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§1. The theory of hyperfunctions seems proving its
usefulness in analysis thanks to the works by Profs. Martineau
and Komatsu, and a number of young mathematicians.

Hyperfunctions are defined as follows in case of dimension
1. Take real axis [R embedded in the complex plane €. Take
an open set I of R and take an open set D of C€ that
contains I as a closed set. Such D will be called a complex
neighborhood of I. Then by definition the space of hyper-
functions on I, §3(I), is the quotient group of spaces of

holomorphic functions on D-I and D:
B = -1/ OW)
Incidentally, this is equivalent to saying that (3(I) is

the 15t cohomology group of D relative to D-I, with (& as

pi (D mod D-1,8); namely, a

its coefficient group: {3 (1)
hyperfunction is nothing but a 15t relative cohomology class
of D mod D-I of holomorphic functions. It is shown that
(i) /B (1) 1is inherent to I, being independent of the
choice of its complex neighborhood D, (ii) The presheaf
I+ 3(1) is a sheaf: J3(I) = r(L,B) and, (iii) The
sheaf (3 1is flabby.

Now the definition of hyperfunctions on an oriented
real analytic manifold M of arbitrary dimension n: Let
X Dbe a complex neighborhood or a complexification of M.

Then the space of hyperfunctions on M is:

ﬁ(M) = def Hn(x mod X‘M’ 0) ’
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with (% = sheaf of holomorphic functions on X. Again, our
notion of hyperfunctions eﬁjoys the properties just mentioned:
JB(M) is inherent to M; the presheaf Urq.&3(U) is a flabby
sheaf on M. /3 naturally contains as a subsheaf the sheaf
of distributions and hence the sheaf  of real analytic

functions on M which is the restriction of sheaf (3 onto

M.

§2. Recently there has been a new development of
hyperfunction theory ([1], [21, [3]) which makes it possible
to describe and analyse in detail the structure of a hyper-
function by means of the cotangential sphere bundle S*M.
Here S*M is the quotient space of T*M — (the zero section)
divided by Rﬁ the group of positive real numbers. (It is
important that we deal with the S*M constructed in this
way, and not with the cotangential prdjective bundle obtained
by division by all non-zero real numbers.) S*M is a (2n-1)-
dimensional manifold equipped with a projection map g:

S*M > M whose fibers are (n-1)-spheres sl

Consider first the case n = 1. Here each fiber of g:
S*M > M is a 0-sphere sO which consists just of 2 points.
Hence S*M = MUM, the direct union or the disjoint union of
2 copies of M. On the other hand an implication of our
definition of hyperfunctions of dimension 1 is that a
hyperfunction is expressed as a sum of two 'ideal' boundary
values of a holomorphic functioh FeBOM-1) : fx) =

~ s

P(x+i0)+(-P(x-i0)). Hence, if we denote with A, and Q_
the sheaves over R consisting of ‘ideal' boundary values

from the upper and the lower half plane respectively, we have

-2 -
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ﬁ=&;+é_ , and §+ﬂa_=Q

or equivalently, 0 QA +a+@@_ >8B > 0 where A denotes
the sheaf of real analytic functions on R. This exact

sequence yields at once

Bra A, 0@ a1 .

This means the sheaf 13/61 that measures the degree of
irregularity of hyperfunctions, can be decomposed into two
independent components. If one restricts the above observa-
tions to an appropriate subsheaf of d}) say the sheaf of
locally Lp functions with p>1, then we have a decomposi-
tion of the sheaf of such functions into two components;
and this is what is known as the function space of class Hp
in Fourier analysis. The case p =1 1is excluded because
this class of functions (or rather, of hyperfunctions) is
not stable under this decomposition. Similarly the sheaves
13 (C* functions) and 49' (distributions) are both sub-
sheaves of #3 which are stable under this decomposition;
we can talk about decomposition of the quotieﬁt sheaves
E/Q, H'/A and hence, also about decomposition of
H/E = (DAY (EIQ)

All these things are elementary. We mention however

st

the following points: 1°°, it is the quotient sheaf 43 /@,
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and not the sheaf /3 itself, which is subject to a decomposi-

tion in a natural way independent of the choice of coordinate
nd

system. 27, flabbiness of 43 together with = cohomological
trivialness of ( immediately implies =~  flabbiness of
B/a . Srd, in higher dimensions, S*M has a connected fiber

of sphere. This means that decomposition of the sheaf B /a4
is not described as a mere direct sum. We need a new language
to describe it; and this new language is provided by the

notion of direct images of sheaves.

