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1 

GENERAL INTRODUCTION 

 

Background 

Transition Metal-Complexes as Catalysts.    “Transition Metal Complex” is now 

a leading performer in organic and polymer syntheses to accomplish advanced and/or 

demanding reactions.
1
  The landmark discovery on transition metal catalysis goes back to 

“Ziegler-Natta catalysts” for olefin polymerization, typically consisting of titanium chloride 

and an alkyl aluminum [e.g., (C2H5)3Al; as a cocatalyst].  These catalysts provided the 

potential of transition metal complexes for more feasible and/or stereospecific reactions, e.g., 

ethylene polymerization under conditions milder than the free-radical processes
2
 and 

isospecific propylene polymerization of propylene.
3
  In the wake of these milestones, a 

number of transition metal complexes have been developed as catalysts to control reactions 

with some selectivity not only for polymerizations but also for organic reactions.   

An important character of transition metals is that, different from representative 

elements, they possess a d-orbital, receptive to electrons of ligands.  Compounds carrying - 

or π-electrons are eligible as the ligands to form coordination bonds with a central transition 

metal by donating their electrons to a vacant d-orbital of a transition metal (Figure 1).  

Accordingly, the electronic and the steric states of the central metal are governed by the 

ligands, meaning that they serve as “modifiers” of their host elements by their electronic 

 
 

Figure 1.  Building blocks of transition metal complexes for catalysts  
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(donating and withdrawing) and structural (bulkiness, symmetry, and chirality) characters.  

Importantly, some ligands can dynamically or reversibly detach from the metal and can 

thereby be replaced with a substrate or to provide a reaction (coordination) site.  Such a 

“ligand exchange” or a vacant-site formation, respectively, in turn leads to the activation of 

the coordinating substrate by the metal or to a specific environment around the metal.  Thus, 

catalysis is accomplished by the corporative functions of transition metals and their ligands, 

and the catalytic features (i.e., efficiency, selectivity, versatility, etc.) thus strongly depend on 

metal-ligand combinations.  In other words, one can dictate and control chemical reactions 

via the design of transition metal catalysts. 

 

Iron Complexes toward Sustainable Catalysts.    Thus, the development of 

transition metal catalysts has been attractive for chemists.  However, some of transition 

metals are toxic or precious on the earth, and the use of such metals is less favorable for 

practical applications, even though their complexes are active as catalysts.  Therefore, 

ubiquitous and less toxic metals have started to garner attention in developing sustainable or 

environmentally benign catalytic systems.
4
   

In view of such sustainable aspects, “Iron” would be one of the most promising 

among transition metals (Figure 2) because of the following features:
5
 iron abundantly exists 

in the earth crust (4.7 wt% in igneous rocks);
6
 iron can be easily obtained in a large scale at a 

low price; the toxicity is potentially low, as iron is a vital component of biological systems 

including human body, serving, for example, as a cofactor for metalloproteins [i.e., 

hydrogenase, reductase, and cytochrome (heme)].   

Iron belongs to group-8 in the periodic table, with the electronic configuration 

[Ar](3d)
6
(4s)

2
.  It assumes a wide range of oxidation states from -2 to 6, and the reactivity 

 

 

Figure 2.  Characters of iron and its complexes 
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(e.g., Lewis acidity and oxidation/reduction) is depending on the oxidation state.  Such 

versatility is suited to a catalyst, and indeed a variety of complexes have been studied for 

various reactions.  For example, in the early period of iron-catalyst development, the 

pentacarbonyl form [Fe(CO)5] and its salts (halides, acetylacetone, etc.) were applied for 

Reppe
7
 and Friedel-Crafts

8
 reactions, respectively.  In the subsequent decades, other 

iron-based complexes have been employed for numerous organic reactions
9
 [e.g., oxidation,

10
 

reduction,
11

 Kharasch,
12

 Diels-Alder,
13

 and cross-coupling
14

] and polymerizations [e.g. 

coordination,
15

 cationic,
16

 and radical (see below)]. 

In these catalyses, however, iron complexes are often a “supporting performer” in 

terms of activity and selectivity relative to other metal counterparts; namely, iron catalysts do 

work well but usually not the best.  Nowadays, in contrast, a development of an iron catalyst 

to be a “leading performer” has been gathering momentum, as sustainability and 

eco-friendliness are now being more important than simple activity and effectiveness in 

catalytic systems .
17

   

 

Transition-Metal Catalyzed Living Radical Polymerization.    Living 

polymerization by definition consists of an initiation and a propagation reaction (or no side 

reactions other than these), and then allows precise syntheses of desired polymeric 

architectures.  Originally, living polymerization was limited to ionic systems (anionic,
18

 

cationic,
19

 ring-opening,
20

 etc.), whereas fine control of radical polymerization had been 

considered difficult, primarily due to the high reactivity of the “free” radical intermediates 

therein.
21

  Recently, however, a universalized concept for living polymerization, i.e., the 

introduction of a "dormant" species and its reversible activation, has been extended to radical 

systems, and a variety of living radical polymerization are available.  Now, a living radical 

polymerization is an essential method to design well-defined polymeric materials, since 

variety of monomers are applicable, including “functional” monomers without protection of 

their polar functionality, in sharp contrast to the ionic vanguards, which are often disturbed by 

functional groups.   

Transition metal-catalyzed living radical polymerization is one of such 

living/controlled radical polymerizations, and, as the name implies, a transition metal 

complex serves as a catalyst to control the radical polymerization.
22

  The first system was 

discovered by the author’s group in 1995 with a ruthenium catalyst [RuCl2(PPh3)3] and an 

aluminum cocatalyst [e.g., MeAl(ODBP)2 (ODBP = 2,6-di-tert-butylphenoxy) or Al(Oi-Pr)3] 
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in conjunction with a halogen compound (CCl4) as an initiator.
23

  In this system, a 

transition-metal catalyst (Mt
n
/L; n = valence number; L = ligands) activates the 

carbon-halogen bond in an initiator (R-X) or in a “dormant” polymer terminal (~~~C-X) so as 

to trigger its homolysis into a carbon-centered growth-active radical (R• or ~~~C•) via 

one-electron oxidation from Mt
n
 to Mt

n+1
 (Scheme 1).  These growing species propagate 

with monomers, and the oxidized catalyst sooner or later donates its halogen (X) back to the 

radical, to regenerate the dormant terminal while returning to the original lower valance state 

via one-electron reduction from Mt
n+1

 to Mt
n
.  The polymerization thus proceeds by 

repeating the reversible activation-deactivation process or a one-electron oxidation-reduction 

cycle and, with the dormant species thermodynamically much more favored than the radical 

species, the instantaneous radical concentration is kept so low as to practically suppress 

undesirable bimolecular terminations and chain-transfer reactions.    

Thus, the transition metal-catalysts are necessary for a precise control of the 

“active-dormant equilibrium” and many late transition metals have been applied for the 

catalysts combined with ligands [e.g. Ru,
24

 Fe,
25-55

 Ni,
56

 Cu,
57

 Mo,
58

 Mn,
59

 Os,
60

 Re,
61

 Co,
62

 

Rh,
63

 and Pd
64

].  As already pointed out, the catalytic properties of these metal complexes 

strongly depend on the combination of a transition metal and coordinating ligands.   

 

Iron-Catalyzed Living Radical Polymerization.    In 1997, the author’s group 

first presented an iron-catalyzed living radical polymerization with a divalent iron complex 

FeCl2(PPh3)2 (1).
25

  The complex induced a living radical polymerization of methyl 

methacrylate (MMA) in conjunction with a halide initiator [i.e., CCl4, CHCl2COPh, 

(CH3)2CBrCO2C2H5, and CH3CBr(CO2C2H5)2] to give controlled polymers with narrow 

 

 

Scheme 1.  Transition Metal-Catalyzed Living Radical Polymerization  
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molecular weight distributions (MWDs) [Mw/Mn ~ 1.2; with CH3CBr(CO2C2H5)2].  Since 

then, some iron complexes have been reported for living radical polymerizations.  Isolated 

and well-defined examples include (Figure 3): cyclopentadiene (Cp = -C5H5) (2,4),
26

 

pentamethylcyclopentadiene (Cp* = -C5Me5) (3,5),
27

 imidazolidene (N-heterocyclic 

carbene) (6),
28

 alkyl phosphine (7),
29

 phosphine-nitrogen chelate (8),
30

 diimine (9),
31

 

diiminopyridine (10),
32

 diaminopyridine (11),
32

 salicylaldiminato (12),
33

 tridentate amine 

(13-15),
34

 bis(oxazoline) (16),
35

 and triazacyclononane (17).
36

  Ligands for iron halides have 

been also reported for in-situ complexation (Figure 4): alkylphosphine (L1),
37,38

 alkylamine 

(L2),
37

 bipyridine (L3),
37

 N-(n-hexyl)-2-pyridylmethanimine (L4),
39

 monodentate amine 

(L5),
40

 diiminopyridine (L6),
41

 ethylenediaminetetraacetic acid (EDTA, L7),
42

 tetradentate 

amine (L8),
43

 bispyrazole (L9),
44

 bisoxazoline (L10),
44

 hexamethylphosphorictriamide 

(L11),
45

 pyridylphosphine (L12, L13),
46

 onium salt (L14-L17),
47,48

 acetic acid (L18),
49,50

 

iminodiacetic acid (L19),
49,51

 succinic acid (L20),
49,52

 isophthalic acid (L21),
49,53

 pyromellitic 

acid (L22),
54

 and (di)picolinic acid (L23-L30).
55

   

These complexes certainly catalyze living radical polymerizations, but the catalytic 

activities are mostly inferior to ruthenium and copper counterparts, especially in regard to 

activity (minimum amount required for the catalysis), tolerance to functional monomers, and 

efficiency of block copolymerization.   

 

Figure 3.  Iron complexes for living radical polymerization 
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Objectives  
 

From these backgrounds, the author decided to develop novel iron catalysts for living 

radical polymerization via an interrelated and mutually feed-backing three-stage procedure, 

“Synthesis”-“Polymerization”-“Analysis”, as shown in Figure 5.  First, iron complexes were 

synthesized focusing on the electronic modulation and the steric bulkiness around a central 

iron via ligand design (Synthesis).  The prepared complexes were then employed for living 

radical polymerizations to see the catalytic functions such as activity, controllability, 

monomer versatility, and tolerance to functional groups (Polymerization).  Importantly, the 

redox behaviors and the reaction mechanisms (e.g., in-situ structural transformation) were 

 

Figure 4.  Ligands of iron halides for living radical polymerization 
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analyzed for further advancement of the catalysts (Analysis).  In this thesis, the author 

targeted two design principles for evolution of iron catalysts: 

 

(1) “Anionization” of Iron Complexes by Bulky and Conjugated Phosphazenium Salts 

(2) Ligand Design in Half-Metallocene Iron Complexes  

 

 

(1) “Anionization” of Iron Complexes by Bulky and Conjugated Phosphazenium 

Salts.    In metal catalyzed living radical polymerization, one-electron transfer from the 

catalyst triggers the activation of an initiator.  Thus, introduction of an electron-donating 

group into ligands is one of the key strategies for an improvement in catalytic activity.  The 

author focused on this “anionization” to increase the electron density of an iron center, as well 

 

 

Figure 5.  Three steps for development of active and sustainable iron catalysts 
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as the bulkiness around the catalyst core to enhance tolerance to functional monomers.   

In the first part of this thesis work, bulky and conjugated phosphazenium salts 

(PZN-X; X = Cl, Br, I; Figure 6) were employed as anion sources for iron(II) halides (FeCl2 

or FeBr2).  The phosphazenium salts were originally developed by Mitsui Chemical
65

 as 

nonmetallic molecular catalysts for nucleophilic substitution reactions or ring-opening 

reactions of oxiranes with aryl carboxylates.
66

  Structurally, they are considered as bulky, 

dendritic, and conjugated cations (ca. 12 Å in diameter) where the positive charge is highly 

delocalized, effectively rendering it non-nucleophilic and well separated from the halide 

counteranion, both spatially 

and electronically.  Such a 

unique structure would 

effectively increase the 

electron density of the central 

iron and protect the complex 

from unfavorable interactions 

with functional monomers.  

 

(2) Ligand Design in Half-Metallocene Iron Complexes.    The author’s group 

has already reported that cyclopentadienyl (Cp; -C5H5) iron dicarbonyl complexes 

[CpFe(CO)2X; X = Br or I] catalyze living radical polymerizations of acrylates and styrenes 

in conjunction with a metal alkoxide as a cocatalyst [e.g., Ti(Oi-Pr)4 and Al(Oi-Pr)3].
26

  

However, the catalytic activities of the CpFe complexes were not so high, and a large amount 

was necessary for catalysis ([catalyst]0/[initiator]0 ~ 1).  More seriously, they were less 

capable to catalyze living polymerizations of methacrylates. 

Thus, the author further designed and modified the cyclopentadiene-based iron 

complexes [CpFe(CO)2X; X = Br or I] to enhance their catalytic functions, especially toward 

a higher activity to reduce catalyst amount and toward a higher functionality tolerance or 

robustness to various monomers including methacrylates (Figure 7).  Note that CpFe(CO)2X 

complexes are of the 18e structure, and such electrically saturated complexes should turn into 

unsaturated 16e forms via ligand release, in order to trigger the activation for a halide initiator.  

This catalytic mechanism encouraged the author to examine “hetero ligation”, since it might 

be prospective for the efficient structural conversion if one ligand is more labile than the other.  

Also, because of their diversity, introduction of phosphine ligands would be advantageous to 

 

Figure 6.  Phosphazenium salts  
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examine the electronic and the steric effects in catalysis.  Thus, the author embarked on the 

“hetero ligation” with one carbonyl and one phosphine [CpFe(CO)(L
phos

)Br].
67

  

N-heterocyclic carbene (NHC) was also examined as a ligand in place of the phosphine, to 

possibly enhance electron donation and bulkiness.
68

  Furthermore, design was directed to the 

substituents on the Cp ring.  Thus, pentamethyl- (Cp*; -C5Me5)
69

 and pentaphenyl (Cp
Ph

; 

-C5Ph5) cyclopentadienes
70

 were employed in place of Cp: Cp* would increase bulkiness, 

solubility, stability, and electron density of the complex; Cp
Ph

 would give the unique reactivity 

for ligand exchange
71

 and redox behavior.
72

   

 

Outline of This Study 
 

This thesis consists of two parts to deal with developments of novel iron catalysts for 

living radical polymerizations (Scheme 2).  Part I (Chapters 1-2) presents bulky and 

conjugated ionic phosphazenium salts combined with iron halides, especially focusing on 

differences with conventional onium salts.  Part II (Chapters 3-6) discusses 

 

Scheme 2.  Initiating Systems of Iron-Catalyzed Living Radical Polymerization  

 

Figure 7.  Design of half-metallocene iron catalysts  
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half-metallocene iron catalysts, where the structural transformation during polymerization is 

important for efficient catalysis.   

 

Chapter 1 deals with iron halide (FeX2; X = Cl, Br) combined with bulky, conjugated, 

and ionic phosphazenium salts (PZN-X; X = Cl, Br, I) for living radical polymerization of 

MMA (Figure 8).  With equimolar combinations of FeBr2/PZN-Br in conjunction with a 

bromide initiator [H-(MMA)2-Br], the molecular weights were precisely controlled by the 

feed ratio of the monomer to the initiator and the molecular weight distributions (MWDs) 

were quite narrow (Mw/Mn < 1.2).  In terms of activity and controllability, FeBr2/PZN-Br 

was distinguished from not only a conventional iron complex [FeBr2(PPh3)2] but also other 

hitherto known combinations of FeBr2 with onium salts such as tetrabutylammonium bromide 

(TBA-Br) or tetrabutylphosphonium bromide (TBP-Br). 

