
Open Technological Standardization Processes Through Learning Networks

by

Christakis Mina

B.Sc. in Engineering, 1996
M.Sc. in Engineering, 2007

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Science

in

Engineering

in the

GRADUATE SCHOOL OF ENGINEERING

DEPARTMENT OF URBAN MANAGEMENT

of

KYOTO UNIVERSITY

Open Technological Standardization Processes Through Learning Networks

Copyright 2010

by

Christakis Mina

1

Abstract

Open Technological Standardization Processes Through Learning Networks

by

Christakis Mina

Doctor of Science in Engineering

Kyoto University

Open standards, open access and open source software are three phenomena that have been

receiving increased scholarly attention lately. Recently, the number of research studies related

to Open Standards and F/OSS saw an extraordinary growth. The scholarly attention given

to the F/OSS phenomenon comes from a variety of disciplines including engineering, social

sciences and economics. In addition to that, non-profit organizations as well as governments

recognized the potential of the emerging F/OSS approach and dedicated resources in researching

and supporting the phenomenon. Increasingly, governments around the globe are encompassing

F/OSS and open standards in general with notable examples found in Japan, the United States,

Germany, Brazil, Italy, Russia and Peru, among others. In addition to that, major for-profit

organizations such as IBM, HP, Amazon.com and Google, among others, recognized the business

opportunities F/OSS can generate and invested substantial resources to it which appears as a

puzzle since F/OSS is regarded as a type of public good and public goods according to economic

theory are not considered to be sustainable.

Even though a lot of research has been conducted in understanding the technicalities

of the F/OSS phenomenon, surprisingly little research has been conducted in understanding

the formation and evolution mechanisms behind F/OSS collaboration. This can be partially

explained by the fact that F/OSS is a highly complex and heterogeneous phenomenon. Several

researchers consider F/OSS to be a provision of a public good. According the the economic

literature, public goods suffer from market failures such as free-riding. As a result, researchers

expected that F/OSS not to be sustainable and to eventually vanish. Contrary to that, F/OSS is

thriving and this fact presents a puzzle to researchers. In addition to that, other characteristics

of F/OSS such as the fact that F/OSS is created mainly by volunteer contributions which in

turn is made available to the public and its highly intricate institutional structure having the

2

ability to adapt over time made the phenomenon a focus of several research studies.

The main objective of the research is to investigate open standardization processes and

learning networks. The pivotal phenomenon that is investigated is the collaboration network

of F/OSS development. The main model is build within the complex social network analysis

framework and it is used to analyze the formation and evolution of the F/OSS collaboration

network. In addition to that, a formal model that investigates learning networks and their

applications in engineering, specifically in risk analysis and management, via the Bayesian Neural

Network (BNN) framework is also developed in this research. The BNN model is used to evaluate

the cost risk of soil decontamination projects and illustrates how complex network analysis

utilizing learning networks can be used in practical engineering applications.

The research presented in this dissertation spans several disciplines that include en-

gineering, computer science, statistical physics, economics and law. The research attempts to

bridge the gap in the literature of open standardization and scientific collaboration networks

by investigating the formation and evolution of the F/OSS collaborators social network. The

main research questions presented are: “why open standardization is emerging”, “why open

standardization phenomena such as F/OSS are currently thriving?” and “are those phenomena

sustainable in the long run?”. In the course of answering the research questions, the disserta-

tion pivots on the F/OSS phenomenon presents its history and open standardization related

literature review, analyzes the formation and evolution of the F/OSS collaboration network and

investigates the sustainability of the phenomenon. Finally the dissertation presents two case

studies based on open content collaborative projects that were developed during the research.

i

Dedicated to my parents Andreas and Maria, my wife Miho and my children Anthony,

Marc and Julia.

ii

Contents

List of Figures iv

List of Tables vi

Symbols and Abbreviations ix

1 Introduction 1
1.1 Open Standards and the Emergence of the F/OSS Phenomenon 1
1.2 Rationale of the Research . 3
1.3 Objectives of the Research . 4
1.4 Research Methods . 4
1.5 Contribution of the Research . 5
1.6 Structure of the Dissertation . 5

2 F/OSS: A Paradigm of Open Standardization 6
2.1 Introduction . 6
2.2 The Importance of Source Code . 6
2.3 Definition of F/OSS . 7

2.3.1 Free Software Definition . 8
2.3.2 Open Source Software Definition . 8

2.4 The History of F/OSS . 8
2.5 Review of related literature . 15

3 Open Standardization Formation and Evolution Model 17
3.1 Research Fundamentals . 17

3.1.1 Social Network Analysis . 17
3.1.2 Complex Social Network Analysis . 24

3.2 Model Formulation . 28
3.2.1 The SourceForge.net Dataset . 28
3.2.2 Data Analysis . 32
3.2.3 Complex Social Network Analysis of SourceForge.net 34
3.2.4 Conclusions and Topics for Future Research 44

4 Learning Networks 45
4.1 Introduction . 45

4.1.1 Soil contamination investigations . 46
4.2 Research Fundamentals . 49

4.2.1 Artificial Neural Networks . 49
4.2.2 Bayesian Neural Networks . 49

iii

4.3 Model Formulation . 50
4.3.1 Model Structure . 51
4.3.2 ANN formulation . 52
4.3.3 Bayesian Estimation . 55
4.3.4 BNN formulation . 56
4.3.5 Soil decontamination cost risk evaluation formulation 58

4.4 Case Study . 62
4.4.1 Setting up the database . 63
4.4.2 The ANN process . 63
4.4.3 The BNN process . 64

4.5 Conclusions . 66

5 Case Study: AGORA 68
5.1 Introduction . 68

5.1.1 The Need for Open Standards in Risk Analysis 68
5.1.2 Catastrophe Risk Modeling . 69
5.1.3 Open Risk Analysis . 71
5.1.4 AGORA: The Platform for Open Risk Analysis 72
5.1.5 Open Risk Analysis Software Case Study: MIRISK 73

5.2 Outline of the case study . 82
5.3 Case Study Conclusions . 86

6 Case Study: The Open Collaboration Book Project 90
6.1 Introduction . 90
6.2 Intellectual Property, Copyright and Licensing 91
6.3 Free/Open Source Software Licensing . 92
6.4 Open Content Licensing . 95
6.5 Outline of the OCBP System . 99

6.5.1 The Main Database . 100
6.5.2 Authoring and Version Control . 101
6.5.3 The Web System . 103
6.5.4 Other OCBP Systems . 105

6.6 Conclusions and Future Research . 106

7 Conclusions and Future Research 108

A Program Listings 120
A.1 Program: Create Pajek conectivity input file . 120
A.2 Program: Pajek input file generator . 125

B The Open Source Definition (Annotated) 129

C Torvalds message to comp.os.minix 132

D Open Knowledge Definition v1.0 133
D.1 Terminology . 133
D.2 The Definition . 133

iv

List of Figures

2.1 A typical simplified work-flow of software development 6
2.2 F/OSS History Time-line . 10
2.3 The UNIX history . 11
2.4 Historical Evolution of F/OSS . 14

3.1 Types of social science data and analyses . 20
3.2 Example of an incidence matrix . 21
3.3 Local and global centrality example . 23
3.4 Densities for a simple network . 23
3.5 The structure of the SRDA Database . 29
3.6 The SQL query web interface of the SRDA Project 30
3.7 Example of SQL query output from the SRDA Project 31
3.8 The tables used for constructing the local database 32
3.9 Example of Pajek input file . 33
3.10 Cumulative number of developers on SourceForge.net 36
3.11 Cumulative number of projects on SourceForge.net 37
3.12 Degree distribution (cumulative data up to 2009) 38
3.13 Degree Distribution Evolution of SourceForge.net 39
3.14 The Evolution of Vertices and Edges of SourceForge.net 39
3.15 The Evolution of the Density of SourceForge.net 40
3.16 The Average Degree of SourceForge.net Network Over Time 41
3.17 The Largest Degree of SourceForge.net Network Over Time 41
3.18 The Diameter of SourceForge.net Network Over Time 42
3.19 The Mean Clustering Coefficient of SourceForge.net Network Over Time 42

4.1 Soil Contamination Investigation Techniques. 47
4.2 A multi-layer feed-forward network. 49
4.3 The SD-CORE model structure . 51
4.4 The ANN model structure . 52
4.5 Supervised learning . 54
4.6 Training process of the ANN model . 64
4.7 Soil decontamination cost risk output from SD-CORE 66

5.1 MIRISK System Overview . 74
5.2 The Opening screen of MIRISK . 75
5.3 The GIS Graphic User Interface of MIRISK . 76
5.4 Providing Asset information to MIRISK . 78
5.5 Analysis Output of MIRISK . 79

v

5.6 Typical damage curve . 81
5.7 Questionnaire sent to the members of AGORA 83
5.8 Registered members of AGORA . 84
5.9 Cumulative data of member registrations of AGORA 84
5.10 Adjacency Matrix of AGORA’s Collaboration Network 85
5.11 Degree Distribution of AGORA’s Collaboration Network 86
5.12 AGORA’s Network Evolution for the First Year 87
5.13 AGORA’s Network Evolution for the Second Year 88

6.1 Outline of the OCBP System . 100
6.2 SVN System Layout . 102
6.3 The OCBP Authoring Process. 103
6.4 The OCBP Prototype Web System GUI. 104
6.5 The OCBP Access Layer . 105

vi

List of Tables

2.1 Software development work-flow processes . 7

3.1 SourceForge.net SNA Evolution Summary . 40

4.1 The LMS algorithm . 53
4.2 Description of the explanatory variables . 63
4.3 The model’s parameters . 65
4.4 Comparison of the model’s output with real cost 65

6.1 F/OSS Licenses . 94
6.2 Open Content Projects . 96

vii

Acknowledgments

It is a common misconception that doctoral research is a solitary activity. The image of a

doctoral student confined in his lab, conducting his experiments and simulations alone and then

documenting the results in his dissertation is what most people have in their mind. Those

engaged in doctoral research know otherwise. They know that doctoral research is also a social

activity. In fact, if the doctoral student fails to build and maintain a relevant social network

he will face the risk of failure. Of course, hard work, dedication, persistence, perseverance and

creativity are also very important factors of success, but no doctoral research can be successfully

completed without the support and help of a group of dedicated people. My doctoral research

is no exception to that. Here I would like to to acknowledge all of those that help make this

research reach its goals.

I am deeply indebted to my academic adviser Professor Kiyoshi Kobayashi for his guid-

ance, mentoring and support during this research. His encouragement, constructive criticism,

sharp comments and feedback help tremendously in shaping this dissertation. Even though

recently his workload became more than double, he always kept his door open to me, listened

to my questions and concerns patiently and advised when necessary or provided new challenges

to me in order to deepen my understanding on the research topic and expand my knowledge.

I would like to express my appreciation and gratitude to the members of my defense

committee Professors Masashi Kawasaki and Satoshi Fujii for their constructive criticism and

valuable comments.

I am grateful to Associate Professor Kakuya Matsushima for his guidance and advising

during my doctoral studies. Our discussions and his feedback during my research seminars

resulted in new ideas and research approaches that stimulated the progress of this research. I

would like to also thank him for his help in dealing with the many difficulties I encountered

during my stay in Kyoto and for being a good friend to me and my family.

My gratitude also goes to Professor Charles Scawthorn for his valuable advising, en-

couragement and support during this research. Professor Scawthorn has been an outstanding

academic mentor to me. During this research I learned a lot from him, especially in the field of

risk analysis and management.

I would like also to thank Assistant Professor Masamitsu Onishi for his help and friend-

ship during this research. I’m also thankful to Assistant Professor Mamoru Yoshida for his

support in this research, for helping me during my stay in the lab and for his friendship.

My appreciation also goes to Dr. Lei Shi and Dr. Hayeong Jeong for their support,

viii

feedback and friendship during my doctoral studies. My thanks also to the academic assistant

of our lab, Ms. Aya Fujimoto for her kindness and support. I’m also thankful to my fellow

student-colleagues for their friendship. I would like to especially thank (in alphabetical order)

my friends Dr. Giancarlo Flores, Mr. Kensuke Hishida, Dr. Michiro Ishikawa, Dr. Le Thanh

Nam, Dr. Puay How Tion, Mr. Fei Xu, and Dr. Emine Yetiskul for their friendship and support.

My appreciation and gratitude also goes to the members of the Alliance for Global

Open Risk Analysis (AGORA) for their participation in the case study and for their support

and encouragement.

I’m especially grateful to the Ministry of Education, Culture, Sports, Science and

Technology of Japan. This dissertation would not have been possible without the scholarship

funding I received and the kindness of the people of Japan.

Finally, my sincere gratitude goes to my parents and my wonderful family for their

unconditional love and support.

ix

Symbols

Abbreviations

ANN Artificial Neural Network

BNN Bayesian Neural Network

CGI Common Gateway Interface

COTS Commercial-Off-The-Shelf (Software)

CVS Concurrent Versions System

FSF Free Software Foundation

FTP File Transfer Protocol

F/OSS Free/Open Source Software

GNU GNU’s Not Unix

GPL General Public License

HP Hewlett-Packard

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines

IDE Integrated Development Environment

IP Intellectual Property

IRC Internet Relay Chat

IT Information Technology

ITS Incompatible Time Sharing system

MH Metropolis-Hastings Algorithm

MLP Multi-Layer Perceptron

PC Personal Computer

PDF Portable Document Format

PHP PHP Hypertext Preprocessor

SCCL Soil Contamination Countermeasures Law of Japan

SCP Secure Copy Protocol

SFTP Secure File Transfer Protocol

SSH Secure Shell

WWW World Wide Web

1

Chapter 1

Introduction

Where the mind is without fear and the head is held high;
Where knowledge is free;

– Rabindranath Tagore, “Mind Without Fear”

1.1 Open Standards and the Emergence of the F/OSS Phe-

nomenon

Open standards, open access and open source software are three phenomena that have

been receiving increased scholarly attention lately. The importance of open standardization in

engineering systems, specifically in infrastructure systems is actively debated by researchers in

several disciplines including engineering, economics and the social sciences. For example, there

exist various definitions of open standards in the literature and it seems that there is currently

no consensus on an agreed definition. Pountain (2003) for example defines open standard as

a standard that is independent of any single institution or manufacturer, and to
which users may propose amendments.

The Free Software Foundation Europe (FSFE), a non-profit organization supporting open stan-

dards provides the following definition (FSFE, 2009):

An Open Standard refers to a format or protocol that is

1. subject to full public assessment and use without constraints in a manner equally
available to all parties;

2. without any components or extensions that have dependencies on formats or
protocols that do not meet the definition of an Open Standard themselves;

3. free from legal or technical clauses that limit its utilisation by any party or in
any business model;

1.1. OPEN STANDARDS AND THE EMERGENCE OF THE F/OSS
PHENOMENON 2

4. managed and further developed independently of any single vendor in a process
open to the equal participation of competitors and third parties;

5. available in multiple complete implementations by competing vendors, or as a
complete implementation equally available to all parties.

Coyle (2002) suggests that open standards should allow anybody to use them, to acquire them

for free or nominal low cost and should not impose any limitations in participation of their

development by anyone. In addition to the above, Ghosh (2005) suggests that

open standards should be defined in terms of a desired economic effect: supporting
full competition in the marketplace for suppliers of a technology and related products
and services.

Currently, Free/Open Source Software is a paradigm of open standardization. A layper-

son can not easily grasp the importance of software to our modern society. It is not obvious that

software controls everyday use domestic appliances such as refrigerators, televisions, washing

machines and micro-wave ovens, is used on communication devices such as mobile phones and

fax machines and as well as on critical systems such as the electronic control systems of trains,

cars, ships, airplanes power plants and space shuttles. Our daily lives depend on a variety of

devices and systems, including critical infrastructure, which in-turn are run and controlled by

software. The emergence of software standardization in sciences and academia goes back to

the era of the first computers. Researchers, scientists and practitioners alike use a variety of

software tools in their daily activities, either to control electronic and mechanical devices, to do

experiments and simulations, and to record, analyze and process data. Software typically used

by researchers is either commercial off-the shelf (COTS) or custom-made. In fact, custom-made

software represents the lion’s share of the software used in research. Custom-made software cre-

ated in the academia, has been following the traditional rules of knowledge dissemination and

peer review. That is, in order for the scientific community to validate the results of a specific

research, its data, tools (e.g. software) and methodologies have to be transparent and accessible

for review:

The scientific method rests on a process of discovery, and a process of justification.
For scientific results to be justified, they must be replicable. Replication is not possible
unless the source is shared: the hypothesis, the test conditions, and the results. The
process of discovery can follow many paths, and at times scientific discoveries do
occur in isolation. But ultimately the process of discovery must be served by sharing
information: enabling other scientists to go forward where one cannot; pollinating
the ideas of others so that something new may grow that otherwise would not have
been born. (DiBona et al., 1999)

1.2. RATIONALE OF THE RESEARCH 3

This approach based on openness, transparency and replicability was the norm in the early

times of computing and software development. Recently, with the emerge and proliferation

of commercial proprietary software, the traditional norm has been pushed aside. This raised

concerns among the research and software engineering communities due to the closed nature

of COTS, eventually resulting in the emergence of a new philosophy and methodologies to

develop software that preserves the traditional ways of knowledge dissemination and provides

transparency and accessibility to all. This new software development philosophy approach came

to be known as Free/Open Source Software1 and its impact on the industry, academia, free

markets and the society in general has been remarkable.

1.2 Rationale of the Research

Recently, the number of research studies related to Open Standards and F/OSS saw

an extraordinary growth. The scholarly attention given to the F/OSS phenomenon comes from

a variety of disciplines including engineering, social sciences and economics. In addition to that,

non-profit organizations as well as governments recognized the potential of the emerging F/OSS

approach and dedicated resources in researching and supporting the phenomenon. Increasingly,

governments around the globe are encompassing F/OSS and open standards in general with

notable examples found in Japan, the United States, Germany, Brazil, Italy, Russia and Peru,

among others (Hahn, 2002). Recently major for-profit organizations such as IBM, HP, Ama-

zon.com and Google, among others, recognized the business opportunities F/OSS can generate

and invested substantial resources to it which appears as a puzzle since F/OSS is regarded as

a type of public good and public goods according to economic theory are not considered to be

sustainable (Hardin, 1968).

Even though a lot of research has been conducted in understanding the technicalities

of the F/OSS phenomenon, surprisingly little research has been conducted in understanding

the formation and evolution mechanisms behind F/OSS collaboration. This can be partially

explained by the fact that F/OSS is a highly complex and heterogeneous phenomenon. Several

researchers consider F/OSS to be a provision of a public good. According the the economic

literature, public goods suffer from market failures such as free-riding. As a result, researchers

expected that F/OSS not to be sustainable and to eventually vanish. Contrary to that, F/OSS is

1Free/Open Source Software (F/OSS) is a composite term merging “Free Software” and “Open Source Soft-
ware” together. Both Free and Open Source basically describe similar software development models. The main
differences in the two models are their comprising cultures and philosophies. Both models are described in more
detail in Chapter 2.

1.3. OBJECTIVES OF THE RESEARCH 4

thriving and this fact presents a puzzle to researchers. In addition to that, other characteristics

of F/OSS such as the fact that F/OSS is created mainly by volunteer contributions which in turn

is made available to the public and its highly intricate institutional structure having the ability

to adapt over time made the phenomenon a focus of several research studies (Rossi, 2006).

1.3 Objectives of the Research

The main objective of the research is to investigate open standardization processes

via complex social network analysis and learning networks. The pivotal phenomenon that is

investigated is the collaboration network of F/OSS development. The main model is build

within the complex social network analysis framework and it is used to analyze the formation

and evolution of the F/OSS collaboration network. In addition to that, a formal model that

investigates learning networks and their applications in engineering, specifically in risk analysis

and management, via the Bayesian Neural Network (BNN) framework is also developed. The

BNN model is used to evaluate the cost risk of soil decontamination projects and illustrates

how complex network analysis utilizing learning networks can be used in practical engineering

applications.

1.4 Research Methods

The models of this research are developed within the social network analysis frame-

work utilizing methodologies from the analysis of complex social networks and through learning

network methodologies such as the Bayesian Neural Network framework. The main objective is

to investigate and model the formation and evolution of open standardization and collaboration.

The F/OSS collaboration network is considered as the main paradigm of open standardization

collaboration. In order to build the main model, data from the largest open source project

hosting community, SourceForge.net, are utilized. Once the basic model is build its parameters

are extracted following a methodology similar to the one proposed by Barabási et al. (2002).

The research also includes two case studies of scientific collaboration and standardization pro-

cesses. The research attempts to shed light on what causes the formation and evolution of open

standardization processes and to investigate their sustainability.

1.5. CONTRIBUTION OF THE RESEARCH 5

1.5 Contribution of the Research

The research presented in this dissertation spans several disciplines that include en-

gineering, computer science, statistical physics, economics and law. The research attempts to

bridge the gap in the literature of open standardization and scientific collaboration networks

by investigating the formation and evolution of the F/OSS collaborators social network. The

main research questions presented are: “why open standardization is emerging”, “why open

standardization phenomena such as F/OSS are currently thriving?” and “are those phenomena

sustainable in the long run?”. In the course of answering the research questions, the dissertation

pivots on the F/OSS phenomenon presents its history, a literature review of related research,

analyzes the formation and evolution of the F/OSS collaboration network and investigates the

sustainability of the phenomenon through simulations. Finally the dissertation presents two case

studies based on open content collaborative projects that were developed during the research.

1.6 Structure of the Dissertation

The dissertation is structured as follows. Chapter 1 gives a brief introduction to Open

Standardization, the rationale of the research, its objectives, methodologies and potential con-

tributions to the body of knowledge. Chapter 2 provides an in-depth overview to the main

paradigm of open standardization, the F/OSS phenomenon along with its history and reviews

the related literature. Chapter 3 develops and presents a formal analytical model of the for-

mation and evolution of F/OSS collaboration via complex social network analysis. Chapter 4

discusses learning and adaptive networks and presents a model of evaluating the cost risk of soil

contamination projects via a Bayesian Neural Network framework. Chapter 5 and 6 discuss two

case studies related to the research. The first case study discusses the formation and evolution

of the Alliance of Global Open Risk Analysis (AGORA), a platform for supporting open stan-

dards in risk analysis. The case study uses data gathered from the AGORA website and through

questionnaires to analyze how a specialized open collaborative platform such as AGORA evolves

over time. The case study utilizes the framework developed in Chapter 3 for the analysis. The

second case study discusses the Open Collaboration Book Project (OCBP), an effort to create

and disseminate an open academic body of knowledge utilizing open standards. This case study

focuses on the challenges encountered during the projects with a focus on institutional problems

in adopting open standards and issues related to intellectual property rights. Finally, Chapter 7

presents the conclusions of the dissertation and suggests topics for further research on the topic.

6

Chapter 2

F/OSS: A Paradigm of Open

Standardization

2.1 Introduction

This chapter presents an overview of the F/OSS phenomenon which is considered a

paradigm of open standardization. In this chapter F/OSS is first defined, followed by a discussion

of its history and a review of research literature related to the phenomenon.

2.2 The Importance of Source Code

In order to clearly understand what the F/OSS approach is trying to achieve it is

necessary to first look at how software is developed and to grasp the importance of software’s

source code. Figure 2.1 shows a typical, simplified work-flow of software development using

a high-level structured computer language such as C++ and Table 2.1 gives examples of the

development processes (Miller et al., 1996-2007). The first step in creating a piece of software is

ProblemSpecification Algorithm High-levelStructuredProgrammingLanguage NativeMachineCode ExecutableProgram
ENGLISH

(Informal)
PSEUDOCODE
(Semiformal)

C++, Fortran
(Formal)

OBJECT
CODE

MACHINE
INSTRUCTIONS

C++ PROGRAMMING ENVIRONMENT
HIGH-LEVEL, MACHINE INDEPENDENT LOW-LEVEL, MACHINE SPECIFIC

Pen/Paper Pen/Paper Editor Compiler LinkerSOURCE CODE

Figure 2.1: A typical simplified work-flow of software development

2.3. DEFINITION OF F/OSS 7

Table 2.1: Software development work-flow processes

Problem Specification Determine if a number is prime

Algorithm

input x

f o r each number z that l i e s between 1 and x

i f the re i s no remainder when z d i v i d e s x

then output ”not prime” and ha l t

i f no such number can be found

then output ”prime” and ha l t

loop

High-level Structured Programming

Language

#inc lude <iostream>

us ing namespace std ;

i n t main () {

i n t x ;

cout << " e n t e r n u m b e r :\ n " ;

c in >> x ;

f o r (i n t z = 2 ; z<x ; z++)

i f (x % z == 0) {

cout << " not p r i m e \ n " ;

r e turn 0 ;

}

cout << " p r i m e \ n " ;

r e turn 0 ;

}

Native machine object code Binary machine instructions (partial)

Executable Binary machine instructions (full)

to determine the purpose of the software or the problem it will try to solve. Problem specification

is created using natural language. The next step is to create the software’s algorithm, again

in natural language. The algorithm is then used to create the software’s source code, typically

written in a high-level structured computer programming language such as C++, Fortran or

Java. At this point I would like to point out that the source code is very important as it carries

all the necessary knowledge needed to create the final product, i.e. the executable program.

This fact makes software a unique creation because a specific component of it, the source code

is both the construct and the product at the same time (Bitzer and Schröder, 2006).

2.3 Definition of F/OSS

F/OSS is a composite term merging “Free Software” and “Open Source Software”

together. Both Free and Open Source basically describe similar software development standards.

The main differences in the two standards are their comprising cultures and philosophies.

2.4. THE HISTORY OF F/OSS 8

2.3.1 Free Software Definition

According to the The Free Software Definition, as published by the Free Software

Foundation1, Free Software is:

“... a matter of liberty, not price. To understand the concept, you should think
of “free” as in “free speech,” not as in “free beer.” Free software is a matter of
the users’ freedom to run, copy, distribute, study, change and improve the software.
More precisely, it refers to four kinds of freedom, for the users of the software:

• The freedom to run the program, for any purpose (freedom 0).

• The freedom to study how the program works, and adapt it to your needs (free-
dom 1). Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (freedom 2).

• The freedom to improve the program, and release your improvements to the
public, so that the whole community benefits (freedom 3). Access to the source
code is a precondition for this.

A program is free software if users have all of these freedoms. Thus, you should
be free to redistribute copies, either with or without modifications, either gratis or
charging a fee for distribution, to anyone anywhere (Stallman, 1984b).

2.3.2 Open Source Software Definition

The Open Source Initiative, the organization behind the Open Source methodology,

defines Open Source2:

Open source is a development method for software that harnesses the power of dis-
tributed peer review and transparency of process. The promise of open source is better
quality, higher reliability, more flexibility, lower cost, and an end to predatory vendor
lock-in (Perens, 1998).

2.4 The History of F/OSS

In the early 1980’s I was still in elementary school when I got my hands on my first

computer. It was a used Apple II that my father bought for me. Needless to say that I was

very fascinated with my new hi-tech “toy”. Initially I started using the computer for fun. I was

very fascinated by the games I could play on the computer. Soon my curiosity kicked-in and I

wanted to know how the games were created on the computer. I wanted to learn how to create

a game on my own. I found out that in order to do so I first had to learn programming. The

programming learning resources available to me that time were very limited. I experimented

1Free Software Foundation (FSF) is the organization behind the Free Software development model
2The full annotated Open Source Definition is presented ad verbatim in the Appendices.

2.4. THE HISTORY OF F/OSS 9

with programming on my own for a while but my progress was very slow. In the process of

learning I had many questions and got very few answers. I started looking for the answers to my

programming questions among my peers. That time, not many of my friends were interested with

computers and programming. Those few friends I found to share the same computer interests

with me were very excited to be discovered and contacted by me. Soon we created a small

informal social network. We then started exchanging our experiences with programming. It was

not of great help at the beginning but it was better than nothing. As a group eventually we

started sharing knowledge, help each other, exchange information, programming tips and above

all we shared our proud software creations. It was natural to us, along with the programs we

made, to also share their source code and thus allow everybody to study them, find their bugs3,

fix, improve, remix and finally reuse the source code in new software projects. We had created a

small social network and even though it lacked the efficiency and size of today’s on-line virtual

communities on the Internet, it was something that we were very proud of and above all it served

its purpose surprisingly well. We were of course unaware that we had the basic characteristics

of the F/OSS methodology in place. We had a network, a peer review process, sharing of

knowledge, and we allowed others to examine and modify the source code of our software, find

its shortcomings and to improve it. We lacked one very important component that could give

our small network a great boost and unleash its true potential. We needed an inexpensive and

efficient communication system that would have allowed us to reach more people with the same

interests, enhance the peer-review process and to enable us to share our knowledge and creations

with the world. For that we had to wait for the emergence and proliferation of the Internet and

the World Wide Web.

The roots of F/OSS go back to the early era of electronic computers, in the mid 1940’s.

The beginning of the F/OSS phenomenon is believed to have started with the publishing of the

MEMEX idea of Vannevar Bush, in 1945. According to Benussi (2005), the history of F/OSS

can be broken down into 6 periods. Figure 2.2 presents the 6 periods of the F/OSS history along

with the most important milestones. The first period, referred to as the era of “the new way of

thinking” starts in 1945 with the publishing of the seminal paper of Vannevar Bush and ends

in 1968 with the creation of the ARPANET4. The most important milestones of the first period

3A software bug (or glitch) is a shortcoming in a computer program (i.e an unexpected error, flaw, mistake,
failure or fault) that results in erroneous behavior by the program, e.g. producing wrong outputs. Bugs generally
are the result of coding mistakes made by the programmers or are caused by inappropriate program design (i.e.
following wrong approaches and procedures in coding). The term “bug” goes back to the early times of computers
in the late 1940’s, when a Mark II computer was producing erroneous results and a moth found in its circuitry
was believed to have caused the problem.

