijective operator of order zero, we can write

R''0B =" A"hRup..{.Zm_’ pﬁaRoDk
m f’é& . k=0 >
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with some differenti':'a'fll‘ép'era'tors Bo, BLZ’ k=0,1,2,---,m~1 from

o 0 40 ... O
.E|, to E''|, . Then it is enough to set B(u::(BO’BT’ ,Bm__1)

and B = B° . This finishes the proof.

§3.2. Differential ecguations without boundary conditions.

First we consider the following differential equation
Plu) =1 (3.2.1)

for uecw(ﬁ;E) and fe'Cm(ﬁ;E'). To study this equation we need
t

not assume that @ is of C°° class.

Theorem 3%.2.1. Suppose that P is elliﬁtic. Then the
equation (3.2.1) has a solution u<C™(ff ;E) for each fec™({L;E'),
which satisfies <f, ¢®>=0 when <e é),'(ﬁ;E) and tP(?): o,
if and only if the following condition holds:

(4) Toﬁ every real number s and every compact set K< (7,

-there exists another compact set K'<fl such that @e 5,' (ﬁ:;E' ),

° ~
tP(? )EH?S)(Q ;E), and supp tP(?)C‘_‘K implies the existence of
another 7% e é' (ﬁ: ;E'), which satisfies #’P( P)= tP(”{’) and
supp P CK'.

Proof. From Corollary 1.2.3., it is enough to prove the
following stateme‘nt:
(B) To every real number s and evei-y compact set K Cff,
bthere exist a real number t and a positive constant C such that
Pe é' (L ;E"), supp P K, and‘tP(ﬂ> )Eﬁ%s)(ﬁ;E) implies the
existence of another 2 eé‘(ﬁ;E') such that supp % <K, tp('z/»)-__-—

=tP(‘J’)’V and [P | (4= c.ﬂtpmp){](s).
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Since P is ellipticj, there exists a positive constant C,
! 0
which depends on K and s, such that Cyeéo‘,' (SL;E'), tP(?)GH%S)(.ﬁZ ;E)

and supp K implies
. . .
191 (gpmy = C %P [y Pl iy (32.2)
Set t= s+ mnm. Now assume that the conclusion of (B) does not hold.
. o ~s -
Then there exists a sequence Cfne E'V(L2;EY), n=1,2,-+- such that
(1) K, "p( )eRS (;E), and [Tp(P )], \—s
supp §, < K, ?n (s) y&l, ana j ,?n (g)y™"
—p() a5 Ne=——» 00,
2 o~
(2) there exists ’If)ne{-;'(Q;E') which satisfies
supp 9, <K, tP(*L,!*n)——-—-tP(‘j"n), and !iﬂfn]{<s+m)=1, and finally
%, & : t t ‘
(3) e & (LE'), supp PCK, and P(P )="P(P)
implies || %[ g py=1-
From Rellich's theorem the sequence #Jn»’ n=1,2,-:-
has a subsequence which converges to some ’l,bo with respect to the
norm | - ”(s-{-m—-U‘ We write the subsequence by the same letter.
t _t t _ b
Then P(’an)_. P(9 ) converges to "P(P )==0. Set #vr‘l__'?f»n-?»o,
S P
n=1,2,-**. Then it follows that 'z‘br'l e ' (L2;8'), supp 'I/JI'ICK,
t .t . | '
P(P ) ="P(%]!), and l{’llbr';li(s+m—1)—'+o as n—3=00, From (3)
we have “wﬁ!{(s-}-m);L But this contradictswith (3.2.2), and the

statement (B) is provéd. This finishes the proof of Theorem 3.2.1.

Corollary 3.2.2. Suppose that P is elliptic and (J is
compact. Then the equation (3.2.1) has a solution ueCN(ﬁ;E)

t

s 4] ~r
for feC (fL;E'), if fe &' (SL;E) and P(P )==0 implies <f,P>==0.

Corollary 3.2.35. Suppose that for every relatively compact

open subset U of .D_o, the union of all compact connected components
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relatively ~
components of 2\ U is, compact, and 2 has no relatively compact

A

component which is open in 'Qo' If in addition ’Qo is a real

analytic manifold and P is an elliptic operator with real analytic
coefficients, then the equation (3.2.1) has a solution ueCm(ﬁ;E)
for every fecm(ff;E').

Proof. It is enough to prove that £1 is P-convex. Let
K be a compact set in . 1f se é'(fi;E) and supp tP(<}>)C K,

then we have tP(‘}’)-——-O in _Q\K. Therefore ¢ is real analytic

in _QO\K Let U be an open relatively compact nelghbourhood of
the c closure of )

K in £2.. We define K" ‘the union of and all compact components
: ° ' compactA A
of Q\U. Then K' is . If XK is empty, then K' is also empty.

We have supp ¢ CK' and the proof is finished.

Without the hypothesis of real analyticity there arise
difficult problems (e.g. Hormander [ 8 ] or Harvey [ 7 ]). For
subelliptic operators we can prove a similar theorem, using the
results of Hormander, Egorov, and Treves [26]. Moreover we can
immediately obtain theorems on the existence of solutions in
Sobolev spaces H%gg(fi;E). We leave the detalls as an exXercise
for the reader. _

Noﬁ consider a linear differential operator B, of
C“(a);E)m into C“(a);E"). We will prove two propositions on

sufficient conditions for Bw-convexity.

Proposition 3.2.4. If B, 1is a differential operator

of order zero and its symbol Bw(x) is a surjection of E;n( onto Ezfc’,

xew, then W is B ~convex, that is, for every compact set K C w

there exists another compact set K'< w , which can be-taken as

empty if K is empty, such that @ «g'(w;E'') and supp th(?)C.K
- 50 -
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implies supp 9 < K'.

Proof. Since Bw(x) is surjective, its transpose t}?vw(x)
is injective. Therefore if ¢ e £'(w ;E'') and th(Cf‘ )=10 in an
open subset U of w, then it follows that ¢ ==0 in U. Hence the

proposition follows.

Proposition 3.2.5. Let w be an open convex subset of

n—1

R , and By be a differential operator with comstant coefflicients.

Assume that N''= mN and the rank of B (£ ) is N'' for some § & R

Then W is Bw—convex.

Proof. We can write B () =(BT(‘%— ), 'B2< £)), where
B1(§') is an N't xN'' matrix and detB1(§0)# 0. Then W is

det B1(D)-convex. Let K be a compact convex subset of w. If
(]
e (W B'') = &' (w )N and supp tB(U(D) P < K, then it follows

that supp ( det tB1 (D) ¢ )<ZK. Hence we obtain supp <K, and

the proof is complete.

§3.3. Ellintic boundary problems in non-compact manifolds.

In this section we assume that SZO is a real analytic

manifold and P is an elliptic operator with real analytic

coefficients in .Q.O. Without these assumptions we have to deal

with some kinds of pseudo-convexity conditionson the boundary

of &. The order of P is m==2'1 and the dimensions of E and E!

are the same, that is, we consider only determined systems.

Let EJ., j=1,2,'+,1 be N-dimensional complex C% vector bundles

on _CZO and let their direct sum be denoted by E'', By Rj we denotes

~ Co R
the trace operator of C ({X ;1%) onto C (w ;Ej). Let B;j be a
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differential operator from E to Ej and its order is mj in a

. ¢ ,Bl)'

Then we have the decomposition (3.1.3). Since 'I‘3 is an iso-

neighbourhood of w, j=1,2,---,1. Set B==(B],Ba,

morphism, it is enough for us to consider only T2°T1’ Write

~ 1 bo
’ BwoRmvBm(D»).—s—‘(p1’p2,-..’pl): CN(R;E)'—%@ C (W;EJ).

J-"‘-:-

Then each pj is of order mj. By Bg and p? we denote the principal
part of Bj and Py of order my respectively. We say that (P, R''eB)

is an elliptic boundary system if and only if the system

(P,p1,p2,--- ,pl)‘is ellilptic in the usual sense, that is, to

every local chart »: t’rx——-a-x(ﬁx)cmﬁ and every point xe& wp U

the boundary problem for a ‘ . differential equation

x — : n
Pm(R(X),DZ)u(z)_O in R

150

"pj(x(x),Dz)u(z)_—_—_O, when z, = o,

has no solution of the form u(z)= et<2"s §’>W(Zn) such that

n—1 an N-vector of
E.em , ’s"ﬁFO? and w(zn) 1sA nonzero bounded functions

for z = 0. cf.[ 8, 10, 24].

Theorem 3.3.1. Let s=m. Assume that ﬁ has no
compact component and to every relatively compact open subset

U of JZO the union 6f all compact connected comvonents of fi\U
relatively .
is alqucompact. If (P, R''eB) is an elliptic boundary systen,

then the following three state-ments are equivalent:

(1) To every compact set K@ there exists another

compact set K'C @, which can be chosen as empty set if K is empty,
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such that 9 € @ P

, )(a/,u .) and supp ty o (PISK
j=

(*1+m+

implies supp ¢ CTK'.

(ii) The equation

Plu)=F
. ‘ (3.3.1)
J°Bj(u)_—-fj’ j=1,2, 1,

has a-solution ue.C”(.fi';E) for every Fe C”(ﬁ;E’) and fjfecm(w ;Ej),
j=1,2,°-,1.
(iii) The equation (3.3.1) has a solution ueH%g():(fi;E)

for every FGH%ZSm)(ﬁ; ') and f. eHJ('ng 1')(60 E ), J=1,2,"",1.
If @ is B -convex, then the above condition (1) is wvelid.

Therefore we obtain sufficient conditions for (i) from Propositions

%.2.4. and 3.2.5. ‘I‘hé well—-kn,own Dirichlet condition satisfies

the hypothesis of Proposition 3.2.4. - Therefore under the

assumption of the previous theorem the Dirichlet boundary problem

always has a solution. -The following lemma is an immediate

consequence of Theorems 1.2.1. and 2.4.4.

Lemma 3.3.2. The equation.(3.3.1) has a solution

loc . loc, & =y loc -
ueH(m)(_Q,E) for every FeH(O)(_Q,E ) and fjeH(m-—mj--;-)(w’“')’

j=1,2,~--,1 1if and' only if the following two conditions are valid:
(1) To every compact set K< I there exists another

compact set K'c<S] such that §e}oic(: )(fi;E'), ?jeH((:—m-f-m +_1?)

