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Preface 

 

     “What is your major?” The author is often asked by his old friends.  He replies, “My 

major is quantum chemistry.” They always continue, “What is it?” This is a very difficult 

question.  But the author‟s answer to it is as follows: “Quantum chemistry is one field of 

theoretical chemistry.  So I do not carry out any experiments.  Instead of experiment, I 

calculate everything based on theory with a computer.”   

 

     However, his answer seems to be unclear for his friends.  So, the author adds, “As you 

know, we can perfectly predict how and where a thrown ball will fly to and land on.  It is 

because the motion of the ball is determined by the Newton‟s equation.  Not only a ball but 

also everything around us, for example, pen, missile, and even the moon and earth, moves 

along the Newton‟s equation.  If we solve it, we can know everything in the universe -- 

people 200 years ago believed so.  However, very small particles such as atoms and 

electrons do not move along the equation.  No one in the world exactly knows how these 

particles behave.  So, if we could perfectly know how they behave, we would be able to 

predict what happens when A and B are mixed in a beaker before experimentalists actually do 

it.  Furthermore, it would become possible to advise them, „Mix A and B, and you will get a 

beautiful compound C without so much efforts, so try it soon!‟  My major is such a field.” 

 

     The author, of course, recognizes that some incorrect and overblown explanations are 

included above.  But the last part is one of the ideal situations for theoretical chemists: It is 

not possible in many cases now to provide useful chemical prediction before experiments 

actually do.  The existing situation is that experimental chemists are going ahead of 

theoretical chemists, whereas theoreticians are always going ahead of experimentalists in the 

field of nuclear physics.  

“Theoreticians must go ahead of experimentalists”, the author has done and will do his study 

believing this saying. 
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General Introduction 
 

1. What is “Theoretical Chemistry”? 

     First of all, the author wishes to mention his idea about “theoretical chemistry”, 

before introducing the author‟s study.  The role and/or goal of theoretical study in 

science are, generally speaking, elucidation and prediction of natural phenomena.  It is 

impossible to do those 

only by experiments. 

     There are two 

approaches to predict 

natural phenomena.  

One is inductive 

method, where 

prediction is given based on accumulated experiences.  If we accumulate a lot of 

experiences, the prediction will be trustworthy.  This methodology is very powerful 

within our experiences.  However, this approach is not useful at all for new phenomena 

which we have never experienced.  The other approach to predict phenomena is 

deductive method, where prediction is provided from principles.  If the starting 

principles are correct and reliable enough for everyone, the prediction will be correct 

and reliable.  

     In “theoretical chemistry”, chemical compound and chemical phenomena are 

investigated with theory.  This implies that the most important roles and/or goals of 

theoretical chemistry are to elucidate and predict chemical phenomena, such as 

geometry and chemical property of compound, chemical reaction, and so on.  In 

particular, the author is much interested in elucidation and prediction of chemical 

Natural 

Phenomena 

Utilization 

Observation 

Demonstration 

Elucidation 

Prediction 

Theoretical Study Experimental Study 

Figure 1.  The role of theoretical study 
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compounds based on electronic structure theory.  To achieve such purposes, we need 

“quantum chemistry”. 

 

2. Quantum chemistry starting from the Schrödinger equation  

     The starting principle of quantum chemistry is the Pauli‟s principle and the 

Schrödinger equation (SE).  The original SE includes time parameter, t.  However we 

eliminate it and use time-independent SE when we are interested in time-independent 

state of phenomena:  

   0H E   . (1) 

Any states of time-independent systems are described by the solution of the SE, eq. (1): 

In other words, the atoms and molecules are described by the solution of the SE.  

Therefore, if we could solve the SE exactly, we could understand and predict any 

chemical phenomena.  However, it is very difficult to exactly, generally, and 

analytically solve the SE, even though it consists of only three strings. 

     Instead of solving the SE directly, quantum chemists and physicists have tried to 

solve it by introducing various kinds of approximations; for example, 

Born-Oppenheimer approximation and neglect of nuclear size etc. are often employed 

as approximation of Hamiltonian.  Hartree-Fock approximation, LCAO (linear 

combination of atomic orbital) expansion, limited basis set expansion and Gauss type 

function etc. are often employed as approximation on wave function.  From the 

viewpoint of science, we must evaluate the validity of approximations introduced.  It is, 

however, impossible in many cases to validate the approximations because we cannot 

have the exact solution of the SE except for very simple case. 

     Frankly speaking, the SE itself includes some approximations: we have already 

experienced that we can neglect the relativistic and quantum electrodynamics (QED) 

effects when we treat light atoms and molecules.  
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     Instead of comparison with the exact solution of the SE, quantum chemists often 

compare their computed results with the corresponding results of experiment.  If their 

computational results agree well with experiments, the approximations employed are 

regarded to be acceptable.  Many computational methods depending on various levels 

of approximation have been proposed, such as Hartree-Fock (HF) method, functionals 

of the Density Functional Theory (DFT) method, Complete Active Space Self 

Consistent Field (CASSCF) method, Full Configuration Interaction (Full CI) method, 

F12 method, etc.  All of these methods are based on one or more approximations.  

The choice of method is made depending on one‟s experiences and knowledge; what 

method should be applied to the target to present good results.  This is the reason why 

modern quantum chemistry is criticized to be “state-of-the-art”. 

     Of course, we must remember that though computational results with certain 

approximate method agree well with experimental results, they do not always agree 

with other systems.  Thus, we need to accumulate a lot of experiences to apply 

theoretical method to chemical phenomena of various kinds.  Once the approximation 

and/or method are confirmed to be reliable about systems in interest, we can employ it 

and investigate other similar systems.  In this regard, the theoretical study in chemistry 

is still not the perfect. 

 

3.  Purpose of this thesis 

     This thesis consists of Part I and Part II.  The Part I is titled “Theoretical Study 

of Dinuclear Transition Metal Complexes”, where the author employed the post-HF and 

DFT methods.  The title of Part II is “The Exact Solution of the Schrödinger Equation”, 

where the author directly solved the SE. 

     Part I is contains three chapters.  In Chapter 1, metal-metal multiple bonds were 

investigated by the DFT, CASSF, and MRMP2 methods.  Since the discovery of the 
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Re-Re quadruple bond by Cotton, a lot of the interests in the similar compounds 

possessing metal-metal multiple bond has been devoted to the elucidation of their 

geometry, bonding nature, and electronic structure.  Nowadays, we recognize growing 

interests these compounds in wide areas of chemistry such as inorganic chemistry, 

physical chemistry, material science and so on.  These compounds provide a rich and 

fruitful field of research because the metal-metal bonding nature is expected to be 

completely different from those of organic molecules.  However, quantum chemists 

have failed in obtaining satisfactory agreements of their computational result about 

these compounds with the corresponding experimental ones because of their poor 

approximations employed.  Thus, theoretical chemists do not have enough experience 

of theoretical study of such compounds possessing metal-metal multiple bonds.  In 

particular, dinuclear chromium complex is one of the most difficult and challenging 

species to describe its electronic structure and bonding nature because the chromium 

atom itself suffers from strong correlation effects.  In Part I, the author tried to 

elucidate them through post-HF methods. 

     In Chapter 1, the author successively investigated dinuclear transition metal (TM) 

complexes with the MRMP2 method which can incorporate both non-dynamical and 

dynamical correlation effects.  In Chapters 2 and 3, the author investigated the inverted 

sandwich type complexes (ISTC) of the first- and second-row TMs with the DFT and 

MRMP2 method like Chapter 1.  Since ISTC of chromium was synthesized for the 

first time as the ISTC of TMs very recently, its electronic structure and bonding nature 

have not been clarified.  In these chapters, the author not only clarified them but also 

provided theoretical predictions of the spin multiplicities of various ISTCs of TMs. 

     Part II is composed of Chapters 4 and 5, where the author solved the SE of the 

hydrogen molecule and helium atom.  As introduced above, the SE was believed to be 

too complicated to solve it in general case.  The only exceptions are some of one 
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electron systems and non-real systems such as hydrogen atom, a particle in a box, 

harmonic oscillator, and Hooke‟s atom etc.  This “fact” was true until the end of the 

20
th

 century, as it was stated in many textbooks of quantum chemistry.  In 2004, Prof. 

Nakatsuji proposed a new method to solve the SE exactly and analytically without any 

approximation.  His method is named the Free Iterative Compliment Interaction (ICI) 

method.  In Chapter 4, the author applied it for the first time to molecular system, 

hydrogen molecule.  In Chapter 5, the author introduced the exponential integral (Ei) 

function, which is a new type of wave function and reported that the exact wave 

function of the helium atom is described by the Ei function.  The Ei function was 

naturally derived from the Free ICI concept.  The author strongly believes that his 

works will provide a lot of fundamental information in the future. 
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Chapter 1  

Bonding Nature of Open Lantern–type Dinuclear Cr(II) 

Complexes.  Theoretical Study with MRMP2 Method 

 

1. Introduction 

     Metal-Metal multiple bond is one of the interesting and challenging research targets in 

inorganic, physical, and theoretical chemistries.  For instance, Re-Re quadruple bond was 

very previously proposed by Cotton and his collaborators,
1, 2

 but correct understanding of its 

bonding nature has been recently achieved by theoretical works with CASPT2 and MRMP2 

methods.
3, 4

  Another good example is dinuclear Cr compounds including Cr-Cr multiple 

bond.  Cr dimer, Cr2, is of considerable interest because it is believed to possess a hextuple 

Cr-Cr bond in a formal sense, which is the largest bond order at this moment.
5
  Theoretical 

calculation of this compound is challenging because of the presence of very large electron 

correlation effects.  Actually, a lot of theoretical works have been carried out with 

sophisticated methods including CASPT2, MR-CI, and similar methods.
6
  Also, RCrCrR (R 

= C6H3-2,6 (C6H3-2,6-Pr
i
2)2), which was recently synthesized by Power and his collaborators,

7
 

has drawn a lot of interests because it possesses a Cr-Cr quintuple bond and its trans-bent 

geometry is similar to that of E2R2 molecule bearing E-E triple bond (E = Si to Pb; R = bulky 

 

Scheme 1-1. (A) Lantern type complex and (B) open lantern type complex 
a
 z-axis is along the M-M bond, and the x and y axes are along M-N bonds.  
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aryl or silyl ligand).  Theoretical studies of this compound have been carried out with DFT
8, 9

 

and CASPT2 methods.
10

  Though the Cr-Cr bond order was calculated to be 4.64 with the 

DFT method, it was 3.52 by the CASSCF calculation, indicating that the non-dynamical 

correlation effects are considerably large in this complex.
9
  Recently, lantern-type Cr(I) 

dinuclear complex was experimentally reported.
11

  Interestingly, its Cr-Cr distance is very 

short. 

Besides these dinuclear Cr(I) complexes, experimental and theoretical studies on 

dinuclear Cr(II) complexes bearing Cr-Cr quadruple bond have been reported previously.
12-28

  

Though most of them take lantern type structure (Scheme 1-1(A)), open-lantern type 

dinuclear Cr(II) complex was recently reported (Scheme 1-1(B)).
28

  This complex possesses 

short Cr-Cr bond (1.9601 Å) like [Li(L)]4[Cr2Me8] (Cr-Cr = 1.98 Å, L = THF or Et2O) and 

[(tetraazaannulene)Cr2] (Cr-Cr = 2.096 Å).  Interestingly, this complex easily dissociates to 

two mononuclear Cr(I) complexes in solution unlike [Li(L)]4[Cr2Me8] (L = THF or Et2O) in 

spite of its short Cr-Cr bond, even when Lewis base is not added.  Though there remain these 

interesting issues to be investigated, theoretical study of the open-lantern type dinuclear Cr(II) 

complex has not been carried out yet, to our best knowledge. 

     In this theoretical study, we investigated open-lantern type dinuclear Cr(II) complex, 

[Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = Et, R

2
 = Me, and R

3
 = 

t
Bu) (R1), with DFT, CASSCF, and 

MRMP2 methods.  Our purposes here are to clarify the Cr(II)-Cr(II) bonding nature and to 

characterize the Cr(II)-Cr(II) quadruple bond by making comparison with the Mo(II)-Mo(II) 

quadruple bond, and to present clear comparison between the Cr(II)-Cr(II) quadruple and 

Si-Si multiple bonds.  

 

2. Models and Computational Details 

     Because the real complex, [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = Et, R

2
 = Me, and R

3
 = 

t
Bu) (R1), 

is very large, we employed small model (M1) in preliminary calculations. In M1, all alkyl 

substituents were replaced with hydrogen atoms, as shown in Figure 1-1. 

Their geometries were optimized at various Cr-Cr distances in singlet spin state, where 

the DFT method was employed with B3LYP functional.
29

 Potential energy surface (PES) was 

calculated with the MRMP2 method,
4
 where CASSCF wave function was taken as the 
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reference.  In the CASSCF calculation, 8 electrons in such 8 orbitals as d, 1d, 2d, d, d*, 

1d*, 2 d*, and d* were taken as active space because these orbitals exist around HOMO and 

LUMO, as shown in Scheme 1-2.  This calculation is named CASSCF(8,8) hereafter.  The 

dx2-y2 orbital was excluded from the active space because it exists at much high energy due to 

the strong anti-bonding interaction with the lone pair orbitals of ligands; see Scheme 1-1 for 

the coordinate.  This active space is the same as those of CASPT2 and MRMP2 calculations 

of dinuclear Re complex, [Re2Cl8]
2-

, bearing a Re-Re quadruple bond.
30, 31 

The total energy of the real system, Ereal, was evaluated by the ONIOM method.
32

  The 

ONIOM-calculated energy is represented as 

Ereal = Ereal, low – Emodel, low + Emodel, high ,    (1) 

where Ereal, low and Emodel, low are the energies of the real and model systems calculated at low 

level of theory, respectively, and Emodel, high is that of the model system calculated at high level 

of theory.  These energy values were calculated separately and assembled according to eq. 

(1).  We applied the DFT method to the whole system and either CASSCF or MRMP2 

 

Scheme 2.  The active orbitals employed in the CASSCF(8,8) calculation. Arrows 
represent Hartree- ock configuration. 

 

 

 

Figure 1-1.  DFT-optimized geometries of [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= R

2 
= R

3 
= H) (M1) 

and [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= Et, R

2 
= Me, and R

3 
= 

t
Bu) (R1) at R(Cr-Cr) = 1.85 Å. M1 

and R1 take C2v and C2 symmetries, respectively.  In R1, the high level region of the 

ONIOM calculation is drawn with balls and sticks, and the low level region is drawn with 

wire frame.  Length in Å and angle in degree.  
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method to the high-quality region throughout the present study.  They are named 

ONIOM(CASSCF:DFT) and ONIOM(MRMP2:DFT), respectively, hereafter. 

Core electrons (up to 2p) of Cr were replaced with Stuttgart-Dresden-Born effective 

core potentials (ECPs), and its valence electrons were represented with a 

(311111/22111/411/1) basis set.
33

  This basis set is named SDD hereafter.  For C, N, and H, 

cc-pVDZ basis sets were employed.  The s-, p-, and d-type augmented functions were added 

to N because it is anionic in the ligand.  The SDD basis set was employed for Mo, too. 

To clarify the characteristic features of the Cr-Cr quadruple bond, we compared it with 

the Si-Si triple bond of Si2H2 molecule (S1) and Si-Si double bond of Si2H4 molecule (S2).  

The geometries of S1 and S2 were optimized in C2h symmetry by the DFT method with 

B3LYP functional, where cc-pVTZ basis sets were employed for Si and cc-pVDZ basis set for 

H.  The optimized geometries are shown in Figure A1-1.  Also, we carried out the 

CASSCF(6,6) calculation of S1 and the CASSCF(4,4) calculation of S2 using the 

 

Scheme 1-3. The active orbitals employed in the CASSCF(6,6) calculation of HSi≡SiH 

(S1) (A) and the CASSCF(4,4) calculation of H2Si=SiH2 S2 (B).  Arrows represent 

Hartree-Fock configuration. 
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DFT-optimized geometry.  In the CASSCF(6,6) calculation of S1, 6 electrons in such 6 

orbitals as p, 1p, 2p, p*, 1p*, and 2p* were taken as an active space, as shown in 

Scheme 1-3.  In the CASSCF(4,4) calculation of S2, 4 electrons in such 4 orbitals as p, p, 

p*, and p* were taken as an active space. We ascertained that the shapes of Kohn-Sham 

orbitals of S1 are similar to those of real compounds, 1, 1, 4, 

4-tetrakis[bis(trimethslsilyl)methyl]-1, 4-diisopropyl-2-tetrasilyne;
34 

see Supporting 

Information Figure A1-2. 

Gaussian 03
35

 and GAMESS
36

 program packages were used for DFT, CASSCF, and 

MRMP2 calculations, respectively.  Molecular orbitals (MOs) were drawn with Molekel 

program.
37

 

 

3. Results and Discussion 

3.1 Preliminary Examination of Model Compound [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = 

H)  (M1) 

    We optimized the structure of M1 at various Cr-Cr distances under C2v symmetry, as 

shown in Figure 1-1. Very small imaginary frequency with B2 symmetry does not disappear in 

the optimized geometry,
38

 probably because the Cr-Cr distance is fixed. In the DFT-optimized 

geometry, the Cr-Cr distance is 1.757 Å, as shown in Figure 1-2, which is much shorter than 

 

Figure 1-2. PESs of [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= R

2 
= R

3 
= H) (M1) calculated by the DFT, 

CASSCF, and MRMP2 methods.  The energy of R(Cr-Cr) = 1.95Å is taken to be standard 

(energy zero); EDFT = -771.82445 a.u., ECASSCF = -766.90180 a.u., and EMRMP2 = -769.85197 

a.u. at this distance.  
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the experimental value by 0.2 Å.  One can expect that geometry optimization of M1 in nonet 

state yields longer Cr-Cr distance.  However, the minimum energy was not observed in the 

range of R(Cr-Cr) = 1.85 Å to 3.6 Å, and  the nonet spin state is more than 100 kcal/mol 

above the singlet spin state at R(Cr-Cr) = 1.85 Å; see Supporting Information Figure A1-4. 

Also, we carried out the CASSCF(8,8) calculation of M1, using the DFT-optimized geometry.  

The PES smoothly decreases as the Cr-Cr distance increases unlike the DFT-calculated PES, 

as shown in Figure 1-2. However, the equilibrium structure is not presented in the range of 

R(Cr-Cr) = 1.75 Å to 2.15 Å.  Completely different PES between CASSCF and DFT 

calculations suggests the presence of very large non-dynamical correlation effect. 

   In MRMP2 calculations, the Cr-Cr distance is optimized to be 1.855 Å (Figure 1-2), 

which is moderately longer than that of the DFT-optimized distance by 0.1 Å but moderately 

shorter than that of the experimental value by 0.1 Å.
28

  These results suggest that both of 

non-dynamical and dynamical correlations play important roles to present correctly the Cr-Cr 

distance of M1. 

The occupation number of each natural orbital was calculated with the CASSCF(8,8) 

method, as shown in Table 1-1.  The difference in the occupation number between d and d* 

TABLE 1-1: The occupation numbers of the natural orbitals and the bond order of 

[Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = H) (M1), [Cr(R

1
NC(R

2
)NR

3
)2]2 (R

1 
= Et, R

2 
= 

CH3, and R
3 

= 
t
Bu) (R1), and [Mo(R

1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = H) (Mo1).

a
  

 M1  R1  Mo1  

R(M-M) (Å) 1.85 1.85 2.15 

d 1.740  1.723 1.895 

d 1.707 1.693 1.88 

2d 1.713 1.683 1.884 

d 1.372 1.299 1.753 

d* 0.629 0.702 0.247 

d* 0.294 0.318 0.117 

1d* 0.287 0.308 0.12 

d* 0.259 0.276 0.104 

Bond Order     

d  0.741  0.724  0.896  

d 1.420  1.375  1.764  

d 0.372  0.299  0.753  

Total 2.532  2.397  3.412  
a
 The CASSCF(8,8) method was employed. 
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orbitals is 0.743, which is much smaller than 2.  This is the main source of the large 

non-dynamical correlation.  The bond order is defined as one half of the difference between 

the sum of occupation numbers in the bonding orbitals and that of the anti-bonding orbitals. In 

M1, the bond order is evaluated to be 2.53 at R(Cr-Cr) = 1.850 Å.  This value is much smaller 

than the formal bond order (4.0) of the quadruple bond. This very small bond order arises 

from the occupations of anti-bonding orbitals, d*, 1d*, 2d*, and d* orbitals, which will be 

discussed below in more detail. 

 

3.2 Geometry and Bonding Nature of Real Complex, [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= Et, R

2 

= Me, and R
3 

= 
t
Bu) (R1) 

The geometry of R1 was optimized by the DFT method at various Cr-Cr distances.  

The optimized geometry at each Cr-Cr distance takes C2 symmetry in which no imaginary 

frequency is observed.  The DFT-calculated PES decreases as the Cr-Cr distance becomes 

shorter but the equilibrium structure is not found in the range R(Cr-Cr) > 1.75 Å, as shown in 

Figure 1-3. In contrast to the DFT-calculated PES, the ONIOM(CASSCF:DFT)-calculated 

PES decreases as the Cr-Cr distance becomes longer.  The equilibrium structure is not found, 

too, in the range of R(Cr-Cr) < 2.05 Å.  On the other hand, the 

ONIOM(MRMP2:DFT)-calculated PES exhibits the minimum at R(Cr-Cr) = 1.851 Å.  

 

Figure 1-3. PESs of [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= Et, R

2 
= Me, and R

3 
= 

t
Bu) (R1) calculated 

by the DFT, ONIOM(CASSCF:DFT), and ONIOM(MRMP2:DFT) methods.  The energy 

of R(Cr-Cr)=1.95Å is taken to be standard (energy zero); EDFT = -1872.52005 a.u., 

EONIOM(CASSCF:DFT) = -1867.60636 a.u., and EONIOM(MRMP2:DFT) = -1870.55263 a.u. at this 

distance.  
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These features of the PESs are essentially the same as those of M1. 

     The Cr-Cr bond order is evaluated to be 2.40 with the CASSCF(8,8) method at 

R(Cr-Cr) = 1.850 Å.  This value is moderately smaller than that of M1, as shown in Table 

1-1.  It is noted that the d and d bond orders are considerably smaller in R1 than in M1 by 

0.045 and 0.073, respectively, though the d bond order is slightly smaller in R1 than in M1 

by 0.017.  The smaller d and d bond orders arise from the fact that M1 takes C2v symmetry 

but R1 takes C2 symmetry.  The d and d atomic orbitals of one Cr atom overlap worse with 

those of the other Cr atom in the C2 symmetry than in the C2v symmetry, because the d and d 

atomic orbitals of one Cr atom twist with respect to those of the other Cr atom in the C2 

symmetry.  Thus, their bonding interactions become weaker in R1.  However, the d bond 

order is not different very much between M1 and R1 because the d atomic orbital of one Cr 

atom overlaps well with that of the other Cr atom in both C2 and C2v symmetries; note that the 

twist distortion little changes the direction of d atomic orbital. 

     The CASSCF(8,8) wave function of the high quality region of R1, R1, CAS(8,8) , is 

TABLE 1-2: Important electron configurations and their coefficients [Cr(R
1
NC(R

2
)NR

3
)2]2 

(R
1 
= Et, R

2 
= Me, and R

3 
= 

t
Bu) (R1) and [Mo(R

1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = H) 

(Mo1)
a 

R1  Mo1 

coefficients configuration  coefficients configuration 

0.63275 d
2
1d

2
2d

2
d

2
  0.86716 d

2
1d

2
2d

2
d

2
 

-0.39494 d
2
1d

2
2d

2
d

*2
  -0.25924 d

2
1d

 2
2d

2
d

*2
 

-0.15446 d
2
1d

2
d

2
d

*2
  -0.11754 d

2
1d

2
d

2
1d

*2
 

0.11381 d
2
1d

2
d

*2
d

*2
  -0.10346 d

2
1d

2
2d

2
1d

*2
 

-0.19669 d
2
1d

2
2d

1
d

1
d

*1
d

*1
  -0.11221 d

2
2d

2
d

2
2d

*2
 

-0.15384 d
2
1d

1
2d

2
d

1
d

*1
1d

*1
  -0.13737 d

2
1d

2
2d

1
d

1
d

*1
1d

*1
 

-0.13033 d
2
1d

1
2d

2
d

1
d

*1
2d

*1
  -0.13360 d

1
1d

2
2d

2
d

1
d

*1
d

*1
 

-0.12491 d
1
1d

2
2d

2
d

1
d

*1
2d

*1
  0.10762 d

2
1d

1
2d

2
d

1
d

*1
2d

*1
 

0.12102 d
1
1d

2
2d

2
d

1
d

*1
1d

*1
    

-0.10468 d
2
1d

1
2d

1
d

2
2d

*1
d

*1
    

-0.10186 d
2
1d

1
2d

1
d

2
2d

*1
1d

*1
    

a
 The CASSCF(8,8) method was employed. 
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represented as follows: 









**222*2

**222*2

π1π1δδδπ1σπ2

σπ2δδδπ2δδmainCAS(8,8),

154.0154.0

197.00.3950.633R1
              (2) 

where , 
*
 etc. represent d, d

*
 etc. (see Scheme 1-2), respectively, here.  The main 

configuration is d
2 d

2 d
2 d

2
 which is the same as the Hartree-Fock configuration.  

However, its expansion coefficient is only 0.633 and its weight is 40.1 %.  The second 

leading configuration is d
2 d

2 d
2 d

*2
, the weight of which is very large, being over 

one-third of that of the main configuration.  This configuration corresponds to excitation of 

two electrons from d to d
*
, as expected.  The expansion coefficient of the third leading 

configuration, d
2 
d

2 
d

1 
d

1 
d

*1 
d

*1
, is unexpectedly large, 0.197, too.  Also, it is noted 

that not d
*
 orbital but d

*
 orbital participates in the third and fourth excited configurations 

(see Table 1-2). This is against our expectation that the d→d
*
 excited configuration is 

energetically lower than the d→d
*
 excited configuration because the d

*
 is in general at 

higher energy than the d
*
.  This unexpected result will be discussed below in detail.  The 

other configurations with large expansion coefficients are listed in Table 1-2.  Apparently, 

the wave function of R1 consists of many electron configurations including various kinds of 

excitations.  This result clearly indicates that the non-dynamical electron correlation is very 

large. 

We wish to mention here the possibility that the third and fourth leading configurations 

involve one-electron excitation due to mixing of metal d, d and d orbitals because of the 

low symmetry (C2) of R1 and that it is not any more the case for the open-lantern 

complexes.
21b

  To check this possibility, we carried out CASSCF(8,8) calculation of 

closed-lantern  type dinuclear Cr(II) complex taking D2h symmetry (Scheme 1-1(A)).  This 

calculation indicates that similar one electron excited configuration is involved in the third 

leading term in the CASSCF(8,8) wavefunction.  Thus, one electron excited configuration is 

not a result of low symmetry of open-lantern type structure: See Supporting Information 

pages S-18 to S-21 for details. 