4The ARPANET (Advanced Research Projects Agency Network) developed by ARPA of the United States

2.4. THE HISTORY OF F/OSS 10

INFORMATIO
N ENTROPY

1945 1964 1971 1977 1983 1991 2000

MEMEX

DISTRIBUTED
 NETWORK

MAC

TIME SHARIN
G SYSTEM MOUSE

UNIX
The C Langu
age The APPLE II The GNU Pro

ject LINUX

The Open So
urce Initiativ
e

World Wide
 WebSUN Microsy

stems
ARPANET

The New ThinkingProject MAC UNIX PC GNU & OSI LINUX

Note: Chart based on “The 6 steps of FLOSS History” (Benussi, 2005)
Figure 2.2: F/OSS History Time-line

are the Memex machine, the creations of the National Science Foundation5 where many new

ideas and technologies were created, the topology of a distributed telephone network and the

ARPANET project. Several important ideas were generated during the first period including the

“information entropy” (Shannon, 1948), “the distributed Network” (Baran, 1964), the “Galactic

Network” concept and the computer as a communication device (Licklider, 1960). The main

focus of the first period was on dealing with the communication and management of data in an

efficient manner by improving and expanding communication technologies.

The second period, referred to as the “MAC era”, starts in 1963 with the creation of the

project MAC6 and finishes in 1975 with the project’s transformation to the Laboratory of Com-

puter Science (LCS). Project MAC is regarded as one of the most innovative, productive and

influential projects in the history of computing. During the project’s lifespan groundbreaking

research in operating systems, artificial intelligence, and the theory of computation was con-

ducted. The main accomplishments of the second period were the creation of the Time-Sharing

System (Fano and Corbato, 1966), the On-Line System, Hypertext (Nelson, 1995) and the mouse

device (Engelbart and English, 1968). The main concerns of the second period were in creating a

Department of Defense, was the world’s first operational packet switching network. It is considered to be the
predecessor of the Internet.

5“Where Discoveries Begin” is shown proudly on the NSF’s website!
6Project MAC (the MIT Project on Mathematics and Computation), was a research laboratory at MIT.

The acronym “MAC” is derived from “Multiple Access Computer”, “Machine Aided Cognition” and “Man And
Computer”.

2.4. THE HISTORY OF F/OSS 11

modular system able to communicate within a computer network and also a functional, efficient

computer to assist researchers in their work. The research work conducted in the second period

evolved in the creation of a computer network that eventually was transformed to a public utility.

The computer network was a very important infrastructure where the foundation of the F/OSS

methodology was created. Also, during the second period the first experiments on the Graphical

User Interface technology (GUI) and the conceptualization of hypertext were conducted.

Source: Wikipedia

Figure 2.3: The UNIX history

The third period, referred to as the “the Language era”, starts in 1971 with the creation

and funding of the UNIX7 operating system and finishes in 1982 with the foundation of SUN

Microsystems. Figure 2.3 shows the history and evolution of UNIX. The creation of UNIX also

7The origins of UNIX goes back to 1969. The first implementation was named UNICS, based on the the
MULTICS (Multiplexed Information and Computing Service). Ken Thompson, the main developer behind UNIX,
after MULTICS was retired by AT&T Bell, continued to develop it. He wrote a game for the new system which
he called Space Travel. However, he found that the game was too slow on the system and in addition to that
it was expensive to run it (computer time was very expensive that time). He decided to re-write the game in
assembly with the help of Dennis Ritchie. His experiences in creating the game, coupled with his work with the
MULTICS led in the creation of the UNIX system which was eventually funded by AT&T Bell to become one of
the most radical operating systems in the computer history. It seems that I wasn’t alone in being motivated by
a computer game to learn programming!

2.4. THE HISTORY OF F/OSS 12

coincided with the invention of the C programming language in 1972 by Dennis Ritchie. Both

innovations were crucial to the emergence of F/OSS. GNU/Linux, the cornerstone operating

system of the F/OSS movement, draws heavily from UNIX, whereas the C language (including its

evolution, C++) is the programming language of choice of F/OSS developers. Some important

concepts that emerged in the third period are the “pipe” concept, the “way of the hacker” in

sharing technological information and the “art of hacking” found in tinkering with hardware

and software. The main focus of the third period was in the development of a simple yet

powerful and versatile operating system that could be used with different hardware platforms.

Notable outcomes of the third period are the programing simplicity principle known as KISS8,

software modularity and portability and the creation of new computer network technologies and

communication protocols such as the TCP/IP.

The fourth period dubbed as the “PC era” starts in 1977 with the release of Apple II

personal computer and it finishes with the publication of the World Wide Web9 project by Tim

Berners-Lee in 1991. The fourth period is governed by the proliferation of the personal computer.

The PC phenomenon created affordable and powerful computers for the masses. Along with the

PC came the enhancement of the Graphical User Interface (GUI) technology and a great variety

of software such as office applications (spreadsheets, word processors and database programs),

and multimedia programs. The last and very important milestone of the fourth period was

the Internet that played a pivoting role in the expansion of the F/OSS phenomenon. Some of

the concerns of the fourth period that helped in the creation of many innovations include the

“plug and play” personal computer that is ready to be used out of the box, the importance

and proliferation of software applications and finally the further development and expansion of

network computing.

The fifth period started with the creation of the GNU project10 in 1983 and finished

in 1998 with the foundation of the Open Source Initiative11. During the fifth period the Free

Software Foundation was created and with it Richard Stallman and the proponents of his “free

software” notion created a revolution in the software development industry that resulted in

8The KISS principle which stands for “Keep It Simple, Stupid” states that design simplicity should be a key
goal and unnecessary complexity avoided. The principle closely resembles the Occam’s Razor from which most
probably was derived. The KISS principle is currently used in many disciplines including software development,
engineering, architecture, and planning.

9Tim Berners-Lee published the details of the World Wide Web project on the alt.hypertext newsgroup on
August 6, 1991, marking the creation of the WWW and the Internet.

10The GNU project was publicly announced on September 27, 1983, on the net.unix-wizards and net.usoft
newsgroups by Richard Stallman.

11The Open Source Initiative was founded in February 1998 by Bruce Perens and Eric S. Raymond with the
mission of promoting Open Source software.

2.4. THE HISTORY OF F/OSS 13

innovations that still continue to influence the industry. The pinnacle of the Free Software

revolution was the attempt to create a UNIX like operating system, called the GNU (a recursive

acronym standing for “Gnu’s Not Unix”) that would be available along with its source code

to everybody, thus providing the freedom to study, learn and modify the operating system to

the needs of its users. Richard Stallman and his team started creating one by one the software

components of the GNU operating system and by 1991 they had almost completed the operating

system, with one major piece still under development. The major software piece needed by the

GNU operating system in order to be completed was the kernel12. The development of the GNU’s

kernel, called the HURD, at the time faced major difficulties. On August of the same year, a

young software engineer from Finland studying the development of operating systems, posted

a message13 on comp.os.minix newsgroup requesting the help of software engineers around the

world in developing the kernel of the operating system he created. The name of the young

software engineer from Finland was Linus Torvalds and the project he started became the

Linux kernel that is used in the GNU/Linux operating system. The Linux kernel was quickly

used by software developers around the world together with the GNU software tools in the

creation of a full operating system. The creation of the GNU/Linux operation system was a

very important milestone of the the fifth period. Bringing together the global community of

software developers, researchers and practitioners to voluntarily collaborate in creating a major

software innovation and then releasing the innovation back to the community along with the

freedom of accessibility and transparency to its methods and its source code, I believe, was the

most important contribution of the fifth period. During the fifth period several concerns emerged

such as how to protect the freedoms of the F/OSS software and to how support and motivate

the F/OSS development community. The former was address by the creation of specific licenses

that guard the freedoms of F/OSS software. The General Public License (GPL), featuring the

concept of “copyleft”, is the most prominent example of such a license. The GPL is the most

widely used license for F/OSS today, even though it is criticized as inflexible and “viral”.14 This

fact led in the alienation of the efforts of the free software community from the business world.

It was argued that “free software” does not present a good business image. As a result the Open

Source Initiative was created in 1998 in order to soften the image of “free software” and make it

more appealing to the business world (DiBona et al., 1999). With the creation of OSI, several

12The kernel is the central component of a computer operating systems. Basically, the kernel kernel connects
application software residing on the computer’s operating system with the hardware. The kernel is also responsible
for the management of the computer’s resources.

13The full message can be found ad verbatim in the appendices
14GPL requires the modifications of the original software to be released under the same license conditions.

2.4. THE HISTORY OF F/OSS 14

business models based on the F/OSS methodology were created and proved very successful, such

as the notion of “software as a service”.

1950 1960 1970 1980 1990 2000

AT&T Bell Lab

Note: Chart based on “The 6 steps of FLOSS History” (Benussi, 2005)

National ScienceFoundation
Stanford Research Institute

ARPA ProjectMAC ARPANET
Packet switchingAugmentation Research Institute

UNIXMultics
Mouse deviceXerox PARC GUI

Intel 8080 MITS/Altair
BSD

Apple Mac
PCBSD 4.2TCP/IP WWWFSFGNU

MinixSUN Microsystems Linux GNU/LinuxOSI
The Internet Mac OSX

Open Office
The Linux revolutionGnome

Institution to TechnologyTechnology to Technology Institution to InstitutionTechnology to Institution
Figure 2.4: Historical Evolution of F/OSS

The sixth period is dubbed the “Linux Revolution”. It starts with the announcement

of the Linux kernel on the Internet in 1991 by Linus Torvalds. During the sixth period the

GNU/Linux operating system saw a remarkable growth and gained market share against in-

cumbent proprietary systems. For example, GNU/Linux is currently used on more that 85% of

the supercomputers used in the world today15. The GNU/Linux is for sure not the only inno-

vation initiated by the F/OSS phenomenon. Various F/OSS applications that compete directly

in quality and features with commercial proprietary software have been created and developed

during the sixth period16. Various methodologies and business models were also created and

the F/OSS model is being accepted in the business world as a valid and sustainable model.

Recently the F/OSS methodologies escaped the software industry and entered areas such as the

15Data from www.top500.org, accessed on July 2008.
16A visit at the sourceforge.net, the largest repository of F/OSS on the Internet will provide an insight of the

phenomenon. The sourceforge.net repository currently hosts more than 230,000 F/OSS projects. (Site accessed
on July 2009).

2.5. REVIEW OF RELATED LITERATURE 15

automobile, movie, music and publication industries17. Figure 2.4 presents the overall histor-

ical evolution of F/OSS through the six periods and shows the interconnectivity of emerging

technologies.

2.5 Review of related literature

Recently a plethora of papers investigating the F/OSS phenomenon appeared in the

scientific literature. The literature related to F/OSS can be split into several categories that in-

clude software engineering, economics, business model development, scientific history and social

network analysis among others. An excellent review of the history and ideology of the F/OSS

phenomenon and the evolution of the Open Source movement is offered by Raymond (2001).

Several papers analyze the F/OSS phenomenon in view of market forces and the sustainability

of its business models. Bitzer and Schröder (2006) provide an excellent literature review of the

F/OSS phenomenon from an economic perspective. Papers in the economic literature focus in

explaining the behavior of the programmers/developers in creating and developing F/OSS, an-

alyzing platform wars between proprietary and F/OSS and their effects on free markets and to

investigate the collaborating behaviors of F/OSS stakeholders. Lerner and Tirole (2001) identi-

fied some major research questions regarding the F/OSS phenomenon by analyzing the incentives

of individual programmers and commercial firms to participate in F/OSS projects. In another

paper, Lerner and Tirole (2002) investigate the economics of Open Source viewed through the

lenses of labor economics and industrial organization theory. The main finding of the paper was

that programmers/developers participate in F/OSS projects for various reasons such as to signal

their abilities to potential employers and for ego gratification (i.e. seek peer recognition). On the

same subject, Raymond (2001) suggests that F/OSS programmers participate in F/OSS projects

also for altruistic reasons such as to give back something to their community. He suggests that

the F/OSS community resembles a “gift culture” where the members of the community gain

recognition based on the quality of the “gifts” they offer back to the community. Another cluster

of papers in the economic literature attempt to explain the F/OSS phenomenon as a provision of

a public good. Johnson (2002) analyzes the enhancement of a pre-existing F/OSS by presenting

a game theoretic model where several software developers decide independently whether or not

to develop the software. The paper concludes that the F/OSS development methodology is best

suited for software that is already under development. Bitzer and Schröder (2005) also present a

17Examples include the Open Source Car (OSCAR) found at www.theoscarproject.org, the “Elephants Dream”
which is an Open Source movie found at orange.blender.org and Open Music found at openmusic.linuxtag.org.

2.5. REVIEW OF RELATED LITERATURE 16

game theoretic model of F/OSS development as a provision of a public good. Their paper adds

to the knowledge by examining some intrinsic motivations of F/OSS programmers. The paper

suggest that F/OSS programmers are motivated by their intrinsic urge to “play” initiated by

their urge to solve challenging programming problems and for the fun of programming which is

referred to as homo ludens behavior in the paper. In another paper, Bramoullé and Kranton

(2007) proposed a model used to study the provision of a public good via the network analysis

framework. The paper arrives at some very interesting conclusions one being that networks can

lead to specialization in public good provision. The paper also concludes that equilibriums exist

in every social network where some agents contribute and others free ride and depending on

the type of network this extreme is the only outcome. Another important conclusion was that

specialization of agents (i.e. agents exhibiting full effort) that are connected to many agents

can benefit society as a whole. The paper also concludes that when a new link is added to a

not-fully connected (incomplete) network it results in increasing the access to the public good,

but at the same time reduces individual incentives to contribute. For that reason the paper also

concludes that the overall welfare can be higher when the network is incomplete (i.e. there are

structural holes in a network).

Analysis of the F/OSS phenomenon via the social network analysis framework is rather

new with a limited but growing body of literature. A reason for the relatively small number of

publications in that area is the computational difficulties involved in analyzing large complex

social networks such the F/OSS collaboration network. For example, the social network of

developers and F/OSS projects of the SourceForge Community has more than 2,000,000 nodes

and more than 230,000 clusters (projects)18. Analysis of such large scale networks is very

computationally expensive. Recently, there is strong interest in analyzing such large complex

social networks. The fact that many phenomena in engineering, biology, physics, medicine and

social science can explained and analyzed as network based phenomena enabled researchers from

many disciplines to get involved and bring fresh ideas, methodologies and findings in the field.

One of the most powerful contributions in the study of complex social networks came from the

statistical physics discipline. Seminal works by Newman (2001), Barabási and Albert (1999),

Albert et al. (1999) and Faloutsos et al. (1999) that explored massive complex networks such

as the Internet, the World Wide Web and social networks of scientific collaborations presented

new methodologies that allow complex social network analysis that was not feasible earlier to

be conducted. This research utilizes such complex social network analysis methodologies.

18Data from SourceForge; accessed on July 2009.

17

Chapter 3

Open Standardization Formation

and Evolution Model

3.1 Research Fundamentals

3.1.1 Social Network Analysis

Social network analysis (SNA) is defined as the study of social relationships between

agents in a social construct. The main focus is on analyzing the relationships among agents,

and the patterns and implications of these relationships. In the words of Wasserman and Faust

(1994):

The social network perspective encompasses theories, models, and applications that
are expressed in terms of relational concepts or processes. That is, relations defined
by linkages among units are a fundamental component of network theories.

Traditional social science methods differ from those utilized in social network analysis. One of

the main differences is the focus of SNA on the network as the unit of analysis instead on the

agent (Scott, 2000). Quantitative social science studies typically collect and analyze attributes

and opinions of agents. On the other hand, social network analysis focuses on the examination

of relationships of the agents; SNA investigates and identifies the roles, positions, and groups

in a network (Haythornthwaite, 1996). Recently, the SNA field has grown rapidly and is being

used in various disciplines to analyze social and behavioral problems and to quantify political,

economic, or social structural environments. Wasserman and Faust (1994) define four main

tenets of social network analysis:

• Actors and their actions are viewed as interdependent rather than independent,

3.1. RESEARCH FUNDAMENTALS 18

autonomous units. Human behavior is embedded in networks of interpersonal
relationships.

• Relational ties (linkages) between actors are channels for transfer or “flow” of
resources (either material or non material). Network connections constitute
social capital, and rich and well-structured networks can provide high levels of
social capital to actors within them.

• Network models focusing on individuals view the network structural environment
as providing opportunities for, or constraints on, individual action

• Network models conceptualize structure (social, economic, political, and so forth)
as lasting patterns of relations among actors

Classical applications of SNA can be found in the investigation of kinship patterns,

community structures and interlocking directorships (Scott, 2000). Recently, social network

analysis techniques are increasingly being applied to new and diverse applications in fields such

as engineering and computer science (Carrington et al., 2005). They cover topics ranging from

health and the spread of infectious diseases to international economic growth and the topology

of the Internet (Faloutsos et al., 1999). For a comprehensive list of applications of SNA see

Wasserman and Faust (1994).

The study of social networks emerged at the end of the 18th century with the work of

Durkheim and Tönnies who argued that social structures (i.e. cliques and groups) exist as in

the form of personal social ties that either link people who share similar values and beliefs or

impersonal, formal and instrumental social links. In the beginning of the 20th century, Simmel

is considered the first scholar to publish work directly utilizing social network terminology.

Simmel’s research focused mainly on the nature of networks, their sizes and on the likelihood of

interaction in ramified, loosely-knit networks rather than groups. SNA as we know it today is

a merge of three research efforts that occurred during the 20th century. The first effort started

in the early 1930’s in Europe with a group of German researchers influenced by the “gestalt”

theory of Wolfgang Köhler. In the 1930’s, Moreno’s systematic recording and analysis of social

interaction in small groups (referred to as “sociometry”), and Warner’s and Mayo’s groups at

Harvard that explored interpersonal relations at work environments set the first foundations for

a systematic study of social networks. During the same period, a group of researchers at Harvard

developed the ideas of British anthropologist Radcliffe-Brown to study the flow of information

within groups. Their studies focused on the investigation of patterns of interpersonal relations

and the formation of informal sub-groups, i.e. cliques, within large social constructs. The third

group consisted of researchers at the department of anthropology of Manchester University.

The Manchester researchers also developed the ideas of Radcliffe-Brown to analyze conflict and

3.1. RESEARCH FUNDAMENTALS 19

contradiction within groups. The work of the three groups was finally merged in the 1960’s

at Harvard by Harrison White and his group of researchers that included Ivan Chase, Bonnie

Erickson, Harriet Friedmann, Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins,

John Padgett, Michael Schwartz and Barry Wellman. Other important researchers in the group

were Charles Tilly, who focused on networks in political sociology and social movements and

Stanley Milgram widely known for his “six degrees of separation” thesis. White’s researchers

extended the previous work building on mathematical frameworks such as graph theory. The

result was the new formal analytical framework of social network analysis. Ever since the field

saw a remarkable growth, especially in the last 15 years with the emerge of powerful computing

methods that enable analysis of large complex networks that was previously infeasible. This

new field of social complex network analysis is discussed in the following section. For a detailed

presentation of the history of social networks and SNA the reader is directed to Freeman (2004).

Social Network Analysis Methodologies and Data

The methodologies used in SNA can be categorized into two major groups, ego network

analysis and complete network analysis. The two groups are distinguished from the type of data

they utilize. Ego network analysis utilizes data from traditional surveys and questionnaires.

For example, in a survey participants are asked about the people they personally know and

the relationships with them. In ego network analysis such data are typically sampled randomly

from large populations. Typically, the analysis of ego networks involves assessing the networks

qualitatively. Assessments includes the calculation of the network’s size and its node diversity.

Ego network analysis is less demanding and less complicated as compared with complete network

analysis. On the other hand, complete network analysis attempts to capture all the relationships

among a set of agents, such as friendships or club memberships of the agents. The majority of

studies in social network analysis utilize complete network analysis methodologies.

A characteristic of SNA that distinguishes it from other sciences is how data are con-

stituted. Social science data are linked to cultural values and symbols. In contrast to physical

data used in natural sciences, the data used in SNA stem from meanings, motives, definitions

and typifications. Scott (2000) defines three types of data, attribute data, relational data and

ideational data:

• Attribute data relate to the attitudes, opinions, and behaviors of agents, in so far
as these are regarded as the properties, qualities or characteristics that belong
to them as individuals or groups

3.1. RESEARCH FUNDAMENTALS 20

• Relational data are the contacts, ties and connections, the group attachments
and meetings, which relate one agent to another and so cannot be reduced to the
properties of the individual agents themselves. Relations are not the properties
of the agents, but of systems of agents; these relations connect pairs of agents
into larger relational systems

• Ideational data describe the meanings, motives, definitions and typifications
themselves

In general, SNA is best suited for relational data. Variable analysis is used for attribute data

and typological analysis is used for ideational data. Figure 3.1, adopted from Scott (2000),

summarizes the methods and their respective data.

Style of researchSurvey research
Ethnographic research
Documentary research

Sources of evidenceQuestionnaires, interviews
Observations

Texts

Type of dataAttribute
Ideational
Relational

Type of analysisVariable analysis
Typological analysis

Network analysis
Figure 3.1: Types of social science data and analyses

Social Network Analysis Terminology

Data used in SNA are typically organized in matrix form stored in databases. Fun-

damental features of social networks are typically analyzed through the direct manipulation of

those matrices. As a result, SNA adopts methodologies from matrix algebra. In addition to that

methodologies from graph theory are also adopted. Graph theory provides the formal frame-

work for describing and analyzing the networks and their features. In addition to that, SNA also

adopts methodologies from probability theory. Following are some of the most common terms

used in SNA along with a brief descriptions of their meanings and usage.

Incidence Matrix A representation of the affiliations of agents in a network. Assume we

have relational data about software projects and their programmer contributors. An incidence

matrix could show for example which programmer belongs to what software project by listing the

programmers as the column entries, the software projects as the row entries and contains ones

where affiliations exist or zeros where they don’t. Incidence matrices are typically rectangular.

An example of an incidence matrix can be seen at Figure 3.2.

3.1. RESEARCH FUNDAMENTALS 21

Programmer 1 Programmer 2 Programmer 3 Programmer 4 Programmer 5Project 1 0 1 1 0 0Project 2 1 1 0 1 0Project 3 0 0 1 1 1Project 4 1 0 1 1 1
Figure 3.2: Example of an incidence matrix

Adjacency matrix A representation of the ties among agents in a network. An adjacency

matrix could show for example which programmers are linked together via participation in the

same project, i.e. two programmers are linked if they belong to the same software project.

Adjacency matrices are always square.

Sociograms Graphical representations of a social network. A sociogram could show the agents

as nodes (vertices) and the ties among them as links (edges). Links can be unidirectional or

bi-directional. In addition to that, links can be valued, i.e. have weights. Graphs having

unidirectional links are also referred to as directed graphs whereas those having bi-directional

links are referred to as undirected graphs. Adjacency matrices of undirected networks are always

symmetric.

Adjacent Nodes Any two nodes that are connected.

Neighborhood For a given node, the set of its adjacent nodes is referred to as its neighbor-

hood.

Degree (of Connection) For a specific node, the count of the number of nodes of its neigh-

borhood is referred to as the degree of the node. This is also known as the “geodesic distance”.

Degree Distribution Given a network, its degree distribution shows the fraction of nodes

having degree κ where κ = 0, 1, . . . , n− 1; n = total number of nodes. Alternatively, the degree

distribution can be understood as the probability that a randomly selected node has degree κ.

Component Typically within a social network sub-groupings exist. SNA attempts to discover

and analyze any sub-groups (sub-graphs) that might exist in the network. In this context, a

component is defined as a maximal connected sub-graph. A sub-graph is an isolated graph

3.1. RESEARCH FUNDAMENTALS 22

within the main network where all of its points are linked to one another through paths. In

a maximal connected graph, it is impossible to add any new members without destroying the

quality of connectedness.

Diameter The diameter of a graph is defined as the largest (geodesic) distance between any

pairs of its points.

Clustering For a given node that has at least 2 neighbors, its clustering is defined as the

fraction of pairs of neighbors of that node that are themselves also neighbors. In other words,

clustering measures the likelihood that two neighbors of a node are neighbors themselves.

Cohesion A measure applicable to arbitrary subsets of nodes. A subset is defined to have

high cohesiveness if its nodes have low proportions of connections with the nodes outside of the

subset. Cohesion measures in a way how a subset is “shielded” from external influence.

Centrality A measure of the importance of a node in providing connectivity (bridging) to

other nodes in the network. Typical measures of centrality are the betweenness, closeness and

degree of the network. Scott (2000), defines two types of centrality, local and global. Local

centrality is simply the degree of a node. Nodes with high degrees have high local centrality.

On the other hand, global centrality is defined in terms of distances. Distance is defined as the

length of the shortest path between two points. Global centrality of a node is defined as the sum

of all distances of that node to the rest of the nodes of the network. A node having the smallest

sum of distances is considered to be globally central. In other words, a node is globally central

if it lies at short distances from the other nodes of the network. Figure 3.3, adopted from Scott

(2000), shows an example of local and global centrality for a small social network.

Betweenness A measure of the extend to which a particular node lies between other nodes.

A node with high betweenness acts as an “intermediary” that facilitates connection to other

nodes in the network.

Closeness A measure of how close a node is to the rest of the nodes in the network. Closeness

is defined as the inverse of the sum of the shortest distances between each node and every other

node in the network.

3.1. RESEARCH FUNDAMENTALS 23

A,C B G,M J,K,L All other nodesLocal Centrality Absolute 5 5 2 1 1Relative 0.33 0.33 0.13 0.07 0.07Global Centrality 43 33 37 48 57

E

D

F

A

H

G

J
K

B

L

M

Q

N

C

O

P

Figure 3.3: Local and global centrality example

Density A measure of the completeness of a network, i.e. the extend to which all possible

relations are actually present. Various densities of a simple network can be seen in Figure 3.4,

adopted from Scott (2000). The density of an undirected graph is given by 2l
n(n−1) , the ratio of

No. of connected nodes 4 4 4 3 2 0Inclusiveness 1.0 1.0 1.0 0.7 0.5 0Sum of degrees 12 8 6 4 2 0No. of lines 6 4 3 2 1 0Density 1.0 0.7 0.5 0.3 0.1 0
Figure 3.4: Densities for a simple network

the number of links a graph has l to the maximum possible links that graph can have n(n−1)
2 .

Structural Hole A structural hole exists in a network when two nodes are connected at dis-

tance 2 but not at distance 1. The existence of structural holes in a network allows opportunities

for nodes to become intermediaries (bridges). Bramoullé and Kranton (2007) show that social

networks with structural holes have higher social welfare than complete networks.

3.1. RESEARCH FUNDAMENTALS 24

3.1.2 Complex Social Network Analysis

The field of complex social network analysis came into existence during the last decade

due to the great interest that was generated in analyzing phenomena that can be understood

as large complex networks and the availability of large open data-sets that are easily accessible

by researchers, via the Internet for example. Analyzing complex social networks in the past

was difficult due to the high computational costs involved in the analysis as well as the lack

of analytical frameworks and methodologies suitable for large complex network analysis and

the lack of easily accessible data-sets. Recently, with the advert of cheap powerful computer

resources, the emergence of social network applications and scientific collaboration projects on

the Internet that store social network data in open databases and the development of suitable

analytical frameworks and methodologies, the field saw a remarkable growth. In addition to

social phenomena, many physical and biological phenomena can also be analyzed via complex

social network analysis. The gamut of phenomena that can analyzed via complex social network

analysis include transportation networks, the physical Internet network, the virtual WWW

network, information flow networks such as scientific publication citation and patent networks,

molecular process such as metabolic reactions (Jeong et al., 2000), gene regulation (Kauffman,

1993), the folding of proteins (Scala et al., 2001) and collaboration networks such as the F/OSS

developers community. A very interesting application utilizing the framework of complex social

network analysis is found in the field of biology. Research conducted by White et al. (1986)

successfully mapped completely the neural network of a living organism for the first time. The

realization that a multitude of phenomena can be analyzed via the complex social network

analysis framework attracted researchers from various disciplines to join the growing field of

complex social network analysis. Their contributions were invaluable in causing the field to

rapidly expand. The contributions from the field of statistical physics are undoubtedly among

the most important in helping to establish a formal analytical framework for the study of complex

social network analysis.

Complex Social Network Analysis Fundamentals

This section provides an overview of the basic theory of complex social networks. In

this research we adopt the terminology and notation as suggested by Vega-Redondo (2007).

Definition of Network A network Γ = (N,L) is defined by a set of nodes N = {1, 2, . . . , n}

and a set of links L ⊆ N ×N . In this research it is assumed that the links are unweighted and

3.1. RESEARCH FUNDAMENTALS 25

that two nodes can be connected by only one link, i.e. no multiple links between two nodes

exist. The network is represented by its adjacency matrix (see previous section), denoted by A.

The adjacency matrix A has elements

aij =

 1 if (i, j) ∈ L

0 otherwise

It is assumed that the network is undirected, i.e. the adjacency matrix is symmetric about its

diagonal. This means that if (i, j) ∈ L then (j, i) ∈ L. Another assumption is that the network

has no reflexive links, i.e. (i, i) /∈ L for each i ∈ N . The neighborhood of a node i ∈ N is given

by N i ≡ {j ∈ N : ij ∈ L}. Hence a network Γ = (N,L) can be described also by the set of the

neighborhoods of all of its nodes,
{
N i
}
i∈N .

