DEPARTMENT OF MATHEMATICS YAMAGUCHI UNIVERSITY

48

YAMAGUCHI, JAPAN.

ON MULTIPLY TRANSITIVE GROUPS

Tuyosi Ovama

1. We treat a classification of 4-fold transitive groups. Let G be a 4-fold transitive group on Ω ={1,2,...,n}, and set $H=G_1$ 2 3 4. The first step of the classification:

Jordan proved that if H=1 then $G=S_4$, S_5 , A_6 or M_{11} . By this theorem we have that |I(H)|=4, 5, 6 or 11 and $N_G(H)^{I(H)}=S_4$, S_5 , A_6 or M_{11} respectively. Except the first case the classification is completed.

Theorem 1. [2]

If $N_G(H)^{I(H)} = S_5$, A_6 or M_{11} , then $G = S_5$, A_6 or M_{11} respectively. The second step of the classification:

Let P be a Sylow 2-subgroup of H. The Jordan's theorem was extended by M.Hall in the following way: If H is of odd order then $G=S_4$, S_5 , A_6 , A_7 or M_{11} . By this theorem we have that |I(P)|=4, 5, 6, 7 or 11 and $N_G(P)^{I(P)}=S_4$, S_5 , A_6 , A_7 or M_{11} respectively.

Here we give a classification of the special cases in which |I(P)| =6 or 11 or |I(P)| =4, 5 or 7 and P satisfies some assumptions.

Definition and Notation. Let G be a permutation group on Ω . The stabilizer of points i,j,...,k in G is denoted by $G_{i\ j...k}$. If X is a subset of G fixing a subset Δ of Ω , then X induces a set of permutation on Δ , which we denote by X^{Δ} . For a subset X of G, I(X) denoteds the set of all the fixed points of X. A G-orbit of minimal length (\dagger 1) is called a minimal G-orbit.

2. Let G be a 4-fold transitive group and assume that a Sylow 2-subgroup P of $G_{1,2,3,4}$ is not the identity. For a point t of a minimal

P-orbit set $N_G(P_t)^{I(P_t)}$. Then N is a permutation group on $I(P_t)$ and satisfies the following conditions:

For any four points i, j, k and l of $I(P_t)$ let R be a Sylow 2-subgroup of N_i j k l. Then

- (1) R is nonidentity semi-regular,
- (2) I(R) = I(P).

First we determine the structure of the group N.

Theorem 2. [6,7,8]

Let G be a permutation group on $\Omega = \{1, 2, ..., n\}$ where n > 4. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following two conditions:

- (i) P is a nonidentity semi-regular group.
- (ii) P ifxes exactly r points.

Then

- (I) If r=4, then $|\Omega|=6$, 8 or 12 and $G=S_6$, A_8 or M_{12} respectively.
- (II) If r=5, then $|\Omega|=7$, 9 or 13. In particular, if $|\Omega|=9$, then $G \leq A_{Q}$, and if $|\Omega|=13$, then $G=S_{1}\times M_{12}$.
- (III) If r=7 and $N_G(P)^{I(P)} \leq A_7$, then $G = M_{23}$.
- (IV) It is impossible that r=6 and $N_G(P)^{I(P)} \leq A_6$ or r=11 and $N_G(P)^{I(P)} \leq M_{11}$.

By Theorem 2 we have the following

Theorem 3. [6,7,8]

Let G be a 4-fold transitive group on Ω and P be a Sylow 2-subgroup of G_{1 2 3 4}.

(I) If |I(P)| = 6 or 11 then $G = A_6$ or M_{11} respectively.

YAMAGUCHI, JAPAN.

- (II) Assume that P is not the identity, and for a point t of Ω -I(P) a Sylow 2-subgroup R of the stabilizer of any four points in $N_{C}(P_{t})^{I(P_{t})}$ satisfies the following two conditions:
 - (i) R is a nonidentity semi-regular group.
 - (ii) |I(R)| = |I(P)|

Then one of the conclutions (I), (II) and (III) in Theorem 2 holds for $N_G(P_t)^{I(P_t)}$. In particular, if t is a point of a minimal P-orbit, then $N_G(P_t)^{I(P_t)}$ satisfies the conditions (i) and (ii).

To prove Theorem 2 we need the following

Theorem 4. [5]

Let G be a 4-fold transitive group on $\Omega = \{1, 2, ..., n\}$. If a Sylow 2-subgroup of $G_{1\ 2\ 3\ 4}$ is semi-regular and not identity, then $G_{=}S_{6}$, S_{7} , A_{8} , A_{9} , M_{12} or M_{23} .

In the proofs of these theorems we use frequently the combinatrial argument. For instance the case (II) of Theorem 2 will be proved in the following way.

