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1 Introduction

In the beginning, the study on the unstable systems was aimed at the explanation of the
exponential-decay law for the radioactive decay, the spontaneous emission from the atoms, and
so forth. On the other hand, in the middle of the last century, the possible deviation from the
exponential-decay law was pointed out both for short times and for long times [1]. In a recent
experiment, a short-time deviation was successfully observed, while the long-time deviation has
still not been detected, even though expected for a variety of unstable systems which have a
continuum of the lower-bounded energy spectrum. The traditional study on the long-time de-
viation often resorts to the single lowest-level approximation (SLA) of the atoms, and it could
be verified as long as that level is quite separate from the higher ones. However, the multi-
level treatment of the study has a possibility of another advantage: the choice of coherently
superposed initial-states extending over various levels. Such multilevel effects on the temporal
behavior are still not well studied, and much less examined with respect to nonexponential decay
at long times. Recently, we however examined such a long-time behavior of the survival prob-
ability S(t), incorporating the initial-state dependence, based on the N-level Friedrichs model,
and clarified how the asymptotic form of S(t), that follows a power-decay law, depends on the
initial states [2]. In this study, we also numerically confirm these results for S(¢) by considering
the spontaneous emission process for the hydrogen atom interacting with the electromagnetic
(EM) field. We demonstrate the t~*-decay of S(t) theoretically obtained in [3] and a faster
decay pointed out in [2]. The latter is estimated like t~8 as a power-decay law. The analytic
results herein are owning to Ref. [2].

2 Friedrichs model and the long-time behavior of S(t)

The N-level Friedrichs model describes the couplings between the discrete spectrum and the
continuous spectrum. The model Hamiltonian is defined by H = Hp + AV, where Hy =
SN wnlnd(n] + [§° dw wlw)(w] and AV = AXN, [®dw [vf(w)[w){n] + vn(w)ln)(w]]. They
denote the free and the interaction Hamiltonian with coupling constant A, respectively. The
eigenvalues w, of Hy were supposed not to be degenerate, i.e., w, < w, for n < n’. Both |n)
and |w) are the bound and scattering eigenstates of Hy, respectively, and compose the completely
orthonormal system. v,(w) denotes the form factor characterizing the transition between |n)
and |w). In the latter discussion, we analyze the model with the assumption that the form factor
vn(w) is analytic in a complex domain including the cut (0, 00), square integrable, and behaves
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like vy (w) ~ gowP™ as w — 0, where p, is a positive constant while g, is an appropriate one.
These conditions are satisfied by several systems involving the spontaneous emission process
of photons and the photodetachment process of electrons The initial unstable-state |¢) of our
interest is an arbitrary superposition of |n),

N
W) =Y caln), (1)

n=1
where ¢,’s are complex numbers satisfying the normalization condition Z _1leal? = 1. Then,
the survival probability S(¢) of the initial state |¢), that is, the probability of finding the
initial state in the state at a later time t, is defined by S(t) = |A(t)|?, where A(t) denotes

the survival amplitude of [¢), i.e., A(t) = (v|e"®H|y). The Hamiltonian H in general has the

possibility of possessing not only the scattering eigenstates Iz,bé,i) ), but also the bound eigenstates.
However, the emitted particles detected in the decaying process are only brought from the initial
component associated with the scattering eigenstates. We shall here confine ourselves to studying
the decaying part of A(t), denoted by the same symbols as

o0 .
Alt) = | dw|@ST|w)Pe. (2)
In order to estimate the long-time behavior of A(t), we need to obtain the scattering eigenstates
Iw(i)) For this model, it is actually accomplished by solving the Lippmann-Schwinger equation,
|1/;(:t) lw) + A(w £30 — Hg)‘“1V|z/1L(‘,i)). Then, we can estimate the low-energy behavior of

(&) |? and evaluate the long-time behavior of A(t) by using the asymptotic method for the
Fourier integral,
/\2I‘(2p +1)