Random Networks Random networks, originally proposed by Erdös and Rényi (1959), refer

to probabilistic constructs rather than representations of actual networks. A random network

consists of a family G of possible networks and a pdf P specifying an ex-ante probability P (Γ)

with which each network Γ ∈ G is selected. An example of such a random network, as suggested

by Erdös and Rényi (1959) is as follows. Assume a fixed set of nodes N = {1, 2, . . . , n} and

a fixed number of links `, that can be used to connect the nodes. The set G is given by the

collection of all possible undirected networks that can be constructed by connecting the nodes

in N with ` links. Every network in the set G can be chosen with uniform probability. Hence,

there are
(n(n−1)/2

`

)
networks that can be chosen with probability P (Γ) =

(n(n−1)/2
`

)−1
for every

Γ ∈ G.

Connectivity For a given node i, its degree (defined in the previous section) is given by

zi ≡
∣∣N i

∣∣ = |{j ∈ N : ij ∈ L}| (3.1)

In this research were are not concerned with higher order neighborhoods and degrees, so when

we refer to the neighborhood of a node we specifically mean the first order neighborhood, i.e.

the set of nodes that are at a geodesic distance of 1. For a given network Γ we define its degree

distribution p(κ) as the fraction of nodes that have degree κ, where κ = 0, 1, . . . , n − 1. The

degree distribution is given by

p(κ) =
1

n

∣∣{i ∈ N : zi = κ
}∣∣ (3.2)

As it was mentioned in the previous section, the degree distribution of a network also ex-

presses the probability that a randomly selected node has degree κ. In that way, networks can

3.1. RESEARCH FUNDAMENTALS 26

be expressed as statistical constructs defined by the set of possible networks G and a degree

distribution. There are several types of degree distributions used to describe random and real

networks. Those include Binomial, Poisson, Geometric, and Power-law distributions. Of interest

to this research is the Power-law distribution, having density

p(κ) = Aκ−γ (κ = 1, 2, . . .) (3.3)

where γ > 1 governs the rate at which the probability decays with degree and A = 1/R(γ)

where

R(γ) ≡
∞∑
κ=1

κ−γ (3.4)

defines the Riemann Zeta function that normalizes the distribution. Power-law degree distribu-

tions are considered scale-free, having p(ακ) = α−γp(κ) for any κ and α. In this study we will

show that F/OSS collaboration networks are scale-free social networks governed by preferential

attachment, similar to scientific collaboration social networks studied by (Barabási et al., 2002).

Components Components are maximal subsets of nodes χ ⊂ N such that for every pair of

nodes i, j ∈ χ there exists a path that connects them. Scale-free networks contain what are

termed “giant components” and sometimes the whole network has just one component. A giant

component χo with relative size |χo|/n, i.e. the number of the nodes it includes divided by

the total number of nodes of the network, remains bounded above zero as the number of nodes

n→∞ (Vega-Redondo, 2007).

Geodesic Distances For a given network Γ = (N,L) the average geodesic distance d(i, j)

between a pair of nodes i, j is defined as the minimum number of links that need to pass

through to reach node i from node j. If no such path exists then d(i, j) = +∞. The average

network distance d̄ is computed as follows. Assuming there are paths connecting any pair of

nodes of the network, we define the distribution of node pairs at distance r by

$(r) =
|{(i, j) ∈ N ×N : d(i, j) = r}|

n(n− 1)

and
∑

r>0$(r) = 1. The average network distance is then given by

d̄ =
∑

0<r<∞
r$(r) (3.5)

and the diameter of the network, i.e. the maximum geodesic distance among any node pair of

the network, is given by

d̂ = max{r : $(r) > 0} (3.6)

3.1. RESEARCH FUNDAMENTALS 27

Clustering Given a network Γ = (N,L), for each node i that has at least two neighbors, i.e.

zi ≥ 2, the clustering of the node Ci is defined as the fraction of pairs of neighbors of i that are

themselves neighbors. Clustering can be calculated by

Ci ≡ |{jk ∈ L : ij ∈ L ∧ ik ∈ L}|
zi(zi−1)

2

(3.7)

or in terms of the adjacency matrix A = (aij)
n
i,j=1 is given by

Ci =

∑
j<k aijaikajk∑
j<k aijaik

(3.8)

For a node j with zj < 2 its clustering is Cj = 0. The clustering of the whole network is given

by

C =
1

n

n∑
i=1

Ci (3.9)

Alternatively the clustering can be calculated by

C̃ =

∑
i<j<k aijaikajk∑
i<j<k aijaik

(3.10)

Cohesiveness Given a network Γ = (N,L), let M ⊂ N be a subset of the network’s nodes.

For each node i ∈M the fraction of its connections that are within M is given by

Hi(M) =
|{ij ∈ L : j ∈M}|

zi
(3.11)

The overall cohesiveness of M , defined as the minimum fraction across all nodes, is given by

H(M) = min
i∈M
Hi(M) (3.12)

Centrality and Betweenness Assuming the network is connected, we consider all the short-

est paths joining any two nodes j and k where j 6= k and denote ν(j, k) their total number. Let

νi(j, k) denote the number of those paths that also connect node i where (i 6= j 6= k 6= i). The

betweenness of node i is then given by

bi ≡
∑
j 6=k

νi(j, k)

ν(j, k)
(3.13)

where νi(i, k) = νi(j, i) = 0. Aggregating the betweenness over all nodes we get

n∑
i=1

bi = n(n− 1)(d̄− 1) (3.14)

3.2. MODEL FORMULATION 28

3.2 Model Formulation

3.2.1 The SourceForge.net Dataset

SourceForge.net is currently the world’s largest on-line repository of F/OSS projects

with more than 230,000 projects and 2,000,000 registered collaborators. SourceForge.net, es-

tablished in 1999, provides free hosting and other services such as version control and forums

to F/OSS developers and users (Maguire, 2007). All the data regarding the registered F/OSS

projects and their contributors on SourceForge.net are stored in a large relational database re-

siding at the servers of SourceForge.net. True to the spirit of F/OSS, SourceForge.net makes the

data available to researchers. Currently, there are two major research projects that disseminate

the SourceForge.net data to researchers, FLOSSMole (Howison et al., 2006) and the SourceForge

Research Data Archive (Van Antwerp and Madey, 2008).

The FLOSSMole project was created to freely provide data about open source projects

in multiple formats for anyone to download, to integrate F/OSS related donated data from other

research teams, to provide tools for researchers to gather their own data and, finally, to provide

a community for researchers to discuss public data about open source software development.

FLOSSMole utilizes special data mining programs (web spiders) that gather data by accessing

the websites of SourceForge.net and then store them in databases at the project’s servers. Cur-

rently, in the FLOSSMole databases there are about 300 GB of data covering the period 2004

to the present. For this research we initially considered using the data from FLOSSMole but we

abandon the effort for the following reasons. First, because the FLOSSMole data were extracted

using web spidering operations are not consistent over time and often data important for the

analysis are missing from the data-set. Second, the FLOSSMole data-set does not contain data

about the dates projects were registered on SourceForge.net which are necessary to study the

evolution of the complex social network of the SourceForge.net collaboration. In this research,

among others, we aim to study the formation and evolutions of F/OSS collaboration and in

order to do so the full data-set is necessary. For those reasons the data from the FLOSSMole

project could not be utilized.

The SourceForge Research Data Archive (SRDA) project is an NSF funded project that

was initiated at the University of Notre Dame in order to support academic and scholarly re-

search on the F/OSS phenomenon. The SRDA project acquired permission from SourceForge.net

to process and disseminate its data to academic researchers studying the F/OSS phenomenon.

Unlike the data from the FLOSSMole project, the SRDA data are the actual data from Source-

3.2. MODEL FORMULATION 29

db_images

PK id

FK1 group_id
description
bin_data
filename
filesize
filetype
width
height
upload_date
version

doc_data

PK docid

FK1 stateid
title
data
updatedate
createdate

FK2 created_by
FK3 doc_group

description
FK4 language_id

doc_groups

PK doc_group

groupname
group_id

doc_states

PK stateid

name

forum_agg_msg_count

PK,FK1 group_forum_id

count

forum_monitored_forums

PK monitor_id

FK2 forum_id
FK1 user_id

forum_saved_place

PK saved_place_id

FK2 user_id
FK1 forum_id

save_date

frs_file

PK file_id

filename
FK1 release_id
FK2 type_id
FK3 processor_id

release_time
file_size
post_date

frs_filetype

PK type_id

name

frs_package

PK package_id

FK1 group_id
name

FK2 status_id

frs_processor

PK processor_id

name

frs_release

PK release_id

FK1 package_id
name
notes
changes

FK2 status_id
preformatted
release_date

FK3 release_by

frs_status

PK status_id

name

group_history

PK group_history_id

FK1 group_id
field_name
old_vaule

FK2 mod_by
date

group_type

PK type_id

name

groups

PK group_id

group_name
homepage
is_public
status
unix_group_name
unix_box
http_domain
short_description
cvs_box
license
register_purpose
license_other
register_time
dead1
rand_hash
use_mail
use_survey
dead2
use_forum
use_pm
use_cvs
use_news
dead3
dead4
dead5
dead6

FK1 "type"
use_docman
dead7
dead8
dead9
new_task_address
send_all_tasks
dead10
use_pm_depend_box
dead11
dead12
dead13

mail_group_list

PK group_list_id

FK1 group_id
list_name
is_public
"password"
list_admin
status
description

people_job

PK job_id

FK3 group_id
created_by
title
description
date

FK2 category_id
FK1 status_idpeople_job_category

PK category_id

name
private_flag

people_job_inventory

PK job_inventory_id

FK1 job_id
FK2 skill_id
FK3 skill_level
FK4 skill_year_old

people_job_status

PK status_id

name

people_skill

PK skill_id

name

people_skill_inventory

PK skill_inventory_id

FK4 user_id
FK1 skill_id
FK2 skill_level_id
FK3 skill_year_id

people_skill_level

PK skill_level_id

name

people_skill_year

PK skill_year_id

name

project_assigned_to

PK project_assigned_id

FK1 project_task_id
FK2 assigned_to_id

project_dependencies

PK project_depend_id

FK1 project_task_id
is_dependent_on_task_id

project_group_list

PK group_project_id

FK1 group_id
project_name
is_public
description

project_history

PK project_history_id

FK1 project_task_id
field_name
old_value

FK2 mod_by
date

project_metric

PK,FK1 project_task_id

ranking
percentile

FK2 group_id

project_status

PK status_id

status_name

project_task

PK project_task_id

FK1 group_project_id
summary
details
percent_complete
priority
hours
start_date
end_date

FK2 created_by
FK3 status_id

stats_ftp_downloads

PK "day"
PK filerelease_id

FK1 group_id
downloads

stats_http_downloads

PK "day"
PK filerelease_id

FK1 group_id
downloads

supported_languages

PK language_id

name
filename
classname
language_code

survey_question_types

PK id

"type"

survey_questions

PK question_id

FK2 group_id
question

FK1 question_type

survey_rating_aggregate

PK id

"type"
response
count

survey_rating_response

PK id

FK2 user_id
"type"

FK1 response
date

survey_response

PK id

FK4 user_id
FK3 group_id
FK1 survey_id
FK2 question_id

response
date

surveys

PK survey_id

FK1 group_id
survey_title
survey_questions
is_active

theme_prefs

PK,FK1 user_id

FK2 user_theme
body_font
body_size
titlebar_font
titlebar_size
color_titlebar_back
color_ltback1

themes

PK theme_id

dirname
fullname

top_group

PK,FK1 group_id

group_name
downloads_all
rank_downloads_all
rank_downloads_all_old
downloads_week
rank_downloads_week
rank_downloads_week_old
userrank
rank_userrank
rank_userrank_old
forumposts_week
rank_forumposts_week
rank_forumposts_week_old
pageviews_proj
rank_pageviews_proj
rank_pageviews_proj_old

trove_cat

PK trove_cat_id

"version"
parent
root_parent
shortname
fullname
description
count_subcat
count_subproj
fullpath
fullpath_ids

trove_group_link

PK trove_group_id

FK1 trove_cat_id
trove_cat_version

FK2 group_id
trove_cat_root

user_bookmarks

PK bookmark_id

FK1 user_id
bookmark_url
bookmark_title

user_diary

PK id

FK1 user_id
date_posted
summary
details
is_public

user_diary_monitor

PK monitor_id

monitored_user
FK1 user_iduser_group

PK user_group_id

FK1 user_id
FK2 group_id

admin_flags
bug_flags
forum_flags
project_flags
path_flags
support_flags
doc_flags
cvs_flags
member_role
release_flags
artifact_flags

user_metirc

PK,FK1 user_id

ranking
times_ranked
avg_raters_importance
avg_rating
metric
percentile
importance_factor

user_metirc0

PK,FK1 user_id

ranking
times_ranked
avg_raters_importance
avg_rating
metric
percentile
importance_factor

user_preference

PK,FK1 user_id

perference_name
dead1
set_date
preference_value

users

PK user_id

user_name
email
user_pw
realname
status
shell
unix_pw
unix_status
unix_uid
unix_box
add_date
confirm_hash
mail_siteupdates
mail_va
authorized_keys
email_new
people_view_skills
people_resume
timezone

FK2 "language"
block_ratings
lastip
lastuseragent
lasttime
cf_uid

FK1 user_group_id

artifact_group_list

PK group_artifact_id

FK1 group_id
name
description
is_public
allow_anon
email_all_updates
email_address
due_period
use_resolution
submit_instructions
browse_instruction
datatype
status_timeout

artifact_resolution

PK id

resolution_name

artifact_perm

PK id

FK2 group_artifact_id
FK1 user_id

perm_level

artifact_category

PK id

FK1 group_artifact_id
category_name

FK2 auto_assign_to

artifact_group

PK id

FK1 group_artifact_id
group_name

artifact_status

PK id

status_name
artifact

PK artifact_id

FK1 group_artifact_id
FK2 status_id
FK3 category_id
FK4 artifact_group_id
FK7 resolution_id

priority
FK5 submitted_by
FK6 assigned_to

open_date
close_date
summary
details

artifact_history

PK id

FK1 artifact_id
field_name
old_value

FK2 mod_by
entrydate

artifact_file

PK id

FK1 artifact_id
description
bin_date
filename
filesize
filetype
adddate

FK2 submitted_by

artifact_message

PK id

FK1 artifact_id
FK2 submitted_by

from_email
adddate
body

artifact_monitor

PK id

FK1 artifact_id
user_id
email

artifact_canned_responses

PK id

FK2 group_artifact_id
title
body

FK1 artifact_idartifact_counts_agg

PK,FK1 group_artifact_id

count
open_count

forum

PK forum_id

FK2 group_forum_id
FK1 posted_by

subject
body
date
is_followup_to
thread_id
has_followups
most_recent_date

forum_group_list

PK group_forum_id

FK1 group_id
forum_name
is_public
description
allow_anonymous
send_all_posts_to

Figure 3.5: The structure of the SRDA Database

Forge.net databases. For privacy reasons some data such as the email addresses of the developers

are removed from the SRDA data-set. In order to get access to the SRDA data-set, researchers

have to request access contacting the administrators of the SRDA project, prove that they are

eligible for access (only academic and scholarly researchers are eligible to receive the data) and

sign an agreement. The SRDA data are stored in a relational database (PostgreSQL) which

3.2. MODEL FORMULATION 30

can be accessed via a web interface using a web browser. The database has over 100 relational

tables as shown in Figure 3.5. Every month, a complete dump of the SourceForge.net databases

Figure 3.6: The SQL query web interface of the SRDA Project

(minus the data dropped for privacy and security reasons) is delivered to the SRDA project. The

SRDA project created a data warehouse comprised of these monthly dumps, with each stored

in a separate database schema. Thus, each monthly dump is a snapshot of the status of all

the SourceForge.net projects at that point in time. The data warehouse is currently estimated

to be 1.3 TBytes1 in size, and is growing at about 25 GBytes per month. Queries across the

monthly schema may be used to discover when changes took place, to estimate trends in project

activity and participation, or even if no activity, events or changes have taken place. The SRDA

database contains the following types of data:

• Project sizes over time (number of developers as a function of time presented as a frequency

distribution)

• Development participation on projects (number of projects individual developers partici-

pate on presented as a frequency distribution)

– The above two items can be used to create a “collaboration social-network”

1The estimation is based on data about the size of the data warehouse in 2007, provided at the website of the
project.

3.2. MODEL FORMULATION 31

– The above two items can be used to discover scale-free distributions among developer

activity and project activity

• The extended-community size around each project including project developers plus reg-

istered members who participated in any way on a project (discussion forum posting, bug

report, patch submission, etc.)

• Date of project creation (at SourceForge.net)

• Date of first software release for a project

• SourceForge.net ranking of projects at various times

• Activity statistics on projects at various times

• Number of projects in various software categories, e.g., games, communications, database,

security, etc.

In order to access the SRDA data, the project provides web access via a wiki where SQL queries

can be executed, as shown in Figure 3.6. The user, when logged in, can select the type of the

query output among plain text or XML formatted text. Figure 3.7 shows an example of the

XML output of a query.

<root query="SELECT * FROM sf0909.users WHERE user_id=1457550">
<row>
<user_id>1457550</user_id>
<user_name>"chrmina"</user_name>
<realname>"Christakis Mina"</realname>
<status>"A"</status>
<unix_uid>198694</unix_uid>
<add_date>1140515760</add_date>
<people_resume>"My Resume Goes HERE"</people_resume>
<timezone>"Asia/Tokyo"</timezone>
<language>275</language>
<stay_anon>0</stay_anon>
<donation_request />
<donate_optin>0</donate_optin>
<last_sitestatus_view>0</last_sitestatus_view>
<row_modtime>1245225250</row_modtime>

</row>
</root>

Figure 3.7: Example of SQL query output from the SRDA Project

3.2. MODEL FORMULATION 32

3.2.2 Data Analysis

The first step in constructing the complex social network of the SourceForge.net col-

laboration was to setup a database on a local server to store the data necessary for the analysis.

For that purpose we setup a GNU/Linux server and installed the MySQL relational database

system on it. We then created a database schema containing three tables, “users”, “groups”

and “users groups”. The “users” table was designed to hold the data about the registered users

of SourceForge.net. For our analysis we needed only 3 types of data, the user id, the user name

and the date when the user was registered at SourceForge.net. The “groups” table was designed

to hold the data about the software projects hosted at SourceForge.net. Similar to the “users”

table, for the analysis we needed only 3 types of data, the group id, the group name and the

date when the project was registered at SourceForge.net. Finally, the “users groups” table is

the join table for the two tables that holds the affiliation information, i.e. which user belongs to

what project. In relational database jargon, the join table is used to create a “many-to-many”

relation among the “users” and “groups” tables. A “many-to-many” relationship in this case

means that a user can belong to many projects and a project can have many users. Figure 3.8,

shows the tables of SRDA that were used to create the local database schema.

user_groupPK user_group_idFK1 user_idFK2 group_idadmin_flagsbug_flagsforum_flagsproject_flagspath_flagssupport_flagsdoc_flagscvs_flagsmember_rolerelease_flagsartifact_flags

groupsPK group_idgroup_namehomepageis_publicstatusunix_group_nameunix_boxhttp_domainshort_descriptioncvs_boxlicenseregister_purposelicense_otherregister_timerand_hashFK1 type...new_task_addresssend_all_tasks

usersPK user_iduser_nameemailuser_pwrealnamestatusshellunix_pwunix_statusunix_uidunix_boxadd_dateconfirm_hashtimezone...FK2 languagelastiplastuseragentlasttimecf_uidFK1 user_group_id
Figure 3.8: The tables used for constructing the local database

3.2. MODEL FORMULATION 33

Once the local database schema was created the next step was to acquire the necessary

data from SRDA and import them to the local database. In Figure 3.8, the fields from where

actual data were extracted from SRDA to be used for the analysis are shown highlighted. Due

to the vast amount of data, we executed several queries on the tables of SRDA to reduce the

workload on the SRDA server and expedite the data gathering process. Once all the necessary

data were gathered from the query we then proceeded to import them in the local database. By

doing so we removed the dependency we had on the SRDA servers in getting and processing the

data.

For the social network analysis of the SourceForge.net collaboration we utilized Pa-

jek, a freely available SNA application specifically design to aid researchers in the analysis of

large complex social networks (Batagelj and Mrvar, 2003). Pajek is a Windows program, im-

plemented in Delphi, for analysis and visualization of large networks. The first release of Pajek

was in November 1996 and currently is at version 1.25, the version we used for the analysis in

this research. The main motivation for development of Pajek was to provide to SNA researchers

freely-available tools for the analysis and visualization of large complex social networks such

as collaboration networks, organic molecule networks in chemistry, protein-receptor interaction

networks, genealogies, Internet networks, citation networks, diffusion (infectious diseases, news,

innovations) networks, and data-mining (2-mode networks). Pajek has specific requirements

about its input files. A typical Pajek network input file is shown in Figure 3.9. The Pajek net-

*Vertices 7
1 "A"
2 "B"
3 "C"
4 "D"
5 "E"
6 "F"
7 "G"

*Edges
1 4
2 4
2 5
2 6
3 4
4 6
4 7
5 6
6 7

A

C

B

D

G

F

E

Figure 3.9: Example of Pajek input file

3.2. MODEL FORMULATION 34

work input file requires minimum two type of information, node labeling and node connectivity.

Information about the nodes such as their total number and labeling is given in the “*Vertices”

section of the input file. The number next to “*Vertices” denoted the total number of nodes in

the network followed by the numbering and labeling (optional) for each node. The next section

of the input file, “*Edges”, describes the connectivity of the network. Each row in the “*Edges”

section describes a link between two nodes. Pajek is very sensitive about the format of the input

file. Connectivity between two nodes must be separated with a single space character or else the

program fails to run properly. In the case of undirected networks, the link between two nodes

should be input only once, i.e. if node 3 is connected to node 4 only the link “3 4” is needed;

inputting link “4 3” will result in an error. In order to meet the input requirements for Pajek

it became necessary to create custom data mining programs that process the raw data from

the local database to usable Pajek input files. The first step was to create a dump of the three

tables in comma separated value (csv) text. Next, user id values were re-labeled in consecutive

order. This was done for two reasons. Firstly, Pajek input file specifications require that node

numbering be consecutive and continuous. Second, by re-labeling the user id we anonymized the

SourceForge.net data. The next challenge was to create the “*Edges” section of the input files.

In our database we had only affiliation data, i.e. which user belongs to what project. For the

analysis we assumed that two developers (nodes) are connected when they belong to the same

project. In order to go from the affiliation data to the connectivity input file we first created a

csv file from the affiliation table (users groups) and then sorted it by project number in ascend-

ing order. We then created Algorithm 1 and we used it to write a program that generated the

input file for Pajek. The program was written in C++ and is available in the appendices.

3.2.3 Complex Social Network Analysis of SourceForge.net

Recently, Barabási et al. (2002) applied complex social network methodologies to es-

tablish a new approach in studying collaboration networks. Their study considered the scientific

co-authorship collaboration networks of authors of scientific papers in mathematics and neuro

science journals, as paradigms of scientific collaboration and prototypes of evolving networks.

Their analysis data came from two large databases containing co-authorship data for all pub-

lished papers of mathematics and neuro science journals for the period of 1991 to 1998. Even

though the data enabled them to study the evolution of the co-authorship collaboration network

within the period 1991-98 they had to resort to simulations in order to study the the network

evolution from its inception. Our work takes a slightly different, yet complimentary approach

3.2. MODEL FORMULATION 35

Algorithm 1 Create the Pajek input file from the affiliation table

while Not EOF do

Read Line of Data

if First line then

Split string → a, b

Store a in vector

Copy a, b→ c, d

else

Split string → a, b

if b = d then

Store a in vector

Copy a, b→ c, d

else

Sort vector

for j = 0 to vector.size-1 do

for i = j + 1 to vector.size do

Output vector(j), vector(i)

end for

end for

Clear vector contents

Store a in vector

Copy a, b→ c, d

end if

end if

end while

to the study of Barabási et al. (2002). In contrast to Barabási et al. (2002), our data from

SourceForge.net enables us to study the formation and evolution of the F/OSS collaboration

network from its inception to the present. We believe that our study of F/OSS collaboration at

SourceForge.net presents a true paradigm of a complex evolving network. A visualization of the

scale of data we used for the analysis as well as an overall view of the evolution of the F/OSS

collaboration network at SourceForge.net is shown at Figure 3.10 and 3.11. Figure 3.10 shows

the cumulative number of developers at SourceForge.net based on the SRDA data. The inset

of the graph shows the number of developers registered every year from the establishment of

3.2. MODEL FORMULATION 36

0
500000

1000000
1500000
2000000
2500000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Cumulative number of developers

050000100000150000200000250000300000350000400000
1999 2001 2003 2005 2007 2009

Number of developers

Figure 3.10: Cumulative number of developers on SourceForge.net

SourceForge.net in 1999 until the present. Similarly, Figure 3.11 shows the cumulative number

of software projects at SourceForge.net based on the SRDA data. The inset of the graph shows

the number of software projects registered every year from the establishment of SourceForge.net

in 1999 until the present.

Degree Distribution

The degree distribution of a complex social network is one of the important statistics

calculated in SNA. Figure 3.12(a) shows a plot of the degree distribution of the SRDA cumula-

tive data up to year 2009. From the plot, it can be seen that the degree distribution of Source-

Forge.net collaboration network follows a power-law distribution P (κ) = ακ−γ , where γ = 1.488.

In Figure 3.12(b), we used logarithmic binning to plot the degree distribution in order to show

more clearly the scaling regime of the power-low distribution. Complex social networks that

have power-law degree distributions are classified as scale-free networks (Barabási et al., 2002).

A close examination of Figure 3.12 shows that the data from the SourceForge.net collaboration

network follow a power-law distribution, thus we can safely assume that the SourceForge.net

collaboration network is a scale-free network.

3.2. MODEL FORMULATION 37

020000400006000080000100000120000140000160000180000200000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Cumulative Number of Projects

050001000015000200002500030000
1999 2001 2003 2005 2007 2009

Number of Projects

Figure 3.11: Cumulative number of projects on SourceForge.net

Evolution of the F/OSS Collaboration Network

One of the main objectives of this research is to examine the evolution of the F/OSS

collaboration social network. In order to do so, we conducted SNA of the SourceForge.net

collaboration network for each year from the formation of the network in 1999 until the present

time, 2009. The analysis for each year is based on the cumulative data collected until that

specific year. The first important finding of the evolution analysis is that the degree distribution

of the network over time follows the power-law shape. Figure 3.13 shows the evolution of the

degree distribution of the SourceForge.net collaboration network over time. It can be seen that

the degree distribution follows a power-law shape at all times. Table 3.1 summarizes the results

of the evolution analysis. The evolution analysis of the SourceForge.net collaboration network

revealed some interesting characteristics. Figure 3.14 shows the evolution of the number of

nodes and links of the network together. It can be seen that the network expands over time

but the rate of addition on new nodes is higher than the rate of creating new links. Figure

3.15 shows the evolution of the network’s density. The density of the network declines rapidly

over time. Figure 3.16 shows the average degree of the network over time. The averages degree

of the network increases initially and finally stabilizes around 1. Figure 3.17 shows the largest

degree of the network over time. The value of the largest degree increases over time. A very

3.2. MODEL FORMULATION 38

y = 78988x-1.488R² = 0.7722

1
10

100
1000

10000
100000

1 10 100 1000

Power (Slope -1.8)Power (Slope -0.9)

(a) Plain Binning

y = 10.096x-1.211R² = 0.9989

0.001

0.01

0.1

1 1 10 100 1000

P(k)

k
(b) Logarithmic Binning

Figure 3.12: Degree distribution (cumulative data up to 2009)

important characteristic of a network is its diameter. The diameter of a network is defined as

the longest distance among all the shortest paths connecting any two nodes of the network. The

diameter basically describes how many “jumps” are needed in average to reach any node in the

3.2. MODEL FORMULATION 39

41

y = 148682x-1.264

R² = 0.9716

1

10

100

1000

10000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2000

y = 2E+06x-1.68

R² = 0.9942

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2001

y = 778944x-1.403

R² = 0.9971

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2002

y = 2E+06x-1.461

R² = 0.9957

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2003

y = 4E+06x-1.501

R² = 0.9877

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2004

y = 1E+06x-1.237

R² = 0.9989

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2005

y = 1E+06x-1.247

R² = 0.9971

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2006

y = 2E+06x-1.3

R² = 0.9979

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2007

y = 3E+06x-1.313

R² = 0.9992

1

10

100

1000

10000

100000

1 10 100 1000

F
re
q
u
en
cy

Degree (k)Year 2008

Figure 3.13: Degree Distribution Evolution of SourceForge.net

0
500000

1000000
1500000
2000000
2500000

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Number of VerticesNumber of Edges

Figure 3.14: The Evolution of Vertices and Edges of SourceForge.net

3.2. MODEL FORMULATION 40

Table 3.1: SourceForge.net SNA Evolution Summary

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Number

of Ver-

tices

2877 101423 322876 537486 763628 984507 1212904 1476574 1766736 2138829 2425081

Number

of

Edges

208 41637 124817 230618 371361 520385 665331 809193 968533 1117382 1220522

Density 0.0000491 0.0000081 0.0000024 0.0000016 0.0000013 0.0000011 0.0000009 0.0000007 0.0000006 0.0000005 0.0000004

Average

Degree

0.1411192 0.8210564 0.7731575 0.8581358 0.9726228 1.0571484 1.0970877 1.0960412 1.0964094 1.0448540 1.0065825

Diameter 5 20 20 21 22 23 23 23 22 22 22

Largest

Degree

12 128 199 245 372 474 553 619 668 713 740

Mean

Cluster

Coeffi-

cient

0.0236376 0.0685985 0.0546701 0.0556311 0.0563757 0.0573561 0.0578662 0.0572359 0.0563000 0.0532898 0.0511894

0.00003

0.00004

0.00005

Density

0

0.00001

0.00002

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 3.15: The Evolution of the Density of SourceForge.net

3.2. MODEL FORMULATION 41

0
0.2
0.4
0.6
0.8
1

1.2

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Avg. Degree

Figure 3.16: The Average Degree of SourceForge.net Network Over Time

0100200300400500600700800

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Highest Degree

Figure 3.17: The Largest Degree of SourceForge.net Network Over Time

network. Collaboration networks with power-law degree distributions exhibit the “small world”

characteristic. Such networks typically have small diameters, ranging from 5 to 30. Figure 3.18

shows the diameter of the network over time. It can be seen that the diameter is initially very

3.2. MODEL FORMULATION 42

0
5

10
15
20
25

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Diameter

Figure 3.18: The Diameter of SourceForge.net Network Over Time

small and then stabilizes at 22, a typical value expected of a collaboration network having a

power-law degree distribution. Finally, Figure 3.19 shows the mean clustering coefficient of the

network over time. The clustering coefficient starts at a low value then increases and finally

00.010.020.030.040.050.060.070.08

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Mean Cluster Coefficient

Figure 3.19: The Mean Clustering Coefficient of SourceForge.net Network Over Time

3.2. MODEL FORMULATION 43

stabilizes around 0.05.