(w ;Ej), J=1,2,"- 1 and supp ( 'p(z) + 32--: P (?’J))CK implies |
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supp ¥ <K' and supp T?j < a)AK‘ R jé 1,.2,'”' 1.
(3) To every compact set K< £ there exists a positive

o ~
constant C such that EGH?O)(_Q;E'), ?’ )(cu E ),

H( m-f-m‘]-i-

supp <K, and supp ?jC_‘_'a)/\K, jJ=1,2,-"-,1 implies

1 , , 1 ' |
” §”(0) -+ :4:_—.;”93 ”("'m"l"mj-f-%-) = C*UtP(é) -+ 341.:1 tpj( ?j)”(—m)'

(3‘302)

§3.4. The proof of Theorem 3.3.1.

If (ii) is t}'ue, there exists a solution ueC (w ;E)™

of the eguation Bw(u)=“ f for every f&€C™(w ;E'').. Let K be a

compact subset of W, and s<< min (—m+mj+1§-). Then from Lemnma
| i1,
3.2.2. there exists a compact subset’of @ such that ?GH%S)(Q) JE'Y)
Kl

and supp tp (<}> ) < K implies supp PCK'. Hence (i) holds.

If (iii) is true, we obtain (ii) from the regularlty
theorem for elliptic boundary problems. Then we have to prove
(iii) in the case when s =m. Therefore it is enough to check
two‘conditions (1) and (3) of Lemma 3.3.2. under the assumption

that (1) is true.

(I) Proof of (1) in Lemma 3.3.2. Let K be a compact
A~ i!
set in S2. Choose a relatlvely compact open subset/.ol .Q_O which
the closure of

contains K. Let K1 denotes/\the unlon of Un.Q and all compact

connected components of .ﬁ\U From an assumption of the theorem

Ki is a compact set in §). Since we have assumed that (i) is true
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there exists a compact set ¥, CC W such that (1) holds if K and
K' is replaced by me and K, respectively. Set K'== I{1UK2.

If X is empty, we can take K' to be emnty.

1 ~ N' .
Write X ——-J@"H(_m_{_m +1)(w yH ) Let iegg )-(Q;E'),
==( ?1, ?2,"',‘?1)6}(, and supn( P(S?.)-{— Za P (< )l)’C:K.

3=
Let £, denotes thé'ré‘striction of & to £2. Then it follows that
§1 e £'(SI;E') and ‘supp tP(§1 < K/\ 2. Since ' is elliptic
with real .analytic coefficients, &, is realyana‘?.ytici in 2\K.
Therefore we have Supp“ §1~C‘.K1‘A.Q.
Now let '§2 dénotes the restriction of & to the complement

of 1{1 in 'D‘o’ Then §2 is a distribution section of order zero

and its support is contained in @ . Hence there exists. Q/) =

=9 '(W\K,;E') such that E,=="R'(%). Cf. Schwartz [22]. Then

we have

o ="p(F,) + Z P T3 unx,

PR 8 A P LRV I OIS
(,i

t to, L, ' ; |
= Po R (q’b)+;34:=:1 (BweRmoBm(}Dynj(?jlw\x1>
- Zt Eobp o () z “pf "R tBK(?}w\K ). (3.4.1)

llere we have used the representation (3.1.2), and wrote Bw:-_.-(Bg,

BO "‘,Bo

s t — . t,
. o) (3eba1) implies that A (%)==0. Ssince "A_ is

bijective, we can conclude that % =0, that is, ¥,==0,
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~Then (3 4, 1) implies that B ( /W\K )==0, that is, supp 'y w(FI<Z

<K, @ . From the hypothesis (i) it follows that supp gnczia.
We have thus proved that supp BCK' and supp PTK'AW , and the

proof of (1) is complete.

(IT) Proof of (3) in Lemma 3.3.2. Let K be a compact

4 Lot
.set in ﬁ. Take any Q&H?o)(Q;E') and < =( ?1,?2,'-- ,‘fl)ex

such that supp ®@C K and supp ?CI{/\‘Q). Wirite T== Bw°Rm°Bm(Dy)=
=(p1 :pzv ce :Pl) , and

1 \
I CHRS) =§1H ?jlf(s+mj+1§-)'

~ In the following C or C' represent generic constants which does

not denesrcd o2 the choice of & and 3’3.. We have proved the

follzwi. © e imate in the proof of Theorem 3.2.1.:
[Zl0y = e %@ _yy- (3.4.2)
This implies
1oy = |
= (2 + 2P gy + 129 Ly
= of*P(@) + *2(P)] Ly + ' 9l la) - | (3.4.3)

Let X be a function in C *(w ) such that X =1 in a

neighbourhood of KA W . Because the system (P, T) is elliptic,

we can prove the existence of a continuous linear operator S of

Y =.@1H](';Cm 1 )(w E ) 1nto H%SS(SZ;E) and a pseudo-differential
J= J , ,
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operator (_,_ of degree —oo from E'' to E'' such that P°S(X-u)==0
and TeS(X-u)=%u-+Q__(X-u), ue¥. Ve can modify the proof

in the case of compact manifolds to show the above fact. See (8,10,

23%,24). Then for every u<Y we have

<u, P>i=

= < %u, >
=< Te8(%-u) — Q_ (1), 9> +<Pes(x.u), &>
= |<sxw), 1) 4+ B(E)>] +kaw, bo__(2)>]

—

= cfjxuf} (&) + ') [+ el oty

Here t is any real number and f;I% H{ denotes a seminorm in Y.

Then we obtain

“< ) = c[} P(E) -+ tp(eo ;i )/,( m)+01{ [[(_m_”.
(3.4.4)
From (3.4.3) and (3.L.4) we have the folloWing estimate.

== *‘*(o) -+ H :5){[ (=m) = CI/tP(ﬁ) -+ tT(Cf )”(-m) -+ C-”?/ﬂ-mﬂ )’

This kind of estimate appears in Peetre [20].
Now prove (3.3.2). From (3.4.3) it is enough to prove

the following estimate for every < :

”?”Z—m) = cftr(=) "';"tT(? >“(-m)’ PeX and supp PIEAY.
’ (3.4.5)
Assume that this estimate does not hold. Then there exists a
sequence of distribution sections Cj’/uéX and §#EH(O)(Q,“ ),
HA=1,2,«+. such that supp ?/“-C‘K/\ , ”T«H(—m):: 1, supp ..E_IU,CI\,

and ntp(ﬁﬂ)..*.tfr(?ﬂ)“(_m)—-—}o as M———>=00. From (3.4.3) there
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there exists a constant C  such that "§/4H(O)§"- Cosr M=21,2,77".

From Theorem 2.4.5. there exists subsequences of ?/‘ and EE/“ y
which we denote by the same letters, such that CJD/“ colnverges to

some To with respect to the norm ”'“m-?)’ and §/‘ converges to

some P, with respect to the norm |- |p)- Then P(E,) + ‘()
converges weakly to tP( §o) —+ t'I'(?o)———-— 0. Hence we have tp(—go):o

in £2. since fi is P-convex from Corollary 3.2.3., we obtain

2, ]SL= 0. But F  is assumed to be an 1% section of ' , and

hence we can conclude that T = 0. It follows then t‘I‘(Cj>O)==O.

t .k t. t.o

o m
. R .
Hence we have _>_, va Re ~Bk( ?O)_O, which implies Ba)< ?O).—-O.

k=1
From (i) we can conclude that 3‘0:——-—0. But this contradict with

(3.4.4), since H?ﬂyz_m)—:l. This contradiction completes the

proof of (3.4.5), and then the proof of Theorem 3.3.1. is finished.
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Chapter IV. Evolutional boundary problems.

§4.0., Introduction.

. This chapter is devoted to the survey of boundary problems
for evolution operators such as hypefbolic, parabolic, and some

othér such operators. If we use the results ofVChapter I and II,

we can immediately obtain such necessary and sufficient conditions

of solvability for many boundary problems as Theorem 4.2.1., Lemma
4.3.1., 4.3.2., etc. If we want to solve equations in #(£I, )
instead of imposing such boundary conditions as Cauchy data, then

- we do not meet with any essential difficulty except in éalculations.
But if we consider boundary conditions of Cauchy type on a bouﬁdary
which is not normal (Definition 4.1.1.), we have to solve a collection
of differential equations on the boundary, which are induced by the
original differential operator. In some simple cases we can solve
such a family of differential equations. 1In section 4.1. we explain
such a family of differential operators induced on the boundary.

In section 4.2. the reduction of boundary conditions.to our function
spaces is done. We give a necessary and sufficient conditions of
s0lvability for a mixed type problem in Theorem 4.2.1. They consist
of two types of conditions, which have been explained in Preface.
Almost all our results are concerned with C™ solutions, because

the investigation of the regularity properties of solutions in Sobolev
spaces leads us to such a complicated situation as in Theorem L.2. 4,
Finally we comment on the equivalence of solvability of the equation
in 3(52,0)1) and the extension property of solutions (Proposition
L.2.5.).

In sectioh 4L.3. we state two basic lemmas obtained from
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the results of Chapter I and II, and then give remarks on elliptic
and strictly hyperbolic equations. In section 4.4. we study a
special case where the differential operator has constant
coefficients. In this case we can obtain many good results.
Especially we can find a necessary and sufficient condition for
differential operators in Theorem 4.4.2., using a result due to
Hormander ([11). If we apply the theory of overdetermined systems of
differential equations with constant coefficients (Ehrenpreis 5D
to boundary systems induces by the boudary condition, then we obtain
compatibility conditions on the boudary data (Corollary 4.L4.3.).

If the boundary condition is determined in the sense of Corollary
L.h. L., wé can find a more refined condition on the boundary. If
the differential operator is hyperbolic, then a complete geometric
characterization of P(D)-convexity is obtained (Theorem 4.4;5.).
Section 4.5. is deﬁoted to the study of the case where the différential
operator is not ﬁormal with respect to both parts of the boundary. ‘
Then we have to solve a system of boundary problems for the induced
differential equations on the boundary. We can solve many Cauchy
problems for wave equations with their data given on characteristic
boundaries. The Goursat problem is solved there. For the sake of
simplicity, we restrict our considerations to single differential

equations. An extension to determined systems is rather easy.
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§4.1. Treliminaries.

Let M be a o —conmpact ¢* manifold of dimension n. Let
{2 be an open subset of 11, &« an open subset of the boundary of (2

in M, and @, a subset of @W. Take tiree open subset {2 , {2, .Q.Z

of M which satisfy the conditions of Proposition 2.2.‘1. For other
notations we refer the reader to sections 2.1. and 2.2. In the
following we use the letter M to denote the order of the differential
operator P, since this will cause no confusion for the reader.

