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ON THE CIRCULAR COUETTE FLOW
BY

AKIRA TAKESHITA
1. Introduction.

In tbe present paper we shall s;udy properties of special so;utions
of the 3-dimensional stationary and non-stationary Navier-Stokes eqpations
from several poiﬁts of view, The main solution considered in this paper
is the c¢lassical Couétte flow between two rotating concentric cyliners.

There are mainly two reasons why we wish to treat this flow. First
it is important to study précise'properties of special solutions of the
ey

Navier-Stokes equations in special cases along with the mathematical

analysis for the equation in the general formulation, since we stii; notﬂ
have complete theory for the problem of existence‘or non-existence of
global in time regular solu}ions of.the 3-dimensional N-S equations.
Secondly, the Couétte flow itself has many properties which are quite
intere;ting mathematically as well as physically. - For example, as the
celebrated experiment by G. I. Taylor.in 1923 revealed and as was
rigorously proved mathematica11§>by W. Velte [6] in 1§66, the Couétte

flow is not necessarily the unique solution. And moreover, what is

more interesting and seems even a peculiar phenomenum to mathematicians

(1)  For simplicity, we call it an N-S equation.
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is the experimental fact that in experiments the Couétte flow is agtually
obseryed in one circumstance and in another it is not, although
mathematically it is a solution for both cases. in the latter case
another flow different from the Couétte flow is observed. The
explanations tried by physicists for this phenomenum are done from the
stand-point of the stability theory (See, for example, C. C. Lin [3]).
But at the present state of the mathemgtigal treatment of the N-S equations
where we do not know whether unique and regular glqbal in time solution of
the 3-dimensional N-S eqﬁation really exists or not, the stability
theory is confronted with theoretical difficulties.

In this paper we shall treat proglems related to the Couétte flows in
general cases. First we shall study the problem whether or not for any
given T( > 0) there exists a regular solution in the interval [0,T] of
the corresponding non-stationary N-S equation for every initial data given
near the Couétte flow. After establishing an affirmative answer to this
question, we next prove the differentiability in the sense of Fréchet of
the evolution operator which gives a mathematical foundation to the linear
stabilit& theory, Thirdly, we shall discuss the eigenvalue problem for
the Fréchet derivative of the evolution operator at the Couétte flow and
show that the Couétte flow is unstable for infinitesimal perturﬁations
under certain circumstances. Finally we shall prove that the Couétte flow
is an isolated solution under almost all circumstances.

The author wishes to express hearty thanks to Prof. H. Fujita who showed

interests in this work and encouraged him with stimulating conversations.
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2. Formulation of the problem and the results.

We consider the non—staﬁionary and stationary N-S equations in a

domain G Dbetween two concentric cylindefs of radii - R, and Rz( > Rl}.

1
. X . : , 3 2 2 2
More precisely G 1is defined by G = {x=(x,, x,, x,)e R ; R, <x_ +x
17727 73 1 1 2
< R;}u The two cylinders rotates with constant angular velocities

the inner with Ql and the outer with Qz " counter clockwise.

In G the N-S equation is expresseé for the non-stationary motion

( ¥, - - ot > '
5t Av Vvv grad q, 0, xe G
div v{x) = 0, Xxe G

(NSE) \ v(0,x) = a(x)

and the boundary condition of adherence at the boundary that

the fluid on the boundary move with the boundary.

and for the stationary motion
v 7

Av - Vvv - grad q = 0

(SE) " divv =0

the boundary condition of adherence at the boundary.
\ ' :

The boundary condition will be given explicitly later. In these equations
v is the velocity vector field of the fluid in question and q is a
scalar function which is the pressure in the fluid and the unknowns are Vv

: . X . : , 3 .
and gq. V 1is the canonical affine connection in R~ and A 1is the

(3)



Laplacian. In the sequel to treat the equations (NSE) and (SE)
effectively, we adopt two coordinate systems, the cartesian coordinaté

system (xl, X, x3) and the cylindrical coordinate system (r, ¢, z).