In Chapter 2, the FeBr2/PZN-Br catalytic system was applied for functional 

monomers.  It efficiently catalyzed living radical polymerization of functional methacrylate 

carrying poly(ethylene glycol) pendent group (PEGMA) to give narrow MWDs (Mw/Mn ~ 

1.2), and the tolerance to PEG groups was supported by cyclicvoltammetry (CV) 

measurements in the presence of the monomer.  This catalysis was distinguished from not 

only a conventional iron catalyst [FeBr2(PPh3)2] but also combinations of simple onium salts 

(i.e., TBA-Br and TBP-Br) with FeBr2, where the polymerizations were retarded likely due to 

deactivation of the catalysts by PEG moiety.  Also, such combinations were found to give 

controlled polymers for block copolymerization of MMA and PEGMA, random 

compolymerizations of N,N’-dimethylaminoethyl methacrylate (DMAEMA) with MMA and 

a homopolymerization of methyl acrylate (MA).   

 

 

Figure 8.  Structures of phosphazenium salts and conventional onium salts 
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Chapter 3 deals with “hetero-ligated” cyclopentadienyl (Cp) iron catalysts 

coordinated with one carbonyl and one phosphine, [CpFe(CO)(L
phos

)Br; Cp = -C5H5; L
phos

 = 

PPh3, P(OPh)3, PMePh2, PMe2Ph, P(n-Bu)3] (Figure 9).  They induced living radical 

polymerization of MMA in conjunction with a bromide-initiator [H-(MMA)2-Br] and gave 

controlled PMMAs, while the dicarbonyl (i.e., starting complex) resulted in less 

control/activity.  Among the phosphine, PMePh2 showed the best results for both activity and 

controllability (> 90% conversion within 24 h; Mw/Mn = 1.29).  Compared with a 

diphosphine complex [CpFe(PMePh2)2Br, homo ligated], these hetero-ligated catalysts are 

superior on catalytic activity, molecular weight control and tolerance to air-oxidation.  The 

concomitant high activity and high stability were attributed to the in-situ generation of a real 

active catalyst with a 16-electron configuration via the irreversible release of the carbonyl 

group from CpFe(CO)(L
phos

)Br upon the activation of a terminal C-Br bond, as confirmed by 

FT-IR monitoring of model reactions with the initiator as a dormant-end model compound.   

In Chapter 4, a cyclopentadienyl iron (II) complex coordinated with 

1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene [IMes: CpFe(CO)(IMes)Br] was employed 

for living radical polymerization to see effects of the “N-heterocyclic carbene (NHC)” ligand 

on the catalysis (Figure 9).  The complex allowed “controlled” polymerization of methyl 

acrylate (MA) to give fairly narrow MWDs (Mw/Mn ~1.3), while the phosphine derivative 

[CpFe(CO)(PMePh2)Br] resulted in less controlled polymers with much broader MWDs.  

The NHC ligand is more electron-donating ligand than any phosphine, and the redox potential 

of the complex was lower than phosphine-coordinated ones analyzed by FT-IR and CV.   

Chapter 5 focuses on a series of pentamethylcyclopentadienyl (Cp*; -C5Me5) iron 

complexes, ligated by one carbonyl and one phosphine [Cp*Fe(CO)(L
phos

)Br; L
phos

 = PPh3, 

 

Figure 9.  Ligand design of CpFe(CO)(L)Br for living radical polymerization 
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PMePh2, PMe2Ph, P(m-tol)3, and P(p-tol)3] (Figure 10).  These Cp*Fe complexes catalyzed 

living radical polymerization of MMA and gave better controlled polymers than the 

corresponding CpFe complexes [CpFe(CO)(L
phos

)Br].  Their superiority was demonstrated 

by successful monomer-addition experiments, a wider range of controllable molecular weight 

(Mn = 10
4
-10

5
), and narrower MWDs (Mw/Mn ~ 1.2).  FT-IR analysis of initiator-catalyst 

model reactions showed that an efficient carbonyl release from the original coordinatively 

saturated 18e complex [CpFe(CO)(L
phos

)Br] into the unsaturated 16e form [CpFe(L
phos

)Br] is 

important in the catalysis to generate a growing radical from the initiator.  The higher 

catalytic activity allowed controlled polymerizations of other monomers that are not available 

for CpFe catalysts, such as MA and PEGMA.  

Chapter 6 presents pentaphenylcyclopentadienyl (-C5Ph5; Cp
Ph

) dicarbonyl iron 

complex [(Cp
Ph

)Fe(CO)2Br] (Figure 11).  The complex itself was stable and inactive for the 

polymerization of MMA, however, in the presence of triphenylphosphine (PPh3), it smoothly 

polymerized MMA to give controlled polymers with narrow MWDs in conjunction with a 

bromide-initiator [H-(MMA)2-Br] (~ 90% conversion within 24 h; Mw/Mn = 1.2).  Analyses 

of the model reaction with FT-IR and 
31

P-NMR clarified that the carbonyl ligands were 

 

Figure 11.  Living radical polymerization with (Cp
Ph

)Fe(CO)2Br  

Figure 10.  Living radical polymerization with Cp
*
Fe(CO)(L

phos
)Br 
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efficiently exchanged with the phosphine for the complex to transform into real active catalyst.  

The high catalytic activity was proved by the monomer addition experiment, fine control even 

for higher molecular weight polymer (Mn ~ 10
5
; Mw/Mn < 1.2), and control for MA.  Such an 

in-situ transformation from a stable complex to an active catalyst would be advantageous to 

practical applications. 
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Abstract 

Phosphazenium halides (PZN-X; X = Cl, Br, I), highly delocalized bulky salts, turned 

out to be excellent co-catalysts to be combined with iron halides (FeX2) to form in situ active 

anionic Fe(II) complexes that effectively catalyze living radical polymerization of alkyl and 

functionalized methacrylates with improved catalytic activity and tolerance to polar 

functionalities.  For example, equimolar combinations of FeBr2/PZN-Br efficiently induced 

a living radical polymerization of methyl methacrylate (MMA) with a bromide initiator 

[H-(MMA)2-Br], to give polymers with controlled molecular weights and narrow molecular 

weight distributions (Mw/Mn < 1.2).  Polymer molecular weight could be extended upon 

addition of second feeds of monomer or at lower initiator dose, while retaining narrow 

distributions.  In terms of activity and controllability, the PZN-based catalysts were thus 

predominantly distinguished from not only a conventional iron complex [FeBr2(PPh3)2; Ph = 

C6H5] but also other hitherto known combinations of FeBr2 with such an onium salt as 

tetrabutylammonium or -phosphonium bromide, as further demonstrated by their reversible 

and hysteresis-free redox cycles with lower oxidation and reduction potentials (cyclic 

voltammetry).  The new iron catalysts could be readily removed from as-prepared polymer 

solutions by simple washing with water to give virtually colorless products with the metal 

residue below 5 ppm. 
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Introduction 

 

Design criteria for transition metal complex catalysts in organic and polymerization 

reactions often involve conflicting factors of primary importance starting with feasibility, 

activity, selectivity, substrate-versatility, and functionality-tolerance, along with those 

particularly important upon actual applications, removability, recyclability, durability, and 

cost.  Additional considerations currently prevailing include environmental friendliness, 

safety (toxicity), and global abundance (availability).  From these multi-faceted viewpoints, 

iron (Fe) would be a promising central metal for catalysts, potentially active, highly abundant, 

readily recoverable, and relatively nontoxic.
1
  

“Transition metal-catalyzed living radical polymerization”
2
 is one of such catalyzed 

reactions where metal catalysts critically contribute to the precision control of radical 

polymerization to give polymers of well-defined molecular weight, architecture, and 

functionality (Scheme 1).
2,3

  Therein a metal catalyst activates an initiator (R-X) bearing a 

carbon–halogen bond for homolysis cleavage, where the metal center itself is one-electron 

oxidized.  The primary radical species (R・) thus generated initiates radical propagation with 

some monomers to grow into a polymer chain, and afterwards the oxidized catalyst returns 

the halogen to the growing radical to regenerate a terminal carbon-halogen (dormant species), 

while it is one-electron reduced to return to the original lower-valence state complex.  To 

achieve living polymerization, the activation-deactivation process should be reversible and far 

favored to the dormant species so as to retain an extremely low radical concentration, and to 

 
 

Scheme 1.  Living Radical Polymerization of MMA with Fe(II) Complex 
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suppress bimolecular radical termination, relative to radical propagation.  Obviously, the 

efficiency depends on the metal catalyst, which is modified by the combination of a central 

metal and ligands, in accordance with the structure of dormant species derived from monomer 

and leaving halogen.  So far, a large variety of catalysts have been developed worldwide, 

where the central metals are primarily confined to ruthenium
2
 and copper,

4
 with nickel,

5
 

iron,
6-18

 and other late transition metals acquiring renewed attention. 

Iron complexes, undergoing oxidation/reduction cycle by one electron, have already 

been demonstrated to catalyze living radical polymerization, since the first example with a 

divalent iron chloride coordinated by triphenylphosphine [FeCl2(PPh3)2].
6
  As with other 

metal complexes, their catalytic performance such as activity and controllability clearly 

depends on ligands, which now also include bipyridine,
7
 cyclopentadiene,

8
 

pentamethylcyclopentadiene,
9
 isophthalic acid,

10
 imidazolidene,

11
 diimine,

12
 

diiminopyridine,
13

 salicylaldiminato,
14

 pyridylphosphine,
15

 triazacyclononane,
16

 alkyl 

phosphine,
17

 bis(oxazoline),
18

 among many others.  In addition to their inherent advantages 

of abundance and benignity, some iron catalysts are readily removed from the products by 

simply washing with water. 

However, as polymerization catalysts iron complexes seem generally inferior to the 

ruthenium or copper counterparts.  For example, some iron-complexes show lower activity 

for polymerization of methacrylates, even though they effectively work for acrylates and 

styrenes.  It is more serious that most of them are unable to catalyze living polymerizations 

of functional monomers directly, because they readily interact with polar groups to lose their 

catalytic activity.  Actually, few iron catalysts have been reported active for polar 

monomers. 

Herein the author therefore directed attention to “anionic” iron complexes as catalysts 

from the viewpoint that the higher electron density of the metal center would possibly 

enhance catalytic activity as well as tolerance to electron-rich polar functional monomers.  

For this the author have employed phosphazenium salts
19

 (PZN-X; X = Cl, Br, I; Figure 1) as 

anion resources for iron(II) halides (FeX2), to achieve living radical polymerization of methyl 

methacrylate (MMA) or functional monomers with higher controllability and activity.  

PZN-X salts were originally designed as nonmetallic molecular catalysts for nucleophilic 

substitution reactions or ring-opening reactions of oxiranes with aryl carboxylates, and 

structurally they are characterized by the bulky, dendritic, conjugated cation (ca. 12Å in 

diameter) where the positive charge is highly delocalized, effectively rendering it 
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non-nucleophilic and well separated from the halide anion, both spatially and electronically.   

Similar salt-based Fe(II) catalysts have in fact been reported for living radical 

polymerization,
20

 in which tetraalkyl-ammonium and -phosphonium salts are combined with 

FeBr2, but their overall activity appears not so high (incomplete monomer conversion), most 

likely because of the heterogeneity in polymerization media.  

In this chapter, the author examined the suitable conditions of 

iron-halide/phosphazene (FeX2/PZN-X) catalyst systems for living radical polymerization of 

MMA.  Equimolar combinations of bromide derivatives, in conjunction with a bromide 

initiator [e.g., H-(MMA)2-Br], induced living polymerization where the catalytic activity is 

clearly superior to conventional neutral phosphine complexes [e.g., FeBr2(PPh3)2] or the 

anionic ammonium and phosphonium FeBr2 salts. 

 

Results and Discussion 

 

1. Effects of Polymerization Conditions: FeBr2/Phosphazene Ratio and Polymerization 

Temperature 

First, the author examined effects of FeBr2/phosphazenium-bromide (PZN-Br) ratio on 

the polymerization of MMA coupled with bromide-initiator [H-(MMA)2-Br] in THF at 60 °C, 

where the [FeBr2]0/[PZN-Br]0 was changed to be 10/5, 10/10 and 10/20 mM for 

[MMA]0/[H-(MMA)2-Br]0 = 2000/20 mM (Figure 2).  Polymerization proceeded in 

 

Figure 1.  Structures of phosphazenium salts.  Colors in atom labeling: green 

(hydrogen), gray (carbon), purple (nitrogen) and blue (phosphorus). 
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homogeneous system under every condition and the rate was dependent on the ratio: the less 

feed of phosphazene than FeBr2 ([FeBr2]0/[PZN-Br]0 = 10/5 mM) resulted in relatively slow 

polymerization and retardation at the latter stage, while the equimolar and twice feed induced 

smooth polymerization without such deactivation.  Interestingly, the molecular weights were 

fairly controlled regardless of the conditions, although the molecular weight distributions 

became slightly broader with more feed of phosphazene (Mw/Mn > 1.25).  These results 

would suggest that the equimolar ratio is suitable for control in this system and possibly FeBr2 

forms an ionic complex, [FeBr2X]
-
,
21

 with equimolar phosphazene to catalyze the controlled 

polymerization.   

Then, the author also investigated effects of polymerization temperature (Table 1).  

Increasing temperature from 60 °C to 80 °C resulted in worse control giving broader 

molecular weight distributions [Mw/Mn = 1.14 (60 °C) vs 1.55 (80 °C)], which would be 

caused by the low thermal stability of the catalyst or the oxidized form.  Interestingly, even 

at 40 °C, the polymerization proceeded to give controlled PMMA, suggesting the catalyst 

generated from FeBr2/PZN-Br is potentially active. 

 

Figure 2.  Effects of phosphazene/iron(II) bromide ratio on living radical polymerization 

of MMA with H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C: [MMA]0 = 2000 mM; 

[H-(MMA)2-Br]0 = 20 mM; [FeBr2]0 = 10 mM; [PZN-Br]0 = 5.0 (F), 10 (H), 20 (J) mM. 
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Table 1.  Effects of Temperature on Living Radical Polymerization of MMA with 

H-(MMA)2-Br/FeBr2/PZN-Br
a 

Entry Temp (°C) Time (h) Conv. (%) Mn Mw/Mn 

1 80 72 73 6700 1.55 

2 60 72 83 10600 1.14 

3 40 72 81 7600 1.17 

a 
[MMA]0 = 2000 mM, [H-(MMA)2-Br]0 = 20 mM, [FeBr2]0 = 10 mM, [PZN-Br]0 = 10 mM 

in THF. 

 

2. Effects of Halogen: Initiator, Iron Halide, and Phosphazenium salt 

In transition metal catalyzed living radical polymerization, the halogen in growing 

terminal is likely exchanged with that of catalyst during the repeating activation process, as 

already confirmed by 
1
H-NMR analyses.

22,23
  Different halogen-combination in 

initiator/catalyst gives rise to multiple growing terminals and catalysts because of the halogen 

exchange between them, which is sometimes caused by worse control due to the irregularity.  

Additionally, in this system, the phosphazenium salt also possesses a halogen, which might 

make the halogen-exchange further complicated.  Thus, the author examined effects of the 

halogen-combination in the three components; initiator, iron halide, and phosphazene, on 

polymerization behaviors to clarify contribution of the phosphazene. 