Discussion of Analysis Results

The complex social network analysis as well as the evolution analysis of the collabora-

tion network of SourceForge.net reveals some very interesting results. The first one relates to

the physical evolution of the network, i.e. the change in the number of nodes and links over

time. Referring to the graph shown in Figure 3.14, it can be seen that both the number of nodes

and links grow over time but the rate of growth of links is lower than the rate of growth of

nodes. This can mean that collaboration among the members of SourceForge.net declines over

time. Even though more and more new members join SourceForge.net over time they choose to

either not to participate in F/OSS projects or start a project alone. This is also evident from

Figure 3.16 that shows the average degree of the network over time to stabilize around 1, i.e.

in average the members of SourceForge.net are collaborating in pairs. Figure 3.17, showing the

largest degree of the network over time, exposes another interesting characteristic of the Source-

Forge.net collaboration. The increasing largest degree of the network means that few projects

attract a lot of software developers creating huge components in the network.

One of the biggest concerns of the F/OSS community, which is also a hot topic for

research in the field, is the future shortage of F/OSS software developers and its impact on the

sustainability of the F/OSS phenomenon (Lattemann and Stieglitz, 2006). It is posited that as

the demand in F/OSS projects increase in the future the number of available software developers

will not be sufficient to meet that demand. As a result, it is believed that F/OSS will not be

sustainable. The results from the evolution analysis of the SourceForge.net collaboration network

can be used to hypothesize about the future sustainability of F/OSS. By observing Figures 3.10

and 3.11, it can be seen that the growth of the number of F/OSS software developers and of

F/OSS projects follow similar growth rates. Additionally, Figure 3.15 shows that the density of

the SourceForge.net collaboration network diminishes with time, meaning that the network is far

from been completed. It is argued that social networks that are incomplete and have structural

holes posses higher social welfares that complete social networks (Bramoullé and Kranton, 2007).

In our opinion, based on the findings of our analysis, we believe that F/OSS is sustainable in

the future. Our findings show a healthy, thriving collaboration community that expands over

time with no signs of decline.

3.2. MODEL FORMULATION 44

3.2.4 Conclusions and Topics for Future Research

This chapter investigated the F/OSS phenomenon as a paradigm of open standard-

ization process formation and evolution via the complex social network analysis framework,

utilizing data from SourceForge.net. The main findings of the investigation are:

• F/OSS collaboration has the main characteristic of other complex social networks such as

the scientific co-authorship collaboration network, the patent collaboration network and

the Internet. Those characteristics include power-law degree distributions, small network

diameters and “small-world” properties.

• The SourceForge.net collaboration network is expanding over time and the rates of growth

of the number of developers and projects follow similar trends.

• The SourceForge.net collaboration network’s level of completion is low and the network

has structural holes.

• If the SourceForge.net collaboration network’s characteristics remain unchanged it will be

sustainable over time.

In this research we analyzed the SourceForge.net collaboration network using data

collected from its inception to the present. The network evolution parameters we calculated in

this study can be used to run simulations to investigate the future growth and sustainability

of the F/OSS phenomenon. In addition to that, our analysis can proceed further by gathering

new data over time and verify our sustainability hypothesis. Those remain topics of future

research. Another important topic for future research which was pointed out by the members of

the defense committee was the investigation of the evolution of the network’s density. From the

analysis conducted in this research it was found that network’s density is decreasing over time.

In the future the density evolution could be studied in order to find which density is optimal for

this kind of collaboration networks.

45

Chapter 4

Learning Networks

4.1 Introduction

The importance of mitigating the risks associated with contaminated sites is evident

in the increasing trend in the number of soil decontamination projects. The decontamination

and remediation of contaminated land sites, in Japan for example, follows a rapid upward trend.

According to data from a recent APEC-VC study1, an estimated 320,000 contaminated site

locations exist in Japan. A more recent study on the trend of soil contamination investigation

cases cites 211 contaminated site cases in 1999, 204 in 2000 and 273 in 2001 (Muraoka, 2005).

Soil contamination investigations are considered essential before any land transaction because

the costs incurred from soil decontamination can be very high. Another factor that makes soil

contamination investigations essential before any land transaction is the preference of buyers to

avoid purchasing potentially contaminated land that will eventually incur extra costs and result

in a lower land market resale value.

Many studies related to the evaluation of soil decontamination cost can be found in

the literature. Past research on the evaluation of soil decontamination costs can be divided

roughly into two categories. The first category includes those studies that utilize statistical

models that evaluate the soil decontamination cost risk based on the correlation of pertinent

data. The second category includes the studies that utilize dynamic models using data on soil

pollutants and their associated decontamination costs. What both categories have in common

is that they depend on soil contamination data produced by costly investigations such as subsoil

exploration via drilling. However, a practical methodology that attempts to estimate the soil

decontamination cost during the conceptual stage of land development, using a dynamic model

1Data as of year 2005.

4.1. INTRODUCTION 46

and data obtained from low cost investigation methods such as the past land usage and top soil

contamination investigations, cannot be found in the literature. This is partially due to the fact

that topsoil contamination investigations give limited information on the depth and extend of

the soil pollution. Moreover, when the ground conditions are not uniform, which is typically

the case with most sub-soil conditions, a lot of uncertainty exists when the soil decontamination

cost is estimated. Therefore relying on the results from simple investigations to calculate the

soil decontamination cost is not dependable and the usage of an advanced statistical model to

assist in the estimation of the cost risk is necessary.

Research conducted using artificial neural networks (ANN) has a long history with

many applications in the field of civil engineering. Using ANN models, non-linear phenomena

with complex structures can be easily modeled. It can be proved that a multi-layer ANN with

at least one hidden layer is able to approximate quite reliably any arbitrary function (Hornik

et al., 1989). As a result, ANN models are accepted as appropriate flexible non-linear forecasting

models. Bayesian statistics has also a long history of research and many applications based on

Bayesian statistics also exist in the field of civil engineering. However, research using ANN

models based on Bayesian statistics is quite new and very few case studies can be found in

the literature. Reasons for the lack of such studies is the high complexity of BNN, problems

associated in calculating the posterior probabilities of the parameters and difficulties involved in

making predictions by integrating over the posterior distribution. Analytical methods are nearly

infeasible and methods that utilize conjugate distributions of the parameters of the model also

are infeasible when the Bayesian estimation method is applied on an ANN (Neal, 1996). This

became a practical obstacle in using the Bayesian estimation method with ANN. However, it

is possible to calculate the posterior probability distribution more easily using, for example,

Markov Chain Monte Carlo methods (MCMC) (Neal, 1992; MacKay, 1992b).

4.1.1 Soil contamination investigations

Typical soil decontamination techniques include chemical processing of the soil (e.g.

wash and reuse), pollutant vapor extraction and disposal and biological remediation. What

all of those techniques have in common is their high complexities and costs. As a result, soil

contamination investigations are necessary before any decisions related to the site redevelopment

are considered.

In order to get a realistic indication of the soil contamination extends, topsoil contam-

ination investigations, drilling investigations (soil boring exploration), and other soil contami-

4.1. INTRODUCTION 47

Figure 4.1: Soil Contamination Investigation Techniques.

nation assessments are necessary. Soil contamination investigations can be classified by their

complexities, costs and quality of the resulting data, as seen in Figure 4.1. There exist basically

three soil contamination investigation methods:

Past (historical) land usage investigations which include reviewing of old maps and aerial

photos, examination of the land register, interviews and investigation of the peripheral area

and geographical investigations

Topsoil investigations which include investigation of soil gases, heavy metals and agricultural

pollutants using topsoil samples taken from the contaminated site

Drilling investigations which involve full subsoil explorations using boring and sampling,

underground water investigations and various advance simulations and data analyses.

Inherently, the three types of investigations have different associated costs and produce data with

different levels of accuracy and significance. The past land usage investigation is the simplest

of the three. This investigation utilizes data such as the land usage history, current land usage,

soil pollution accidents, terrain type and data on the surrounding land. When a qualitative

judgment concerning soil contamination is requested at the early stages of the land development

project, the past land usage investigation is appropriate. When investment for a possibly con-

taminated land development project is strongly considered and managerial risk decision making

is necessary, a more advanced investigation such as a topsoil contamination investigation should

be considered. The topsoil contamination investigation directly examines the presence, range,

4.1. INTRODUCTION 48

kind and density of the pollutants at the surface soil of the land. However the total extends of

the soil contamination cannot be determined by the topsoil contamination investigation alone

and it is common to have a lot of uncertainty in the estimation of the soil decontamination cost

using data from this kind of investigation. When the land redevelopment decision solidifies, a

more precise soil decontamination cost evaluation method is needed. In this case it is necessary

to execute drilling investigations to evaluate the extent of the land contamination more accu-

rately. When drilling investigations are executed, data about the precise geological features of

the subsoil, presence of pollutants including their kind, range, depth and densities, the ground

water table, ground water contamination are collected. Drilling investigations provide the best

and most accurate information for the assessment of the soil contamination but they are also

the most costly and time consuming of the three investigation methods. During the conceptual

stage of a land development investment, when the profitability of the investment is assessed,

it is not reasonable to spend large amounts of money and time for a detailed soil contamina-

tion investigation. In that case, it becomes necessary to evaluate the soil decontamination cost

using simple inexpensive investigations such as topsoil contamination and historical land usage

investigations and to examine the sustainability of the investment in view of market risks and

other risk factors. However, it is extremely difficult to calculate the extent of soil contamina-

tion deterministically from such simple investigations. Therefore, the soil decontamination cost

probability distribution, hereafter referred to as the soil decontamination cost risk, becomes

more relevant. The research presented in this paper proposes a Bayesian neural network (BNN)

model to evaluate the soil decontamination cost risk based on information gathered from sim-

ple topsoil contamination and historical land usage investigations. The model described in this

paper was developed to be used as a tool in aiding investment decision making by calculating

the soil decontamination cost risk. The model merges two powerful statistical methodologies,

artificial neural networks (ANN) and the Bayesian statistical framework, by forming a BNN

model capable of producing the full distribution of soil decontamination cost risk based on data

from simple soil contamination investigations.

The chapter is organized as follows. The next section discusses soil decontamination

cost risk. The fundamentals of the research and the model are discussed in the following sections.

The next section presents a case study using data from real soil decontamination projects around

Japan followed by the discussion of the results. Summary and conclusions are provided in the

final section.

4.2. RESEARCH FUNDAMENTALS 49

x0=1

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

β0,1β1,1β2,1β3,1β4,1β5,1β6,1β0,2β7,2β8,2β9,2β10,2

∑

∑

v1

v2

φ(�)

φ(�)

h1

h2

h0=1 α0,1α1,1

α2,1

∑
u φ(�) y=f(x)

xe
x −+

=
1

1
)(:function Activation ϕ

Input Layer

Intermediate Layer

Output

Figure 4.2: A multi-layer feed-forward network.

4.2 Research Fundamentals

4.2.1 Artificial Neural Networks

In an ANN, nodes called “neurons” are connected together to form a network, as

shown in Figure 4.2. The similarity of ANN with biological neural networks is in the way the

neurons function, i.e. in a parallel and collective fashion (Haykin, 1999). Each connection of

the network is associated with a weight which expresses the contribution of the connection to

the network. The effectiveness of an ANN lies in its ability, through an algorithm, to alter the

weights (strength) of its connections by minimizing some sort of a cost function (Principe et al.,

2000). A typical cost function is the network’s output error which is basically measured as the

difference between the network output and the desired response. This ability renders ANN able

to classify complicated data, extract patterns and detect trends that are too complex or very

computationally demanding to be evaluated by other known techniques.

4.2.2 Bayesian Neural Networks

Bayesian models are very computationally costly and this fact posed a strong resource

limitation to researchers. As computers became faster and more readily available and as ma-

chine computation costs became lower, numerical applications and sampling techniques used in

4.3. MODEL FORMULATION 50

Bayesian models that required huge computation costs became increasingly available (MacKay,

1992a). Sampling techniques such as Markov Chain Monte Carlo (MCMC) and sampling algo-

rithms such as the Metropolis-Hastings and the Gibbs sampler were put to work in Bayesian

analysis where the estimation of complicated posterior distributions was previously infeasible.

The Bayesian approach was introduced in ANN in the early 1990’s by the work of Buntine and

Weigend (1991), MacKay (1992b) and Neal (1992), and reviewed in Bishop (1995), MacKay

(1995) and Neal (1996). In the Bayesian framework all the parameters of a model have their

probability distributions and inference is conducted from the posterior conditional probabilities

of the unobserved variables of interest, given the collected (observed) data and the prior model

assumptions. Uncertainty about the relationship between the inputs and outputs of the network

is initially taken care of by an assumed prior distribution of the network’s parameters (i.e. its

weights and biases). The Bayes’ theorem is used to update the prior to the posterior distribution

while new data are observed and incorporated in the model. The posterior distribution is then

maximized with a suitable optimization technique. Once the network is trained, the predictive

distribution of the network outputs is obtained by integrating over the posterior distribution of

the model’s parameters.

4.3 Model Formulation

The term “risk” has several definitions in the literature. In this research risk is used

in the context of uncertainty, i.e. the indefiniteness about the outcome of a situation, which

is described by a probability distribution. The uncertainty in the forecasted value of the soil

decontamination cost is referred to as the soil decontamination cost risk. As more advanced soil

contamination investigations are employed it is possible to acquire detailed information on the

soil contamination i.e. the level of uncertainty decreases. For example, if the drilling survey

is executed, the extents of the soil contamination can be realized in more detail utilizing the

data from the investigation. Those data can be used to forecast the soil decontamination cost

more accurately. However, in this study it is assumed that the land development is at the early

stage of the investment and it is unreasonable to spend a large amount of money on advanced

investigations. The information conveyed by the soil decontamination cost risk can be used to

extract a better overview of the decontamination cost. The cost risk data can be also used in

conjunction with other risk information, e.g. the land market price volatility, in order to aid the

decision making process concerning the future investment.

4.3. MODEL FORMULATION 51

4.3.1 Model Structure

SD-CORE stands for Soil Decontamination COst Risk Evaluation and is the name

given to the model developed in this research. The structure of the model is shown in Figure 4.3.

The model consists of six processes. The first process utilizes an ANN feed-forward MLP model.

ANN
DatabaseSoil DecontaminationCost Risk Forecasting Data Soil Decontamination CostTraining Data Trained ANNParameter Data Posterior pdfof BNN parameters

TRAINING
FORECASTING

BNN Prior pdfof parametersSampling from posterior
ForecastedSoil DecontaminationCost Risk

1 2

3

4

5

5

6

Figure 4.3: The SD-CORE model structure

The ANN is trained using soil decontamination cost data (referred to as the training data) from

the main database. Once the ANN is fully trained the values of the ANN’s parameters are saved

in the database (process 2). In the third process, the values of the parameters of the ANN that

were saved after the training are used to form the prior distribution of the parameters of the

BNN. It is noted here that the BNN model uses the same network structure and configuration as

the ANN. Using the likelihood function of the parameters of the BNN, the posterior distribution

of the parameters given the training data is calculated using Bayes’ rule and sampling from all

the parameters is conducted. The posteriors of all the BNN’s parameters are then saved to the

database (process 4) to be used for forecasting. For the forecasting (process 5) the ANN model,

soil decontamination forecasting data and the posteriors of the BNN parameters are used to

calculate the predictive distribution for the new input data. The result (process 6) is the full

distribution of the forecasted soil decontamination cost. Finally, when new soil decontamination

4.3. MODEL FORMULATION 52

cost data (e.g. from completed soil decontamination projects) are gathered they can be imported

in the database, the system is retrained and new forecasts can be generated.

4.3.2 ANN formulation

The model uses an ANN feed-forward multi-layer perceptron (MLP) model with a single

hidden layer as shown in Figure 4.4. For the training process the back-propagation algorithm

is used (Rumelhart and McClelland, 1986). The back-propagation algorithm is applicable to

x0=1

x1

Input Layer

Inputs for Biases

Output

Σ

Σ

h0=1

Σ

Hidden Layer

h1

h2
y

x2

x3

x7

x5

x6

x4

VOC

Heavy Metals

Figure 4.4: The ANN model structure

ANN that utilize the supervised learning paradigm. It is based on the error-correction learning

rule and can be considered as a generalization of the LMS algorithm described in Table 4.1. In

ANN, learning is basically achieved through an iterative process based on a set of rules that aim

to adjust the parameters (i.e. synaptic weights and biases) of the network thus enabling the

network to learn about its environment. Central to the learning process is the cost (objective

4.3. MODEL FORMULATION 53

Table 4.1: The LMS algorithm

Training Data Input vector x (n)

Desired output d (n)

Learning Rate User selected η

Initialize weights w (0) = 0

Calculations For n = 1, 2, . . .

e (n) = d (n)−wT (n) x (n)

w (n+ 1) = w (n) + ηx (n) e (n)

Loop

or error) function which typically measures how far away the network output is from from the

optimal solution. The objective of learning is to find the solution the minimizes the cost function.

The learning approach shares a lot of similarities with maximum likelihood estimation method

where the model with the parameters that fit best the given data is chosen. The most typical

cost functions used in ANN are the sum of squared errors (SSE) and the mean squared error

(MSE). The sum of squared errors is defined by

ESSE =
∑
k

∑
i

(dki − oki)2 (4.1)

where k is the data pattern index, i is the output node index, dki is the desired (target) response

and oki is the network’s actual output. The mean squared error is defined by

EMSE =
1

KN

∑
k

∑
i

(dki − oki)2 =
1

KN
ESSE (4.2)

where K is the number of the training data patterns and N is the number of network outputs.

In this study the supervised learning method is utilized. The standard algorithm used in super-

vised learning is the back-propagation (BP) also called generalized delta rule (Rumelhart and

McClelland, 1986). A representation of ANN supervised learning can be seen in Figure 4.5. The

algorithm is an “off-line” algorithm, that is the two main operations of the ANN, the training

and the predictive operations, take place at different times. In fact the predictive operation of

4.3. MODEL FORMULATION 54

Figure 4.5: Supervised learning

the ANN requires that the training process be completed first. The basic steps of the algorithm

are as follows (Reed and Marks, 1999):

• Present a training pattern to the ANN and propagate it through it to get the output.

• Compare the output with the desired response and calculate the error from the error

function.

• Calculate the derivatives ∂E/∂wij of the error with respect to the network’s parameters.

• Adjust the network’s parameters to minimize the error.

• Repeat until the error is acceptably low or another convergence criterion is reached.

The algorithm involves two stages, the forward pass and the backward pass. During the forward

pass the input data are passed through the network’s layers and the output is calculated at the

exit of the network. It should be noted that during the forward pass the network’s parameters

(weights and biases) are held fixed. Once the output is generated it is compared with the

desired response and through the error function an error signal is generated. The error signal is

then utilized during the backward pass where it is propagated backward in the network, from

the output to the input layer. During the backward pass the parameters of the network are

adjusted according to an error-correction rule in order for the output of the network to get

closer to the desired response. Thus, choosing an appropriate error function for the algorithm

4.3. MODEL FORMULATION 55

is very important. The two most typical error functions used are the sum-of-squares function

shown in (4.1) and the mean-square-error function shown in (4.2). The algorithm also requires

that the activation function used in the neurons of the ANN be differentiable. The two most

commonly used activation functions, the logistic and the hyperbolic tangent functions are both

continuous and differentiable. In this research the logistic function given by

φ(u) =
1

1 + e−u
(4.3)

with first order given by:

φ′(u) = φ(u) (1− φ(u)) (4.4)

is utilized. The algorithm loops through all the data. The presentation of all the input data to

the network is called an epoch. At the end of an epoch the average of the error is calculated

and the training process is repeated until the average error reaches an acceptable low value or

another convergence criterion is met.

4.3.3 Bayesian Estimation

Assume a training data sample (ξ1, . . . , ξM) consisting of M points. Let k ∈ (1, . . . ,M)

and consider a training sample point ξk = (yk,xk). Here yk, the desired response, is an actual soil

decontamination cost value and the vector xk = (xk1, . . . , x
k
n) is the vector of the inputs consisting

of n input variables. The likelihood of the data given the parameters is L(ξ1, . . . , ξM |θ) where

θ are the unknown parameters of the BNN model. The prior distribution of the parameters is

π(θ). The posterior distribution of the parameters given the data, using the Bayes’ rule, is

π
(
θ|ξ1, . . . , ξM

)
=

L
(
ξ1, . . . , ξM |θ

)
π (θ)∫

Θ L
(
ξ1, . . . , ξM |θ

)
π (θ) dθ

(4.5)

Because the denominator of (4.5), i.e. the evidence of the model, can not be evaluated the

following proportionality is used

π
(
θ|ξ1, . . . , ξM

)
∝ L

(
ξ1, . . . , ξM |θ

)
π (θ) (4.6)

The posterior distribution of the parameters is then used to make predictions for previously

unseen data. Let the new data point we want to get the predictive distribution, i.e. the soil

decontamination cost risk, be ξM+1 =
(
yM+1,xM+1

)
where xM+1 is the vector of the new

inputs. The predictive distribution is then given by

ρ
(
yM+1|xM+1, ξ1, . . . , ξM

)
=

∫
p
(
yM+1|xM+1,θ

)
π
(
θ|ξ1, . . . , ξM

)
dθ (4.7)

4.3. MODEL FORMULATION 56

4.3.4 BNN formulation

One of the main assumptions of the BNN model is that the probability density of

the soil decontamination cost given the input data and the model’s parameters, p (y|x,θ), is

Log-Normally distributed given by

p (y|x,θ) =
(
2πσ2y2

)− 1
2 exp

−
(

ln y − ln f (x,β) + σ2

2

)2

2σ2

 (4.8)

where the BNN parameters are θ =
(
β, σ2

)
and the vector β is the vector of the ANN parame-

ters. The reasoning behind this assumption is that the soil decontamination cost can get values

only in the range [0,∞). The expectation of the cost is given by

E [y] = exp

{(
ln f (x,β)− σ2

2

)
+
σ2

2

}
= f (x,β) (4.9)

which equals to the output of the ANN. Assuming a training data set with M samples, ξ̂
k

=(
ŷk, x̂k

)
and k = 1, . . . ,M (the hat symbol indicates collected data), the likelihood function of

the training data set
(
ξ̂

1
, . . . , ξ̂

M
)

is given by

L
(
ξ̂

1
, . . . , ξ̂

M |θ
)

=
M∏
k=1

p(ŷk|x̂k,θ) (4.10)

where the RHS of (4.10) equals to

(
2πσ2

)−M
2

M∏
k=1

1

ŷk
exp

M∑
k=1

−

(
ln ŷk − ln f

(
x̂k,β

)
+ σ2

2

)2

2σ2

 (4.11)

Next, the posterior distribution of parameters θ is calculated. In order to do that, first of all the

prior distribution of the parameters β and the data dispersion σ2 has to be defined. In the BNN

model developed in this research it is assumed that each parameter βp, where p = 1, . . . , s has a

Gaussian distribution N
(
β̃p, σ̃

2
p

)
with expected value β̃p and variance σ̃2

p. The values for the

β̃p are taken from the parameters of the ANN, after training. Because correlation exists among

the parameters βp, it is desirable to formulate the distribution of the parameter vector β with

a proper multi-dimensional density function. However, because information on the covariance

between the parameters βp is not available, it is assumed that the parameters are iid. It should

be noted that the effects of this assumption vanish as the number of samples used in the model

increases. Assuming that the prior distributions of the parameters are iid does not prove to be

a problem in practical applications as the number of sample data used in the model increases.

4.3. MODEL FORMULATION 57

In addition to that, in Bayesian statistics, many models in order to ease the Bayesian estimation

calculations follow similar assumptions. This way the results from the ANN calculated in Process

1 together with assuming simple prior probability density functions makes the calculation of the

soil decontamination cost risk possible. Hence the prior probability densities of the BNN model’s

parameters βp are given by

π (βp) =
(
2πσ̃2

p

)− 1
2 exp

−
(
βp − β̃p

)2

2σ̃2
p

 (4.12)

The BNN model developed in this research uses the MCMC method for sampling from the

posterior distribution of the parameters. When the MCMC method is used and the dispersion

of the data is small the sampling efficiency decreases. In order to prevent the standard deviation

σ̃p from becoming very small it is assumed that the data dispersions are directly proportional

to the parameter expected values

σ̃p = αβ̃p (4.13)

where α is a constant. Naturally, the influence that the variance of the prior distribution exerts

on the soil decontamination cost risk decreases gradually as the number of samples increases.

Thus, taking all of the above into consideration, the prior distribution of the BNN model’s

parameters becomes

π (βp) =
(

2πα2β̃2
p

)− 1
2

exp

−
(
βp − β̃p

)2

2α2β̃2
p

 (4.14)

The data dispersion σ2 is an important parameter in order to calculate the soil decontamination

cost risk. Since there is no prior information on the type of the distribution of the data dispersion

a non-informative, Jeffreys distribution, is assumed for the prior distribution of σ2 (Jeffreys,

1961)

π
(
σ2
)
∝ σ−2 (4.15)

Using the likelihood function of the training data given the model’s parameters and the prior

distributions of the parameters β and σ2 defined above, the posterior distribution of β is

π
(
β|σ2, ξ̂

1
, . . . , ξ̂

M
)
∝ L

(
ξ̂

1
, . . . , ξ̂

M |β, σ2
) s∏
p=1

π
(
βp
)

(4.16)

that is proportional to

(
σ2
)−(M

2)
exp

s∑

p=1

−

(
βp − β̃p

)2

2α2β̃2
p

−
M∑
k=1

(
ln ŷk − ln f

(
x̂k,β

)
+ σ2

2

)2

2σ2

 (4.17)

4.3. MODEL FORMULATION 58

and the posterior distribution of σ2 is

π
(
σ2|β, ξ̂1

, . . . , ξ̂
M
)
∝ L

(
ξ̂

1
, . . . , ξ̂

M |β, σ2
)
π
(
σ2
)

(4.18)

that is proportional to

(
σ2
)−(M

2
+1)

exp

−
M∑
k=1

(
ln ŷk − ln f

(
x̂k,β

)
+ σ2

2

)2

2σ2

 (4.19)

This concludes the formulation of the BNN model.

4.3.5 Soil decontamination cost risk evaluation formulation

Risk evaluation methodology

Bayes’ rule requires calculation of the normalizing constant, or evidence, as shown in

(4.5). In many cases in Bayesian statistics, analytical calculation of the normalizing constant

is infeasible and this fact became an obstacle in utilizing Bayesian statistics. Recently, with

the introduction of MCMC methods in Bayesian statistics the calculation of the normalizing

constant became unnecessary since direct sampling from the posterior distribution can be done

instead. Typical sampling algorithms used in MCMC include the Metropolis-Hastings (MH)

algorithm and the Gibbs sampler. The MH algorithm is a very general sampling algorithm

and Gibbs sampling can be considered as a special case of MH. The Gibbs sampler can be

implemented more easily in general and is more efficient to use than the MH algorithm but

it requires that the full conditional densities of the parameters to be known. Calculating the

full conditionals of the parameters in BNN is a very complicated task and, in most models,

infeasible. In addition to that, in order to use the Gibbs sampler it is necessary that the log of

the posterior density function be a concave function. In BNN models there is no guarantee that

the posterior density of the parameters is concave so the Gibbs sampler is not a good choice

for sampling from the posterior density of the parameters. As a result the more general MH

algorithm is used to sample from the posterior density of the parameters of the BNN model.

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a method that allows sampling from probability

densities that are very difficult to directly sample from. The posterior distribution of the param-

eters of BNN models, π
(
θ|ξ1, . . . , ξM

)
, falls in this category hence it is considered for the model

developed in this research. The main requirement of the MH algorithm for calculating from a

4.3. MODEL FORMULATION 59

probability density function f(x) is that the density can be calculated at point x. The starting

point of the algorithm is to define the objective density f . A conditional density q (y|x), that

sampling can be easily done from it, is then chosen. If the conditional density, also called the

proposal or instrumental distribution, is symmetric, i.e. q (y|x) = q (x|y), then the algorithm

simplifies considerably. If the proposal distribution is not symmetric then the ratio f(y)/q(y|x)

has to be known up to a constant independent of x. Following the steps in the algorithm, a

Markov chain
(
X(t)

)
is produced that eventually converges to the invariant distribution, i.e. the

chain becomes stationary. When this point is reached, sampling from the target distribution

can commence. The generic form of the algorithm has the following steps:

• Start with x(0), then iterate

• Propose y from q
(
x(t), y

)
• Calculate ratio α = π(y)q(y,x(t))

π(x(t))q(x(t),y)

• If α > 1 accept x(t+1) = y

Else accept with probability α

If rejected, x(t+1) = x(t)

If the proposal distribution, q(y, x(t)), is symmetric, i.e. q(y, x(t)) = q(x(t), y), then the the ratio

simplifies to α = π(y)

π(x(t))
.