2

In these coordinate systems a vector field v is expressed ; in the

3
. _ - o . i}
first, v = (vl, v2, v3) = .z vi . and in the latter, v (Vr’ v¢, vz)
: - i=1 i
v
sy -S4 0.0 -9 . .
= v + - + .V . The well-known Couétte flow is thus expressed
r or r 3¢ 'z 9z 1

B, 3 o B2 |

by W= (A + ;235$- and q = 5’ 5 (o + 9dp where

2

l). This is

- N

: 2 2 2 2. .. 2 2
A= (R, - R/ - R and B = RR (@, - 0,)/(R, - R

a solution of (SE) for all Rl’ Rz, Ql, 92. We preserve the letter w

to denote the Couétte flow exclusively in this paper. It is the aim of
this paper to study the properties of the Couétte flow and those of the
solutions of the equations (NSE) and tSB) near the Couétte flow.

To that end, we consider a portion G of G and treat the equations in

h

G,. G, is defined by 6 = {xe G ; 0 < x3 < h} and the union of the

h h h

lower and the upper bottom is denoted by GGh. In G, we consider the

h

following initial value problem and boundary value problem.

[~ YAy - -
Nt Av Vvv_ grad g
i divvs=0
. - A L.V
(IVP) V(xl, X, 0) = V(xl, X, h), Bxs (xl, x,, 0) 3%, (xl, Xy h)
va=(A+—— 2 for = + 2, R = 1,2
k R2 36 or T =X x2 = , 1=1,
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and

- AV A-Avv - grad q = 0

divv =0
)\'\ 3
(BVP [ _ v LA h
| V(xl, Xy 0) = V(xl, Xy h), a%g (xl, Xy 0) 3% (xl, X, ).
| B. 3 .
v=(A+—)— for r=R,, 1i=1,2.
\ RZ 3¢ i

In order to treat the problem in a functional analysis setting, we
. . 2 2 . .
introduce some function spaces and operators. L =L (Gh) is a Hilbert

space of all .Rs-valued functions v = (vl(x), v2(x), vs(x)) defined in

« T3 1/2
G, for which the norm Iv] = {‘g 5 vi(x)dxi- is finite.
G i=1
h
o _ . 3. :
CO,c = Co,q(Gh) is a space of all R -valued functions

o= (¢1(x),q;2(x),'p3(x)) such that (i) . every component ¢j € c”cék)

. o 222

(i) ¢j = 0 near Gh = {x ; X, +x, = Ri’ i=1,2. VO <X, < h}
(iii) dive - = 0. (iv) w(xl, X, 0) f ¢(x1, X, h),
2 (x., x., 0) = =2 (x_, x_, h) 12 2 12(G.) is the completion of
ax, 1720 Tax, 1t T2 ¢ - “oh TP

2
Cz 5 with respect to the norm of L (Gh). By P. we denote the

orthogonal projecfion of L2 onto Lé' For ¢ ¢ C: . we define an
B H
operator A by Ag¢ = -PAp. It is easy to verify that A is a strictly
s . . . 2 s .
positive symmetric operator in the Hilbert space Lc' The positivity is

verified by the Poincaré inequality. . We take the Friedrichs extension of

A which we denote also by the same letter A. Then A is a strictly

(5)
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. -1
positive self-adjoint operator with compact inverse A ~. For real Y

!
vl

we denote\rAY the fractional power of A and by D(AY) the domain of

v

definition of A' endowed with its graph norn || . = ]]AY¢]].

f

Ly
. " ‘
Transforming the unknowns from (v,q) to (¥,p) by the identities
V=u+Ww,q=Dp+ qo, and making use of the above notations, the
equations (IVP) and (BVP) are transformed (formally) into the

following abstract evolution equation (EE) and an operator equation (E)

in L2 respectively.

c >
/ é2-= “-Au «P(Vu+Vu+Vw
l dt TV W u
(EE) ]
u(0) = a
and
(B) Au + P(Au + un + Vh”° = Q.