 

Table 2.  Comparisons of Initiator, Iron halide and Phosphazene on Living Radical 

Polymerization of MMA
a
 

Entry Initiator Iron halide Phosphazene Conv. (%) Mn Mw/Mn 

1 H-(MMA)2-Br FeBr2 PZN-I 84 14200 1.20 

2 H-(MMA)2-Br FeBr2 PZN-Br 83 10600 1.14 

3 H-(MMA)2-Br FeBr2 PZN-Cl 74 9300 1.38 

4 H-(MMA)2-Cl FeBr2 PZN-Br 92 12000 1.92 

5 H-(MMA)2-Br FeCl2 PZN-Br 77 12400 1.53 

6 H-(MMA)2-Cl FeCl2 PZN-Cl 83 14200 1.73 

a
 [MMA]0 = 2000 mM, [Initiator]0 = 20 mM, [Iron halide]0 = 10 mM, [Phosphazene]0 = 10 

mM in THF at 60 °C; Polymerization time = 72 h. 
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Table 2 shows polymerization-results obtained with various combinations.  The 

polymerization rate was not so sensitive for the combination, while the Mw/Mn of the prepared 

polymer got broader as the halogen of phosphazene was changed from Br to Cl and I for 

H-(MMA)2-Br/FeBr2 system (Entry 1-3).  Although each solution of the three 

phosphazene-halogen show colorless, the color of polymerization solution, presumably based 

on the in situ formed catalyst, was clearly dependent on the phosphazene-halogen: black 

(PZN-I), orange (PZN-Br) and yellow (PZN-Cl), which would support the formation of 

anionic catalyst [FeBr2X]
-
 from the mixture of phosphazene (PZN-X).  Thus, the oxidized 

[FeBr3X]
-
, generated after activation of C-Br in the initiator, might sometimes return the X to 

growing radical, consequently giving different dormant species carrying halogen derived from 

the phosphazene.
20

  The worse control would be caused by such irregularity.  Additionally, 

Cl-based species seems to be less suitable for the iron catalyst (Entry 4-6), which is similar to 

our FeX2(PR3)2-catalyzed systems.
17

 

 

3. Comparison with Conventional Iron Catalyst: FeBr2(PPh3)2  

The author compared the catalytic performance of FeBr2/PZN-Br with the 

conventional iron catalyst [FeBr2(PPh3)2] under the same condition.  Although there was 

little difference in the polymerization rate, the controllability for molecular weight and its 

distribution was quite different (Figure 3).  With the FeBr2(PPh3)2, the molecular weight 

 

Figure 3.  Comparison of FeBr2/PZN-Br with FeBr2(PPh3)2 on living radical 

polymerization of MMA in THF at 60 °C: [MMA]0 = 2000 mM; [H-(MMA)2-Br]0 = 20 

mM; [Iron catalyst]0 = 10 mM. Iron catalyst: FeBr2/PZN-Br (J, E); FeBr2(PPh3)2 (H, C). 
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distributions (MWDs) were rather broad (Mw/Mn ~ 1.70) especially at the initial stage, and the 

number-average molecular weights (Mn) were larger than the theoretical values, assuming that 

one initiator molecule generates one polymer chain.  In contrast, the FeBr2/PZN-Br system 

gave well-controlled polymers where the Mn almost follows the theoretical line and the 

MWDs were narrow (Mw/Mn < 1.20) regardless of the monomer-conversion or 

polymerization-degree.  These results show the better controllability of the FeBr2/PZN-Br.  

 

4. Comparison with FeBr2/Conventional Onium Salts  

The phosphazene derivatives are categorized in onium salts.  Therefore, the author 

employed conventional onium salts such as ammonium and phosphonium derivatives in 

conjunction with FeBr2 to examine the difference with phosphazenium salt.  Figure 4 shows 

the time-conversion curves of the polymerization and the SEC curves of the obtained PMMAs 

for a series of onium salts under the same condition; tetrabutylammonium bromide (TBA-Br), 

tetrabutylphosphonium bromide (TBP-Br) and tetraphenylphosphonium bromide (TPP-Br), in 

addition to PZN-Br.  As reported in a previous article,
20

 the combination of iron halide with 

onium salt is likely effective as a catalyst for living radical polymerization to give controlled 

polymers.  However, the activity with PZN-Br was apparently higher than with the others as 

seen in time-conversion curve.   

 

Figure 4.  Comparison of onium salts for ligands of FeBr2 on living radical 

polymerization of MMA in THF at 60 °C: [MMA]0 = 2000 mM; [H-(MMA)2-Br]0 = 20 

mM; [FeBr2]0 = 10 mM; [Onium salt]0 = 10 mM.  Onium salt: PZN-Br (J), TBA-Br (H), 

TBP-Br (F), TPP-Br (P). 
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5. Cyclic Voltammetry of FeBr2/PZN-Br 

Observation of the redox behavior of catalysts has often supported the catalytic ability 

in living radical polymerization because it undergoes one-electron redox by reversibly 

activating carbon-halogen bond.  Thus, we measured cyclic voltammetry (CV) for the 

FeBr2/PZN-Br complex and compared the behavior with the comparable catalysts. 

For the FeBr2/PZN-Br complex, clear oxidation/reduction waves, which was likely to 

be assigned to one electron redox between Fe
II
 and Fe

III
, were seen at Epa = 0.30 V and Epc = 

0.16 V, respectively (solid line, Figure 5).  In addition to these, there were ambiguous peaks 

at from 1.0 V to 1.4 V, which would be due to PZN-Br itself because they were quite similar 

to those observed with only PZN-Br.  Importantly, the redox cycles were recurrent after 

several scans in the range of 0 to 1.4 V, indicating the trivalent species was not decomposed 

and can be reversibly converted into divalent one without assistance of an additive, in contrast 

to half-metallocene-type carbonyl iron complex [FeCpI(CO)2] and ruthenium dichloride 

phosphine complex [RuCl2(PPh3)3], requiring Ti(Oi-Pr)4 and Al(Oi-Pr)3 for such recurrent 

 
Figure 5.  Cyclic voltammograms of iron catalysts in ClCH2CH2Cl at 25 °C: [Iron 

Complex]0 = 5.0 mM; [n-Bu4NPF6]0 = 100 mM.  Iron complex: FeBr2/PZN-Br (solid 

line); FeBr2(PPh3)2 (dashed line). 
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redox cycle as well as polymerization-control.
9,24

  Interestingly, the redox potential of the 

FeBr2/PZN-Br complex [E1/2 = (Epa + Epc)/2 = 0.23 V] was lower than those of conventional 

active catalysts such as Cp*(-C5Me5)-based half-metallocene iron
9
 or ruthenium

25
 catalysts.  

The dibromide phosphine catalyst [FeBr2(PPh3)2] showed an unclear cycle (dashed line, 

Figure 5), and the behavior gradually changed as the measure was repeated, indicating the less 

stability under the redox process.   

The previous researches have indicated the trend that an enhancement of the electron 

density of a central metal contributes to a decrease in a redox potential and an increase in the 

catalytic activity.
26,27

  The mixture of FeBr2 with PZN-Br would form an ionic catalyst 

[FeBr3]
-
(PZN)

+
 and therefore the electron density of a central iron might be richer than the 

neutral iron catalyst FeBr2(PPh3)2.  Thus, the FeBr2/PZN-Br complex would show better 

catalytic performances than the neutral form for the living radical polymerization.  However, 

the superiority of the phosphazenium salt to the conventional onium salts was not clear: there 

was little difference of the redox behavior between them, coupled with FeBr2.  Such 

ionization by an onium salt certainly seems to be effective to promote the efficiency of the 

redox cycle.   

 

6. High Controllability of FeBr2/PZN-Br System: Monomer Addition and Synthesis of 

High Molecular Weight Polymer 

To investigate the living nature for the FeBr2/PZN-Br catalyzed system, the author 

added a fresh MMA to the polymerization solution when the MMA-conversion reached over 

80%.  In the second phase, MMA was smoothly consumed to give additional 84% 

conversion (totally 167%) (Figure 6).  The SEC analysis of the obtained polymers showed 

the high controllability even after the addition, where the Mn increased in direct proportion 

with the conversion and the peak top was shifted to higher molecular weight keeping narrow 

MWD, although just a slight tailing was detected.   

The high controllability of FeBr2/PZN-Br system encouraged the author to synthesize 

higher molecular weight polymers with narrow MWDs.  We varied the monomer/initiator 

ratio from 100 to 200, 400, 1000 targeting 20,000, 40,000, 100,000 (for 100% conversion) of 

Mn (Figure 7).  Under every condition, the MWDs of the obtained PMMAs were kept 

narrow (Mw/Mn < 1.20) and the molecular weights agreed well with the theoretical values, 

calculated from the feed ratio and the conversion, even for nearly 100,000 of Mn.  These 

results indicate that the FeBr2/PZN-Br was highly active for living radical polymerization of  
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Figure 7.  Synthesis of high molecular weight PMMA targeted 100 mer (A), 200 mer (B), 

400 mer (C), 1000 mer (D) with H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C:  

(A) [MMA]0 = 2000 mM; [H-(MMA)2-Br]0 = 20 mM; [FeBr2]0 = 10 mM; [PZN-Br] 

 =10 mM, (B) [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 20 mM; [FeBr2]0 = 10 mM; 

[PZN-Br]0 =10 mM, (C) [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 10 mM; [FeBr2]0 = 5.0 

mM; [PZN-Br]0 =5.0 mM, (D) [MMA]0 = 5000 mM; [H-(MMA)2-Br]0 = 5.0 mM; [FeBr2]0 

= 5.0 mM; [PZN-Br]0 =5.0 mM. 

 

Figure 6.  Monomer-addition experiments in the polymerization of MMA with 

H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C: [MMA]0 = [MMA]add = 2000 mM; 

[H-(MMA)2-Br]0 = 20 mM; [FeBr2]0 = 10 mM; [PZN-Br]0 =10 mM. 
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MMA and effective for wide range of molecular weight control.   

 

7. Polymerization of Functional Monomer 

Most conventional iron-catalysts interact with functional groups (e.g., ethylene glycol, 

hydroxyl, amino, and carboxyl groups, etc.), and thus they unfavorably turn into 

“deactivation” to lose the catalysis for monomers bearing such functional groups, although 

such functional monomers are essential for preparation of advanced polymeric materials.  

Here, the author applied the ionic catalyst, generated from FeBr2 and PZN-Br, to 

polymerization of one of functional methacrylates, PEGMA, carrying a poly(ethylene glycol) 

pendant group, coupled with H-(MMA)2-Br as an initiator in toluene at 60 °C.   

In sharp contrast to little activity of the conventional iron catalyst [FeBr2(PPh3)2], as 

seen in the time-conversion curve in Figure 8, the FeBr2/PZN-Br catalyst showed higher 

activity even for such functional monomer, where PEGMA was smoothly polymerized in 

high conversion (> 90%) for 40 h without retardation.  The SEC curves of the obtained 

poly(PEGMA) was shifted to higher molecular weight with the monomer conversion and the 

molecular weight distributions were relatively narrow regardless of the conversion (Mw/Mn < 

1.25).  The bulky and conjugated structure of phosphazene ligand would contribute to the 

 

Figure 8.  Comparison of FeBr2/PZN-Br with FeBr2(PPh3)2 on living radical 

polymerization of PEGMA in toluene at 60 °C: [PEGMA]0 = 500 mM; [H-(MMA)2-Br]0 = 

5.0 mM; [Iron catalyst]0 = 5.0 mM. Iron catalyst: FeBr2/PZN-Br (J); FeBr2(PPh3)2 (H). 
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protection of the iron center against polar functional groups.  In Chapter 2, the tolerance to 

functional groups of phosphazene was discussed in detail. 

 

8. Removal of Catalyst 

Finally, the author examined the removability of the FeBr2/PZN-Br catalyst from the 

products after the polymerization of MMA.  The polymerization solution expressed 

rust-color derived from the catalyst, but only water washing, followed by dilution with 

toluene, made the solution colorless.  The ICP-AES (Inductively Coupled Plasma-Atomic 

Emission Spectrometry) analysis of the obtained polymer after three-times washing showed 

that it contained less than 5 ppm iron, namely nearly perfect removability of the catalyst.   

 

 

Conclusion 

 

Phosphazenium bromide (PZN-Br) with FeBr2 was effective as a catalyst for living 

radical polymerization of MMA.  The catalytic performance was maximized with an 

equimolar mixture of the both, indicating they would form an equimolar anionic complex.  

The FeBr2/PZN-Br catalyst possessed higher activity/controllability than a conventional 

iron-catalyst [FeBr2(PPh3)2] or the combinations with other conventional onium-halogen salts, 

demonstrated by the successful chain-extension by monomer addition and fine control even 

for high molecular weight polymer (Mn ~ 90,000; Mw/Mn < 1.20).  More importantly, the 

catalyst showed high activity even for living polymerization of PEGMA, one of the functional 

methacrylates, which is quite distinguished from previous iron catalysts.  Despite of such 

tolerance to functional groups, the catalyst was almost quantitatively removed by just 

water-washing.  Therefore, the catalyst would open the door to new development for actual 

application of iron-catalyzed living radical polymerization.   

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99%) was dried overnight over calcium chloride and purified by 

double distillation from calcium hydride before use.  Poly(ethyleneglycol) methacrylate 
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[PEGMA; CH2=CMeCO2(CH2CH2O)nMe; Me = CH3; n = 8.5 on average] (Aldrich) was 

purified by passing through an inhibitor removal column (Aldrich) and was subsequently 

degassed by three-time vacuum-argon bubbling cycles before use.  The MMA-dimeric 

initiators [H-(MMA)2-X; X = Cl,
22

 Br
23

] were prepared according to literature.  Iron bromide 

(Aldrich; purity >98%), iron chloride (Kanto Kagaku >97%), tetrabutylammonium bromide 

(TCI, >98%), tetrabutylphosphonium bromide (TCI >99%), and tetraphenylphosphonium 

bromide (TCI >98%), were used as received and handled in a glove box (M. Braun Labmaster 

130) under a moisture- and oxygen-free argon atmosphere (H2O <1 ppm; O2 <1 ppm).  The 

phosphazenium salts were received form Mitsui Chemical, Inc.
28

 and handled in a glove box.  

THF was passed through purification columns (Solvent Dispensing System) and bubbled with 

dry nitrogen for more than 15 min immediately before use.  n-Octane (internal standard for 

gas chromatography) and 1,2,3,4-tetrahydronaphthalene (tetralin; internal standard for 
1
H 

NMR) were dried over calcium chloride and distilled twice from calcium hydride. 

 

Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for MMA polymerization with H-(MMA)2-Br/FeBr2/PZN-Br was as follows.  In a 50-mL 

round-bottom flask, FeBr2 (9.7 mg, 0.045 mmol), PZN-Br (36.9 mg, 0.045 mmol) and THF 

(3.23 mL) were added under dry argon and stirred at 60 °C in 5 minutes.  After cooling to 

room temperature, n-octane (0.12 mL), MMA (0.96 mL, 9 mmol), and H-(MMA)2-Br (0.19 

mL of 480 mM in toluene, 0.09 mmol) were added sequentially under dry argon.  The total 

volume of reaction mixture was thus 4.5 mL.  Immediately after mixing, aliquots (0.60 mL 

each) of the solution were injected into glass tubes which were then sealed (except when a 

stopcock was used) and placed in an oil bath kept at desired temperature.  In predetermined 

intervals, the polymerization was terminated by cooling the reaction mixtures to -78 ºC.  

Monomer conversion was determined from the concentration of residual monomer measured 

by gas chromatography with n-octane as an internal standard.  The quenched reaction 

solutions were diluted with toluene (ca. 20 mL), washed with water three times, and 

evaporated to dryness to give the products that were subsequently dried overnight under 

vacuum at room temperature. 

For PEGMA, the same procedures as described above were applied except that 

monomer conversion was determined by 
1
H NMR from the integrated peak area of the 
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olefinic protons of the monomers with tetralin as internal standard.  The products were 

similarly isolated but without washing with water because of their hydrophilicity 

 

Measurements 

The molecular weight distribution, Mn, and Mw/Mn values of polymers measured in 

chloroform at 40 ºC on three polystyrene gel columns [Shodex K-805L (pore size: 20-1000Å; 

8.0 mm i.d.×30 cm) ×3; flow rate 1.0 mL/min] connected to a Jasco PU-980 precision pump 

and a Jasco 930-RI refractive-index detector, and 970-UV ultraviolet detector.  The columns 

were calibrated against 13 standard PMMA samples (Polymer Laboratories; Mn = 

630-1,200,000; Mw/Mn = 1.06-1.22) as well as the monomer.  For poly(PEGMA), DMF 

containing 10 mM LiBr was applied as an eluent.  
1
H-NMR spectra of the obtained polymers 

were recorded in CDCl3 at 25 °C on a JEOL JNM-LA500 spectrometer operating at 500.16 

MHz.  Polymers for 
1
H-NMR analysis were fractionated by preparative SEC (column: 

Shodex K-2002).   