Now assume in this section that w is of C™ class. Let

Y be a real C> vector field in a neighbourhood of &, which is

not tangential to @. By D)) we dendte the first
order linear differential operator with the symbol < (x), §>,

geTi(Qo). Let P be a linear differential operator (with ¢
coefficients) in .D_o such that its order is M< ©©. Then we have

the following proposition:

Provosition 4.1.1. There exist an integer m=< M and a unique

family of differential operators in the boundary w ;
i,8’ i=0,1,2,'* ,M and s=s,,5;+1,

where s, == max(0,i—m), such that there exists a non-zero operator

Ai s with i =8~ m and the following relation holds:

RoD‘]oP""ZA(J)oRoD , J=0,1,2,"" . (4.1.1)
=0

Here A(kj) is defined by
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min(k,M)

NE) z;’ (14 0) . ,
AV = : 1) By 4 if 0=k < j4m
k i=max(0,k-J) i4+j=k/7i,i¢j=—k?

(3) (4.1.2)
AkJ /=0, if j+m<k.

Especially we have

(;1) _ m_z___,1+m M)

J 2 . -f 0 20' -].
Lt i=max(0, m)( m)Al,l-m’ it J4m= (4.1.3)

Proof. To every local patch § in £Z, we can choose a
local chart X :J——> K(ﬁ)c-ﬁ '={x=(x'r,xn)eémn; ‘Xn?éo} such
that ;‘Jﬁ;;'m-_-{xe 2(0); x =o} and the vector field X is
transformed by < to a unit vector parallel to the X, axis at

every po:.nt of x(ﬁn @ ). Then the symbol of P is written as
P(x, g)-fz. A (x,8'): En,A xek(ﬁ') and §=(§g', ';n)em .

If we define |
Ay o(x, E') = (%;)SAi(x, £), xex@pw) and grem’,

Then the above proposition follows. The details may be left to

the reader.

In the following discussions Agi)m y J+m=0, play a céntral

»ro]'.e. We have to calculate Al 5 for i==s+m, if we want to apply
the following results to concrete differential equat:.ons. See

Example 4.4.6., 4.5.2., and Theorem 4.5.3.

Definition L.1,1. We say that P is semi-hormal of degree

m=0 with respect to w if

A =0, n+s=misM and igkm, (4o1.4)
$
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in Proposition 4.1.1. for some vector field » . If in addition

Am 0 is a multiplication operator by an everywhere non-zero function,
b4

then we say that P is normal of degree m with respect to w.

This definition does not depend on the choice of V.
We leave its proof as an exercise for the reader. ’If'p' is semi~-

normal of degree m with respect to «’, then we have

amo. monn

and .
. j4-m——1

o 'j e oReo J+m d (J) o k ] —— PR

ReDjeP == Ay o°R°D; +kZ—.—.'o Ay "leReD), §=0,1,2,--.(4.1.5)

~-§4.2. Reduction of the problem.

We refer to section 2.2. for our notations. Set 63; =‘

= .Y

j wm, j=1,2, and suppose that’ (012 is empty. Moreover

for the sake of simplicity we assume that @445 "13* @,, are void,
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that is, we assume that @ 1is the union of w]d, wzc, and W

21°
We can generalize some results to the case when the above sets
are not empty. Assume the existence of two n-1 dimensional C*°

submanifolds wj5, j= 1,2 of IZO such that each ca'j is contained
in «)j5’and the intersection of wj5 and the boundaryof ij in
ij is equal to CU21. Moreover assume that sz does not meet
with SL. By Rj we denote the trace operator of C*(£L) onto Cm( a'fj),
the space of all ¢* functions in a).o,which can be extended to a

C*™ function in w 5 Take a real 9
c” vector field ¥;in a neighbourhood of @jg, vhich is not

tangential to @;g, j=1,2. By D) we denote the first order

i 2,

J
linear differential operator with the symbol <l/j(x), >, EET:':(SZO).

In the following all linear differential operators which we condider
have C® coefficients. Let P be a linear differential operator of

order M in .S?_O, and B===(B1 By, ,Bm) a linear differential

operator of CP( ) into C(&)™. As in section 2.1. we fix the

duality of C:(.Qo) and .8'(.(20), Sobolev norms, etc. Then we have

the following theorem, which can be applied to mixed problems

for parabolic or hyperbolic equations.

Theorem 4.2.1. If P is normal of degree 1 with respect

to 6()10, then the following three statements are equivalent:

(1) .Let FeC™(£D), £,20™(d)), §=1,2,~",1 and g e
ec™( a')’a), k=1,2,' *,m satisfy the following compatibility
conditions: Take a function T in C*({Z) such that
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R1°P(§?_)=R1(F) in @10

j-1 _ _ (4.2.1)
R1°Dv7 ()= fj in w]O’ j=1,2,"-,1.

Then to any differential operator Q in (2)’2 the trace of Q(gy—_—Rzo

oBk(§)) to w21 is equal to zero for k==1,2,*-*,m. Under the

above condition the boundary problem
P(u)=TF in S2

o J-1 . . C .
R, Dv1 (u)-—fj in @W,q5, J=1,2, ,1 (4.2.2)

R2°Bk(u)=gk in @Wog k=1,2,'"" »1

has a solution uec""(fi).

(ii) The boundary problem

{ P(v)=G in .Q.o
(4.2.3)

RpB (V) =1 in @g, k=1,2," " ,m
has a solution vecu(ﬁf, C()]) for any Gec“(fi,tU]) and any h, €

©° ~S
ec"‘(wa), k=1,2,°**,m.

(iii) The following two conditions hold:
(iii-1) To every real number s and every compact set

K < £ there exists another compact set K'<{Z such that
v} . Ayt e
Fee! ({1, W5), T, Py, Ppe £'(W,), P(§)—1-RZ=.1 B o R, (P )€
¢ (T t o ¢t o
EH(S)(.Q-, CUZ), and supp P(§)+};Z_._—;1 B, ° Ra(?k)CK implies
supp £ CK' and supp B SK'p W, k=1,2,"",m.

(iii-2) To every real number s and every compact set

K< {i there exist another real number t and a positive constant C
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such that Eee'({L,w,), P, Por''*s Ppe £'(W,), supp & CK,

and supp ?kCK/\ wao, k=1,2,***,m implies the following estimate:
. . 2 . e c _ —~
int { |24y B €HE, () ana & =2/, }
) m
C &
-+ L{%-Tinf{”?f,(t); ?eH(t)(wﬁ) and P =¢F {wzo }

. m
éq.inf{}hfj](s); T EH{y(£2,) and tp(§)+kZ=“1tBkotR2(?1{)-—:?!!22}'

(4.2.4)
Proof. From Theorem 1.2.1., 2.3.4. and Proposition 2.3.5
the equivalence of (ii) and (iii) follows. Assume that (i) is valid.

A o ad
Take any G€C™(£Z, w,) and hkec“( @), k=1,2,-*,m. Write

F=6[p, f;=0, j=1,2,"" k=1,2,*+*,m. Then

= 1, g = ,
J ¥ Bk klwzo’

the compatibility conditions in (i) are satisfied by F, (gk

/\

In fact we can take ®=0 for a solution of (4.2.1). Hence we
have a solution ueC (£fL) of the equation (4.2.2) with the prescribed
conditions.

Because P is normal of degree 1 with respect to ww,

we have the following decomposition from (4.1.5.) with a family

of differential operators Ay and A}({j) in W,p:

J — J 1 (J) k J— o @ @
3 19D}, °P == A1 °R;°D] + +kzo, WeReD) . 1=0,1,2,

(4.2.5)
From (4.2.2) and (4.2.5) we obtain, by induction on j,

R,eD3 X u) =0, j=0,1,2,""".
1 ¥q

Here we used the fact that Al is bijective. Define a function v,
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which is equal to u in {0 and is zero outside £2 in Sl1 . Then v is

~S
a C* function in Coo(_Q, (01) and satisfies (4.2.3). Therefore (i)
implies (ii). »
Next we assume that (ii) is valid. Take FeC”(ﬁ:),

fjec”(a"/’]), j=1,2,,1 and g &C(¥,), k=1,2,+-*,m, which
satisfy the compatibility condition of (i). Define f,j+1 <™ a’)’}),

j=1,2,*-+ by induction on j and

rpend (=5 a5 0. G2l
fj+l+1 ==Al (R.lﬂD))1 (F)——k-.—_.o Ak fk+1 ). L.2.6)
There exists a function uéec”(fi) such that R]ODJJ;"'](uO):fj,

(cf. Whitney [287) 1

j=1,2,**". By G we denote a function in .Q1 which is equal to

A
. 00

F—P(uo) in 2 and is zero outside fL. Then G is function in C (f?-’, W} ).

In fact we have R1oD)JJ’ (F—-P(uo))—-:O, j=0,1,2,"- from (4.2.5) and\

(4.2.6); Moreover u, }_Q, satisfies the equation (4.2.1). Define

a function hy in @5 which is equal to gk—-—RZoBK(uO) in @,

’ - o ~r
and is zero outside CUZO. Then it follows that h & ¢ 4/2), k=1,2,--

.e,m. Hence there exists a solution vsC”(ﬁ, fdj) of the equation

(4.2.3). Write ur_—_uo-{—vfn_’ Then u is a solution of (4.2.2)
and the statement (i) is proved. The proof of Theorem 4.2.1. is

thus complete.

The compatibility condition in (i) does not depend on

the selection of ®. 1In fact from F and fj’ j=1,2,-+,1 we have

constructed a‘family of infinite number of fj’ j=1,2,--- at (4.2.6).
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This family determines a Cé jet in 6'51 .. Then the .compatibility
condition is expressed that the above c® jet and &y k=1,2,"-+,m
are compatible at every point of “)21'

If, in addition, the boundary condition in wao is also

of Cauchy type, then we can make a further reduction. But if P

is not normal with respect to @,,, then a difficult problem arises.

The next theorem gives an answerin the simplest case.

Theorem 4.2.2. Suppose that @’1 and 0,/2 are regularly

situéted, that is, to every compact sets K.C: C?;j,

exist positive constants C and &« such that d4(x,K y=¢C- d(x, &

j=1,2 there

X
?]) ’
xeK“ where d is a metric in ‘Qo compatible with its topology

( Lojaéiewici [16], and also [18 ]J). We assume that P is normal of

degree 1 with respect to wIO’ but semi-normal of degree m with respect
to. 6025. Then we can write

Kk k+-m-1

(k) M
° —-—B R B eR_°D k=0,1,2,°°"
29D2P °2 ))2'1“% i 2 2;2 1 isc,
(4.2.7)
with a family of differential operators B_ and B/S‘) in Wys.
Moreover if the equation
P(v)=G (4.2.8)

o ~ ; s
has a solution veC (£I) for every. Geé""(rz), then the following

two statements are equivalent:
(i) Let Fec (fZ), fjec""(c&’]), j=1,2,+++,1 and
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ngC (wz), PR | vatlsfy the compatibility condition of

Theorem 4.2.1. (i), where Bk is replaced by Dl;) 1. Then the equation
., ,

P(u)="F in £

ond=Tey . . L
1:21 Dy1 (u) = fg in [dm, i=1,2, ,1 (4.2.9)
Rye ‘VZ (u)_._.gk in wZO’ k=1,2,**",n
. 00, ~ |
has a solution ueC (£2).
(ii) The equation
B (w)=g¢g (4.2.10)

ooo ~r OM ~
has a solution weC (wa) for every geC (CUZ).