In (EE) u = u(t) is regarded as an H:-valued function defined on
“{t> 01} Inorder to investgate the integrability of the equation (EE),

we introduce the following integral equation (IE),

t
(IE) u(t) = e_tAa - 5’ e'(t's)Ap(v w)ds

0 u(s)

u(s) + VWu(s) + Vu

(s)

_ -tA ‘
where by e we denote the semi-group of operators generated by -A.
If we can prove the existence of solution u(t) of (IE)' with certain
regularity property, it is easy to verify that it is a regular solution

of (EE). Hence we shall be engaged ekclusively in (IE).

(6)
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Now we can state our theorems which we are going to prove in this

paper.
Theorem 1 (an existence theorem)

(1) For every r > 0 there exists T > 0 such that there exists

' 2
uniquely a solution of (IE) on the interval {[0,T] for every a ¢ (Al/

)

with  [AY%) <x

(2) For every T > 0 there exists r > 0 such that the statement

in (1) holds.

- Theorem 2 (differentiabilityfbf the evolution operator)

The evolution operator St : D(Al/z) - D(Al/z) is Fréchet

/2

differentiable at 0 ¢ D(A1 ) for any t > 0.

Theorem 3  (eigenvalue problem for the Frechet derivative of the

evolution operator)

For any w = (wl, wz) € Sl (the l-sphere) such that

(R2w2

22 s :
— - > =
O lel)(wz wl) 0 there exists p Py > 0 such that the

Frechet derivative of the evolution operator St at 0 has real positive

eigenvalue greater than 1 for every t > 0.

Theorem 4 O is an isolated solution of (E) in D(A') with

3
Y > 7 for almost all Q = (@, 92) € Rz.

1

(7.



3. Existence theorems.

. -tA
First we state two lemmas concerning the operators A and e .

For the statement of Lemma 1, we introduce the operator B defined

’ 2
as follows. The domain of definition of B is 7D(B) = Wz(G ) n H (Gh)

where w (Gh) is a L2-Sobolev space of order m, and }4§(Gh) =

-1 Ju _
'{u € wchh) s u G-h = O, u(xl, x2’ 0) "‘ u’(xl: xz: h): ax3(x1> xz.\ 0) =
ju ‘ -
ax (xl, X, h)}. And for_ u e D(B), Bu Au.

Lemma 1. For 0 <y <1, D(AY) = D(BY) n L2. And therefore

DAYy < C(E£) for vy >,%- and  sup- |u(x) | < C IIAYu for ue D(AY).
xeGh

We can prove the lemma by the interpolation theory of Lions and
a certain fact concerning 7P (A). For details, see H. Fujita-

H. Morimoto {2] where analogical result is proved.
Lemma 2. For O<y<e, | AYe | <t

Proof. The proof is easy if we use the spectral representation
of * A and so we omit the proof.

We note here that by virtue of Lemma 1, the nonlinear operator

1/2.

,Pvuv is well-defined for every u ¢ D(AY) if v > %3- and v e (A7)
' | ' Y ; iy 1/2 I .
and we have HPvuv]] < CY [[A'ul| | A" "v{ . We note also that in the
3 3 Bv
cartesian coordinate system, Vv= F (% u, )~——--(u V)v
u 321 =1 i ax

and so the above estimate is an immediate consequence.

(8)



Now we are ready to study the integral equation (IE). For that

3
purpose we introduce a function space y;, for T ( >0) and (z-< ) vy

( < 1). W¥ is a space of‘all D(Al/z)-valued functions u(t) defined
on the interval [0,T] such that (i) u(t) e CC[0,T] ; D(AI/Z)) o
C((0,T] 5 DAM),  (ii) dnd the nomm

Hull = swp 1aAY2%ucoll + swp swp s 2faacs)]

0<t<T O<t<T  Ocsgct

is finite,
We are going to obtain solutions of the integral equation (IE) in

the class W; by the iteration method. We use the following iteration

scheme.

uo(t) =0,
t J-(t-9)A

~tA
(3.1) un_'_l(t) =8 a-=- S’O |

P[(u, (s)+V)u () + (wevdu ()
+ (un(s)-v)w]ds.