Cyclic voltammograms were recorded by using a Hokuto Denko HZ-3000 apparatus.  

The sample-preparation for FeBr2/PZN-Br catalyst is described.  FeBr2 (8.6 mg, 0.040 

mmol), PZN-Br (32.8 mg, 0.040 mmol) and THF (8 mL) were added sequentially in a baked 

glass tube equipped with a three-way stopcock under argon and stirred at 60 °C for 3 h.  

After heating, solvent was evaporated and a solution of n-Bu4NPF6 (supporting electrolyte) in 

CH2ClCH2Cl solution (100 mM, 8 mL) was added into the tube under argon.  Measurements 

were carried out at 0.1 Vs
-1

 under argon.  A three-electrode cell was used which was 

equipped with a platinum disk as a working electrode, a platinum wire as a counter electrode, 

and an Ag/AgCl electrode as a reference. 
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Chapter 2 

 

 

Versatility and Tolerance to Monomer Functionalities: 

Functional Methacrylates and Methyl Acrylate 

 

 

 

 

Abstract 

The combination of phosphazenium halides (PZN-X; X = Cl, Br, I), with iron bromide 

(FeBr2) turned to be active catalysts for living radical polymerization of various monomers 

including functional ones.  For example, the equimolar combination of FeBr2 and PZN-Br 

efficiently catalyzed living radical polymerization of a functional methacrylate carrying 

poly(ethylene glycol) pendent group (PEGMA) to give narrow molecular weight distributions 

(MWDs; Mw/Mn ~ 1.2).  This catalysis was distinguished from not only a conventional iron 

catalyst [FeBr2(PPh3)2] but also combinations of simple onium salts (i.e., ammonium and 

phosphonium) with FeBr2, where the polymerizations were retarded or likely due to 

deactivation of the catalysts by ethylene glycol moiety.  The system also allowed 

quantitative block copolymerizations of methyl methacrylate (MMA) and PEGMA regardless 

of the addition order.  Also, such combinations were found to give controlled polymers for 

random compolymerizations of N,N’-dimethylaminoethyl methacrylate (DMAEMA) with 

MMA and a homopolymerization of methyl acrylate (MA). 
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Introduction 

 

Precise structural control of functional polymers would lead to advanced materials 

with renewed functionalities.  Living radical polymerization is one of the essential methods 

to produce such well-defined functional polymers, because it essentially allows direct 

polymerizations of functional monomers without the protection of their pendent groups due to 

the neutral species, distinguished from ionic polymerizations.   

“Transition metal-catalyzed living radical polymerization” is one of systems for living 

radical polymerization.
1
  In this polymerization, a transition-metal catalyst (Mt

n
 n = valence 

number) activates an initiator (R-X) bearing a carbon-halogen bond for homolysis cleavage, 

where the metal center itself is one-electron oxidized (from Mt
n
 to Mt

n+1
), as shown in 

Scheme 1.  The radical species (R・) thus generated initiates radical propagation with some 

monomers to grow into a polymer chain, and afterwards the oxidized catalyst returns the 

halogen to the growing radical to regenerate a terminal carbon-halogen (dormant species), 

while it is one-electron reduced to return to the original lower-valence state complex (from 

Mt
n+1

 to Mt
n
).  Among the components, the catalyst is most essential to control the system, 

and so far ruthenium (Ru)
2
 and copper (Cu)

3
 complexes has been centrally developed as the 

catalyst toward higher catalytic activity and better control for a variety of monomers. 

On the other hand, the practical utilities have been also required for the catalysts along 

with the catalytic functions.  In this regard, iron complexes should be potential candidates 

because the metal, i.e., “Fe” is environmentally benign, safe, less toxic, biocompatible, and 

abundant.
4
  Since the first successful report with FeCl2(PPh3)2,

5
 Fe(II) complexes 

 

 

Scheme 1.  Transition Metal-Catalyzed Living Radical Polymerization 
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coordinated with various ligands in living radical polymerization has been developed.
6-17

  

However, these iron complexes were inferior to the ruthenium- and copper-based vanguards 

in terms of activity for functional monomers because of the unfavorable interaction with their 

polar pendant groups resulting in deactivation of their catalysts. 

In Chapter 1, the author presented that the combination of phosphazenium halides 

(PZN-X; X = Cl. Br, I) with iron bromide (FeBr2) was active catalysts for living radical 

polymerization of methyl methacrylate (MMA) (Figure 1).  The catalytic activity was higher 

than a conventional iron catalyst [FeBr2(PPh3)2] and similar combination with onium salts 

[e.g. tetrabutylammonium bromide (TBA-Br) and tetrabutylphosphonium bromide (TBP-Br)].  

Phosphazenium salts were effective anion-resources for iron halide and enhanced electric 

density of iron, and their unique catalytic activities were induced by the bulkiness (ca. 12Å in 

diameter), the conjugated structure for delocalization of electron, and the remotely separated 

anion from the central cation due to the dendritic structure.
18

  Such unique structure 

encouraged the author to examine other monomers especially for functional ones, since the 

deactivation might be prevented.   

In this chapter, the author employed the phosphazenium system for other monomers 

except MMA: a methacrylate carrying poly(ethylene glycol) pendent group (PEGMA), 

N,N’-dimethylaminoethyl methacrylate (DMAEMA), and methyl acrylate (MA).  A 

combination of FeBr2/PZN-Br induced living radical polymerization of PEGMA to give high 

conversion (> 90%) and narrow molecular weight distributions (MWDs), distinguished from 

comparative counterparts, and the tolerance of PEG side chain was demonstrated with 

cyclicvoltammetry (CV) analyses.  Furthermore, the system allowed control for block 

copolymerization of MMA and PEGMA, random copolymerization of MMA and DMAEMA, 

and homopolymerization of MA. 

 

 

Figure 1.  Onium salts for FeBr2 
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Results and Discussion 

 

1. Polymerization of PEGMA 

At first, an equimolar combination of FeBr2 with phosphazenium bromide (PZN-Br) 

was employed for polymerization of PEGMA in conjunction with bromide initiator 

[H-(MMA)2-Br] in toluene at 60 °C ([PEGMA]0/[H-(MMA)2-Br]0/[FeBr2]0/[PZN-Br]0 = 

500/5/5/5 mM).  While the conventional iron catalyst [FeBr2(PPh3)2] exhibited little catalytic 

activity, the phosphazenium system induced a smooth polymerization where the 

monomer-conversion reached over 90% within 48 h without retardation (Figure 2).   

The molecular weights of the obtained poly(PEGMA)s linearly increased as the 

conversion and the SEC curves shifted to higher molecular weight keeping the narrow 

molecular weight distributions (Mw/Mn < 1.3), indicating a high degree of control over the 

polymerization (Figure 3).  Note that the discussion on the controllability for molecular 

weight is less essential because the molecular weights were measured under the calibration 

with standard PMMAs. 

The phosphazenium salt was compared with other onium salts such as 

tetrabutylammonium bromide (TBA-Br) and tetrabutylphosphonium bromide (TBP-Br) in the 

 

Figure 2.  Polymerization of PEGMA with FeBr2/onium salt with H-(MMA)2-Br in 

toluene at 60 °C: [PEGMA]0 = 500 mM; [H-(MMA)2-Br]0 = 5.0 mM; [FeBr2]0 = 5.0 mM; 

[Onium salt]0 = 5.0 mM.  Onium salt: PZN-Br (J); TBP-Br (H); TBA-Br (B). Iron 

catalyst: FeBr2(PPh3)2 (5.0 mM) (E). 
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polymerization of PEGMA, coupled with equimolar FeBr2.  A combination with TBA-Br 

showed little catalytic activity for PEGMA, although it catalyzed MMA polymerization at 

moderate rate (60%, 72 h).
18

  With TBP-Br, the conversion reached ~50%, however the 

polymerization was gradually retarded.  These results suggested that the high catalytic 

activity for PEGMA was specific to with the phosphazenium salt and the bulky and 

conjugated structure would be contribute to protect the iron center from an unfavorable 

interaction with the polar PEG side group. 

 

2. CV analysis: Tolerance to PEG group 

The catalysis in metal-catalyzed living radical polymerization is based on the redox 

behavior (Mt
n
 ↔ Mt

n+1
) of the catalyst, and then observation of the redox potential often 

supports the catalytic activity.  Thus, the author measured cyclic voltammetry (CV) for the 

FeBr2/PZN-Br after heating with PEGMA to see the tolerance of the PEG moiety for the 

complex.  The sample was prepared in ClCH2CH2Cl solution with n-Bu4NPF6 as a 

supporting electrolyte, followed by heating the toluene solution 

([FeBr2]0/[PZN-Br]0/[PEGMA]0 = 5/5/5 mM) at 60 °C for 3 h and evaporation of the toluene. 

As presented in Chapter 1, the FeBr2/PZN-Br complex showed a clear 

oxidation/reduction wave, derived from one electron redox between Fe
II
 and Fe

III
 at Epa = 0.30 

 
Figure 3.  Polymerization of PEGMA with H-(MMA)2-Br/FeBr2/PZN-Br in toluene at 

60 °C: [PEGMA]0 = 500 mM; [H-(MMA)2-Br]0 = 5.0 mM; [FeBr2]0 = 5.0 mM; [PZN-Br]0 

= 5.0 mM. 
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V and Epc = 0.16 V (Figure 4A, dashed line).  The other peaks at higher voltage are likely 

due to the redox of PZN-Br itself.  Even after the heating with PEGMA, it showed a similar 

redox wave (Figure 4A, solid line), and the redox cycle was recurrent after several scan.  The 

result supports that not only the Fe(II) complex but also the Fe(III) species are tolerance of the 

functional monomer.  On the other hand, the redox waves of conventional iron catalyst 

[FeBr2(PPh3)2] were clearly changed via the heating with PEGMA (Figure 4B).  Thus, the 

superior catalysis of the FeBr2/PZN-Br complex for PEGMA was supported even with the CV 

analyses. 

 

3. Block Copolymerization of MMA and PEGMA  

Given the catalytic activity of FeBr2/PZN-Br for both MMA and PEGMA, the author 

performed a block copolymerization of MMA and PEGMA via sequential monomer-addition.  

MMA (100 eq to initiator) was first polymerized with the complex and the initiator in THF at 

60 °C.  When the conversion reached 85% in 100 h, PEGMA (50 eq) was added into the 

reaction mixture along with fresh FeBr2/PZN-Br (Figure 5).  The added PEGMA was 

smoothly consumed and the conversion reached 85% within 168 h (total 268 h).  SEC curves 

shifted to high molecular weights keeping narrow distributions (Mw/Mn = 1.30), although 

small shoulders were seen on both sides of the main peak, probably caused by unavoidable 

 

Figure 4.  Cyclic voltammograms of iron catalyst/PEGMA (5.0/5.0 mM) in ClCH2CH2Cl 

at 25 °C: [n-Bu4NPF6]0 = 100 mM (supporting electrolyte).  Aging in toluene at 60 °C for 

3 h before measurement (solid line); fresh catalyst without PEGMA and aging (dashed 

line).  Iron catalyst: FeBr2/PZN-Br (A); FeBr2(PPh3)2 (B). 
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side-reactions.   

Figure 6 shows 
1
H NMR spectra of PMMA prepolymer (Figure 6A) and 

PMMA-b-PPEGMA block copolymer (Figure 6B), obtained in the block copolymerization.  

For the former, in addition to the characteristic peaks of a PMMA main chain (a-c), a small 

peak of methoxy protons in the terminal MMA unit adjacent to the -end C-Br bond was 

observed at 3.7 ppm [c(), Figure 6A].  For the latter, the small peak was disappeared, and 

then new peaks of the PEGMA repeat unit (d-h) were observed.  These results suggested that 

the PEGMA was almost quantitatively polymerized from PMMA terminal to give the block 

copolymer. 

Furthermore, the author synthesized the block copolymer with the reverse order 

(PEGMA → MMA).  Thus, PEGMA (50 eq to the initiator) was first polymerized with the 

FeBr2/PZN-Br complex in THF at 60 °C, and then MMA was sequentially added when the 

PEGMA conversion exceeded 90% (Figure 7).  The added MMA was smoothly consumed 

and the conversion finally reached 88% in 72 h (total 102 h).  The SEC curves shifted to 

high molecular weights keeping the narrow distributions (Mw/Mn = 1.16).  Thus, the 

FeBr2/PZN-Br complex was found to exhibit a high catalytic activity for living radical 

polymerization of PEGMA. 

 

Figure 5.  SEC curves of PMMA and PMMA-b-PPEGMA obtained with 

H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C: [MMA]0= 2000 mM; [H-(MMA)2-Br]0 = 

20 mM; [FeBr2]0 = 10 mM; [PZN-Br]0 =10 mM; [PEGMA]add = 1000 mM; [FeBr2]add = 10 

mM; [PZN-Br]add = 10 mM. 
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Figure 6.  
1
H NMR analysis of PMMA and PMMA-b-PPEGMA obtained with 

H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C: [MMA]0= 2000 mM; [H-(MMA)2-Br]0 = 

20 mM; [FeBr2]0 = 10 mM; [PZN-Br]0 =10 mM; [PEGMA]add = 1000 mM; [FeBr2]add = 10 

mM; [PZN-Br]add = 10 mM. 

 

Figure 7.  SEC curves of PPEGMA and PPEGMA-b-PMMA obtained with 

H-(MMA)2-Br/FeBr2/PZN-Br in THF at 60 °C: [PEGMA]0= 1000 mM; [H-(MMA)2-Br]0 

= 20 mM; [FeBr2]0 = 10 mM; [PZN-Br]0 =10 mM; [MMA]add = 2000 mM; [FeBr2]add = 5.0 

mM; [PZN-Br]add =5.0 mM. 
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4. (Co)Polymerization of DMAEMA  

N,N’-Dimethylaminoethyl methacrylate (DMAEMA) is the one of the common 

functional monomers, however, iron-catalyzed living radical polymerization systems for 

DMAEMA have never reported, because the pendant amino group likely interacts with the 

iron to reduce or lose the activity.  The high activity of the FeBr2/PZN-Br complex for 

PEGMA encouraged the author to employ it for polymerization of DMAEMA.   

Homopolymerization of DMAEMA was attempted with the FeBr2/PZN-Br complex, 

in conjunction with H-(MMA)2-Br as an initiator in toluene at 60 °C.  The monomer was 

smoothly and quantitatively polymerized (95%, 48 h), however the polymerization was less 

controlled to give broad MWDs (Table 1, Entry 1).  The amino group would alter the 

catalytic functions via some interaction.  Thus, copolymerizations of DMAEMA and MMA 

were examined with the fixed total monomer concentration, 2000 mM (Table 1, Entry 2-4).  

With less or same amount of DMAEMA, they both were consumed at the same rate and the 

obtained polymers were fairly controlled with reasonable Mns and narrow MWDs.  The 

controllability, judged from the MWD narrowness, was higher than that with the conventional 

catalyst [FeBr2(PPh3)2] (Table 1, Entry 5-7).  Figure 8 shows one example indicating the 

difference of catalysis between the two catalysts for the copolymerization 

([MMA]0/[DMAEMA]0 = 1600/400 mM).  As seen in the time-conversion curves and the 

 

Figure 8.  Comparison of FeBr2/PZN-Br and FeBr2(PPh3)2 on random copolymerization 

of MMA and DMAEMA with H-(MMA)2-Br in toluene at 60 °C: [MMA]0 = 1600 mM; 

[DMAEMA]0 = 400 mM; [H-(MMA)2-Br]0 = 20 mM; [Iron Catalyst]0 = 10 mM.  Iron 

catalyst: FeBr2/PZN-Br (J, H); FeBr2(PPh3)2 (E, C). 
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SEC traces of the products, the FeBr2/PZN-Br complex gave faster polymerization and 

narrower MWDs of produced copolymers than FeBr2(PPh3)2.  Thus, the phosphazenium 

system found to be effective even for copolymerizations of DMAEMA and MMA. 