A

Proof. Suppose that (i) is true. Let gsé‘”(a/a). There

exists FeC™(f) such that R,(F)=g, R2°D§ (F)==0, k=1,2,
2

(Lojasiewicz [16], and also [18])
1-:DJ (F)==20, j=—'—0,1,2,"'/\. Then (i) implies the existence
1 .

and R

of ueC™ ) such that P(u)=F 1n_Q Rl l(D J(u)==0, and
T

RrgoBm(D Y(u)==0. Define w to be the trace of D™ (u) in @/

» Y 20
> 2
o s
and zero outside wZO in “"25' Then it follows that weCM(a/a)
and (4.2.10)is satisfied.
Next assume that (ii) is valid. Let F, fj, j=1,2,°°°,1

and Bl k==1,2,+--,m satisfy the'assumption of (i). Define fj-}-l’

j=1,2,"-- by (4.2.6). Choose a function & in C”(ff) such that

j-“ —— ] — oo e (-] -1 — e
R0 (E)=1,, j=1,2,-, and set h =R, Dﬁz (E), k=1,2,
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~ o A
Then the hypothesis implies that gk=gk-—h ec“’(zu

. o), k=1,2,"

"«+,m. Hence, by induction on k, the assumption (ii) implies the

-~ o ~r
existence of solutions gk-{-me‘cm(wa)’ k=1,2,--* of the equation

- k-4m—1 (k)
BBt 1) = Ro°D 2(1‘")‘*‘/% Bl By 1ty ) =By (i )

(4.2.11)
In fact the right hand side is equal to RaoD}; (F—P(B) )—
. . 2

k+m—1

(k) ,~ . ~ .
-— B e C a) Now write — h k= m-=1

,m--?.,,,}"'.' Take a function " in C (.SZ w ) such that R,e VZ (g )_..

= gklﬁlao,’ k=1,2,**. Then we have

Rjon}; (F—P(E 4+ F))=0, j=1,2 and k=0,1,2,"--.
J

Let G be a function in 2 defined to be equal to F—P(® +) in

. v
IL and zero outside it. Since G belongs to C™(£1), there exists
. o

ve(™ L) such that (4.2.8) is valid. Set u =S+ P+v |-

Then u is a solution of (4.2.9), and the theorem is proved.

Even if (4.2.7) does not hold, we can use the argument
of the above proof. The essential part of the proof is the equation

(4.2.11). Therefore the following theorem follows immediately.

Theorem 4.2.3. Assume that a’fl and 072 are regularly

situated, and P is normal of degree 1 with respect to wlo. 'With

respect to w25 we suppose to have the decomposition
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RZoDk .p..,B )“;k @ (k)oRZoDﬁ , k=0,1,2,"* (4.2.12)
Y2 2 A=Q 2

where my k=0,1,2,-++ are assumed to be distinct integers larger

than m = m or equal to zero. If the equation (4.2.8) has a

o~ . [4 o~
solution vea”(_iz) for any GeC™(fL), and the equation
B, (w)=¢ ‘ ' (4.2.13)
k

‘ 0 oo, o oy A '
has a solution weC™( wz) for every geC’Y( 0}2) and every k=0,1,

then the statement (i) of Theorem L4.2.2. is true.

If P is not normal with respect to both cum and @y,

with
then we encounter,very difficult problems. We will investigate

this situation in/\section L.5., where the Goursat problem is our
main concern.

Up to this point we have studied only c® solutions.
We can study the reguiarity of solutions. But the situation

becomes very complicated. As an example we state the next theorem:

Theorem L4.2.4. Let c« be equal to (Uao, and assume

(4.2.7). Let p be a positive integer, s and t be real numbers such
that m = s g m+p and M—n =< p(M—m—t). Set X == (p—1XM—m) 4~
+p(1—t). Assume that the equation (4.2.8) has a solution

veH]('o(;(.Q_) for any GEH:(LO():(ﬁ), and the equation (4.2.10) has a

solution weH%gc):(a)) for any geH%g_c_t)(w), if r;—__%—. Then for

' loc, & ' loc _
every FeH(A)(_Q) and every ngH().+M ke )(w), k._]"a,-..,m
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loc

there exists a solution u in H(S)(fi) such that P(u)=F in 02

and R2°D§2(u)=—= g, in @, k=1,2,"-" ,m.

Proof. From (4.2.7) the order of Bm is smaller -than

M—m and the order of B}f) is smaller than M—max(0,X—k). Let

2

. . loc
equation (4.2.11) has solutions g, € H(; Lt ) (Mepgeto] )_%)(w )y
k==1,2,"**, where we can set .ékz g.- Then it follows that ue

H:(ng(ﬁ). We leave the detsils for the reader.

Now we have shown that in order to solve boundary
problems (4.2.9) we should solve differential equations (4.2.8)
and (4.2.10). This kind of equation will be treated in the subsequent
two sections. Before going to the next section we comment on the

‘extension of solutions.

‘Let '5\3(_0_0) and. g(ﬂ_o) be suitable subspaces of ,8'(&7_0),
and P a differential operator of ({1 ) into g(.-QO). Then we

obtain the next proposition, whose proof may be left for the reader.

Proposition 4.2.5. The equation

P,(u)= f
has a solution ue?ﬁ(ﬁ, C()1) for any fe& g(fz’, 601) if and only if
Veg(ﬂj\ﬂ), ge g(ﬁ; ), and P(v)== g in _(21\.\:7: implies the
existence of v € ?(f):ﬂ such that v=v_ in J21\_ff anc} P(vo)= g

in 32,
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§4.3. Differential equations in E"'(ﬁ, CU])-

In this and the next sections 6010

necessarily assumed to be smooth. From Theorem 1.2.1. and the

and 4)20 are not

theorems in section 2.3. or 2.4. we obtain the following two lemmas:
Lemma 4.3.1. The differential equation
Plu)=r* _ (4.3.1)

has a solution ue (LI, w,) for every rec™( (L, 601) if and only

if the following two conditions (1) and (2) are valid. Moreover

(2) is equivalent to (3).

(1) To every compact set K<S$I and every real number

s there exists another compact set K'<£/ such that e g‘(ﬁ, CUE),

tP(? )EH((:S)(ﬁ,_ Wa), and supp 'tP(‘;?)CK implies supp ¢ <K'.

(2) To every compact set K =& and every fec™({Z, w1)

there exists ueC™({I, @,) such that (4.3.1) holds in K°

(3) To every compact set KCﬁ_and every real number
s&e R there exist another real number t and a positive constant C
such that e (-;'(ﬁ.',a)a)" and supp ¢ C K implies the following

estimate:

inf{”é}'ﬂ(t); é\;eH((:t)('Q‘o) and ?=‘§\”]_Q2}
(4.3.2)
= C-inf{ Y] 5y; PeHH(R,) and tP(Cj’)=='7HD.2}.

Lemma 4.3.2. Let s, telR. Suppose that w has the curve

segment property at every its point and we can choose ‘O‘Z such that

its boundary in .D.o has the same property. Then the equation



32

(4.3.1) has a solution ueH:(ng(fZ’, 6()1) for any feH:(Lg():(ﬁ, 0/1)

if and only if the following two conditions (1) and (2) are true.

Moreover (2) and (3) are equivalent.

(1) To every compact set KC:ﬁ.' there exists another

compact set K'<f{l such that ?EH%-t)(ﬁ’ CUZ) and supp t"P(~¢3> )<ZK

‘implies supp P CK'.

(2) To every compact set K Cﬂ.1 and every fEHloc(ﬁ, a/1 ) |

(t)
there exists ueH%gg‘(fi, w,) such that (4.3.1) holds in the interior

of K.
(3) To every compact set KC:._Q' there exists a positive

constant C such that ?EH?_t)(ﬁ, a)a) and supp P <K implies

inf {|§]_y); FEu]_,)(2) and 9= } |
27 (h.32n)
= cnt {1Vl _ays PSH o)) and "P(PI=Yn |-

Definition 4.3.1. The pair ({2, w,) is said to be

P-convex (with respect to support) if and only if to every compact
set K =l there exists another compact set K'< .7 , which can be

chosen to be empty if K is empty, such that ¢ & (—‘,'(fi, wZ) and

sUDD tP(‘S’)CK implies suppp <K'.

If (ﬁ', 0)1) is P-convex, then the conditions (1) of Lemma

L.3.1. and 4.3.2. are valid. If the boundary w is void, this
definition is essentially the same as the well-known P-convexity

condition [13 ].

If the equation (4.3.1) has a solution uéCw(ff, &)1)

"7L|»"
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for any fecw(ﬁ, a)]), then P e &' (L1, C(Ja) and tP(QD)—“:-O implies

== 0. Hence the above difinition is reasonable.
statement

/ using the method of
{

We can bbtain the following

proof in sections 3.2. and 3.4.

Rejpark 4.3.3. Suppose that 120 is a real enalytic
manifold and P is an elliptic operator with real analytic coefficients
in it. Moreover assume that £ has no compact connected component
which is open ih 121, and to every relatively compact open subset

U of JZO, the union of all compact components of (JZL/Q/1f\U is

relatively —~ :
also,compact. Then it follows that ({2, “ﬁ) is P-convex.

A

Next consider strictly hyperbolic differential operators.
Under the geometric conditions due to Leray (15], we can say that
(fI,w) is p-convex. Remark that the estimation (4.3.2) was
investigated by Hormander [8], and was applied to prove semi-global
existencé of solutions. We can combine their results and our
previous theorems to obtain some theorems, but we leave it as an

exercise for the reader.

§4.4. Evolution operators with constant coefficients.