First we must verify that the iteration is possible in @;.
To that end we introduce functions Ku(t), Mu(t) for functions u(t)

in Y%. . They are defined as follows.
: 1

1/2

Y-z Y A _
Ku(t) = sup s [A'u(s)] , -Mu(t) = max [JAT %u(s)f .

ks<t O<s<t
= - =

And in addition we define operators A,B, & by

t e-(t-s)A

0

A(u)(t) = Jy P(u(s)+Vju(s)ds

t
B(u)(t) = S " (5502 b lwet)uts)ds

¢ O

Eu(t) = § o (t-8)A P(u(s)*V)wds

(9
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Then we obtain the following estimates which justify the iteration.

Lemma 3.

1

Y7 -
sup s 2 | A%A) ()] _f_tl e B.K ()M (t)
O<sst L ’ Y

Y- C
s s 2 B e g e = Al o)
0<s§t 1 ' Y

Y7 Y
swp s 2w el g ep I Rl o

O<s<t

sup || A% (o))

loy ,

<t YC B K (tIM (t)
O<s<t - yluw “u
s A 2w ol ¢ % 2 AVl M (0
O<sgt ¥
sp || A 2w ol ¢ £ 7T 1 Al k0

= Y u
O<s<t

Here we write B1 = B(1l-vy, %-- v) where B(-,s) is the beta function.

Proof. We prove the first estimate only. The others are proved
similarly.

s

3
S‘; 14 e b tu (o) Muce)]| do < g‘ cs-g)‘YcY 8% | | AY %) do
0 9
1 13

S -y 1 E—- 2y
Ku(s)Mu(s)do = CYKu(s)Mu(s) ‘Y

c _Y (S-o)-yoz

>

2
(l-o)”Yp s dp
Y 0
3
2

nA

0

& 3
s QYB(IJY, 5-—Y)Ku(s)Mu(s].

Hence we have

1
2,y 1y
sup s !{A A(u)(s)“ < c B1 sup s Ku(s)Mu(s) = C Blt
O<s§t Y 0<s§t i

1+«
K (M-

In the last equality we use the fact that Ku(t) and Mu(t) are

. 3 )
increasing functions and the assumption that 7Y% 1. Q. E. D.

(10)
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By Lemma 3, we have

1

WL
sip s 2 A [au(s)) + B (s) + ()] <

O<s<t

=

+ Cde(t) +.C3t
~ and

sup || A2 [ (s) + gt () + B ()] <t

O<s<t

Therefore, defining N (t) = max{K (t), Mu(t)}

Blu) + P(u), we have

1Y, 2. " '
(3.2) N £u§(t) <t [ClNu(t) * (cz +C

where we used s Cps C to denote positive ¢

3

Y and the Couette flow w.
We now return to the iteration scheme (3.

(3.2) we have the following reccurence inequal

(3.3) N, ® <l Al/za” + tl-Y[clNin(t)

n+l

By a simple consideration we have for every u

(3.4) N, (8) S XC)

n

if ¢ tl-Y+ cztl/2 <1 and At) €0

2

where we define

(c tl"'Y + C tllz - 1)2

A(x) = (e, 3

(3.5}_'

and

(11)

3

11

1-y
F {ClKu(t)Mu(t) +
.
M (t)]

1-Y
| [ClKu(t)Mu(t) * CZKu(t) +
* CM (8)]
and D(u) = cAu) +

t N (0]

onstants depending only on
1. By the estimate
ity
1
Yo

2
N, (0]
n

+ (c2 + cst

¢

- 4c1t1‘Y[jAl/2au
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1-Y

(3.6) x(t) = [1 - (c,t7 # cstl/z) - A(t)l/zj/zcltl‘Y.

