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不安定多準位系における生存確率 S(t)の長時間での崩壊様式を N準位Friedrichsモデ、ルに基づ、
き解析する.不安定多準位上にまたがった任意の初期状態に対し， S(t)の長時間での漸近形を求め，
それが初期状態の不安定準位の占有の仕方にどのように依存するかを明らかにする.このとき特
にS(t)の漸近形を最大化する初期状態が存在することを指摘する.一方その漸近展開の第一項目
を消してしまう特別な初期状態も存在する.この場合，従来知られている崩壊則よりも速い崩壊則
が得られることが期待される.そこで実際に水素原子からの光子の自然放出過程を例に，この速い
崩壊則を含む崩壊様式の初期状態依存性を数値的に確認する.

1 Introduction 

In the beginning， the study on the unstable systems was aimed at the explanation of the 
exponential-decay law for the radioactive decay， the spontaneous emission from the atoms， and 
so forth. On the other hand， in the middle of the last century， the possible deviation from the 
exponential-decay law was pointed out both for short times and for long times [1]. In a recent 
experiment， a short-time deviation w部 successfullyobserved， while the long-time deviation has 
still not been detected， even though expected for a variety of unstable systems which have a 
continuum of the lower-bounded energy spectrum. The traditional study on the long-time de-
viation often resorts to the single lowest-level approximation (SLA) of the atoms， and it could 
be verified as long as that level is quite separate from the higher ones. Howeverう themulti-
level treatment of the study has a possibility of another advantage: the choice of coherently 
superposed initial-states extending over various levels. Such multilevel effects on the temporal 
behavior are still not well studied， and much less examined with respect to nonexponential decay 
at long times. Recently， we however examined such a long-time behavior of the survival prob-
ability S(t)， incorporating the initial-state dependence， based on the N-level Friedrichs model， 
and clarified how the asymptotic form of S(t)， that follows a power-decay law， depends on the 
initial states [2]. In this study， we also numerically confirm these results for S(t) by considering 
the spontaneous emission process for the hydrogen atom interacting with the electromagnetic 
(EM) field. We demonstrate the C4-decay of S(t) theoretically obtained in [3] and a f:邸ter
decay pointed out in [2]. The latter is estimated like t-8 as a power-decay law. The analytic 
results herein are owning to Ref. [2]. 

2 Friedrichs model and the long-time behavior of S(t) 

The N-level Friedrichs model describes the couplings between the discrete spectrum and七he
con七inuousspectrum. The model Hamiltonian is defined by H = Ho十入Vう whereHo = 

εLlhln)(η1 + Jooo dωω|ω)(ω1 and 入v= 入 ~~=1Jooo dw [v~(ω)1ω)(η1+ 同(ω)In) (ω1]. They 
denote the free ana the interaction Hamiltonian witn coupling constant入， respectively. The 
eigenvalues ωηof Ho were supposed not to be degenerate， i.e.，ωη < Wn' for nくが.Both In) 
and 1ω) are the bound and scattering eigenstates of Ho， respectively， and c∞ompose the completely 
O 

and 1レω)ト.In the latter discussion， we analyze the model with the assumption七hatthe form factor 
v山
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like Vn(ω) ~ qnωPn asω → 0， where Pn is a positive constant while qn is an appropria七eone. 
These conditions are satisfied by several systems involving the spontaneous emission process 
of photons and the photodetachment process of electrons The initial unstable-state 1ψ) of our 
interest is an arbitrary superposition of In)， 

|ψ) =玄白|η)， 、、l
/

噌'ム，，E
E

、、
n=l 

where cn's are complex numbers satisfying th~ ~ormalization condition Z=~=1 Icnl2 = 1. Then， 
the survival probability S(t) of the initial state 17t)，七hatis， the probability of finding the 
initial state in the state at a later time t， is defined by S (t) IA( t) 12， where A( tめ)denotes 
the survival ampl批i比七吋eof 1凶伸附4ψω1ウ)， i.e.， A(tり)= (仲例ψ洲le一4“tHI7tψ))ト.The Hamiltonian H i泊ngeneral has the 

possibili七yofposse凶 ngnot 0 

However， the emitted particles detected in the decaying process are only brought from the initial 
component associa七edwi七hthe scattering eigenstates. We shall here confine ourselves to studying 
the decaying part of A(t)， denoted by the same symbols as 

A(t) = I∞dwl(ψゲ)1ψ)1
2e-itw. (2) 