The MH algorithm for the BNN model is described as follows. First, initial values for

the parameters β(0) =
(
β

(0)
1 , . . . , β

(0)
s

)
and

(
σ2
)(0)

are set. Next, samples for the parameters(
β(i),

(
σ2
)(i))

, where i = 1, 2, . . ., are obtained according to the following procedure. Let’s

assume that we are at iteration (i − 1) and that samples
(
β(i−1),

(
σ2
)(i−1)

)
were obtained.

The next step is to generate candidate samples β̄, σ̄2 from the proposal distributions qp (p =

1, . . . , s), t. A new candidate parameter sample β̄p is generated at random from the proposal

distribution qp

(
β

(i)
p

)
that can be used to generate the parameter sample β

(i)
p . The variates β̄p

are drawn from Gaussian distributions with mean β
(0)
p and variance

(
αβ

(0)
p

)2

β̄p ∼ qp
(
β(0)
p

)
=

1
√

2παβ
(0)
p

exp

−
(
β̄p − β(0)

p

)2

2
(
αβ

(0)
p

)2

 (4.20)

4.3. MODEL FORMULATION 60

Because the proposed sample β̄p is not directly from the target distribution, β(i) = β̄ is accepted

with probability

A
(
β(i−1), β̄|

(
σ2
)(i−1)

, ξ̂
1
, . . . , ξ̂

M
)

=

min

 π
(
β̄|
(
σ2
)(i−1)

, ξ̂
1
, . . . , ξ̂

M
)

π
(
β(i−1)| (σ2)(i−1) , ξ̂

1
, . . . , ξ̂

M
) , 1

 (4.21)

If the sample is rejected the new state stays in the current state, i.e. β(i) = β(i−1). In reality

a uniform variate from the uniform distribution u ∼ U (0, 1) is generated at the same time

the proposal sample is generated and if u ≤ A then the proposed sample β̄ is accepted. Next

sampling from the variance posterior distribution is conducted. The proposal distribution for

the variance is the exponential distribution with parameter
(
σ2
)(0)

σ̄2 ∼ E xp
((
σ2
)(0)
)

=
1

(σ2)(0)
exp

{
− σ̄2

(σ2)(0)

}
(4.22)

Similar to the procedure followed earlier, because the proposed sample σ̄2 is not directly from

the target distribution,
(
σ2
)(i)

= σ̄2 is accepted with probability

B
((
σ2
)(i−1)

, σ̄2|β(i), ξ̂
1
, . . . , ξ̂

M
)

=

min

 π
(
σ̄2|β(i), ξ̂

1
, . . . , ξ̂

M
)

π
(

(σ2)(i−1) |β(i), ξ̂
1
, . . . , ξ̂

M
) , 1

 (4.23)

If the sample is rejected the new state stays in the current state, i.e.
(
σ2
)(i)

=
(
σ2
)(i−1)

. In

reality a uniform variate from the uniform distribution u ∼ U (0, 1) is generated at the same

time the proposal sample is generated and if u ≤ B then the proposed sample σ̄2 is accepted.

Following is a summary of the procedure.

Step 1 Initial values for the parameters β(0) =
(
β

(0)
1 , . . . , β

(0)
s

)
and

(
σ2
)(0)

are set from the

values of ANN parameters after training. Iteration counter is set to i = 1.

Step 2 Samples β̄ =
(
β̄1, . . . , β̄s

)
are drawn from the proposal distribution, as described in

(4.20), in order to calculate β(i−1) =
(
β

(i−1)
1 , . . . , β

(i−1)
s

)
.

Step 3 The probability of acceptance is calculated

A
(
β(i−1), β̄|

(
σ2
)(i−1)

, ξ̂
1
, . . . , ξ̂

M
)

=

min

exp

 s∑
p=1

(
β

(i−1)
p − β̃p

)2
−
(
β̄p − β̃p

)2

2α2β̃2
p

+ Φ

 , 1

 (4.24)

4.3. MODEL FORMULATION 61

where Φ is

M∑
k=1

exp

(

ln ŷk

f
(
x̂k,β(i−1)

) +
(σ2)

(i−1)

2

)2

−

(
ln ŷk

f
(
x̂k,

¯β
) +

(σ2)
(i−1)

2

)2

2 (σ2)(i−1)

 (4.25)

Step 4 A variate from the uniform distribution u ∼ U (0, 1) is generated and β(i) is accepted

according to the following rule

β(i) =

β̄ if u ≤ A

β(i−1) Otherwise

(4.26)

Step 5 A new sample σ̄2 is drawn from the proposal distribution, as described in eq. (4.22), in

order to calculate
(
σ2
)(i−1)

.

Step 6 The probability of acceptance is calculated

B
((
σ2
)(i−1)

, σ̄2|β(i), ξ̂
1
, . . . , ξ̂

M
)

=

min

(σ̄2

(σ2)(i−1)

)−(M
2

+2)

exp

{
σ̄2

(σ2)(i−1)
−
(
σ2
)(i−1)

σ̄2
+ Θ

}
, 1

 (4.27)

where Θ equals to

M∑
k=1

exp

(
ln ŷk

f
(
x̂k,β(i)

)
)2

2 (σ2)(i−1)
−

(
ln ŷk

f
(
x̂k,β(i)

)
)2

2σ̄2

(4.28)

Step 7 A variate from the uniform distribution u ∼ U (0, 1) is generated and
(
σ2
)(i)

is accepted

according to the following rule

(
σ2
)(i)

=

σ̄2 if u ≤ B(
σ2
)(i−1)

Otherwise

(4.29)

Step 8 The process is repeated for a large number of iterations until enough samples are gath-

ered, enough to make Monte Carlo estimates. For the estimates, usually the last 70%

to 80% of accepted samples are used to make sure that the algorithm converged to the

invariant distribution. Here we denote the starting point of the sample set used for the

estimates as N and the ending point as N .

4.4. CASE STUDY 62

The predictive distribution

Let’s assume that new data from soil decontamination investigations, x̂M+1, were col-

lected from simple topsoil contamination investigations and previous land usage history of the

land. From those data we would like to get the soil decontamination cost yM+1. At this point

we assume that we have successfully sampled from the posterior probability density of the pa-

rameters, π
(
θ|ξ̂1

, . . . , ξ̂
M
)

, using MH as described earlier. Let us assume that the sample we

got for the posterior of the parameters is θ(i) =
(
β(i),

(
σ2
)(i))

, where i = N + 1, . . . , N . The

sample we got from the MH process is a close representation of the true posterior of the param-

eters. The probability density of the soil decontamination cost given the new data inputs and

the parameters is then Log-Normally distributed with mean equal to the output of the ANN,

f
(
x̂M+1,β(i)

)
, given by

p
(
yM+1|x̂M+1,θ(i)

)
={

2π
(
σ2
)(i) (

yM+1
)2}− 1

2

exp

−
(

ln yM+1 − ln f
(
x̂M+1,β(i)

)
+

(σ2)
(i)

2

)2

2 (σ2)(i)

(4.30)

Finally the cost predictive probability density, i.e. the soil decontamination cost risk, can be

calculated through

ρ
(
yM+1|x̂M+1, ξ̂

1
, . . . , ξ̂

M
)

=

∫
p
(
yM+1|x̂M+1,θ

)
π
(
θ|ξ̂1

, . . . , ξ̂
M
)
dθ (4.31)

This concludes the formulation of the SD-CORE model.

4.4 Case Study

The model developed in this research was tested with data from soil decontamination

projects conducted in Japan. Even though the decontamination and remediation of contami-

nated sites follows a rapid upward trend in Japan, especially after the passage of the SCCL, data

from soil contamination projects related to cost are very sparse and difficult to get. The limited

amount of data collected and used in this case study are from soil decontamination projects that

utilize removal and out-of-site decontamination of contaminated soil. Following is the overview

of the processes followed in the case study.

4.4. CASE STUDY 63

4.4.1 Setting up the database

In order to evaluate the soil decontamination cost risk of future soil decontamination

projects, using the BNN model presented in this research, a database was set and populated

with the collected data. The data used in the case study came from simple soil contamination

investigations, i.e. from historical land usage and topsoil contamination investigations. Out of

the dataset seven data categories were chosen for the network structure. Those categories were

assigned to the input variables of the ANN and BNN models as shown in Table 4.2. The data

Table 4.2: Description of the explanatory variables

Variable Description

x1 Soil hardness indicator (Dummy Variable)

x2 Land used for dry cleaning or gas station up to 1000 m2 (DV)

x3 Land used for housing, commercial or office (DV)

x4 Land used for industrial purposes or for disposing construction material (DV)

x5 Contaminated land area (m2)

x6 Density of VOC from topsoil investigation (mg/l)

x7 Density of heavy metals from topsoil investigation (mg/l)

were then split into those to be used for the training of the ANN and those for testing and

verifying the output of the model. The database also was designed to store the values of the

trained ANN parameters and the posterior probability distributions of the parameters of the

BNN model.

4.4.2 The ANN process

This process involved the creation of the network structure of the ANN model and its

training and verification. A network structure was designed based on the dataset (i.e. input

variables) which was utilized by both the ANN and BNN models. The network was structured as

a single hidden layer MLP consisting of 8 inputs (including the input for the bias to the hidden

layer), 3 units at the intermediate layer (including the input for the bias to the output layer)

and one output. The network structure of the ANN model can be seen in Figure 4.4. The ANN

model was then trained using data from the database that were set aside for this purpose. The

result of the training process is shown in Figure 4.6. The vertical axis shows the total output

error of the ANN and the horizontal the iteration number. The trained ANN was then tested

4.4. CASE STUDY 64

Figure 4.6: Training process of the ANN model

with the verification data from the database. Once the trained ANN was verified, the values of

its parameters were saved in the database to be used in the BNN model.

4.4.3 The BNN process

First, the parameters of the trained ANN were used to set up the prior distributions

of the BNN’s parameters. The sampling process was then initiated and samples from the pos-

teriors of the BNN’s parameters were collected. The results of the sampling process for all the

parameters of the BNN model are shown in Table 4.3. When the sampling from the posterior

of the parameters concluded, the predictive probability distribution of the cost for a future soil

decontamination project given previously unseen input data, shown in Figure 4.7, was calcu-

lated. The mean of the predictive probability density of the soil decontamination cost for that

case was 28.9 million Yen, whereas the actual soil decontamination cost was 25 million Yen.

A comparison of the model’s outputs as compared with other actual soil decontamination cost

values are shown in Table 4.4.

4.4. CASE STUDY 65

Table 4.3: The model’s parameters

Parameter Mean Value Dispersion

β0 -0.697363508 0.037399577

β1 0.117154314 0.000135268

β2 -0.233727944 0.000599281

β3 0.113015389 0.000145864

β4 -0.573195554 0.003757479

β5 4.061491064 0.135761751

β6 1.353246711 0.017941547

β7 -0.093457456 9.91E-05

β8 -0.9868551 0.008731877

β9 -1.581805744 0.030142949

β10 -0.149048847 0.000241109

β11 0.954447686 0.012013972

β12 -0.849955223 0.010727311

β13 7.562170522 0.251405088

β14 -1.956174091 0.06739005

σ2 3.877281877 0.25205143

Table 4.4: Comparison of the model’s output with real cost

Sample Actual Cost Predicted Cost Mean

ID (million Yen) (million Yen)

1 50 41.26841237

2 43 48.02913563

3 150 156.4315085

4 25 28.94503391

5 66 32.51719072

6 50 35.43150483

7 7 27.30256871

8 25 31.04073101

9 47 41.2881269

10 241 89.04181715

4.5. CONCLUSIONS 66

Figure 4.7: Soil decontamination cost risk output from SD-CORE

4.5 Conclusions

In this research a model was developed to be used at the conceptual stage of investing in

contaminated land. The model was developed within the machine learning Bayesian framework,

utilizing both ANN and BNN. Using historical land usage data as well as data from simple topsoil

contamination investigations, the model generates the soil decontamination cost risk. The model

was tested with a small dataset consisting of data collected from soil decontamination projects

conducted in Japan. Even though the dataset used in the case study was small, fair results were

obtained. This can be partially explained from the fact that the Bayesian approach does not

require the model’s structure to be dependent on the amount of data available. In the Bayesian

framework prior probabilities are assumed first and when data arrive the posterior probabilities

are calculated based on the priors and the likelihood given the data. The structure of a model

developed in the Bayesian framework is indifferent on the amount of data available, it works for

few data and for a lot of data the same way. On the other hand, machine learning depends on

the amount and quality of data. Large datasets containing a wide range of data will typically

4.5. CONCLUSIONS 67

enable machine learning models to generalize better (Bishop, 1995).

The model could possibly have applications in civil engineering as well as in the in-

surance industry e.g. for calculating the cost risk premium of the development of contaminated

land. The methodology of calculating the soil decontamination cost risk developed in this re-

search can be utilized in evaluating the risk of other phenomena, with some modifications in

the model’s structure. The model can be also utilized as a component of evaluating the risk

of more complex phenomena such in the evaluation of the total risk of land development in-

vestments. For example, in land development investments on top of the soil decontamination

cost risk several other types or risk exist, such as land price, housing value, construction cost

and market risk. Some of the risks are interrelated and care should be taken in creating a risk

valuation model that calculates the total risk of investment. It could be possible to include this

model as a component of a real option model that can be used in evaluating the total risk of

land development investments.

Topics of future research include the testing of the model with more complex network

structures, e.g. with two hidden layers having several units and letting the BNN to adapt to the

data using techniques such as the Automatic Relevance Determination (Neal, 1996). Numerous

data from various soil decontamination methods could also be included in the database. Using

data from a smorgasbord of methods of soil decontamination will enable the model to generalize

better. Another topic of future research could be to re-evaluate the assumptions made and

discover more efficient approaches. For example the soil decontamination cost risk was assumed

to be Log-Normally distributed. Other assumption for the density of the cost could give better

results. Also other sampling methods could be utilized. The model utilized the MH algorithm.

The MH is considered to be a not so efficient sampler because it results in random walks in the

parameter hyper-space. Other algorithms could be considered such the Hybrid-MH algorithm

that uses a mixture of Gibbs sampler and MH algorithm for some of the parameters.

68

Chapter 5

Case Study: AGORA

5.1 Introduction

5.1.1 The Need for Open Standards in Risk Analysis

Losses to the built environment due to natural and technological hazards present a

heavy burden on a global scale. The costs from the impacts of natural weather related dis-

asters alone follow a dramatically upward path. Data from the Intergovernmental Panel on

Climatic Change (IPCC) show that the global loss from climatic disasters has increased from

US$8.9 billion (annual average of the period 1977-1986) to U.S.$45.1 (annual average of the

period 1997-2006) (IPCC, 2007). Recent data from EM-DAT (2008) and Munich-Re NatCat-

Service regarding the intensities and losses from natural disasters also confirm the upward trend

(Hoeppe, 2008). As the world’s population continues to grow and the population density of

mega-cities, especially in Asia and the developing world, that are vulnerable to extreme natural

disasters follow an irrevocable upward path, the need for a good understanding of the forces

behind the natural hazards and how to well manage and mitigate their risk to the built envi-

ronment becomes a necessity. Catastrophe risk modeling is central to understanding, managing,

and mitigating the impacts of natural and technological hazards to the built environment. Re-

search related to natural and technological catastrophes saw a remarkable growth in the last

two decades attributed mainly to the technological advancement of computers. Researchers and

practitioners are now able to use powerful supercomputers and sophisticated software to aid

them in their research. Researchers use a variety of software in their daily job activities, either

to control electronic and mechanical devices, to do simulations, experiments and to record, ana-

lyze and process data. Software typically used by researchers is either commercial pre-packaged

5.1. INTRODUCTION 69

or custom-made. Custom-made software represents in fact the lion’s share of the software used

in research. Custom-made software created in the academia, has been following the traditional

rules of knowledge dissemination and peer review. That is, in order for the scientific community

to validate the results of a specific research, its data, tools (e.g. software) and methodologies

have to be transparent and accessible for review.

This approach was the norm in the early times of computing and software develop-

ment. Recently, with the emergence and proliferation of commercial proprietary software, this

norm has been pushed aside. This raised concerns among the research and software engineer-

ing and scientific communities that eventually resulted in the emergence of a new methodology

to develop software that preserves the traditional ways of knowledge dissemination and pro-

vides transparency and accessibility. This new software development approach is referred to as

Free/Open Source Software (F/OSS). This section analyses the current needs of researchers and

practitioners in the disaster risk management field in view of models, methodologies and data in

conjunction with the current trends in the field and the emergence of the F/OSS phenomenon.

The section presents a new approach of dealing with those needs, called Open Risk Analysis

(ORA). The ORA model was developed within AGORA, a global virtual organization based on

the open collaboration paradigm initiated by the Open Source movement. The section discusses

AGORA, the Open Risk model and an example of a software tool that is been developed within

AGORA called the Mitigation Information and Risk Identification System (MIRISK).

5.1.2 Catastrophe Risk Modeling

Researchers of natural hazards risk currently have needs that can be well addressed by

the Open Source paradigm. Needs such as a collaborative platform, open data and methodolo-

gies, rapid development of tools and software, re-use of software code and effective peer review

are essential. It can be argued that all of those needs can be effectively addressed utilizing the

F/OSS development model. The following subsection discusses in more detail the needs of the

researchers and practitioners in the field and provides some suggestions on how those needs can

be addressed by the Open Source development model.

Catastrophe risk modeling (cat-modeling) refers to the use of mathematical models

used to estimate the performance of assets such as buildings subjected to various hazards, in

terms of economic costs, human safety, and loss of use i.e. “dollars, deaths, and downtime”

Scawthorn (2006). It is not unusual for researchers to develop computer software based on the

mathematical models in order to aid them in their research. Practitioners and social planners

5.1. INTRODUCTION 70

are using cat-models predominately for decision-making. In general, a typical cat-model consists

of four analytical stages:

• An exposure model describes the assets (e.g. buildings) that are vulnerable to some

natural hazard (e.g. strong earthquake ground motion), given the assets’ characteristics.

The model assigns a geographic location and site soil classification to an asset based on its

given recorded location (e.g. prefecture, city, street). For the case of a building asset, the

model may estimate the building’s replacement cost based on some measurable parameter

(e.g. square footage). The model also could quantify and propagate uncertainties in an

asset’s value, location, etc.

• A hazard model describes probabilistically the hazard imposed on the assets, such as

earthquake shaking intensities for earthquakes, wind-speeds for tropical cyclones, water

height for floods, etc.

• A vulnerability model estimates the physical damage or loss to the asset as a result of

the exposure to a natural hazard.

• A financial loss model relates the damage or loss to financial impacts.

Currently, cat-models consider earthquake, tropical cyclone, and flood as far as natural hazards

are concerned. To a lesser extend landslide, tornado, hail, winter storms and volcanic activity

hazards are also considered. In the technological and man-made hazards domain, blasts from

impact and explosions are mainly modeled with a recent trend in modeling terrorist attacks

to infrastructure. An excellent review of the history of computerized cat-models is offered by

Scawthorn (2006).

Cat-models are extensively used in various industries. Applications of cat-models can

be found in the finance, insurance and real estate industries. In those industries the cat-models

are used to aid in the decision making process related to mortgage underwriting (e.g. whether

a lender should require earthquake insurance), insurance and reinsurance transactions (e.g.

whether and how much insurance or reinsurance to buy, and at what price), and the credit-

worthiness of insurers and re-insurers (e.g. whether the investor in such a firm is likely to lose

an investment because of the insurer’s liability after a natural disaster). Cat-models are also

used in the public sector to inform decisions about emergency planning and disaster response

and mitigation. An example of a software tool developed in the public sector that is currently

widely used is HAZUS.

5.1. INTRODUCTION 71

Cat-modeling software tends to involve sophisticated sub-models from various fields

of expertise. For example, earthquake models involve seismology, geotechnical and structural

engineering, economics, etc., and integrate highly advanced and usually costly systems such as

GIS and real time data gathering and monitoring. As a result, cat modeling software tends to be

also costly to produce. Commercial cat-model licenses cost on the order of $1 million per year

per seat. Because of its value as intellectual property, the source code for these models is closed,

i.e., unavailable to users. A notable exception is the binaries of HAZUS which are available

for free of charge. HAZUS, even though is available free of charge, its source code is closed

and is not made available for studying it and potentially quickly improving it and adapting to

various needs of its users. In addition to that the principles and data involved in the HAZUS

software is largely public information and it seems odd that something built using public funds

based on freely available public data is not made fully available back to the public. Commercial

cat-modelers allow outsiders to view their source code only under carefully controlled conditions

such as in response to regulatory requirements (e.g., the Florida Commission on Hurricane Loss

Projection Methodologies) and are not allowed to reuse or modify the code.

5.1.3 Open Risk Analysis

Because of the closed-source nature of cat-models, researchers use them only under lim-

ited circumstances, usually without the ability to modify their underlying methods. Consumers

of commercial cat-models likewise are unable to see or modify for themselves the underlying

methods, which can lead to serious concerns about the models’ dependability when different

models produce dramatically different estimates of risk from the same input data. Kishi shows

how the three principal cat-modeling firms estimated industry losses from hurricane Katrina

that varied between them on the order of a factor of 3 at any given time and changed by up to a

factor of 5 over the space of a few weeks (Kishi, 2007). The commercial cat-models also change

over longer time spans, with periodic new releases that incorporate the modeler’s perception of

the best new science and data. The modifications sometimes result in dramatic changes to mod-

eled risk for a given portfolio. For reasons of commercial competitiveness and perhaps because

of the effort involved, modelers sometimes provide frustratingly limited explanation about these

modifications. Furthermore the new science can take some time to find its way into the models.

For all these reasons, there seems to be a need for cat models whose methods and software are

open to inspection and rapid modification, referred to here as Open Risk Analysis. Open Risk

Analysis was initiated by the Alliance for Global Open Risk Analysis or AGORA for short.

5.1. INTRODUCTION 72

5.1.4 AGORA: The Platform for Open Risk Analysis

AGORA is a nonprofit organization that was established in early 2007 following the

1st International Workshop on Open-Source Risk Software, held at the California Institute of

Technology in early 2007. AGORA was initiated by approximately 35 scholars and professionals

in Japan, the US, and Europe who are themselves working on open-source risk software. AGORA

is contributing to reducing the impacts from natural and technological hazards through open

risk modeling. The main motivation behind forming AGORA was to enable and sustain the

creation and development of open methods, tools (e.g. software) and data for the risk analysis

of technological and natural hazards.

The mission of AGORA is to promote and coordinate Open Risk Analysis of natural

and technological hazards, and the development of open-source risk software and methodologies

to perform end-to-end risk modeling. End-to-end refers to the modeling of hazardous events

and their impacts, from the event occurrence through site effects, physical damage to the built

environment, to economic and human impacts. The AGORA framework states that to effec-

tively manage the risk of natural and technological disasters open analyses and models are

required. Technological advancements, especially in computers and electronics, are emerging at

an increasing pace (cf. Moore’s law) and the traditional modes of developing computer tools

that integrate available data and models sadly lag in leveraging new work. In addition to that,

researchers and practitioners increasingly lack risk-integration tools needed for understanding

and mitigating risk.

The main novelty provided by AGORA is the formation of a specialized interdisci-

plinary platform for experts involved in the risk analysis and mitigation of natural disasters

that are interested in sharing the fruits of their research, methodologies, data and tool in cre-

ating an open and transparent paradigm of collaborative content creation. The collaborative

platform of AGORA offers a place where its members can effectively communicate and share

their research utilizing the power of Internet and the methodologies of Open Source and the

“bazaar” development approach. By participating in AGORA a researcher can associate with

an open community sharing common researching goals. In addition to that, by being open and

highly connected (i.e. via the Internet), AGORA receives a constant visiting flow of researchers

from various disciplines and backgrounds resulting in a diverse community. Diversity is con-

sidered the cultivating ground of innovation. Additional fruits from participating at AGORA

include the access to the methods, data and software tools that were developed collaboratively

by the members of AGORA and to a larger extent, the Open Source community.

5.1. INTRODUCTION 73

The AGORA platform has a layered access design. Each layer is distinguished by the

type and level of access to the AGORA’s content. The lowest layer, level 0, is publicly acces-

sible. In that layer mostly general information, announcements explanatory and promotional

documents can be found. The next layer, level 1, is accessible only by registered members of

AGORA. In principle anybody can register with AGORA, given that he or she agrees with the

terms of usage. Registered members can download all documents and executable of the software

created within AGORA with the exception of the source code of software. In order for someone

to download the source code of software developed within AGORA, he or she has to become

a full member (level 2) by actively contributing content, e.g. software, data, methodologies,

research papers, etc. Finally, the highest layer, level 3, is dedicated for the administration of

AGORA. The layered structure of AGORA serves several purposes. First, the registration re-

quirement acts as a filter allowing only those that are seriously interested in AGORA to join. As

a result it lowers free riding. Second, in order to enlarge the knowledge base and social capital

of AGORA access to the software source code and data is granted only to those members willing

to contribute content to AGORA.

Within AGORA several Open Risk Analysis modeling software are being developed.

This section will discuss one such software tool called Mitigation Information and Risk Identifi-

cation System or MIRISK for short.

5.1.5 Open Risk Analysis Software Case Study: MIRISK

Introduction

MIRISK was initiated and developed at Kyoto University for the World Bank with

assistance from the Government of Japan under Japan Consultant Trust Fund (JCTF). The

project was organized as follows. The steering committee of the MIRISK provided the overall

guidance and management of the project. The core development and programming of MIRISK

was conducted by the methods/programming group. Finally, MIRISK was reviewed by natural

hazard risk management specialists both from the academia and the World Bank.

MIRISK is a computer-based analytical guidance tool for infrastructure risk assessment

and mitigation. It provides information on natural hazards design guidelines, norms and good

practices by allowing users to identify the natural hazards related to a development project, the

typical vulnerabilities of each infrastructure and to recommend a normal design and mitigation

plan for each infrastructure asset. MIRISK is designed to aid the decision makers in reaching

optimum decisions by providing means to consider natural hazards in the following ways: (i)

5.1. INTRODUCTION 74

identifying natural hazards affecting a region, (ii) defining the kinds of infrastructure assets

that make up typical development projects, (iii) describing the vulnerability of these assets to

natural hazards, and how vulnerability can be reduced and (iv) analyzing the natural hazards

and vulnerability data, to assess whether projects should follow normal design practices, or

whether the cost of some enhanced design for natural hazards is justified by the benefits (of

avoided losses).

MIRISK System Overview

Figure 5.1: MIRISK System Overview

Figure 5.1 shows the overview of the MIRISK system. On the server side, MIRISK uses

GNU/Linux as its base operating system, specifically a specialized GNU/Linux distribution with

added GIS capabilities called HostGIS Linux (HostGIS, 2008). The MIRISK system consists

of several components. Central to MIRISK is a relational database which stores all the data

needed for the deployment of the tool including geographical data, hazard descriptions, asset

vulnerabilities and mitigation data as well as data provided by the users to be used for a

5.1. INTRODUCTION 75

Figure 5.2: The Opening screen of MIRISK

simple cost benefits assessment. In order to effectively provide natural hazard maps and other

geographical information to the users to assist them in locating the site of a future project and

identifying the hazards that exist at the site, a GIS system was implemented which is closely

integrated with the relational database and the other components of MIRISK. The graphical

user interface (GUI) of MIRISK, the analysis module as well as data handling and calculation

interfaces are deployed using F/OSS scripting languages such as PHP, JavaScript and HTML.

MIRISK resides at a web server which is deployed using the widely used F/OSS Apache Web

Server. On the client side, the users can access the MIRISK system by simply using their web

browsers.

MIRISK was built based on client-server architecture in order to be able to serve its

users at various locations simultaneously and to be easily accessible for updating and mainte-

nance. In addition to that, the GUI of MIRISK comes with a comprehensible tabbed interface

(see Figures 5.2 and 5.3) in order to facilitate ease of learning and convenience of use. For the

5.1. INTRODUCTION 76

making of MIRISK only F/OSS and open datasets are used. By using F/OSS and open datasets

the positive characteristics of the Open Source approach, namely rapid development, lower costs,

source code reuse, transparency and ease of customization were utilized. In addition to that,

using F/OSS, we were able to connect to the large community of F/OSS developers and utilize

its vast knowledge base.

Figure 5.3: The GIS Graphic User Interface of MIRISK

MIRISK Datasets and Components

For the making of MIRISK several open and freely available datasets were used. Data

from the Global HotSpots project was used as the basic dataset in the generation of the hazard

maps of earthquake, flood, tropical cyclone and volcanic activity (Dilley et al., 2005). More

detailed datasets such as the earthquake dataset from the GSHAP project are used for specific

hazards (Giardini et al., 1999). For generating the cyclone hazard maps the Global Cyclone

Hazard Frequency datasets from the UNEP/GRID-Geneva PreView were used (UNEP/GRID,

2008). The Global Cyclone Hazard Frequency and Distribution is a 2.5 minute grid based on

more than 1,600 storm tracks for the period January 1st, 1980 through December 31st, 2000

for the Atlantic, Pacific, and Indian Oceans. The wind-speeds around storm tracks were mod-

5.1. INTRODUCTION 77

eled using Holland’s model to assess the grid cells likely to have been exposed to high wind

levels (Holland, 1997). This dataset is the result of collaboration among the Columbia Uni-

versity Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction

and Development and The World Bank, United Nations Environment Programme Global Re-

source Information Database Geneva (UNEP/GRID-Geneva), and Columbia University Center

for International Earth Science Information Network (CIESIN). For generating the flood hazard

maps datasets from the World Atlas of Flooded Lands of the Dartmouth Flood Observatory

were used (DFO, 2008). In order to compile the volcanic activity hazard maps, datasets from

Smithsonian’s Global Volcanism Program were used (Smithsonian, 2008). Finally, raster map

images were used from NOAA’s National Geophysical Data Center (NGDC) (NOAA, 2008) and

NASA’s Earth Observatory (NASA, 2008).