A(t) ( t 2p+1

(xI)? + o(t™%P71), ast — oo, (3)
where 12+ = ¢@P+10/2 gand T(z + 1) = [§° da:xze“’” We have here introduced an auxiliary
vector defined by

2 faln), (4)

with f, = Gn/wn +O(A\2), where ¢, = g, for pn = p or 0 for p, # p, and p = min{p,}. With use

of the §, instead of ¢,, we extracted only the dominant part of Ff,(l )(w) at small w. We clearly
perceive A(t) ~ t~2P~1 the power-decay law. It is also worth noticing that the dependence on
the initial states surely appears in Eq. (3) through the factor |{x|¢)|2.

3 The initial-states dependence of the long-time behavior of S(t)

In this section, we shall examine the long-time behavior of S(¢) with the various initial-states.
Let us first consider the higher-level effects on the long-time behavior of A(t) that starts from
the localized initial state at the lowest level. For such an initial state, i.e., ¢, = dn1, |[(X|¥)|* =
(lg1|2/w?)[1 + O(AX?)] + o(t~?P~1), where we supposed that § # 0. It is worth noting that there
are no factors related to the higher levels explicitly, which implies that the long-time asymptotic
behavior of A(t) could agree with that in the SLA (i.e., N = 1) for a sufficiently small \. We
can also find a special superposition of discrete states |n) that maximizes the asymptotic form
of A(t) at long times. With resort to the Schwarz inequality, we see that the maximum of the
factor (x|v) is just attained by if and only if |¢) = ¢|x)/|lx||, where ¢ is an arbitrary complex
number with |¢| = 1. Therefore, preparing the initial state |¢) parallel to |x), we can maximize
the asymptotic form of A(t) at long times. On the other hand, there are another kind of initial
states that are coherently superposed to eliminate the factor (x|¢), which is realized by the
initial states orthogonal to |x), i.e., {x|¥) = 0. In this case, the first term in the right-hand
side of Eq. (3) becomes zero. This fact may imply that A(¢) for such an orthogonal state
asymptotically decays faster than ¢t 2?1, Before concluding this section, we point out that the
initial state extended over discrete states |n) has the possibility of increasing the intensity of
A(t) more than a localized one would. This possibility may be justly recognized by remembering
the hermiticity of the Hamiltonian which allows an repopulation process of the decayed state at
a later time {.
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Figure 1: (a) |Acut(t)]? for the initial states |¢) = |1) and |x)/||x||, and their corresponding
asymptotes predicted by Eq. (3) (solid lines). (b) |Acus(t)|? for the initial states [¥) = |x)/|Ix|,
Ix1), and |x3). For comparison, two straight lines parallel to t~8 (solid lines) are also depicted.

4 An application to the excited states of the hydrogen atom

In order to illustrate our analysis, we consider the spontaneous emission process for the hydrogen
atom interacting with the EM field [3]. We suppose that [n) = |(n + 1)p) ® |0), where |(n + 1)p)
and |0) denote the (n + 1)p-state of the atom and the vacuum state of the field respectively, and
also |w) = |1s) ® |1,,), where |1s) and |1,,) denote the 1s-state of the atom and the one-photon
state respectively. In this case, an initially excited atom makes a transition to the ground state
with the emission of a photon. We here choose only three excited levels: the 2p state, 3p state,
and 4p state. Then, the form factors for the 2p — 1s, 3p — 1s, and 4p — 1s transitions become [4],

viw) = b (w/M)YAL A+ (w/A)Y (5)
vw) = 8IATY3(w/A2) 2 [1 + 2(w/A2)3[1 + (w/A2)?]3/128V/2, (6)
viw) = 54V3A7 2 (w/A3)/2[45 + 146(w/As)? + 125(w/As)4][1 + (w/A3)?)~*/15625, (7)

where A; = 8.498 x 108 571 Ay = (8/9)A; s~1, and Az = (10/12)A; s~! are the cut-off
constants. Note that these form factors have different forms, however all of them behave like w!/2
at small energy. The other parameters are given by A? = 6.435 x 107°, w, = %Q[l —(n+1)7?,
and Q = 1.55 x 101571, As was emphasized in Ref. [3], these form-factors are surely analytic
results without any approximation. The Hamiltonian H is then derived within the four-level
approximation and the rotating-wave approximation.