In this section we consider linear differential equations
with constant coefficients in Hf% that is, P==P(D) has the symbol

P(§), which is a polynomial of degree M. Then we obtain

Theorem 4.4.1. Assume the existence of a closed cone [7

with its vertex at the origin in Hfl such that P(D) has a regular

- 75-
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~ 2 n
For every compact set KC 2 there exists e<®R such that
K+ eecfl, 0<e<1.
fundamental solution E with support in [7, i.e. L& 1°C (Hq ),

suppEC]” and P(D)E==% , and moreover the following conditions

hold: There exists a closed neighbourhood U of fL in ﬁa

and for—every xea)] there exists a neighbourhood V of x such that

U+ [7={y42; yEU and z&[7} does not meet with V\U. Let 137p-"o"
and ke%(mn). Then the following six statements (1) to (vi) are

equivalent. If in addition wio is of C% class and P(D) is normal

of degree m with respect to 6_0.‘0, then all seven statements (i)

to (vii) are equivalent.

(i) The pair (ﬁ, ¢U1) is P(D)-convex.
(ii) The equation
" P(D)u=f - (hody1)
has a solution ue& C“(.ﬁ.',a)?) for every fc—.c“(fz,w]).

(iii) The equation (4.4.1) has a solution uefj%oﬁp(ﬁ KU )

for every fEdsloc(ﬁ, w.).
P,k 1

(iv) The equation (4.4.1) has a sblution'ueé'(ﬁ,wq)
for every fecw(.ﬁ:, CU1).

(v) 1f rec™L)), ue,c”(fz.“]\_cz_), and P(D)u=¢ in 2 \IZ,

== N D =f
then there exists usC (.('2. ) such that u== ulﬂ1\ and P(D)u

in _Q.‘

(vi) 1f £em’idd), weBOLp(\R), and P(DIu=1

in IZ_I\SA?: , then there exists ueB ki"(‘Q‘ ) such that u= ulﬂl\ﬂ

and P(D) u=1f in §2,.
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(vii) The equation

P(D)u=F in {2
(1¥0Li-02)

R]°D‘1;:(u)==fj in @y, §=1,2,"*" ,m,

has a solution ueC (fI) for every Fecm(ﬁ’) and fjec“’( 631), j=1,

2, ",m.

Proof. The equivalence of (ii), (v), (vii) and that of
(iii) and (vi) follows from the results of the previous section.
It is trivial that (ii) implies (iv). Theorem 1.2.1. and 2.5.4.

impliy an analog of Lemma 4.3.1. for @%O}i.
' g

Let fe&s%c’);(ﬁ'? JUT) and K be a compact set contained

‘in SL. There exists i‘&‘df:?; k('Q‘o) which coincide with f in a

3

neighbourhood V of K £2 in Q1 , and suppf <T. Set u::E*}'/_Q_.‘.
loc , & l__ . . -5 .
Then we have ueBp k13('D' R 0)1) and P(D)u=f in V. If f is a C
, .

function, then u is also of C°° class. Then we have provéd the

semi-global solvability condition (2.) in Lemm 4.3.1. and the

loc
analog for .
g d3p’k |
Next prove that (i) is equivalent with the following

condition:

(i') To every compact set Kcﬁ there exists another
compact set K'cfL, which can be chosen to be void if K is void,

such that CfeC‘:(.ﬁ:, 0)2) and supp tP( ¢ )=K implies supp ¢ <K'.

In fact it is enough to make an approximation using
translations and convolutions. Take a compact set K< From

the hypothesis of the theorem there exists a vector eeemn such
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that K= Ee c:'fi, O0<< £€<<1., If we use 't’ranslations_ in the direction
& and use convolution such asW in ‘the proo'f of Proposition 2.5.5.,
then the statement follows. Details may be left to the reader.
Finally the implication of (i) from (iv) can be proved
using the same method as in the proof of Theorem 3.5.4., [_8]. Then

the proof is complete.

Theorem 4.4.2. Let 1= p-<oo and ke X(®R"). 1f fi

is contained in the closed half space K and w10 is non-void and is

contained in its boundary.‘ Then the following statement (i")
and the fiire statements (ii) to (vi) in Theorem 4.4.1. are
e(’;uivalentr., |

" (i%) The pair (&, «,) is P(D)-convex and P(D) is
eyolutional with respect to H, that is, there exists a ‘fundamentél

.
solution in ag}aog(H) .
- ’

Proof. We have to prove that (ii) or (iii) implies (i").

loc

P(D)-convexity follows from Lemma 4.3.1. or its analog for dsp e
H

Now assume that (ii) is true. Let X & W,, and s ER.
Choose a compact neighbourhood K of ‘xo'and a c0mpact set
K, < SZ., such that K is contained in the interior of Ko' Then

from Lemma 4.3.1. and Proposition 2.5.5. there exist a real number

. : oo
t and a positive constant C such that ?eco(nt) and £2supp P =K
implies
. ~ %00 Ao .
1nf{l['j°[](t); %’éco(Ko) and ¢ =% in _D_}- :

(4.4.3)
= C-inf {|9] 5y PSCH(K,) and P=P(-D)F in R},
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Now take two positive integers # and Y such that

-’23-< t-+20 and sZ2 . .~ Then from

(4.4.3) we obtain with another positive comnstant C',

‘ [T(x ){
=0t 1nf{"ﬁ°[(t+2y), c3oec (K ) and F=9 in 2}
= cr-inf {F (45 ?C_‘CO(KO) and §»’~(1-—A)? in .D.}
= o inf {9 4y3 P<CK,) and P =P(~D) (1~4YP in 22}

(bl )

éC-C'-inf{[/ ?"‘55:“{0) and '2,5==P(—D)(1-4)p<}9 in .Q}-

’9”//(2/4);
for any P eCo(R") such that supp K. Write o' -'-_:'(1-A)y<j> .
From Proposition 2.5.5. and (4.h.4) we have with another positive
constant C, |
P =
_s__,c lnf{”q{" (2/“), fz,beH(aﬂ)(K ) and @A_P(—D)gm in S?.}

Since _C0 (Ko) '18, continuously embedded in H(Z,a)’ we obtain with
‘another positive constant C,
| [P = e
.:_s__C.inf{ Z , * sup{D'(ﬂ/'(x){ o/»eca'“(K ) and ’511~.-P(-D)<f! in .('2.}
ID(I"Z/( xeK

We finally obtain with another positive constant C,

(x )] =c == B¢ (1—A)’P(=D , L
[?x | = 0(154/14?(2121 (1=A4)"P¢ D)?(x?[ (4ol 5)

for all 760:(H{n) such that supp P<K.

-.79—
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In fact let £ be a ¢ function such that supp f C:KO
and 53===1 in a neighbourhood of K. Define the function '7}{40 by

P(-D)9!(x), if xeH.

P, (x)= . |
P(x) 2o (2 IP(=D)G! (k=) (< %, o> — o)
j=2p
if x<kH. ‘
where 4% is the inner normal to H and 5%,—_ is the normal deri\}ative
i .
- &X, > — X
and = 2 .
£ <af, 8>

a .
This implies that @OGCS/N(KO), qﬁor—-P(—D)?’ in H, and with a

positive constant C',

== eup |% (0] Sor = sup [D“(P(—D)?’(x)l. '

[« Ié.Z/t xeK IXl=4p xel

Hence (4.4.5) follows.

Therefore (4.4.5) and a result due to Hormander [11]
implies that P(D) is evolutional with respect to _H. If we assﬁme
(iii), then we can use ' a similar argument to prove (i"), This

completes the proof of Theorem 4.4.2.

Corollary 4.4.3. Assume that £Z is contained in a closed _
= W
half space HCR® with the inner normal «& and @), ..is contained

100

in its boundary. Let Bj( £), j=1,2,+°-,m be polynomials in fe R,

We consider the equation

i—P(D)u—:F in £2 (4o4.6)

RTOBJ(D)u=fJ in w‘]O! j_=112"" M.
If P(D) is normal with respect to &

10 and evolutional with respect
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to H, the pair (&, wi) is P(D)-convex, and 1o is convex, then

the equation (4.4.6) has a solution wec () if and only if FE€
ec™(£L) and fjec“’( @), j=1,2,*+-,n satisfy the following

compatibility condition:

Let Q( &), Qj(g), j==1,2, - ,m be polynomials in &< R"

such that Qj(E-i—"C‘-,;}L) is independent of T&Q® and
e .
Q(&)-P(E)+ L‘Qj(f)'Bj(E)EO.
J=
Then we have

m
Ry° Q(D)(F) + J_Z_____:%QJ(D)‘ f5==0 in @,,.

roof. Since P(D) is normal (of degrce 1) with respect

~to W or Ve have the decomposition similar as (3.1.3). From the

1

hypothesis R}eBl(D»

1

the result of Ehrenpreis [5]Vto boundary system Bw , Which is a
,Theorem 6.1. 1

) is surjective. Then it is enough to apply

system of differential equations with constant coefficients.

Details may be left for. the reader.

If the induced boundary system Bw is determined, we can
1

obtain a more refined result. For the sake of simplicity we assume

that £2 is contained in FR?,_ and QJTO=S2./\FR§. Moreover assume

. . m--1
that P(§)=§Oaj(g!)§g gnd By(% )—..=BJ.(§-‘ )-P(E )-i—kZ___:ObJ.k(gv) ;,

j=1,2,---,m. Set Bw1(§')=(bjk(§.>), which is an mxm matrix of

polynomials in &' e ®R™ . Then the next theorem holds:
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Corollary = 4.4.4. Assume that P(D) is evolutional with

respect to H and (I, Wj) is P(D)-convex. Moreover assume that

N . 0
det Bw](g')$ 0, and @, is a (D')-convex. Then the equation

(4.4.6) has a solution uec”(.c,’z”) for every F& ¢™(£) and f.eCw(cz)' ),
3 1

J=1,2,¢**,m if and only if (dm is Bw (D!')=-convex.

1
Proof. Theorem 4.2.2. implies that the equation

P(D)(u)==F in L2
. . ‘ (4-&»7) ‘
RT'Dgl-uu):fj in w?ov j==1,2,***,nm

has a solution uecm(.ﬁ:) for every Fec™(&) and fjecx(a')’.l), j=1,

2,**+,m, if and only :Lf’é.:f1 is am(D')-convex. Then we have to

obtain a condition for Bw (D*) to be surjective. Hence the theorenm
1
follows.

Next consider the geometric meaning of P(D)-convexity.
some

We can ob‘;ain,\delicate conditions using results on the uniqueness
of solutions (see Hormander [12] and the references therein).

