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ON MULTIPLY TRANSITIVE GROUPS
Tuvosi Nvama.
1. We treat a2 classification of 4-fold transitive groups. Let G
be a 4-folad transitive grouv on,f);{1,2,...,n}. and set H.—..G1 5 14"
The first step of the classification: |
Jordan proved that if H.1 then G-S,, S, Ag or M. . By this
theorem we have that |I(H)| =4, 5, 6 or 11 and NG(H)I(H)=S4, S A6 or

/

M11 respectivelv. Except the first case the classification is completed.

Theorem 1. [2]

If NG(H)I(H)=S A6 or M11, then G=SS, A6 or M11 respectively.

5
The second step of the classification:
Let P be a Sylow 2-subgroup of H. The Jordan’s theorem was extended
by M.Hall in the following way: If H is of odd order then G=S4, SS’
A A7 or M,,. By this theorem we have that j1(P)|-4, 5, 6, 7 or 11

and NG(P)I(P)=S4{ Sy Ag A, or M,, respectively.
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Here we give a classification of the special cases in which 11(P)|
=6 or 11 or |[T(P) -4, 5 or 7 and P setisfies some assumptions.

Definition and Notation. Let G be a permutation group on £ . The
stabilizer of noints i,jy..c3k in G is denoted by Gi ookt If X is a
subset of G fixing a subset A& of & s then X induces a set of permutation
on A, which we denots b X° . For a subset X of G, I(X) denoteds the
set of all the fixed voints of X. A G-orbit of minimal length (1) is
called a minimal G-orbit.

2. Let G he a 4-fold transitive grouv and assume that a Sylow 2-

subgroup P of G1 5 34 is not the identitv. For a voint + of a minimal

(1)
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P-orbit set NG(Pt)I(Pt);N. Then N is a vermutation group on I(Pt)
and satisfies the following conditions:
For any four points i, j, k and 1 of I(Pt) let R be a Sviow 2-

subgroup of N, Then

ijk1°
(1) R is nonidentity semi-regular,
(2) 1(R)- I(P) .
First we determine the structure of the group N.
Theorem 2. [6,7,8]
Let G be a permutation group on £} ={1,2,...,n} where n> 4. Assume
that a Sylow 2-subgroup P of the stabilizer of any four-poinfs‘in G
satisfies the following two conditions:
(i) P is a nonidentity semi-regular group.
(ii) P ifxes exactly r points.
Then
(I) If r-4, then Q| =6, 8 or 12 and G=S6, Ag or M,, respectively.
(IT) If ».5, then {2} =7, 9 or 13. In particular, if 10}=9, then
GéAg, and if 1Q]=13, then G=5,3 .
(TIT) If r-7 and NG(P)I(P)é B,y then GM,,.
(IV) It is impossible that r-6 and NG(P)I%P)é Ag or r-11 and
NG(P)I(P)é M,
By Theorem 2 we have the following
.Theorem 3. [6,7,8]
Let G be a 4-fold transitive group on ) and P be a Sylow 2-
suberoup of G1 WL

®

(1) If |I(P)| =6 or 11 then G;A6 or M,, respectively.
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(IT) Assume that P is not the identity, and for a point t of () -
I(P) 2 Svlow 2-gsubgroup R of the stabhilizer of anv four points in
NG(Pt)I(Pt) satisfies the followines two conditions:

(i) R is a nonidentity semi-regular group.

(i1) (TR =1 (P)}
Then one of the conclutions (I), (II) and (III) in Theorem 2 holds for

. I(P)
LG(Pt)

. In particular, if t is a point of a minimal P-orbit, then
NG(Pt)I(Pt) satisfies the conditions (i) and (ii).

To orove Treorem 2 we need the following

Theorem 4. [5]

Let G be a 4-fold transitive group on } ={1,2,...,n}. If a Sylow
2=subgroup of G1 034 is semi-regular and not identity, then G=S6,
's7, Agr Ags My, or My,

In the proofs of these theorems we use frequently the conbinatrial
arsument. For instance the case (IT) of Theorem 2 will be nroved in
the following way.

Assume |£2]>9. Let a be an involution of P and I(P)={1,2,3,4,5}.
We may assume a is of the form

a=(1)(2)...(5)(6 7)(8 9)(10 11)... .
Since a.éNG(G6 7 8 9). there is an involution b of G; . 5 ¢ commuting
with a. Since (I(b)| =5, we mar assume

b=(1)(2 3)(4 5)(6)(7)(8)(9)...
Since <a,h> < NG(GQ 36 7), there is an involution ¢ of G, 16 7
commuting with a and b,c is of the form

c=(1)(2)(3)(4 5)(6)(7)(8 9)...

(3)
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Then I(ac)={1,2,3,8,9}. Hence <a,c)> is semi-regular on {10,11,...,n},
and so we may assume

a=(1)(2)...(5)(6 7)(8 9)(10 11)(12 13)... ,

c=(1)(2)(3)(4 5)(6)(7)(8 9)(10 12)(11 13)... .
Since <a,c> <'NG(G1O 11 12 13), there is an involution d of Gyg 14 15 13

commuting with a and c. We may assume
d=(1)(2 3)(4 5)(6 7)(8 9)(10)(11)(12)(13)... .
Since <a.d>'<'NG(G2 3 10 11), there is an involution f of G, 310 11
commuting with a and d. f is one of the following forms:
(1) £=(1)(2)(3)(4 5)(6 7)(8 9)(10)(11)(12 13)... ,
(i1) £=(1)(2)(3)(4 5)(6 8)(7 9)(10)(11)(12 13)... .
If f is of the form (i), then _
af=(1)(2)(3)(4 5)(6)(7)(8)(9)... .
Thus {I(af)l > 5, which contradicts the assumption. Hence f is of the
form (ii). Then |
cf=(1)(2)(3)(4)(5)(6 8 7 9)...
Thus 6{ 7y 8 and 9 are contained in the samerGI(a)~orbit. Since we
took 2-cycles (6 7) and (8 9) as arbitarary 2-cycles of a, GI(g) iS
transitive on S]-I(a). Hence for any involution x fixing five points
Gr(x) is also transitive on £ -I(x). |
By using this result repeatedly, we can prove that for some point
i Gi is 4-fold transitive on Ll-{i}. Hence by Theorem 4 G=S1XM12.
For |49 the proofiis similar. ‘
3. By Theorem 3 if G is 4-fold transitive on !1:{1;2,...,n} and

a Sylow 2-subgroup P of G1 514 is not the identity, then lI(P)l=4s

(4)
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Eor 7. In these cases the
P is abelian or transitive
is determined:

Theorem 5. [458]

If P is a nonidentity

Theorem 6. [1]

If P is a nonidentity

on -I(P), then G=Sg, Ags

classification of G is not comnleted.

abelian group, then G=S6, 87, A8' A9

YAMAGUCHI, JAPAN.

It

on ) -I(P) and normél in G, , 3 40 then G

oxr M,,.

23

normal subgroup of G, , 3 4 and transitive

“

M12 or’M23.
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