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CERTAIN DOUBLE COSET SPACES OF ALGEBRAIC GROUPS AND

RATIONAL BOUNDARY COMPONENTS OF SYMMETRIC BOUNDED DOMAINS

Keniehi IYANAGA
I

In part I ngggnsider the problem of determining the order of double
eosets p\G/P, where G is a eertain k-algebraie group, P is its k-parabolie
subgroup and [ is its arithmetie subgroup. A detailed diseussion on the sub-
jeet is found in (51

Let k be an algebraie number field of finite degree, and K be either a
gquadratie¢ extension of k or k itself, and o the involutism of K stabilizing
eaeh element of k. Let V be a finite dimensional vector spaece over K supplied
ﬁith a2 non-degenerate k-bilinear form F:V X V —» K such that F(ax,by) = drF(i,y)b
for a,b €K, x,y€V and that F(x,y)r = eF(y,x), e = *1. |

We set G = { g€ GL(V); F(g(x),8(y))= F(x,¥), X,y¢ v) and G* = G SL(V).
Then the groups G and G* are k-algebraie groups.

Suppose that there exists a proper non-zero subspage W of V su@h that
F(w,w'} = O for all w,w'e W (i.e. W is a totally isotropie subspace of V).

W
Let OK be the ring of integers in K and let L be an C%—lattice in V.

We set G, = igé—G; g(W) = wi . This is a maximal k-parabolie subgroup of G.

We set G, =1gé<3; g(L) = L?. This is an arithmeticec subgroup of G.

Similarly, we get a maximal k-parabolie subgroup G% and an arithmetie

subgroup Gi of Gl.

Now, given any subgroup H of G and U%fsubmodules X,Y of V, we grite

X’E/Y if and only if there exists an element h of H such that B(X) = Y.
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We denote the set of Ok-submodules Y such that X Y by (X);. Then,
the double coset space GL\G/GW is in a bijeetive correspondence witk

either one of the sets (W)./~Y , or (L)./~ . Thus the problem of
G GL G Gw : st

determining the'order‘Gﬁ\G/Gwl is reduced to é eertain elassification
problem of lattices. The determination of the order [Gi\ﬁl/Gil is,'ﬁo
a great extent, reduced to the determination of IGt\G/Gw[' (L)

Assoelated to the lattiee L we have a fraetional idealfin K,gene-
rated by F(x,y) for x,y €L. The lattice L is ealleé a gAg(L)-)mgdular
12 L =Jxev; F(x,L)C py(L)]).

Then we have the following decomposition theorem:

Let L be an :7-modular-lattiee in V. Then there existiﬁ%~ideals 0&,.,.,
Og, a basis {wl,...,wsﬁ'of W, and elemehts'wi,...,aé of V'sueh:thgt
~5 -a , ;
L=y Iy +0w) + 11, mhere ff O > ...2 0,

w €L, F(w ,w!) = d_j_j’ F(w!,w!) = mié”ij for all i,j.

J J

In the above, when myo= O for all i (e.g. when e = -1), it is easy
to determine the order GL‘\G/Gw . When e = 1, it beeomes nesessary to
inveétigate the properties of the-submoéule S(égx) =,%N(x) + Tr(y);x,yéak%
of U, and submodule S(L,W, /() = {F(ax,ax) + Tr(b);aefit,x el bep{l“’j’}
of the module S(L,{1) = {F(ax,ax) + Tr(b)jae f{ 1, x eL,b ¢ m-l-‘y; for
@k-ideals . It ean be shown that if K is a quadratie extension of ,
k, then S(0,) = (, and that the order |S(L,)/S(L,W,/)] is generally
independent of the ehoiee of the ideal 1; we denote the order by s(L,%W).
The order }GL\G/GWI for an_y ~-modular lattice LAcan be evaluatgd
in terms of h(K) (= the ¢lass number of K), k(L') (= G-e¢lass number of

L'), s(L,W) etc. Speeifically, we have the fcllowing estimation:

1) When K = k and e = -1, then ]GL\G/G

= a0,

2
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2) If S((9K) = 0k’ and s(M,¥) = 1 for all M belonging to the same G-genus
as L, then }GL\G/Gw[é n(K)h(L'), and if moreover, allﬁf -modular lattices
in V are G-equivalent, then \GL\G/Gw} = h(K)h(L').