 

3.3 Geometry and Electronic Structure of the Molybdenum Analogue, 

[Mo(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = H) (Mo1) 
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Though the Mo analogue of R1 has not been synthesized yet, we investigated the Mo 

analogue of M1, [Mo(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = R

2
 = R

3
 = H) (Mo1), to shed clear light on 

characteristic features of the dinuclear Cr(II) complex by making comparison between M1 

and Mo1.  We optimized the geometry of Mo1 with the DFT(B3LYP) method under C2v 

symmetry, as shown in Figure 1-4.  No imaginary frequency was observed at each optimized 

geometry.  The DFT-calculated energy minimum is found at R(Mo-Mo) = 2.106 Å, as shown 

in Figure 1-5.  CASSCF(8,8) and MRMP2 calculations present the energy minimum at 

R(Mo-Mo) = 2.101 Å and 2.151 Å, respectively.  It is noted that all these methods present 

almost the same equilibrium Mo-Mo distance. This result is completely different from that of 

the dinuclear Cr(II) complex, indicating that very large difference in electronic structure exists 

between dinuclear Cr(II) and Mo(II) complexes. 

The occupation numbers of important natural orbitals calculated by the CASSCF(8,8) 

method are shown in Table 1-1.  Apparently, the occupation numbers of bonding orbitals are 

considerably larger than those of anti-bonding orbitals.  The bond order at R(Mo-Mo) = 

2.150 Å is evaluated to be 3.41, which is much larger than that of M1; see Table 1-1. The d 

bond order is close to 1.0.  The d and d bond orders are 1.764 and 0.572, respectively, 

 

Figure 1-4.  DFT-optimized geometry 

of [Mo(R
1
NC(R

2
)NR

3
)2]2 (R

1 
= R

2 
= R

3 

= H) (Mo1) at R(Mo-Mo) = 2.15 Å. 

Length in Å and angle in degree.  

 

 

 

Figure 1-5. PESs of [Mo(R
1
NC(R

2
)NR

3
)2]2 

(R
1 
= R

2 
= R

3 
= H) (M2) calculated by the 

DFT, CASSCF, and MRMP2 methods.  

The energy of R(Mo-Mo) = 2.10Å is taken 

to be standard (energy zero); EDFT = 

-734.39894 a.u., ECASSCF = -729.46970 a.u., 

and EMRMP2 = -732.53151 a.u. at this 

distance. 
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which are much larger than those of M1.  From these results, it should be concluded that all 

the d, d, and d-bonding interactions are much stronger in Mo1 than in M1.  

The CASSCF(8,8) wave function of Mo1, Mo1, CAS(8,8), is represented as follows: 









2*2**22

**222*2

π2π2π2π1δδδπ1

π1π2δδδπ2δδmainCAS(8,8),

118.00.133

0.1370.2590.867Mo1
               (3)        

The main configuration is d
2 
d

2 
d

2 
d

2
.  Though this is the same as that of M1, its 

expansion coefficient is much larger than that of M1.  The second leading configuration is 

d
2 
d

2 
d

2 
d

*2
.  Though this configuration is the same as that of M1, its expansion 

coefficient is much smaller than that of M1.  The other configurations with large expansion 

coefficients are listed in Table 1-2. Apparently, the numbers of electron configurations are less 

in Mo1 than in M1.  All these results clearly show that the non-dynamical correlation is 

much smaller in Mo1 than in M1, as expected above. 
 

 

3.4 The Reason Why Non-dynamical Correlation is Much Larger in the Dinuclear Cr(II) 

Complex than in the Dinuclear Mo(II) Complex. 

     In many cases, the Cr-Cr distance was discussed on the basis of the Cotton‟s formal 

shortness ratio (FSR).
12b

  FSR for A-B bond is defined by eq. 4, 

BA

BA
AB

RR

R
FSR


 

,                                                            (4) 

where RA-B is the A-B bond length in a molecule and RA and RB are the atomic radii of A and 

B, respectively.  Many dinuclear Cr complexes have been reported to exhibit FSR value 

either similar to or smaller than that of dinitrogen molecule (FSRN-N = 0.783);
12b

 for instance, 

FSRCr-Cr for R1 is 0.780 at R(Cr-Cr) = 1.850 Å and 0.826 at R(Cr-Cr) = 1.96 Å which is the 

experimental value.  These results suggest that the Cr-Cr bond of R1 is similar to the very 

strong N-N triple bond.  Actually, the M-M bond shorter than 2.0 Å is found in many 

dinuclear Cr and several dinuclear V comlexes
12b, 39

 but not at all in the other transition metal 

complexes.
12b

  Based on these facts, the Cr-Cr distance of 1.96 Å was discussed to be 

“short”.
12b

  However, the non-dynamical correlation is very large in the dinuclear Cr(II) 

complex.  This is against our expectation that the non-dynamical correlation tends to be 

small when the bond distance is short.  This unexpected result suggests that the FSR is not 
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useful to discuss the Cr-Cr distance of this complex.  Actually, it is likely that the FSR 

calculated with the atomic radius of neutral Cr(0) leads to unusually small FSR value because 

the atomic radius of Cr(0) is determined by the 4s orbital but the valence orbital of Cr(II) is 

3d; note that the Cr(0) 4s orbital is much larger than the Cr(II) 3d orbital. 

     Because the bond distance depends on the orbital expansion, the bond distance must be 

discussed on the basis of orbital overlap. Here, we evaluated the mean radii, <r> of the radial 

distribution function of valence orbital and the distance, maxSR , providing the maximum 

overlap integral.  It is likely that the bond distance directly depends on the 2×<r> and maxSR  

values.  In Cr atom, 2×<r3d>, d

SR
3

max , and d

SR
3

max  values are calculated to be 1.466 Å, 1.520 

Å, and 1.147 Å, respectively,
42

 as shown in Table 1-3 and Figure A1-11.  The Cr-Cr distance 

(1.960 Å) of this open lantern-type dinuclear complex
28

 is much longer than these values.  

On the other hand, the Mo-Mo distance (2.15 Å) of Mo1 is moderately longer than  2×<r4d> 

and d

SR
4

max  values but much shorter than d

SR
4

max  value, as shown in Table 1-3.  These 

results indicate that the Cr-Cr quadruple bond of 1.960 Å is “long” but the Mo-Mo quadruple 

bond of 2.151 Å is either “medium” or “short”.  This understanding is consistent with the 

fact that the non-dynamical correlation is very large in the dinuclear Cr(II) complex but 

moderate in the Mo analogue.  

From the above results, it should be concluded that the 2×<r> and maxSR  values of 

valence d orbital must be employed to discuss whether the M-M bond is short or long.  We 

wish to propose orbital shortness ratio (OSR) to discuss the M-M bond distance, as follows; 


maxS

MM

R

R
OSR 

                                                    (5)
 

TABLE 1-3:  The <r>
a
 and RSmax

b
 values of valence orbitals of Si, Cr, and Mo 

 Si 3p
c
 Cr 3d

c
 Mo 4d

d
 

<r> (Å) 1.4719 0.7333 0.9785 

2×<r> (Å) 2.9438 1.4666 1.9571 

Rsmax (Å)    

 2.4529 1.5200 2.5144 

 - 1.1473 1.4697 
a
 Mean value of radial distribution function 

b
 The distance between two atoms which provides the maximum overlap integral. 

c
 Calculated with ANO basis proposed by Roos et al.

42
 

d
 Calculated with Huzinaga‟s basis

43
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where 


maxSR  is employed because the -bonding interaction is always more important than 

the -bonding interaction and also the -bonding interaction is not always involved in 

dinuclear complexes.  The OSR value is 1.217 for this open-lantern type dinuclear Cr(II) 

complex and 0.854 for the Mo(II) analogue, indicating that the Cr-Cr distance should be 

understood to be long but the Mo-Mo distance is to be short.  This OSR value also shows 

that the N-N distance of dinitrogen molecule is short; see OSRN-N = 0.752.  Note that this 

OSR value is similar to the FSR value in dinitrogen molecule. 

The long separation between two Cr atoms leads to small overlap integral.  Actually, 

the overlap integral for the Cr-Cr pair is much smaller than that for the Mo-Mo pair: The 

overlap integral is calculated to be 0.0764, 0.130, and 0.0672 for dd, dd, and dd 

pairs, respectively, at R = 1.85 Å in the Cr complex and 0.106, 0.204, and 0.0692 at R = 2.15 

Å in the Mo complex, as shown in Table 1-4. 

It should be noted that the Cr-Cr distance providing the maximum overlap integral of 

the d orbital is very short (1.52 Å) but the Mo-Mo distance is long (2.51 Å).  The overlap 

integral of d orbital is 0.0810 for the Cr-Cr pair at R = 1.52 Å and 0.117 for the Mo-Mo pair 

at R = 2.51 Å.  These results clearly show that the d orbital of Cr is intrinsically much 

smaller than that of Mo, as was discussed previouly.
45

  It is very difficult for the Cr-Cr pair 

to approach each other at the Cr-Cr distance of 1.52 Å; note that this distance is similar to the 

C-C single bond.  Therefore, the Cr-Cr bond must stay at much longer distance than the 

d

SR
3

max  value, leading to the very small overlap integral in the Cr-Cr pair than in the Mo-Mo 

pair.  As a result, the non-dynamical correlation is much larger in the dinuclear Cr(II) 

complex than in the dinuclear Mo(II) complex. 

 

3.5. Comparison between d-d and d-d Molecular Orbitals 

TABLE 1-4: The d-d and p-p overlap integrals
a
 of Cr-Cr, Mo-Mo, and Si-Si pairs.  

 
M = Cr

a
 

(R = 1.85 Å)  

M = Mo
b
 

(R = 2.15 Å)  

M = Si
a
  

(R = 2.10 Å)  

dσ-dσ  (or p-p) 0.0764  0.1061  0.3143  
d-d (or p-p) 0.1295  0.2036  0.3282  
dδ-dδ  0.0672  0.0692  -  

a
 Calculated with ANO basis proposed by Roos et al.

42
 

b
 Calculated with Huzinaga‟s basis.

43
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It should be noted that the d-d overlap integral is much smaller than the d-d overlap 

integral in both Cr-Cr and Mo-Mo pairs, as presented in Table 1-4.  This is against our 

expectation that the overlap integral of the  type orbital is much larger than that of the  type 

orbital. This unexpected result has not been reported yet, to our knowledge.  However, this is 

not surprising because the d-d overlap presents two overlap regions, as shown in Scheme 

1-4.  Despite of the much larger overlap integral of the d-d pair, the occupation numbers of 

the 1d and2d natural orbitals are moderately smaller than that of the d orbital in both Cr 

and Mo dinuclear complexes, as shown in Table 1-1.  It is worthy investigating the reason 

why the occupation number of the d orbital is moderately larger than those of the d 

and2d orbitals in spite of the much smaller d-d overlap than the d-d overlap in R1 and 

M1.
41 

 

The d atomic orbital expands perpendicular to the Cr-Cr axis, as shown in Scheme 1-4.  

Because the C-N bonds of the ligand exist near the d-d overlap region, the exchange 

repulsion is induced between the 1d and2d orbitals and doubly occupied orbitals of the C-N 

bonds, to push up the 1d and2dorbital energies, which further leads to decrease of the 

occupation numbers of these orbitals.  On the other hand, the d orbital expands along the 

Cr-Cr axis and little suffers from such exchange repulsion (Scheme 1-4).  Thus, the 

occupation number of the d orbital becomes larger but those of the 1d and2d orbitals 

become smaller than those expected from overlap integral.
 

  Another reason is that the 1d and2d orbitals induce larger electrostatic repulsion 

with the negatively charged N atoms than does the d orbital.  This is because the 1d 

and2d orbitals are closer to the N atoms than the d orbital.  As a result, the 1d and2d 

orbital energies become higher and their occupation numbers become smaller than those 

expected from the overlap integral.  This Coulombic repulsion also leads to the participation 

 

Scheme 1-4.  Electron accumulation regions in d-d bonding orbital (d) and d-d 

bonding orbital (d) 
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of the d* orbital in the third and fourth leading terms of the CASSCF wavefunction. Because 

the 1d* and2d* orbitals are also more destabilized by the Coulombic repulsion with the 

negatively charged N atom than the d* orbital, electron occupations of the d* and2d* 

orbitals lead to larger destabilization energy but that of the d* orbital leads to smaller 

destabilization energy than those expected from overlap integral.  This is one of the reasons 

why not the d* orbital but the d* orbital participates in the third and fourth excited 

configurations of R1; see eq. 1 and above discussion. 

  Also, the nuclear-electron Coulombic attraction participates in the larger occupation 

number of the d orbital than expected from overlap integral, as follows:  Electron 

accumulation mainly occurs around the region A in the d and2d orbitals and the region B 

in the d orbital; see Scheme 1-4 for regions A and B.  Because the region B is closer to the 

Cr atoms than the region A, the electron density in the region B yields larger nuclear-electron 

stabilization energy than that in the region A. Thus, the occupation number of the d orbital 

becomes larger and those of the d and2d orbitals become smaller than expected from 

overlap integral. 

  All these are plausible factor for the smaller occupation numbers of the d and2d 

orbitals and the larger one of the d orbital than expected from overlap integral. 

 

3.6 Comparison between M-M and Si-Si Multiple Bonds 

      Comparison of the multiple bonds between transition metal and non-transition metal 

compounds is expected to present clear insight into their bonding natures.  We investigated 

here Si2H2, S1, and Si2H4, S2.  The p and p bond orders of S1 were evaluated with the 

CASSCF method to be 0.981 and 1.674 (0.837 per one p orbital, in average), respectively, 

and those of S2 were evaluated to be 0.980 and 0.857, as shown in Table 1-5.  It is noted that 

the occupation number of the p orbital is considerably larger than that of the p orbital.  

This feature is different from that of the Cr-Cr and Mo-Mo multiple bonds. 

In Si atom, 2×<r
3p

>, p

SR
3

max , and p

SR
3

max  
values were calculated to be 2.944 Å, 

2.318 Å, and 2.453 Å, respectively, as shown in Table 1-3 and Figure A1-10.  In the usual 

Si-Si double and triple bonds, the Si-Si distance is 2.0 Å to 2.3 Å,
44

 which is much shorter 
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than 2×<r
3p

>, p

SR
3

max , and p

SR
3

max  
values.  As a result, the OSR is small; the OSR value is 

0.938 and 0.815 for the Si-Si double and triple bonds, respectively.  Thus, the usual Si-Si 

double and triple bonds are defined to be “short”, which leads to large overlap integral 

between two Si atoms.  Actually, the overlap integrals of the p-p and p-p orbital pairs in 

the Si-Si multiple bond are much larger than those of d-d and d-d orbital pairs in the M-M 

multiple bond, as shown in Table 1-4.  Thus, the non-dynamical correlation is small in S1 

and S2, as clearly shown by the considerably large bond order. 

It is noted here that the p-p overlap integral is moderately smaller than the p-p one, 

unexpectedly.  However, the p bond order is much larger than the p bond order in both S1 

and S2, unlike those of M1 and R1.  In these molecules, no group is present to destabilize 

the p orbital energy, like the C-N bonds and negatively charged N atoms in M1 and R1.  

Here, different factors are responsible to the larger occupation number of the p orbital than 

expected from the overlap integral.  One plausible factor is nuclear-electron attraction like 

M1 and R1.  Another factor is the bonding participation of Si 3s orbital in the p orbital, 

which lowers the energy level of the p orbital through the bonding mixing, as shown in 

Scheme 1-3.  On the other hand, the Si 3s orbital does not participate at all in the 

out-of-plane p bonding orbital.  In the in-plane p orbital, the Si 3s orbitals participate in an 

TABLE 1-5: The occupation numbers of the natural orbitals and the bond orders of S1 (Si2H2) 

and S2 (Si2H4) 

 S1
a
  S2

b
  

p 1.981  1.980  

p
 c
 1.880  1.867  

2p
 d
 1.794  - 

p*
 d
 0.202  -  

1p*
 c
 0.124  0.133  

 p* 0.020  0.021  

Bond Order    

p 0.981 0.980  

p 1.674  0.867  

Total 2.655  1.847  
a
 The CASSCF(6,6) method was employed. 

b
 The CASSCF(4,4) method was employed. 

c
 Out-of plane  orbital 

d
 In-plane  orbital 
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anti-bonding manner, as shown in Scheme 1-3, which pushes up the in-plane p orbital energy.  

In M1 and R1, the 4s orbital of Cr little contributes to the d orbital because the Cr 4s orbital 

is at much higher energy than Cr 3d orbital in Cr(II).  Moreover, the difference between 

p-p overlap integral and p-p one in the Si-Si pair is much smaller than that between d-d 

overlap integral and d-d one in the Cr-Cr pair, as shown in Table 1-4.  Therefore, despite of 

the absence of the C-N bonds and the negatively charged N atom, the participation of Si 3s 

orbital and the nuclear-electron attraction are enough to overcome the consequence of the 

smaller p-poverlap integral, leading to the larger occupation number of the p orbital than 

that of the p orbital. 

In conclusion, the interesting differences between M-M and Si-Si multiple bonds are 

summarized, as follows: (1) The non-dynamical correlation is much smaller in the Si-Si 

multiple bond than in the Cr(II)-Cr(II) multiple bond.  And, (2) the -bonding interaction 

much more contributes to the Si-Si multiple bond than that to M-M multiple bond. 

 

4. Conclusion 

     We investigated open-lantern type dinuclear Cr(II) complex, [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 

= Et, R
2

 = Me, and R
3
 = 

t
Bu) with DFT, CASSCF, and MRMP2 methods. The DFT-calculated 

potential energy decreases as the Cr-Cr distance becomes shorter and the equilibrium structure 

is not found in the range R(Cr-Cr) > 1.75 Å. In contrast to the DFT-calculated result, the 

CASSCF(8,8)-calculated potential energy decreases as the Cr-Cr distance becomes longer but 

does not present the minimum in the range R(Cr-Cr) < 2.05 Å. The MRMP2 calculation 

exhibits the minimum at R(Cr-Cr) = 1.851 Å, as shown in Figures 1-2 and 1-3. These results 

suggest that both non-dynamical and dynamical correlations are considerably large in this 

complex. On the other hand, the non-dynamical correlation is small in the Mo analogue; 

actually, the DFT, CASSCF, and MRMP2 methods present almost the same equilibrium 

Mo-Mo distance. The reason why the non-dynamical correlation in the dinuclear Mo complex 

is smaller than in the dinuclear Cr complex is explained in terms of the overlap integral: 

actually the overlap integral of valence d orbitals in the Cr-Cr pair is much smaller than that 

of Mo-Mo pair.  We wonder why the non-dynamical correlation is very large though the 

Cr-Cr bond was experimentally discussed to be short in many dinuclear Cr complexes.  To 
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find answer to this issue, we wish to propose OSR (orbital shortness ratio) here to discuss the 

M-M multiple bond distance.  The OSR value is 1.217 for real Cr complex R1 and 0.854 for 

Mo1.  Thus, we must understand that the Cr-Cr distance of 1.96 Å is long in R1 but the 

Mo-Mo distance of 2.151 Å is short in Mo1.  These understandings are consistent with the 

fact that the non-dynamical correlation is much larger in the dinuclear Cr(II) complex than in 

the Mo(II) analogue. 

 The bond order of the real complex R1 is evaluated to be 2.40, which is much smaller 

than the formal bond order of 4. That of the Mo analogue is evaluated to be 3.41, which is 

much larger than that of R1. These results agree with the fact that the non-dynamical 

correlation is larger in the dinuclear Cr complex than in the Mo analogue. 

     Our calculations reveal that the overlap integral of valence d orbital is much larger 

than that of d orbital in both Cr and Mo dinuclear complexes, and that of p orbital is 

moderately larger than that of p orbital in Si2H2 and Si2H4.  However, the occupation 

number of the d orbital is moderately larger than those of the d orbitals in both the dinuclear 

Cr and Mo complex, and that of the p orbital is much larger than that of the p orbital in both 

Si-Si double and triple bonds, against the expectation from overlap integrals.  In the Si-Si 

multiple bond, the Si 3s orbital contributes to the p orbital, leading to the lower orbital 

energy and the larger occupation number of the p orbital than expected from overlap integral.  

In the M-M multiple bond, the moderately larger occupation number of the dorbital arises 

from the smaller exchange repulsion between the d and bridging ligand, the smaller 

Coulombic repulsion between the d and the negatively charged N atoms of ligands, and the 

larger nuclear-electron attraction between the electron density of the d and the M atoms than 

those of the d.  Important differences between Cr-Cr and Si-Si multiple bonds are 

summarized, as follows: (1) The non-dynamical correlation is much larger in the Cr-Cr 

multiple bond than in the Si-Si multiple bond, and (2) the -bonding interaction is much more 

important than does the -boning interaction in the Si-Si multiple bond, while the -bonding 

interaction is moderately more important than the -bonding interaction in the Cr-Cr multiple 

bond. 
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Appendix: 

Optimized geometries of S1 and S2 (Figure A1-1).  Kohn-Sham orbitals of S1 (Figure A1-2).  

Fully optimized geometries of M1 (Figure A1-3).  The PES of M1 in the nonet spin state 

(Figure A1-4).  The occupation numbers of M1 (Figure A1-5), R1 (Figure A1-6), and Mo1 

(Figure A1-7).  PES of closed-lantern type complex (Figure A1-8) and its important 

CASSCF configuration and coefficients (Table A1-4).  Overlap integrals between two 

valence orbitals of M atom,  RS M

dd aa 
, as function of nuclear distance R where M = N 

(Figure A1-9), M = Si (Figure A1-10), M = Cr (Figure A1-11), and M = Mo (Figure A1-12).  
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Optimized geometries of disilicon compounds. 

 

 

 
Figure A1-1.  DFT-optimized geometries of HSi≡SiH (S1) (A) and H2Si=SiH2 (S2) (B).  

Length in Å and angle in degree. 

 

 

Figure A1-2. The Kohn-Sham orbitals of Si2H2 (S1) calculated by the DFT method with the 

B3LYP functional using cc-pVTZ basis functions.  
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Figure A1-3.  Fully optimized geometry of [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
=H, R

2
=H, R

3
=H) (M1) 

in the singlet state calculated with the DFT(B3LYP) method.  The optimized geometry takes 

Cs symmetry with reflection mirror being on the C-Cr-Cr-C plane. Length in Å and angle in 

degree. 

  It should be noted that the diheadral angle, D(CrNNC), is 165 and -14.8 º in R1 but 

165-166º in this fully optimized geometry of M1.  In other words, R1 has the C2 axis 

perpendicular to the Cr-Cr bond at its midpoint, but its disappears in the fully optimized 

geometry of M1. 

 

 

 

 

Figure A1-4.  The PES of [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
=H, R

2
=H, R

3
=H) (M1) in the singlet 

(blue) and nonet (green) spin states calculated with the DFT(B3LYP) method in C2v 

symmetry. 

-772.00 

-771.95 

-771.90 

-771.85 

-771.80 

-771.75 

-771.70 

-771.65 

-771.60 

-771.55 

-771.50 

1.6 1.9 2.2 2.5 2.8 3.1 3.4 

singlet

nonet

T
o
ta

l 
E

n
e
rg

y 
(a

u
)

R(Cr-Cr) (Å)

3.5Å

 

 

 



33 

 

The occupation numbers of [Cr(R1NC(R2)NR3)2]2 (R1=H, R2=H, R3=H) (M1), 

[Cr(R1NC(R2)NR3)2]2  (R1=Et, R2=CH3, R3=
t
Bu) (R1), and [Mo(R1NC(R2)NR3)2]2 

(R1=H, R2=H, R3=H) (Mo1) calculated by the CASSCF(8,8) method with SDD basis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1-5. The occupation number of 

[Cr(R1NC(R2)NR3)2]2 (R1=H, R2=H, 

R3=H) (M1) 

 

 

Figure A1-6. The occupation number of 

[Cr(R1NC(R2)NR3)2]2  (R1=Et, R2=Me, 

R3=
t
Bu) (R1) 
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Figure A1-7. The occupation number of 

[Mo(R1NC(R2)NR3)2]2 (R1=H, R2=H, 

R3=H) (Mo1) 
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Comparison of open-lantern type complex with closed-lantern type complex 

     As mentioned in section 3.2 of the main text, one-electron excited configurations have 

somewhat large coefficients in the CASSCF(8,8) wave function of R1.  One may suspect 

that this is induced by the mixing of metal d, d and d orbitals because R1 takes low 

symmetry (C2) and that it is not any more the case for the open-lantern complexes.  To 

examine this issue, we investigated closed-lantern type complex (Scheme 1 (A)), 

Cr2(R
1
NC(R

2
)NR

3
)4 (R

1
 = R

2
 = R

3
 = H) (M2) with the DFT(B3LYP), CASSCF(8,8), and 

MRMP2 methds.  This is because the d, d, d, and dorbitals and their anti-bonding 

orbitals never mix with each other due to different irreducible representation in D2h symmetry 

geometry. 

We optimized the geometry of M2 in the same way as M1, where M2 was restrected to 

take D2h symmetry.  The PESs calculated with the DFT(B3LYP), CASSCF(8,8), and 

MRMP2 methods are shown in Figure S8.  The PESs of M2 are similar to those of M1 and 

R1: The DFT method underestimates the Cr-Cr distance, the CASSCF(8,8) method 

overestimates the Cr-Cr distance, and the MRMP2 method successfully presents energy 

minimum at R(Cr-Cr) = 1.851 Å. 

     The configurations with large expansion coefficients of the CASSCF(8,8) wave 

function of M2 at R(Cr-Cr) = 1.85 Å are shown in Table S4.  The main configuration of M2 

is d
2
1d

2
2d

2
d

2
, and the second leading configuration is d

2
1d

2
2d

2
d

*2 
, which are the same 

as those of R1.  The third and fourth leading configurations are degenerate, which are 

d
2
1d

2
2d

1
d

1
d

*1
2d

*1
 and d

2
1d

1
2d

2
d

1
d

*1
1d

*1
.  The fourth configuration is the same as 

the fourth leading configuration in the CASSCF wave function of R1.  The third 

configuration, on the other hand, has very tiny coefficient in R1.  Instead, the 

d
2
1d

2
2d

1
d

1
d

*1
d

*1
 configuration is the third leading configuration in R1, as shown in 

Table 2 of the main text. 