Here we give a necessary and sufficient condition for hyperbolic

squations: / Let S be connected and @ =, ., be non-empty. Let FeRr™

\satisfies x+edel, 0<£<g, for some £,>0 and x & w-

Theorem l+°4°5’ﬁppase that P(D) is hyperbolic with

respect to a vector 4% and let 7 e P*(P,f@v) be its forward

propagation cone. Then (ﬁ, @ ) is P(D)=convex if and only if
to every point x £ the union of x--/"* and w is compact

and in addition x— ¥ does not meet with 2R\@w , where 242 is
the boundary of SLu in RO
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Proof. First assume that the above geometric condition
is valid. Let K be a compact set contained in £7. By U we denote
the union of x—[7* where xe$ and x~+ 7% does not meet with K.
Let K' be the closure of the complement of U’in fi From the
hypothesis K' becomes compact. In addition FPe a’(f?:, wa) and

supp P(=D)p < K implies supp < K'. Then (fz, Wl) is P(D)-convex.

Now let E be the fuz;damental solution of P(D) with its
support in ]"",‘, From Atiyah-Bott-Girding [1J, Theorem 8.9. there
exists an integer k such that supp <5 ==-—==-]"* , 1f we set
LT = (- E)*(-V)* .- *( E). Moreover we have supp P(D) & C]’”‘* ,

AR 2 )

: k
since P(D)§=P(D)-§*E* cee KB == Sk E % % B,
~ E_] \..fk‘:ﬁ“\j

If there exists x=f{J such that x— ]”* meets with Qﬂ\w,
then translating this cone we can find y € 22\ and yge’;‘_Q_ such
that yeyo-—— 1"* and in a neighbourhood U of y, the intersection
of Yo r’* and U\QO is void with a suitable IZ.O, Then using &
we can prove that (f\?:, &J,i) is not P(D)-convex by the standard

argument ([8, 13]). This completes the proof.

Example 4.4.6. Let n=3 and P==D +D —D° =-{- =, afx(x)D
=T

with angM(BQB)Q Set ]"’*;—:{x e‘iERB; X, =0 and x = X m-}»x,}}

5
SI =DM ve a subset of T7°\{0} such that w=w,Yw,, ¥, <%,
and @, is a space-like C* surface. Let ) be a real C” vector

field which is not tangential to @;- Suppose that to every xe f2

the intersection of x—;?* and £l is compact. Then the equation
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( P(u)=TF in 52
R1(u)==f1 in w,

R1°Dp(u)=-_ fa in w,

L Ra(u)==g in W,

has a unique solution ueCm(flv), if Fec™(£D), f, ,f2€=C°°( a")'.i) and
gec™( 472) satisfy the following compatibility condition:
Ry  (£1)=R;,(g) in @,,.

In fact we can write P using the polar éoordinate as

follows:
2
_ =142 cos 2 41 1= 2r —

Then we obtain

e c e

2
£~230:::O, A2,1=-—_;2—’ cee,
1 1 1= 27
'A1 ,0 =(—I‘—+f2-)Dr+l—-;§-’ ¢ e o
. (3) 5 _ (]
Hence it follows that m==1 and Aj+1—A1,O+3A2,1 “‘(r+fé’)Dr—""’

Therefore we can apply Theorem L4.2.3%. and a result due to Leray [15].

4.5, The Goursat problem.

In Theorem 4.2.2., 4.2.3. and 4.2.4. we made an assumption

that P is normal with respect to W3- In this section we drop

this hypothesis. We use the same notation as in section 4.2.

Theorem 4.5.1. Assume that P is semi-normal of degree
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respectively :
1l and m with respect to both wm and 0)20/\. Then we can write

‘ . J+l=—1 ;.
I B ol == (J)° o DK
RyeD), cP==Ajs R DT 4 = A}J/eR;° D))
1 1 k=0 -1
(4.5.1)
. . J+m=—1 ..
j j4m , = (3 k .
R.eDY o P== B 2R..eD -+ B °R °D’ 330,1,2 e -
2°%v, m 2y, Ty Tk TRy »t

laad
In addition assume that QTI and 5222 are regularly situated and
(I/21 is an n-2 dimensional Cmsubmanifold of ‘Qo' Trace operator
to 4)21 is denoted by R,,. Two vector fields ) and 2/2 are assumed
P e
to be tangential to ”*a and &, respectively at any point of 021.
Assume that Al is normal of degree m with respect to 6(/21 , and Bm

is normal of degree 1 with respect to wm. Finally assume that
the equation
P(w)=TF in 2 (4.5.2)
000 an A
has a solution uecC (£X) for every FeC (£I), the equation
Al(v)% f in wm . (4.5.3)
: 040 900, A~
has a solution v&C (é}’]) for every f&C (KU]), and the eguation
B (w)=g in W,, (4.5.4)
Opo, A~ Oo0, A
has a solution we&C (14)2) for every ge&C (wz). Then the equation
P(u)==F in A2
oI — : - ce -
R, DyI(u)--fj in “/wo’ ji=1,2, ,1 (4.5.5)

RZ' k;;(u)“—‘-: gk in WZO’ k=1,2,-,m
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80, e’ 09, oo,
has a solution ueC () for every FeC (i), £ 8¢ (&), =1,
2,°**,1 and gkec‘”( a'}/a), k=1,2,***,m if and only if the following

compatibility conditions. are satisfied:
o N1 - o J=1 .
Ry Dkua(fj) — R, Dyl(gk> in @, (4.5.6)
3=1,2,---,1 and k=1,2,+--,n.
Proof. First we solverthé following two boundary problems:

n &

N

4 (£149) =R (F) —= 0 (£349)

=0 10
R21(f1+1)=Ra1’DyT(g1) ) in &y
' 1 " L
| R21‘?Du2(f1+1)"—f"“Rm"D»,(ga) in &5,
Y2 (4.5.7)
R, »DB7 (£, . )= R,.eD* (&) in W
21°P0 1417 = B0, f&y 21
and , ' ,
B ( ) =R (F)-‘—E‘l (g ) in @
w Epag1) =R B By 20
, - m .
Rot(8py1) = Rgp°D, (£7) in &,
R,.eD (g ,,)==R,.eD% (£f.) . in @
21 1 21°0y 1o 21
R,,eDL” ‘( )== R,,eD® (£;) in &
21° Ep41/ = R21° 2 1 21
Th probl n luti f c & d @
These problems hawe solutions f, < 411) and g, .sC ( 2)

because Ay is normal of degree m with respect to 4221 and (4.5.3)

is always solvable and similar for Bm'. These fl-H and g are

m-1
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. s m .l .
compatible in the sense that D 2(f1+1)"~D)J1(gm+1) in &,,.
Next we solve two equationsv for f14—2 and gm4_2, and then
these two functions are compatible in 1021., Repeating this process
g 0o
we obtain fjeC“( 0)1), j=1,2,+++ and g &C (53’2), k==1,2, "« -
such that

R 1oDk2)1(f ) ==R,,°D 1(gk) Jk=1,2,+-~ (4.5.9)

and satisfies the equations

j FEE LIS
oD (F)—Al(f3+1+1)+}§% Ay (fk_H)
- ' (4.5.10)
EA0=1 (k)
R2°Dy (F)—‘B (€k+m+1)+5’:5 By (Ega)-
From (4.5.9) there exists §€Cw(§) such that
R.eDI N(F)=r., j=1,2
‘l ))1 J) ’ ] )
(4.5.11)

e .
R20DJ);(§) =g, k=1,2,--

[

Then (4.5.1), (4.5.10), and (4.5.11) implies

Ry D) (F—P(E)=0, §=0,1,2, """
1 (4.5.12)
R R2 2, (F P(i))‘"c k=0,1,2,

If we define a function G, which is equal to F—P(Z) in {2 and

is zero outside it, then (4.5.12) implies that cec (£Z). since
: . Coo, s

we can solve (4.5.2), there exists veC (£2) such that P(v)==G.

Set u=—‘v,n+§ Then u is contained in ¢°(&X) and satlsfles

(4.5.5). This completes the proof.
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Example 4.5.2. Let P(D).._.D ~-D —D3+ Zj, 2, (x)D”
with a&C (RY), Scix cR7; X3 Z 0 and xz=|x,|}
wj-__:ﬁ/\{_xeﬂ?}; X ._.x3 }
w 2=ﬁ/\ {XG_IRB;V x3=—x2§ O},

and a)21=_(’f/\{xe323; X 5 == O}.

‘ A
Assume that f2 is connected and for every x e« {2 the intersection

A

Of X= ]"* and £2 is compact, where }"’* is the forward light cone
defined in Example 4.4.6. Then the equation
(P(D)u-zr:‘ in {2

R1(u)====f in 6)1

Ry(u)==g in @,

aas a unique solution ueC (L) for every FeC (£X), fec™( @)
and geC™ d‘)’a), which satisfy the compatibility condition

R21(f)=R21(g) in W, . .

In fact if we take a coordinate §'=x3-f--x2 and ’7=x3-—x2,
then we have P-—-—D —L4 D, g_ 7 and hence
A= ——L+D,S. and B,= -—L+D7.

Therefore we can apply Theorem L4.5.1. and the uniqueness of solutions

can be proved rather easily.
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If A1 or Bm is not normal in the previous theorem, then

we have to solve some equations in 5(221. We stop to go further

and state a result on a special case, the Goursat problem

(see Tsutsumi [27J for/\related result ). The proof consists
of repetltjons of the argument in the proof of the previous
theorem. N

Theorem 4.5.3. ILet X be a multi-index such that O(j =0,
oen — T i
ji=1, 2 ,n and set P(D) D -{- Allzlﬁ(x)D , where aFe o (.\'2.0)

Suppose that £2 is contained in the set F*:{xem“; x, Z0, j=i1,2,-
o . A A, .

- - ,n} and set é(/jz-——-{xé.Q., X = O} and [ujo.._{xe:-,Q, xj.—‘O

and x_>>0, j=f=k}, j=1,2,-++,n. Let Ry be the trace to &y,

and R be the trace to d/jk= a"fm . Assume that to every point

Jk k
D
x&€f), the intersection of x—/’*and_Q is compact. Then the equation

P(D) u==F in S

R cDx"‘(u)—:.f“) in @y, A=1,2,700,X

1 1

et (n) =12 et 0
RpeD” (W) =1£"" in & ,, A=1,2, ,°(n

unique

o0
has aAsolut:Lon ueC (.Q) for every Feg (££) and f(k)EC (53?5),

A=1,2,"" ,O(k whlch satisfy the compatibility conditions

DR_I(f(k))-'—-‘—R

/ .
xPy Y st TS, se=t,2,0 n

2./1123, .

R
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Chapter V. Differential equations in @'(ji;‘ul;E)

§5.Q. Introduction.

This chapter is devoted to studies on the existence and
the prolongation of singular solutions of boundary problems for

linear differential equations. .