Let g/ be a sheaf on a space Y and let f: Y — X be
a morphism or a continuous map. Then the (0-th) direct image
of 9 is by definition the sheaf f*g over X characterized
by the formula T (U, £,3) = F(f'lU,Q) valid for every open
set U of X. Since the functor f*:g — f*g is left exact,
it is natural to introduce the (q-th) right derived functor
quf* of f,, and this is nothing but to introduce the sheaf
[qu*g = ﬂ%g/ over X called q"Ch direct image of &
which is obtained from the presheaf U~ Hq(f'lU , Q/ ). We
shall say that the map f is purely r-dimensional with
respect to 9 if Iqu*g, = 0 unless q = r. For instance
f 1is purely O-dimensional with respect to any flabby sheaf

over Y, and the 0-th direct image is again flabby.

§3. Now the decomposition of /3/(Q 1is attained in
the following manner. A sheaf over S*M, which we shall call
sheaf ¢ , will be constructed in a natural manner (as will
be described in §4) and in such a way that the 0-th direct

image of C by the projection map m: S*M - M is canonically
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isomorphic to 43/Cl. In other words, we have an exact
sequence of natural homomorphisms

o B

0 — U —0 — 1,C—0
Moreover, the map 1m 1is purely O-dimensional with respect
to C , and the image w,(> is a flabby sheaf on M. Far
beyond these facts, M. Kashiwara established the decisive
result that the sheaf (C itself is a flabby sheaf.
Taking the cross sections of the above sequence we have

an exact 'sequence
o B
00— AM — HBM —>TM, 1,8) — 0

The third term is rewritten as T(S*M,(C ) by the definition
of direct image. Hence, for each hyperfunction ue f3M) ,
the image Bu (i.e. the residue class of u modulo
analytic functions) may be viewed either as a section of

T«(> over M or as a section of (3 over S*M. Accordingly,
the notion of support of PBu also admits two interpretations,
either as a closed set of M or as that of S*M. The former
is the singular support of u in the customary sense (in
notation: S.S.M u) while the latter is that of u 1in a
sharpened sense (in notation: S.5.¢ u). Clearly §.8.y u=
m(S$.S., u) and W'l(S.S.M u)JS.S.. u , and flabbiness of

C 1implies that any closed set of S*M can actually appear
as a singular support of some hyperfunction. Thus S.S.Cu
gives us more detailed information about the irregularity

of u than S.S.M u . If u denotes the complex conjugate



of u, then S.S.. u = (S.S.C u)?

C

antipodal points on S*M.

A few examples of S.S.C u in the case

illustrated in Fig. 1.
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As is shown in [3] one can develop a calculus on the
sheaf ( with applications to the calculus for hyperfunc-

tions. For example:

Multiplication. —— The product of 2 hyperfunctions

Uy, uze-dB(M) is well-defined if S.S.C ug and (S.S.C uz)a

are disjoint to each other. For example, 6(x1)6(x2) or
more generally, fl(xl)fz(xz)‘ is well-defined.

Specialization (or restriction). — Let N be an

oriented submanifold of M. The conormal sphere bundle

S{M is naturally considered to be a submanifold of S*M.

Then the specialization f|Néi[3(N) is always well-defined
for a hyperfunction f & 3 (M) whose singular support S.S.C f
is disjoint to S§M. (I3

For example, if N 1is a hypersurface which is non-
characteristic with respect to a differential operator P,
and if ue 3(M) satisfies Pué (L (M), then by the theorem
below u as well as any (higher) derivatives of u can
be specialized onto N. This means that the notion of
initial data makes sense for a hyperfunction solution of
linear differential equation.