MIRISK Methodologies

The analysis module of MIRISK aims to provide a quantitative estimate of incremental

cost given project design level, cost of repair, duration of disruption, and benefit cost (see Figure

5.5). The module provides general information on the costs of such “normal” and “superior”

design and tabulates the overall costs and benefits for direct and indirect impacts such that the

output could be used in a project planning document. The methodology behind generating the

output of MIRISK’s analysis module is based on simple cost-benefit analysis. The main objective

of the analysis was to determine the most cost-effective project design level of an asset considering

at the same time the impacts of natural hazards on the asset. In order to achieve that, first a

database that classifies assets into various taxonomies was generated. The taxonomy database

and associated vulnerability data were based on the ATC-13 dataset (ATC-13, 1985). The ATC-

13 dataset was developed specific to California construction. For MIRISK, some adjustments

were made since most MIRISK applications are in developing countries. It should be noted that

most MIRISK applications are for new construction per modern building codes. That is, MIRISK

applications are not for existing construction. MIRISK’s asset taxonomy database is divided into

three general categories (buildings, transportation and utilities) which are subdivided into 32

classes such as reinforced concrete or masonry buildings, highways, bridges, electric substations

and storage tanks. The vulnerability information provided by MIRISK is classified in two

kinds: descriptive, consisting of narrative and photographs, so that users can understand the

nature of the asset’s vulnerability, and quantitative (see Figures 5.4 and 5.5). The quantitative

vulnerability information is employed to estimate the present value of all future economic losses

5.1. INTRODUCTION 78

Figure 5.4: Providing Asset information to MIRISK

due to natural hazards. Economic losses refer to direct costs of repair to damage, and also

to indirect costs due to loss of use. This present value of damage is then employed, together

with data on associated initial investment, in a benefit-cost framework to estimate an optimum

(least total cost) level of design for the asset. The output is presented both in tabulated and

graph form with the optimum design level highlighted. The analysis methodology follows a

standard benefit-cost framework, in which normal code design is taken as a given baseline.

Normal building codes are written to assure life safety, and not to minimize property damage,

so that significant property damage is likely to be sustained by even new construction designed

per modern building codes, when subjected to higher intensity natural hazards. This is well-

known (Hamburger, 2003), and has led to the recent emergence of performance-based design

in the structural engineering field (SEAOC, 1996). Consequently, there is a substantial risk

of economic loss given normal building code design. This loss is not only direct property loss

(ie, cost of repair) but also the attendant loss of use and associated expenses (so-called indirect

loss). Direct loss is accounted for by using the vulnerability functions of ATC-13 for the specific

category class, and the hazard as determined for the site from the Hotspots data. The hazard is

however only a point estimate, and the entire hazard curve is calculated based on the assumption

5.1. INTRODUCTION 79

Figure 5.5: Analysis Output of MIRISK

that the hazard frequency follows the Ishimoto-Iida law (i.e., log-log relation) with a slope of

1.0 (Ishimoto and Iida, 1939). Indirect loss is accounted for by multiplying the direct loss by

the Benefit-Cost Ratio (BCR) for the component, as input by the user. The expected annual

loss (EAL) for the component is then calculated by numerical integration of the vulnerability

and hazard functions, over all values of hazard. The present value of all future losses is then

calculated as the EAL divided by the real interest rate (this assumes an infinite economic life,

which slightly overestimates the present value, but is not a bad assumption in general). The

above algorithm can be applied for normal code design (denoted as DLF, or Design Level Factor,

1.0), or for any enhanced design. If the normal code requirement for a natural hazard is increased

by 10% (e.g. earthquake design is for 0.22g, rather than for 0.20g, lateral force), this is denoted

as a DLF=1.1. If a component is designed for a DLF=1.1, damage due to natural hazards will

be significantly decreased, with only a marginally higher capital investment for the increased

design. As DLF increases, damage drops sharply at first, and then diminishingly less, while

capital investment is very modest at first, and then increases rapidly. For any given DLF, the

sum of the present value of all future damages, and the increase in capital investment, is the

5.1. INTRODUCTION 80

total cost above normal building code design. The curve of total cost as a function of DLF

has a typical U-shape, where the minimum total cost is the optimum DLF. MIRISK calculates

the present value of all future damages, the increase in capital investment, the total cost above

normal building code design, and presents these results in summary form for earthquake, tropical

cyclone and flood, and in a detailed tabulation (with the optimum DLF highlighted), and graph.

If any hazard is particularly low, the results are not presented, but simply it is noted that that

particular hazard is “not applicable”. The optimum DLF is what makes economic sense. While

the MIRISK data and methods are only preliminary, they provide guidance as to what hazards

exist for a site, what the natural hazards performance is likely to be for the component to

be constructed, what is an optimum DLF for the situation, what should be budgeted by the

decision makers to achieve an economic optimum performance considering natural hazards, and

what the savings are given this policy. Real interest rates vary, but an average value of 0.03 per

annum is a reasonable value in many cases.

The analysis module of MIRISK aims to provide a quantitative estimate of incremental

cost given project design level, cost of repair, duration of disruption, and benefit cost. The

module provides general information on the costs of such “normal” and “superior” design and

tabulates the overall costs and benefits for direct and indirect impacts such that the output

could be used in a project planning document. In order to estimate the loss (damage) to a

specific type of asset (structure) the following two assumptions are made:

1. Loss is estimated based on a specified base design level.

2. Hazards are analyzed independent of each other.

The metric of damage used is the Expected Annual Loss (EAL) which is defined as the average

loss per year due to the occurrence of a natural hazard. In order to estimate EAL the following

three assumptions are made:

1. Loss (damage) is calculated using the ATC-13 Mean Damage Factor methodology: L =

f(A), where L is the loss function and A is the measure of the hazard’s intensity.

2. The hazard curve follows the Ishimoto-Iida relationship, i.e. the natural logarithm of the

probability of exceedance of the hazard’s intensity, PE , is linearly dependent on the hazard

intensity, A,: ln(PE) = a− bA.

3. Total damage is defined as direct damage plus indirect damage where direct damage is

given by the construction cost times the EAL and indirect cost is given by the direct

5.1. INTRODUCTION 81

damage times the benefits to cost ratio (BCR) of the project.

Figure 5.6: Typical damage curve

A typical damage curve for a given hazard (earthquake) assuming a specific structure constructed

at a specified design level is shown in Figure 5.6. The general form of EAL is expressed by the

equation

EAL =
∑
D

∑
H

P (L|D)P (D|H)P (H) (5.1)

where H, D and L are the hazard measure, damage and loss respectively and P (L|D) is the

conditional probability of loss given damage, P (D|H) is the conditional probability of damage

given hazard and P (H) is the probability of hazard. Using the assumptions stated earlier, EAL

is given by

EAL =

∫ +∞

−∞
L(A)p(A)dA (5.2)

where L is the loss function, A is the hazard intensity and p(A) is the probability density function

of the hazard’s intensity. The value of p(A) can be derived from the hazard curve. The equation

5.2. OUTLINE OF THE CASE STUDY 82

of the hazard curve is given by

ln(PE) = a− bA (5.3)

where a and b are constants. Solving for the probability of exceedance, PE , yields

PE = ea−bA (5.4)

The probability density of hazard, p(A), is then given by

p(A) =
d

dA
(1− PE) =

d

dA

(
1− ea−bA

)
= bea−ba (5.5)

EAL can then be calculated using numerical integration.

5.2 Outline of the case study

The collaboration network of AGORA presents a paradigm of specialized scientific

collaboration based on the F/OSS collaboration model. Typically, members of AGORA meet

and collaborate online. The website of AGORA, utilizing a F/OSS content management system

(CMS), acts as the virtual platform1 of all activity. The website provides among others a

software repository, scientific papers and software documentation, announcements of Open Risk

related conferences and an online forum where members can communicate with each other on

various topics related of risk analysis. A very important motivation behind creating AGORA

is to bring together researchers, practitioners and experts in the field of risk analysis interested

in open standardization and allow them to get to know each other and collaborate. Registered

members of AGORA have the ability to see all the public information of the rest of the members

and contact them in the forum. All the data utilized by the CMS of AGORA are stored in a

relational database on the server of AGORA. For this case study we used the user data from the

AGORA website along with data collected from questionnaires to create and analyze the social

collaboration network of AGORA from over its lifetime. To analyze the collaboration network

of AGORA we utilized complex social network methodologies similar to those used in analyzing

the SourceForge.net collaboration network presented in Chapter 3.

The AGORA database contains data about the AGORA’s registered users, including

the time stamps of their registration. This allowed us to investigate the evolution of AGORA’s

collaboration network. In order to conduct complex SNA on AGORA’s collaboration we needed

additional information about the relationships of its registered users, i.e. we needed data to

1As stated on the AGORA website, AGORA means a “place of congregation”, in this case, an international
forum for open-source software, data and methodologies for multihazard risk modeling.

5.2. OUTLINE OF THE CASE STUDY 83

construct the adjacency matrix. In order to achieve that we conducted a questionnaire survey

by contacting all the registered members of AGORA via e-mail and requested them to identify

the members of AGORA they know in person. Along with the email questionnaire a list of

all registered members of AGORA with their affiliations was also attached. Figure 5.7 shows

the questionnaire e-mail that was sent to the members of AGORA. Following the e-mailingDear Members of AGORA:I'm contacting you to request your kind participation in a questionnaire regarding the formation and evolution of our Open Risk Analysis community atAGORA.The questionnaire asks about your relationship with the rest of the members of AGORA. It is very short and should not take more than 5 minutes tocomplete and send (via email).The only thing you have to do is go through the list of AGORA members (attached file "AGORA Me mbers.xls" or "AGORA Me mbers.txt"), find the membersyou personally know, reply to this email and report their member id numbers in the provided space below
================= BEGIN QUESTIONNAIRE ============= ====

My Name: [Your Name HERE]

My Member ID No.: [ID, e.g. 4]

AGORA Members I Personally Know
(Please list their Member IDs separated by commas):
[ID’s, e.g. 2,3, 33, 104]

================= END QUESTIONNAIRE ============= ====The information listed in the list is also available at the AGORA site ONLY to the registered members (you will have to login first):http://www.risk-agora.org/component/option,com_juser/task,user_list/All information you provide is confidential and will be used only for research purposes. You responses will only be used to form a social network that willcontain no personal information whatsoever. No data will be released that will permit the identification of any individual or individual characteristics.Your participation in this survey is important.If you have any questions or concerns, please e-mail me at:chrismina@civil.mbox.media.kyoto-u.ac.jpPlease include your name and the name of your organization so that I can promptly respond to your questions.Your participation is greatly appreciated! Thank you.
Figure 5.7: Questionnaire sent to the members of AGORA

of the questionnaire, a reminder was sent 2 months later. The response to the questionnaire

was rather low. Out of 180 members only 50 responded, a 28% response rate. There were

also 13 unreachable (7%) and 10 bogus (6%) e-mail addresses. Nevertheless, because of the

assumption that the AGORA collaboration network is undirected, even with a 28% response

rate it was possible to construct and analyze a representative social network of AGORA. Figure

5.8 shows the number of registered members of AGORA from its formation until the present,

roughly a two year timespan. Figure 5.9 shows the cumulative data of member registrations over

the same period. Using the responses from the questionnaire and the membership data from

AGORA’s database we constructed the adjacent matrix of AGORA’s collaboration network,

5.2. OUTLINE OF THE CASE STUDY 84

02
46
810

1214
16

Aug-07 Nov-07 Feb-08 May-08 Aug-08 Nov-08 Feb-09 May-09 Aug-09

Number of Members

Figure 5.8: Registered members of AGORA

020
4060
80100120140160180200

Aug-07 Nov-07 Feb-08 May-08 Aug-08 Nov-08 Feb-09 May-09 Aug-09

Cumulative

Figure 5.9: Cumulative data of member registrations of AGORA

shown in Figure 5.10. In Figure 5.10 only the lower part of the matrix shown to contain data

for clarity. The adjacency matrix of undirected social networks are symmetric about their

diagonals. Cells with dark green indicate the existence of a link. Highlighted on the matrix are

5.2. OUTLINE OF THE CASE STUDY 85

Figure 5.10: Adjacency Matrix of AGORA’s Collaboration Network

also the time evolution of AGORA’s collaboration network. Each color block represents three

months (a quarter), starting from August 2007 until the end of July 2009. The analysis of the

collaboration network of AGORA was conducted based on the complex social network analysis

framework presented in Chapter 3 using Pajek. The results were verified with the Network

Workbench Tool (NWB-Team, 2006). The following results were obtained. The maximum

network (cumulative data on end of July 2009) had 178 vertices. Among them 97 were isolated,

i.e. not connected to any other vertices. The network had 138 edges. The average degree of

the network was 1.5505617977528083. The largest component of the network was made out

of 79 vertices. The density of the network was calculated to be 0.00876. The diameter of the

network was 9 while the average shortest path between a pair of nodes of the network was

calculated to be 3.5798183. The average clustering coefficient of the network was calculated

to be 0.36993643611290666. The degree distribution of the network is shown in Figure 5.11.

Finally Figures 5.12 and 5.13 show visualizations of the network’s evolution for the first year

(August 2007 to July 2008) and for the second year (August 2008 to July 2009) respectively.

5.3. CASE STUDY CONCLUSIONS 86

y = 99.707x-1.148R² = 0.9085

1

10

100

1 10 100
Figure 5.11: Degree Distribution of AGORA’s Collaboration Network

5.3 Case Study Conclusions

The Open Risk Analysis model and AGORA, even though they have their roots in

the rather well developed and well known concept of open source, are new approaches and as

a result not widely known and adopted. AGORA, being a platform, depends heavily on the

number and quality of its comprising members. A metric of the quality of such a platform

is its output and contributions, in the case of AGORA the software tools, methodologies and

data it disseminates. The infrastructure of the AGORA platform is in place, i.e. inexpensive

means of communication, virtual community and forum and channels of dissemination. What

is necessary for the acceptance and wide adoption of AGORA and the ORA model is firstly, to

attract and motivate more volunteer researchers and practitioners and second the accumulation

of open software tools and data in order to create a strong knowledge base. The two work in

synergy, that is, more contributors create a bigger and better knowledge base which in turn

attracts more contributors. In order to achieve that, research is necessary to understand the

motives and behavior of the stakeholders of AGORA.

The analysis of the collaboration network of AGORA even though it was based on

5.3. CASE STUDY CONCLUSIONS 87

Pajek

(a) 1st Quarter: Aug2007 - Oct2007

Pajek

(b) 2nd Quarter: Nov2007 - Jan2008

Pajek

(c) 3rd Quarter: Feb2008 - Apr2008

Pajek

(d) 4th Quarter: May2008 - Jul2008

Figure 5.12: AGORA’s Network Evolution for the First Year

minimal data it revealed that the AGORA presents typical characteristics of scientific collab-

oration social networks such as large components, power-law degree distributions and small

diameters. Those characteristics are evident in Figure 5.11 which shows the degree distribution

of the AGORA’s collaboration network following a typical power-law distribution and from Fig-

ures 5.12 and 5.13 that show visualizations of the network’s evolution. In the visualizations the

creation of a large component is evident, typically appearing in complex social networks.

Regarding the future perspectives of MIRISK in conjunction with AGORA, it is ex-

pected that as soon as the testing and validation of MIRISK completes it will be disseminated

to the members of AGORA. The dissemination of MIRISK will have several impacts on the

future of AGORA, its members, the Open Source community and to a greater extend the scien-

tific community. MIRISK being one of its kind open global multi-natural hazard risk analysis

5.3. CASE STUDY CONCLUSIONS 88

Pajek

(a) 5th Quarter: Aug2008 - Oct2008

Pajek

(b) 6th Quarter: Nov2008 - Jan2009

Pajek

(c) 7th Quarter: Feb2009 - Apr2009

Pajek

(d) 8th Quarter: May2009 - Jul2009

Figure 5.13: AGORA’s Network Evolution for the Second Year

software will hopefully attract the interest of experts in joining AGORA and thus increasing its

social capital and knowledge base. MIRISK has several limitations in its methods and data that

can be effectively address by experts in the risk management and software engineering fields.

In addition to that, MIRISK is build to be flexible and easily updated/modified a fact that will

attract the attention of researchers from various fields. For instance, the GIS engine of MIRISK

can be used to create a visual tool that can enable city planners and economists to calculate

various economic impacts due to policy changes regarding the impacts of natural hazards, in-

frastructure asset management and so on. Finally, it is expected that MIRISK will provide an

excellent case study where experts can study the collaborative creation of a scientific tool using

open methodologies and data.

In the paper it was mentioned that one of the most important problems faced by

5.3. CASE STUDY CONCLUSIONS 89

AGORA and open collaboration platforms in general is the motivation of their members/collab-

orators to participate and contribute. A potential way to deal with this problem is to offer some

kind of sustainable business models and or rewards to the collaborators. As a result, the study

and creation of viable business models that take into consideration the special characteristics of

AGORA is a very promising topic for future research.

Something not mentioned so far in the paper is the problem of free riding and “hijack-

ing” of the collaborative content of AGORA. This problem is well known in the open source

community and attracts a lot of scholarly attention. Licenses such as the GNU GPL are in

place to prevent such collaborative content “hijacking” but in reality they are not effective in

preventing it. A preventive measure could be the rate of change and dissemination of content for

example. Research into finding ways to minimize free riding and prevent collaborative content

“hijacking” is also a very promising topic for future research.

90

Chapter 6

Case Study: The Open

Collaboration Book Project

6.1 Introduction

In early 2008, Kyoto University of Japan and Tongji University of China jointly initi-

ated a project with the objective to produce and disseminate a body of knowledge in the form

of a scientific digital anthology. The project, dubbed the Open Collaboration Book Project

or OCBP for short, is an effort that aims to create a specialized electronic body of knowledge

available on the Internet, utilizing production and dissemination methodologies derived from

the Open Source paradigm. The digital anthology will initially consist of contributions from ex-

perts in the fields of civil engineering, transportation engineering, asset management and urban

planning with a future plan to expand its scope to include other disciplines. The project also

aims to strengthen the ties between the two universities, aid in the exchange of research ideas

and results, enhance the knowledge base and increase the social capital of the participating

organizations. The project also aims to provide an open knowledge management system. In

order to meet its objectives, OCBP is build upon 3 pillars: “Dynamic Knowledge Creation and

Dissemination”, “Perpetual Peer-Review” and “Creation of Content at the Frontiers of Science.”

The main novelty provided by the project lies in the production methodologies and

dissemination of the project’s deliverables. The digital anthology is made out of the collaborative

effort of members of the academia and experts from various engineering disciplines residing at

different geographical locations. The collaborators communicate and contribute to the project

via the Internet. The constituent blocks of the digital anthology (i.e. its “source files”, using

software engineering jargon), reside on a web-server which is accessible by all contributors.

6.2. INTELLECTUAL PROPERTY, COPYRIGHT AND LICENSING 91

The source files of the articles of the anthology are made open to all contributors to view,

provide suggestions and feedback and to modify as necessary. Selected project deliverables

such as general information regarding the contents of the project and its contributors are made

available to the public. Access to specific areas of the system follows a layered access structure.

For example, access to the e-text (user generated anthology) compilation area is allowed only to

registered users.

The project offers a unique chance to study the production and dissemination of spe-

cialized open content. In this chapter we focus on the economic and legal aspects of open

collaborative content production and dissemination. Issues such as open content intellectual

property, copyright and licensing are also explored. The chapter is organized as follows. The

following section explores intellectual property, copyright and licensing of open collaborative con-

tent. The next section presents the OCBP system. Finally the chapter closes with conclusions

and discussion of topics for future research.

6.2 Intellectual Property, Copyright and Licensing

Intellectual Property (IP) is a very broad term that has several interpretations. For

example, the United Nations World Intellectual Property Organization (WIPO) defines IP as:

“The legal rights which result from intellectual activity in the industrial, scien-
tific,literary and artistic fields.” (WIPO, 2009)

IP can be also understood as any intangible asset that consists of human knowledge and ideas

including those products of the intellect that are of commercial value. Of great interest to this

study is the legal interpretation of IP. Within the legal framework, IP is considered to be a type

of property1. It worths noting here that “property” is a legal term that describes something

that a legal entity has legally granted control over. Unlike a “good” which is an item that

exists regardless of law, IP is a pure legal concept. Lindberg describes IP as a “hybrid good”

made up of both knowledge and law (Lindberg, 2008). To grasp IP is necessary to view it as a

bundle of separate and independent rights given to the IP creator by law. IP rights can be given

away, assigned or sold to third parties one by one or in combinations. For example copyright,

one of the four fundamental systems of IP, grants the creator of copyrighted works the rights

to reproduce the copyrighted work in copies or phonorecords and to prepare derivative works

based on the copyrighted work (U.S.C., 2009). The main rights given by copyright can be further

1In this chapter we are mostly referring to the US legal system. Countries that have active IP legal frameworks
and abide to international standards have legal frameworks very similar to USA’s system.

6.3. FREE/OPEN SOURCE SOFTWARE LICENSING 92

broken down. For example, the right to reproduce can be broken down further to the rights to

reproduce in electronic format or in paper format in the case of a book.

Within the U.S. legal system, IP is considered to be a set of four systems. The four

systems are patents, copyrights, trademarks and trade secrets. Each system has its own unique

characteristics. What they all have in common is the fact that they were created to address the

problem of knowledge market failure. Knowledge creation is a very important activity for society

but very costly and time consuming. On the other hand, knowledge once created can be shared

with little or no cost. This, simply put, means that to create knowledge and ideas vast amounts

of money and effort are required but once knowledge is created it costs very little to recreate

and distribute. These characteristics of knowledge made it being classified by economists as a

public good, i.e. a non-rivalrous, non-excludable good. Some economists argue that knowledge

and technology in general are partially excludable goods rather than pure public goods (Romer,

1990). Whichever the case, non-excludable or partially excludable, knowledge creation suffers

from the important market failure of “free riding”. Because of this fact people are not motivated

to create new ideas and knowledge. As a result ways to motivate people to create new knowledge

were devised. IP is the most common way to motivate people in free markets to create new

knowledge by providing a temporary monopoly to the IP creators in exchange for their IP.

For example, patents provide a type of temporary “monopoly” of 20 years to the IP creator by

giving her the right to keep others from making, using, offering for sale, selling, and importing the

claimed IP (e.g. an invention.) When the patent expires the invention enters the public domain

where everybody has legal access to it. Open content advocates argue that the waiting time of

20 years is a long period to wait, especially in the case of technological inventions and software.

Open content goes one step further by enabling sharing of IP at the time of dissemination, based

on a licensing scheme. For that reason, open content including F/OSS became a very attractive

approach in spreading knowledge. Nevertheless, the problems of content “hijacking” and “free

riding” in open collaboration still linger and currently their studies are considered hot research

topics in the fields of engineering, economics and social sciences.

6.3 Free/Open Source Software Licensing

Free/Open Source Software (F/OSS) collaboration is a representative case of open col-

laboration. In the case of F/OSS there is always risk of a third party incorporating the source

of F/OSS into a proprietary product without the knowledge (and agreement) of its creators and

6.3. FREE/OPEN SOURCE SOFTWARE LICENSING 93

thus profiting from the efforts of F/OSS developers. This is possible due to the fact that propri-

etary (closed source) software comes only in the form of binary (machine readable, executable)

files that do not include the actual source code. Reverse engineering of executables is sometimes

possible but extremely time consuming. Proprietary software licenses strictly prohibit reverse

engineering of the software so the actual source code used in producing the executable programs

remains hidden and thus inaccessible to the users of the software. On the other hand, F/OSS

makes the source code of software available to all by default, thus the risk of a third party free-

riding by “hijacking” its source code is possible. The “hijacking” of open collaborative content

comes in direct contrast with the beliefs and philosophies of open collaboration communities

such as the Free Software and Open Source communities. It also disrupts the efforts of the

collaborators and discourages new participants in joining the community. As a result, open

collaboration communities developed mechanisms that aim to protect their open collaborative

content from “hijacking” and exploitation by third parties.

The most common protection mechanism of open collaborative content comes in the

form of licensing. Licensing of F/OSS appeared first in the mid 1980’s with the dissemination of

“free software” created by the Free Software Foundation (FSF). The software created by FSF has

been traditionally distributed under the GNU General Public License (GPL). Since the inception

of GPL, a variety of licenses that can be used with F/OSS were developed. Currently the terms

and conditions of F/OSS licenses vary substantially as it can be seen in Table 6.1. Some licenses

impose restrictions on the modifications of licensed software, e.g. require that modified versions

of the software be available under the same conditions of the original licensed software. Some

licenses do not allow commercialization of the software while others allow it but require fees for

the use of the source code. Following the footsteps of FSF, the Open Source Initiative (OSI)

was established in 1998. The OSI is responsible for the definition of Open Source Software and

provides guidance on the structure and contents of Open Source licenses. The most important

requirement, which is coincidentally common for all F/OSS licenses, is the provision of access

to the source code of the software. This requirement is very unique in the case of software since

the source code is at the same time the means to create the final product and the final product

itself; source code contains the necessary information and the means to create the executable

program.

Table 6.1 presents some of the most common Open Source licenses categorized by their

characteristics. Excluding the availability of source code characteristic which is common for all

F/OSS licenses, the licenses that require derivative works to be made available (if derivative

6.3. FREE/OPEN SOURCE SOFTWARE LICENSING 94

Table 6.1: F/OSS Licenses

License Name Source

Code1

Derivative

Works2

Reciprocal3 No Mixing4

GNU GPL O O O O

GNU LGPL O O O X

Mozilla PL 1.1 O O O X

Qt PL O O O X

Apple Public Source O O O X

Sun PL O O O X

Common PL O O X X

IBM PL V1.0 O O X X

Eiffel Forum L O O X X

The BSD L O X X X

Apache Software L O X X X

The MIT/X11 L O X X X

Zlib/Libpng L O X X X

Sources: Commonwealth of Massachusetts Website and Lerner and Tirole (2005)

Notes:

L=License, PL=Public License, GPL= General Public License

1 Source code MUST be made available.

2 Derivative works MUST be made available.

3 Derivative works MUST be released under the same license terms.

4 Mixing of software with non-compatible licenses is not allowed.

works are to be distributed) under the same license conditions as the original work and ad-

ditionally disallow mixing of software with incompatible licenses are considered restrictive. By

restrictive here we mean that the creators of derivative works have restrictions on the distribution

of works. A restrictive license such as the GPL, requires that derivative works be made publicly

6.4. OPEN CONTENT LICENSING 95

available, be distributed under the same license terms as the original work2 and does not allow

incorporation (i.e. mixing) of software released under incompatible licenses (e.g. proprietary

software or libraries) with the original work. Such kind of licenses are referred to as “copyleft”

licenses, a term coined by the FSF to show their fundamental philosophical differences from the

system of copyright. In the words of Richard Stallman, the founder of FSF:

“To copyleft a program, we first state that it is copyrighted; then we add distribution
terms, which are a legal instrument that gives everyone the rights to use, modify,
and redistribute the program’s code or any program derived from it but only if the
distribution terms are unchanged. Thus, the code and the freedoms become legally
inseparable. Proprietary software developers use copyright to take away the users’
freedom; we use copyright to guarantee their freedom. That’s why we reverse the
name, changing “copyright” into “copyleft.” Copyleft is a way of using of the copy-
right on the program. It doesn’t mean abandoning the copyright; in fact, doing so
would make copyleft impossible. The word “left” in “copyleft” is not a reference to
the verb “to leave” - only to the direction which is the inverse of “right”.” (Stallman,
1984a).

Unrestrictive F/OSS licenses are more flexible than copyleft licenses. Unrestrictive licenses are

also called “Academic Licenses” because they originated in the academia. A typical example of

an academic license is the BSD license. Such a license allows derivative works to be released

under any license, even a proprietary license.

6.4 Open Content Licensing

Recently, the global unprecedented interest generated by the Open Source revolution

sparked an effort to define and support what is termed “Open Content”. Open content is a very

broad term that includes all creative work that can be disseminated in a format that explicitly

allows copying and modification (e.g. digital format) which anyone is free to use, re-use and

redistribute without legal, social or technological restriction. Examples of content that can be

potentially disseminated as open content include music, publications in digital form (e.g. books,

journal papers), scientific data, engineering and architectural drawings and movies. Table 6.2

shows a small sample of the diversity found in open content projects. Currently there are open

collaborative efforts to build open source cars, open architecture, open source movies and open

prosthetics among others.

An effort to create a general definition of open content was undertaken by the Open

Knowledge Foundation (OKF)3. The OKF created a generalized definition of open content in

2This type of requirement in a license is sometimes referred to as a “share-alike” or “viral” clause, in the sense
that it “infects” future derivative works to be released under the same terms.

3http://www.okfn.org/

http://www.okfn.org/

6.4. OPEN CONTENT LICENSING 96

Table 6.2: Open Content Projects

Project Name Description

c,mm,n An open source car design. The vehicle’s technical drawings and

blueprints are freely available on-line, and everyone is invited to add

their own ideas and modifications, provided of course that these are

shared again with the community.

OSCar An effort to develop a car according to Open Source principles.