We can now study the convergence of the iteration. Setting vn(t) =

un+1(t) - un(t), we hav§

vy = e and

o (t-5)A P[(v, _,(s)Wu (s) + (u ,(s)VIv .(s)

t
vn(t) = - 5’0
| * (wevv (s) + (v _,(s)-Vwlds.

In order to estimate vn(t) we define

1
Y5 .
D(t) = sup s A (o), Bty = sw || AYA ()]}
n . n . n n
0<s§t 0<s§t
F (t) = max{D (%), E (1)}, M) = K, (9, M) =M, (0, N =N @

Then we have
1

- N
V) » 4 Il e ag a3

A

F_(t) wll )1 () = p(t,WIF (1)

and

1/2
Fo(t)

uA

A

a“

where dl’ dé, d3 are positive constants depending only on Y. If we

note that for every fixed w, X(t) tends to 0 as t tends to O,

we immediately see that there exists a positive T depending only on

-
|AYw|| such that ¥ F (t) converges uniformly in t € [0,T].
n=0

Hence we see, noting that A is a closed operator and has a continuous

/2

inverse, that u(t) = lim un(t) exists in Lj and ‘o(Al ) for

N-»o0

(12
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te [0,T] and in 'O(AY5 for every te (0,T] and that the former
convergence is uniform on [0,T] and the latter lbcally uniform in
(0,T}. The fact that the limit function belong5:£o ‘W¥ is evident.
The estimates above show that for a g;ven r >0 we can choose T >Q
such tﬁét the limit funcéion exists on the interval |0,T] for every

1/2

For the proof of assertion (2) of Theorem 1, we note that (3.5)

1‘/23 “

and (3.6) show that X(t) -0 when[A + 0. This and the fact

that in the inequality cle'Y + csT <1 62 and c, depend only on
} indicate that for arbitrary given T' > 0 we can choose r > 0 such

/2

that we can construct a solution u(t) € ?Y' ~for every u(0) = a ¢ D(Al )

1/

such that | A zal( <.

Thus we have proved the foilowing

Theorem 1.

(1) For every givén r >0 wecan chodse T >0 such that'for

every a € @(AI/

2 v
) with | Allza“ < r, there exists a solution u(t)
of the integral equation (IE) in the interval [0,T] which belongs to

¥
t v,
he class T

(2) For every given T > 0 we can choose r > 0 such that there

exists a solution of -(IE) on [0,T] for every a»e‘D(Al/z) with

1A% < x

Remark  “.  We have not mentioned the uniqueness of the solution.
We have omitted the proof since it is not difficult to prove the

. Y
uniqueness of the solution in the class YT.

13)
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4. Differentiability of the evolution operator St'
First we remember the definition of the Fréchet derivative.

Definition. Let X, Y be Banach spaces and & be a continuous-
mapping defined in a neighbourhood U of an element a ¢ X. A bounded

linear operator A is said to be the Fréchet derivative of ¢ at a if

oCa + h) - &(a) = Aa + o(flhi) as a+h tends to a in U.

And when this is the case, ¢ is said to be Frechet differentiable at a.

We now return to the integral equation (IE) and define the

/2) 4@(A1/2) by S.a = u(t) where u(t)

: 1
evolution operator St 1P (A c

is the solution (IE) with initial data a. By Theorem 1, we know
that for any given T > 0 we can find a neighbourhood U of 0 ¢ D(AI/Z)

where ST is defined everywhere. Hence we can talk about the Fréchet

differentiability of ST at 0. We fix U and T above.  For

‘h € U, st satisfies the following integral equation by definition

-t ° -(t-
Sh=e Ah - 3 e (t-s)A P{(S heV)S h + (w-V)S h + (S8 -V)w]ds.
t 0 s s s s
An inspection indicates that the Fréchet derivative of St at 0 e D(Al/2

which we denote by DSt must satisfy the following integral equation if

it exists
-t T tt-s)A .
(4.1) DS = e M 5 e P[(w-V)DS h + (DS h-v)wlds.
0

In order to integrate the equation (4.1) we introduce the function

space WI again and define an operator by

(14)

)
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at

T (L) = e-tAh - 5 e"(t—S)A
0

P[(weV)£(s) + (f(s)V)wlds.
The operator I is well-defined since we have the following estimate

1

‘ 7
(4.2) max{ sup s ~ [ATT(E)(s)] ,
0<s§t

N L IO B Tk Y IR NSRS IO
O<sct «

with positive constant ¢ depending only on Y and w (the Couétte flow).