Generally speaking, if f: N—- M 1is a morphism
between oriented real analytic manifolds of dimension n'
and n respectively, and if p: S*MxMN -SﬁM +~ S*N and
o: S*Mx N -SEM > S*M denote 2 morphisms naturally induced

by £, then we have as a generalization of the notion of

specialization the following sheaf homomorphism over S#*N

£f* p!(O'-ch) + GN s
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where o, stands for the 0-th direct image with proper
support. We have, on the other hand, the following sheaf

homomorphism over S*M as the integration in (

Ol(p-lcN(n‘)) . CM(H) ,

where CZN(n') (resp.(ién)) means the sheaf (5 of n'-forms
- (resp. n-forms). ([3], §6)
Combining the method of F. John [5] with the theory
of C , Wwe can easily derive the following
Theorem ([1]; [2]; [3] §8). Let P(x,D) be a differen-

tial operator on M with the principal symbol Pm , and let

F = {(x,ﬁ)}éS*MIPm(x,n) = 0 }. Then the sheaf endomorphism

of (¢ induced by P(x,D) 1is bijective on S*M-F.

More specifically, Pm is invertible on S*M-F in the
sheaf of rings L over S*M consisting of 'pseudo-differen-
tial operators' operating on ( . (The sheaf P is defined
to be DistO(S*M,Chggl\j[n)). Here Cpggﬁn) stands for the sheaf C over
S* (MxM) that behaves as n-forms on the an copy of M. S*M
is regarded to be a submanifold of S*(MxM) by 'anti-diagonal’
embedding. See [3] §6.) I note that, besides generalities

about C , the only fact we need to prove this theorem is

the theorem of Cauchy-Kowalewski.

Corollary. If P(x,D) is elliptic then every hyperfunc-

tion solution of the equation Pu = 0 is analytic.

Proof. Since F 1is empty in this case, we have the

isomorphism P: 2 (  valid on the whole S*M, and hence
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the isomorphism P: n, (2% 7, on M. On the other hand,

P: A+ QA is surjective (Cauchy-Kowalewski theorem); i.e.

we have an exact sequence

P
053" - ¢ — a —> 0,

where CZP denotes the sheaf of analytic solutions of Pu = 0.

Now we observe the following diagram of exact sequences

0
),
0 > A > 3 '“*6—90
P | PloP s
0 >ClL > B— 1, C—> 0
0

P
and conclude that 0 —> QP — B —PB—0 is exact. (q.e.d.)

M. Morimoto mentioned that a theorem of Bargman-Hall-
Wightman on Jost points in the quantum field theory is also
an easy corollary of the above theorem.

The improvement of the above theorem is now being worked
out by T. Kawai, M. Kashiwara, and the present speaker along
the lines of Lewy-HOrmander-Egorov-Nirenberg-Treves. (See
also [6], [7].) The problem is to determine supports of the
kernel and cokernel sheaves of P: C — C - (These may

be substaﬂtially smaller than F,) Or rather, to determine



1i5

the kernel and cokernel sheaves themselves. For example, if

9 . o . . ] .
3*1 + i 5;; - 1(x1+1x2)§;g is the operator of

_ 1
P = 7(
H. Lewy, and if Q (resp. Q) 1is a pseudo-differential
operator (which induces a well-defined sheaf homomorphism
(3 > C on S*M) defined by means of the kernel function
K(x,x')dx' = (xs—x%+2(xzxi-xlxé)+i((xl-xi)2+(x2-xé)2))-1dxidxidxg
(resp. the complex conjugate of K(x,x')dx'), then it is shown
that _

Q P Q
C-—»C— C—C

is an exact sequence. This implies that Pu = f 1is solvable
if and only if Qf = 0 in (C , and that the supports of
Ker. P and CokerC P are given by the supports of the

operators Q and Q , which are quite easy to determine.

Propagation of singularities. Let P(x,D) be such that

the principal symbol Pm(x,n) is real and of principal type on
M. Kawai and Kashiwara proved that a closed set 'FC S*M can

be a S.S.C u for some ue€ 3M) such that Pue (L M) or even
Pu = 0, if and only if F is a union of bicharacteristic strips.
An easy corollary of this is that a closed set of M can be a
S.S.M u for some hyperfunction solution of Pu=0 if and only
if it is a union of bicharacteristic curves. For example,

there exists a solution of ((a/axl)z-(a/axz)z-(a/axs)z)u=0

for which S.S.qu = {xe5R3|x§+x§ > 1} . (F. John).

I-hyperbolicity. Kawai introduced the notion of I-

hyperbolic operators as an interesting generalization of

hyperbolic operators.