Free Beer The recipe and branding elements of FREE BEER is published under

an Open Content License, which means that anyone can use the recipe

to brew their own FREE BEER or create a derivative of the recipe.

Free Model Foundry The project advances the development and free distribution of open

source models of electronic components for system and IC design

around the world.

Open Architecture

Network

An online, open source community dedicated to improving living con-

ditions through innovative and sustainable design.

OpenProsthetics An open source collaboration between users, designers and funders

with the goal of making prosthetics designs freely available for anyone

to use and build upon.

Open source cola A brand of cola unique in that the instructions for making it are freely

available and modifiable. Anybody can make the drink, and anyone

can modify and improve on the recipe as long as they, too, license

their recipe under the GNU General Public License.

A swarm of angels A collaboratively funded and scripted feature film.

BurdaStyle Open Source sewing patterns.

FreeSound The project aims to create a collaborative database of audio recordings

released under an Open Content License.

OpenClipArt This project aims to create an archive of clip art that can be used for

free for any use.

GuitarWeek An organization dedicated to teaching guitar online, with a large

archive of free online guitar lessons.

OpenContext A free, open access resource for the electronic publication of primary

field research from archaeology and related disciplines.

Source: OpenTTT (http://www.openttt.eu/)

http://www.openttt.eu/

6.4. OPEN CONTENT LICENSING 97

its Open Knowledge Definition4 (provided ad verbatim in the Appendices). In parallel, several

organizations created open content licenses with the Creative Commons and the FSF leading

the way. Several open content projects were also created at the same time, among them the

Wikipedia project5 which is probably the most successful and well known open content project

worldwide.

Currently, copyright law is defined by international conventions and its format is very

similar in countries that have active copyright laws. Basically, copyright laws state that a

legal entity cannot copy, reproduce, communicate or transmit copyrighted content, including

music, movies, literary and other artistic work, without the permission of the copyright owner

(Fitzgerald, 2005). The law generally provides for exceptions when an “insubstantial” part of

the work is used e.g. for educational purposes and for review and criticism (cf. fair use and

fair dealing). New digital technologies and global digital networks such as the Internet and

mobile phone networks that allow easy, inexpensive and fast transmission of data impose a

great challenge on copyright laws. It is now easier and less expensive than anytime in human

history to copy and transmit digital content. As a result, protecting copyrighted digital content

became a great challenge that requires substantial resources. Most of the protection mechanisms

of digital content aim to block duplication and distribution. Open content advocates argue that

this policy has a very adverse social effect by slowing the spread of knowledge and hampering

creativity. To put it in Fidgerald’s words:

“In the fast paced and serendipitous world of the Internet the traditional notion of
obtaining permission before re-use is out of place. The key to seamless access to
knowledge - through open access, new business models or e-commerce mechanisms -
is to work out how that permission process can be automated.” (Fitzgerald, 2005)

Researchers worldwide supporting the open content movement initiated efforts to address the

problem. Those effort resulted in the creation of interest groups and non-profit organizations.

Currently, non-profit organizations such as Creative Commons (CC) is leading the way in pro-

viding legal mechanisms that can be used to promote and protect open collaborative content.

The concept of CC, a virtual space on the Internet where sharing and reuse of copyrighted ma-

terial is possible without the fear of legal complications, was conceived by a group of scholars at

Stanford and MIT Universities, lead by Professor Lawrence Lessig (CreativeCommons, 2001).

Frustrated by the fact that technology has a great potential in spreading knowledge and provide

access to content to many people but only slowed down by the cumbersomeness of copyright

4http://www.opendefinition.org/1.0/annotated
5http://www.wikipedia.org/

http://www.opendefinition.org/1.0/annotated
http://www.wikipedia.org/

6.4. OPEN CONTENT LICENSING 98

laws in negotiating access, Lessig came with the idea of CC. Vital to making the vision of CC

becoming real, Lessig and his colleagues created an open content licensing model, based on the

FSF’s model, which is simple to understand and implement. The licensing model of CC also

tries to achieve compatibility with existing open content licenses and to create a standard in

licensing open collaborative content. All CC licenses have in common the following features6:

• Licensees are granted the right to copy, distribute, display, digitally perform and make

verbatim copies of the work into another format

• The licenses have worldwide application that lasts for the entire duration of copyright and

are irrevocable

• Licensees cannot use technological protection measures to restrict access to the work

• Copyright notices should not be removed from all copies of the work

• Every copy of the work should maintain a link to the license

• Attribution must be given to the creator of the copyright work (BY).

A typical CC license is created by selecting from a menu of optional features that attach to the

baseline features of the license, as described in detail below:

• Non-commercial (NC): others are permitted to copy, distribute, display and perform

the copyright work - and any derivative works based upon it - but for non-commercial

purposes only

• No derivative works (ND): others are permitted to copy, distribute, display and per-

form exact copies of the work only and cannot make derivative works based upon it

• Share alike (SA): others may distribute derivative works only under a license identical

to that covering the original work

The optional features can be mixed with some exceptions (e.g. ND cannot be used along SA)

resulting in six core licenses7:

• Attribution (BY): This is the most accommodating of the licenses offered, in terms of

what others can do with your work. It lets others copy, distribute, re-use and build upon

your work, even commercially, as long as they credit you for the original creation.

6http://creativecommons.org/about/licenses/fullrights
7http://creativecommons.org/about/licenses/meet-the-licenses

http://creativecommons.org/about/licenses/fullrights
http://creativecommons.org/about/licenses/meet-the-licenses

6.5. OUTLINE OF THE OCBP SYSTEM 99

• Attribution-Non-commercial (BY-NC): This license lets others copy, distribute, re-

use and build upon your work, as long as it is not for commercial purposes and they credit

you as the original author.

• Attribution-Share alike (BY-SA): This license lets others re-use and build upon your

work even for commercial purposes, as long as they credit you and license any derivative

works under identical terms.

• Attribution-Non-commercial-Share alike (BY-NC-SA): This license lets others re-

use and build upon your work, as long as it is for non-commercial purposes, they credit

you and they license their new creations under identical terms.

• Attribution-No derivatives (BY-ND): This license allows use of a work in its current

form for both commercial and non-commercial purposes, as long as it is not changed in

any way or used to make derivative works, and credit is given to the original author.

• Attribution-Non-commercial-No derivatives (BY-NC-ND): This is the most re-

strictive of the six core licenses. It is often called the “advertising” license because it only

allows a work to be copied and shared with others in its original form, and only for non-

commercial purposes and where credit is provided to the original author. This license does

not allow the creation of derivative works, or the use of the work for commercial purposes.

6.5 Outline of the OCBP System

Based on the three pillars of “Dynamic Knowledge Creation and Dissemination”, “Per-

petual Peer-Review” and “Creation of Content at the Frontiers of Science”, a computerized

system was designed and built to meet the requirements of the project. The system, based on

client-server architecture, allows its users to conduct several activities simultaneously in real

time. The collaborators can create, edit and administer content from anywhere in the world,

given they have Internet access. OCBP, being a system that supports the creation of open

content, naturally adopts open standards and F/OSS. The OCBP system is made out of various

subsystems. For example there are subsystems for content version control, content administra-

tion and user administration. The collective body of knowledge that resides in the system can be

visualized as a collection of individual articles (e.g. essays, papers) which are the basic building

blocks of the digital anthology. The building blocks dynamically change via the addition and

editing of content. This renders the project a collective dynamic body of knowledge that evolves

6.5. OUTLINE OF THE OCBP SYSTEM 100

over time. Registered users are capable of compiling their own digital collections (referred to as

“e-texts”) by selecting the content that is of most interest to them.

The outline of the OCBP system is shown in Figure 6.1. Each article is made out of

Database
User Data

Project Data

Access Control Data

Repository Data

etc.

Version Control
Content Versions

History of Changes

File Storage
Article Files (pdf)

Wiki
Project webpages

Authoring
Create & Edit (CRUD)

(locally)

Web System
User Access

Search

User Administration

Content Administration

Compilation
E-text creation

Article Group

Forum
Communication

Comments

Figure 6.1: Outline of the OCBP System

4 systems: a file storage system where all the versions of the completed article in PDF form

reside, a dynamic wiki website system that enables fast, easy creation and editing of webpages,

a version control repository and a simple forum system. The systems aim to support the 3

main pillars of the OCBP. For example the version control system subscribes to the “Dynamic

Knowledge Creation and Dissemination” pillar whereas the forum and Wiki subscribe to the

“Perpetual Peer-Review” pillar.

6.5.1 The Main Database

Central to the OCBP system is its main database. The database system, uses the well

known F/OSS relational database software MySQL. The main purpose of the system’s main

6.5. OUTLINE OF THE OCBP SYSTEM 101

database is to hold all the project’s data and allow the other systems of OCBP to access and

manipulate the data. The database plays a very important role in generating dynamic content

by allowing CRUD8 operations on the project’s data. The OCBP data are organized in tables

and include user related information, data regarding the individual articles, article collection

(e-texts) data, administrative data, system access control data and version control information.

6.5.2 Authoring and Version Control

The system utilizes a client-server architecture in order to allow decentralized access,

i.e. allow many contributors from various locations to access the system at the same time,

while keeping the core system at a central location for easiness of troubleshooting, updating

and maintenance. A very important component of the OCBP system is the version control

system. OCBP uses the widely used F/OSS Subversion (SVN) version control software. Figure

6.2 shows the SVN system layout (Collins-Sussman et al., 2008). Versioning systems such as

Subversion, CVS and Bazaar have being used successfully in the management and versioning

control of software projects. Typically a versioning system can be used for:

“...the management of multiple revisions of the same unit of information. It is
most commonly used in engineering and software development to manage ongoing
development of digital documents like application source code, art resources such as
blueprints or electronic models, and other critical information that may be worked
on by a team of people.”9

One of the merits of version control systems (including SVN) is that they allow “off-line” revision

control. Off-line here means that collaborators do their article editing locally, without having

to be constantly connected to the system’s server. That eases the server’s workload and allow

collaborators to work at their convenience on their own computers. Collaborators have to only

connect to the OCBP server when they download the latest version of the article’s source or when

they commit (i.e. upload) chances back to the server. The source files of all the articles, as well

as their history of changes, reside in a file repository, stored in the database of the system and

controlled by the SVN versioning system. All registered contributors of the project have secure

access to the OCBP system via the user authentication system. Once a contributor accesses the

system, he can download the latest version of the source files, make version comparisons and

upload file changes back to the system. Figure 6.3 shows the authoring process of the system.

The typical authoring procedure is as follows. First the contributor logs in to the OCBP system

8Create, Read, Update and Delete are the four basic functions of data storage and manipulation.
9http://en.wikipedia.org/wiki/Revision_control

http://en.wikipedia.org/wiki/Revision_control

6.5. OUTLINE OF THE OCBP SYSTEM 102

Subversion Repository

Working copyManagementLibrary
CommandlineClient Applications

Client Library

Client

Interface

GUIClient Applications
Repository AccessDAV SVN LOCAL

Apache svnservemod_davmod_dav_svn
Berkeley DB Fast Secure File System

Repository

Interface

Internet(any TCP/IP network

Figure 6.2: SVN System Layout

and updates her local working article source files to the the latest version from the OCBP

server’s file repository. She then proceeds to work on the source files, i.e. to add, edit and

review content. Once the editing work is completed, the collaborator once again logs in to the

system and “commits” the changes, i.e. uploads the revised files back to the file repository. The

versioning system tracks the changes, i.e. who made the changes, what was changed and when

it was changed, records any additional comments the contributor submitted along and resolve

any conflicts if any.

6.5. OUTLINE OF THE OCBP SYSTEM 103

Article Source Files

RepositoryLatest Versions of FilesHistory of ChangesDissemination of Output

Document Management System

(Version Control)

AUTHORUpdateChangeReviewCommit
AUTHORCreates/EditsLocally
AUTHORCreates/EditsLocally

Figure 6.3: The OCBP Authoring Process.

6.5.3 The Web System

The web system of OCBP provides the main public graphical user interface (GUI)

to the system. Via the web system users can access project information, search the database,

administer their profiles and their articles. The web system also provides a GUI to other OCBP

systems such the article file storage system and the e-text compilation system. Figure 6.4 shows

the prototype of the web system’s GUI.

In order to control and effectively administer the access to the OCBP system the web

system is design to provide access control. System access is divided into two categories, public

access and registered access. Public access refers to the accessing of the system without user

authentication, i.e. guest access. Registered access refers to the accessing of the system by

a registered user who is successfully authenticated. Based on the system’s access levels the

following roles are implemented:

• Unregistered Users: They have access to the public content of the system, e.g. the

OCBP website. Unregistered users also have limited access to the project’s contents,

6.5. OUTLINE OF THE OCBP SYSTEM 104

Figure 6.4: The OCBP Prototype Web System GUI.

such as the papers’ titles, abstracts and contributors’ public information. They can use

the system’s search engine. Unregistered users can not compile e-texts or download any

contents of the OCBP other than what is mentioned above.

• Registered Users: They can download full versions of articles in pdf format, compile

e-texts and access content reserved only for registered access.

• Authors: They can contribute and edit articles. Authors belong to specific articles. It is

possible for an author to belong to more that one article. This role is assigned by a Article

Editor.

• Article Editors: They administer articles and can assign or remove authors to articles.

Article editors belong to specific articles. It is possible for an article editor to belong to

6.5. OUTLINE OF THE OCBP SYSTEM 105

more that one article. This role is assigned by the Book Editor.

• Book Editor: Administers all articles (i.e. all the project’s content.) The Book Editor

can assign or remove Article Editors.

The access layers of OCBP can be seen in Figure 6.5. A role inherits the properties of the roles

Guests: Have access to the public content of the system. Limited
access to the e-text contents. Can use the system's search engine.
Can not compile e-texts and download any contents of the OCBP.

Registered Users: Can download full versions of articles, compile e-
texts and access content reserved only for registered users.

Authors: They can contribute and edit e-text content. Authors belong to
specific articles. It is possible for an author to belong to more that one article.
This role is assigned by an article editor.

Editors: They can assign or remove authors to articles. Belong to specific articles.
It is possible for an editor to belong to more that one article. This role is assigned
by the book editor.

Book Editor: Administers all articles. The book editor can assign or remove article
editors.

Figure 6.5: The OCBP Access Layer

before it, e.g. authors inherit the properties of the registered users and the unregistered users

groups whereas article editors inherit the properties of authors, registered users and unregistered

users.

6.5.4 Other OCBP Systems

The OCBP system includes three more systems, mainly utilized at the article admin-

istration level. Each article is given a total of four systems: a version control system explained

earlier, a file storage system, a wiki system and a simple online communication forum system.

The file storage system is responsible for storing and providing access to the compiled (pdf) ver-

sions of the article. The Wiki system provides an easy and fast web page development system

available to the contributors of each article. Using the Wiki system the article’s contributors

6.6. CONCLUSIONS AND FUTURE RESEARCH 106

can disseminate information about their article, biographies of each contributor, announcements

and any other information pertinent to their article. Finally, the online communication forum

system can be used for communication among the contributors of each article and the public.

The forum can enable online discussions related to the article, comments, feedback and any

other pertinent content. Among the four systems, the communication forum is optional.

6.6 Conclusions and Future Research

This chapter presented a new effort in creating open collaborative scientific content on

the Internet via an online knowledge management system. The computerized system that was

developed to support the effort was also presented and discussed. One of the major difficulties

in creating and disseminating open collaborative content is the issues related to intellectual

property. Those issues are the most challenging and need to be addressed properly in order

for the project to be successful. For example, there are copyright issues to be considered at

various times and activities. During the authoring of articles the copyright belongs to the

authors. When articles are updated by new contributors derivative works are created. That

requires licensing from the original authors. The updated article is also copyrighted by all the

authors (including the new contributors). When the OCBP users compile e-texts they create

new (derivative) copyrighted works, hence they own the copyright of those works. Before doing

so it is necessary for them to get proper permission from all the original authors of the articles

used in the compilation. It is not hard to see that without a proper licensing framework legal

chaos will be soon emerge. For that reason it is necessary to plan and implement a framework

that will allow the proper handling of intellectual property issues of the project.

In the future, in order to deal with the copyright issues, it is suggested that a non-profit

virtual organization be established in order to administer and protect the project. A licensing

scheme should then be designed and implemented that will allow the transfer of copyrights of

the project’s contents from the contributors to the organization and from the organization to

the OCBP users.

In the chapter we presented a common legal intellectual property framework and high-

lighted some of the difficulties involved in open content creation, e.g. the “free-riding” problem.

Open content licensing is one way to deal with this problem. Another suggestion is to have fre-

quent updates and prompt dissemination of open content. That way open content “hijackers”

will be discouraged in using content that they know soon will be rendered obsolete by a new

6.6. CONCLUSIONS AND FUTURE RESEARCH 107

update. This could be a promising topic for future research.

108

Chapter 7

Conclusions and Future Research

The main objective of the research presented in this dissertation was to investigate open

standardization processes via complex social networks and learning networks. The paradigm

open standardization process phenomenon researched was the collaboration network of F/OSS

development. In addition to that, a formal model that investigates learning networks and their

applications in engineering, specifically in risk analysis and management, via the Bayesian Neural

Network (BNN) framework was also developed. The research presented in this dissertation

spanned several disciplines that included engineering, computer science, statistical physics, social

sciences and law. The main research questions were: “why open standardization is emerging”,

“why open standardization phenomena such as F/OSS are currently thriving?” and “are those

phenomena sustainable in the long run?”.

The main model of open standardization process formation and evolution was presented

in Chapter 3. The model was build within the complex social network analysis framework,

utilizing data from SourceForge.net. The SourceForge.net collaboration network was analyzed

from its inception to the present. In answering the research questions, the main findings of the

chapter were:

• F/OSS collaboration has the main characteristic of other complex social networks such as

the scientific co-authorship collaboration network, the patent collaboration network and

the Internet. Those characteristics include power-law degree distributions, small network

diameters and “small-world” properties.

• The SourceForge.net collaboration network is expanding over time and the rates of growth

of the number of developers and projects follow similar trends.

• The SourceForge.net collaboration network’s level of completion is low and the network

109

has structural holes.

• If the SourceForge.net collaboration network’s characteristics remain unchanged it will be

sustainable over time.

In the future, the network evolution parameters calculated in this study can be used to run

simulations in order to forecast the future growth and sustainability of the F/OSS phenomenon.

In addition to that, our analysis model can be updated by gathering new data over time and

verify our sustainability hypothesis.

In Chapter 4 learning processes within networks were investigated. The model pre-

sented in the chapter was developed within the Bayesian Neural Network framework as a

paradigm of learning process within a complex network. In order to present a practical ap-

plication, the BNN model was used to evaluate the cost risk of soil decontamination projects.

In building the application we utilized data from actual soil decontamination projects executed

in Japan. Even though the dataset used in the case study was small, fair results were obtained.

This can be partially explained from the fact that the Bayesian approach does not require the

model’s structure to be dependent on the amount of data available. In the Bayesian frame-

work prior probabilities are assumed first and when data arrive the posterior probabilities are

calculated based on the priors and the likelihood given the data. The structure of a model

developed in the Bayesian framework is indifferent on the amount of data available, it works for

few data and for a lot of data the same way. On the other hand, machine learning depends on

the amount and quality of data. Large datasets containing a wide range of data will typically

enable machine learning models to generalize better (Bishop, 1995). Topics of future research

include the testing of the model with more complex network structures, e.g. with two hidden

layers having several units and letting the BNN to adapt to the data using techniques such as

the Automatic Relevance Determination (Neal, 1996). Numerous data from various soil decon-

tamination methods could also be included in the database. Another topic of future research

could be to consider other sampling methods in the model. The MH method utilized in the

model is considered to be a not so efficient sampler because it results in random walks in the

parameter hyper-space. Other algorithms could be considered such the Hybrid-MH algorithm

that uses a mixture of Gibbs sampler and MH algorithm for some of the parameters.

Chapters 5 and 6 presented two case studies related to the research. In Chapter 5 the

Open Risk Analysis model and AGORA were investigated. The Open Risk Analysis AGORA

model is a case of a specialized open standardization process. The process is investigated uti-

110

lizing the analysis model developed in Chapter 3. The analysis of the collaboration network of

AGORA even though it was based on minimal data it revealed that AGORA has the typical char-

acteristics of scientific collaboration social networks such as large components, power-law degree

distributions and small diameters. The investigation of AGORA also revealed organizational

problems that can be expected in the creation of platforms that support open standardization

processes such Open Risk Analysis. The Open Risk Analysis model and AGORA, even though

they have their roots in the rather well developed and well known concept of open source, are

new approaches and as a result not widely known and adopted. AGORA, depends heavily on

the number and quality of its comprising members. A metric of the quality of a platform like

AGORA is its output and contributions, i.e. the open software tools, methodologies and data

it disseminates. One of the most important problems faced by AGORA and open collabora-

tion platforms in general is the motivation of their members/collaborators to participate and

contribute. A potential way to deal with this problem is to offer some kind of sustainable busi-

ness models and or rewards to the collaborators. As a result, the study and creation of viable

business models that take into consideration the special characteristics of AGORA is a very

promising topic for future research. An additional problem encountered in open collaboration

is the problem of free riding and “hijacking” of the collaborative content. This problem is well

known in the open source community and attracts a lot of scholarly attention. Licenses such

as the GNU GPL are in place to prevent such collaborative content “hijacking” but in reality

they are not effective in preventing it. A preventive measure could be the rate of change and

dissemination of content for example. Research into finding ways to minimize free riding and

prevent collaborative content “hijacking” is also a very promising topic for future research.

Chapter 6 presented a new approach in creating open collaborative scientific content

on the Internet via an online knowledge management system. One of the major difficulties in

creating and disseminating open collaborative content is the issues related to intellectual prop-

erty. Those issues are the most challenging and need to be addressed properly. For example,

copyright issues must be considered at various times and activities such as during the authoring

of articles by the first author, its editing by other collaborators and finally during the article’s

dissemination. Additionally, when users compile articles into anthologies (e-texts), they effec-

tively create new (derivative) copyrighted works. Before doing so it is imperative to have a

licensing (rights transfer) mechanism in place to handle all of the intellectual property issues.

As a topic of future research, an investigation of how a non-profit virtual organization can be

utilized in order to administer and protect the project and to help in dealing with the intel-

111

lectual property issues. Additionally, various licensing schemes could be investigated that will

allow the transfer of copyrights of the project’s contents from the contributors to the organiza-

tion and from the organization to the OCBP users. In the chapter a common legal intellectual

property framework was presented. Within the intellectual property framework, the difficulties

involved in open content creation, e.g. the “free-riding” problem were also presented. Open

content licensing is one way to deal with this problem. Another suggestion is to have frequent

updates and prompt dissemination of open content. That way open content “hijackers” will be

discouraged in using content that they know soon will be rendered obsolete by a new update.

This could also be a promising topic for future research.

112

Bibliography

R. Albert, H. Jeong, and A. L. Barabási. Diameter of the world-wide web. Nature (London),

401(6749):130, 1999.

ATC-13. Applied Technology Council, Earthquake Damage Evaluation Data for California ATC-

13. Applied Technology Council, 1985.

A. L. Barabási and R. Albert. Emergence of scaling in random networks. Science (New York,

N.Y.), 286(5439):509–512, 1999.

A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek. Evolution of

the social network of scientific collaborations. Physica A: Statistical Mechanics and its Ap-

plications, 311(3-4):590 – 614, 2002. ISSN 0378-4371. doi: DOI:10.1016/S0378-4371(02)

00736-7. URL http://www.sciencedirect.com/science/article/B6TVG-45S9HG2-1/2/

dff30ba73ddd8820aca3e7f072aa7885.

P. Baran. On distributed communications networks. IEEE transactions on communications, 12

(1), 1964.

V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large networks. In M. Jüngen

and P. Mutzel, editors, Graph Drawing Software, Series Mathematics and Visualization, pages

77–103. Springer, 2003. ISBN 3-540-00881-0.

L. Benussi. Analysing the technological history of the open source phenomenon. stories from the

free software evolution (working paper), 2005. Available at: http://pascal.case.unibz.

it/retrieve/2312/benussi.pdf.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

J. Bitzer and P. J. Schröder. Bug-fixing and code-writing: The private provision of open

source software. Information Economics and Policy, 17:389–406, July 2005. doi: 10.

http://www.sciencedirect.com/science/article/B6TVG-45S9HG2-1/2/dff30ba73ddd8820aca3e7f072aa7885
http://www.sciencedirect.com/science/article/B6TVG-45S9HG2-1/2/dff30ba73ddd8820aca3e7f072aa7885
http://pascal.case.unibz.it/retrieve/2312/benussi.pdf
http://pascal.case.unibz.it/retrieve/2312/benussi.pdf

BIBLIOGRAPHY 113

1016/j.infoecopol.2005.01.001. URL http://www.sciencedirect.com/science/article/

B6V8J-4FGX828-1/1/52b9bcd7d45505a3697d70765f00db5b.

J. Bitzer and P. J. Schröder. The economics of open source software development: An intro-

duction. In J. Bitzer and P. J. Schröder, editors, The Economics of Open Source Software

Development, chapter 1, pages 1–13. Elsevier, 2006.

Y. Bramoullé and R. Kranton. Public goods in networks. Journal of Economic Theory, 135:

478–494, July 2007. doi: 10.1016/j.jet.2006.06.006. URL http://www.sciencedirect.com/

science/article/B6WJ3-4M0J4YN-1/1/ef867ba44503251af609ffda3abaf56c.

W. L. Buntine and A. S. Weigend. Bayesian back-propagation. Complex Systems, 5(6):603–643,

1991.

P. J. Carrington, J. Scott, and S. Wasserman. Models and Methods in Social Network Analysis.

Cambridge University Press, 2005. ISBN 0521809592.

B. Collins-Sussman, B. Fitzpatrick, and M. Pilato. Version Control with Subversion. O’Reilly,

2008.

K. Coyle. Open source, open standards. Information Technology and Libraries, 21(1):33–36,

2002.

CreativeCommons. Creative commons history, 2001. Available at: http://creativecommons.

org/about/history.

DFO. Dartmouth flood observatory, world atlas of flooded lands, 2008. Available at: http:

//www.dartmouth.edu/~floods/Atlas.html.

C. DiBona, S. Ockman, and M. Stone, editors. Open Sources: Voices from the Open Source

Revolution. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1999. ISBN 1565925823.

M. Dilley, R. S. Chen, U. Deichmann, A. L. Lerner-Lam, and M. Arnold. Natural Disaster

Hotspots: A Global Risk Analysis. The World Bank, 2005.

EM-DAT. Em-dat: The international disaster database, 2008. Available at: http://www.

emdat.be/Database/Trends/trends.html.

D. C. Engelbart and W. K. English. A research centre for augmenting human intellect. In Fall

Joint Computer Conference, 1968.

http://www.sciencedirect.com/science/article/B6V8J-4FGX828-1/1/52b9bcd7d45505a3697d70765f00db5b
http://www.sciencedirect.com/science/article/B6V8J-4FGX828-1/1/52b9bcd7d45505a3697d70765f00db5b
http://www.sciencedirect.com/science/article/B6WJ3-4M0J4YN-1/1/ef867ba44503251af609ffda3abaf56c
http://www.sciencedirect.com/science/article/B6WJ3-4M0J4YN-1/1/ef867ba44503251af609ffda3abaf56c
http://creativecommons.org/about/history
http://creativecommons.org/about/history
http://www.dartmouth.edu/~floods/Atlas.html
http://www.dartmouth.edu/~floods/Atlas.html
http://www.emdat.be/Database/Trends/trends.html
http://www.emdat.be/Database/Trends/trends.html

BIBLIOGRAPHY 114

P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290, 1959.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology.

In SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures,

and protocols for computer communication, pages 251–262, New York, NY, USA, 1999. ACM.

ISBN 1-58113-135-6. doi: http://doi.acm.org/10.1145/316188.316229. URL http://portal.

acm.org/citation.cfm?id=316229.

R. M. Fano and F. J. Corbato. Time-sharing on computers. Scientific American, 215(3):128–140,

1966.

B. F. Fitzgerald. Open content licencing (ocl) for open educational resources. In Proceedings

OECD Expert Meeting on Open Educational Resources, 2005. URL http://eprints.qut.

edu.au/archive/00003621/.

L. C. Freeman. The Development Of Social Network Analysis: A Study in the Sociology of

Science. Booksurge, 2004. ISBN 1594577145.

FSFE. Free software foundation europe: Open standards definition, 2009. Available at: http:

//fsfe.org/projects/os/def.

R. A. Ghosh. An economic basis for open standards. Technical report, FLOSSPOLS Project,

2005. Available at: http://flosspols.org/deliverables.php.

D. Giardini, G. Grünthal, K. M. Shedlock, and P. Zhang. The gshap global seismic hazard map.

Annals of Geophysics, 42, 1999.

R. W. Hahn, editor. Government Policy toward Open Source Software. AEI Brooking Joint

Center for Regulatory Studies, Washington DC, USA, 2002.

R. O. Hamburger. Building code provisions for seismic resistance. In W. F. Chen and

C. Scawthorn, editors, Earthquake Engineering Handbook. CRC Press, 2003.

G. Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, December 1968. doi: 10.

1126/science.162.3859.1243. URL http://dx.doi.org/10.1126/science.162.3859.1243.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

C. Haythornthwaite. Social network analysis: An approach and technique for the study of

information exchange. Library & Information Science Research, 18(4):323–342, 1996. URL

http://dx.doi.org/10.1016/S0740-8188(96)90003-1.

http://portal.acm.org/citation.cfm?id=316229
http://portal.acm.org/citation.cfm?id=316229
http://eprints.qut.edu.au/archive/00003621/
http://eprints.qut.edu.au/archive/00003621/
http://fsfe.org/projects/os/def
http://fsfe.org/projects/os/def
http://flosspols.org/deliverables.php
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1016/S0740-8188(96)90003-1

BIBLIOGRAPHY 115

P. Hoeppe. The munich climate insurance initiative (mcii) report, 2008. Available at: http:

//www.climate-insurance.org/upload/pdf/COP_11_Hoeppe.pdf.