 

 

Table 1.  Copolymerization of MMA and DMAEMA with Iron Catalysts
a
 

Entry Catalyst 
Monomer (mM) 

(MMA/DMAEMA) 

Time 

(h) 

Conversion (%) 

(MMA/DMAEMA) 
Mn Mw/Mn 

1 

FeBr2/PZN-Br 

    0/2000 48 
 _

 /95 21600
b
 5.89

b
 

2 1800/200 72 81/86 8300
c
 1.13

c
 

3 1600/400 72 83/85 7400
c
 1.23

c
 

4  1000/1000 72 81/83 7300
 c
 1.27

c
 

5 

FeBr2(PPh3)2 

1800/200 168 79/83 8000
c
 1.24

c
 

6 1600/400 72 78/80 6600
c
 1.48

c
 

7  1000/1000 72 80/82 6900
c
 1.31

c
 

a
 [H-(MMA)2-Br]0 = 20 mM; [Catalyst]0 = 10 mM in toluene at 60 °C. 

b
 Analyzed by DMF GPC  

c
 Analyzed by THF GPC  

 

5. Polymerization of MA 

Finally, controlled polymerization of MA was attempted with the phosphazenium 

system.  The optimum condition for MMA was first applied for the polymerization 

([MA]0/[H-(MMA)2-Br]0/[FeBr2]0/[PZN-Br]0 = 2000/20/10/10 mM).  In contrast to the 

MMA polymerization, the polymerization suspended at ~30% conversion and the MWDs of 

the product were much broader (Figure 9). 

Thus, the monomer concentration and the halide of the phosphazenium ion were 

changed to improve the activity and controllability.  As the monomer concentration was 

increased to 4 M, the conversion reached over 50% (Figure 10A).  When the phosphazenium 

iodide (PZN-I) was employed in place of the bromide (PZN-Br), the MWDs of the produced 

polymers became narrower (Figure 10B).  The iodide anion is more dissociative than the 

bromide, and then the ionization effect would favorably contribute to the improvement in the 

catalytic activity.  As the monomer concentration was further increased to 6 M with PZN-I, 
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the conversion finally reached over 70% and the molecular weights and the MWDs were 

fairly controlled (Figure 10C).  The polymerization was performed with the conventional 

complex [FeBr2(PPh3)2] under the same condition to see the catalytic superiority: the MWDs 

of the products were broader with multimodal peaks, indicating poorer control (Figure 10D).  

Thus, the phosphazenium system was found to be useful for controlled polymerization of MA, 

although the activity was still insufficient. 

 

 

Figure 9.  Polymerization of MMA and MA with H-(MMA)2-Br/FeBr2/PZN-Br in THF 

at 60 °C: [Monomer]0 = 2000 mM; [H-(MMA)2-Br]0 = 20 mM; [FeBr2]0 = 10 mM; 

[PZN-Br]0 = 10 mM.  

 

 

 

Figure 10.  Effects of iron catalysts on polymerization of MA with H-EMA-Br in THF at 

80 °C: (A), (B): [MA]0 = 4000 mM; [H-EMA-Br]0 = 40 mM; [FeBr2]0 = 20 mM; 

[PZN-X]0 = 20 mM. (C): [MA]0 = 6000 mM; [H-EMA-Br]0 = 60 mM; [FeBr2]0 = 30 mM; 

[PZN-I]0 = 30 mM. (D): [MA]0 = 6000 mM; [H-EMA-Br]0 = 60 mM; [FeBr2(PPh3)2]0 = 30 

mM. 
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Conclusion 

 

A phosphazenium bromide combined with FeBr2 (FeBr2/PZN-Br) was effective for 

living radical polymerization of functional methacrylate carrying poly(ethylene glycol) 

pendent group (PEGMA) to give controlled polymers, with narrow MWDs (Mw/Mn ~ 1.2). 

This catalytic system exhibited a significant improvement of the catalytic activity, compared 

with simple onium salts or the conventional iron catalyst [FeBr2(PPh3)2].  The 

phosphazenium system also gave better control for copolymerizations of DMAEMA with 

MMA and homopolymerization of MA than FeBr2(PPh3)2.  The bulkiness and conjugated 

structure of the phosphazenium salts would contribute to such an enhancement of the catalysis 

for controlled polymerizations of polar or coordinating monomers.  

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99%) was dried overnight over calcium chloride and purified by 

double distillation from calcium hydride before use.  MA (TCI; purity >99%) was dried 

overnight over calcium chloride and purified by distillation from calcium hydride before use.  

Poly(ethylene glycol) methyl methacrylate [PEGMA; CH2=CMeCO2(CH2CH2O)nMe; Me = 

CH3; n = 8.5 on average] (Aldrich) and N,N’-dimethylaminoethyl methacrylate (DMAEMA) 

(TCI; purity >98 %) were of commercial source and purified by passing through an inhibitor 

removal column (Aldrich) and degassed by reduced pressure before use.  The MMA-dimer 

bromide [H-(MMA)2-Br; H-(CH2CMeCO2Me)2-Br] as an initiator was prepared according to 

literature.
19

  Iron bromide (Aldrich; purity >98%), tetrabutylammonium bromide (TCI; 

>98%), and tetrabutylphosphonium bromide (TCI; >99%) were used as received and handled 

in a glove box (M. Braun Labmaster 130) under a moisture- and oxygen-free argon 

atmosphere (H2O <1 ppm; O2 <1 ppm).  The phosphazenium salts were received form 

Mitsui Chemical, Inc. and handled in a glove box.
20

  Toluene and THF (Kishida Kagaku; 

purity >99%) were passed through purification columns (Solvent Dispensing System; Glass 

Contour) and bubbled with dry nitrogen for more than 15 min immediately before use.  

n-Octane (internal standard for gas chromatography) and 1,2,3,4-tetrahydronaphthalene 

(tetralin; internal standard for 
1
H NMR analysis) was dried over calcium chloride and distilled 
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twice from calcium hydride. 

 

Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for PEGMA polymerization with (MMA)2-Br/FeBr2/PZN-Br was as follows.  In a 50-mL 

round-bottom flask, FeBr2 (4.85 mg, 0.0225 mmol), PZN-Br (36.9 mg, 0.0225 mmol) and 

toluene (3.27 mL) were added under dry argon and stirred at 60 °C in 5 minutes.  After 

cooling to room temperature, tetralin (0.20 mL), PEGMA (0.99 mL, 2.25 mmol), and 

H-(MMA)2-Br (0.043 mL of 519 mM in toluene, 0.0225 mmol) were added sequentially 

under dry argon.  The total volume of reaction mixture was thus 4.5 mL.  Immediately after 

mixing, aliquots (0.60 mL each) of the solution were injected into glass tubes which were 

then sealed (except when a stopcock was used) and placed in an oil bath kept at desired 

temperature.  In predetermined intervals, the polymerization was terminated by cooling the 

reaction mixtures to -78 ºC.  Monomer conversion was determined by 
1
H NMR from the 

integrated peak area of the olefinic protons of the monomers with tetralin as internal standard.    

The quenched reaction solutions were diluted with toluene (ca. 20 mL) without washing with 

water and evaporated to dryness to give the products that were subsequently dried overnight 

under vacuum at room temperature.  For DMAEMA, the same procedures as described 

above were applied.   

For MMA and MA, the same procedures as described above were applied except that 

monomer conversion was determined from the concentration of residual monomer measured 

by gas chromatography with n-octane as an internal standard and polymer solutions were 

washed with water three times before evaporation.  

 

Measurements 

The molecular weight distribution, Mn, and Mw/Mn values of homopolymers of 

PEGMA and DMAEMA and block copolymers of MMA and PEGMA were measured by SEC 

in DMF containing 10 mM LiBr at 40 °C on three polystyrene gel columns [Shodex KF-805L 

(pore size: 20-1000Å; 8.0 mm i.d.×30 cm) ×3; flow rate 1.0 mL/min] connected to a Jasco 

PU-980 precision pump and a Jasco 930-RI refractive-index detector, and UV-970 UV/vis 

detector set at 270 nm.  The columns were calibrated against 11 standard PMMA samples 

(Polymer Laboratories; Mn = 1,000-1,200,000; Mw/Mn = 1.06-1.22) as well as MMA 
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monomer. 

Random copolymers of MMA and DMAEMA were measured by SEC in THF at 40 

C using three polystyrene gel columns [Shodex KF-400RL  2 and KF-400RH] that were 

connected to a Shodex DU-H2000 precision pump, a Shodex RI-74 refractive index detector, 

and a Shodex UV-41 UV/vis detector set at 250 nm.  The columns were calibrated against 11 

standard PMMA samples (Polymer Laboratories; Mn = 1,000-1,200,000; Mw/Mn = 1.06-1.22).    

1
H-NMR spectra of the obtained polymers were recorded in CDCl3 at 25 °C on a 

JEOL JNM-LA500 spectrometer operating at 500.16 MHz.  Polymers for 
1
H-NMR analysis 

were fractionated by preparative SEC.   

Cyclic voltammograms were recorded by using a Hokuto Denko HZ-3000 apparatus.  

The sample-preparation for PEGMA/FeBr2/PZN-Br catalyst is described.  PEGMA (0.6 mL 

of 50 mM in toluene, 0.030 mmol), FeBr2 (6.5 mg, 0.030 mmol), PZN-Br (24.6 mg, 0.030 

mmol) and toluene (6 mL) were added sequentially in a baked glass tube equipped with a 

three-way stopcock under argon and stirred at 60 °C for 3 h.  After heating, solvent was 

evaporated and a solution of n-Bu4NPF6 (supporting electrolyte) in CH2ClCH2Cl solution (100 

mM, 6 mL) was added into the tube under argon.  Measurements were carried out at 0.1 Vs
-1

 

under argon at 25 °C.  A three-electrode cell was used which was equipped with a platinum 

disk as a working electrode, a platinum wire as a counter electrode, and an Ag/AgCl electrode 

as a reference. 
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Chapter 3 

 

 

Carbonyl/Phosphine Hetero-Ligated 

Cyclopentadienyl Iron Catalysts: 

Catalytic Activity and Polymerization Mechanism 

 

 

 

Abstract 

Two neutral ligands, carbonyl and phosphine, were cooperatively incorporated into 

half metallocene iron(II) complexes [CpFeBr(CO)(L
phos

); Cp = C5H5; L
phos

 = PPh3, P(OPh)3, 

PMePh2, PMe2Ph, P(n-Bu)3] for more active and versatile systems in transition 

metal-catalyzed living radical polymerization.  For methyl methacrylate (MMA) with a 

bromide initiator [Me2C(CO2Me)CH2C(Me)-(CO2Me)Br; Me = CH3] [H-(MMA)2-Br], these 

hetero-ligated catalysts are superior, in terms of catalytic activity and molecular weight 

control, to similar homo-ligated half-metallocenes carrying two identical ligands such as 

CpFe(CO)2Br and CpFe(L
phos

)2Br.  Among the CpFe(CO)(L
phos

)Br complexes examined, 

CpFe(CO)(PMePh2)Br showed the highest activity and the best controllability (> 90% 

conversion within 24 h; Mw/Mn = 1.29), and the “living” character of the polymerizations 

therewith was proved by sequential monomer-addition experiments.  In spite of the high 

activity, the Fe(II) complex is stable and robust enough to be handled under air, rendering it 

suitable for practical use.  The concomitant high activity and high stability were attributed to 

the in-situ generation of a real active catalyst with a 16-electron configuration via the 

irreversible release of the carbonyl group from CpFe(CO)(L
phos

)Br upon the activation of a 

terminal C-Br bond, as confirmed by FT-IR monitoring of model reactions with the initiator 

as a dormant-end model compound.
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Introduction 

 

A key component of transition metal-catalyzed chemical reactions is obviously a 

metal complex catalyst, which determines and controls critical parameters including rate, 

efficiency, selectivity, versatility, etc.,
1
 and it is particularly true for metal-mediated living 

radical polymerization (Scheme 1), which the author’s and other groups have been pursuing 

over a decade.
2
  In general, a metal complex consists of a transition metal center and a 

ligand(s), and the two components are connected through coordination and sometimes 

metal-carbon bonds formed from the vacant d-orbital of the former and the -, π-, or 

n-electrons of the latter.  The ligands thereby affect the electronic as well as steric 

environments of complexes and, in turn, their catalytic performance.  

Living radical polymerizations are now powerful tools to synthesize controlled 

polymeric architectures, because, unlike the ionic counterparts, they are simple and easy to 

execute, robust and reproducible under varying conditions, and, above all, versatile and 

applicable to a wide range of monomers including functional derivatives that are often 

required in biochemistry, materials science, and other disciplines beyond chemistry.  

“Transition metal-catalyzed” living radical polymerization (Scheme 1) is one of such systems 

in which metal catalysts are responsible for molecular weight control, reaction rate, and 

applicable monomers, among other factors.
2
   

For example, a catalyst (Mt
n
; n = valence number) activates the carbon-halogen bond 

in an initiator (I-X) or in a dormant polymer terminal (~~~C-X) so as to trigger its homolysis 

into a carbon-centered growth-active radical (I• or ~~~C•) via one-electron oxidation from 

 

 

Scheme 1.  Transition-Metal Catalyzed Living Radical Polymerization  
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Mt
n
 to Mt

n+1
.  These growing species propagate with monomers, and the oxidized catalyst 

sooner or later donates back its halogen X to the radical, to regenerate the dormant terminal 

while returning to the original lower valance state via one-electron reduction from Mt
n+1

 to 

Mt
n
.  The polymerization thus proceeds by repeating the reversible activation-deactivation 

process, or a one-electron oxidation-reduction cycle, and with the dormant species 

thermodynamically much more favored than the radical species, the instantaneous radical 

concentration is kept so low as to practically suppress undesirable bimolecular terminations 

and chain-transfer reactions. 

For such a unique catalysis, ruthenium
3
 and copper

4
 catalysts are vanguards, and their 

catalytic activities are high enough to induce not only living homopolymerizations but also 

block and random copolymerizations of virtually all radically polymerizable monomers.   

Belonging to the group-8 family as with ruthenium, divalent iron (Fe
II
) also potentially 

catalyzes living radical polymerization, and since the first successful example with 

FeCl2(PPh3)2,
5
 a fairly wide variety of iron catalysts have been developed with use of 

different ligands, including bipyridine,
6
 cyclopentadiene (Cp),

7
 pentamethylcyclopentadiene,

8
 

isophthalic acid,
9
 imidazolidene,

10
 diimine,

11
 diiminopyridine,

12
 salicylaldiminato,

13
 

pyridylphosphine,
14

 triazacyclononane,
15

 alkyl phosphine,
16

 bis(oxazoline),
17

 

phosphine-nitrogen chelates,
18

 and phosphazene.
19

  The increasingly extensive development 

primarily stems from the additional advantages of iron complexes: environmentally benign, 

safe (or less toxic), biocompatible, and abundant.
20

  Nevertheless, in general, iron catalysts 

are inferior to ruthenium and copper counterparts, especially in terms of versatility in 

monomers, fine reaction tuning, and tolerance of polar functionality and solvents.  Therefore, 

improvement in iron catalysts is of importance and would promise actual applications of 

metal-catalyzed living radical polymerization.    

In this chapter, the author designed and developed novel iron complexes that were 

more active and versatile in living radical polymerization, or more specifically, a series of 

saturated (18-electron) cyclopentadienyl (Cp)Fe
II
 bromides with two neutral ligands (L

1
 and 

L
2
): Fe

II
(Cp)L

1
L

2
Br.  As proposed for similar 18-electron ruthenium complexes [e.g., 

(Ind)RuCl(PPh3)2
21

 and Cp*RuCl(PPh3)2
22

 ; Ind = C9H7; Cp* = -C5Me5], they would turn 

“unsaturated” in the activation process where acquiring a halogen from an initiator or a 

dormant polymer terminal via ligand release or slipping from 
5
 to 

3
 configurations.  Thus, 

the combination of two neutral ligands in Fe
II
(Cp)L

1
L

2
Br would be important for the smooth 

conversion to the unsaturated form upon one-electron oxidation as well as for the one-electron 
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reduction of the central iron in the reverse step. 