When the boundary w 1s ~empty,
(see [8, 13]).

our results are malnly due to Hormandeﬁ If there is non-empty
boundary, we encounteggggny technical dlfflcultlez, but the principle
of the proof is almost the sanme. In,sectlon 5.1.s0me topological
properties of the space &5'(fi; W, ;E) will be studied. Essential
difficulty of‘thé proof arises from the well-known fact that a
subspace of an (LF) space does not necessarily become an (LF) space
again (Dieudonne-Schwartz[ 2 J and Grothendieck[ g ]). Forfunately
we can overcome this difficulty 1n our case (Lemma 5.1.2. )

In sections 5.2. and 5.3. we extend some results due to
H6rmander to our boundary problems. 1In addltlon to an extended
veréion of 'P-convexity condition with respect to singular support!,
we need another condition (S,B)bon/C“Lextendability of solutions.
This seems to be rather restrictive,'but we haﬁe not studied it well
enough. As in the previbus chapter, the existence of solutions is
closely related to the extension property of solutions. VWhen
differential operata&shave constant coefficients,‘we,can thain
better results. These are presented in section 5.3. In this paper
we have not studied the geometfic meaning of P-convexity with respect

to singular support. We refer the reader to the recent studies

of Hormander and others [13, 4]. We can use their results and

obtain many geometric conditions of P-convexity rather easily.
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§5.1. Basic properties of the space ‘,9'(3"\1, WT;@‘

Let M be a ¢ —compact C” manifold, and E a complex
Cc” vector bundle over M. Let {1 be an open subset of M, @ an -

open subset of thebhaur_ldary of L2, and 61.)1 a subset of . Other

notations will be the same as in sections Z2.1. and 2.2. Take

three open sets Qo, 'Qv _QZ which satisfy the conditions of

Proposition 2.2.1.

Theorem 5.1.1. The space C:’(.fi, a)1;E) is a strict
inductive limit of Frechet-Schwartz spaces. Therefore it is
separable complete bornolagical Montel. 1Its dual space is
isomorphic to - ﬁ'(ﬁ, CUZ;E):

co(SL, wE) 2z D (82, W,;E). (5.1.1)

Proof. Choose a family of open sets Uj’ J=1,2,-++ in
‘Qo such that Uj‘s cover 'D‘o and the closure of each Uj is compact
and is contained in Uj+1' From the definition C?(.Q.O;E) is the

o _
strict inductive limit of C®(U;E), j=1,2,-":

G2 o5E) = Lig C¥(TS;E). (5.1.2)

~os

Since the union of all Tin<2s j=1,2,++ is equal to 'QZ’ the

Qoo, 2 0 .
space Cf;(_&'la;E) is the union of all C”(Uj/\_QZ;E), j=1,2,"-+ as
a set. By 63- we denote the set of all C” sections ¢ in Co (L2, ;E)
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such that there exists f;ﬁe%”(W;E) and its réstriction to

_Q1 is equal to P. Since the restriction mapping of 8:(ﬁ2;E)

onto C':’(fl’, C‘J];E)‘induces a surjection j’j of 8“(?37\'—,{7:5;@ onto
&J., we give the topology to €’j which is induced from 8""(?3,—/\‘_5_‘2‘;43)
by f,. Then Co({Z, @, ;E) is the union of all EJ., j=1,2, -

as a set.

Lemma 5.1.2. The space 8:(ﬁ2;E) is the strict inductive
limit of C“(anﬂa;E), j=1,2,:
Qpo, ~r ~ . Ooo——-—-—-—-.
[© P
Proof. The natural injection of C”(Uj,\_(za;E) into
8?(_6:2@) is continuous, and hence the natural bijection of
lig C¥(TT1935;E) onto o(£3 ;x) i £ Then we only h
i j/\-QZ’ onto CJ({2,;E) is continuous. en we only have

to prove that it is an open map.

. . .. 900 Fr———
Let p be a continuous seminorm on 1im c (Uj/\_D_a,E).
| FO—
Then the restriction of p to each C”(an_(za;E) is continuous.

0 sy
Hence there exists a family of continuous seminorms pj on C”(Uj;

0 o0 s
;E) such that p; is equal to p in C“(Uj/\_()_a;E), j==1,2,""".

[2ad

0,4y mmm
Now take C°° functions %j in C”(Uj \Uj-—a) such that 19CJ.=1

Jj=

in f)_o. Then define a seminorm on C?;(_QO;E) by

q(?)=jZ=1. pi( Xy P),  PeCiL E).
than
AP

continuous. In fact for every ?eé”('UE;E) we have

] s
The restriction of q to C:(.Q.Z;E) is larger " Moreover q is
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i
lP) = ‘k_'_)_‘,] P (X P (5.1.4)

Since p_'s are continuous, there exist functions ybk in C:YJZO),
real numbers sk,1:==1,2, -,j=1 and a constant C>0 such that

ZL pk(

k=1 k=1

Then it fol}ows from (5.1.4) that
q(?)éci{}fw %) e 8(TT;E)
T k= k Tk (Sk)’ J’

Hence q is continuous on each 8“TﬁE;E), and then from (5.1-2)’it

is continuous on C:(SLO;E). We have thus proved,thatvp is
smaller than the restriction of a continﬁous‘seminorm on‘CsYSQD;E).

Therefore p is a continuous seminorm on SZKfia;E), and the proof

of Lemma 5.1.2. is complete.

Lemma 5.1.3. The space CZKfi, Q)1;E) is the strict
inductive limit of c‘lj, J==1,2,00

Y, @ 3E) 2= 1ig €. (5.1.5)

Proof. To each j==1,2,-~ we have the following

commutative diagram:
50 e o JO
8 (T 75223 E) S g CU(T 1 12,35 E)
§3 lf
(C,'j - S lim élj‘

Then it is easy to prove that f is an epimorphism of 8;7522;E)
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onto lip é’j. Hence C:(.ﬁ:, CUI;E) is isomorphic to  lim ﬂj as

locally convex spaces.

Proof of Theorem 5.1.1. (continued) Since every 6j

is Frechet-Schwartz, C:(ﬁ, w1;E) is separable complete bornological
Montel. Moreover its dual space is isomorphic to . the'projective
limit of &Y, j=1,2,": |
cf;(.n._, @ ;E)' 2= lim E}- (5.1.5)
But from Theorem 2.3.2. the space £} is isomorphic to
& (U'j/\-Q-’ waAUj;E)._ Then their projective limit 'L im 8,3 cfan
-be identified with @'(ﬁ, a)a;E) as sets. Since 63 is topologically
o} - e . . .
a subspace of C"(Uj/‘_Q_Z;E)' o= 5'(UJ./\_Q_2;E), their projective
limit j.s topologically a subspace of lim e'(UJ.A_Q_Z;E) o -8'(ﬁ2;E)'

Hence it follows that
iin &y = ', wyE).  (5.1.6)

Fi'om (5.1‘.5) and (5.1.6) we obtain ('5.1.1). Then the remaining
part of the theorem is obvious, and the proof of Theorem 5.1.1.

is complete.

§5.2. Existence theorems in D'(f}, ‘01;§_lv

Let E and F be complex _C°° vector bundles over M, and P
a linear differential operator (with C°®°coefficients) of D'(M;E)
into- §'(M;F). Take a positive integer 1. We consider the following

two properties:
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(5.A) To every compact subset K of {J there exists

a compact subset K' of § such that we can take K'e=<¢ if K‘.—:.-c;b

v

and the following statement holds. If 'z,beci(ﬁ', @W,3F) and

‘tP(_ﬂP)fﬂz\Ke C”(W;E), then the singular support of % is
contained in Q’/\K", i.e. % is ¢ in _Qa\K'.
(5H.B) To every x € w, there exists an open neighbour-
‘hood V of x-in £ such that qbecl(ﬂ”}f{r', wé,\v;F)‘, tp(yre
eCm(j}.v;\“V;'E), and @écw(ﬂaﬁv;F) implies 7%6000('_?2_-—/-\-?/;17).

The next theorem is a generalization of a result due to
Hormander [13]. The principle of the proof is the same as his,

although it becomes more complicated.

Theorem 5.2.1. If the conditions (5.A) and (5.B) are
valid, then for every fe.@'(ﬁ, (U1;F) there exists ues ,8"(_@:, 601;

;E) such that f—P(u)eC™(£L, w,;F).

Therefore if in addition we can find a solution ue

ec™(£Y, a)1;E) of the equation
P(u)=1f , (5.2.1)

for any feC*(fL, w1;F), then the equation (5.2.1) is solvable in

D' (L&, W,;E) for any fe P (&7, Wy;F).

Lemma 5.2.2. If (5.A) and (5.4B) hold, then the following

\condition holds:
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(5.C) To every compact subset X of ﬁ there exists a
. K| ~ . )
compact subset/\ofﬂ_ y Which can be taken to be empty if K is empty,
1 .t 0s . . .
such that fl,lzeCo(.ff, W5;F) and "P(%P )!"D'Z\K € ¢ (22 \KGE) implies

'7/»!_(22\1{, € C (XK F).
Moreover it is obvious that (5.C) implies (5.4) and (5.B).

Proof. Let K be a compact subset of 3. Then there
exists another compact subset K' of £ which satisfies the condition
" (5.A). We can assume that K< K'. Take a compact subset K'!

of {2  such that K' is contained in the interior of K''. Trom the

condition (5.B) there exists a locally finite open covering

{Vq; x€A} of @\K such that Vo <2 \K' and the condition

(5.B) is valid if V is replaced by Vy.
. 1 . t a .
Now let qbeco(ﬁ_', W,;F) and P('z,b)]ﬂa\K e (XK E).

From (5.4) it follows that singsupp % <S{I K'. Then we have
Ploak < C(L2\K';E). Taking the restriction of % to £2,AVx,

. 1, e , t
we obtain ﬂna /\V«EC (L AVys Wy AV F)s PP {'Qaf\v"() =
=" (P)| 5y eCUATATGE), and Pla. v ST (S, AV ).
' 2N '™ _ 2N '
Hence (5.B) implies Q/Jlnaf‘vxecx(ﬂ./\ Ve » alaAV,(;F). Therefore

it follows that %I—Q \K,,EC”(.QE\K”;F),Vand the proof of
2

" RS —
[ ~r -
or Y ec”(£Z, W,iF) if K=¢,

Iemma 5.2.2. is finished.

The proof of Theorem 5.2.1..is complete if we can prove
remaining

the following lemma. TheAdetails may be left to the reader,
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because they are just a repetition of the argument due to

Hormander [ 13] Theorem 1.2.4.