     Thus, one-electron excited configurations are important in the CASSCF(8,8) wave 

function of closed-lantern type complex with high symmetry, indicating that the presence of 

those one-electron excited configurations is not the consequence of orbital mixing but is 

essential to these Cr dinuclear complexes.  Though it is likely that the difference between the 

third leading configurations of M2 and R1 arise from the difference between closed-type and 

open-type lantern complexes, details are not clear, at this moment.   
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Figure A1-8. PESs of Cr2(R
1
NC(R

2
)NR

3
)4 (R

1 
= R

2 
= R

3 
= H) (M2) calculated by the 

DFT(B3LYP), CASSCF(8,8), and MRMP2 methods.  The energy of R(Cr-Cr) = 1.95 Å is 

taken to be standard (energy zero); EDFT = -771.86107 a.u., ECASSCF = -766.93709 a.u., and 

EMRMP2 = -769.89658 a.u. at this distance.  

 

 

TABLE A1-4: Important electron configurations and their coefficients of Cr2(R
1
NC(R

2
)NR

3
)4 

(R
1 

= R
2 
= R

3 
= H) (M2) in D2h symmetry

a 

M2 

coefficients configuration 

0.67204 d
2
1d

2
2d

2
d

2
 

-0.37410 d
2
1d

2
2d

2
d

*2
 

-0.20341 d
2
1d

2
2d

1
d

1
d

*1
2d

*1
 

-0.20341 d
2
1d

1
2d

2
d

1
d

*1
1d

*1
 

-0.17490 d
1
1d

2
2d

2
d

1
d

*1
d

*1
 

-0.16200 d
2
1d

2
d

2
2d

*2
 

-0.16200 d
2
2d

2
d

2
1d

*2
 

-0.13238 1d
2
2d

2
d

2
d

*2
 

-0.12996 d
1
1d

2
2d

1
d

2
2d

*1
d

*1
 

-0.12996 d
1
d

1
d

2
d

2
1d

*1
d

*1
 

0.11359 d
2
1d

2
d

2
2d

*2
 

0.11359 d
2
d

2
d

2
1d

*2


0.10234 d
2
1d

1
2d

1
d

2
2d

*1
1d

*1


a
 The CASSCF(8,8) method was employed. 
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Overlap integrals between two valence da orbitals of M atom,  RS M

dd aa 
, as function of 

nuclear distance R.  
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Figure A1-9. Overlap integrals between two 

valence p (blue) and p (red) orbitals of N 

atom with Roos‟s ANO basis.
1
 

 

Figure A1-10. Overlap integrals between 

two valence p (blue) and p (red) orbitals of 

Si atom with Roos‟s ANO basis.
1
 

 

 

Figure A1-11. Overlap integrals between 

two valence d (red), d (blue), and d 

(yellow) orbitals of Cr atom with Roos‟s 

ANO basis.
1
 

 

 

Figure A1-12. Overlap integrals between 

two valence d (red), d (blue), and d 

(yellow) orbitals of Mo atom with Huzinaga 

basis.
2
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Chapter 2 

Inverted Sandwich Type Dinuclear Chromium(I) Complex 

and Its Analogues of Scandium(I), Titanium(I), Vanadium(I), 

Manganese(I), and Iron(I): Theoretical Study of Electronic 

Structure and Bonding Nature 

 

1. Introduction: 

Since the discovery of ferrocene, Fe(C5H5)2, many kinds of sandwich type complexes 

(STCs) have been synthesized and studied experimentally and theoretically.
1,2

  Kaminsky 

catalyst, in which Zr is sandwiched between two cyclopentadienyl (Cp) rings,  is one of 

the most famous STCs,
3
 because of its excellent polymerization catalysis. 

Nowadays, various STCs, which consist of not only five-membered rings but also 

six-membered rings and more complicated rings with the first, second, and third row 

transition metals, are reported.
4
  Swart theoretically studied STCs of the first-row transition 

metals (Sc-Zn) with two Cp rings and reported that these STCs could take singlet to quartet 

spin states by changing the metal center.
5
  This result was explained in terms of the MO 

diagram:
5
 Because of the presence of three quasi-degenerate e2‟ and a1‟ orbitals around 

HOMO and LUMO, the quartet spin state appears as the highest spin state when all of 

these MOs are singly occupied.  The singlet spin state appears as the lowest spin state 

when all of them are either empty or doubly occupied. 

According to this discussion, the highest spin multiplicity cannot exceed quartet 

even if we control the number of unpaired electrons by changing metal center and/or its 

oxidation state.  Even if we change the Cp rings to six-membered rings, the highest spin 

multiplicity is expected to be quartet because the orbitals and their energies around 

HOMO and LUMO are similar to those of the STC of Cp.  Actually, the electron 

configuration of ferrocene is similar to that of bis(benzene)chromium. 

Recently, Tsai et al.
6
 and Monillas et al.

7
 synthesized inverted sandwich type 

complexes (ISTCs) of chromium, -η
6
:η

6
-C6H5CH3)[Cr(DDP)]2 TCr (DDPH = 

2-{(2,6-diisopropyllhenyl)amino}-4-{(2,6-diisopropyllhenyl)imino}pent-2-ene, which is 

referred to “nacnac” in several works)
8
 and -η

6
:η

6
-C6H6)[Cr(DDP)]2 BCr, respectively, 
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where TCr and BCr represent ISTC of toluene with two Cr(DDP) moieties and that of benzene 

with two Cr(DDP) moieties, respectively; see Scheme 2-1.  Interestingly, they take septet 

spin state.  Also, Tsai et al. reported that ISTC of vanadium, -η
6
:η

6
-C6H5CH3)[V(DDP)]2 

(TV) takes very high spin state of quintet.
9
  These are surprisingly high spin state, 

considering that organometallic compounds tend to take in general low spin state; for example, 

ISTC of manganese, -η
6
:η

6
-C6H5CH3)[Mn(Ar

*
-3,5-

i
Pr2)]2 (Ar

*
=C6H3-2,6-Trip2, 

Trip=C6H2-2,4,6-
i
Pr3) synthesized by Ni et al. was reported to take singlet.

10
   

Electronic structures of these ISTCs are of considerable interest from the point of view 

of physical chemistry, coordination chemistry, and material science.  Fernandez et al. 

theoretically studied the ISTC of group-13 non-transition metals.
11

  But, no theoretical work 

has been reported on ISTC of transition metals.  In this work, we theoretically investigated 

 

Scheme 2-1. (-η
6
:η

6
-C6H6)[M(DDP)]2 (BM), (-η

6
:η

6
-C6H5CH3)[M(DDP)]2 (TM), 

(-η
6
:η

6
-C6H6)[M(AIP)]2 (MBM), and (-η

6
:η

6
-C6H5CH3)[M(AIP)]2 (MTM) (M = Sc - Fe, 

DDPH = 2-{4-{(2,6-diisopropyllhenyl) imino} pent-2-ene, AIPH= 

(Z)-1-amino-3-imino-prop-1-ene) 

 

 

Scheme 2-2. DDP and AIP ligands (DDPH = 2-{4-{(2,6-diisopropyllhenyl) imino} 

pent-2-ene, AIPH= (Z)-1-amino-3-imino-prop-1-ene) 
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various ISTCs of the first-row transition metals, -η
6
:η

6
-C6H6)[M(DDP)]2 (BM, M = Sc - Fe).  

Our main purposes here are to clarify the electronic structure and spin state of the ISTC and 

theoretically predict how much high spin state is presented in the ISTC by changing the 

transition metal element.  

 

2. Models and Computational details 

2-1 Model complexes 

Because the real complexes, TCr and BCr, are very large, we employed models, MTCr 

and MBCr, respectively, in preliminary calculations, as shown in Scheme 2-1.  In both 

models, the DDP ligands were replaced with AIP ligands (AIPH = 

1-amino-3-imono-prop-1-ene; see Scheme 2-2). 

We investigated BCr and MBCr in D2 symmetry, where Cr(DDP) and Cr(AIP) moieties 

were fixed to be planar because the six-membered ring including chromium atom of the 

Cr(DDP) moiety was experimentally observed to be almost planar.
6, 7

  MBCr takes D2h 

symmetrical structure, when the dihedral angle between two Cr(AIP) moieties of MBCr is 

zero and benzene is on the reflection mirror.  TCr and MTCr take C1 symmetrical structure 

because the presence of toluene lowers symmetry. 

 

2-2 Computational details 

The geometries of MBM and MTM were optimized by the DFT method with 

B3LYP,
12,13

 B3LYP*,
14

 BP86,
12,15

 and PW91PW91
16

 functionals.  The total energies of these 

models were evaluated by the DFT, CASSCF,
17

 and MRMP2
17

 methods.   To examine the 

non-dynamical correlation effect in the geometry optimization, we also applied the CASSCF 

method to the geometry optimization of MBM in the singlet to nonet spin states under D2 

symmetry, where the M-M distance was taken as the coordinate and the geometry of the 

remaining moiety was optimized at each M-M distance.  Using the CASSCF-optimized 

geometry at each M-M distance, the potential energy surface (PES) was evaluated by the 

MRMP2 method.  We introduced the energy denominator shift (EDS) in the MRMP2 

calculations, where the EDS value of 0.02 a.u. was employed throughout the present study.  

Note that EDS little affected the equilibrium distance of R(Cr-Cr) in MBCr in the septet spin 
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state, as shown in Figure A2-1, where the EDS values of 0.005, 0.01, and 0.02 a.u. were 

employed. 

The BP86 functional was employed in the geometry optimization of the real complex 

BM because the BP86-optimized geometry agrees well with the experimental structures of 

both V and Cr complexes, as shown below.  The total energy M

realE  of real system BM was 

evaluated by the ONIOM method.
18

  The ONIOM-calculated energy is represented by 

M

highel

M

lowel

M

lowreal

M

real EEEE ,mod,mod,  ,      (1) 

where 
M

lowrealE ,  and 
M

lowelE ,mod  are the energies of BM and MBM calculated by the DFT, and 

M

highelE ,mod  is that of the model system calculated by either the CASSCF or the MRMP2 

method.  Each energy value is calculated separately and assembled according to eq. (1).  

They are named ONIOM(CASSCF: DFT) and ONIOM(MRMP2: DFT), respectively, 

hereafter. 

Core electrons of the first-row transition metals (up to 2p) were replaced with 

Stuttgart-Dresden-Born effective core potentials (ECPs), and their valence electrons were 

represented with (311111/22111/411/1) basis set.
19

  For C, N, and H, cc-pVDZ basis sets 

were employed.
20

  The augmented functions were added to N because it is anionic in DDP 

and AIP. 

Gaussian 03 package
21

 was used for DFT calculation, and GAMESS package
22

 was 

used for CASSCF and MRMP2 calculations.  Molecular orbitals were drawn with Molekel 

ver. 5.3.
23

 

  

3. Results and Discussions 

First, we wish to discuss geometry, orbital diagram, and spin states of ISTCs of 

Table 1. Energies
a
 of MBCr calculated by the DFT method. 

 
B3LYP B3LYP* BP86 PW91PW91 

11tet 46.0 48.5 56.3 56.6 

9tet 24.7 26.9 32.8 33.0 

7tet 0.0 0.0 0.0 0.0 

5tet 38.5 43.2 12.5 13.4 

3let 32.1 27.3 15.9 17.8 

1let 45.4 37.6 19.0 20.9 
a
 Relative energies to the septet spin state (in kcal/mol). 
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chromium and vanadium, because they were experimentally reported. We employed model 

and real complexes, here.  Then, we will report computational prediction of spin 

multiplicity of the other first-row transition metal complexes which have not been 

synthesized. 

 

3-1 Geometries and spin states of -η
6
:η

6
-C6H6)[Cr(AIP)]2 (MBCr) and 

-η
6
:η

6
-C7H8)[Cr(AIP)]2 (MTCr) 

     We optimized the geometries of the model complex, MBCr, from singlet to undectet 

spin states under D2 symmetry using the DFT method.  The septet spin state was calculated 

to be the most stable with all functionals, as shown in Table 2-1; we abbreviate singlet, triplet, 

quintet, septet, nonet, and undectet spin states as 1let, 3let, 5tet, 7tet, 9tet, and 11tet, 

respectively, in all Tables and Figures hereafter.  This result agrees with the experimental 

result that BCr takes septet state.
6,7

  All functionals employed here present good agreement of 

optimized geometry with the experimental one, where the B3LYP presents slightly better 

 

Figure 2-1. Optimized geometry of MBCr by the DFT (B3LYP) method in the septet 

state under D2 symmetry.   Parentheses represent experimental values.  Length in 

Å and angle in degree. 
a
 Dihedral angle 
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agreement than the others, as shown in Figure 2-1 and Table A2-1. 

We also optimized the geometry of the model complex, TBCr, by the DFT method with 

the B3LYP functional in the septet spin state under C1 symmetry.  The optimized geometry 

agrees well with the experimental structure,
6,7

 as shown in Figure S2-2, indicating that MBCr 

and MTCr are good models of BCr and TCr, respectively.  Also, it is noted that no 

significant difference is observed between the geometries of MBCr and MTCr.  In the next 

section, therefore, we will mainly discuss MBCr and BCr instead of MTCr and TCr. 

 

3-2 Orbital Interaction Diagram of the Cr(AIP) Moiety 

In this section, we wish to discuss the molecular orbital (MO) interaction diagram to 

understand the reason why BCr takes septet spin state as the ground state. Because BCr is 

considered to consist of two Cr(DDP) moieties and benzene, we first examine the MO 

diagram of the Cr(AIP) moiety which is a model of Cr(DDP).  In the Cr(AIP) moiety, MOs 

of AIP anion interact with five 3d atomic orbitals (AOs) of Cr(I).  Four MOs of the AIP 

anion are energetically near the 3d orbitals of Cr, as shown in Scheme 2-3.  They are named 

(AIP), 2(AIP), lp1(AIP), and lp2(AIP), hereafter, where the “lp” represents lone pair 

orbital.  These four orbitals belong to the different irreducible representations in the C2v 

symmetry.  

The dxz of Cr strongly interacts with the lp2(AIP) to form a bonding orbital 2(CA) 

and an anti-bonding orbital 2
*
(CA), where “CA” is an abbreviation of Cr(AIP).  The 

energy destabilization of 2
*
(CA) is very large because the dxz orbital overlaps well with the 

lone pair orbital of AIP anion in  manner.  The dyz somewhat interacts with the 2(AIP) to 

form a bonding MO 1(CA) and an anti-bonding MO 1
*
(CA).  The overlap between the 

dyz and the 2(AIP) is less than that between the dxz and the lp2(AIP) because the dyz and 

2(AIP) expand in  direction with respect to the Cr-N bond.  The dxy interacts with the 

1(AIP) to form a bonding MO 2(CA) and an anti-bonding MO 2
*
(CA).  The overlap 

between the dxy and 1(AIP) is less than that between the dyz and the 2(AIP) because the 

1(AIP) expands perpendicular to the Cr-N bond and overlaps with the dxy in  manner.  

Consequently, the 2
*
(CA) is at the highest energy, the 1

*
(CA) is at the second highest 

energy, and the 2
*
(CA) is at the lowest energy in these three MOs. 
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Because the other three orbitals, lp1(AIP), dx2-y2, and dz2, belong to the same 

irreducible representation in the C2v symmetry, they interact with each other to form three 

MOs, (CA), 1
*
(CA), and 


(CA), which mainly consist of the lp1(AIP), dx2-y2, and dz2, 

respectively; see Scheme 2-3.  The energy destabilization of 1
*
(CA) and 


(CA) and the 

energy stabilization of (CA) are very small because the energy gap between lp1(AIP) and 

the 3d of Cr are very large.  Thus, the 1
*
(CA) and the 


(CA) lie at similar energy below 

the 2
*
(CA). 

In these MOs, totally 13 electrons are involved; five electrons in Cr(I) and four 

electrons of two N lone pair orbitals, and four electrons of two  orbitals of AIP.   Among 

these orbitals, the (CA), 2(CA), 2(CA), and 1(CA) lie at much lower energy than the 

other five MOs, the 2

(CA), 1


(CA), 2


(CA), 1


(CA), and 


(CA) MOs, as shown in 

Scheme 2-3; the former four MOs are doubly occupied and the latter five MOs are singly 

occupied. 

 

Scheme 2-3. MO diagram of the Cr(AIP) moiety. “CA” is an abbreviation of Cr(AIP). 
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3-3 Bonding Nature of MBCr in D2h Symmetry 

We will inspect here bonding interaction of MBCr by separating it to two parts, 

benzene and a pair of two Cr(AIP) moieties (CA2). First, we discuss MBCr in D2h symmetry.  

MOs of Cr(AIP) mentioned above construct bonding and anti-bonding MOs in CA2, as 

follows: The 

(CA), 1


(CA),2


(CA), 1


(CA), and 2


(CA) orbitals form (CA2) and 



CA2, 1CA2 and 1


CA22CA2 and 2


CA2, 1CA2 and 1


CA2, and 

2CA2 and 2

CA2 orbitals, respectively, as shown in Figure S2-3.  

MOs of the total complex are constructed by these MOs of CA2 and MOs of benzene.  

Degenerate HOMOs (HOMO1 and HOMO2) and degenerate LUMOs (LUMO1 and 

LUMO2) of benzene mainly participate in the interaction with CA2.  Because the phases of 

these MOs are always opposite in the upper side of benzene to those in the lower side, the 

(CA2)1CA22CA21CA2and 2CA2 orbitals do not interact with the HOMO1, 

HOMO2, LUMO1 and LUMO2 at all; note that the phases of the 

(CA2)1CA22CA21CA2and 2(CA2) orbitals are different from the HOMOs 

and LUMOs of benzene as shown in Figure S2-3.  In MBCr, we name them 6, 7, 8, 9, 

and 11, respectively, as shown in Scheme 2-4. 

The LUMO1 and LUMO2 have two nodes on the  plane, as well known, while the 



(CA2) has no node and the 1


CA2 and 2


CA2 have one node.  Because of those 

symmetrical features, the 

(CA2) does not interact with HOMOs and LUMOs of benzene.  

We rename 

(CA2) as 5 in Scheme 2-4.  Though the 1


CA2 and 2


CA2 little interact 

with the LUMO1 and LUMO2 of benzene due to the above-mentioned symmetrical features, 

the HOMO1 interacts with the 1

CA2 to form bonding 1 and anti-bonding 10 orbitals 

and the HOMO2 interacts with the 2

CA2 to form bonding 2 and anti-bonding 2 

orbitals.  The remaining two orbitals, 1

CA2

 
and 2


CA2, strongly interact with the 

LUMO1 and LUMO2 to form 3, 4, 13, and 14 orbitals.  The 3 and 4 orbitals are 

bonding, while the 13 and 14 are anti-bonding between Cr atoms and benzene.   

Though the orbital interactions mentioned above are a little different between D2h and 

D2 symmetries, both the MO energies and MO features of the D2 symmetry are essentially 

the same as those of the D2h symmetry.  Hence, we will present our discussion based on the 

MO diagram in the D2h symmetry hereafter; see Scheme 2-4 for MO energy diagram in the 
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D2h symmetry and Figure 2-2 for their MOs in the D2 symmetry. See Supporting Information 

(Figure A2-4) for details about MO diagram in the D2 symmetry. 

     Because Cr(I) has five d-electrons and benzene has four electrons in HOMOs, totally 

fourteen electrons occupy the above discussed MOs in MBCr.  The two orbitals, 1 and 2, 

exist at very low energy because they mainly consist of HOMOs of benzene.  The 3 and 4 

orbitals exist also at low energy because of the large bonding overlaps of 1

(CA2) and 

2

(CA2) with the LUMO1 and LUMO2 of benzene.  Thus, these four orbitals are doubly 

occupied in MBCr.  The 789and10 orbitals are not very unstable in energy 

because they are essentially non-bonding between benzene and CA2.  Because they are 

above the 3 and 4 orbitals and nearly degenerate, they are singly occupied by remaining six 

electrons.  On the other hand, the  and  orbitals, which mainly consist of the singly 

occupied 2CA2 and 2

CA2orbitals in CA2, are unoccupied in MBCr because the 11 and 

12 exist at higher energy than the 3 to 10. Actually, this electron configuration is presented 

 

Scheme 2-4. MO diagram of (-η
6
:η

6
-C6H6)[Cr(AIP)]2 (MBCr) 
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by our DFT computation. Thus, the septet spin state of BCr is successfully understood by the 

orbital interactions shown in Scheme 2-4.  

 

3-4 Electronic structure of MBCr  

Because non-dynamical correlation effect is very large in the dinuclear Cr complexes as 

well known,
24-26

 we investigated MBCr in singlet to undectet spin states with the CASSCF 

and MRMP2 methods, where DFT-optimized geometry of the septet state was employed.  

Ten electrons in such ten orbitals as 3, 4, 78910, 13, and 14 were involved in 

the active space of the CASSCF calculation.  We also carried out the CASSCF calculation 

with ten electrons in such 12 orbitals as the 3 to 14, but the weights of the 11 and12 were 

very small, being less than 0.01.  This result indicates that the active space of ten electrons 

in ten orbitals is reasonable.  The CASSCF wavefunction was used as the reference of the 

MRMP2 calculation.  The CASSCF and MRMP2 calculations indicate that the septet state 

 

Figure 2-2.  CASSCF(10,10)-optimized MOs of MBCr in D2 symmetry.  Numbers in 

parentheses represent CASSCF(10,10)–calculated occupation numbers of natural orbitals.
a 

a: We present the occupation numbers of the natural orbitals here, since the natural orbital 

resembles well the CASSCF-optimized MO. 

 



47 

 

is the most stable, as shown in Figure 2-3.  The next stable spin state was quintet, which 

was calculated with the CASSCF and MRMP2 methods to be less stable than the septet state 

by 5.6 and 6.7 kcal/mol, respectively.  The CASSCF-calculated relative energies of the 

quintet, triplet, and singlet spin states to the septet spin state are almost the same as those of 

MRMP2-calculated ones, as shown in Figure 2-3, indicating that the relative energies of 

these spin multiplicities are mainly determined by electron configurations of the 3 to 14 

and that the dynamical correlation effect on the total energy is similar in the septet, quintet, 

triplet, and singlet spins states. 

The CASSCF wavefunction of the septet spin state mainly consists of 

(3)
2
(4)

2
(5)

1
(6)

1
(7)

1
(8)

1
(9)

1
(10)

1
, (3)

1
(4)

2
(5)

1
(6)

1
(7)

1
(8)

1
(9)

1
(10)

1
(13)

1
, and 

(3)
2
(4)

1
(5)

1
(6)

1
(7)

1
(8)

1
(9)

1
(10)

1
(14)

1
 configurations, and their weights (square of the 

coefficient of each spin configuration) are 0.472, 0.143, and 0.136, respectively.  The 

weights of the remaining electron configurations were very small (less than 0.06).  The 

main configuration is the same as the DFT-computational configuration shown in Scheme 

2-4.  The second and third leading configurations correspond to one electron excitation 

from the bonding orbital 3 to the antibonding orbital 13 and that from the 4 to the 14, 

respectively.  The CASSCF-calculated occupation numbers of the natural orbitals are 1.61 

and 1.59 for the bonding 3 and 4 orbitals, respectively, 0.39 and 0.40 for the anti-bonding 

3 and 4, respectively, and almost 1.00 for the other six orbitals,5 to 10 which mainly 

consist of d orbitals, as shown in Figure 2-2.  Because the natural orbitals were essentially 

the same as the CASSCF-optimized MOs illustrated in Figure 2-2, we will present the 

occupation numbers of the CASSCF-optimized MOs below.  All these results clearly 

indicate that the ground state of MBCr is the septet spin state.  Also, above results indicate 

that three spins on one Cr atom are strongly coupling with three spins of the other Cr atom in 

ferromagnetic manner.  This is of considerable interest, because such ferromagnetic 

coupling occurs despite of the absence of benzene orbital between the two spin centers in 

these MOs; see Figure 2-2. 

 The formal bond order between Cr atom and benzene is two, since there are two 

doubly-occupied bonding orbitals between them.  However, the electron occupation of the 

anti-bonding orbitals decreases it to ca. 1.2 ( = (1.61+1.59-0.39-0.40)/2). 
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We also calculated MTCr by the DFT(B3LYP), CASSCF, and MRMP2 methods.  No 

significant difference was observed in the relative energies of various spin states between 

MBCr and MTCr, as shown in Figure A2-5.  This indicates that substitution of toluene of 

MTCr for benzene induces little influence in both geometry and electronic structure.  From 

all these results, it should be concluded that MBCr is a good model for MTCr. 

We carried out the CASSCF(10,10) optimization of MBCr in each spin state with Cr-Cr 

distance fixed.  The PES in each spin state smoothly decreases as the Cr-Cr distance 

increases, as shown in Figure A2-6, but the equilibrium structure is not presented in the 

range of R(Cr-Cr) = 3.2 Å to 3.8 Å.  However the PES by the MRMP2 method presents the 

energy minimum at R(Cr-Cr) = 3.374 Å in the septet spin state, as shown in Figure 2-4; 

though this is somewhat shorter than the experimental result by 0.14 Å,
7
 this error is not so 

large because two Cr atoms are separated by a benzene ring and the error in the Cr-X 

distance (X = the center of benzene) is 0.07 Å;  see Figure A2-7 for the CASSCF-optimized 

geometry at R(Cr-Cr) = 3.40 Å.  These results indicate that the dynamical correlation as 

well as non-dynamical correlation plays important roles in determining the Cr-Cr distance.  

 

Figure 2-3. Energies (in kcal/mol) of various spin multiplicities of MBCr relative to the 

energy of the 7tet spin state
a 

a
 The DFT(B3LYP)-optimized geometry in the 7tet state was employed in the CASSCF and 

MRMP2 calculations. 
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The relative stabilities of the septet, quintet, triplet, and singlet spin states are little different 

in the range of 3.2 Å < R(Cr-Cr) < 3.7 Å between CASSCF-optimized geometries and 

B3LYP-optimized ones.  Since the dynamical correlation effect on the total energy is 

similar in each spin state as mentioned above, it is expected that the relative stability among 

these spin states is given correctly at the CASSCF-optimized geometry.  

The bond order between the Cr and benzene was calculated to be 1.3 at the 

CASSCF-optimized geometry which is moderately larger than that at B3LYP-optimized 

geometry, as expected; see Table 2-2 for the occupation numbers of the natural orbitals at 

R(Cr-Cr) = 3.40 Å. This is because the Cr-Cr distance is shorter in the MRMP2-optimized 

geometry than in the B3LYP-optimized geometry.  

     To take the ligand effect into the calculation, we performed ONIOM(CASSCF:DFT) 

and ONIOM(MRMP2:DFT) calculations of the real complexes.  First, we optimized BCr in 

the septet spin state and BV in the quintet spin state using the DFT method with the B3LYP 

and BP86 functionals.  The BP86-optimized structure agrees well with the experimental 

 

Figure 2-4. Potential energy surface of MBCr
 
calculated by the MRMP2 method.

a
  

a: The geometry was optimized with the CASSCF(10,10) method at various Cr-Cr 

distance in each spin state. 
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structure;
7,9

 R(Cr-Cr) = 3.607 Å (3.515 Å) and R(V-V) = 3.510 Å (3.510 Å), where out of 

parentheses are optimized values and in parentheses are experimental values.  However, 

B3LYP optimization overestimates metal-metal distance; R(Cr-Cr)=3.724 Å and 

R(V-V)=3.569 Å.  Thus, we employed the BP86 functional in the geometry optimization of 

BCr. 