Assume $|\Omega| > 9$. Let a be an involution of P and $I(P) = \{1, 2, 3, 4, 5\}$. We may assume a is of the form

$$a=(1)(2)...(5)(6.7)(8.9)(10.11)...$$

Since $a \in N_G(G_{6,7,8,9})$, there is an involution b of $G_{6,7,8,9}$ commuting with a. Since |I(b)| = 5, we may assume

$$b=(1)(2 3)(4 5)(6)(7)(8)(9)...$$

Since $\langle a,b \rangle < N_G(G_2 \ 3 \ 6 \ 7)$, there is an involution c of $G_2 \ 3 \ 6 \ 7$ commuting with a and b,c is of the form

$$c=(1)(2)(3)(4 5)(6)(7)(8 9)...$$

YAMAGUCHI, JAPAN.

Then $I(ac)=\{1,2,3,8,9\}$. Hence $\langle a,c \rangle$ is semi-regular on $\{10,11,\ldots,n\}$, and so we may assume

$$a=(1)(2)...(5)(6 7)(8 9)(10 11)(12 13)...$$
,
 $c=(1)(2)(3)(4 5)(6)(7)(8 9)(10 12)(11 13)...$

Since $\langle a,c \rangle < N_G^{(G_{10\ 11\ 12\ 13})}$, there is an involution d of $G_{10\ 11\ 12\ 13}$ commuting with a and c. We may assume

$$d=(1)(2 \ 3)(4 \ 5)(6 \ 7)(8 \ 9)(10)(11)(12)(13)...$$

Since $\langle a.d \rangle \langle N_G^{(G_2)} \rangle = 10^{-11}$, there is an involution f of $G_2^{(G_2)} \rangle = 10^{-11}$ commuting with a and d. f is one of the following forms:

- (i) $f_{=}(1)(2)(3)(4 5)(6 7)(8 9)(10)(11)(12 13)...$
- (ii) $f_{=}(1)(2)(3)(4 5)(6 8)(7 9)(10)(11)(12 13)...$

If f is of the form (i), then

$$af=(1)(2)(3)(4 5)(6)(7)(8)(9)...$$

Thus |I(af)| > 5, which contradicts the assumption. Hence f is of the form (ii). Then

$$cf_{=}(1)(2)(3)(4)(5)(6879)...$$

Thus 6, 7, 8 and 9 are contained in the same $G_{I(a)}$ -orbit. Since we took 2-cycles (6 7) and (8 9) as arbitarary 2-cycles of a, $G_{I(a)}$ is transitive on Ω -I(a). Hence for any involution x fixing five points $G_{I(x)}$ is also transitive on Ω -I(x).

By using this result repeatedly, we can prove that for some point i G_i is 4-fold transitive on Ω -{i}. Hence by Theorem 4 $G=S_1\times M_{12}$. For $|\Omega| \le 9$ the proof is similar.

3. By Theorem 3 if G is 4-fold transitive on $\Omega = \{1, 2, ..., n\}$ and a Sylow 2-subgroup P of $G_{1, 2, 3, 4}$ is not the identity, then |I(P)| = 4,

DEPARTMENT OF MATHEMATICS YAMAGUCHI UNIVERSITY

YAMAGUCHI, JAPAN.

52

5 or 7. In these cases the classification of G is not completed. If P is abelian or transitive on Ω -I(P) and normal in $G_{1\ 2\ 3\ 4}$, then G is determined:

Theorem 5. [4,8]

If P is a nonidentity abelian group, then $G=S_6$, S_7 , A_8 , A_9 or M_{23} . Theorem 6. [1]

If P is a nonidentity normal subgroup of $G_{1\ 2\ 3\ 4}$ and transitive on Ω -I(P), then $G_{=}S_{6}$, A_{8} , M_{12} or M_{23} .

References

- [1] H. Nagao and T. Oyama: On multiply transitive groups II. Osaka J. Math. 2(1965), 129-136.
- [2] H. Nagao: On multiply transitive groups IV Osaka J. Math. 2(1965), 327-341.
- [3] : On multiply transitive groups V. J. Algebra, 9(1968), 240-248.
- [4] R.Noda and T.Oyama: On multiply transitive groups VI. J. Algebra, 11(1969), 145-154.
- [5] T.Oyama: On multiply transitive groups VII. Osaka J. Math. 5(1968), 155-164.
- [6] : On multiply transitive groups VIII. Osaka J. Math. 6(1969), 315-319.
- [7] ____: On multiply transitive groups IX. Osaka J. Math. 7(1970), 41-56.
- [8] ____: On multiply transitive groups X. to appear.