<table>
<thead>
<tr>
<th>Title</th>
<th>Domain induced budding in buckling membranes (Poster session 1, New Frontiers in Colloidal Physics: A Bridge between Micro- and Macroscopic Concepts in Soft Matter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Minami, Akihiko; Yamada, Kohtaro</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2007), 89(1): 93-94</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-10-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/110928</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Domain induced budding in buckling membranes

Dept. of Physics, Kyoto Univ. Akihiko Minami
Dept. of Chemistry, Tokyo Metropolitan Univ. Kohtaro Yamada

1 Introduction

In this study, we consider fluid-like membranes and focus on the phase separation on the buckling membranes to understand the budding and the coarsening on membranes.

2 Model equation

We assume that the membrane is initially not deformed, and set this as a reference state and set the z-axis of the Cartesian coordinate \((x, y, z)\) perpendicular to the membrane. A displacement vector \((u, h) = (u_x, u_y, h)\) is also introduced to describe elastic deformation of the membrane (see Fig. 1).

\[
\begin{align*}
\mathcal{F}_\text{el} &\approx \int dr \left[\frac{\lambda}{2} \left(\bar{\varepsilon} + \frac{1}{2} \left(\nabla h \right)^2 \right)^2 + \frac{\kappa}{2} \left(\nabla^2 h \right)^2 \right], \\
\mathcal{F}_0 &\approx \int dr \left[\frac{r}{2} \phi^2 + \frac{u}{4} \phi^4 + \frac{C}{2} \left(\nabla \phi \right)^2 \right].
\end{align*}
\]

(1) (2)

1 E-mail: minami.a@scphys.kyoto-u.ac.jp
2 E-mail: kohtaro@tmu.ac.jp
where ϕ is the order parameter and r and u are constant parameters. λ and κ mean the surface tension and the bending coefficient. \bar{e} is an applied extension or compression of the membrane. If $\bar{e} < 0$, the membrane is buckled. The third term of eq (2) is the gradient energy evaluated on the deformed surface.

The total free energy is written as

$$\mathcal{F} = \mathcal{F}_{el} + \mathcal{F}_0.$$ \hfill (3)

The dynamic equation of h and ϕ are written by

$$\tau_h \frac{\partial h}{\partial t} = -\frac{\delta \mathcal{F}}{\delta h},$$ \hfill (4)

$$\tau_\phi \frac{\partial \phi}{\partial t} = \nabla^2 \frac{\delta \mathcal{F}}{\delta \phi}. \hfill (5)$$

3 Results

We show the results of numerical simulation for $\bar{e} = -0.001$ and $\langle \phi \rangle = -0.3$ in figure 2. In this case, the membrane is compressed because \bar{e} is negative. Therefore, the domain budding can be observed at $t = 9400$. The membrane is deformed at the domain boundary. The minority domains form caps and the majority domains become flat (see figure 2 (C)).

References