     In BCr, the septet spin state was calculated to be the most stable by the 

ONIOM(CASSCF:BP86) and ONIOM(MRMP2: BP86) methods, as shown in Figure 2-5.  

This result agrees well with the result of MBCr.  Relative stabilities of various spin states 

also agree well with the computational results of MBCr. Even in MBCr of the quintet spin 

state the discrepancy is moderate.
27

  The occupation numbers of the natural orbitals obtained 

by the ONIOM(CASSCF:BP86) method are essentially the same as those of MBCr; see Table 

Table 2-2. CASSCF-calculated metal-metal distance, spin multiplicity, and the occupation 

numbers of the model systems, MBM (M = V – Fe) 

 MBV  MBCr  MBMn  MBFe  

Optimized R(M-M) / Å  3.30  3.40  3.50  3.35  

Most stable spin multiplicity  (2S+1)      

     CASSCF  5  7  9  7  

     MRMP2  5  7  9  1  

Occupation Number      

      3  1.7968  1.6660   1.5312  1.8710  

      4  1.8018  1.6639  1.5391   1.8633  

      5 1.0000  1.0031  1.0001  1.0045  

      6  0.9980   1.0020  1.0000  0.9956  

      7 0.9946  0.9977  1.0010  1.6929  

      8  0.9967  0.9996  1.5952  

      9  1.0000  1.0000  1.0445  

      10   1.0000  1.0000   0.9571  

      11    1.0000  1.0450  

      12    1.0000   0.9571  

      13 0.2052  0.3344   0.4676  0.4336  

      14 0.2029  0.3362  0.4615   0.5409  
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A2-2.  These results indicate that the substituents of the DDP ligand little influence on the 

electronic structure of the Cr atom.  

 

3-5 Geometries and Electronic Structure of -η
6
:η

6
-C6H6)[V(AIP)]2 (MBV) and 

-η
6
:η

6
-C6H6)[V(DDP)]2 (BV) 

     We optimized the geometry of MBV with the DFT(B3LYP) method in singlet to nonet 

spin states.  The quintet spin stet is the most stable at R(V-V) = 3.510 Å. This result agrees 

with the experimental results that TV takes the quintet spin state at R(V-V) = 3.509 Å.
9
  The 

reason why MBV takes the quintet spin state is explained by the MO diagram, as follows: 

Since MBV has eight d electrons, two electrons are removed from the 9 and 10 orbitals of 

MBCr (see Scheme 2-4).  Because four unpaired electrons remain, the electron configuration 

of the ground state is represented as (3)
2
(4)

2
(5)

1
(6)

1
(7)

1
(8)

1
, which leads to the quintet 

spin state. 

     We also optimized the geometry of MBV with the CASSCF method, where eight 

electrons were involved in such eight active orbitals as the 3, 4, 5,6,7,8,13, and 14 

 

Figure 2-5. Energies of various spin multiplicities of BCr relative to that of the 7tet spin 

state.
a 

a
 The DFT(BP86)-optimized geometry in the 7tet state was employed in the CASSCF 

and MRMP2 calculations. 
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orbitals.  Using the CASSCF-optimized geometries, we obtained the PES in each spin state 

by the MRMP2 method, as shown in Figure A2-8.  The quintet state was the most stable and 

its energy minimum was calculated at R(V-V) = 3.325 Å, which is shorter than the 

experimental value by 0.184 Å like the PES of MBCr by the MRMP2 method.  This error is 

not very large, considering that two V atoms are separated by a benzene ring and the error in 

the V-X distance (0.092 Å) is less than 0.1 Å.  Table 2-2 shows the occupation number of the 

natural orbitals at R(V-V) = 3.30 Å.  We carried out the ONIOM calculations of BV to 

include the ligand effect.  The quintet spin state was calculated to be the most stable by both 

ONIOM(CASSCF:BP86) and ONIOM(MRMP2:BP86) methods, as shown in Figure A2-9.  

The occupation numbers of the bonding orbitals 3 and 4 are about 1.8, those of their 

anti-bonding counter parts are both 0.20, and those of three d-derived orbitals are all 1.0, as 

shown in Table A2-2, which are essentially the same as those of the model MBV. 

The bond order between vanadium atom and the benzene ring is evaluated to be ca. 1.6, 

which is much larger than that (1.2) of the chromium analogue.  The 9 and 10 are singly 

occupied in MBCr but unoccupied in MBV.  However, these are completely non-bonding, 

and hence, the occupation change in these orbitals little influences the bond order.  The large 

bond order of MBV arises from the energy difference of 3d orbitals between Cr and V, as 

follows:  The bonding orbitals 3 and 4 mainly contribute to the bonding interaction 

between the V center and benzene, as shown in Scheme 2-4, because these orbitals mainly 

consist of LUMOs of benzene and 3d orbitals of the metal center.  Since the 3d orbital 

energy is higher in V than in Cr, the charge transfer from the metal to benzene more easily 

occurs in V than in Cr, which leads to the larger bond order in MBV than MBCr.  This is the 

reason why R(V-V) is shorter than R(Cr-Cr) in spite of the larger radius of 3d orbital in V than 

in Cr.
28

 

 

3-6 Spin States of -η
6
:η

6
-C6H6)[M(AIP)]2 (MBM, M = Early Transition Metals Such as 

Sc and Ti)  

One of our purposes in this work is to present theoretical prediction how to design a 

compound taking desired spin state.  We will first discuss early transition metal analogues 

such as ISTCs of Sc and Ti. 
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     Though BM and TM with M = Sc, Ti, Mn, and Fe have not been synthesized yet to our 

knowledge, we investigated them to predict their spin multiplicities. Here, model system, 

MBM, was employed to save the CPU time.  This is not unreasonable because the spin state 

was correctly calculated with the model system in the chromium and vanadium complexes. 

     We optimized the geometries of MBM (M = Sc and Ti) by the DFT method with the 

B3LYP functional under D2 symmetry in various spin states, because the DFT(B3LYP) 

calculations of MBCr, MTCr, BCr, MBV, and BV present similar results to those of MRMP2 

calculations of chromium and vanadium complexes, as mentioned above. 

     To check the reliability of the functional, we re-optimize the geometry of MBM (M = Sc 

and Ti) with different functionals.  Little difference is observed among B3LYP, B3LYP
*
, 

BP86, and PW91PW91 functionals, as shown in Table A2-3.   

The most stable spin state is singlet and triplet for MBSc and MBTi, respectively, as 

shown in Table 2-3, where the relative energies to the most stable spin state are also shown.  

In other words, the spin multiplicity increases when going from Sc to Cr in the periodic table 

interestingly. 

     These results of MBM (M = Sc and Ti) are easily understood by removing four 

electrons from the electron configuration of MBCr (Scheme 2-4) when M = Ti, and six 

electrons when M = Sc.  Therefore, the electron configurations of MBSc and MBTi are 

represented as (3)
2
(4)

2
(5)

1
(6)

1 
and (3)

2
(4)

2
, respectively. 

 

3-7 Electronic Structure of -η
6
:η

6
-C6H6)[Mn(AIP)]2 (MBMn) 

However, it is not easy to predict the most stable spin state of MBM (M = Mn or Fe) 

Table 2-3. Relative energies
a
 of various spin multiplicities calculated by the DFT 

(B3LYP) method 

  
Sc  

 
Ti 

 
V 

 
Cr 

 
Mn

b
 

 
Fe

b
 

9tet 
     

53.8  
 

24.7  
 

106.4  (0.0)  
  

7tet 
   

44.2  
 

33.5  
 

0.0  
 

10.2  (5.9)  
 

111.6  (18.1) 

5tet 
 

66.3  
 

18.6  
 

0.0  
 

38.5  
 

0.0  (12.1)  
 

2.7  (15.8) 

3let 
 

27.6  
 

0.0  
 

19.9  
 

32.1  
 

29.8  (17.5)  
 

0.0  (1.98) 

1let 
 

0.0  
 

25.9  
 

67.3  
 

45.4  
 

28.1  (15.1)  
 

37.5  (0.0) 

a: Relative energies to the most stable spin state are provided in kcal/mol. 

b: The number in the parentheses represent MRMP2-calculated energy at R(Mn-Mn) = 

3.5 Å for MBMn and R(Fe-Fe) = 3.4 Å for MBFe.  
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from the MO diagram, because it cannot be easily understood which orbitals are occupied by 

additional two or four electrons in Mn or Fe, respectively, compared to MBCr: If the energy 

levels of the 11 and 12 are close to those of the 9 and 10, the additional electrons occupy 

the 11 and 12 orbitals according to the Hund‟s rule.  If not, additional electrons occupy 

energetically lower orbitals. 

First, we optimized the geometry of MBMn by the DFT method with the B3LYP, 

B3LYP
*
, BP86, and PW91PW91 functionals under D2 symmetry in various spin states.   In 

the B3LYP calculation, the most stable spin state of MBMn was quintet, as shown in Table 2-3.  

The electron configuration is (3)
2
(4)

2
(5)

2
(6)

2
(7)

1
(8)

1
(9)

1
(10)

1
.  In the other functionals, 

however, the nonet spin state is the most stable, as shown in Table A2-3.  The electron 

configuration is represented by (3)
2
(4)

2
(5)

1
(6)

1
(7)

1
(8)

1
(9)

1
(10)

1
(11)

1
(12)

1
. 

We also optimized the geometry of MBMn with the CASSCF method under D2 

symmetry in various spin states, where 12 electrons were involved in such 12 active orbitals 

as the 3 to 14.  Using the CASSCF-optimized geometry in each spin state, the PES was 

evaluated by the MRMP2 method.  The PES of the nonet spin state was found to lie below 

that of the septet spin state in the region between 3.2 Å < R(Mn-Mn) < 3.8 Å, as shown in 

Figure 2-6.  The energy minimum of the nonet spin state is found at R(Mn-Mn) = 3.516 Å, 

which is below the energy minimum of the septet spin state (R(Mn-Mn) = 3.542 Å) by about 

6 kcal/mol.  Thus, the MRMP2 calculation clearly indicates that MBMn takes nonet spin state 

in the ground state.  It should be noted that this is the maximum spin state in the ISTCs of 

the first row metals.  Because the most stable spin states of MBCr and MBV are correctly 

reproduced by the MRMP2 method in wide range of the metal-metal distance, as mentioned 

in section 3-4 and 3-5, we believe that the spin state of MBMn is correctly evaluated with the 

MRMP2 method, too. 

  The occupation numbers of the bonding 3 and 4 orbitals were 1.53 and 1.54, those 

of the anti-bonding counterparts 13 and 14 orbitals are 0.47 and 0.46, and those of all eight 

d-derived orbitals are 1.00 at R(Mn-Mn) = 3.50 Å, as shown in Table 2-2 and Figure A2-10.  

The electron configuration of MBMn is therefore represented as 

(3)
2
(4)

2
(5)

1
(6)

1
(7)

1
(8)

1
(9)

1
(10)

1
(11)

1
(12)

1
, indicating that six 3d electrons of one Mn 

interact with six 3d electrons of the other Mn separated by the benzene ring in paramagnetic 
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manor.  The bond order between the manganese atom and the benzene ring is evaluated to be 

ca. 1.1, which is moderately smaller than that (1.2) of the chromium complex.  This decrease 

is interpreted in the same way as the increase of the bond order upon going from Cr to V, as 

discussed in section 3-6; the 3d orbital energy becomes lower in manganese than in chromium, 

which weakens the charge transfer from Mn to benzene. 

To include the ligand effect, we examined the real complex, BMn, by the ONIOM 

method in the same way as BCr and BV.  The most stable spin state was nonet, like that of the 

model complex, as shown in Figure A2-11.  Note that the optimized geometry of BMn under 

D2 symmetry has a moderate but nonnegligible imaginary frequency (100.89 i cm
-1

) with the 

BP86 functional.  We further optimized it until imaginary frequency disappeared. The fully 

optimized geometry is C2 symmetrical.  In this geometry, BMn is not a complete ISTC but a 

distorted ISTC, because the benzene ring does not interact with the metal in an 
6
-manner but 

coordinates with the metal in a 
3
-manner.  Even in this geometry, nonet spin state is the 

most stable like the D2-optimized geometry; see Figures A2-11 and A2-12 for detail of the 

 

Figure 2-6. Potential energy surface of MBMn calculated by the MRMP2 method
a
  

a: The geometry was optimized with the CASSCF(12,12) method at various Mn-Mn 

distances in each spin state. 
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calculations under the C2 geometry.  Although BMn has not been synthesized yet, the 


6
-coordination geometry was reported for the similar ISTC of Mn, 

-η
6
:η

6
-C6H5CH3)[Mn(Ar

*
-3,5-

i
Pr2)]2 (Ar

* 
= C6H3-2,6-Trip2, Trip = C6H2-2,4,6-

i
Pr3), while 

the spin multiplicity has not been discussed.
10

 

In conclusion, based on the MRMP2 and ONIOM computational results, we wish to 

present theoretical prediction that the most stable spin state of BMn is nonet.  This is the 

highest spin multiplicity in the ISTCs of the first-row transition metals.  Its synthesis is very 

attractive. 

 

3-8 Electronic Structures of -η
6
:η

6
-C6H6)[Fe(AIP)]2 (MBFe) and its cation MBFe

2+
 

 

Figure 2-7. Potential energy surface of MBFe calculated by the MRMP2 method
a
  

a: The geometry was optimized with the CASSCF(14e,12o) method at various Fe-Fe 

distances in each spin state. 
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     First, we optimized the geometry by the DFT method with the B3LYP, B3LYP*, BP86, 

and PW91PW91 functionals.  The most stable spin state by the B3LYP functional was triplet, 

as shown in Table 2-3, whereas it is calculated to be septet, triplet, and triplet by B3LYP*, 

BP86, and PW91PW91 functionals, respectively, as shown in Table A2-3.  These results 

suggest that the DFT must be carefully applied to MBFe probably because of the complex 

electronic structure of MBFe.  Here, we applied the CASSCF method to the geometry 

optimization of MBFe, where 14 electrons in such 12 active orbitals as the 3 through 14 were 

included in the active space.  Using the CASSCF-optimized geometries, the PESs of singlet, 

triplet, and septet spin states were evaluated by the MRMP2 method.  However, the PESs of 

the quintet spin state is not smooth in both CASSCF and MRMP2 calculations, as shown in 

Figure A2-14.  This is probably because two different states in the quintet spin state lie 

energetically near in the CASSCF level and their PESs cross with each other around R(Fe-Fe) 

= 3.2 - 3.3 Å.  In the region between 3.0 Å < R(Fe-Fe) < 3.5 Å, the singlet spin state is 

always more stable than the other spin states by the MRMP2 method, as shown Figure 2-7 

and Figure A2-14.  The energy minimum in the singlet spin state by the MRMP2 method is 

at R(Fe-Fe) = 3.349 Å, which is below the energy minimum in the triplet spin state at 

R(Fe-Fe) = 3.351 Å by about 2 kcal/mol. 

Table 2-4. Important electron configurations of the CASSCF wave function of MBFe in the 

singlet spin state
a 

Configuration Weight  

3 4 5 6 7 8 9 10 11 12 13 14  

2  2  0  2  2  2  0  2  2  0  0  0  0.021814  

2  2  0  2  2  2  2  0  0  2  0  0  0.021748  

2  2  2  0  2  2  0  2  2  0  0  0  0.020171  

2  2  2  0  2  2  2  0  0  2  0  0  0.020136  

2  2  1  1  2  2  1  1  2  0  0  0  0.019838  

2  2  1  1  2  2  2  0  1  1  0  0  0.019820  

2  2  1  1  2  2  0  2  1  1  0  0  0.017068  

2  2  1  1  2  2  1  1  0  2  0  0  0.017045  

a: R(Fe-Fe) =3.35 Å  
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     The CASSCF-calculated occupation numbers of the natural orbitals (Figure 2-8) in the 

singlet spin state are shown in Table 2-2: six orbitals (from the 5 to 12 except for the 7 and 

8) are singly occupied and the other orbitals 3, 4, 7, and 8 are doubly occupied.  This 

indicates that 14 electrons of two iron atoms form anti-ferromagnetic coupling (low-spin 

coupling) to form open-shell singlet electron configuration unlike MBV, MBCr, and MBMn.  

The CASSCF wavefunction consists of various kinds of configurations with the similar 

weights, as shown in Table 2-4, where eight leading configurations are shown: The first to 

fourth leading configurations are closed shell type, while the fifth to eighth ones are 

two-electron excitation configurations.  Generally, high spin state is more favorable than low 

spin state when orbital energies are similar.  In the case of MBFe, however, the singlet spin 

state is more stable than the triplet and septet spin state.  This is because contribution of 

closed shell type configurations from the first to fourth electron configurations (see Table 2-4) 

considerably lowers the total energy of the singlet spin state enough to overcome the energy 

 

Figure 2-8. CASSCF-optimized MOs of MBFe in D2 symmetry.  
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stabilization upon going from the low spin to the high spin state.  To take singlet spin state, 

six electrons in the 5, 6, 9 to 12 must induce low-spin coupling.  As a result, MBFe takes 

singlet spin state including the low-spin coupling electron configurations. 

To include the ligand effect, we also examined the real complex, BFe, by the ONIOM 

method like those of BV, BCr, and BMn.  Though the septet spin state was calculated to be the 

most stable by the CASSCF method but the singlet state was calculated to be the most stable 

by the MRMP2 method.  The energy difference between two states is very small like that in 

MBFe. 

In conclusion, we wish to predict that the most stable spin state of BFe is open-shell 

singlet. 

Our theoretical calculations revealed that the most stable spin multiplicity of ISTC 

increases upon going to Mn from Sc and reaches the maximum, the nonet spin states, at Mn, 

and then suddenly decreases to the singlet spin state at Fe, interestingly.  Considering these 

results, we expected that MBFe
2+

 might take the nonet spin state if two electrons are removed 

from MBFe by two-electron oxidation because the number of electrons in MBFe
2+

 is the same 

as MBMn.  To ascertain this expectation, we calculated MBFe
2+

 in the singlet to nonet spin 

 

Figure 2-9. Total energies in singlet to septet spin states of MBFe
2+

 
a 

a
 Employed is the CASSCF-optimized geometry of MBFe at R(Fe-Fe)=3.35 Å.  
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states at R(Fe-Fe) = 3.35 Å, which is the CASSCF-optimized geometry of the open-shell 

singlet spin state.  As expected, the nonet spin state was calculated to be the most stable by 

the MRMP2 method and its electronic structure was essentially the same as that of MBMn.  

However, the energy difference between the nonet spin state and the second stable spin state, 

which was septet, was small ( ~ 2.4 kcal/mol), as shown in Figure 2-9.  It is of much interest 

that two electron oxidation induces spin flip from singlet to nonet. 

 

4. Conclusion 

     We theoretically investigated the inverted sandwich type complex, BM 

(-η
6
:η

6
-C6H6)[M(DDP)]2, DDPH = 2-(4-{(2,6-diisopropyllhenyl)imino}pent-2-ene).  First, 

its septet spin state was qualitatively discussed on the basis of MO diagram which was 

constructed by MOs of benzene and two Cr(AIP) moieties (AIPH = 

1-amino-3-imono-prop-1-ene).  Then, model system MBCr was theoretically investigated 

with the CASSCF and MRMP2 methods.  We also investigated MTCr 

(-η
6
:η

6
-C6H5CH3)[Cr(AIP)]2), and found that the methyl group on toluene little influences 

both the geometries and the most stable spin state.  The quintet spin state of MBV was also 

interpreted well in terms of the MO diagram of MBCr by removing two electrons from two 

singly-occupied orbitals at high energy.  Next, we optimized the geometries of MBM (M = 

Sc and Ti) in singlet to nonet spin states with the DFT(B3LYP) method.  The most stable 

spin state of MBM was calculated to be singlet and triplet for Sc and Ti, respectively.  These 

results are understood with the MO diagram, too.  The most stable spin states for MBMn and 

MBFe were calculated to be different between the B3LYP and other functionals such as 

B3LYP*, BP86, and PW91PW91.  In order to predict the most stable spin state for MBMn, 

MBFe, MBV, and MBCr, we optimized the geometry with the CASSCF method as a function 

of the M-M distance and investigated spin multiplicities with the MRMP2 method.  Though 

the MRMP2-calculated PES against the M-M distance underestimates the equilibrium 

distance between two metals in MBV and MBCr, it is clearly shown that the most stable spin 

states of MBV, MBCr, MBMn, and MBFe are quintet, septet, nonet, and open-shell singlet, 

respectively. 

We also performed ONIOM(CASSCF:BP86) and ONIOM(MRMP2:BP86) calculations 
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to include the ligand effect, where the whole systems were optimized with the DFT(BP86) 

method in singlet to undectet spin states.  The spin states of BV, BCr, BMn, and BFe were 

calculated with the ONIOM(MRMP2:DFT) method to be quintet, septet, nonet, and singlet 

spin states, respectively, which are the same as those of the model complexes.  These results 

of BV and BCr agree well with the experimental results. 

In conclusion, we wish to present theoretical prediction that BMn takes nonet spin state, 

which is the highest spin state in inverted sandwich type complexes, but BFe takes singlet spin 

state. 
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 Appendix 

Optimized geometry of MBCr by the DFT method (Table A2-1). The metal-metal distance, the 

spin multiplicity, and the occupation numbers of BM (M = V - Fe) (Table A2-2). Energies of 

MBM (M = Sc - Ni) calculated by the DFT method with B3LYP*, BP86, and PW91PW91 

functional (Table A2-3). The PES of MBCr in the septet spin with EDS=0.02, 0.01, and 0.005 

(Figure A2-1). Optimized geometry of TBCr (Figure A2-2). Important MOs of Cr(AIP)2  

(Figure A2-3). Orbital energies of MCr under D2 symmetry (Figure A2-4). The DFT, 

CASSCF(10,10), and MRMP2 energies of MTCr (Figure A2-5). PES of MBCr
 
(Figure A2-6). 

Optimized geometry of MCr at R(Cr-Cr) = 3.4 Å by the CASSCF(10,10) method (Figure 

A2-7). PES of MBV (Figure A2-8). Total energies in singlet to 9tet spin states of BV (Figure 

A2-9). The natural orbitals of MBMn (Figure A2-10). Total energies of BMn (Figure A2-11). 

Total energies of BMn in the 1let to 11tet states on the 9tet optimized geometry under C2 

symmetry (Figure A2-12). The natural orbitals of BMn at the optimized geometry in C2 

symmetry (Figure A2-13). Total energies of MBFe (Figure A2-14). Total energies of BFe 

(Figure A2-15).   
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Table A2-2. The metal-metal distance, the spin multiplicity, and the occupation 

numbers of the real system, BM (M = V - Fe) 

 BV  BCr  BMn  BFe  

R(M-M) / Å  3.510  3.607  3.828  3.727  

Most stable spin state (2S+1)     

     DFT(BP86)  5  7  9  7  

     ONIOM(CASSCF)  5  7  9  7  

     ONIOM(MRMP2)  5  7  9  1  

Occupation Number      

     3  1.7955  1.6137  1.4563  1.5950  

     4  1.8104  1.5994  1.4730  1.6320  

     5  1.0010  1.0012  1.0000  1.4752  

     6  1.0000  1.0021  1.0001  1.5237  

     7  0.9993  0.9985  1.0013  1.3843  

     8  0.9920  0.9978  0.9991  1.3633  

     9   1.0000  1.0001  1.0022  

     10   1.0000  0.9999  0.9988  

     11    1.0001  1.0024  

     12    0.9999  0.9984  

     13  0.2041  0.4014  0.5377  0.4778  

     14  0.1976  0.3860  0.5326  0.5469  
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Table A2-1. Optimized geometry of MBCr by the DFT method.
a
  

 
B3LYP BP86 PW91PW91 B3LYP* 

 
R(Cr-Cr) D(CA-CA)

b 
 R(Cr-Cr) D(CA-CA)

b
  R(Cr-Cr) D(CA-CA)

b
  R(Cr-Cr) D(CA-CA)

b
  

11tet 4.524  0.0  4.409  0.0  4.382  0.0  4.497  0.0  

9tet 4.080  87.9  4.011  85.6  3.983  85.6  4.062  87.4  

7tet 3.634  55.0  3.522  49.4  3.505  50.8  3.601  52.9  

5tet 3.552  65.0  3.461  64.3  3.442  64.7  3.555  3.2  

3let 3.387  85.3  3.349  80.1  3.328  80.5  3.376  69.9  

1let 3.338  87.0  3.291  87.1  3.273  87.3  3.327  87.0  

exp.(Tol)
c
  3.603  54.0  3.603  54.0  3.603  54.0  3.603  54.0  

exp.(Bz)
d
 3.515    3.515    3.515    3.515    

a:Length in Å and angle in degree. 

b: the dihedral angle between two Cr(AIP) lignds  

c: Tsai, Y.-C.; Wang, P.-Y.; Chen, S.-A.; Chen, J.-M. J. Am. Chem. Soc. 2007, 129, 8066 

d: Monillas, W. H.; Yap, G. P. A.; Theopold, K. H. Angew. Chem. Int. Ed. Eng. 2007, 46, 6692. 6
5
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Table A2-3. Energies of MBM (M = Sc - Ni) calculated by the DFT method with B3LYP*, 

BP86, and PW91PW91 functional.  Relative energies from the most stable spin state are 

shown in kcal/mol.  
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Figure A2-1. Effect of energy 

denominator shift (EDS) vales 

on the PES of MBCr in the 

septet spin state calculated by 

the MRMP2 method 
a
  The 

equilibrium distances are 

3.3749, 3.3831, and 3.3850 Å 

at EDS=0.02, 0.01, and 0.005, 

respectively. 
a
 The B3LYP-optimized 

geometry was employed 
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Figure A2-2. Optimized geometry of TBCr by the DFT(B3LYP) method in septet state under 

C1 symmetry.  Parentheses represent experimental values.  Length in Å and angle in degree.  

 

 

 

 

Figure A2-3.  Important MOs of Cr(AIP)2, CA2 
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Figure A2-4. Orbital energies of MCr under D2 symmetry by the RO-B3LYP method in the 

septet spin state.  R(Cr-Cr) is fixed to be the experimental value (3.634Å).  

When the dihedral angle changes, the orbital energies change a little, and the order of orbital 

energies interchange. However, the electron configuration does not change at all. 