Herein, the author targeted “hetero-ligated” complexes, namely, introduction of two 

different neutral ligands onto the Fe
II
 center, such as for Fe

II
(Cp)(CO)(L

phos
)Br with 

triphenyl(alkyl)phosphine (L
phos

) and carbonyl (CO).  In general, the former ligand is a 

“-donor” to increase the electron density of the central metal, whereas the latter is a 

“-acceptor” to reduce the electron density due to coordination via back-donation.  Such a 

hetero ligation would be prospective for the facile and fast structural conversion of catalysts 

from their saturated to unsaturated forms via cooperative adjustment of the electronic states.  

Fe
II
(Cp)(CO)(L

phos
)Br can be easily prepared by the reaction of commercially available 

Fe
II
(Cp)(CO)2Br with corresponding phosphine (L

phos
) on heating (Scheme 2),

23
 and thus a 

variety of phosphines with different properties would allow both electric and steric 

modulations of the iron complexes into more active, versatile, and functionality-tolerant 

catalysts.  In this chapter, the author employed these catalysts for the possible living radical 

polymerization of polymerization of methyl methacrylate (MMA).  Also, the catalytic 

activity and the reaction mechanism were examined by cyclic voltammetry (CV) and FT-IR.   

Results and Discussion 

 

1. Living Radical Polymerization of MMA with CpFe(CO)(L
phos

)Br 

A FeCp complex with triphenylphosphine (PPh3) and carbonyl (CO) [CpFe 

(CO)(PPh3)Br] was employed as our first “hetero-ligated” catalyst for polymerization of 

MMA in conjunction with H-(MMA)2-Br as an initiator without an additive in toluene at 

60
 
°C ([MMA]0/[H-(MMA)2-Br]0/[CpFe(CO)(PPh3)Br]0 = 4000/40/10 mM).  As shown in 

Figure 1, the catalyst induced a smooth polymerization (conversion ~90% in 24 h) and gave 

controlled PMMAs with fairly narrow molecular weight distributions (MWDs; Mw/Mn < 1.5).    

On the other hand, a homo-ligated dicarbonyl derivative [CpFe(CO)2Br; precursor of 

 

Scheme 2.  Synthesis of CpFe(CO)(L
phos

)Br  
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CpFe(CO)(PPh3)Br] resulted in limited conversion (~20%) and broader MWDs (Mw/Mn > 

2.0).  These results indicate that the design of neutral ligands for Fe
II
(Cp)L

1
L

2
Br is critical to 

the catalytic activity and that such a hetero ligation is promising for living radical 

polymerization.   

 

2. Effects of Phosphine Ligands in CpFe(CO)(L
phos

)Br 

Given the possibility of living radical polymerization with CpFe(CO)(PPh3)Br, the 

author prepared a series of Cp-based iron catalysts carrying different phosphines 

[CpFe(CO)(L
phos

)Br; L
phos

 = P(OPh)3, PMePh2, PMe2Ph, P(n-Bu)3] to study effects of the 

phosphine ligand in MMA polymerization with H-(MMA)2-Br in toluene at 60 °C (Figure 2).  

The phosphite complex [L
phos

 = P(OPh)3] resulted in lower activity, similar to the dicarbonyl 

complex [CpFe(CO)2Br], while other four complexes catalyzed smooth and faster 

polymerizations to give >80% conversion within 24 h.  Upon near completion of the 

reactions, they gave almost controlled polymers (Mw/Mn = 1.25-1.50), however, an endurance 

of the catalytic activity was dependent on the ligands: polymerization was gradually retarded 

at ~75% conversion with PPh3 and P(n-Bu)3, whereas such retardation was absent with 

PMePh2 and PMe2Ph.  Also, MWDs (Mw/Mn values) stayed rather unchanged throughout the 

polymerizations, but with PMe2Ph, MWD drastically decreased from an initial broad 

 

Figure 1.  Living radical polymerization of MMA with H-(MMA)2-Br/Fe(II) catalyst in 

toluene at 60 °C: [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Fe(II) catalyst]0 = 10 

mM.  Fe(II) catalyst: CpFe(CO)(PPh3)Br (J); CpFe(CO)2Br (H). 
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distribution (conv. = 33%, Mw/Mn > 3; conv. = 87%, Mw/Mn = 1.38).  These differences of 

the phosphine ligands in catalytic performance were analytically examined in the following 

sections.  

 

3. Cyclic Voltammetry Analyses  

As the catalysis in metal-catalyzed living radical polymerization is based on a 

one-electron redox cycle of the catalyst, cyclic voltammetry (CV) is helpful to discuss 

catalytic activities.  Thus, CV was run with the iron complexes to determine and compare 

redox potentials: Epa, oxidation peak; Epc, reduction peak; E1/2 = (Epa + Epc)/2; E = Epa - Epc.  

 

 

Figure 2.  Effects of phosphine ligand on living radical polymerization of MMA with 

H-(MMA)2-Br/CpFe(CO)(L
phos

)Br in toluene at 60 °C: [MMA]0 = 4000 mM; 

[H-(MMA)2-Br]0 = 40 mM; [CpFe(CO)(L
phos

)Br]0 = 10 mM.  L
phos

: P(OPh)3 (J); PPh3 

(E); PMePh2 (H); PMe2Ph (C); P(n-Bu)3 (B). 
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All the complexes showed clear and reversible oxidation/reduction waves in the range 

of 0 to 1.8 V, most likely assigned to one-electron redox cycle between Fe
II
 and Fe

III
, and the 

waves were reproducible in several scans without hysteresis (Figure 3 and Table 1).  This 

indicates the high stability of both oxidized and reduced states, in contrast to a homo-ligated 

dicarbonyl iodide complex [CpFe(CO)2I] which requires certain metal alkoxide [Ti(Oi-Pr)4 or 

Al(Oi-Pr)3] as an additive (cocatalyst) for such a recurrent cycle as well as for catalyzing 

living radical polymerizations.
8,24

   

In addition to ligating mode (homo vs. hetero), the redox potential was obviously 

dependent on the nature of the ligands:  The dicarbonyl (CO/CO) and the phosphite 

[CO/P(OPh)3] complexes had higher redox potentials and hence low catalytic activities.  In 

these complexes, electron donation from the ligands to iron would be insufficient for 

facilitating the oxidation process.  The other complexes, all active in MMA polymerization, 

in fact showed lower potentials.  Beside these qualitative assessment, no quantitative 

correlation between E value and catalytic performance was indentified for the four 

Fe
II
(Cp)L

1
L

2
Br catalysts. 

 

Figure 3.  Cyclic voltammograms of Fe(II) catalysts in ClCH2CH2Cl at 25 °C: [Fe(II) 

catalyst]0 = 5.0 mM; [n-Bu4NPF6]0 = 100 mM.  Fe(II) catalyst: CpFe(CO)(PMePh2)Br 

(solid line); CpFe(CO)[P(OPh)3]Br (gray line); CpFe(CO)2Br (dashed line). 
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Table 1.  Cyclic Voltammetry Analyses of CpFe(CO)(L)Br Catalysts
a 

Ligand Epa (V) Epc (V) E1/2 (V) E (V) 

CO 1.63 1.44 1.54 0.18 

P(OPh)3 1.18 1.01 1.09 0.17 

PPh3 0.90 0.72 0.81 0.18 

PMePh2 0.88 0.71 0.79 0.17 

PMe2Ph 0.84 0.66 0.75 0.18 

P(n-Bu)3 0.80 0.61 0.71 0.19 

a
 [CpFe(CO)(L)Br]0 = 5.0 mM; [n-Bu4NPF6]0 = 100 mM in CH2ClCH2Cl at 25 °C. 

E1/2 = (Epa + Epc)/2; E = Epa - Epc. 

 

4. FT-IR Analysis: Conversion to 16e Complex  

The carbonyl ligand on Fe
II
(Cp)(CO)(L

phos
)Br was analyzed by FT-IR, to see the 

possible structural conversion of the saturated 18e complex into a 16e form, when it reacted 

with an initiator [H-(MMA)2-Br] at polymerization temperature (60 °C) (see Experimental 

Section). 

Figure 4 shows FT-IR spectra from 1600 to 2200 cm
-1

 for the mixture with 

CpFe(CO)2Br [Figure 4 (A)] and CpFe(CO)(L
phos

)Br [L
phos

 = P(OPh)3, PPh3, PMePh2, 

PMe2Ph, P(n-Bu)3; Figure 4 (B)-(F)].  The FT-IR data consist of two spectra for each 

complex, where the upper spectrum is for “before heating” and the lower for “after heating”.  

Peaks at around 2000 cm
-1

 are derived from the CO stretching and those around 1730 cm
-1

 

are due to the ester CO in the initiator.  With less active catalysts, CpFe(CO)2Br and 

CpFe(CO)[P(OPh)3]Br, the CO bands remained unchanged even after the heating, indicating 

that the carbonyl ligands were still ligated on the complexes [Figure 4 (A) and (B)].  In 

contrast, with the active catalysts [CpFe(CO)(L
phos

)Br; L
phos

 = PPh3, PMePh2, PMe2Ph, 

P(n-Bu)3], the same CO bands almost disappeared or much weakened [Figure 4 (C)-(F)], 

which suggests the carbonyl ligand was irreversibly released upon activation of the initiator.  

Indeed, when allowed to stand for analysis, the solution changed from green (18e complex) to 

reddish brown (16e complex); the color change thus support CO elimination.   

These results demonstrate that a more electron-donating phosphine like P(n-Bu)3 

promotes the carbonyl elimination to give in situ an active unsaturated 16e-complex.  

However, with PMe2Ph, the elimination seemed slower, judged from the clearly remained 
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peak even after heating.  The slow carbonyl release would account for the initial broad 

MWD with PMe2Ph (Figure 2).  Thus, carbonyl elimination is essential to catalyze living 

radical polymerization, and it is affected by the neighboring phosphine ligand. 

Scheme 3 shows a proposed mechanism based on these analyses.  Carbonyl release 

should be irreversible because of the gaseous character of CO, and hence the polymerization 

involves 16e and 17e complexes, 16e Fe(II) for the activation of dormant species and 17e 

Fe(III) for radical deactivation (capping).   

 

 

Figure 4.  FT-IR analysis of Fe(II) complex/H-(MMA)2-Br in CHCl3 at 25 °C: [Fe(II) 

complex]0 = 5.0 mM; [H-(MMA)2-Br]0 = 20 mM.  Condition: “Before Heating” (gray 

line); “After Heating”, aged at 60 °C for 8 h before measurement (solid line).  Fe(II) 

catalyst: (A) CpFe(CO)2Br; (B) CpFe(CO)[P(OPh)3]Br; (C) CpFe(CO)(PPh3)Br; (D) 

CpFe(CO)(PMePh2)Br; (E) CpFe(CO)(PMe2Ph)Br; (F) CpFe(CO)[P(n-Bu)3]Br. 

 

Scheme 3.  Proposed Polymerization Mechanism of CpFe(CO)(PMePh2)Br 
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5. CpFe(CO)(PMePh2)Br vs CpFe(PMePh2)2Br 

According to the proposed mechanism, the catalytic properties of CpFe(CO)(L
phos

)Br 

might be similar to those of the corresponding diphosphine analogs [CpFe(L
phos

)2Br].  Thus, 

with PMePh2 their catalysis in MMA polymerization was examined, to clarify some 

superiority of the hetero ligation (Figure 5). 

CpFe(PMePh2)2Br induced MMA polymerization at almost the same rate as with the 

carbonyl-phosphine complex [CpFe(CO)(PMePh2)Br] and gave controlled polymers.  The 

SEC curves of the products were fairly narrow, but a slight “tailing” in lower molecular 

weight region was noticeable, hence the Mw/Mn values a little larger.  For diphosphine 

complexes, a released phosphine (non volatile) remains in the system and might have a 

chance to re-coordinate the iron, in contrast to the irreversible elimination of the CO ligand in 

CpFe(CO)(PMePh2)Br.  Such a phosphine re-coordination might make the dormant-active 

species equilibrium slower, resulting in broader MWDs. 

 

Figure 5.  Living radical polymerization of MMA with H-(MMA)2-Br/Fe(II) catalyst in 

toluene at 60 °C: [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Fe(II) catalyst]0 = 10 

mM.  Fe(II) catalyst: CpFe(CO)(PMePh2)Br (J); CpFe(PMePh2)2Br (H). 
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The carbonyl-phosphine complexes were stable enough to be treated under air.  For 

example, a solution of CpFe(CO)(PMePh2)Br in toluene was deliberately bubbled with air for 

3 minutes before polymerization.  The green color of the complex was not changed 

throughout the procedures, indicating some tolerance of air.  After degassing, the catalyst 

solution was directly employed for MMA polymerization under the same conditions as 

mentioned above (Figure 6).  Even after the air exposure, the iron catalyst turned out as 

active as an oxygen-free complex.  In sharp contrast, the diphosphine complex 

CpFe(PMePh2)2Br, similarly exposed to air before use, immediately changed in color, from 

purple into brown, and an unidentified insoluble complex precipitated.  Air exposure also 

deteriorated catalytic activity and controllability.  Thus, the hetero-ligated complexes were 

tolerant of air and superior in handling, to the diphosphine homo-ligated counterparts.   

 

 

 

 

Figure 6.  Living radical polymerization of MMA in toluene at 60 °C with 

H-(MMA)2-Br/Fe(II) catalyst, followed by air bubbling to the catalyst at 25 °C for 3 min: 

[MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Fe(II) catalyst]0 = 10 mM.  Fe(II) 

catalyst: CpFe(CO)(PMePh2)Br (J); CpFe(PMePh2)2Br (H). 
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6. Sequential Monomer Addition 

To investigate living nature of the MMA polymerization with CpFe(CO)(PMePh2)Br, 

monomer-addition experiment was performed (Figure 7).  A fresh MMA was added to the 

polymerization solution when MMA conversion reached over 80% in ca. 22 h.  Monomer 

consumption was smooth in the second stage and gave an additional 83% conversion (totally 

168%).  Polymer molecular weight was linearly increased even at the second stage, and the 

SEC curves shifted to higher molecular weight keeping the narrow molecular weight 

distribution, although just a small peak was left.  As a concurrent addition of the catalyst was 

not required in the second stage, the complex, or its modified active form, retains catalytic 

activity during the two-step polymerization.   

 

7. Polymerization of Other Monomers 

Most of conventional iron complexes such as FeBr2(PPh3)2 tend to be deactivated 

upon interaction with polar groups (e.g., amino and hydroxyl groups) as well as polar solvents.  

However, the dicarbonyl Cp iron complexes [CpFe(CO)2Br] and the related analogs are 

tolerant enough to catalyze living radical polymerizations of styrene and acrylates even in the 

presence of a large amount of water.
25

  Such backgrounds encouraged the author to employ 

CpFe(CO)(PMePh2)Br for various polar monomers: methacrylate with a pendent 

poly(ethyleneglycol) (PEGMA); N,N’-dimethylaminoethyl methacrylate (DMAEMA); 

 

Figure 7.  Monomer-addition experiment in the polymerization of MMA with 

H-(MMA)2-Br/CpFe(CO)(PMePh2)Br in toluene at 60 °C: [MMA]0 = [MMA]add = 4000 

mM; [H-(MMA)2-Br]0 = 40 mM; [CpFe(CO)(PMePh2)Br]0 = 10 mM. 
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2-hydroxyethyl methacrylate (HEMA); and methyl acrylate (MA) (Table 2).  The 

polymerization of PEGMA was fairly controlled, in which the molecular weights were 

increased with conversion, but it was decelerated at around 70% conversion.  For the other 

monomers, polymerization control was totally difficult, as suggested by varying colors of 

polymerization solutions [yellow (PEGMA, DMAEMA, and MA) or white (HEMA)] that 

were totally different from reddish brown in the living MMA polymerization.  As-prepared 

solutions of CpFe(CO)(PMePh2)Br with these polar monomers, on the other hand, colored 

green, as with the catalyst/MMA solution, implying that not the 18e complex but the in-situ 

generated 16e form [CpFe
II
(PMePh2)Br] or its oxidized form [CpFe

III
(PMePh2)Br2] would be 

less tolerance to these monomers.   