The latter case oecurs, for example, in the following situations:

1) K = k, dim V is odd, S(Gk) = (}k, h(k) = 1,

2) K is a quadratie extension of k, dimKV is odd, and every ldeal c¢lass

in K is represented by a ¢=invariant ideal.

EXAMPLES:

1) k = Q, K = a1y, dim V 1is odd and V has a basis {vl,...,vnﬁ such

K
3 = di -1 =7 !
that (F(Vi,vj)) dlag.(lp, _a)’ and L = 2_ UKYi, In this ease,

l6,N6/G, | = m(L1) § 1G1N\a"/Gy |< 20(LY),

h(L')(= 1 when W'/W is indefinite ([Y]),or the rank of L'< 5 (45
> 1 when the rank of L' > 5,
= 2 when the rank of L' = 5,
=L when the rank of L' = 7.
2) k = Q, K = Q(MCQ), p =3 mod 4, dim,V is odd.and V has a basis{vl,...,

,=1),and L :szﬂKvi' Then

vnjsuch thatu(F(vi,vj)) = diag.(lﬂ_1

11,1
leN\e/Gy | = lep\67/a, | = n(K).
11
We assume tnat G1 is simoly connected (hence, Gl is either SU(V,H)
or $o(V,A)). ile assume further that tre Lie grond (dfk/,(el))Q admits
a maximal comvact subgroup { s ch that L = (K (il)) / nas the
: ‘ b. Aot kot DRI &

strueture of a symmetrie bounded domain (hence, k is totally real, and

K is either k itself or a totally imaginary quadratic extension of k).

\.4{
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In this case, the subspace W corresponds to a rational boundary componept
B(W) of 5, and eonversely, for any rational boundé»y‘eomponeat of 5v

there exists a totally isotropie subspace Wf 0of V such that the boundory
component may be written as B(W') (ef. [l])} the dimensior of such a
subspase W' is determined by the given boundary somponent whieh we shall
¢all the type of the boundary somponent. Let g?W) be the set of ratiéhél
boundary components of D having the same type as B(W). E?W) is a G1~Qrbit
space. The double eoset spage Gi\Gl/G$ is in aVbijsgtive g0rrespondenes

1 A
with the set of Gr-orbits among B(W).

III
may. malke iy i :

We a remark concerning our previous work in [27] and [33.
Let D* = D erational boundary eomponents of D) supplied with Satake
topology, and let V* = Gi\D*. Then V§ has the stwuetupes of 2 projedtive
variety. \

Consicer a functor sending the category of Hermitian veector spages
(V,H) to the ecategory of alternating veetor spases (V',A), where V' néﬁﬁ%wv
and A is_the "imaginary part" of H. This functor naturally 1ﬁénses a

rational homomorphism sending Gl

= SU(V,H) into G' = Sp(V',A); latiiees
L'in V naturally eoerespond to lattices L' in V',

When L is modular ané//g(L) is an ideal in k, then the eorresponding
lattiee L' 15 maximal in V', When, in general, L isfﬂ;modular, the elemen-~
tary divisors of L' may be explicitly deseribed in terms ofﬁf'if (2) is
a prime ideal in k (ef. [6]). |

Let'D, D' be the symmetrie bounded domains eorresponding to Gl, G'.
Assume that (ﬁik/Q f)()()(ﬁ X', then f induces a holomorphie imbé%ding

of D into D' (e¢f. [7]); this /’further induces a morphism of the variety

4
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(¢f £83)
V* int V'* We h 1) LI
into A (%e have ((GL < GL"
are

We may ask here, when,automorphiec forms 4n D with respes¢t to GL
mee=de extendable to automorphic forms &n D' with respect to Gi,? The
above I, II may be helpful éS consideﬁgthis probvlem.

1 *

In partieular, tHeifield of rational funetions C(V ),which is ident-
ified with the field of automorphic functions on D with respeet to G%,’
bay be identified with a subfield of C(ﬁhﬁ», and their relations may
be deseribed in terms of eertain Galeds cohomology group (ef. (2}, (3]9.

Especially, when k = Q, K = Q(¢~p), p= 3 mod 4, p » 3, dim,V is odd

then C(V*) = C(f(V*))o
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