 

 

 

 

 

 

  

 

Figure A2-5. Energies of MTCr relative 

to the energy of the septet spin state.
a
  

a
 The DFT(B3LYP)-optimized geometry 

in the septet spin state was employed in 

the CASSCF and MRMP2 calculations. 
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Figure A2-6. PES of MBCr
 

by the 

CASSCF(10,10) method.  
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Figure A2-7. Optimized geometry of MBCr at R(Cr-Cr) = 3.4 Å by the CASSCF(10,10) 

method in septet state under D2 symmetry.  Parentheses represent experimental values.  

Length in Å and angle in degree. 

 

 

 

 

 

 

 

Figure A2-8. PES of MBV by the 

MRMP2 method using the 

CASSCF(8,8)- optimized geometries 

in 1let to 9tet spin states .. 
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Figure A2-9. Energies (in kcal/mol) of 

BV relative to the energy of the quintet 

spin state
a
 

a
 The DFT(BP86)-optimized geometry 

in the quintet spin state was employed in 

the CASSCF and MRMP2 calculations. 
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Figure A2-10.  The natural orbitals of MBMn at R(Mn-Mn) = 3.50 Å optimized with the 

CASSCF(12,12) method in D2 symmetry.  Numbers in parentheses represents the occupation 

numbers. 

 

  

 

Figure A2-11. Energies (in kcal/mol) of 

BMn relative to the energy of the nonet 

spin state
a
 

a
 The DFT(BP86)-optimized geometry 

in the nonet spin state under D2 

symmetry was employed in the 

CASSCF and MRMP2 calculations. 
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Figure A2-12. Energies (in kcal/mol) of 

BMn relative to the energy of the nonet 

spin state
a
  

a
 The DFT(BP86)-optimized geometry 

in the nonet spin state under C2 

symmetry was employed in the 

CASSCF and MRMP2 calculations.  
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Figure A2-13. The natural orbitals of BMn in the DFT(BP86)-optimized geometry under C2 

symmetry.  Only the model part is shown. 
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Figure A2-14. Total energies of MBFe by the (a) CASSCF(14e,12o) and (b) MRMP2
a
 method 

on the CASSCF(14e,12o)-optimized geometries 
a
 The broken lines in the PES by the MRMP2 method represent the extrapolated quadratic 

curves.  Those two states do not cross each other in the MRMP2 level at least in this region. 

 

 

 

 

 

 

Figure A2-15. Energies (in kcal/mol) of BFe relative to the energy of the septet spin state for 

BP86 and the ONIOM(CASSCF(14e,12o),BP86) calculations and singlet spin state for the 

ONIOM(MRMP2,BP86) calculation
a
 

a
 The DFT(BP86)-optimized geometry in the septet spin state was employed in the CASSCF 

and MRMP2 calculations.. 
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Chapter 3 

Inverted Sandwich Type Complexes of Second 

Row-Transition Metal Elements: Theoretical Prediction of 

Electronic Structure and Spin Multiplicities 

 

1. Introduction: 

Recently, Tsai et al.
1
 and Monillas et al.

2
 synthesized inverted sandwich type complex 

(ISTC) of chromium, -η
6
:η

6
-C6H5CH3)[Cr(DDP)]2 (DDPH = 2-{(2,6- 

diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene, which is often 

referred to “nacnac”) and -η
6
:η

6
-C6H6)[Cr(DDP)]2 RCr, respectively.  Interestingly, they 

take very high spin state of septet.  Also, Tsai et al. reported that ISTC of vanadium, 

-η
6
:η

6
-C6H5CH3)[V(DDP)]2, takes very high spin state of quintet.

3
  These are surprisingly 

high spin state, considering that organometallic compounds tend to take in general low spin 

state.  

Electronic structures of these ISTCs are of considerable interest from the point of view 

of physical chemistry, coordination chemistry, and material science.  Previously, we 

theoretically studied ISTCs of the first-row transition metals (TMs) and clarified the reason 

why ISTCs of vanadium and chromium take such high spin states.
4
  Also we calculated the 

N N

HH

HH M

N N

HH

HH M

N N

RR

ArAr M

N N

RR

ArAr M

RM MM
Ar = 2,6-iPr2C6H3, R = Me

 

Scheme 3-1. (-η
6
:η

6
-C6H6)(MDDP)2 (RM) and ( -η

6
:η

6
-C6H6)(MAIP)2 (MM), (M = Y - 

Tc, DDPH = 2-{4-{(2,6-diisopropyllhenyl)imino}pent-2-ene, AIPH = (Z)-1-amino-3- 

imino-prop-1-ene) 
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spin states of their analogues, RM (M = Sc, Ti, Mn, and Fe), though they have not been 

synthesized yet, and reported that they take closed-shell singlet, triplet, nonet, and open-shell 

singlet spin states, respectively.  Thus, the spin multiplicity of the RM (M = the first-row 

TMs) increases from singlet to nonet when going to the right-hand side from the left-hand 

side in the periodic table, and then suddenly decreases to single at Fe. 

In the present work, we theoretically investigated various ISTCs of the second-row 

transition metals, RM (M = Y, Zr, Nb, Mo, and Tc).  Our main purposes here are to clarify the 

electronic structures of the ISTCs of the second-row TMs, to present theoretical prediction of 

their spin multiplicities, and to clarify the reason why the spin multiplicity is different 

between the first and the second TM series. 

 

2. Models and Computational Details 

2-1 Model Complexes 

In our previous study of the ISTC of the first-row TMs,
4
 we employed AIP (AIPH = 

1-amino-3-imono-prop-1-ene) ligand (see Scheme 3-1) as a model of the DDP.  The 

theoretical calculations reproduced the spin multiplicities of model complexes RV and RCr, 

indicating that the AIP ligand is a good model of DDP.  Actually, the substituents of the 

ligand induce little effect on the geometry and the relative stabilities of spin multiplicities.  

Though toluene was employed for real systems, substitution of toluene for benzene did not 

change the most stable spin multiplicity.
4
  For these results, we mainly employed models, 

-η
6
:η

6
-C6H6)[M(AIP)]2 MM, in the present study unless otherwise mentioned.  

 

2-2 Computational Details 

The geometries of MM (M = Y, Zr, Nb, Mo, and Tc) were optimized in each spin state 

by the DFT method with B3LYP,
5,6

 B3LYP*,
7
 BP86,

5,8
 and PW91PW91

9
 functionals.  The 

initial geometries of MM were set to D2 symmetry,
10

 where M(AIP) moieties were fixed to be 

planar because the six-membered ring of the Cr(DDP) moiety in 

-η
6
:η

6
-C6H5CH3)[Cr(DDP)]2 was experimentally observed to be almost planar.

1-3
 

The geometry of MMo was optimized by the CASSCF(10e, 8o) method,
11

 too, where 

the Mo-Mo distance was taken as a coordinate and the geometry of the remaining moiety was 
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optimized under D2 symmetry at various Mo-Mo distances. Using the CASSCF-optimized 

geometry at each Mo-Mo distance, the potential energy surface (PES) was evaluated by the 

MRMP2 method.
12-14

  In the MRMP2 calculations, CASSCF(10e, 8o) wavefunction was 

taken to be the reference wavefunction.  We introduced the energy denominator shift (EDS) 

in the MRMP2 calculations, where the EDS value of 0.02 a.u. was employed throughout the 

present study. 

Core electrons (up to 3p) of the metals were replaced with Stuttgart-Dresden-Born 

effective core potentials (ECPs), and their valence electrons were represented with 

(311111/22111/411) basis sets.
15

  For C, N, and H, cc-pVDZ basis sets were employed.
16

  

The augmented functions were added to N because it is anionic in the AIP. 

Gaussian 03 package was used for DFT calculation
17

 and GAMESS package was used 

for CASSCF and MRMP2 calculations.
18

  Molecular orbitals were drawn with Molekel 

program ver. 5.3.
19

  

 

3. Results and Discussion 

3.1 DFT-Computed Spin Multiplicities and Geometries of MM (M = Y, Zr, Nb, Mo, and 

Tc) 

     We optimized the geometry of MM (M = Y, Zr, Nb, Mo, and Tc) in various spin states 

with the B3LYP functional.  The most stable spin state is singlet, triplet, quintet, and singlet 

for M = Y, Zr, Nb, and Tc, respectively, as shown in Table 3-1.  In MMo, the most stable 

spin state is triplet, but it is only 0.9 kcal/mol higher in energy than the singlet spin state.  

     The Y-Y distance is 4.082 Å at the optimized geometry.  When going to Tc from Y in 

the second-row TM series, the M-M distance gradually decreases by about 0.12 Å, as shown 

Figure 3-1.  It is likely that this decrease arises from the decrease in d orbital size when 

Table 3-1. Relative energies
a
 of various spin multiplicities calculated by the DFT (B3LYP) 

method 

  
Y   

Zr   
Nb   

Mo   
Tc  

7tet    
44.1   

51.5   
21.0    

5tet  
51.5   

17.4   
0.0   

19.8   
21.6  

3let  
26.9   

0.0   
13.4   

0.0   
1.2  

1let  
0.0   

0.8   
32.5   

0.9   
0.0  

a
 Energy difference from the most stable spin state are shown in kcal/mol.  
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going to right hand side in the periodic table.
20

  In the first row TMs, the M-M distance 

decreases when going from Sc to V like the second row TMs, but increases when going from 

V to Mn.  This increase is interrupted as follows: Electrons occupy the 1 and 1* orbitals 

when M = Cr and 1 to 2* orbitals when M = Mn.  Because the lobes of these  orbitals 

are pointing to the benzene, the repulsion between the AIP ligand and benzene increases as 

these  orbitals are occupied, which leads to larger M-M distance.  This is the reason why 

the M-M distance increases when going from V to Mn.  The difference in M-M distance 

between the first (Sc to V) and second row (Y to Nb) TMs is also interpreted by the 

difference in d orbitals radius:
20

 The 3d orbitals of the first row TMs always less expands 

than the 4d orbital of the second row TMs.  

     We also calculated these complexes with the B3LYP*, BP86, and PW91PW91 

functionals. The most stable spin state of MM (M = Y, Zr, Nb, and Tc) is the same as that 

calculated with the B3LYPfunctional.  However, that of MMo is calculated to be singlet by 

these functionals, as shown in Table A3-1, unlike the B3LYP computational result.  Because 

 

Figure. 3-1 DFT-optimized geometry of MM in the most stable spin state.
a
 (A) Important 

distances (Å) of MMo and MCr in parentheses (B) Metal-Metal distances of MM. 
a: The most stable spin states are 1let, 3let, 5tet, 3tet, and 1let for M = Y, Zr, Nb, Mo, and Tc, 

and 1let, 3let, 5tet, 7tet, and 9net for M = Sc, Ti, V, Cr, and Mn, respectively. 
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the B3LYP functional tends to overestimate the stability of higher spin multiplicity, as well 

known,
21

 we will investigate the MMo with the CASSCF and MRMP2 methods in section 3.4 

in more detail. 

 

3.2 Orbital Diagrams of and Spin Multiplicities of MM (M = Y, Zr, and Nb) 

In this section, we wish to briefly discuss the molecular orbital (MO) interaction diagram 

to understand the electronic structure and spin state of MM.  

In the M(AIP), degenerate five d orbitals of M are split into non-degenerate five orbitals 

by the interaction with the AIP moiety, as discussed previously.
4
  We named them d, d1,d2, 

d1, andd2 orbitals, as shown in Scheme 3-2. The d2 orbital mainly consists of the dxz orbital 

of M with which the N lone pair of the AIP moiety interacts in an anti-bonding way.  

Because these two orbitals overlap well with each other in a  manner with respect to the 

M-N bond, the d2 orbital is much destabilized in energy.  The d1 orbital mainly consists of 

the dyz orbital of M with which the  orbital of the AIP moiety interacts in an anti-bonding 

way.  Because of the -type overlap between these orbitals with respect to the M-N bond, the 

d1 orbital is less destabilized than the d2 orbital.  However, this d1 orbital is more 

destabilized in the second-row TM complexes than that of the first-row TM complexes 

because the d orbital more expands in the second-row TM element than in the first-row TM 

element.
20

  The d2 and d1 orbitals mainly consist of the dxy and dx2-y2 orbitals, respectively.  

The destabilization of the d2 orbital is somewhat larger than that of the d1 orbital because the 

dx2-y2 orbital stronger interacts with the  orbital of the AIP ligand than the dxy orbital.  Thus, 

the energy gap is large between d1 and d2 but small between d2 and d1 orbitals in the 

M(AIP) moiety.  The d orbital lies at the lowest energy because it little interacts with the 

AIP ligand. 

[M(AIP)]2 consists of two M(AIP) moieties, where d-derived orbitals of M(AIP), d2, d1, 

d1, d2, and d, form bonding and anti-bonding pairs such as 2 and 2
*
,1 and 1

*
,2 and 

2
*
,1 and 1

*
, and and 

*
 orbitals, respectively, as shown in Scheme 3-2.  Because two 

M(AIP) moieties are considerably separated by benzene, the bonding orbital and its 

anti-bonding counterpart completely degenerate with each other. 
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     In MM, only 1
*
 and 2

*
 orbitals of [M(AIP)]2 can strongly interact with the LUMOs of 

benzene to form bonding MOs, 1 and 2, and anti-bonding orbitals, 7 and 8, as discussed 

previously.
4
  The other orbitals of [M(AIP)]2 do not interact with the HOMOs of benzene 

because 2,1, 2, , and 
*
 orbitals have different symmetry from those of the  orbitals 

of benzene and also the 2
*
 and 1

*
 orbitals are at much higher energy than the HOMOs of 

benzene.  Thus, these MOs of MM exist at almost the same energy as those of the M(AIP) 

moiety.  We named all these MOs 1 to 2 orbitals, as shown in Scheme 3-2. 

     Because Y(I) has two d electrons, totally four d electrons occupy these MOs.  The 

 

Scheme 3-2. MO diagram of (-η6
:η6

-C6H6)[M(AIP)]2 (MM), [M(AIP)]2, and M(AIP), and 

the natural orbitals of MMo calculated by the CASSCF(10e,8o) method at R(Mo-Mo) = 3.6 

Å in the 
1
A state.  The numbers in parentheses represent the occupation numbers of the 

natural orbitals.
a
 

a: We present the occupation numbers of the natural orbitals here, since the natural orbital 

resembles well the CASSCF-optimized MO. 
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possible electron configuration of MY is (1)
2
(2)

2
, because the 1 and 2 MOs exist at 

considerably lower energy than the others.  Thus, it is clearly concluded that MY takes the 

singlet spin state. 

     Two more d electrons are involved in MZr. The 3 and 4 MOs are nearly degenerate, 

because they consist of the dz2 orbitals which little interact with benzene HOMOs and 

LUMOs.  Thus, MZr takes (1)
2
(2)

2
(3)

1
(4)

1
 electron configuration, which is the triplet 

spin state.  

     Two more d electrons are added in MNb.  Similarly, the 5 and 6 MOs are nearly 

degenerate.  Also, they exist at similar energy to the 3 and 4 MOs, because the d orbitals 

of Nb little interact with HOMOs and LUMOs of benzene.  As a result, MNb takes a 

(1)
2
(2)

2
(3)

1
(4)

1
(5)

1
(6)

1
 electron configuration, corresponding to the quintet spin state. 

     These spin multiplicities are the same as those of the ISTCs of the first-row TM 

complexes. 

 

3.3 Spin Multiplicities of MMo and MTc by the MRMP2 Method 

     Though the spin multiplicity can be easily understood in terms of orbital diagrams for 

M = Y to Nb, the electronic state becomes complicated when M = Mo, as follows: There are 

10 d electrons in MMo.  Thus, the possible electron configurations of MMo are 

(1)
2
(2)

2
(3)

2
(4)

2
(5)

2
 and (1)

2
(2)

2
(3)

2
(4)

2
(5)

1
(6)

1
, which provide singlet and triplet 

spin states, respectively.  If the energy gap between d1 and d2 is small, the triplet state is 

more stable.  If not, the singlet state is more stable.  This means that we should make 

careful examination of MMo. 

     Actually, the spin multiplicity of MMo depends on the functionals employed, as 

expected above; see Tables 3-1 and A3-1.  We investigated MMo in more detail with the 

MRMP2 method.  In the CASSCF calculations, we employed an active space consisting of 

10 electrons in such 8 MOs as 1 to 8, because these MOs are in similar energies.
22

  The 

energy minimum of MMo is presented at R(Mo-Mo) = 3.6 Å in the 
1
A state, as shown in 

Figure 3-2.  The main electron configuration and second leading one are 

(1)
2
(2)

2
(3)

2
(4)

2
(5)

2
 and (1)

2
(2)

2
(3)

2
(4)

2
(6)

2
, where weights are 0.766 and 0.095, 

respectively.  The weights of the other electron configurations are less than 0.04.  The 
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occupation numbers calculated by the CASSCF method are given in Scheme 3-2: Those of 1 

to 5 are approximately two and those of the others are approximately zero.  Thus, these 

results suggest that the ground state of MMo takes closed shell singlet electron configuration.  

However, the second and third lowest states of MMo, which are 
3
B1 electronic state at 

R(Mo-Mo) = 3.6 Å and 
3
A state at R(Mo-Mo) = 3.5 Å, respectively, lie within 1.5 kcal/mol 

from the 
1
A state.  The main, second, and third leading configurations of the 

3
B1 state are 

(1)
2
(2)

2
(3)

2
(4)

2
(5)

1
(6)

1
, (1)

2
(2)

2
(3)

1
(4)

2
(5)

1
(6)

1
(8)

1
, and 

(1)
2
(2)

2
(3)

2
(4)

1
(5)

1
(6)

1
(7)

1
 where weights are 0.815, 0.039, and 0.030, respectively, 

at R(Mo-Mo) = 3.6 Å.  Those of the 
3
A state are (1)

1
(2)

2
(3)

2
(4)

2
(5)

2
(6)

1
, 

(1)
2
(2)

1
(3)

2
(4)

1
(5)

2
(6)

1
(8)

1
, and (1)

2
(2)

2
(3)

2
(4)

2
(5)

1
(6)

1
, where weights are 

0.744, 0.037, and 0.031, respectively, at R(Mo-Mo) = 3.5 Å  The weights of the other 

configurations are less than 0.03 in both the 
3
B1 and 

3
A states.  

     Because the most stable spin state of MMo is closed-shell singlet but the triplet states lie 

energetically very near, it is likely that two states exist in thermal equilibrium according to the 

Boltzmann distribution.  This suggests that the magnetic moment of MMo does not provide 

clear information about the spin multiplicity and depends on the temperature. 

     In MTc, the closed-shell singlet is the most stable.  Though the triplet spin state is 

 

Figure 3-2. The PES of MMO calculated by the MRMP2 method. 
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slightly (1.2 kcal/mol) above the singlet spin state in the B3LYP calculation, B3LYP*, BP86, 

and PW91PW91 calculations present that the triplet spin states is more than 10 kcal/mol 

above the singlet spin state.  This difference between the B3LYP and the other functionals 

probably arises because that the B3LYP functional tends to overestimate the stability of highe 

r spin multiplicity.
21

 

 

3.6 Why Do Mo and Tc Analogues Take Low Spin States? 

     It is worth investigating the reason why MMo takes low spin state unlike MCr which 

takes the septet spin state.  Since the energy gap between the  and  orbitals are much 

larger in MMo than in MCr, as shown in Scheme 3-2, the two electrons occupy  and 4 MOs 

in MMo unlike in MCr in which they occupy the 9 and 10 MOs he energy gap between 

the  and 9 MOs of MMo arises from the energy gap between the d1 and d2 orbitals in the 

Mo(AIP) moiety, as mentioned above.  This energy gap in the Mo(AIP) moiety is 

considerably larger than in Cr(AIP) moiety, because the 4d orbital more expands than the 3d 

orbital, leading to larger energy gap between the  and  orbitals in the ISTCs of the 

second-row TMs than in those of the first-row TMs; see figure A3-2 for the orbital energies of 

3 to 10.  As a result, MMo does not take high spin state unlike MCr. 

     The same discussion is applied to the ISTC of Tc.  Because two more electrons are 

added to MMo, the singlet electron configuration of (1)
2
(2)

2
(3)

2
(4)

2
(5)

2
(6)

2
 is the 

ground state of MTc.  Because the energy gap between d1 and d2 orbitals is very large, as 

discussed above, the other electron configurations are expected to be very unstable.  Thus, 

MTc takes closed-shell singlet spin state. 

 

4. Conclusion 

     We theoretically investigated the ISTCs, -η
6
:η

6
-C6H6) [M(AIP)]2 MM (AIPH = 

(Z)-1-amino-3-imino-prop-1-ene) (M = Y, Zr, Nb, Mo, and Tc). The DFT calculations with 

B3LYP, B3LYP*, BP86, and PW91PW91 functionals suggest that the most stable spin states 

of MM are singlet, triplet, quintet, and singlet for M = Y, Zr, Nb, and Tc, respectively.  These 

results are understood by the MO diagram.  However, that of MMo is calculated to be triplet 

by the B3LYP functional but singlet by the other functionals.  The MRMP2 method indicates 
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that the singlet and triplet spin states lie energetically very near (within 1.5 kcal/mol).  The 

reason why MMo and MTc take low spin states can be explained by the MO diagram: The 

energy gap between the 6 and 9 orbitals is too large to overcome the exchange energy.  

     In conclusion, the ISTCs of the second-row TMs take the same spin multiplicity as 

those of the first-row TMs for M = Y to Nb.  However, the ISTCs of the second-row TMs 

take lower spin state than those of the first-row TMs for M = Mo and Tc; the maximum spin 

multiplicity of ISTCs of the second-rwo TMs is quintet, which is presented by the group 5 

metal complex (Nb) unlike that of the first-row TMs.  The larger d orbital expansion is the 

reason why the ISTCs of MO and Tc take low spin state. 
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Appendix: 

Orbital energies of MCr
 
and MMo (Figure A3-1) . The DFT calculations with B3LYP*, BP86, 

and PW91PW91 functionals of MM (Table A3-1). 

 

 

 

 Figure A3-1. Orbital energies of MCr
 
and MMo, calculated by RO-B3LYP method in 

septet spin state.
a
 

a: There appears a large gap between the 9 and 10 orbitals and the other orbitals in MMo, 

while there is not such a large gap in MCr. 

 



85 

 

 

Table A3-1. Relative energies
a
 of various spin multiplicities of (-η

6
:η

6
-C6H6)[M(AIP)]2 (AIPH = (Z)-1-amino-3-imino- 

prop-1-ene) MM, (M = Y, Zr, Nb, Mo, and Tc) calculated by the DFT method 

  Y   Zr   Nb   Mo   Tc  

  B3LYP*  BP86  PW91   B3LYP*  BP86  PW91   B3LYP*  BP86  PW91   B3LYP*  BP86  PW91   B3LYP*  BP86  PW91  
7tet          51.85  51.86  52.45   24.63  32.37  32.27      
5tet      20.06  408.53  26.21   0.00  0.00  0.00   19.09  17.42  17.85   32.02  31.78  32.08  
3let  26.59  25.67  26.26   0.00  0.00  0.00   12.64  8.52  8.62   6.91  2.35  2.56   11.72  10.58  10.83  
1let  0.00  0.00  0.00   0.94  3.30  3.70   27.55  102.77  103.45   0.00  0.00  0.00   0.00  0.00  0.00  

a
: Energy difference from the most stable spin state are shown in kcal/mol.  

8
5
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The Exact Solution of the Schrödinger Equation  
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Chapter 4 

Free ICI (Iterative Complements Interaction) Calculations of 

Hydrogen Molecule 

 

1. Introduction 

When new quantum chemical methodology came out, the first molecular application 

was done to hydrogen molecule. In 1925, Heitler and London
1
 applied newly born quantum 

mechanics to this molecule, which was a birth of quantum chemistry. After a pioneering study 

of helium atom by Hylleraas,
2
 James and Coolidge

3
 applied their explicitly correlated 

functions to hydrogen molecule and obtained very accurate results. Since then, Kolos,
4,5

 

Roothaan,
4
 Wolniewitz,

6,7
 Cencek,

8-10
 Kutzelnigg

9
 and others

9,12,13
 have reported very accurate 

wave functions of this molecule. We have recently developed a new methodology for exactly 

solving the Schrödinger equation in an analytically expanded form.
10,11

 So, in this paper, we 

apply our new methodology to the hydrogen molecule in order to examine the efficiency of 

the proposed method and the quality of the calculated energy and wave functions. 

The new methodology is based on the study on the structure of the exact wave 

function.
16

 When the structure of the exact wave is clarified, we construct the functions 

having such structure and make the variables included to be optimal by using the variational 

principle. However, when we formulate such theory based on the regular Schrödinger 

equation for atoms and molecules, we encounter a difficulty called singularity problem.
14

 The 

formulation includes the integrals of the higher powers of the Hamiltonian, but such integrals 

diverge owing to the singularity of the Coulomb potentials included in the Hamiltonian. We 

showed that this difficulty could be avoided by introducing the scaled Schrödinger equation:
 

14
 When we reformulate our theory so as to be based on the scaled Schrödinger equation, our 

theory for constructing the exact wave function becomes not to cause the singularity problem. 

Further, the free ICI method provides a very flexible way of constructing the exact wave 

function in both of the choices of the starting function 0  and of the scaling g-function.  



90 

 

     We explain in the next section our new methodology applied to the calculations of the 

exact wave function of the hydrogen molecule. Detailed computational aspects are then 

described and the results are summarized. We compare the present free ICI wave functions 

with the existing accurate wave functions in the field of explicitly correlated wave functions 

and examine the importance of the terms newly generated by the present free ICI method. The 

quality of the present wave function is examined by calculating the nuclear and electron cusp 

values.
17

 The conclusion of this study is given in the last section. The appendix summarizes 

briefly the mathematics necessary for the present study. 

 

2. Free ICI Method Applies to Hydrogen Molecule 

     We want to solve the Schrödinger equation of the hydrogen molecule  

( ) 0H E                          (1) 

with the Hamiltonian given by 

2 21 1
1 2 1 1 2 2 122 2

1/ 1/ 1/ 1/ 1/ 1/a b a bH r r r r r R           ,        

(2)where 1 and 2 denote electrons, a and b two protons and R the internuclear distance. When 

we introduce elliptic coordinate, 

    12
/ , / , 2 /

i ia ib i ia ib
r r R r r R r R                  (3) 

with i being 1 or 2, the kinetic operator and the potential operator are written as 

 
   

2
2 2 2

2 2 22 2 2

4 1 1
1 1

1 1
i i i

i i i i i i ii iR 
 

      

       
        

           

, (4) 

and 

1 2

2 2 2 2

1 1 2 2

2 1
ne eeV V

R

 

    

 
     

   

,              (5) 

respectively, where Vne and Vee represent the nuclear attraction and electron repulsion 

operators, respectively.  