In 
In order to estimate the long-time behavior of A(t)， we need to obtain the scattering eigenstates 
|ψゲ))・ Forthis model， it is actually accomplished by solving the Lippmann-Schwinger equation， 
1 7þ~:!:)) = 1ω) +入(ω 土 iO-HO)-l VI 7þ~土)). Then， we can estimate the low-energy behavior of 

1(仏土)1ψ) 12 and evaluate the long-time behavior of A(t) by using the asymptotic method for the 
Fourier integral， 

2f(2p + 1) 1/_ .1-1.¥ 12 
A(t) =入1(χiψ)1

2 + o(t-2p-1
)， as t →∞， 

(it )2p+1 
(3) 

where ρ+1 ♂(2p+1)π/2 and f(z十 1)= Jo
oo dxxze-x. We have here introduced an auxiliary 

vector defined by N 

|χ)三乞fnlη)ぅ (4) 
η=1 

withん=ふ/ωη+O(入2)，where ふ=qηforpη= p or 0 for Pn =J p， and p = min{Pn}. With use 

of the Qn instead of qn， we extracted only the dominant part of FA:!:) (ω) at small ω. We clearly 
perceive A(t) '" t-2p-1

ぅ thepower-decay law. It is also worth noticing that the dependence on 
the initial states surely appears in Eq. (3) through the factor 1(χ|ψ)12. 

3 The Initial-states dependence of the long-time behavior of S(t) 

In this sectionぅweshall examine the long-time behavior of S(t) wi七h七hevarious initial-目 前es.
Let us first consider the higher-level effects on the long-time behavior of A(t) that starts from 
the localized initial state at the lowest level. For such an initial state， i.e.， cn = dn1， 1(χ!ψ)12 = 
(lqll21ωr)[l + O(入2)]+ o(t-2p-1

)， where we supposed that Q1 =J O. It is worth noting that there 
are no factors related to the higher levels explicitly， which implies that the long-time asymp七o七ic
behavior of A(t) could agree wi七hthat in the SLA (i.e.， N = 1) for a sufficiently smallλWe 
can also find a special superposition of discrete states In) that maximizes the asymptotic form 
of A(t) at long times. With resort to the Schwarz inequality， we see that the maximum of the 
factor (χ|ψ) is just attained by if and only if 1ψ) = clx)/11χ11， where c is an arbitrary complex 
number with Icl = 1. Therefore， preparing七heinitial state 1ψ) parallel to 1χ)， we can maximize 
the asymptotic form of A(t) at long times. On the other hand， there are another kind of initial 
states that are coherently superposed to eliminate the factor (χ|ψ)， which is realized by the 
initial states orthogonal to 1χ)， i.e.， (χ|ψ) = O. In this case， the first term in the right-hand 
side of Eq. (3) becomes zero. This fact may imply that A(t) for such an orthogonal state 
asymptotically decays faster than t-2p

-
1
. Before concluding this section， we point out that the 

initial state extended over discrete states In) has the possibili七yof increasi時 theintensity of 
A(t) more than a localized one would. This possibility may be justly recognized by remembering 
the hermiticity of the Hamiltonian which allows an repopulation process of the decayed state at 
a later time t. 
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Figure 1: (a) IAcut(t)12 for the initial states 1ψ) = 11) and 1χ) /11χ11， and their corresponding 
asymp七0旬spredicted by Eq. (3) (solid lines). (b) IAcut(t)1

2 for the initial states 1ψ) = 1χ)/11χ11， 
Ixr)， and Ixr). For comparison， two straight lines parallel to t-8 (solid lines) are also depicted. 

4 An application to the excited states of the hydrogen atom 

In order to illustrate our analysis， we consider the spontaneous emission process for the hydrogen 
atom interacting with the EM field [3]. We suppose that In) = I(n + l)p) Q910)， where I(η+ l)p) 
and 10) denote the (n+ l)p-s七ateof七heatom and七hevacuum state of the field respec七ively，and 
also 1ω) = 118) Q9 11w)， where 118) and 11w) denote the 18-state of the atom and the one-photon 
state respectively. In this case， an initially excited atom makes a transition to the ground state 
with the emission of a photon. We here choose only three excited levels: the 2p state， 3p state， 
and 4p state. Then， the form factors for the 2p -18， 3p -18， and 4p -18 transitions become [4]， 

りi(ω= iA~1/2(ω/A1)1/2[1 + (ω/Ad2r2， (5) 

V2(ω=  i81A~1/2(ω/ A2)1/2[1 + 2(ω/ A2)2][1 + (ω/ A2)2r3 /128V2， (6) 

ば(ω= i54J3A~1/2(ω/ A3)1/2[45十 146(ω/A3)2 + 125(ω/ A3)4][1 + (ω/A3)2r4/15625， (7) 

where A1 8ω8 X 1018 8-1， A2 = (8/9)A1 8-1， and A3 = (10/12)A1 8-1 are the cut-off 

constants. Note that these form factors have di百erentforms， however all of七hembehave like ω1/2 
at small energy. The other p訂 ametersare given by入2= 6.435 X 10-9，ωη= ~n[1 -(n + 1)-2]， 
and n = 1.55 x 10168-1. As was emphasized in Ref. [3]， these form-factors are surely analytic 
results without any approximation. The Hamiltonian H is then derived within the four-level 
approximation and the rotating-wave approximation. 