€ WY,

And we have for fl’ f2 T

o1
Y=

@ firEp -t got IAMI A v er Al g -l

A

with positive constants c¢_, ¢ depending only on Y. We choose

1 72
t > 0 such that

1
Y
(4.4 eyt AWl s eyt B <

Then there exists uniquely in ?I a solution which we denote by £(t ; h).

Next we shall prove, making use of £(t ; h), that there exists
0 < t' ¢ 1 such that ST, is Fréchet differentiable at 0. We set

g(t ; h) = Sth’ then we have

. t
(4.5) £(t ; h) - g(t ; h) = § o b (s 5 by Mgls 5 M)ds
Y0
_t
N f e‘(t's)A.p{(w.v)(f(s 5 h) - g(s 5 h)) +
. o ’

([£(s 5 h) - g(s ; h)]-V)w}ds.

Then what we have to prove is that there exists ' > 0 such that

1/2

| uAmcch' m) - gl ) /JAY AR > 0 as [ AME] » 0.

Estimating (4.2), we have

(15)
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ll£Ce 5 h) - gt s MYl <

1 :
- . Y-3 1- 2
et VIWha v e llece s - ge s mll v et ™ Ha ey
with positive constants Cgs 4o ¢ depending only on v where the norm

is for functions f, g ¢ WI, and
1
-Y_—

L(t) = max{ sup s 2 ung(s s, swp | Al/zg(s ; ).
0<s§__ t 0< s<t

If we choose T' > 0 such that

L
(4.6) 631'1;Y HAYWH 1+, 2) <p<1,

we have

lEce s B - gt s Wl < @ - ) et AT Lirh2.

-This implies that

£(rr 3 h) - glt' 3 by =oc [[aY%] &

which was to be proved. Thus we have proved that ST, is Fréchet
differentiable at 0. By the estimates (4.2) and (4.4), we see that

T' is determined only Y and w and so, by the chain rule for Fréchet

derivatives, we have the following

Theorem 2.

For every T > 0 the evolution operator St is Fréchet differentiable

at 0 g‘D(Al/z) .

(16)
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5. The eigenvalue probelm.

In this section we study the eigenvalue problem of the linear operator

E = DSt which is the Fréchet derivative at zero of the evolution operator

real positive
St' What we wish to know is whether E has Qréigenvalue s

7sa greater than 1 or not. If this is the case, the corresponding
‘Couétte flow must be unstable, or we define that it is unstable.
This problem can be reduced to investigate whether the eigenvalue

problem
- (5.1) -Au - PVuw - Pwa = Au |

"admits real positive eigenvalues or not. It is easy to verify that

(5.1) 1is equivalent to

(5.2) Au - Vuw - un - grad p'= Au, divua =0
' LR
. . T
with a suitable scalar function p. We adopt the cylindrigai corrdinate
i
system (r, ¢, z), where u = (ur, u¢, uz) = ur 5;'ﬁ\;§-f+ uz 37 and
Nod
the Couétte flow w 1is expressed as w = (wr, w¢, wz) ='(A + %g-ggz

We recall that

2
1

2 2 2 2.2 2 2.
A= (R, - RIBD/(RS - R, B = RIRO(® - 2))/(R) - R)).