     You see that the Hamiltonian includes the Coulombic potential that becomes plus or 
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minus infinity when two particles meet together. Higher powers of such potential become 

strongly diverging like a well potential so that the integrals of 2  over such higher powers 

of the potential diverge. Therefore, the ICI calculations based on the ordinary Hamiltonian 

become impossible since it involves such diverging integrals. However, this singularity 

problem can be avoided by introducing the scaled Schrödinger equation  

( ) 0g H E   ,                      (6) 

where g is a scaling function that is positive and non-zero everywhere except at the singular 

points r0 and even there it satisfies 

0

lim 0
r r

gV


 .                        (7) 

The condition given by Eq.(7) is necessary for not to eliminate the information of the 

Hamiltonian at the singular points: the singularity is also an important physics of the system. 

     Based on the scaled Schrödinger equation, we can formulate the ICI method that is free 

from the singularity problem. The simplest ICI (SICI) wave function is defined by the 

recursion formula as 

1 [1 ( )]n n n nC g H E     ,                   (8) 

which is guaranteed to become exact at convergence and we do not have the singularity 

difficulty in the course of the iteration process starting from the initial function 0  because 

of the existence of the scaling function g. In the present calculation of the hydrogen molecule, 

we use actually the free ICI method that is formulated from the  

SICI wave function as follows. We examine the rhs of Eq.(8), extract all the independent 

functions and arrange them as { i }
(n)

, i = 1, . . , Mn. Mn is the number of the independent 

functions included in 
( ){ } n

k .With this set of functions { k }
(n)

, we expand our 1n   as 
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1 ,

1

nM

n k n k

k

c 



 .                        (9) 

The coefficients { ,k nc }, k = 1, . . , Mn, are calculated with the variational principle (the 

ordinary Ritz variational principle is easier to use than the variational principle for the scaled 

Schrödinger equation). 

In the free ICI method summarized above, we have two freedoms: one is the choice of 

the g function and the other is the choice of the starting function 0 . First, we explain the 

choice of the g function. Referring to the potential of the hydrogen molecule given by Eq.(5), 

we examined two different g functions  

2 2 2 2

1 1 2 2

1

1 2

g
   


 

 
                    (10) 

and  

2 2 2 2

1 1 2 2

2

1 2

1g
   


 

 
    .                (11) 

The function 1g  satisfies the condition given by Eq.(7) but it may be too restrictive to freely 

produce the complement functions of the free ICI. Since 1g  is a product of the three inverses 

of the potentials, Vne(1), Vne(2) and Vee, it makes the scaled wave function very complex. 

Further, when one of the three terms becomes zero, the other terms can be arbitrary. On the 

other hand, the function 2g  is a sum of the three inverse of the potentials and therefore the 

produced scaled wave function is simpler than that produced with the scaling function 1g . It 

produces more flexible complements functions than the function 1g , but it also produces the 

functions that are singular, so that we have to eliminate such functions from our expansion 

bases of the exact wave function: the wave function must be integrably finite by its definition. 

     The initial functions 0  that were adopted in the present calculations are of two kinds. 

One is the simplest possible valence-bond type function given by 

(1)

0 1 2 1 2 1 2exp[ ( ) ] exp[ ( ) ].a a b br r r r                  (12) 

The spin part is singlet and anti-symmetric, so that the spatial part is symmetric. This is a 
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product of the 1s orbitals centered on the two protons. The other initial function we used in 

this study is given by  

( ) 1

0 1 2

1

exp[ ( ) ]
L

L l

l

     



   .               (13) 

When L = 1, the initial function given by Eq.(13) is identical with that given by Eq.(12). This 

choice was based on the suggestion due to Kolos
5
 that an inclusion of the functions of higher 

power in  accelerates the convergence of the expansion of the wave function. Kolos
5
 also 

noted that the inclusion of the functions higher power in   and   did not accelerate the 

convergence. The orbital exponent   in Eqs.(12) and (13) is a non-linear parameter and 

may be optimized variationally at each iteration n, but the ICI theory claims that we can get 

the exact wave function with only linear expansions and so we fixed   to 1.1. The 

internuclear distance R was also fixed to the experimental value R = 1.4011 au, which is also 

used in other calculations to be compared with the present one. 

     The initial functions 0  given above are analytical functions and by inserting these 

initial functions into Eq.(8), you get analytical functions that are necessary for constructing 

the first iteration function 1 : the kinetic operator in the Hamiltonian is essentially a 

differentiation operator and the potential function and the g function are multiplicative 

functions. These operations are automatically done by using symbolic operation programs like 

Maple.
14

 Then, you get 1  of the SICI in an analytical form. In the free ICI, you extract from 

this 1  all the independent analytical functions, select only such functions that do not give 

divergence in the calculations of Hamiltonian and overlap integrals, and collect them as 

{ k }
(1)

, k = 1 . . . M1. Then, you give an independent variable ck,1 to each k  and expand 

your 1  of free ICI as 
1

1 ,11

M

k kk
c 


 . The variables { ck,1} are determined by the 

variational principle by solving the secular equation including overlap integrals. The 

Hamiltonian and overlap matrices are calculated without singularity problem for the existence 

of the g function. After the diagonalization you get the free ICI functions of the first iteration, 

1 . The lowest solution is an approximation to the ground state and the second lowest 

solution is an approximation to the first excited state, etc. Putting this 1  into Eq.(8) and 
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doing the same procedure as above, you obtain 2 . You repeat this iteration cycle until you 

get the convergence in your desired accuracy. Since the secular equation at each iteration 

cycle is due to the variational principle, the energy approaches from above the true energies, 

for both ground and excited states. Note that in the free ICI method, the next iteration cycle 

does not require the variables { ck,n} of the former cycles, so that you can get the nth iteration 

free ICI functions { k }
(n)

 directly from 0  by applying n times the operator part of Eq.(8) to 

0 . This means that the accumulation of errors during the iteration process does not occur in 

the free ICI calculations. 

     The Hamiltonian and overlap integrals over the basis functions { k }
(n)

 were calculated 

analytically by applying and extending the method reported by James and Coolidge.
3
 We 

reduced the basic integrals into the forms that can be handled with Maple. The details were 

summarized briefly in the Appendix for convenience. As we proceed iterations, the number of 

the independent functions { k }
(n)

 increases and they may involve the functions whose overlap 

integrals are rather close to unity. This means that the calculations must be performed in high 

accuracy and we kept 60 decimal-figure accuracy throughout the calculations. The secular 

equation was also solved in high precision using the GMP (GNU multiple precision 

arithmetic) library.
18

  

 

3. Results 

3.1. Energies 

     We first performed the free ICI calculations of the hydrogen molecule using the scaling 

Table 4-1. Ground state energy of hydrogen molecule calculated with the g function given 

by Eq.(10) 

Initial 

function (L)
a 

Number of 

iteration (n) 

Number of basis 

function (Mn) 

Total energy (au) 

1 0 1 -0.999 780 120 198 08 

 1 11 -1.169 313 411 900 71 

 2 186 -1.174 470 133 104 04 

 3 1156 -1.174 475 901 628 54 

Best value  -1.174 475 931 397 74 
a 
L is define in Eq.(13). 

 



95 

 

function g1 given by Eq.(10) and the simple initial function 
(1)

0  given by Eq.(12). We 

summarize in Table 4-1 the calculated energies at different iteration cycles. At the bottom of 

the table, we gave the best value obtained in the present free ICI calculations. You see that as 

the iteration proceeds, the energy approach the best value from above. Already at 2
nd

 iteration 

with dimension 186, the energy is correct to five decimal figures, which is by far beyond the 

chemical accuracy. At third iteration, we obtain the energy correct to seven decimal figures. 

We will show later that our wave function is different from those existing in the literature. 

     We next performed the free ICI calculations using the scaling function g2 given by 

Eq.(11) and a set of initial functions 
( )

0

L  (L = 1 - 6) given by Eq.(13). The results are given 

in Table 4-2. When L of the initial function is unity, the initial function is the same as that 

used in Table 4-1, so that the difference is due only to the difference in the g function. In 

Table 4-2 the number of the complements functions at fifth iteration is 832 and the energy is 

Table 4-2. Ground state energy of hydrogen molecule calculated with the. g function given 

by Eq.(11) 

L
a 

n
b 

Mn
c 

Energy (au)   L
a
 n

b
 Mn

c
 Energy (au) 

1 0 1 -0.999 780 120 198 080  2 0 2 -1.138 078 114 832 792 

1 1 5 -1.164 409 776 802 471  2 1 9 -1.169 819 224 009 141 

1 2 30 -1.172 712 604 472 602  2 2 57 -1.174 397 294 989 745 

1 3 114 -1.174 434 056 534 598  2 3 215 -1.174 474 888 511 114 

1 4 343 -1.174 475 391 331 891  2 4 624 -1.174 475 918 013 359 

1 5 832 -1.174 475 917 716 333  2 5 1459 -1.174 475 930 608 043 

1 6 1788 -1.174 475 930 732 940      

         

3 0 3 -1.142 973 092 050 475  4 0 4 -1.143 082 324 090 173 

3 1 17 -1.173 036 862 957 403  4 1 25 -1.173 448 296 529 433 

3 2 114 -1.174 471 341 851 610  4 2 174 -1.174 475 069 845 826 

3 3 414 -1.174 475 901 329 452  4 3 630 -1.174 475 928 234 319 

3 4 1119 -1.174 475 930 609 382  4 4 1667 -1.174 475 931 331 490 

         

5 0 5 -1.143 084 264 123 815  6 0 6 -1.143 084 849 985 530 

5 1 33 -1.173 489 787 488 802  6 1 41 -1.173 497 602 544 993 

5 2 260 -1.174 475 797 933 379  6 2 346 -1.174 475 872 960 003 

5 3 951 -1.174 475 931 085 682  6 3 1276 -1.174 475 931 318 436 

5 4 2441 -1.174 475 931 391 155   6 4 3246 -1.174 475 931 397 736 
a 
L of Eq.(13).  

b 
Iteration number. 

c 
Mn of Eq.(9): number of the basis functions at nth iteration.    
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-1.174 475 917 au, which is lower than the energy of Table 4-1 at third iteration -1.174 475 

901 au with 1156 independent functions. This means that the g2 function given by Eq.(11) is 

more efficient than the g1 function given by Eq.(10). Actually, a multiplication of the g1 

function increases the orders of all variables 1 , 2  and   by unity or minus unity, but the 

g2 function increases the order of only one of the variables, 1 , 2  or   by unity, so that the 

g2 function can produce more flexible basis functions than the g1 function, leading to 

more-efficient basis functions. 

     Table 4-2 gives a comparison of the usage of different initial functions, all with the 

same g2 function. As L increases, the initial function already includes explicitly the 

inter-electron distance,  . If   is essential, it is better to include it from the beginning of 

the calculations and this is the case as seen from the table: the energy with L = 1 and n = 6 is 

-1.174 475 930 732 au with 1788 functions, which is higher in energy than the case of L = 4 

and n = 4 with only 1667 functions, -1.174 475 931 331 au. By using better-quality initial 

function, we can get better energy with smaller number of basis functions. However, probably, 

more important implication of Table 4-2 is that we can always get very accurate results as we 

perform iterations, independent of the quality of the initial functions. When the number of the 

basis functions is similar, the calculated energy is more-or-less similar. 

     Between the differences in the g function and in the initial function, the difference in 

the g function causes a larger difference of the calculated results. We see from the comparison 

of Tables I and II that the energy calculated with 1156 functions produced with the g1 function, 

-1.174 475 907 au is higher than the one calculated with only 624 functions (about half) 

produced with the g2 function, -1.174 475 918 au. This example emphasizes again the 

Table 4-3 . Ground state energy of hydrogen molecule calculated with the g function given 

by Eq.(10)., R=1.4 a.u. 

Initial 

function 

(L)
a 

Number of 

iteration (n) 

Number of basis 

function (Mn) 

Energy (au) 

6 0 6 -1.143 006 074 717 

6 1 41 -1.173 494 068 035 

6 2 346 -1.174 475 655 534 

6 3 1276 -1.174 475 714 138 
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importance of the choice of the g function. 

     In the literature, most earlier calculations were done for the bond length of 1.4 au. So, 

we also performed the free ICI calculations for R = 1.4 au and the results are given in Table 

4-3. The g functions is due to Eq.(11) and the initial function is due to Eq.(13) with L = 6. 

Comparing the energies for R = 1.4 and 1.4011, the latter is lower showing the 

minimum-energy bond length should be closer to the latter. The experimental bond length is 

1.40112 au. 

    Many important studies have been reported on the accurate analytical calculations of the 

wave function of the hydrogen molecule.
13

 We summarize in Table 4-4 some of the 

representative studies. As the present result, we gave our best result shown in Table 4-2. First, 

we notice that our best result is certainly the best worldwide in the literature. The second best 

is the result due to Cencek and Rychlewski
10

 who used Gaussian functions. Our free ICI wave 

functions are composed of the Slater-type functions and are written as 

12 1 2 1 2 1 2(1 )exp[ ( )] i i i i im n j k l

i

i

c p            ,             (14) 

where p12 is an exchange operator of the electron coordinates. This wave function is very 

simple and similar to the original wave function due to James and Coolidge.
3
 Our wave 

function and James-Coolidge wave function have a simple exponential form but differ in the 

Table 4-4. History of hydrogen molecule wave function. 

Type of wave function Reference 

H-H 

distance 

(au) 

Total energy (au) 

Hartree-Fock Sundholm
a 

1.4 -1.133 629 573 

Full CI ( 33 27 18 16    ) Liu-Hagstrom
b 

1.4 -1.174 304 3 

Hylleraas type James-Coolidge
c 

1.4 -1.173 539
c 

Gaussian functions Cencek-Kutzelnigg
d
 1.4 -1.174 475 714 037 

Free ICI 

(extended Hylleraas type) 
Present 1.4 -1.174 475 714 138 

Hylleraas type Wolniewicz
e 

1.4011 -1.174 475 930 742 

Gaussian functions Cencek-Rychlewski
f 

1.4011 -1.174 475 931 39 

Free ICI 

(extended Hylleraas type) 
Present 1.4011 -1.174 475 931 397 74 

    
a
 Ref. 20.  

b
 Ref. 11.  

c
 Ref. 3.  

d
 Ref. 9.  

e
 Ref. 7.  

f
 Ref. 10. 
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powers m, n of the variables 1  and 2 : m, n are always non-negative in the 

James-Coolidge wave functions but they can be even negative in the present free ICI wave 

functions. In other words, our ICI theory starting from the initial functions given by Eqs.(12) 

and (13) generates not only non-negative power terms of 1  and 2 , but also negative 

power terms of them. Such functions are theoretically more relevant for describing the exact 

wave function of the hydrogen molecule than the original James-Coolidge functions. We 

show later in this paper some of the important roles of these negative-power functions in our 

wave function. The high quality of the present free ICI wave function would be attributed to 

the existence of these negative m, n terms.  

Kolos and Wolniewicz
5-7

 extended later the James-Coolidge wave function into more 

general forms like 

12 1 2 1 2 1 2_ _

1 2 1 2

(1 ) exp[ ]

[exp( ) ( 1) exp( ) ]

m n j k l

j k

C p         

       

   

     


_

　         (15) 

but they always used non-negative m, n in their wave functions. A reason of extending the 

James-Coolidge wave function was that the James-Coolidge-type wave function does not 

have proper asymmetric form as the inter-proton distance increases up to infinity. On the other 

hand, Komasa, Cencek, Rychlewski, Kutzelnigg, et al
7,8

 obtained very accurate wave 

functions using the Gaussian-type functions as 

_
2 2 2

12 1 2 ' 12(1 ) exp[ ]C CC p r r r        .              (16) 

Primitive questions about this type of wave function are that how well the nuclear and 

electron cusps
17

 are described and how important these properties are in the actual wave 

functions. 

     Table 4-4 shows also the full CI energy
11

 and the Hartree-Fock energy.
20

 These 

calculations were performed at R = 1.40 au, like the original James-Coolidge calculations, 

while the other calculations were done at R = 1.4011 au. The difference between the present 

result and the Hartree-Fock energy gives the best value of the correlation energy and it is 

-0.011 129 741 au. The full CI energy is the „exact‟ energy within a given space of the basis 
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set. For the [30s29p12d9f] Gaussian-type basis, the energy is -1.174 285 au with 22578 

variables. Referring to Table 4-2, this energy is worse than that of the calculation, L=2 and 

n=2, −1.174 397 a.u., so that we estimate that this energy would be obtained with the function 

s less than 57, if we use the present free ICI method.  

 

3.2. Importance of the terms with negative powers of i  

     The free ICI method produces automatically the analytical basis functions that are 

necessary to expand the exact wave function under a choice of the initial function 0  and the 

g function. In the present choice of the initial function, the ICI method always produced the 

terms of i  that have not only non-negative powers but also negative powers. Since these 

terms were produced theoretically by the ICI method, they are considered to be necessary for 

constructing the exact wave function. However, such terms were not included in the previous 

calculations by James and Coolidge, Kolos and Wolniewitz. So, we examine here the 

importance of such terms in constructing the accurate wave functions of the hydrogen 

molecule. Note that for helium atom the importance of similar terms with negative powers has 

been pointed out by Kinoshita
21

 for describing the accurate wave functions.  

     First, the importance of the terms with negative powers of i  is understood from the 

high performance of the present free ICI calculations as presented in the preceding section. 

We show here other two more direct evidences. In Table 4-5, we show the expansion 

coefficients of the eleven basis functions obtained at the first iteration of the calculation 

shown in Table 4-2. This calculation is based on the g1 function given by Eq.(10) and the 

Table 4-5. First iteration eleven-term wave function of the free ICI calculation shown in 

Table 4-2 (L = 2, n = 1).
a 

 The energy is −1.169 819 224 a.u.
 

No [m, n, j, k, p] Coefficient  No [m, n, j, k, p] Coefficient 

1 [0, 0, 0, 0, 0] 1.000000000  7 [-1, 1, 2, 0, 0] 1.321269627 

2 [0, 1, 0, 0, 1] 0.3669590863  8 [-1, 1, 2, 0, 1] -0.008229630145 

3 [1, 1, 0, 0, 0] 0.7048962113  9 [-1, -1, 0, 2, 1] 0.2792523585 

4 [1, 1, 0, 0, 1] -0.1126197289  10 [-1, -1, 2, 2, 0] 0.5959010778 

5 [-1, 0, 2, 0, 1] 0.8697244891  11 [-1, -1, 2, 2, 1] 0.05876570834 

6 [-1, 1, 0, 0, 1] 0.3670940863     

a 
Each basis function is normalized to unity. 
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initial function (1)

0  given by Eq.(13). The coefficients given in Table 4-5 are those for the 

terms of Eq.(14) designated by [m,n,j,k,l] that are normalized to unity, and the first-iteration 

free ICI wave function 
(1)

1  was normalized such that the coefficient of the initial function, 

[0,0,0,0,0] is unity. One can see from Table 4-5 that the first four terms, 1 – 4, are 

conventional ones and the others are the terms whose m and/or n are negative. You see that the 

terms 5, 6, 7, and 10 have very large coefficients, showing the importance of the negative 

power terms of i . 

     Kolos and Roothaan
4
 calculated the five term James-Coolidge wave function using only 

positive powers and obtained the energy of -1.171 619 au. We have examined the best 

possible five-term extended James-Coolidge-type wave function allowing the powers in 

Eq.(14) to change within 1 , 1i im n   , 1i im n  , 0 , 2i ij k  , 0 1il  . The bond 

length R and the orbital exponent   are the same as those used by Kolos and Roothaan,
4
 R 

= 1.4 au and 0.95  . Table 4-6 shows the calculated best wave function. It includes one 

term that has negative n and its coefficient is second smallest. The calculated energy was 

-1.172 276 534 au. We also performed a similar calculation within the positive range of 

0 , 1i im n  , 0 , 2i ij k  , 0 1il   and obtained the best wave function as shown in Table 

4-7. The calculated energy was -1.171 998 568 au. The last term [1,1,0,0,0] was not included 

 Table 4-6. Best five-term extended James-Coolidge-type wave function of hydrogen 

molecule within 1 , 1i im n   , 1i im n  , 0 , 2i ij k  , 0 1il  . R = 1.4 au and 

0.95  . The calculated energy was –1.172 276 534 a.u. 

No [m, n, j, k, l] Coefficient   No [m, n, j, k, l] Coefficient 

1 [0, 0, 0, 0, 0] 1.000 000 000   4 [0, 0, 1, 1, 0] -0.055 207 501 

2 [0, 0, 0, 0, 1] 0.718 124 997   5 [0, -1, 0, 2, 1] 0.081 476 902 

3 [0, 0, 0, 2, 0] 0.198 062 046         
a
Each basis function is normalized to unity. 

 Table 4-7. Best five-term James-Coolidge-type wave function of hydrogen molecule 

within the positive range of 0 , 1i im n  , 0 , 2i ij k  , 0 1il  . R=1.4 au and α=0.95. 

The calculated energy was -1.171 998 568a.u. 

No [m, n, j, k, l] Coefficient   No [m, n, j, k, l] Coefficient 

1 [0, 0, 0, 0, 0] 1.000 000 000   4 [0, 0, 1, 1, 0] -0.067 134 733 

2 [0, 0, 0, 0, 1] 0.802 238 155   5 [1, 1, 0, 0, 0] -0.087 098 459 

3 [0, 0, 0, 2, 0] 0.282 362 668         
a
Each basis function is normalized to unity. 
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in the original 5-term Kolos-Roothaan wave function, though it iwas included in their 12-term 

wave function. They included instead the term [0,1,0,0,0]. Other four terms were common in 

all of these three wave functions. It is concluded that within 5-term James-Coolidge wave 

functions of hydrogen molecule, a better result is obtained by allowing negative power terms 

of i .  

     Another piece of evidence was obtained by performing the calculations similar to the 

original James-Coolidge one. We recalculated the James-Coolidge 13 term wave function and 

showed the result in Table 4-8. The calculated energy was -1.173 539 685 au, which was 

slightly different from the original one E=-1.173 501 au reported by James and Coolidge 

later.
3
 (For the 5 and 11 term wave functions, the present recalculations gave the same energy 

as those given in the original paper.
 3
) We replaced the smallest two terms, terms Nos. 7 and 

13 of the original 13 terms with the terms having negative m, n terms and the result was 

shown in Table 4-9. The calculated energy was – 1.173 962 233 au which was substantially 

lower than the energy of the original 13 term wave function. Actually, the replaced terms Nos. 

12 and 13 of Table 4-9 have large coefficients. Though the present replacement of the two 

terms is rather arbitrary, this result also supports the importance of the negative power terms 

of i  in the expansion of Eq.(14). 

     We also have some intuitive explanations about the importance of the negative-power 

terms of i . Figure 4-1 shows the illustrations of the functions 
2exp( ) m      with 

positive and negative m. Figure 4-1(a) is for m = 1,2,3 and Figure 4-1(b) for m = 0,-1,-2 and 

 Table 4-8. Recalculated 13 term
a
 wave function of James and Coolidge with R=1.4 au 

and α=3/4.  The calculated energy was -1.173 539 685 a.u. 

No. [m, n, j, k, l] Coefficient   No. [m, n, j, k, l] Coefficient 

1 [0, 0, 0, 0, 0] 1.000 000 000   8 [1, 0, 0, 0, 0] -0.933 408 702 

2 [0, 0, 0, 0, 1] 0.553 586 789   9 [1, 0, 0, 2, 0] -0.052 106 263 

3 [0, 0, 0, 0, 2] -0.099 140 955   10 [1, 0, 1, 1, 0] 0.044 627 723 

4 [0, 0, 0, 2, 0] 0.195 335 087   11 [1, 0, 2, 0, 0] -0.074 756 346 

5 [0, 0, 0, 2, 1] 0.044 417 387   12 [2, 0, 0, 0, 0] 0.315 198 529 

6 [0, 0, 1, 1, 0] -0.062 129 657   13 [1, 0, 0, 0, 1] -0.188 359 478 

7 [0, 0, 1, 1, 1] -0.006 994 087         
a
 Basis functions are normalized to unity. 
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the two protons were assumed to be at z = 0 and 1. Note that the variables i  and i  

describe the wave function outside and inside, respectively, of the two nuclei. We see that the 

functions with positive m do not show a nice cusp-like behavior near the positions of the 

nuclei but those with negative m shows a reasonable cusp-like behavior at the nuclear 

positions. This also explains the importance of the functions with negative powers of i .  

 

3.3 Cusp Properties 

     The exact wave function must satisfy some necessary conditions like variational 

condition, virial theorem, cusp condition, etc. In the free ICI wave function given by Eq.(14), 

the coefficients {ci} were calculated with the variational principle. We did not optimize the 

exponent  , but the energy gradient E    of the wave function composed of the 1747 

functions (L = 6, n = 3) was only 1.84   10
-19

 at 1.1  . Similarly, the energy gradient 

(force) E R   acting on the proton of the H2 molecule at R = 1.4011 au was 6.30   10
-6

 au, 

so that the optimal length R should be smaller than 1.4011 au: it would be 1.40081 – 1.40083 

au.
4
 Below, we examine how the present ICI wave function satisfies the cusp condition. 

     Kato
17

 presented two cusp conditions for the exact many-electron wave functions: 

nuclear cusp condition and electron cusp condition. The nuclear cusp condition is expressed 

for the hydrogen molecule as
4
 

 

 Figure 4-1. (a) Plot of the function 
2exp( ) m      with m = 1 (green), m = 2 (red), 

and m = 3 (blue). The two protons are at z = 0 and z = 1.  (b)  Plot of the function 
2exp( ) m      with m = -2 (green), m = -1 (red), and m = 0 (blue). The two protons 

are at z = 0 and z = 1.  
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    
     

    
,          (17) 

which is the condition when electron 1 is at the proton a. The lhs of Eq.(17) is a function of 

the electron coordinate 2, so that equation (17) must be satisfied at any coordinate of electron 

2, except at the additional singular point, 2 1   and 2 1    where electron 2 also collides 

with the proton a. The electron cusp condition is given by 

12
12 0

1 1
( , )

2
e i i

r

F
r

 


 
  

  
                    (18) 

which is the condition when two electrons meet together. The lhs is also the function of the 

variables other than. 12r   and so it must be 1/2 everywhere except for the additional 

singular points. 

     Figure 4-2 shows the plots of the function NF  along the iteration process of the free 

ICI calculations using the g2 function and the initial function 
(6)

0 : at fourth iteration of this 

calculation we have obtained the world best value of the energy of the hydrogen molecule 

shown in Tables 4-2 and 4-1 . Figure 4-2(a) is along the z coordinate that connects two 

 Table 4-9. The wave function constructed from the 11 terms of James and Coolidge 13 

terms plus 2 terms
a
 from 1 , 1, 1i im n m n     , 0 , 2i ij k  , 0 1il  . m, n for H2 

molecule with R=1.4 au and α=3/4. The calculated energy was –1.173 962 233 a.u.  