 

 

Table 2.  Polymerizations of Various Monomers with CpFe(CO)(PMePh2)Br
 

Monomer Time (h) Conv. (%) Mn Mw/Mn 

PEGMA
a
 4 35 20500 1.45 

PEGMA
a
 24 69 31400 1.51 

DMAEMA
b
 24 73 26000 2.90 

HEMA
c
 168 51 98200 2.59 

MA
d
 168 73 6200 2.70 

 

a
 [PEGMA]0 = 500 mM, [H-(MMA)-Br]0 = 5.0 mM, [CpFe(CO)(PMePh2)Br]0 = 5.0 mM in 

toluene at 60 °C. 
b
 [DMAEMA]0 = 2000 mM, [H-(MMA)-Br]0 = 20 mM, [CpFe(CO)(PMePh2)Br]0 = 10 mM 

in toluene at 60 °C. 
c
 [HEMA]0 = 2000 mM, [H-(MMA)-Br]0 = 20 mM, [CpFe(CO)(PMePh2)Br]0 = 10 mM in 

methanol at 60 °C. 
d
 [MA]0 = 4000 mM, [H-(MMA)-Br]0 = 40 mM, [CpFe(CO)(PMePh2)Br]0 = 10 mM in 

toluene at 80 °C. 
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Conclusion 

 

A series of half-metallocene Fe(II) complexes with a carbonyl and an 

electron-donating phosphine ligand [CpFe(CO)(L
phos

)Br; L
phos

 = PPh3, PMePh2, PMe2Ph, 

P(n-Bu)3] catalyzed living radical polymerization of MMA to give controlled molecular 

weights and narrow molecular weight distributions.  Their high activities were supported by 

lower redox potentials with CV analysis.  FT-IR analyses for reaction of the catalysts with 

the initiator revealed that the phosphine ligand promoted to an elimination of the carbonyl 

ligand to in-situ give a real active catalyst with 16e.  They easily turn into active catalysts 

under the polymerization conditions; however they are stable enough to be treated under air.  

These features would be suitable for actual applications, along with the environmental aspects 

of a central iron.    

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99 %) and methyl acrylate (MA) (TCI; purity >99 %) were dried 

overnight over calcium chloride and purified by double distillation from calcium hydride 

before use.  2-Hydroxyethyl methacrylate (HEMA) (Aldrich; purity >99 %) was distilled 

under reduced pressure before use.  Poly(ethyleneglycol) methacrylate [PEGMA; 

CH2=CMeCO2(CH2CH2O)nMe; Me = CH3; n = 8.5 on average] (Aldrich) and 

N,N’-dimethylaminoethyl methacrylate (DMAEMA) (TCI; purity >98 %) were purified by 

passing through an inhibitor removal column (Aldrich) and was subsequently degassed by 

three-time vacuum-argon bubbling cycles before use.  The MMA dimer bromide 

[H-(MMA)2-Br; H-(CH2CMeCO2Me)2-Br] as an initiator was prepared according to 

literature.
26,27

  Cp2Fe2(CO)4 (Aldrich; purity >99 %) was used as received and handled in a 

glove box (M. Braun Labmaster 130) under a moisture- and oxygen-free argon atmosphere 

(H2O <1 ppm; O2 <1 ppm).  Triphenylphosphine (PPh3; Ph = C6H5) (Aldrich, purity >99 %), 

methyldiphenylphosphine (PMePh2) (Aldrich; purity >99 %), dimethylphenylphosphine 

(PMe2Ph) (Aldrich; purity >97 %), tributylphosphine [P(n-Bu)3] (Aldrich; purity >97 %), 

triphenylphosphite [P(OPh)3] (Aldrich; purity >97 %) were used as received.  Toluene, 

dichloromethane (CH2Cl2) and n-hexane (all Kishida Kagaku; purity >99 %) were dried and 
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purified by passing through purification columns (Solvent Dispensing System; Glass Contour) 

and bubbled with dry nitrogen for more than 15 min immediately before use.  Chloroform 

(CHCl3) (Wako Chemicals; anhydrous; purity >99 %) was bubbled with dry nitrogen for 

more than 15 min immediately before use.  n-Octane (internal standard for gas 

chromatography) and 1,2,3,4-tetrahydronaphthalene (tetralin; internal standard for 
1
H NMR) 

were dried over calcium chloride and distilled twice from calcium hydride. 

 

Catalyst Syntheses 

CpFe(CO)2Br was prepared by the method of Fisher
28

 and Hallam.
29

  IR (CHCl3): 

2053, 2007 cm 
-1

 (CO).  Anal. Calcd for C7H5BrFeO2: C, 32.73; H, 1.96; Br, 31.11. Found: 

C, 33.17; H, 2.07; Br, 30.83.  CpFe(PMePh2)2Br was obtained by the method of Lehmkuhl et 

al.
30

 

A series of CpFe(CO)(L
phos

)Br were synthesized by the method of Treichel et al. as 

follows:
23

  A toluene solution of CpFe(CO)2Br (1.0 g, 3.89 mmol) and 1.1 equivalent of 

phosphine [L
phos

 = PPh3, P(OPh)3, PMePh2, PMe2Ph, or P(n-Bu)3] was magnetically stirred at 

80 °C for 24 h under dry argon.  The solutions gradually changed from rust to yellow-green 

irrespective of phosphine employed.  The reaction mixture was then filtered at 25 °C to 

remove precipitates, and the filtrate was evaporated in vacuo to dryness to remove the solvent.  

The crude product was washed with n-hexane (15 mL  3), dissolved in CH2Cl2 (8.0 mL), and 

recrystallized by gradual addition of n-hexane (40 mL), followed by standing at -30 °C for 72 

h.  The supernatant solvent were removed by a cannula with filter paper, and the crystal was 

washed with n-hexane (2.0 mL  2) and dried under vacuum.  The complexes were 

characterized by elemental analysis and 500-MHz 
1
H-NMR spectroscopy at room temperature 

in CDCl3 on a Jeol JNM-ECA500 spectrometer.     

CpFe(CO)(PPh3)Br: Isolated yield, 14 %.  
1
H-NMR (ppm): 4.39 (s, 5H, Cp-H), 

7.3-7.5 (m, 15H, Ar-H).  IR (CHCl3): 1963 cm
-1

 (CO).  Anal. Calcd for C24H20BrFeOP: C, 

58.69; H, 4.10; Br, 16.27. Found: C, 58.51; H, 4.07; Br, 16.49.   

CpFe(CO)[P(OPh)3]Br: Isolated yield, 86 %.  
1
H-NMR (ppm): 4.17 (s, 5H, Cp-H), 

7.15 (m, 3H, Ar-H), 7.38 (m, 12H, Ar-H).  IR (CHCl3): 1989 cm 
-1

 (CO).  Anal. Calcd for 

C24H20BrFeO4P: C, 53.47; H, 3.74; Br, 14.82. Found: C, 53.39; H, 3.80; Br, 14.58. 

CpFe(CO)(PMePh2)Br: Isolated yield, 32 %.  
1
H-NMR (ppm): 2.04 (d, 3H, P-CH3), 

4.44 (s, 5H, Cp-H), 7.4-7.5 (m, 8H, Ar-H), 7.75-7.80 (m, 2H, Ar-H).  IR (CHCl3): 1959 cm 

-1
 (CO).  Anal. Calcd for C19H18BrFeOP: C, 53.19; H, 4.23; Br, 18.62. Found: C, 53.63; H, 
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4.42; Br, 17.39. 

CpFe(CO)(PMe2Ph)Br: Isolated yield, 20 %.  
1
H-NMR (ppm): 1.68 (d, 3H, P-CH3), 

2.06 (d, 3H, P-CH3), 4.38 (s, 5H, Cp-H), 7.45 (m, 3H, Ar-H), 7.69 (t, 2H, Ar-H).  IR 

(CHCl3): 1956 cm 
-1

 (CO).  Anal. Calcd for C14H16BrFeOP: C, 45.82; H, 4.39; Br, 21.77. 

Found: C, 46.35; H, 4.50; Br, 19.79. 

CpFe(CO)[P(n-Bu)3]Br: Isolated yield, 43 %.  
1
H-NMR (ppm): 0.86 (t, 9H, CH3), 

1.3-1.4 (m, 12H, CH2), 1.7-1.8 (q, 6H, P-CH2), 4.47 (s, 5H, Cp-H).  IR (CHCl3): 1954 cm 
-1

 

(CO).  Anal. Calcd for C18H32BrFeOP: C, 50.14; H, 7.48; Br, 18.53. Found: C, 50.07; H, 

7.64; Br, 18.35. 

 

Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for MMA polymerization with H-(MMA)2-Br/CpFe(CO)(PMePh2)Br was as follows:  In a 

50-mL round-bottom flask were sequentially added CpFe(CO)(PMePh2)Br (21.5 mg, 0.05 

mmol), toluene (2.23 mL), n-octane (0.27 mL), MMA (2.14 mL, 20 mmol), and 

H-(MMA)2-Br (0.36 mL of 553.4 mM in toluene, 0.20 mmol) under dry argon at room 

temperature, where the total volume of the reaction mixture was thus 5.0 mL.  Immediately 

after mixing, aliquots (0.80 mL each) of the solution were injected into glass tubes which 

were then sealed (except when a stopcock was used) and placed in an oil bath kept at desired 

temperature.  In predetermined intervals, the polymerization was terminated by cooling the 

reaction mixtures to -78 ºC.  Monomer conversion was determined from the concentration of 

residual monomer measured by gas chromatography with n-octane as an internal standard.  

The quenched reaction solutions were diluted with toluene (ca. 20 mL), washed with water 

three times, and evaporated to dryness to give the products that were subsequently dried 

overnight under vacuum at room temperature. 

For PEGMA, DMAEMA and HEMA, the same procedures as described above were 

applied except that monomer conversion was determined by 
1
H NMR from the integrated 

peak area of the olefinic protons of the monomers with tetralin as internal standard.  The 

products were similarly isolated but without washing with water because of their 

hydrophilicity. 
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Model Reactions 

Model reactions between the iron complex catalyst and H-(MMA)2-Br as a 

dormant-end model were followed under an inert atmosphere by FT-IR spectroscopy with a 

JASCO FT/IR 4200 spectrometer.  Typical procedures were as described below for 

CpFe(CO)(PMePh2)Br:  CpFe(CO)(PMePh2)Br (2.1 mg, 5.0 × 10
-3

 mmol), H-(MMA)2-Br 

(5.6 mg, 0.020 mmol), and toluene (1.0 mL) were added under dry argon into a baked glass 

tube equipped with a three-way stopcock.  The mixture was stirred at 60 °C for 8 h, and the 

solvent was removed by evaporation.  The residue was dissolved in degassed CHCl3 (1.0 

mL), and the solution was transferred under dry argon into a sealed liquid KBr cell (optical 

path, 0.1 mm).  Spectra were recorded at predetermined intervals. 

 

Measurements 

For poly(MMA) and poly(MA), Mn and Mw/Mn were measured by size-exclusion 

chromatography (SEC) in chloroform at 40 ºC on three polystyrene-gel columns [Shodex 

K-805L (pore size: 20-1000 Å; 8.0 mm i.d. × 30 cm); flow rate, 1.0 mL/min] connected to a 

Jasco PU-980 precision pump and a Jasco 930-RI refractive-index detector, and a Jasco 

970-UV ultraviolet detector.  The columns were calibrated against 13 standard poly(MMA) 

samples (Polymer Laboratories; Mn = 630–1,200,000; Mw/Mn = 1.06–1.22) as well as the 

monomer.  For poly(PEGMA), poly(DMAEMA), and poly(HEMA), DMF containing 10 

mM LiBr was applied as an eluent.  

Cyclic voltammograms were recorded on a Hokuto Denko HZ-3000 apparatus.  A 

typical procedure is as follows:  CpFe(CO)(PMePh2)Br (15.0 mg, 0.035 mmol) was 

dissolved into a 100 mM solution of n-Bu4NPF6 (supporting electrolyte) in CH2ClCH2Cl (7.0 

mL) under dry argon in a baked glass tube equipped with a three-way stopcock.  

Voltammograms were recorded under argon at a scan rate 0.1 Vs
-1

 in a three-electrode cell 

equipped with a platinum disk as a working electrode, a platinum wire as a counter electrode, 

and an Ag/AgCl electrode as a reference. 
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Chapter 4 

 

 

Carbonyl/N-heterocyclic Carbene (NHC) 

Hetero-Ligated Cp-Iron Catalyst: 

High Activity for Methyl Acrylate and Methyl Methacrylate 

 

 

 

Abstract 

In this chapter, the author employed a half-metallocene iron (II) carbonyl complex 

carrying N-heterocyclic carbene [i.e., 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene: IMes] 

for living radical polymerization to see effects of the higher electron donating property on the 

catalysis.  The complex, CpFe(CO)(IMes)Br, allowed “controlled” polymerization of methyl 

acrylate (MA) in conjunction with an bromide-initiator [H-(MMA)2-Br] to give fairly narrow 

molecular weight distributions (MWDs: Mw/Mn ~1.3), while the phosphine derivative 

[CpFe(CO)(PMePh2)Br] resulted in less controlled polymers with much broader MWDs for 

MA.  A clear correlation between an electron donation of the ligand and a redox potential 

(Fe
II
 ↔ Fe

III
) of the complex was also confirmed by FT-IR (wavelength of the CO ligand) and 

cyclic voltammetry (CV) with the series of complexes including the phosphine-based 

derivatives [CpFe(CO)(L
phos

)Br]: as the electron donation was higher, the redox potential 

lower; the carbene complex showed lowest redox potential among the examined.  The low 

redox potential would lead to the predominant catalysis for the MA polymerization.  The 

catalyst was active enough to control polymerization of methyl methacrylate (MMA) even for 

high polymerization degree condition (DPn = 1000). 



Chapter 4 

 80 

Introduction 

 

N-heterocyclic carbene (NHC) is categorized as a singlet carbene bearing an occupied 

-orbital and a vacant p-orbital.  Nitrogens in the vicinal position act as -donors and 

-acceptors to fill the p-orbital of the carbene carbon and stabilize the carbene lone pair by 

negative inductive effect (Figure 1).
1
  Thus, NHC can coordinate on a transition metal by 

giving the two electrons as a -donor ligand, and the electron donating ability is known to be 

higher than ubiquitous phosphine ligands.  As the bulkiness is also tuned by the substituent 

on the nitrogen, NHC is currently available as a ligand to modify a state of the central metal 

for various catalytic reactions, similar to the phosphines. 