In the cylindrical coordinate system, (5.2) is expressed as

(17
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] wu uow

R S b9 _ o _ 3 _
( Ca fz)ur % 59 NOu + =2 MNuw, + = = CA U
u ' wu u w
R N S I A _or __%r 1 9
(A rz)u T, o N(wJuq) " N(u)w¢ > =z 3¢—>\u¢
.
u = Nwu, - NWwW - 5z luz
u ou
L-]_'. ._a(m)+l. _—-Q+..__z— =o
r or T T 3 YA
where
2 2 2 v
. 8,1 5,1 5 8 .y o, & 9, 9
o ar2 RN 2 3¢2 ' azz and ol =y or * ro¢ 'z oz

We seek u and p which are indepemdent of the variable ¢. Then (5.3)

reduces to

3 B . ’
( (8- 5w+ 200 % 5du - on =
T T .
(A - L Ju - 2Au ’ = \u
1 SO r Y
(5.4)
Au ~ P = U
A 9z z
ou
1 _z
L Y 5y (m )+ BZ =0

Introducing a stream function f by the relations ru = 5—2— (rf) and

) .
ruz = - 3 (rf), we obtain from (5.4)

L(L - A)f + 2(A + —2)u¢ =0
(5.5) ¥

L - - 2Af£ =0
( A)uq5

. (18)
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21 5 Bt
where we write L = &, L0 = . On f we impose an
2 r 3r 2 2
oT ez T
additional boundary condition that f, ggf =0 for r = Rl’ RQ.
. . 2w
We set f(r,z) = f(r)cos 1z, u¢(r,z) = u(r)sin z with g = R The

boundary condition is reduced to the condition f(Ri) = f'(Ri) = u(Ri);
for i = 1,2. Hence we have the following system of linear ordinary
differential equations

[ 06D - a - D+ 2 s Dout) = 0
T

(5.6) { @ - 02 - Au(r) + 2A£f(x) = 0
|
& f(Rl) = f'(Ri) = u(Ri]"'? 0, i=1,2

d2 1 d 1
where we write 0 = — + = — . —— . In order to investigate the
2 r dr 2 o :
v dr T . .
system (5.6), we consider the following two boundary value problems

for ordinary differential operators D -. y for u-z 0.

®-wel = @, e ®,R)
(BVP-1)

g(Ri) =0, 1i=1,2.

)

j @ - ul)(v - uzlg(r) = (), re (Rl, Rz

(VBP-2)
\ gR) =g'(R) =0, i=1,2

with y, My > 0.

The next lemma is uselful.
Lemma 4. Let G(r, r' ; u) and H(zr, ' ; ul, uz) be the Green

(19)
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functions for (BVP-1) and (BVP-2) respectively. Then G and H
are negative valued and positive valued respectively glmOSt everywhere.

This lemma may be proved by an explicit consﬁruction of the kernels
making use of the Bessel functions but it can be proved by repetition of
elementary discussions. The details are left to the reader.

We now return tb6 the system (5.6). From (5.6) we have

R
2 2 2 B
(5.7) f(r) = - S) H(r, r' ; o . 0 + A)20(A + ——Eﬂu(r')dr'
R b
1
and
R
.2 , 2
(5.8) u(r) = - S’ G(r, r' ; o° + A\)2Af(r")dr'.
. R -
1
Hence we have
RZ
(5.9) £(r) =S K(r, r' ; AE(x")dr',
R1 R )
2 2 2 B 2
where K(r,s ; A) = 4¢ Y H(r,r' ; 0 , 0 + AA(A + -—EgG(r'.s ; 0 ,A)ds.
R ) T
1
From (5.7), (5.8) we have
R2
(5.10) flx) = § K(r,s ; o, A)f(s)ds.
. Rl

Now the problem is reduced to that whether the integral operator K defined
by the kernel K(r,s ; o,A\) has 1 as its eigenvalue or not. For that

purpose the following lemma of Jentzsch (See Schmeidler [4]) is useful.