In the following, we shall compare the long-time asymptotic-form of A(t) predicted by Eq.
(3) and that of A.yt(t), the latter of which we evaluate numerically. A.y(t) is defined by

Aoult) = 5z [[WICH = ) e dz. (8)

271
The contour C runs clockwise around the half line {re”™/4|0 < r < oo} in the complex energy
plane. This contour lies on the first Riemann sheet when it goes below the half line, and gets
into the second Riemann sheet when it above the half line. Acyt(t) is related to A(t) through the
equation, A(t) = Acut(t)—3_,, Res ((W|(H — 2)"ah)e ™, 2,), where 2, is in general the complex
pole of (|(H — z)~!|) located in the region between the half lines [0, 00) and {re~™/4|0 < 7 <
oo} in the second Riemann sheet. In the weak-coupling case considered here, each of z, is in the
neighborhood of wy,, and thus the asymptotic form of A.y(t) and that of A(t) are expected to
exhibit the same behavior at long times, when the power decay dominates over the exponential
decay [5]. Let us first restrict ourselves to the two initial states: the localized state at the 2p level
|1) and the maximizing state |x)/||x||. Figure 1 (a) shows the time evolution of |Acy;(t)|* and
the asymptote of |A(t)|? for these initial-states. It is clearly seen that | Ayt (t)|?’s for these initial
states approach to the corresponding asymptotes of | A(t)|? parallel to =4, however the difference
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between them is very small [2]. At ¢t = 10°A7!, we obtain |Acut(t)/Aasp(t)? =~ 0.999 for these
initial states. Is is worth stressing that this time is very earlier than 1/v; =~ 1.36 x 1()10A1_l the
lifetime of the 2p state [3], where y; = 27A2|vy(w1)]? + O(A*) ~ 6.268 x 10%s~! [3]. We next
choose the two special states, |x1) and |x3 ), as an initial state |¢)). They are defined by

Ixi) = G0 - f12)], e) = ClAfE) + £0512) — (A +1£7)12)], (9)

where C; and Cy are the normalization constants. Then, the relations that {x|xi) = 0, (x|x3) =
0, and {xi|xs) = O are satisfied. Figure 1 (b) shows that the time evolution of | Ay (t)|? for
these initial states and for the maximizing initial state |x). We clearly find that, as was seen
in Fig. 1 (a), |Acut(t)|? for |x) asymptotically decays like t= (solid curve), whereas |Acus(t)[?
for other initial state follow another decay-law faster than t~* (long-dashed and short-dashed
curves). They seem to be fitted with the power law t~8. For a comparison, we also depict in Fig.
1 (b) the two straight lines 150.0 x (A;t)™8 and 30.0 x (A1t)~® (solid lines), to which |Acys (t)|?
for the initial state |xi) and | X3) approach respectively in this time region.

5 Concluding remarks

We have considered the long-time behavior of the unstable multilevel systems and examined the
asymptotic behavior of S(t) for an arbitrary initial state in the long-time region, where S(t)
obeys a power-decay law. In particular, we have also discovered two kinds of special initial-
state. One of them maximizes the asymptotic form of S(¢) at long times. The other initial
state eliminates the first term of the asymptotic expansion of S(t). We numerically confirm
the previous results for S(¢) [2] in consideration of the spontaneous emission process for the
hydrogen atom. Then, we find not only the ¢t~4-decay of S(t) but also a faster decay, which is
fitted by a power-decay law ¢ 8. These results mean that the long-time behavior is determined
by not only the small-energy behavior of the form factors but also the initial unstable-states.
Such relations between the initial states and the power decay law were already studied with
respect to the asymptotic behavior of wave packets for finite-range potential systems [6].
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