Lemma 5.2.3. Let 0O<<C<CTC', and p be a continuous

. oo, X - : . .
seminorm on Co(‘Q" WZ;E.). Let r be a continuous seminorm on

C7(SL, @ 5;F) such that

inf{j[q/,']](l+n); q/J'[Qa—_—r?A and ?'EC:(QO;F)}ér(?)
A : (5.2.2)

for all ’t/&ecc'o‘o(fi, a)a;F). -Suppose that compact sets K and XK' in

~s

{1 satisfy the condition  (5.C). Moreover take two compact
subsets K'' and K'''" of ‘Q‘o such that K! is contained in the

interior of K'' and K''"<CTK'''. Let /lj, j==1,2,--- be elements
of ¢(£1, W ;F) with locally finite supports. If %eC (SI, W ;F)
and supp P Cﬁ/\K" implies

r<qb>sc-(p(tp<f;b>>+;l<% #>D, (5.2.3)
j=

be
dlu_mbr"f

Then there exist a continuous seminorm q on C”(QE\K;E) and a finite)

elements U1 PR VS of C:(ﬁ , 601 ;F) with su;_pport»in S’\ZIAK' , such

that ’Qbecooo(ﬁ, @,;F) and supp ’y)CﬁAK"' implies
r(3) s o) + ISP, 4]+
) J= ;
s
+a-r RN + 2K Y, 2>, (5.2.4)
j=

where ¥ is the restriction mapping to .QE\K

Proof. Since the locally convex space

- 98 -



116

{zpec':(fi, W, ;F); supp ycﬁ\xi'}  (5.2.5)
is separable from Theorem 5.1.1., there exists a dense sequence
Ay ,12’”' in the space (5.2.5). Let q, k=1,2,"++ be a

countable basis of Spec C”(K§2§K;E) such that 2q = Ay 10

" k=1,2,+. If (5.2.4) does not hold, then there exists a
sequence of c*™ sections '7/J1, ","2,”' in C:(ﬁ:, CUZ;F) such that

 supp 'If'kCﬁ/\K"', r(#’k)———"—(}', (5.2.6) -
and 7 '

p(*‘p(%bk>>+§l< P L] + e CR(P0) +

+ki,<’4‘k, AJ>‘_§1 (5.2.7)
3= ,

Therefore we have

T(tP('lPk)>———>o, k=00 in c“(:za\*'lc;E) (5._2.8)v
and | ' :

l<4}*k, 7&3>l———>é, k—f-->oo for j=1,2,°**. (5.2.9)

Now by & we denote the completion of the space

{pediidl, wyr); supp p LK 7

with respect to the seminorms r and Qoa’otP; qe Spec C”(.S'Za\K;F).

Then P is a Frechet space. From (5.2.2) we have
§ C{‘l?b eco(_Q., W,;F); supp Y K '}.

From the definition of the topology of P it follows t.hat
T(*P(4)) & C(TTNKGE) for all &P . Then (5.C) implies
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” S——
qu_Q \g' € © (ZZN\KT;F) for all %€ F. By 7' we denote the
2 ;
restriction mapping of ¥ into C(LZ\K';F). Then y' is continuous

from the closed graph theorem.

From (5.2.6) and (5.2.8) the set {¥; k=1,2,---} is
bounded in § , and then {yf'(ﬂ,bk); k-_-_—1,2,---} is bounded in
CM(TZETKT;F)V. Since C”('A—QETKT;F) is a Montel space from Theoren
2.3.2., there exists a subsequence of 7' (%), k=1,2,"-- which"
converges to some 4})0 in C”(E_EV\'K—";'F). We may denote this sub-
sequence by the same symbol '{'('I/Jk), k=1,2,""+. From (5.2.9)
‘we obtain 7

ST (), Ay =KY, As>| — <, A >=0,
as ké-—->oo, for all j==1,2,"--. Hence 3"(’7{*k-) converges to
zero weakly in C”(IZ_E\W;F.), which is a Montel space. Therefore

we have

7' (P, )—=>0, k—3=00 in C (R NK';F). (5.2.10)

Next take a function X in C:(QO) with support in K'!
such that X =1 in a neighbourhood 6f K'., Vie write ’7{'1'{’-:7(4'1{
and 11)}.:' :(}_x)-ﬂlbk. Then ’z)bl'I' tends to zero in‘Cz(f?:, “W,3F)
from (5.2.10). From (5.2.6) and (5.2.7) we have for sufficiently
large k

t oo

C-(pC*P( 1)) + %{@1;, #i>l = ),

which contradict with (5.2.3). This finishes the proof.
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Corollary 5.2.4. If (5.4) and (5.B) hold, then for
every fe @'(ﬁl;F) and ‘1598'(511\-9- ;E), which satisfy P(u)== f

in 521\ﬁ , there exists ﬁeg'(ﬁ1;E) such that u is equal to

the restriction of u to _9_1\§ and

P(R) — £ e C™(, w;F).

Proof. Take f and u which satisfy the above hypotheses.
There exists U e @'(ﬁl;E), ‘whose restriction to _D-T\fl/ is equal

to u. Write»g:f—-P(u”. Then g belongs to D'(LZ, w];F).
From Theorem 5.2.1. there exists ve §' ({7, w, ;E) such that
P(v) —g € C ({Z, w;F). Write W=u, +v. Then i satisfies

the required condition, and the proof is complete.
Now consider the conditions (5,'A) and (5.B).

From the
results of the previous chapter, (5.B) is satisfied if tP is
hyperbolic with respect to 52_1\52 for some 'QI' But this is
too restrictive. ' |

The condition (5.A) is a generalization of Hormander's
'P-convexity with respect to singular support'. Then we can

make the following definition:

Definition 5.2.1. The pair (£Z, w1) is called P-convex

with respect to singular support if and only if to every compact

set K = {I there exists another compact set K'Cfi , which can
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be token to be void if K is void, such that e &' (T, W,;F)

and tP("/’ ),’Q'Z\K < CM(QZ<K;E) implies sing supp ¥ AAZ/AK' .

If w is empty, this definition agreeé with that of
Hormander. Then we can survey the geometric meaning of this
P-convexity condition as Hormander did in the case of no
boundary (cf. {4, 13]).

The next theorem is obvious:

Theorem 5.2.5. If P is hypoelliptic, then any pair

(f[, w1) is P-convex with‘respect‘ to singular support.

§5.3. Differential equations with constant coefficients

Let M=R", E=R'x@F, F=R"x@", L=V, and let

P==P(D) be a linear differential operator of ,a'(.Q_O)L,into
by '(_(20)N with constant coefficients. Our consideration is

limited to the case of determined or under-determined systems
’ ' *

of differential equations,' because in the case of over-détermined
' different - R
systems there arise essentially A problems (see Ehrenpreis [5 ]).

Under the above restrictions we can prove the following theorem:

Theorem 5.3.1. If the condition (5.B) holds,

then the following three statements are equivalent:

(1) The pair (ﬁ, tu1) is P-convex with respect to
singular support. '

(2) For every f e.@'(ff, (01)N there exists ue.a'(fz', w1 )L
; | et ,
such that P(u) — f e (&, w, N,
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(3) 1t 1= ()Y, ue 9 (NP, and Pu) =1
in Q1\ﬁ, then there exists {'1e=.§b'(.f\2'1 )L such that u==1u in

QNI ana £ —p(R) e L, W)Y,

Proof. From Theorem 5.2.1. and Corollary 5.2.4. it

" remains to prove that (‘2) implies (1) and that (3) implies (2).

The proof of (2)===>(1) is just a. . repetition of the argument

in Hérmander [ 8 J, Theorem 3.6.3., therefore we leave the details
for the reader. The proof of (3)==>(2) is very easy. In fact
let f e,@'(f?:, CU]')N. Define ue@'i(m)L by u(x)==0, xe‘QI\ﬁ.
Then P(u)=f=0 in .fz]\ﬁ' ~ Hence (3) implies the existence |

of i e (LT, w, Yo' such that £ —pP(@) e (L3, w )N, This completes

the proof.

Under more restrictions we can prove the following two

theorenms:

Theorem 5.3.2. Suppose that {2 is contained in the closed

hal f space HCR" and @, is an open subset of the boundary of H.

Moreover assume that P(D) is determined, that is, L=N and det P‘(E)—?%
#0, and the condition (5.B) holds. Then the following three

statements are equivalent:

~

(1) P(D) is evolutional with respect to H and the pair
(&7, w1) is strongly P(D)?convex, i.e. P(D)-convex with respect

to support and singular support.

(2) For every fe,@'(ﬁ, W, )Nthere exists a solution
ue Y (L2, w, )Nof the equation
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P(Dlu=1¢f. (5.3.1)

(3) 1f 1y (LN ue 9 (NI, and (5.3.1) holds
in SZ‘\S’\Z' , then there exists ﬁe@'(fi})Nsuch that the restriction
of U to ‘Ql\ﬁ is equal to u and P(D)u=f in 'Q‘l‘

Proof. - (1) implies (2) from Th!eorems L.4 .1 and 5.2.1.

It is obvious that (2) and (3) are equivalent. Now assume that -

(2) is true. We can suppose that O € @,. Then there exists a

=5
distribution ®in 3'(£I, ®,) such that det P(D)§/""in {,. There
exist a compact neighbourhood K of O in &7_1 ’ positive constants C

C! and an integer m such that <Pe C:(_Q_1) and supp ¢ <K implies

o] =], s>|=|<?, det (DB >|=Kdet PD)P, T >
éC-inf{Z suI%]Dd'Z,l"(x)I; TPGC:(SZ.O) and detP(~D)P= in.

«j=m
IXIEM e

1 (! :
=c ';«Z—m i:g{D'det P(=D)P(x)| -

Hence P(D) is evolutional (see the proof of Theorem 4.4.2 ), and

this completes the proof.

Theorem 5.3.3. Let the hypotheses of Theopem 5.3.2. be

except (5.B ,
fulfilledA. .In addition we assume that P(D) is hypoelliptic.

Then the following condition (1') is equivalent with (2) and (3)

of -the previous theoren.

(1') The pair (£Z, w,) is P(D)-convex with respect to

support and P(D) is parabolic in the sense that there exists a

real number "Co such that
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det P(E —i7Tf)3=0 if geR"” and >,
where £ is the inner norma] to H.

proof. (1) implies (2) from Theorem 5.2.5., 5.3.2., and
a well-known resﬁlt»(e.g. [8] Theorem 5.8.2.). Then we have to
prove that (2) implies the parabolicity of P(D). We can prove
. this fact directly using the argument of Theorem 5.8.1. in [8J.
Details may be omitted.

<’ N\ / N i ’ N\
\O/ ~ \0/ \O/

This paper was permitted as the author's thesis at
Tokyo University in 1973. A figure on page 16 and a remark

on page 43 are adiled.
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