- 10 -
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§4. Construction of the sheaf C ([2], [3])

4.1. Relative cohomology groups in generalized sense. Let

? denote a sheaf over a space X and let f: Y- X be a
continuous map. Then the sheaf f'ly over X «called the
inverse image of F 1is defined to be the fib‘er product over
X of Y and &% . This functor Fm— f-15§ is an exact one.
Now the relative cohomology groups in the generalized sense,

Hp(X<—-Y,?), are defined in a natural way ([2]},[3]) so that

we have an exact sequence
e s P 3 o 1Py, £ ig ) o HP (- Y, ) - HP (X, F)
P -1
— H'(Y,f "F)—> ...
If f: Yo X 1is the natural embedding of an open subset
our HP (X« Y,?) reduces to the (ordinary) relative cohomology

group HP (X mod Y,¥#), and if Y = ¢ , the empty set, this

reduces further to HP(x,y) .

If we have still another space Z and another continuous

map Z — Y, we have the following exact sequence (which reduces

to the above one when I = ¢ )

cee 5> P ez, Fy o WP (v 2,£71F ) 5 P (Xe Y, F )

SHP(xe2,%) » HWP(Yez,£7 17 )00,

4.2. Real monoidal transform. Monoidal transforms, which

are the most essential in desingularizing analytic spaces, are
described as follows in the case of a (non-singular) complex

analytic manifold X and a submanifold Y of arbitrary

- 11 -
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codimension in X . One removes Y from X and instead

inserts the normal projective bundle PYX over Y defined

by PYX = (TYX — (zero-section)) / (non-zero complex numbers).
Here TYX denotes the (tangential) normal vector bundle over
Y defined as follows by means of tangent vector bundles TX
and TY:

0~ TY » Yxx X > T, X + 0.

Y
This replacement of Y by PyX or the blowing up i§ a natural
one so that the transform X = X - Y)u PYX acquires a natural
complex analytic structure and the natural projection map =
% +X Dbecomes a proper morphism of analytic manifolds. The
inverse image of Y by 1t coincides with PyX and PyX lies
in X as a hypersurface or a submanifold of codimension 1.
What we need in construction of (C is the real analytic
version of the monoidal transform. Take a real anélytic manifold

M and a submanifold N of arbitrary codimension in M. Then

the real monoidal transform of M at N is by definition
M= M- NUSM
where the normal sphere bundle S\M over N is defined by

SNM = (TNM - (zero-section)) / (positive real numbers).



1i3

~ 1)
X mnaturally acquires the structure of real analytic manifold

with boundary at S.M, and the natural projection T : M > M

N
becomes a proper morphism (Fig. 2). The inverse image by T of
~
N coincides with SNM and SNM is of codimension 1 in M.

o —

4.3. The sheaf QQ over SM. Now return to the n-dimensional
oriented real analytic manifold M and its complexification X.
Since X has a structure of real analytic manifold of dimension
2n, we can talk about the real monoidal transform X of X at

M. Here, furthermore, we can naturally identify the normal

1) If antipodal pairs of points on each fiber of SNM are
identified, SNM shrinks to the normal projective bundle PNM
and M shrinks to a real analytic manifold without boundary in
which PM lies as a hypersurface. We mention however that N
what we need in what follows is the topological structure of M

rather than the analytic structure thereof.

- 13 -
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bundle TMX (resp. SMX) with the tangent bundle TM (resp. SM)

—— or rather with /-1 times TM(resp. SM) — , because we have
0~ T™ > M x X TX - TMX - 0 ( by the definition)
and
Mx yTX=TMQ@p €C=TM® /-1 TM™
Hence we can write X = (X - M) SM. The natural map T : X > X

is proper. On M = SM  the map T gives the fiber structure

SM » M while it reduces to a homeomorphism outside SM , T:

T
X - SM=~X - M.

Now we apply the exact sequence of 4.1. to the triple X - SM
C;f 3 X with the structure sheaf & = C9x as coefficients, and

obtain
cer > P (XX, 0) 3 P (x0X-sM,0) B WP XoX-sM, i .-

We have however Hp(Xéf,C?) =L (M) (for p=n), = 0 (for p # n)

and HP(XSX - SM,(¥) = HP(X mod X - SM,&) =B(M) (for p = n),

= 0 (for p # n). The latter is nothing but the fundamental fact

in hyperfunction theory while the former is, as Kashiwara mentioned,

quite an easy consequence of the elementary fact that Hp(pt+Sn'1,

Z) =2 (for p =n), =0 (for p # n). ('pt' denotes the space

consisting of a single point and Z denotes rational integers.)
These vanishing theorems, together with the fact that a

A M) > 3M) is injective, immediately imply that the exact
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sequence mentioned above yields

0> QM) » B » P E mod X - sM, 1) » 0

and
P(X X -1
H'(X mod X - sM, 1~ () =0 if p # n.