No. [m, n, j, k, l] Coefficient  No

. 

[m, n, j, k, l] Coefficient 

1 [0, 0, 0, 0, 0] 1.000 000 000  8 [1, 0, 1, 1, 0] 0.015 613 455 

2 [0, 0, 0, 0, 1] 0.650 858 318  9 [1, 0, 2, 0, 0] -0.033 975 

753 

3 [0, 0, 0, 0, 2] -0.059 439 

543 

 10 [1, 0, 0, 0, 1] -0.404 443 

002 

4 [0, 0, 0, 2, 0] 0.138 956 703  11 [2, 0, 0, 0, 0] 0.337 386 255 

5 [0, 0, 1, 1, 0] -0.041 545 

078 

 12 [1, 1, 0, 0, 1] 0.071 193 197 

6 [1, 0, 0, 0, 0] -0.933 425 

960 

 13 [-1, -1, 0, 2, 1] 0.031 686 115 

7 [1, 0, 0, 2, 0] -0.018 305 

773 

    

a
 Basis functions are normalized to unity. 

b
 The last two tems, Nos. 12 and 13, are the selected terms. 

 

 Figure 4-2. (a) Plots of the nuclear-electron cusp function NF  along the z coordinate 

that connects two protons lying at z = 0 and z = 1.4011 au at different iteration process 

of the free ICI calculations using the g2 function and the initial function 
(6)

0 : Iteration 

number n = 1 (blue), n = 2 (green), n = 3 (violet) and n = 4 (red). The wave function at 

n = 4 is our best wave function reported in this paper. (b) Plots of the nuclear-electron 

cusp function NF  along the axis lying parallel to the z coordinate that connects two 

protons lying at z = 0 and z = 1.4011 au at different iteration process of the free ICI 

calculations using the g2 function and the initial function 
(6)

0 : Iteration number n = 1 

(blue), n = 2 (green), n = 3 (violet) and n = 4 (red). The wave function at n = 4 is our 

best wave function reported in this paper. 
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protons lying at z = 0 and z = 1.4011 au and Figure 4-2(b) is along an axis lying parallel to 

the z coordinate and distant from it by 1 au. The figures show the local values of the cusp 

function NF  when electron 2 moves along these axes. Though the cusp value of the free ICI 

wave function is very different from unity at first iteration (n = 1), it becomes closer and 

closer to unity as the iteration proceeds. At n = 4, the cusp values are unity everywhere except 

at the position of the nucleus a (the origin of Figure 4-2(a)), where an additional singularity 

occurs. There, not only the nucleus a collides with the two electrons, but also the two 

electrons collide with each other: this is a new singularity point not expressed by Eq.(15). It is 

remarkable that at z = 1.4011 au of Figure 4-1(a), the value of NF  becomes unity at n = 4: 

there, the two cusp conditions for the two pairs, electron 1 - nucleus a and electron 2 - nucleus 

b, are satisfied independently. 

Figure 4-3 shows the plots of the function eF  along the iteration process of the same 

free ICI wave functions given in Figure 4-2 above. Figure 4-3(a) shows the value of the cusp 

function eF  when the colliding two electrons move along the z axis and Figure 4-3(b) along 

the axis separated by 1 au from the z-axis. Again, the cusp value is improved as the iteration 

proceeds: the cusp value of the wave function at n = 1 is far from one half but it becomes 

 

Figure 4-3. (a) Plots of the electron-electron cusp function eF  along the z coordinate that 

connects two protons lying at z = 0 and z = 1.4011 au at different iteration process of the 

free ICI calculations using the g2 function and the initial function 
(6)

0 : Iteration number 

n = 1 (blue), n = 2 (green), n = 3 (violet) and n = 4 (red). The wave function at n = 4 is 

our best wave function reported in this paper. (b) Plots of the electron-electron cusp 

function eF  along the axis lying parallel to the z coordinate that connects two protons 

lying at z = 0 and z = 1.4011 au at different iteration process of the free ICI calculations 

using the g2 function and the initial function 
(6)

0 : Iteration number n = 1 (blue), n = 2 

(green), n = 3 (violet) and n = 4 (red). The wave function at n = 4 is our best wave 

function reported in this paper. 
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closer and closer to one half as n increases. At the nuclear positions a and b along the z-axis, 

the cusp value is different from one half even for the best wave function since there an 

additional singularity occurs,: there two colliding electrons collide further with the nucleus. 

Except at these two points, the cusp function eF  of our best free ICI wave function (n = 4) is 

flat and takes one half everywhere along the z axis and along the axis apart 1 au from the 

z-axis.  

 

4 Conclusion 

The free ICI method developed in earlier papers has been applied to hydrogen molecule 

to calculate its very accurate wave function. We could obtain the world best variational wave 

function within a rather simple Hylleraas-James-Coolidge form. The difference of the present 

free ICI wave function from the previous ones was the existence of the negative-power terms 

of i . These terms were generated automatically by the free ICI formalism, so that we 

believe they are essential for effective description of the exact wave function.  

We have examined two different g functions and several initial functions. Clever choice 

of g function was more important than the different choices of the initial function. However, it 

was also true in the present calculations that any initial functions have given the converging 

series of energies to the same best value. We have also shown that the cusp value, a rather 

sensitive property of the wave function, was substantially improved as the iteration proceeds. 
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Appendix 

We briefly explain the method of analytical calculations of the integrals that appear in 

the variational calculations of the free ICI wave function given in the form of Eq.(14). The 

formulation is a small generalization of the one presented by James and Cooligde in their 

original paper.
3
 Ruedenberg

22
 also gave the formulas related to the present case. 

The integrals we have to calculate are the Hamiltonian and overlap integrals, 

1 2

1 2

ij i j

ij i j

H H d d

S d d

   

   








                         (a1) 

where the functions i  have the form. 

12 1 2 1 2 1 2(1 )exp[ ( )] i i i i im n j k l

i p            .               (a2) 

where m and n are positive and negative integers and zero and j, k, and l are non-negative 

integers. Applying the Hamiltonian on i , we obtain  

12 1 2 1 2 1 2(1 ) exp[ ( ) ] j j j j jm n j k l

i j

j

H d p            ,          (a3) 

which are similar in form to Eq.(14) and this process can be easily done with the use of Maple 

or other similar program. The Jacobian for the elliptic coordinate is given by 

  
6

2 2 2 2

1 2 1 1 2 2 1 2 1 2 2
64

R
d d d d d d d d              .          (a4) 

Then, all the integrals reduce to the sums of the following integrals 

1 2 1 2 1 2 1 2 1 2 2exp[ 2 ( ) ] m n j k lI d d d d d d                         (a5) 

     Now, we summarize the necessary formulas to calculate these integrals. First, the variables 

of   are transformed by using the relation 

      

2 2 2 2 2

1 2 1 2 1 2 1 2

1
22 2 2 2

1 2 1 2 1 2

2 2

2 1 1 1 1 cos

        

     

     

      
 

       (a6) 
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that is obtained from the second cosine formula and the expansion 

   1 21

1 2 1 2

10 0

cos ( )N N N N N

N

D P Q P P N    


 
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 

 


 

   
    
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

2

   (a7) 

that is the Von Neuman‟s expansion, where 

 

 
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0

2

2 1,

!
2(2 1) 0 .
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N

D

N
D N

N
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
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




 

 
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 

               (a8) 

P and Q are the unnormalized complex associated Legendre functions of the first and second 

kinds and we take upper variable when 2 1   and lower variable otherwise.  

     We introduce the function Z defined by 

1 2 1 2 1 2 1 2 1 2 2( , , , , , ) exp[ 2 ( ) ] m n j k lZ m n j k l M d d d d d d                   (a9) 

where 

      
1

22 2 2 2

1 2 1 2 1 21 1 1 1 cosM            
 

        (a10) 

then, the integral I defined by Eq.(a5) is written with this Z function as 

(0, , , , , )I Z m n j k l .                     (a11) 

From Eq.(a6), we obtain the recursion formula  

( , , , , , ) ( , 2, , , , 2) ( , , 2, , , 2)

( , , , 2, , 2) ( , , , , 2, 2)

2 ( , , , , , 2) 2 ( , 1, 1, 1, 1, 2)

2 ( 1, , , , , 2)

Z m n j k l Z m n j k l Z m n j k l

Z m n j k l Z m n j k l

Z m n j k l Z m n j k l

Z m n j k l

  

 

 



     

     

       

  

       (a12) 

which implies that the value of the function Z reduces finally to the sum of the following 

terms, depending on the parity of the integer l. 

           case a,  ( , , , , ,0)Z m n j k ,   (l, even) 

           case b,  ( , , , , , 1)Z m n j k  ,   (l, odd)                            (a13) 

For case a, the Z value is written as 

0( , , , , ,0) ( , , ) ( , , ) ( , ) ( , ) ( )Z m n j k L m L n U j U k f                 (a14) 

where  
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               (a15) 

When   is odd, 0( )f   is zero, so that ( , , , , ,0) 0Z m n j k  .  

For case b, we substitute Eq.(a7) into Eq.(a9) and obtain the Z value written in the form  

0 0

( , , , , , 1) ( , ) ( , , , ) ( , , , ) ( , , , , , ) ( , )
N

Z m n j k D N R N j R N k H N m n f N

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 

 

    (a16) 

where 
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                                                                       (a17) 

and 
ND  is given by Eq.(a8). In Eq.(a16), we have two infinite summations, but they 

actually reduce to finite sums because of the following reasons. It is non-zero only when (1) 

N  , from the properties of the Legendre P functions, (2) N   from the property of the 

function ( , )f N  and (3) j    from the property of ( , , , )R N j  . Further since these 

variables are all non-negative integers, Eq.(a16) is rewritten as  

min( , )

0

( , , , , , 1) ( , ) ( , , , ) ( , , , ) ( , , , , , ) ( , )
j k

N N

Z m n j k D N R N j R N k H N m n f N




         


 

    

                                                                       (a18) 

where min(j,k) means the smaller value of j and k.  

The functions appearing in Eqs.(a14) and (a18) are all calculated with Maple 

program,
19

 for example, so that the Hamiltonian integral Hij and the overlap integral Sij are 
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expressed by a linear combination of (0, , , , , )Z m n j k l . Thus, after the diagonalization of the 

secular equation, EHC SC , you obtain the energy E and the coefficient vector C. 
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Chapter 5  

Solving the Schrödinger equation of helium and its 

isoelectronic ions with the exponential integral (Ei) function 

in the free iterative complement interaction method 

 

1. Introduction: 

As Dirac noted in 1929,
1
 the Schrödinger equation (SE), 

 H E  , (2) 

provides a governing principle of chemistry. Therefore, if a general solution of the SE were 

possible, very accurate prediction of chemical phenomena would have become possible. 

However, it was simply a dream for over 80 years. 

Helium atom was the simplest realistic unsolved system and many studies have been 

done to obtain essentially exact solutions of the SE. The first important achievement was done 

by Hylleraas
2
 as early as 1929. He employed the function of the form, 

  
6

( )

exp
terms

a b c

Hylleraas abc

abc

C s s t u   , (3) 

where ,  and . The indices, a, b, and c are all nonnegative integers 

and   is a nonlinear parameter. The coefficients Cabc were determined by the variational 

principle and the calculated energy was E = -2.903 329 354 a.u., which was different less than 

1 kcal/mol from the essentially exact solution now available. Kinoshita
3
 improved the 

Hylleraas wave function by introducing negative powers of s in eq.(3). Thakkar and Koga
4
 

even introduced real numbers for a, b, and c and obtained the energy of E = -2.903 724 377 

034 03 a.u. with only 100 basis functions. 

Several studies pointed out the importance of the logarithmic functions for describing the 

boundary condition at the three particles coalescence region.
5-7

 Frankowski and Pekeris 

performed the variational calculations using the logarithmic functions and showed a good 

convergence of the energies of the two-electron atoms as a support to the existence of the 

logarithmic terms in the exact wave function.
8
 Freund et al. applied the logarithm basis to the 

helium isoelectronic ions and obtained quite accurate energies.
9
 They concluded the 

importance of using the basis functions that have the same analytic structure as the exact wave 

function. More recently, Schwartz
10

 performed quite extensive variational calculations based 

on the wave functions written as 

    
10259

( )

exp ln
terms

d a b c

Schwarts abcd

abcd

C s s s t u      , (4) 

1 2s r r  1 2t r r  12u r
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where d is 0 or 1, and obtained very accurate energy correct up to 36 digits. There are many 

other important studies on the helium and isoelectronic ions
11-17

 and one may refer to our 

recent paper.
16 

In our laboratory, we have studied since 2000 the structure of the exact wave function 

and investigated the general method of solving the SE.
18

 Overcoming the singularity problem 

caused by the Coulomb potentials of atomic and molecular Hamiltonians, we could have 

established the general method of solving the SE and proposed the free ICI (iterative 

complement interaction) method.
19

 It was proved that the ICI wave function becomes exact at 

convergence.
18-20

 Several applications have been reported since then.
21-23

 In particular,  we 

have applied the free ICI method to helium and its isoelectronic ions.
16

 We have shown  that 

the free ICI method generates the wave function of the form,  

    
22709

( )

exp ln
terms

d a b c

abcd

abcd

C s s u s t u      , (5) 

when we start from the initial wave function of the logarithmic form,    exp lns s u  . 

We have shown that the use of the logarithmic function as the initial function of the free ICI 

formalism gives fast convergence, and obtained the energy, E = −2.903 724 377 034 119 598 

311 159 245 194 404 446 696 905 37 a.u. that is correct over 40 digits, which was the world 

 

Figure 5-1. Graphs of (A) Slater type (dot line), (B) Kinoshita type (dashed line), (C) 

logarithm type (dash and dot line), and (D) Ei type (solid line) functions. The 

logarithm type function has a node at s = 1 and a maximum (minimum with minus 

sign) at s = 1.763…. 
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best within the published literatures. Similar accuracy was also obtained with the calculations 

that include the effect of nuclear motion as well as the electronic ones.
24

 Excited states of the 

two-electron atoms were also calculated quite accurately with the free ICI formalism.
25

 These 

data may be regarded as a numerical proof of the fact that one can obtain the energy and the 

wave function to any desired accuracy by using the free ICI methodology. 

Let us examine several functions that were used to describe the wave function. Fig. 5-1 

shows the plots of the Slater type function,  exp s , Kinoshita function,   1exp s s , and 

the logarithmic function,    exp lns s  . At the limit of s = 0, the Slater type function has a 

finite cusp value but the Kinoshita function and the logarithmic function become infinite. 

These divergences are the essential behaviors from the three-particle coalescence boundary 

conditions.
5-7

 However, the logarithmic function has the following two strange behaviors: a 

node at s = 1 and a maximum (minimum with minus sign) around s = 1.763, as shown in Fig. 

5-1. These properties look unphysical for the ground state of the helium atom because the 1s 

orbital smoothly decreases to zero as s with neither a node nor a maximum. Therefore, 

the logarithmic functions must be improved, at least, for these unphysical behaviors. 

In the present paper, we introduce exponential integral (Ei) function as a new type of 

function that improves these behaviors of the logarithmic function. In the next section, we 

summarize the properties of the Ei function and in Section 3, the free ICI method is briefly 

explained. In Section 4, the applications of the free ICI method starting from the Ei function 

are described for helium and its isoelectronic ions and the concluding remarks are given in the 

last section. 

 

2. The Eexponential Integral Function, Ei 

In this section, the mathematical definition and some formulas about the Ei function are 

summarized very briefly. For more details, one may refer to the mathematical books.
26-28

 

The Ei function is defined for real x by an integral form as 

  
 exp

Ei
x t

x dt
t




   . (6) 

We treat only positive x in the present study, and so the evaluation of the Ei function is 

straightforward. In the region of x being negative, which does not occur in our case, eq.(6) 

must be evaluated in terms of the Cauchy principal value. The plot of the Ei function is shown 

in Fig. 5-1. It is similar to the logarithmic function, but does not have the strange behaviors of 

the logarithmic function as described in the introduction. The Ei function can be generalized 

and extended to an entire complex plane as 

http://en.wikipedia.org/wiki/Cauchy_principal_value
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  
 

1

exp
Ei ,

m

zt
m z dt

t

 
  , (7) 

where m is an integer and z is a complex number. This function is named m-argument Ei 

function. In the case of x > 0 and m = 1, eq.(7) is related to eq.(6) as 

    Ei Ei 1,x x   . (8) 

The Ei functions with m = 2, 3, … have finite values at x = 0. Since their behaviors are very 

similar to the exponential function, we do not treat them in the present study. Hereafter we 

deal with the Ei function given by eq.(6) alone. 

The Ei function is expandable in power series as 

      
1

Ei ln exp n

n

n

x x x C x




       (9) 

with 

 
1

1 1

!

n

n

r

C
n r

 
  

 
 , (10) 

where 0.5772   is the Gamma constant.
28

 Eq.(9) is called Bessel‟s expansion formula. 

According to eq.(9), Ei(-x) contains ln(x), which becomes dominant at the region of x being 

very small. Ei(-x) diverges at 0x   to minus infinity, 

  
0

lim Ei
x

x


   , (11) 

but the following integrals exist: 

  
0

Ei 1x dx


   , (12) 

    
2

0
Ei 2ln 2x dx



  . (13) 

Further, the difference between the two Ei functions at 0x   is finite as 

        
0

lim Ei Ei ln ln
x

x x   


       , (14) 

where 0   and 0  . Similarly, the difference between the Ei function and the 

logarithmic function at 0x   is finite as 

      
0

lim Ei exp ln ln
x

x x x


   


 
        

 
. (15) 

The differentiations of both sides of eq.(15) lead to 
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      
0 0

lim Ei lim exp ln
x x

d d
x x x

dx dx
  

 

   
     

   
, (16) 

which indicates that the derivatives of the Ei and the logarithmic functions at 0x   are 

identical. On the other hand, the limit of Ei(-x) at x  is zero, 

  lim Ei 0
x

x


  . (17) 

The differentials of the Ei function are possible as follows: 

  
 exp

Ei
xd

x
dx x


   (18) 

and 

  
   2

2 2

exp exp
Ei

x xd
x

dx x x

 
    . (19) 

Eq.(18) is confirmed from eq.(6). Since the first derivative of Ei(-x) is always positive and 

becomes zero at x  , it has no maximum and no nodes. These are the differences from the 

logarithmic function, ln( )exp( )x x , as seen from Fig. 5-1. The indefinite integral of Ei(-x) is 

derived from eq.(6) by the integration by parts as: 

      Ei Ei expx dx x x x     . (20) 

 

3. Free ICI (iterative complement interaction) Method 

In this section, we briefly explain the free ICI method
19,20

 to be pertinent to the present 

study. The simplest form of the ICI wave function is defined by the recursion formula given 

by 

  1 1n n n nC g H E       , (21) 

where n is an iteration number, 
 n

C  the variational parameter, and nE  the energy defined 

by 

 n n

n

n n

H
E

 

 
 . (22) 

The g function is the scaling function that was introduced to eliminate the singularity problem 

caused by the integrals of the higher-powers of the Hamiltonian including Coulomb 

singularities.
19,20

 The initial function 0  can be chosen freely if it satisfies the given 

conditions such as the spatial symmetry, spin multiplicity, etc. Once g and 0  are given, the 

ICI calculations proceed automatically and the wave function is improved systematically 
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toward the exact wave function.
 

The free ICI method was proposed
19, 20

 to accelerate the convergence to the exact 

solution and to increase the freedom of the ICI calculations. The r.h.s. of eq.(20) consists of a 

sum of the analytical functions. We gather from them all the independent functions as   ,
n

i  

 1, 2, ni M  and make up our wave function by a linear combination of them as  

 
   

1

1

nM
n n

n i i

i

c 



 , (23) 

where 
 n

ic  is the variational parameter assigned to 
 n

i . This is the free ICI wave function. 

Because of the increased freedom, the free ICI wave function converges faster than the 

original ICI wave function to the exact one. The variational parameters, 
 n

ic , are determined 

by solving the generalized eigenvalue problem, 

 
       n n n n

nEH C S C , (24) 

where 
 n

H  and 
 n

S  are the Hamiltonian and the overlap matrices, respectively, given by 

     n n n

ij i jH H  and      n n n

ij i j S . In the free ICI method, we call n as “order” 

instead of “iteration number”, since n  does not depend on the former coefficients  ( 1)n

ic  , 

etc. The key point of the ICI formalism is that the exact wave function of a system is 

constructed by the Hamiltonian itself of the system, i.e., 0( )f H  , and eq.(20) or (22) 

gives an expression of this equation in an analytical expansion form. 

 

4. Applications to Helium and Its Isoelectronic Ions 

4.1. Free ICI Formalism 

Our goal is to solve the SE of the ground state of the helium atom and its isoelectronic 

ions with the free ICI method. The Hamiltonian is represented in the Hylleraas coordinate as 

 

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

( ) ( )ˆ 2 2
( ) ( )

4 2 4 4 1

s u t t s u
H

s t u u s t s u u s t u t

s t sZ

s t s u u s t t s t u

       
      

         

  
    

     

, (25) 

where Z is the nuclear charge. As the g function, we used 

 
2 2

1
s t

g u
s


   , (26) 

which showed the best performance in our previous study.
16

 The choice of the initial function 

0  is important since it determines the functional form of the free ICI wave function and this 
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is our major concern of the present paper. First, we propose here to choose the Ei function, 

i.e., 

  0 Ei s   , (27) 

where   is a kind of screening parameter. Our second choice is 

    0 Ei 1 lns u      , (28) 

which includes the  ln u  function as an explicitly correlated factor that was introduced to 

accelerate the convergence. The  ln u  function was first introduced in our previous paper
16

 

and showed very good performance in spite of its simplicity. To compare the performance of 

the Ei function, we referred to the four different types of calculations that were taken from the 

previous paper:
16

 First, starting from the standard Slater type function given by 

  0 exp s   , (29) 

second starting from the logarithmic function of the s coordinate with exponential function, 

   0 exp 1 ln( )s s    , (30) 

third starting from the logarithmic function of s and correlated u coordinates with exponential 

function, 

      0 exp 1 ln lns s u       , (31) 

and finally, starting from the function that includes s and u coordinates in the same logarithm 

function as 

    0 exp 1 lns s u       . (31) 

The last one produced the best energy in our previous study.
 16

 

 

Figure 5-2. Schemes of the basis function generations in the ICI method starting from 

different types of  0 . {exp} type basis function represents  exp a b cs s t u  with a 

being positive or zero, {Kinoshita} type basis function represents  exp a b cs s t u  with a 

being negative, {log} type basis function represents    exp ln a b cs s s t u , and {Ei} type 

basis function represents  Ei a b cs s t u . 
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The wave functions that are generated by the free ICI formalism using the above g and 

the Ei type initial functions 0  (eqs.(27) and (28)) are represented by 

        
( )

exp 1 Ei ln a b c

lmn

lmn

C s s u s t u





               , (32) 

where , a, b and c are integers,  and  take either 0 or 1. For the 0  of eq.(26),   is 

always zero. As seen from eq.(18), the exponential type function is automatically generated 

from the differentiation of the Ei function. On the other hand, when one performs the free ICI 

calculations with the usual exponential and logarithmic 0  given by eqs.(29), (30), and (31), 

one obtains the wave functions that are represented by 

      
( )

exp ln ln a b c

lmn

lmn

C s u s s t u
 




          , (33) 

where ,  a, b, and c are integers and the quantity + takes 0 or 1. The wave function 

generated with 0  of eq.(31) was already given in eq.(4). The Ei part of eq.(32) can be 

expanded using the Bessel‟s expansion formula given by eq.(9), and then the wave function 

given by eq.(33) can be reformulated into the same forms as eq.(32), though the details are 

different at finite order of the free ICI. When the order reaches infinity, the quantities , a, 

b, and c take all the patterns in both cases of eqs.(32) and(33), and therefore, these two wave 

Table 5-1. Energy of helium atom calculated by the free ICI method with the initial 

function  0 Ei s    (eq.(27)), the first and second derivatives of the energy with 

respect to the parameter  and the best estimated value of . 

n
a
 Mn

b
  Energy E (a.u.) E-Ebest E a 

d
 

22E a 
e
 Best f

 

0 1 1.6 -2.425 758 617 410 142 390 4.7810
-1

 1.7410
0
 2.04E10

0
 1.172 

1 7 1.6 -2.900 008 689 031 112 995 3.7210
-3

 1.0110
-3

 8.5510
-2

 1.594 

2 22 1.6 -2.903 376 336 198 933 179 3.4810
-4

 2.0510
-3

 4.2410
-3

 1.359 

3 61 1.6 -2.903 723 729 740 132 823 6.4710
-7

 1.0610
-6

 1.2010
-5

 1.556 

4 111 1.6 -2.903 724 358 079 515 735 1.9010
-8

 1.3410
-8

 1.3310
-7

 1.550 

5 188 1.6 -2.903 724 376 475 282 897 5.5910
-10

 1.2310
-10

 1.4810
-9

 1.559 

6 310 1.6 -2.903 724 377 017 385 340 1.6710
-11

 7.4910
-13

 1.0310
-11

 1.564 

7 505 1.6 -2.903 724 377 033 617 731 5.0210
-13

 7.5210
-15

 7.8010
-14

 1.552 

8 697 1.6 -2.903 724 377 034 104 549 1.5010
-14

 6.5410
-17

 6.3510
-16

 1.548 

9 919 1.6 -2.903 724 377 034 119 147 4.5110
-16

 5.3710
-19

 5.5310
-18

 1.551 

Ebest
c
 -2.903 724 377 034 119 598    

a: Order of the free ICI. 

b: Number of the complement functions. 

c: Ref. 16 

d: The approximate first derivative at 
the energies at =1.5, 1.6 and 1.7. 

e: The approximate second derivative at 
the energies at =1.5, 1.6 and 1.7. 

f: Variationally best  estimated from the interpolated quadratic curve. 
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functions will become identical. The Kinoshita type terms (including negative powers of s) 

are also automatically generated in both types of the wave functions.
19,20

 In Fig. 5-2, we 

summarized the function generation schemes of the free ICI method starting from different 

initial functions 0 . 

 

4.2. Computational Details 

The generations of the free ICI functions and the evaluations of the matrix elements for 

eq.(24) were performed with an algebraic mathematical package, Maple 10.
29

 The 

diagonalization of the secular equation represented by eq.(24) was performed by our original 

solver using the GMP library.
30

 Both enabled us to perform the calculations to any precisions. 

In most calculations, we set the precision of the calculations to be 60 digits. However, in 

Sec.4.6, we will perform extensive calculations to very large order n of the free ICI and there, 

we set the precision to be 160 digits to avoid numerical instability. 