Lemma 5. Let K(r,s) be a continuous kernel on the interval

[Rl, Rz] which is positive almost everywhere. Then the integral operator

(20)



Kf(x) = ‘S . K(r,s)f(s)ds has a positive eigenvalue.
1

What we have to do next is to investigate the signature of the

r%0_-R%Q .RR(Q )
. B 22 11 2 2 12 2
function Xk(xr) = A(A + 2) =3 > [(RZQZ-Rlﬂl) 3 ]
R.z.-R1 T

For a fixed w (wl, wz) e>Sl(the l-sphere) we set (Ql, 92) =

p(wl, wz): P : 0, and

.
Rlw_-R w R, (w,-w) ‘
2 22 11 2 2 RiRs a o
(x5 pow) = pn 5 [(Row, - Row) + 3 = P21 (rw)
R2 - Rl T
Then the kernel K is expressed by
R, .
. 2 -
2 . 2 2 . 2
(5.12) K(r,s ; A) = p 4o H(r,r' ; o7, o +A)&(x' ; @ DK(r',s ; 0 ,A)dr’
R .
1

)
p L(r,s ;v,w).
Hence, -making use of Lemma 4 and Lemma 5, we have

Theorem 3.

- 1 2 2
F i = , - - >
or every fixed (wl, wz) €S such that CR2m2 lel)(wz wl) 0
there exists p(w) > 0 such that for every p > p(w) the corresponding
Couétte flow is unstable under infinitesimal perturbations.

It suffices only to notice that the integral equation (5.10) is

reduced to

£(r) = p 5’ L(r,s ; A,w)£(s)ds.

(21)



6. Isolatedness of the Couétte flow.

What we are going to do in this section is to investigate whether

or not 0 1is an isolated solution of the equation
(E) Au - P(uWju + P(weW)u + Plu-V)w = 0

where w 1is the Couétte flow. We take (1 >) Y ( > %ﬂ and work in
D(KY). Assume that 0 ¢ D(AY) is not an isolated solutién of (E).

Then there exists solutions un( #0) of (E) for n=1,2,---- such

that lim ”Ayu | =0. set ¢_=nu/ la¥u || . Then we have
. n A : n  n n

(6.1) ap_+ | Au_[[Ps_-v)6_ + P(w-¥Ig_ + P(p_-vIw = 0.

As for the second term, we see that

1 1
ooyl ¢ ¢ IA% a3 1 g ¢ a1 I 1 2= ¢ a2 |
n Y n Y
and so 1lim I]AYunf] P(¢n.v)¢n = 0. . Hence

lim {Ap_ + P(wev)p_ + P(¢_-vIW} = 0 strongly in L2.
Trvoo . n n n ) el

And so by the boundedness of Ay-l we have

(6.2) lim {AY¢n + AY-I{P(W.V)Q)“ + P(q)n.v)w]} = 0.
oo
. . Y 1/2 2
By the compactness of the inclusions D(A') - p(A"" ) » L and the
c
equality |[[ve | = | A1/2¢ | for ¢ « 'D(Al/z) we see that

lim [P(w-V)¢n + P(¢n'V)w] exists strongly in L;, and this implies
n

that ¢w = lim ¢n _exists strongly in D(AY), Hence we have
N0 '

(22)



f o+ A p(uemo, + P(o,TIW] = O
(6.3)
VoY I = 1.

This implies that the operator B defined by Be = -A—I{P(w-V)¢ + P(eV)w]
1/

: 2
in Li with domain of definition D(A™" ") has. 1 as its eigenvalue.

recall
We now mememiur the explicit form of w.
.2 2 _
RS S . - o, - lezcwl'wz)}J§
rao P2z % TR e 3
Ry7R1 '

where p >0, w-= (wl, wz) € Sl. We set w = pww. Then Be=
_pA_l[P(Wm-V}p + P(¢-V)ww]. By'thefcompactness of the operator A-JL

1A% for ¢ e DAY

“and the equality “V¢;u = 2) we can prove that
2 ‘ s
B can be extended to the Whole space Lc ‘and the resulting operator is a

compact operator. Hence we have

Theorem 4. The Couétte flow is an isolated solution in Wz(Gh}

{y >.§3 for almost all § = (Ql’ 92) € Rz.

(23)
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