According to the hyperfunction theory we know that M is .purely
n-codimensional in X with respect to the structure sheaf &X :
DistP (M, C?X) = MB(for p =n), =0 (for p # n). This includes

at the same time the definition of the sheaf /3 of hyperfunctions.
On the other hand, it is easy to show that the‘bhypersurface SM

in X is purely 1l-codimensional with respect to -r'l(?x ; i.e.

we have Distp(SM, T_IO'X) = 0 wunless p = 1. Defining the

sheaf & over SM by 4 = Distl(SM, T-_IO'X), we can deduce

from this and the above facts that

Hn(f); mod X - SM, 1:'10‘), p = n-1,
HP(sM, Q) = {
0, p # n-1,

and

0+a_->/3+ﬂ?-1£+ 0

4.4. The sheaf _@ over S*M. The next and final step to
construction of the sheaf C is to transfer the sheaf 2 from
SM to the cosphere bundle S*M. Define the fiber bundle DM
over MI by

- 15 -
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DM = {(x, E, N)€E SM.x ,S*™M | £ & TM - {0}, neT#M - {0},

<& , mn>3 0} .

(We mention that each point in the fiber product SM x MS*M is
a pair of tangent and cotangent vectors at the same point in M
so that we can talk of inner product of them.) We have two
chains of fiberings:

4

L1 T T/ ]
DM » SM + M and DM » S*M » M,

consisting of proper maps. Also important is the fact that the
fiberings «' and 1t' have both contractible fibers of (closed)

n-l’ for this fact impiies in particular that

hemispheres % S
the map 7' is purely O-dimensional with respect to the inverse
image sheaf w'-%Q, over DM, and the 0-th direct image co-

incides with the original sheaf 2 :

2’ p =20,

P iy =
AEARES 0, p # 0.

On the other hand, the map <t' is shown to have pure dimension
n-1 with respect to w'_lél:‘ﬁﬁg,(n"lgl) =0, (p#n-1).

This is a fact equivalent to a result of M. Morimoto [4] about
the edge-of-the-wedge theorems. Now we define the sheaf (C over

S*M by

C = qefpi’ 72,

- 16 -
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and obtain the formulae

B/& p=n,

HP I AR L1y sRRTC = ¢
0’ P # n,

0->A~ B~ n*e—> 0,

where ® is the abbreviation of Tem' = mot' : DM - M.
(We understand the cohomology group for negative dimension is
always 0.)

We mention that a further consideration gives us two
diagrams consisting of exact sequences of sheaves over SM and

S*M respectively:

0 0 0 0
{ 4 ¢ L
0->1 "Q = &-—)Q - 0 01l - a*a—)l*a—>0
I ¥ ! I ) 1
0 - T'la—> r'lﬁ—n'ln*(’/ — 0 0> n'la - ‘rr_ljj-)n_ln*Cé 0
\ 1 y y
,",*T,-lca - ,",*T.'lca C = C
¢ ! { y
0 0 0 0

-~

Here (L is the sheaf of 'ideal boundary values' of holomorphic

~

functions defined as follows: Define a sheaf O over ’)\(’ to

be the 0-th direct image of Gk)?-SM = 0y_y by the natural

~ ~ o~ ~
embedding X - SM< X. Then (0 is the restriction of (O onto

SM,i.e. the inverse image of () by the natural embedding SM

¢» X. (We omit the definitions of sheaves @ * and 2%. Seel3].

- 17 -
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IS

The symbol 'a' on the right shoulder stands for the direct
(and at the same time inverse) image by the antipodal mapping
on SM or S*M. The exact sequences 0 -+ éf+ T'1¢3+ .+« and
tec ”'%B‘+ C~> 0 in the above diagrams are of great importance
in further study and applications of hyperfunction theory.
For complete accounts and proofs the reader is referred

to [3].
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