 

4.3. Lower Order Calculations of Helium Atom Starting From the Ei Function 

The energy of the initial function of eq.(27) with = 1.6 is 0E = -2.425 758 617 410 142 

390 a.u. This value was improved toward the exact one in the subsequent increased order n, as 

shown in Table 5-1. We performed the same calculations with =1.5 and 1.7, and estimated 

the optimal value as shown in Table. 5-1. We also calculated approximately the derivatives 

Table 5-2. Energy of helium atom calculated by the free ICI method with the initial function 

 0 exp s    (eq. (29)) and    0 exp 1 ln s       (eq. (30)). This table is taken from 

ref. 16. 

  0 exp s        0 exp 1 ln s       

n
a
 Mn

b
  Energy E (a.u.)  Mn

b
  Energy E (a.u.) 

0 1 1.688 −2.847 656 250 00  2 1.687 −2.847 656 242 128 24 

1 4 1.689 −2.901 337 956 94  10 1.550 −2.902 964 172 868 10 

2 16 1.736 −2.903 642 984 26  34 1.561 −2.903 702 734 675 68 

3 37 1.779 −2.903 720 264 20  77 1.619 −2.903 723 749 601 90 

4 71 1.837 −2.903 724 018 70  146 1.638 −2.903 724 358 395 41 

5 121 1.92 −2.903 724 323 45  247 1.641 −2.903 724 376 476 31 

6 190 1.995 −2.903 724 364 00  386 1.651 −2.903 724 377 01 739 

7 281 2.083 −2.903 724 373 59  569 1.670 −2.903 724 377 033 61 

8 397 2.161 −2.903 724 375 90  802 1.683 −2.903 724 377 034 104 549 

9 541 2.251 −2.903 724 376 66  1091 1.696 −2.903 724 377 034 119 147 

  Ebest
c
 -2.903 724 377 034     

a: Order of the free ICI. 

b: Number of the complement functions. 

c: Ref. 16 
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/E    and 2 2/E   , which indicate the sensitivity of the energy with respect to the 

parameter  . From these quantities, we calculated the estimated best values of  , though 

all the calculations were done with the fixed value of 1.6  . For comparison, Table 5-2 

shows the energies of the free ICI calculations starting from the ordinary Slater type function 

of eq.(29) and from the one including the logarithmic function of eq.(30): these data are taken 

from our previous paper of ref. 16. Note that the screening parameter,  in Tables 5-2 was 

optimized at each order. 

At order 9 (n = 9), 919 complement functions were generated from the Ei-type initial 

function given by eq.(27) and the corresponding energy was 9E  = -2.903 724 377 034 119 

147 a.u., which has 16 digits accuracy. On the other hand, at n=9, 541 functions were 

generated from the initial function of eq.(29) and 9 digits accuracy was obtained: almost the 

same accuracy was obtained already at n = 5 (M5 = 188) with the Ei case. In comparison with 

the calculations using the logarithmic initial function of eq.(30), the energy of the Ei case was 

almost the same at each order but the number of the complement functions was always 

smaller in the Ei case than in the logarithmic case. As seen in Table 5-1, the energy 

derivatives with respect to the screening parameterapproached zero as the order increases, 

and therefore at large n, a small change in  little influenced the energy. The estimated best 

value of  seemed to converge to the constant around 1.55. This suggests that only linear 

parameters must be optimized as variational parameters and that the scaling parameter  may 

not really be the variational parameter but the quantity related to the physical property like 

ionization energy.
31

 In principle, the free ICI formalism does not require the optimization of 

the non-linear parameters.
19,20

 On the other hand, the optimal  of the exponential type 

function (eq.(29)) shown in Table 5-2 increased as the order increased and did not yet show a 

sign of the convergence. 

At first order, seven complement functions were generated and they were listed in Table 

5-3 together with their optimized coefficients. There, the function, 
   1

1 exp s   ,  

that is identical to eq.(29), is included. Therefore, afterwards, the free ICI method generates 

Table 5-3. The free ICI wave function at first order starting from the initial function, 

 0 Ei s    (eq. (27)) , (n=1, M1=7 and =1.6). 

Coefficient Complement function  Coefficient Complement function 

1.000000000  exp s   -0.5860458840  Ei s s  

-0.1312519886   1exp s s u    0.0992782326   1 2Ei s s t   

-0.0697537604   2 2exp s s t    0.2737850022  Ei s u  

-0.0368809315  Ei s     

a: Each complement function is normalized to unity but the total wave function is not 

normalized. The coefficients are the relative values to the one of  exp s . 
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from this function the same series of complement functions as those that are generated from 

the starting function of eq.(29). This implies that the difference between the n-th order result 

of Table 5-1 and the (n-1)-th order result of Table 5-2 are the improvement due to the Ei type 

functions. 

As shown above, the Slater type function is generated from the Ei function by applying 

the Hamiltonian operator according to eq.(21). This suggests that conversely the Ei function is 

generated by applying the inverse operator, 1H  , to the Slater type function. In Fig. 5-2, the 

inverse operation corresponds to generating functions from right to left direction. According 

to the linear algebraic formalism, quadratic convergence may be obtained with the inverse 

iteration method. Previously, one of the authors
32

 applied the inverse Hamiltonian method to 

solve the SE of hydrogen atom and obtained a faster convergence than the regular 

Hamiltonian case. If we regard the Ei functions and the logarithmic functions to be generated 

by applying the inverse Hamiltonian operator to the exponential function, we may be able to 

understand an aspect of the origin of their fast convergence. 

Table 5-4 shows the free ICI energy starting from the Ei function with the explicitly 

correlated term given by eq.(28) with = 1.6. We performed the same calculation with = 1.5 

and = 1.7 and calculated the approximate first and second derivatives of the energy with 

respect to the screening parameter  and the best estimated , which are also shown in Table 

Table 5-4. Energy of helium atom calculated by the free ICI method with the initial function 

   0 Ei 1 lns u       (eq.(28)), the derivatives with respect to  and the best estimated 

. 

n
a
 Mn

b
  Energy E (a.u.) E-Ebest E  

d
 

22E  
e
 Best f

 

0 2 1.6 -2.666 888 282 498 509 506  2.3710
-1

 1.0610
0
 1.57E10

0
 1.262 

1 14 1.6 -2.902 295 055 973 125 945  1.4310
-3

 2.6710
-3

 1.9710
-2

 1.532 

2 44 1.6 -2.903 640 326 345 850 979  8.4110
-5

 8.0610
-4

 2.4610
-3

 1.436 

3 122 1.6 -2.903 724 376 098 371 470  9.3610
-10

 1.5210
-8

 1.9510
-7

 1.561 

4 222 1.6 -2.903 724 377 021 228 247  1.2910
-11

 3.1910
-10

 3.3510
-9

 1.552 

5 376 1.6 -2.903 724 377 034 097 813  2.1810
-14

 1.6710
-12

 1.7210
-11

 1.551 

6 620 1.6 -2.903 724 377 034 119 430  1.6810
-16

 2.1410
-16

 3.6510
-15

 1.571 

7 1010 1.6 -2.903 724 377 034 119 595  2.6510
-18

 -3.8210
-20

 1.7310
-18

 1.611 

Ebest
c
 -2.903 724 377 034 119 598      

a: Order of the free ICI. 

b: Number of the complement functions. 

c: Ref. 16 

d: The approximate first derivative at  = 1.6 calculated from the quadratic interpolation of 

the energies at =1.5, 1.6, and 1.7. 

e: The approximate second derivative at 
energies at =1.5, 1.6, and 1.7. 

f: Variationally best  estimated from the interpolated quadratic curve. 
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5-4. 

Fig. 5-3 shows the convergence speeds of the free ICI calculations starting from the four 

types of the initial functions given by eqs. (27), (28), (29), and (31). The logarithms of the 

energy differences from the so-far best value, E = -2.903 724 377 034 119 598 311 159 245 

194 404 446 696 9 a.u.,
16

 were plotted there. The convergence speed of the free ICI 

calculations starting from the Ei type function, given by eq.(28), was poor in the initial stage, 

but as the order increases, it became similar to that of eq.(31). The energy derivatives with 

respect to  approached zero as the order increased, but the best estimated value slightly 

increased in a oscillating manner. Similar behavior was also seen for the case starting from 

eq.(31). 

We will give below the extensive calculations of helium atom starting from the Ei 

function of eq.(26) up to the order n = 27, but before that, we give the results for the helium 

isoelectronic ions. 

 

Figure 5-3. Energy convergence of the free ICI calculations with different types of initial 

functions,  0 Ei s    (solid line) (eq.(27)),  0 exp s    (dot line) (eq.(29)), 

   0 Ei 1 lns u       (short dashed line) (eq.(28)), and 

     0 exp 1 ln lns s u        (long dashed line) (eq.(31)). Ebest is estimated to be 

the so-far best value, E = -2.903 724 377 034 119 598 311 159 245 194 404 446 696 9 

a.u. obtained in ref.16. 
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4.4. Application to Helium Isoelectronic Ions 

Here, we show briefly the results for the helium isoelectronic ions, represented as M
(Z-2)+

 

(Z = 1,2,3,…,10), starting from the Ei function with the explicitly correlated term given by 

eq.(28). The free ICI was done only up to order four (n = 4, M4 = 222) and the value of  was 

optimized for each ion. The results are shown in Table 5-5, where the energies calculated by 

Freund et al.
9
 using 230 logarithmic basis functions are also shown. We could obtain more 

than 11 digits accuracy for all ions except for the hydride ion H
-
. More accurate energies of 

these ions were published in our previous paper.
16 

As Freund et al. noted, electrons of the hydride ion exist rather far from the nucleus, 

however, the logarithmic functions are suited for describing electrons near the nucleus. 

Therefore, it would be difficult to describe such electrons in high accuracy by using the 

logarithmic functions. This consideration holds true also for the Ei type wave functions of the 

present study. 

The optimal  of each ion and the nuclear charge Z have a linear relation represented by 

opt aZ b   , where a and b were calculated, by the least square fitting, to be 0.9254 and 

0.2583, respectively. This result is in accordance with the interpretation of  to be the 

screening parameter that is related to the ionization potential. 

 Table 5-5. Energy of the helium isoelectronic ions calculated by the free ICI method with the 

initial function    0 Ei 1 lns u       (eq.(28)) and a comparison with the energy 

obtained by Freund et al.
c
 using the logarithm type functions. 

   Free ICI results with Ei type function
a
  Logarithm type function

c
 

Character Z  b
 Energy (a.u.)  b

 Energy (a.u.) 

H 1  0.4477 -0.527 750 970 358 127  0.390 -0.527 751 015 3 

He 2  1.550 -2.903 724 377 026 498  1.600 -2.903 724 377 034 0 

Li 3  2.520 -7.279 913 412 662 821  2.820 -7.279 913 412 669 2 

Be 4  3.493 -13.655 566 238 414 004  3.840 -13.655 566 238 423 5 

B 5  4.365 -22.030 971 580 230 969  4.850 -22.030 971 580 242 7 

C 6  5.300 -32.406 246 601 884 841  5.880 -32.406 246 601 898 4 

N 7  6.288 -44.781 445 148 757 529  6.930 -44.781 445 148 772 6 

O 8  7.162 -59.156 595 122 741 245  8.000 -59.156 595 122 757 8 

F 9  7.852 -75.531 712 363 926 577  9.000 -75.531 712 363 959 4 

Ne 10  9.116 -93.906 806 515 019 002  10.00 -93.906 806 515 037 4 

a: The order is four, the number of the complement function is 222, and the initial function is 

   0 Ei 1 lns u       (eq. (28)). 

b: The screening parameter optimized at each ion. 

c: The results of Freund et al., taken from ref. 9. The wave function has the form of 

   
 

230

exp ln
terms

a b c

abc

abc

C s s s t u   . 
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4.5. Fully Extensive Calculations of Helium Atom Starting From the Ei Function 

Finally, let us report the result of the fully extensive free ICI calculations of the helium 

atom with the Ei function given by eq.(26). Table 5-6 shows the converging series of energies 

up to n = 27 and the convergence indicator nD  at order n that is the logarithm of the energy 

difference from the best energy value, for which we adopted the best energy we obtained here 

at n = 27. The energy at n = 27 (M27 = 21035) was E27 = -2.903 724 377 034 119 598 311 159 

245 194 404 446 696 924 865 a.u. which has 43 digits accuracy and variationally improves 

the best energy of our previous paper
16

 for about 2-3 digits in spite of the smaller dimensions 

in the present case. The   value was fully optimized until n = 16 but the change became 

small and so from n = 17,   was fixed to 1.6. 

Fig. 5-4 shows the energy convergence behaviors of the free ICI energies with 0  given 

by eqs.(26), (29), and (31): it is a plot of nD  against Mn. When we compare the calculations 

 
Figure 5-4. Energy convergence of the free ICI calculations with different types of initial 

functions,  0 Ei s   (solid line) (eq.(27)),    0 exp 1 lns s       (dot line) 

(eq.(29)), and    0 exp 1 lns s u        (dashed line) (eq.(31)). Ebest is estimated 

here to be the best value calculated here, E = -2.903 724 377 034 119 598 311 159 245 

194 404 446 696 924 865 a.u, which is lower (better) than the value obtained in Ref.16. 
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with 0 ‟s of eqs.(26) and eq.(29), one notices that the two energies at the same order n are 

almost same, though the number of the generated functions, Mn is slightly smaller in the Ei 

case than in the logarithmic case. It suggests that the free ICI functional spaces generating 

from these two sets are almost the same but the Ei case is slightly more efficient because of 

the smaller dimension. It also becomes a numerical proof that the three-particle coalescence 

behavior is satisfactory also with the Ei function because the Ei function includes the 

logarithm property. 

Comparing the Ei case to the calculation with 0  given by eq.(31), the convergence of the 

latter case is better than the Ei case at small dimensions until about Mn = 14000. The speed of 

the convergence of the latter case becomes slow down after exceeding that dimension and two 

 Table 5-6. Energy of helium atom calculated with  0 Ei s    (eq.(27)). nD  shows the 

convergent digits defined  

as 10log ( )n n exactE ED   . 

n Mn   Energy (a.u.) nD  
0 1 1.173 -2.797 959 -0.98 
1 7 1.612 -2.900 021 -2.43 
2 22 1.363 -2.903 607 -3.93 
3 61 1.562 -2.903 723 737 -6.19 
4 111 1.547 -2.903 724 358 271 -7.73 
5 188 1.607 -2.903 724 376 475 -9.25 
6 310 1.599 -2.903 724 377 017 385 -10.8 
7 505 1.578 -2.903 724 377 033 617 -12.3 
8 697 1.576 -2.903 724 377 034 104 549 -13.8 
9 919 1.585 -2.903 724 377 034 119 147 -15.3 

10 1206 1.585 -2.903 724 377 034 119 584 790 -16.9 
11 1589 1.591 -2.903 724 377 034 119 597 905 -18.4 
12 2027 1.586 -2.903 724 377 034 119 598 298 978 -19.9 
13 2572 1.595 -2.903 724 377 034 119 598 310 792 -21.4 
14 3236 1.588 -2.903 724 377 034 119 598 311 148 179 -23.0 
15 4081 1.612 -2.903 724 377 034 119 598 311 158 909 -24.5 
16 4845 1.636 -2.903 724 377 034 119 598 311 159 234 996 -26.0 
17 5647 (1.6) -2.903 724 377 034 119 598 311 159 244 882 -27.5 
18 6546 (1.6) -2.903 724 377 034 119 598 311 159 245 184 832 -29.0 
19 7573 (1.6) -2.903 724 377 034 119 598 311 159 245 194 108 -30.5 
20 8679 (1.6) -2.903 724 377 034 119 598 311 159 245 194 395 279 -32.0 
21 9912 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 160 -33.5 
22 11326 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 437 749 -35.0 
23 12994 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 446 415 -36.6 
24 14699 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 446 688 045 -38.1 
25 16552 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 446 696 642 -39.5 
26 18646 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 446 696 915 844 -41.0 
27 21035 (1.6) -2.903 724 377 034 119 598 311 159 245 194 404 446 696 924 865 (-42.5)

a
 

Ref. 16 22709  -2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 34 -40.7 
a: The value presumed from the convergent behavior. 
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cases become almost equivalent at Mn = 14000 and the Ei case becomes faster at Mn>14000. 

The speed of the convergence does not become worse in the Ei case even at a very large 

dimension over Mn = 20000 and its plot of nD  in Fig. 5-4 is almost linear (a bit downward 

convex). Thus, although the most rapid convergence in Mn<14000 is obtained with 0  given 

in eq.(31), i.e. the logarithmic form, the fastest convergence at very high dimension is 

obtained with the 0  of the Ei function, eq.(26). This nice property would be due to the 

better behaviors of the Ei function over the logarithmic function as shown in Fig. 5-1 

 

5. Conclusion 

We introduced the Ei function as a new type of function that has a physical meaning 

similar to the logarithmic function, and yet does not show the unphysical behaviors that the 

logarithmic function shows. We have used here the Ei functions as the starting functions of 

the free ICI formalism to calculate the accurate wave functions and energies of the helium and 

its isoelectronic ions. The free ICI wave functions generated from the Ei function showed 

very good convergence and the speed of the convergence was almost the same as that with the 

logarithmic function. Further, when we perform highly extensive calculations, the free ICI 

wave function starting from the Ei function gave a better performance than the one starting 

from the logarithmic function, reflecting the good behavior of the Ei function in comparison 

with the logarithmic function. For this reason, we could improve the variational energy of 

helium atom correct up to about 43 digits. 

The natures of these two types of functions are considered to be very similar and with the 

free ICI formalism, both functions produce identical set of complement functions at infinite 

orders. The logarithmic function has a node and a maximum, which seems to be unphysical 

for the ground state of the present system, while the Ei function has neither a node nor a 

maxima and decreases smoothly to zero. The Ei functions are considered to be suited for 

describing the electrons near the nucleus like those of inner shell region. The Ei function may 

also be understood as the function generated by operating the inverse Hamiltonian to the 

ordinary exponential function and this may be a reason why the Ei functions lead to a fast 

convergence. The more general functions widely used in the correlated methods like Gaussian 

function with the Jastrow functions
33,34

 are also automatically generated from the Ei-type 

function, such as  2

0 exp( ) Ei /( )r ar r b     or  2

0 Ei( )exp /( )r ar r b    . They 

would be of some values for the general atomic and molecular calculations. 

These results may be considered to support that the Ei function is a better function than 
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the logarithmic function for describing the three particle coalescence region. 

 The use of the Ei functions for larger atoms and molecules is also very interesting for 

accurate descriptions of atomic and molecular electronic structures in which the wave 

function must have the freedom that the exact wave function has in the three-particle 

coalescence region. Though we used the variation principle (VP) to calculate the variables in 

the free ICI wave function, we have published a method of using the Schrödinger equation 

directly instead of the variation principle.
35

 This local Schrödinger equation (LSE) method is 

applicable to wider classes of many-electron atoms and molecules than the variation principle. 
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General Conclusion 

 

     In Part I, the author investigated two kinds of chromium complexes and their analogues.  

In Chapter 1, the author elucidated the bonding nature of Cr-Cr quadruple bonds.  In 

Chapters 2 and 3, the author investigated the spin multiplicities of the inverted sandwich type 

complexes.  In Part II, the author succeeded in solving the Schrödinger equation of the 

hydrogen molecule and helium atom without any approximations.  The other important 

conclusions presented in this thesis are summarized as follows: 

 

     In Chapter 1, open-lantern type dinuclear Cr(II) complex, [Cr(R
1
NC(R

2
)NR

3
)2]2 (R

1
 = 

Et, R
2

 = Me, and R
3
 = 

t
Bu), was theoretically investigated with DFT, CASSCF, and MRMP2 

methods. The DFT-optimized Cr-Cr distance (1.757 Å) is too short, compared to the 

experimental value (1.960 Å).  The CASSCF method does not present the minimum in the 

range of the Cr-Cr distance from 1.75 to 2.05 Å. The MRMP2 method presents the optimized 

Cr-Cr distance of 1.851 Å, which is a little shorter than the experimental value. These results 

suggest that both non-dynamical and dynamical correlations are considerably large in this 

complex. The Cr-Cr bond order is evaluated to be 2.40 with the CASSCF method, which is 

much smaller than the formal bond order of 4.  In the Mo analogue, on the other hand, the 

DFT, CASSCF, and MRMP2 methods present almost the same Mo-Mo distance (2.151 Å). 

The Mo-Mo bond order is evaluated to be 3.41, which is somewhat smaller than the formal 

value but much larger than the Cr-Cr bond order. These differences arise from the much larger 

d-d overlap integral of the Mo-Mo pair than that of the Cr-Cr pair. Though non-dynamical 

correlation effect is very large in this dinuclear Cr(II) complex, the Cr-Cr distance of this 

complex was experimentally discussed to be short, based on formal shortness ratio (FSR).  

The author proposed orbital shortness ratio (OSR) based on the distance providing maximum 

overlap integral to discuss the M-M bond distance.  According to the OSR, one can 

understand that the Cr-Cr distance of 1.960 Å is long but the Mo-Mo distance of 2.151 Å is 

short.  This understanding is consistent with much larger non-dynamical correlation in the 

dinuclear Cr(II) complex than in the Mo(II) analogue.  Interesting differences are also 
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observed between M-M and Si-Si multiple bonds. The differences are discussed in terms of - 

and -type overlap integrals and the participation of Si 3s orbital in the -bonding orbital. 

     In Chapter 2, inverted sandwich type chromium(I) and vanadium(I) complexes, 

-η
6
:η

6
- C6H5CH3)[Cr(DDP)]2 (DDPH = 2-(4-{(2,6-diisopropylphenyl)imino}pent- 2-ene) 

and -η
6
:η

6
-C6H5CH3)[V(DDP)]2, synthesized by Tsai et al. and -η

6
:η

6
-C6H6)[Cr(DDP)]2 

synthesized by Monillas et al. were theoretically investigated with MRMP2 and DFT methods, 

where model compounds,-η
6
:η

6
-C6H6)[M(AIP)]2 (M = V or Cr; AIPH = (Z)-1-amino-3- 

imino-prop-1-ene), were mainly employed.  Both computational methods succeeded in 

reproducing the experimental facts that the chromium and vanadium complexes take 

surprisingly high spin states, septet and quintet spin states, respectively.  MO diagrams of 

these complexes present clear understanding of the reasons why they take such high spin 

states.  The author also calculated their analogues,-η
6
:η

6
-C6H6)[M(DDP)]2 (M=Sc, Ti, Mn, 

or Fe).  The spin multiplicities of the Sc and Ti complexes were calculated to be singlet and 

triplet, respectively, by the DFT(B3LYP) method.  Those of Mn and Fe complexes were 

calculated to be quintet and triplet, respectively, by the DFT(B3LYP) method, but nonet and 

singlet, respectively, by the MRMP2 method, suggesting that the DFT method cannot be 

applied to these complexes.  The MRMP2 calculations indicate that the spin multiplicity 

increases upon going to Mn from Sc and reaches the maximum, nonet spin state, at Mn, and 

then suddenly decreases to singlet at Fe.  This interesting change in spin multiplicity is 

discussed in terms of occupation of MOs. 

     In Chapter 3, inverted sandwich type complexes (ISTCs) of the second-row transition 

elements, -η
6
:η

6
-C6H6)[M(DDP)]2 (DDPH = 2-(4-{(2,6- 

diisopropylphenyl)imino}pent-2-ene, M = Y, Zr, Nb, Mo, and Tc), were theoretically 

investigated with the DFT and MRMP2 methods, where model 

compounds,-η
6
:η

6
-C6H6)[M(AIP)]2 (AIPH = (Z)-1-amino-3- imino-prop-1-ene), were 

mainly employed.  When going to the right-hand side from the left-hand side in the 

second-row transition metal (TM) series of the periodic table, the spin multiplicity of the 

ground state increases in order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively.  

However, it decreases to singlet spin states for both M = Mo and Tc.  The maximum spin 

multiplicity in the ground state is quintet which is presented by Nb, group 5 metal, in the 
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second-row TM complexes.  This is in contrast to the first-row TM complexes, in which the 

maximum spin multiplicity was previously reported to be nonet for M = Mn, group 7 metal.  

Because the spin multiplicity is septet in the ISTC of Cr but singlet in that of Mo, the author 

investigated the ISTC of Mo in detail and discussed this interesting difference in the spin 

multiplicity between the ISTCs of Cr and Mo.  

     In Chapter 4, the free iterative complements interaction (ICI) method based on the 

scaled Schrödinger equation has been applied to the calculations of very accurate wave 

functions of hydrogen molecule in an analytical expansion form. All the variables were 

determined with the variational principle by calculating the necessary integrals analytically. 

The initial wave function and the scaling function were changed to see the effects on the 

convergence speed of the ICI calculations. The free ICI wave functions that were generated 

automatically were different from the usual wave functions and this difference was shown to 

be physically important. The best wave function reported in this chapter seems to be the best 

worldwide in the literature from the variational point of view. The quality of the wave 

function was examined by calculating the nuclear and electron cusps and other properties. 

     In Chapter 5, the author introduced the exponential integral (Ei) function for 

variationally solving the Schrödinger equation of helium and its isoelectronic ions with the 

free iterative complement interaction (ICI) method.  In the previous study of helium atom, 

Nakashima and co-workers could calculate very accurate energies of these atoms by using the 

logarithmic function as the starting function of the free ICI calculation. The Ei function has a 

weak singularity at the origin, similarly to the logarithmic function, which is important for 

accurately describing the three particle coalescence region. The logarithmic function, however, 

has a node and a maximum along the radial coordinate, which may be physically meaningless. 

In contrast, the Ei function does not have such unphysical behaviors and so would provide an 

improvement over the logarithmic function. Actually, using the Ei function, instead of the 

logarithmic function, the author obtained the energy, E = -2.903 724 377 034 119 598 311 159 

245 194 404 446 696 924 865 a.u. for the helium ground state with 21035 functions, which is 

a slight improvement over Nakashima‟s best result (the bold face shows the digit that is 

believed to have converged). This result supports that the Ei function is a better function than 

the logarithmic function for describing the three particle coalescence region. 
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As mentioned in General Introduction, elucidation and prediction are important goals of 

theoretical science.  The author believes that his study in Part I could partially achieve to 

reach the goals.  However, if the author is asked whether or not he really believes that his 

prediction and/or elucidation can be achieved in all chemical issues, he must answer “NO”.  

It is because our method is based on inclusion of various approximations such as neglect of 

solvent or packing, statistical effect, motion of nuclei, etc.  The only way to reach the truth 

as close as possible is to employ approximations as less as possible, which was developed in 

Part II.  Application of our method is limited to very small systems now.  In other words, it 

does not contribute to our everyday life yet.  The author believes, however, that theoretical 

chemistry will develop a lot from now and it will bring us a revolutionary change in chemistry 

and our everyday life in the future, like the Newton‟s mechanics did. 
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