G. J. Holland. The maximum potential intensity of tropical cyclones. Journal of the Atmospheric

Sciences, 54, 1997.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural Networks, 2:356–366, 1989.

HostGIS. Hostgis linux, 2008. Available at: http://www.hostgis.com/linux.

J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborative repository for floss

research data and analyses. International Journal of Information Technology and Web Engi-

neering, 1:17–26, July 2006.

IPCC. Intergovernmental panel on climate change (ipcc), climate change 2007, 2007. Available

at: http://www.ipcc.ch/.

M. Ishimoto and K. Iida. Seismological observation by tremometer, 1. magnitude and distribu-

tion pattern. Bull. Earthquake Res. Inst. Univ. Tokyo Univ., 17:443–478, 1939.

H. Jeffreys. The Theory of Probability. Oxford University Press, 1961.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási. The large-scale organization

of metabolic networks. Nature, 407(6804):651–654, 2000.

J. P. Johnson. Open source software: Private provision of a public good. Journal of Economics

& Management Strategy, 11:637–662, 2002. doi: 10.1111/j.1430-9134.2002.00637.x. URL

http://dx.doi.org/10.1111/j.1430-9134.2002.00637.x.

S. A. Kauffman. The origins of order: self-organization and selection in evolution. Oxford

University Press, New York, 1993.

N. Kishi. Insurance industry perspectives, 2007. 1st International Workshop on Open-Source,

Risk Software, California Institute of Technology; February 27th and 28th, 2007.

C. Lattemann and S. Stieglitz. Coworker governance in open-source projects. In J. Bitzer and

P. J. Schröder, editors, The Economics of Open Source Software Development, chapter 7,

pages 149–164. Elsevier, 2006.

http://www.climate-insurance.org/upload/pdf/COP_11_Hoeppe.pdf
http://www.climate-insurance.org/upload/pdf/COP_11_Hoeppe.pdf
http://www.hostgis.com/linux
http://www.ipcc.ch/
http://dx.doi.org/10.1111/j.1430-9134.2002.00637.x

BIBLIOGRAPHY 116

J. Lerner and J. Tirole. The open source movement: Key research questions. European Economic

Review, 45:819–826, May 2001. URL http://www.sciencedirect.com/science/article/

B6V64-430XMS9-N/1/8266f6c9acd2625ecd3161eba7d6b515.

J. Lerner and J. Tirole. Some simple economics of open source. Journal of Industrial Eco-

nomics, 50:197–234, 2002. doi: 10.1111/1467-6451.00174. URL http://dx.doi.org/10.

1111/1467-6451.00174.

J. Lerner and J. Tirole. The scope of open source licensing. Journal of Law, Economics and

Organization, 21(1):20–56, 2005. doi: 10.1093/jleo/ewi002.

J. C. R. Licklider. Man-computer symbiosis. IRE Transactions on Human Factors in Electronics,

HFE-1:4–11, 1960.

V. Lindberg. Intellectual property and open source. O’Reilly, 2008. ISBN 9780596517960.

D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of

Technology, 1992a.

D. J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Com-

putation, 4(3):448–472, 1992b.

D. J. C. MacKay. Probable networks and plausible predictions - a review of practical bayesian

methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):

469–505, 1995.

J. Maguire. The sourceforge story, 2007. Available at: http://itmanagement.earthweb.com/

cnews/article.php/3705731.

R. Miller, D. Clark, B. White, and W. Knottenbelt. An Introduction to the Imperative Part of

C++. Online, 1996-2007. Available at: http://www.doc.ic.ac.uk/~wjk/C++Intro/.

K. Muraoka. Present condition of soil pollution and the soil contamination countermeasures law.

APEC-VC, 2005. Available at: http://www.apec-vc.or.jp/e/modules/tinyd00/index.

php?id=28&kh_open_cid_00=5.

NASA. National aeronautics and space administration: Earth observatory, 2008. Available at:

http://earthobservatory.nasa.gov/.

http://www.sciencedirect.com/science/article/B6V64-430XMS9-N/1/8266f6c9acd2625ecd3161eba7d6b515
http://www.sciencedirect.com/science/article/B6V64-430XMS9-N/1/8266f6c9acd2625ecd3161eba7d6b515
http://dx.doi.org/10.1111/1467-6451.00174
http://dx.doi.org/10.1111/1467-6451.00174
http://itmanagement.earthweb.com/cnews/article.php/3705731
http://itmanagement.earthweb.com/cnews/article.php/3705731
http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.apec-vc.or.jp/e/modules/tinyd00/index.php?id=28&kh_open_cid_00=5
http://www.apec-vc.or.jp/e/modules/tinyd00/index.php?id=28&kh_open_cid_00=5
http://earthobservatory.nasa.gov/

BIBLIOGRAPHY 117

R. M. Neal. Bayesian training of backpropagation networks by the hybrid monte carlo method.

CRG-TR-92-1. Technical report, Department of Computer science, University of Toronto,

1992.

R. M. Neal. Bayesian Learning for Neural Networks, Vol. 118 of Lecture Notes in Statistics.

Springer-Verlag, 1996.

R. R. Nelson. Recent evolutionary theorizing about economic change. Journal of Economic

Litterature, XXXIII:48–90, 1995.

M. E. J. Newman. The structure of scientific collaboration networks. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 98(2):404–409, January 2001.

ISSN 0027-8424. doi: 10.1073/pnas.021544898. URL http://dx.doi.org/10.1073/pnas.

021544898.

NOAA. National oceanic and atmospheric administration, united states department of com-

merce: National geophysical data center, 2008. Available at: http://www.ngdc.noaa.gov/.

NWB-Team. Network workbench tool. indiana university, northeastern university, and university

of michigan, 2006. Available at: http://nwb.slis.indiana.edu.

B. Perens. The open source definition, 1998. Available at: http://www.opensource.org/docs/

definition.php.

D. Pountain. The Penguin Dictionary of Computing. Penguin Putnam, 2003.

J. C. Principe, N. R. Euliano, and W. C. Lefebvre. Neural and Adaptive Systems: Fundamentals

Through Simulations. John Wiley and Sons, 2000.

E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. O’Reilly, 2001.

R. D. Reed and R. J. Marks. Neural Smithing: Supervised Learning in Feedforward Artificial

Neural Networks. MIT Press, 1999.

P. M. Romer. Endogenous technological change. The Journal of Political Economy, 98(5):

S71–S102, 1990. ISSN 00223808. doi: 10.2307/2937632. URL http://dx.doi.org/10.2307/

2937632.

http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1073/pnas.021544898
http://www.ngdc.noaa.gov/
http://nwb.slis.indiana.edu
http://www.opensource.org/docs/definition.php
http://www.opensource.org/docs/definition.php
http://dx.doi.org/10.2307/2937632
http://dx.doi.org/10.2307/2937632

BIBLIOGRAPHY 118

M. A. Rossi. Decoding the free/open source software puzzle: A survey of theoretical and em-

pirical contributions. In J. Bitzer and P. J. Schröder, editors, The Economics of Open Source

Software Development, chapter 2, pages 15–55. Elsevier, 2006.

D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1: Foundations. MIT Press, 1986.

A. Scala, L. A. N. Amaral, and M. Barthélémy. Small-world networks and the conformation

space of a lattice polymer chain. Europhysics Letters, 55:594–600, 2001.

C. R. Scawthorn. History of seismic risk assessment, 2006. Workshop on Strategic Directions

for (Seismic) Risk Modeling and Decision Support, Boulder CO, July 2006. Mid-America

Earthquake Center.

J. Scott. Social Network Analysis: A Handbook. Sage Publications, sec-

ond. edition, 2000. ISBN 0761963391. URL http://www.amazon.com/

Social-Network-Analysis-Professor-Scott/dp/0761963383/ref=sr_1_1?ie=UTF8&s=

books&qid=1256622319&sr=1-1.

SEAOC. Vision 2000, a Framework for Performance-Based Seismic Design. Structural Engi-

neers Association of California, 1996.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,

27:379–423, 623–656, July, October 1948.

Smithsonian. Smithsonian institution, global volcanism program, 2008. Available at: http:

//www.volcano.si.edu/.

R. Stallman. Copyleft, 1984a. Available at: http://www.gnu.org/copyleft/.

R. Stallman. The free software definition, 1984b. Available at: http://www.gnu.org/

philosophy/free-sw.html.

UNEP/GRID. Unep/grid-geneva preview, global cyclones tracks datasets, 2008. Available at:

http://www.grid.unep.ch/data/gnv199.php.

U.S.C. U.s. code: Title 17, chapter 1, par. 106. exclusive rights in copyrighted works,

2009. Available at: http://www.law.cornell.edu/uscode/html/uscode17/usc_sec_17_

00000106----000-.html.

http://www.amazon.com/Social-Network-Analysis-Professor-Scott/dp/0761963383/ref=sr_1_1?ie=UTF8&s=books&qid=1256622319&sr=1-1
http://www.amazon.com/Social-Network-Analysis-Professor-Scott/dp/0761963383/ref=sr_1_1?ie=UTF8&s=books&qid=1256622319&sr=1-1
http://www.amazon.com/Social-Network-Analysis-Professor-Scott/dp/0761963383/ref=sr_1_1?ie=UTF8&s=books&qid=1256622319&sr=1-1
http://www.volcano.si.edu/
http://www.volcano.si.edu/
http://www.gnu.org/copyleft/
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.grid.unep.ch/data/gnv199.php
http://www.law.cornell.edu/uscode/html/uscode17/usc_sec_17_00000106----000-.html
http://www.law.cornell.edu/uscode/html/uscode17/usc_sec_17_00000106----000-.html

BIBLIOGRAPHY 119

M. Van Antwerp and G. Madey. Advances in the sourceforge research data archive (srda).

In Fourth International Conference on Open Source Systems, IFIP 2.13 (WoPDaSD 2008),

Milan, Italy, September 2008.

F. Vega-Redondo. Complex social networks. Number 44 in Econometric Society monographs.

Cambridge Univiversity Press, 2007. ISBN 978-0-521-85740-6.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge

University Press, 1 edition, 11 1994. ISBN 0521387078.

J. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system of

the nematode c. elegans. Philosophical transactions Royal Society London, 314:1–340, 1986.

WIPO. Intellectual property handbook, 2009. Available at: http://www.wipo.int/about-ip/

en/iprm/.

http://www.wipo.int/about-ip/en/iprm/
http://www.wipo.int/about-ip/en/iprm/

120

Appendix A

Program Listings

A.1 Program: Create Pajek conectivity input file

This program creates the connectivity input file for Pajek, based on Algorithm 1.

1 #include <iostream >

2 #include <algorithm >

3 #include <string >

4 #include <fstream >

5 #include <iterator >

6 #include <sstream > // stringstream library

7 #include <vector >

8

9 using namespace std;

10

11 int countLines (istream& in);

12 void StringExplode(string str , string separator , vector <string >* ←↩

results);

13 void StringSplit(string tmpstr , string tmparr [2]);

14

15 int main ()

16 {

17 int z=0;

18 int count;

19 int num;

20 vector <int > a;

A.1. PROGRAM: CREATE PAJEK CONECTIVITY INPUT FILE 121

21

22 string str;

23 string tempArray [2];

24 string oldArray [2];

25 vector <string > results;

26

27 // count number of lines of all files passed as argument

28 ifstream in("input.csv", ios::in);

29 count = 0;

30 if (!in) {

31 cerr << "Failed to open file\n";

32 }

33 else {

34 count += countLines(in);

35 cout << "Number of lines in input file= " << count << endl;

36 }

37 in.close();

38

39 // Pass data from file to vector

40 ifstream in2("input.csv", ios::in);

41 if (!in2) {

42 cerr << "Failed to open file\n";

43 }

44 else {

45 //cout << "Size of vector a is " << a.size() << endl;

46 while (! in2.eof())

47 {

48 cout << "Reading line " << z << "\r";

49 getline (in2 , str);

50 //cout << " with content = " << str << endl;

51 // Split String

52

53 if (z == 0) {

54 // First line of input file

55 StringSplit(str , tempArray);

56 stringstream myStream(tempArray [0]); // create the stringstream

57 myStream >> num; // convert the string to an integer

A.1. PROGRAM: CREATE PAJEK CONECTIVITY INPUT FILE 122

58 a.push_back(num);

59 oldArray [0] = tempArray [0];

60 oldArray [1] = tempArray [1];

61 }

62 else {

63 StringSplit(str , tempArray);

64 if (tempArray [1] == oldArray [1]) {

65 stringstream myStream(tempArray [0]);

66 myStream >> num;

67 a.push_back(num);

68 oldArray [0] = tempArray [0];

69 oldArray [1] = tempArray [1];

70 }

71 else {

72 // Write Pairs to Output File

73

74 // First sort the vector contents

75 sort(a.begin (), a.end());

76

77 // Append data to output file

78 //cout << "Vector size=" << a.size() << endl;

79 fstream File;

80 File.open("clustout.csv", ios::out | ios::app);

81 //File.open(" clustout.txt", ios::out | ios::app);

82 if (File.is_open ()) {

83 for (int j = 0 ; j < a.size() -1 ; j++)

84 {

85 for (int i = j+1 ; i < a.size() ; i++)

86 {

87 File << a.at(j) << "," << a.at(i) << endl;

88 //File << a.at(j) << " " << a.at(i) << endl;

89 //cout << "(" << a.at(j) << "," << a.at(i) << ")" << " ←↩

";

90 }

91 //cout << "\n";

92 }

93 }

A.1. PROGRAM: CREATE PAJEK CONECTIVITY INPUT FILE 123

94 File.close ();

95 // Clear Contents of vector a

96 a.clear ();

97 //cout << "Vector size=" << a.size() << endl;

98

99 StringSplit(str , tempArray);

100 stringstream myStream(tempArray [0]); // create the stringstream

101 myStream >> num; // convert the string to an integer

102 a.push_back(num);

103 oldArray [0] = tempArray [0];

104 oldArray [1] = tempArray [1];

105 }

106

107 }

108 z++;

109 //cout << "z=" << z << endl;

110 }

111 in2.close();

112 }

113 return 0;

114 }

115

116 int countLines (istream& in)

117 {

118 return count(istreambuf_iterator <char >(in),

119 istreambuf_iterator <char >(),

120 ’\n’);

121 }

122

123

124 void StringExplode(string tmpstr , string separator , vector <string >* ←↩

results)

125 {

126 int found;

127 found = tmpstr.find_first_of(separator);

128 while(found != string ::npos){

129 if(found > 0){

A.1. PROGRAM: CREATE PAJEK CONECTIVITY INPUT FILE 124

130 results ->push_back(tmpstr.substr(0,found));

131 }

132 tmpstr = tmpstr.substr(found +1);

133 found = tmpstr.find_first_of(separator);

134 }

135 if(tmpstr.length () > 0){

136 results ->push_back(tmpstr);

137 }

138 }

139

140 void StringSplit(string tmpstr , string tmparr [2])

141 {

142 int cutAt;

143 string delim = ",";

144 cutAt = tmpstr.find_first_of(delim);

145 tmparr [0] = tmpstr.substr(0,cutAt);

146 tmparr [1] = tmpstr.substr(cutAt +1);

147 }

148

149 // StringSplit(string str , string delim , vector <string > results)

150 //{

151 //int cutAt;

152 //while((cutAt = str.find_first_of(delim)) != str.npos)

153 // {

154 // if(cutAt > 0)

155 // {

156 // results.push_back(str.substr(0,cutAt));

157 // }

158 // str = str.substr(cutAt +1);

159 // }

160 //if(str.length () > 0)

161 // {

162 // results.push_back(str);

163 // }

164 //}

A.2. PROGRAM: PAJEK INPUT FILE GENERATOR 125

A.2 Program: Pajek input file generator

This program creates an input file for Pajek.

1 #include <iostream >

2 #include <algorithm >

3 #include <string >

4 #include <fstream >

5 #include <iterator >

6 #include <sstream > // stringstream library

7 #include <vector >

8

9 using namespace std;

10

11 int countLines (istream& in);

12 void StringExplode(string str , string separator , vector <string >* ←↩

results);

13 void StringSplit(string tmpstr , string tmparr [2]);

14

15 int main ()

16 {

17 int z=0;

18 int i=0;

19 int num , num1 , num2;

20 vector <int > a;

21

22 string str;

23 string str_usr;

24 string tempArray [2];

25 vector <string > results;

26 // string user_group = "";

27 // string user = "";

28 // string outfile = "";

29 char user_group [255];

30 char user [255];

31 char outfile [255];

32

A.2. PROGRAM: PAJEK INPUT FILE GENERATOR 126

33 // Pass data from file to vector

34 cout << "user_group file name (e.g. 2000. csv): ";

35 cin >> user_group;

36 cout << "user file name (e.g. users2000.csv): ";

37 // getline(cin , user);

38 cin >> user;

39 cout << "Output file name (e.g. input2000.csv): ";

40 cin >> outfile;

41

42 fstream File;

43 File.open(outfile , ios::out | ios::app);

44

45 ifstream in2(user_group , ios::in);

46 if (!in2) {

47 cerr << "Failed to open file\n";

48 }

49 else {

50 //cout << "Size of vector a is " << a.size() << endl;

51 while (! in2.eof()) {

52 cout << "Reading line " << z << "\r";

53 getline (in2 , str);

54 //cout << endl;

55 //cout << " with content = " << str << endl;

56 // Split String

57 StringSplit(str , tempArray);

58 stringstream myStream1(tempArray [0]); // create the ←↩

stringstream

59 myStream1 >> num1; // convert the string to an integer

60 stringstream myStream2(tempArray [1]);

61 myStream2 >> num2;

62 //cout << "num1=" << num1 << ", num2=" << num2 << endl;

63

64 ifstream in3(user , ios::in);

65 if (!in3) {

66 cerr << "Failed to open file\n";

67 }

68 else {

A.2. PROGRAM: PAJEK INPUT FILE GENERATOR 127

69 // COMMENT

70 i = 1;

71 while (! in3.eof()) {

72 getline (in3 , str_usr);

73 stringstream myStream(str_usr);

74 myStream >> num;

75 //cout << "num=" << num << endl;

76 if (num1 == num) {

77 // fstream File;

78 //File.open(outfile , ios::out | ios::app);

79 if (File.is_open ()) {

80 File << i << "," << num2 << endl;

81 //cout << "Wrote to file: " << i ←↩

<< ", " << num2 << endl;

82 }

83 //File.close();

84 break;

85 }

86 i++;

87 //cout << "i=" << i << endl;

88 num = 0;

89 }

90 in3.close();

91 }

92 z++;

93 num1 = -1;

94 num2 = -1;

95 }

96 in2.close();

97 File.close ();

98 }

99 return 0;

100 }

101

102 void StringSplit(string tmpstr , string tmparr [2])

103 {

104 int cutAt;

A.2. PROGRAM: PAJEK INPUT FILE GENERATOR 128

105 string delim = ",";

106 cutAt = tmpstr.find_first_of(delim);

107 tmparr [0] = tmpstr.substr(0,cutAt);

108 tmparr [1] = tmpstr.substr(cutAt +1);

109 }

129

Appendix B

The Open Source Definition

(Annotated)

Open source doesn’t just mean access to the source code. The distribution terms of

open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from several different

sources. The license shall not require a royalty or other fee for such sale.

Rationale: By constraining the license to require free redistribution, we eliminate
the temptation to throw away many long-term gains in order to make a few
short-term sales dollars. If we didn’t do this, there would be lots of pressure for
cooperators to defect.

2. Source Code

The program must include source code, and must allow distribution in source code as well

as compiled form. Where some form of a product is not distributed with source code,

there must be a well-publicized means of obtaining the source code for no more than a

reasonable reproduction cost preferably, downloading via the Internet without charge. The

source code must be the preferred form in which a programmer would modify the program.

Deliberately obfuscated source code is not allowed. Intermediate forms such as the output

of a preprocessor or translator are not allowed.

Rationale: We require access to un-obfuscated source code because you can’t
evolve programs without modifying them. Since our purpose is to make evolution
easy, we require that modification be made easy.

130

3. Derived Works

The license must allow modifications and derived works, and must allow them to be dis-

tributed under the same terms as the license of the original software.

Rationale: The mere ability to read source isn’t enough to support independent
peer review and rapid evolutionary selection. For rapid evolution to happen,
people need to be able to experiment with and redistribute modifications.

4. Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified form only if the

license allows the distribution of ”patch files” with the source code for the purpose of

modifying the program at build time. The license must explicitly permit distribution of

software built from modified source code. The license may require derived works to carry

a different name or version number from the original software.

Rationale: Encouraging lots of improvement is a good thing, but users have a
right to know who is responsible for the software they are using. Authors and
maintainers have reciprocal right to know what they’re being asked to support
and protect their reputations.

Accordingly, an open-source license must guarantee that source be readily avail-
able, but may require that it be distributed as pristine base sources plus patches.
In this way, “unofficial” changes can be made available but readily distinguished
from the base source.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

Rationale: In order to get the maximum benefit from the process, the maximum
diversity of persons and groups should be equally eligible to contribute to open
sources. Therefore we forbid any open-source license from locking anybody out
of the process.

Some countries, including the United States, have export restrictions for certain
types of software. An OSD-conformant license may warn licensees of applicable
restrictions and remind them that they are obliged to obey the law; however, it
may not incorporate such restrictions itself.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of

endeavor. For example, it may not restrict the program from being used in a business, or

from being used for genetic research.

Rationale: The major intention of this clause is to prohibit license traps that
prevent open source from being used commercially. We want commercial users
to join our community, not feel excluded from it.

131

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed

without the need for execution of an additional license by those parties.

Rationale: This clause is intended to forbid closing up software by indirect means
such as requiring a non-disclosure agreement.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s being part of

a particular software distribution. If the program is extracted from that distribution

and used or distributed within the terms of the program’s license, all parties to whom

the program is redistributed should have the same rights as those that are granted in

conjunction with the original software distribution.

Rationale: This clause forecloses yet another class of license traps.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with

the licensed software. For example, the license must not insist that all other programs

distributed on the same medium must be open-source software.

Rationale: Distributors of open-source software have the right to make their own
choices about their own software.

Yes, the GPL is conformant with this requirement. Software linked with GPLed
libraries only inherits the GPL if it forms a single work, not any software with
which they are merely distributed.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of

interface.

Rationale: This provision is aimed specifically at licenses which require an ex-
plicit gesture of assent in order to establish a contract between licensor and li-
censee. Provisions mandating so-called ”click-wrap” may conflict with important
methods of software distribution such as FTP download, CD-ROM anthologies,
and web mirroring; such provisions may also hinder code re-use. Conformant
licenses must allow for the possibility that (a) redistribution of the software will
take place over non-Web channels that do not support click-wrapping of the
download, and that (b) the covered code (or re-used portions of covered code)
may run in a non-GUI environment that cannot support popup dialogues.

132

Appendix C

Torvalds message to comp.os.minix

Hel lo everybody out the re us ing minix −

I ’m doing a (free) operating system (just a hobby, won’ t be big and

p r o f e s s i o n a l l i k e gnu) f o r 386(486) AT c l o n e s . This has been brewing

s i n c e a p r i l , and i s s t a r t i n g to get ready . I ’d like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I’ve c u r r e n t l y ported bash (1 . 0 8) and gcc (1 . 4 0) , and th ing s seem to work .

This i m p l i e s that I ’ll get something practical within a few months, and

I’d l i k e to know what f e a t u r e s most people would want . Any s u g g e s t i o n s

are welcome , but I won’t promise I’ l l implement them :−)

Linus (torvalds@kruuna . h e l s i n k i . f i)

PS . Yes − i t ’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks , as that’ s a l l I have : −(.

SOURCE: http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b

http://groups.google.com/group/comp.os.minix/msg/b813d52cbc5a044b

133

Appendix D

Open Knowledge Definition v1.0

D.1 Terminology

The term knowledge is taken to include:

1. Content such as music, films, books

2. Data be it scientific, historical, geographic or otherwise

3. Government and other administrative information

Software is excluded despite its obvious centrality because it is already adequately addressed by

previous work.

The term work will be used to denote the item or piece of knowledge which is being

transferred.

The term package may also be used to denote a collection of works. Of course such a

package may be considered a work in itself.

The term license refers to the legal license under which the work is made available.

Where no license has been made this should be interpreted as referring to the resulting default

legal conditions under which the work is available (for example copyright).

D.2 The Definition

A work is open if its manner of distribution satisfies the following conditions:

1. Access

The work shall be available as a whole and at no more than a reasonable reproduction cost,

D.2. THE DEFINITION 134

preferably downloading via the Internet without charge. The work must also be available

in a convenient and modifiable form.

Comment: This can be summarized as ’social’ openness - not only are you al-
lowed to get the work but you can get it. ’As a whole’ prevents the limitation of
access by indirect means, for example by only allowing access to a few items of
a database at a time.

2. Redistribution

The license shall not restrict any party from selling or giving away the work either on its

own or as part of a package made from works from many different sources. The license

shall not require a royalty or other fee for such sale or distribution.

3. Reuse

The license must allow for modifications and derivative works and must allow them to be

distributed under the terms of the original work.

Comment: Note that this clause does not prevent the use of ’viral’ or share-alike
licenses that require redistribution of modifications under the same terms as the
original.

4. Absence of Technological Restriction

The work must be provided in such a form that there are no technological obstacles to the

performance of the above activities. This can be achieved by the provision of the work

in an open data format, i.e. one whose specification is publicly and freely available and

which places no restrictions monetary or otherwise upon its use.

5. Attribution

The license may require as a condition for redistribution and re-use the attribution of

the contributors and creators to the work. If this condition is imposed it must not be

onerous. For example if attribution is required a list of those requiring attribution should

accompany the work.

6. Integrity

The license may require as a condition for the work being distributed in modified form

that the resulting work carry a different name or version number from the original work.

7. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

D.2. THE DEFINITION 135

Comment: In order to get the maximum benefit from the process, the maximum
diversity of persons and groups should be equally eligible to contribute to open
knowledge. Therefore we forbid any open-knowledge license from locking anybody
out of the process.

Comment: this is taken directly from item 5 of the OSD.

8. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the work in a specific field of

endeavor. For example, it may not restrict the work from being used in a business, or

from being used for genetic research.

Comment: The major intention of this clause is to prohibit license traps that
prevent open source from being used commercially. We want commercial users
to join our community, not feel excluded from it.

Comment: this is taken directly from item 6 of the OSD.

9. Distribution of License

The rights attached to the work must apply to all to whom the program is redistributed

without the need for execution of an additional license by those parties.

Comment: This clause is intended to forbid closing up software by indirect means
such as requiring a non-disclosure agreement.

Comment: this is taken directly from item 7 of the OSD.

10. License Must Not Be Specific to a Package

The rights attached to the work must not depend on the work being part of a particular

package. If the work is extracted from that package and used or distributed within the

terms of the work’s license, all parties to whom the work is redistributed should have the

same rights as those that are granted in conjunction with the original package.

Comment: this is taken directly from item 8 of the OSD.

11. License Must Not Restrict the Distribution of Other Works

The license must not place restrictions on other works that are distributed along with the

licensed work. For example, the license must not insist that all other works distributed on

the same medium are open.

Comment: Distributors of open knowledge have the right to make their own
choices. Note that ’share-alike’ licenses are conformant since those provisions
only apply if the whole forms a single work.

Comment: this is taken directly from item 9 of the OSD.

	List of Figures
	List of Tables
	Symbols and Abbreviations
	Introduction
	Open Standards and the Emergence of the F/OSS Phenomenon
	Rationale of the Research
	Objectives of the Research
	Research Methods
	Contribution of the Research
	Structure of the Dissertation

	F/OSS: A Paradigm of Open Standardization
	Introduction
	The Importance of Source Code
	Definition of F/OSS
	Free Software Definition
	Open Source Software Definition

	The History of F/OSS
	Review of related literature

	Open Standardization Formation and Evolution Model
	Research Fundamentals
	Social Network Analysis
	Complex Social Network Analysis

	Model Formulation
	The SourceForge.net Dataset
	Data Analysis
	Complex Social Network Analysis of SourceForge.net
	Conclusions and Topics for Future Research

	Learning Networks
	Introduction
	Soil contamination investigations

	Research Fundamentals
	Artificial Neural Networks
	Bayesian Neural Networks

	Model Formulation
	Model Structure
	ANN formulation
	Bayesian Estimation
	BNN formulation
	Soil decontamination cost risk evaluation formulation

	Case Study
	Setting up the database
	The ANN process
	The BNN process

	Conclusions

	Case Study: AGORA
	Introduction
	The Need for Open Standards in Risk Analysis
	Catastrophe Risk Modeling
	Open Risk Analysis
	AGORA: The Platform for Open Risk Analysis
	Open Risk Analysis Software Case Study: MIRISK

	Outline of the case study
	Case Study Conclusions

	Case Study: The Open Collaboration Book Project
	Introduction
	Intellectual Property, Copyright and Licensing
	Free/Open Source Software Licensing
	Open Content Licensing
	Outline of the OCBP System
	The Main Database
	Authoring and Version Control
	The Web System
	Other OCBP Systems

	Conclusions and Future Research

	Conclusions and Future Research
	Program Listings
	Program: Create Pajek conectivity input file
	Program: Pajek input file generator

	The Open Source Definition (Annotated)
	Torvalds message to comp.os.minix
	Open Knowledge Definition v1.0
	Terminology
	The Definition