In the following， we shall compare the long-time asymptotic-form of A(t) predicted by Eq. 
(3) and that of Acut(t)， the latter of which we evaluate numerically. Acut(t) is defined by 

Acut(t) =ιI (ψI(H -z)-llψ)e-iztdz. (8) 
L.π'l JC 

The contour C runs clockwise around the half line {re77ri/410手γ<∞}in the complex energy 
plane. This contour lies on the first Riemann sheet when it goes below the half line， and gets 
inもothe second Riemann sheet when it above the half line. Acut(t) is related to A(t) through the 
equation， A(t) = Acut (t) -L:z

p 
Res ((ψI(H -z)-llψ)e-izt， zp)， where zp is in general the complex 

pole of (ψI(H-z)-llψ) located in the region between the half lines [0，∞) and {re-イ i/410三r<
∞} in the second Riemann sheet. In the weak-coupling case considered here， each of zp is in the 
neighborhood of ωηぅ andthus the asymptotic form of Acut(t) and that of A(t) are expected to 
exhibit the same behavior at long times， when the power decay dominates over the exponential 
decay [5]. Let us first restrict ourselves to the two initial states: the localized state at the 2p level 
11) and the maximizing state 1χ)/11χ11. Figure 1 (a) shows the time evolution of IAcut(t)12 and 
the asymptote of IA(t)12 for these initial-states. It is clearly seen that IAcut(t)12's for these initial 
states approach to the corresponding asymptotes of IA(t) 12 parallel to t-4， however the difference 
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between them is very small [2]. At t = 105A1I， we obtain IAcut(t)/Aasp(t)12 ~ 0.999 for these 
initial states. Is is worth stressing that this time is very earlier than 1/γ1 ~ 1.36 X 1010 A1

1 the 
lifetime of the 2p state [3]， where ')'1 = 2π入21vl(ω1)12 + O(入4)~ 6.268 X 1088-1 [3]. We next 
choose the two special states， Iχ士)and Iχt)， as an initial state 1ψ). They are defined by 

|χ士)= C1[J2'11) -1;12)]， 1χt) = C2[!I13'11) + 12/3'12) -(1ん1
2+ 1ん12)12)]， (9) 

where C1 and C2 are the normalization consta凶s.Then， the relations tha七(χ|χr)= 0， (χ|χす)= 
0， and (χrlxt) = 0 are satisfied. Figure 1 (b) shows that the time evolution of IAcut(t)12 for 
these initial states and for the maximizing initial state 1χ). We clearly find that， as was seen 
in Fig. 1 (a)， IAcut(t)12 for 1χ) asymptotically decays like t-4 (solid curve)， whereas IAcut(t)12 

for other initial state follow another decay-law faster七hant-4 (long-dashed and short-dashed 
curves). They seem to be fitted with the power law r 8 • For a comparison， we also depict in Fig. 
1 (b) the two straight lines 150.0 x (A1t)-8 and 30.0 x (A1t)-8 (solid lines)， to which IAcut(t)12 

for七heinitial state 1χ十)and 1χす)approach respectively in this time region. 

5 Concluding remarks 

We have considered the long-time behavior of the unstable multilevel systems and examined the 
asymptotic behavior of S(t) for an arbitrary initial state in the long-time region， where S(t) 
obeys a power-decay law. 1n particular， we have also discovered two kinds of special initial-
state. One of them maximizes the asympto七icform of S(t) at long times. The other initial 
s七ateeliminates the firs七termof the asymp七0七icexpansion of S(t). We numerically confirm 
the previous results for S(t) [2] in consideration of七hespontaneous emission process for the 
hydrogen atom. Then， we find not only the r4-decay of S(t) bu七alsoa f制 erdecay， which is 
fitted by a power-decay law t-8. These results mean that the long-time behavior is determined 
by not only the small-energy behavior of the form factors but also the initial unstable-states. 
Such relations between the initial states and the power decay law were already studied with 
respect to the asymptotic behavior of wave packets for finite-range potential systems [6]. 
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