In a transition metal-catalyzed living radical polymerization
2,3

 (Scheme 1), the 

transition metal complex serves as a catalyst to control the polymerization.  In this system, 

the complex (Mt
n
/L; n = valence number, L = ligands) reversibly activates the carbon-halogen 

bond in an initiator (R-X; X = halogen) or in a dormant polymer terminal (~~~C-X) to reduce 

a concentration of the propagating radical species (R• or ~~~C•) via the one-electron redox 

catalysis.  A choice of the transition-metal complex is essential to achieve desired catalysis 

[e.g., activity/controllability and monomer versatility] and the catalytic activity depends on 

the ligand as well as the central metal.  The author’s group has reported that the stronger 

electron-donation from the ligands decreases the redox potential to enhance the activity.
4
  As 

regarding a higher electron donation, NHC would be one of promising ligands.
5,6

   

 

 

Figure 1.  NHCs as electron-donating ligands 
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Development of iron-catalysts for living radical polymerization has been paid 

attention because of the sustainable characters.
6-20

  However, the activity is still inferior to 

those of the vanguards, such as ruthenium-
2
 and copper-based

21
 catalysts, and then the 

evolution has been required.  The author has studied the catalyst design of iron complexes to 

increase the activity for living radical polymerizations.  For example, as shown in Chapter 3, 

“hetero-ligation” of a phosphine ligand (L
phos

) and carbonyl (CO) was effective to enhance the 

activity for cyclopentadienyl (Cp; -C5H5) iron complexes [CpFe(CO)(L
phos

)Br; L
phos

 = PPh3, 

PMePh2, PMe2Ph, P(n-Bu)3].
22

  These iron complexes were active for living radical 

polymerization of methyl methacrylate (MMA) to give well-controlled polymers and 

spectroscopic analyses of the model reaction indicated that the complexes irreversibly release 

the CO ligand to generate real active catalysts [CpFe(L
phos

)Br] via the activation process.  

The activity and CO-dissociation behavior depended on the phosphine ligand, and the 

electron donation from the phosphine ligand seemed to be important for the catalysis.  

Unfortunately, their utility was limited to the MMA polymerization, and they failed to 

catalyze polymerization of methyl acrylate (MA).  To achieve wide application of monomers, 

another ligand design would be required.   

Thus, the author focused on NHC as a high electron donating ligand for the iron 

complex.  In this chapter, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) was 

introduced as the NHC ligand on CpFe(CO)(L)Br, and the resultant complex 

[CpFe(CO)(IMes)Br] was employed for living radical polymerizations of MA and methyl 

methacrylate (MMA).  The catalytic activity and the reaction mechanism were discussed 

with cyclic voltammetry (CV) and FT-IR analyses.   

 

 

Scheme 1.  Transition Metal-Catalyzed Living Radical Polymerization 
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Results and Discussion 

 

1. Synthesis and Analyses of CpFe(CO)(IMes)Br 

The CO/NHC hetero-ligated complex [CpFe(CO)(IMes)Br] was synthesized by 

mixing a commercially available dicarbonyl CpFe complex [CpFe(CO)2Br] and a NHC 

chloride (IMes-Cl) under UV-irradiation (Scheme 2).
23

   

Figure 2 shows the FT-IR spectrum of the isolated product, measured in CHCl3 at 

25 °C.  For the starting compound [CpFe(CO)2Br], two peaks were observed at 2053 cm
-1

 

and 2007 cm
-1

, attributed to the stretching frequency of CO, while they were disappeared 

and new one peak was appeared at 1950 cm
-1

 for the resulting complex, likely indicating one 

carbonyl ligand was substituted to the IMes ligand to give CpFe(CO)(IMes)Br.  The 

stretching frequency of CO was known to show the electron-donor properties of another 

neutral ligand on the same metal, called as Tolman Electronic Parameter.
24

  Indeed, the 

wavelength of CO became lower, as the basicity of phosphine ligand was increased for 

CpFe(CO)(L
phos

)Br.
22

  The peak of CpFe(CO)(IMes)Br was further lower than every 

synthesized phosphine-ligated one [CpFe(CO)(L
phos

)Br], indicated that the IMes donates the 

electron to iron center more highly than the phosphine ligand similar to other nickel
25

 and 

iridium
26

 complexes. 

 

 

Scheme 2.  Synthesis of CpFe(CO)(L
phos

)Br 
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Then, the redox potentials of CpFe(CO)(IMes)Br was measured by cyclic 

voltammetry (CV), since the electron donation from the ligand often contributes to a 

reduction in the redox potential leading to an enhancement of the catalytic activity for 

metal-catalyzed living radical polymerization.  The solution in 1,2-dichloroethane was 

measured at 25 °C with n-Bu4NPF6 as a supporting electrolyte (100 mM, vs Ag/AgCl).  The 

NHC complex showed a clear oxidation/reduction wave, likely assigned by one electron 

redox interconversion between Fe(II) and Fe(III).  The half oxidation-reduction potential 

(E1/2) was 0.52 V [E1/2 = (Epa + Epc)/2; Epa: oxidation potential; Epc: reduction potential] which 

was clearly lower than the phosphine derivatives [CpFe(CO)(L
phos

)Br; E1/2 ~ 0.7-0.8 V].   

Thus, the relationship between the E1/2 and the CO stretching wavenumber was 

examined for the series of hetero-ligated CpFe complexes.  As shown in Figure 3, there is a 

nice correlation between the two parameters: as the wavelength of CO is decreased, E1/2 of the 

complex becomes lower; the NHC complex showed lowest redox potential among the 

 

Figure 2.  FT-IR spectra of CpFe(CO)(L)Br and CpFe(CO)2Br in CHCl3 at 25 °C: [Iron 

complex]0 = 5.0 mM.  
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examined complexes.  This result indicates that the electron donation from the ligand 

reduces the redox potential and the NHC complex is promising as a more active catalyst for 

living radical polymerization than the phosphine derivatives.   

 

2. Polymerization of MA 

As shown in Chapter 3, phosphine-ligated complexes [CpFe(CO)(L
phos

)Br] fairly 

catalyzed living radical polymerization for MMA, however they were less active for methyl 

acrylate (MA).  For the polymerization control with MA, the tighter carbon-halogen bond 

needs to be activated because of the secondary carbon structure, and the more reactive radical 

species to be more smoothly capped than the MMA polymerization.  From these points of 

view, a complex with lower redox potential would be suitable for the polymerization control.  

Thus, the author first employed the CpFe(CO)(IMes)Br with lower redox potential, for 

polymerization of MA, to compare with an active phosphine ligated complex, 

 

 

Figure 3.  Correlations between half oxidation-reduction potentials measured by CV and 

CO stretching wavenumber of measured by FT-IR for CpFe(CO)(L)Br:  CV: [Iron 

complex]0 = 5.0 mM; [n-Bu4NPF6]0 = 100 mM in ClCH2CH2Cl at 25 °C.  FT-IR: [Iron 

complex]0 = 5.0 mM in CHCl3 at 25 °C.  
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CpFe(CO)(PMePh2)Br.  The polymerizations were done without an additive in conjunction 

with a bromide-initiator [H-(MMA)2-Br] in toluene at 80 °C 

([MA]0/[H-(MMA)2-Br]0/[catalyst]0 = 4000/40/10 mM) (Figure 4).  The N-heterocyclic 

carbene catalyst showed a catalytic activity for the polymerization.  Further, the molecular 

weight distributions of the produced poly(MA)s were narrower (MWDs; Mw/Mn ~ 1.3) than 

those with the phosphine-based catalyst (Mw/Mn > 2).  These results showed that the IMes 

ligand improved the catalytic activity for polymerization of MA because of its higher electron 

donation. 

 

3. Polymerization of MMA 

Then, the author employed CpFe(CO)(IMes)Br for polymerization of MMA with 

bromide-initiator [H-(MMA)2-Br] in toluene at 60 °C 

([MMA]0/[H-(MMA)2-Br]0/[CpFe(CO)(IMes)Br]0 = 4000/40/10 mM) (Figure 5).  The 

polymerization was almost quantitative: the conversion reached over 90% within 3 days.  

The molecular weights of the obtained polymers were increased in direct proportion to 

monomer conversion, and the values were close to the ideal ones, calculated from 

monomer/initiator ratio and the conversion.  The controllability for the molecular weights 

was improved in comparison with the phosphine derivatives CpFe(CO)(L
phos

)Br [L
phos

 = PPh3, 

 
 

Figure 4.  Comparisons between CpFe(CO)(IMes)Br and CpFe(CO)(PMePh2)Br on 

living radical polymerization of MA with H-(MMA)2-Br in toluene at 80 °C: [MA]0 = 

4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Iron catalyst]0 = 10 mM.  Iron catalyst: 

CpFe(CO)(IMes)Br (J); CpFe(CO)(PMePh2)Br (H).   
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PMePh2, PMe2Ph, P(n-Bu)3] tending to give higher molecular weights,
22

 as shown in Figure 5 

with CpFe(CO)(PMePh2)Br.  The MWDs were also controlled to be narrow (Mw/Mn ~ 1.2). 

 

4. Monomer Addition Experiments and Synthesis of High Molecular Weight PMMA 

To check the living nature for the CpFe(CO)(IMes)Br catalyzed system, the author 

examined so called a “monomer-addition experiment”.  When the MMA-conversion reached 

around 73%, a fresh MMA was added to the polymerization solution.  In the second phase, 

MMA was smoothly consumed to give additional 102% conversion (totally 175%) (Figure 6).  

The molecular weights were increased in direct proportion to the conversion, and the SEC 

curves shifted to higher molecular weight, although a slight tailing was detected.  As a 

concurrent addition of the catalyst was not required, the catalyst was still active as well as the 

propagating ends. 

Furthermore, the system was applied for synthesis of higher molecular weights 

PMMA targeting 10
5
 of Mn for 100% conversion (the monomer/initiator ratio: 1,000).  As 

shown in Figure 7, the conversions reached around 90% within 120 h and the MWDs were 

fairly narrow (Mw/Mn < 1.5), although a slight tailing was detected in lower molecular weight 

region.  The molecular weights relatively agreed with the theoretical values even for nearly 

10
5
 of Mn.  Such controlled syntheses of high DPn, requiring frequent catalytic cycle, was 

 

Figure 5.  Comparisons between CpFe(CO)(IMes)Br and CpFe(CO)(PMePh2)Br on 

living radical polymerization of MMA with H-(MMA)2-Br in toluene at 60 °C: [MMA]0 = 

4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Iron catalyst]0 = 10 mM.  Iron catalyst: 

CpFe(CO)(IMes)Br (J, E); CpFe(CO)(PMePh2)Br (H, C). 
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harder with CpFe(CO)(PMePh2)Br to give broader MWDs (Mw/Mn > 1.7).  These results 

also indicated that the CO/IMes hetero-ligated complex [CpFe(CO)(IMes)Br] showed higher 

activity/controllability for living polymerization of MMA than the phosphine counterparts. 

 

Figure 6.  Monomer-addition experiment in the polymerization of MMA with 

H-(MMA)2-Br/CpFe(CO)(IMes)Br in toluene at 60 °C: [MMA]0 = [MMA]add = 4000 mM; 

[H-(MMA)2-Br]0 = 40 mM; [CpFe(CO)(IMes)Br]0 = 10 mM. 

 

Figure 7.  Synthesis of high molecular weight PMMA targeted 1000 mer with 

H-(MMA)2-Br/CpFe(CO)(IMes)Br in toluene at 60 °C:  [MMA]0 = 5000 mM; 

[H-(MMA)2-Br]0 = 5.0 mM; [CpFe(CO)(IMes)Br]0 = 2.0 mM. 
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5. FT-IR Analysis: Model Reaction  

To examine the polymerization mechanism in this system, CpFe(CO)(IMes)Br was 

reacted with H-(MMA)2-Br as a model compound for the growing “dormant” polymer in 

toluene at the polymerization temperature (60 °C), and the resulting mixture was analyzed by 

FT-IR.  Figure 8 shows FT-IR spectra from 1600 to 2200 cm
-1

 of the mixture before (upper; 

dashed line) and after heating at 60 °C for 8 h (down; solid line) measured in CHCl3, followed 

by an evaporation of toluene.   

The peak at 1950 cm
-1

 is derived from CO stretching on CpFe(CO)(IMes)Br and that 

at around 1730 cm
-1

 is from the ester CO in the initiator (see the dashed line).  After 

heating, the peak around 1950 cm
-1

 was almost disappeared (see the solid line), indicating that 

the carbonyl ligand was irreversibly released via the activation of the initiator, same as the 

case with CpFe(CO)(PMePh2).
22

  The transformation was also suggested by the color change 

 

Figure 8.  FT-IR analysis of H-(MMA)2-Br/CpFe(CO)(IMes)Br in CHCl3 at 25 °C: 

[CpFe(CO)(IMes)Br]0 = 5.0 mM; [H-(MMA)2-Br]0 = 20 mM.  Condition: “Before 

Heating” (dashed line); “After Heating”, aged at 60 °C for 8 h with H-(MMA)2-Br before 

measurement (solid line). 
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from pale green to reddish brown.  Thus, the real active catalyst would be CpFe(IMes)Br 

with 16e, generated after the CO elimination.   

On the other hand, two small peaks were newly generated at higher wavenumber 

(2050, 2005 cm
-1

) after the model reaction.  These peaks were almost same as a dicarbonyl 

iron complex [CpFe(CO)2Br], and then the complex was possibly generated during the 

polymerization.  However, as it was found that the dicarbonyl complex showed almost no 

catalytic activity for polymerization of MMA,
22 

 the complex might be uninvolved for the 

polymerization control.   

 

 

Conclusion 

 

The N-heterocyclic carbene-ligated iron complex [CpFe(CO)(IMes)Br] was effective 

as a catalyst for living radical polymerization.  The catalytic activity was superior to the 

phosphine derivatives [CpFe(CO)(L
phos

)Br]: it was applicable for MA polymerization control; 

a finer control was achieved for MMA polymerization.  The higher activity was 

demonstrated by the higher electron donation and the resultant lower redox potential, 

measured with FT-IR and CV.  FT-IR analyses for a model reaction suggested that the 

original 18e complex turned into 16e one [CpFe(IMes)Br] via an activation of the initiator to 

work as a real active catalyst.  

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99%) was dried overnight over calcium chloride and purified by 

double distillation from calcium hydride before use.  MA (TCI; purity >99%) was dried 

overnight over calcium chloride and purified by distillation from calcium hydride before use.  

The MMA dimer bromide [H-(MMA)2-Br; H-(CH2CMeCO2Me)2-Br] as an initiator was 

prepared according to literature.
27

  Cp2Fe2(CO)4 (Aldrich; purity >99%) and 

1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (IMes-Cl) (Aldrich) were used as 

received and handled in a glove box (M. Braun Labmaster 130) under a moisture- and 

oxygen-free argon atmosphere (H2O <1 ppm; O2 <1 ppm).  t-BuOK (Aldrich; 1M in THF) 
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was used as purchased.  Toluene, THF, CH2Cl2 and n-hexane (Kishida Kagaku; purity 

>99%) were passed through purification columns (Solvent Dispensing System; Glass 

Contour) and bubbled with dry nitrogen for more than 15 min immediately before use.  

CHCl3 (Wako Chemicals, anhydrous; purity >99%) was bubbled with dry nitrogen for more 

than 15 min immediately before use.  n-Octane (internal standard for gas chromatography) 

was dried over calcium chloride and distilled twice from calcium hydride. 

 

Catalyst Syntheses 

CpFe(CO)2Br
28

 and CpFe(CO)(PMePh2)Br
29

 were synthesized according to 

literatures.  

CpFe(CO)(IMes)Br was synthesized by the method of Buchgraber et al. as follows:
23

  

A mixture of IMes-Cl (1.076 g, 3.156 mmol) and t-BuOK (3.79 mL of 1M in THF; 3.790 

mmol) in THF (15 mL) was stirred for 10 min at 0 °C and elevated to 25 °C for 1 h.  After 

evaporation of the solvent, the free carbene was extracted in toluene (ca. 20 mL) and filtered 

with celite.  The filtrate was added to [CpFe(CO)2Br] solution (733.0 mg in 15 mL toluene, 

2.854 mmol) and stirred overnight at 25 °C.  The yellow precipitate was gradually formed, 

seemed an ionic complex [CpFe(CO)2(IMes)]
+
[Br]

-
.  The solid was filtered, washed with 

toluene (5.0 mL  2) and dried under vacuum.   

The yellow solid was dissolved in CH2Cl2 (12 mL) and was irradiated under UV (Riko, 

UVL-400P; 400W) at 25 °C for 4 h.  The solution turned to green.  After evaporation of the 

solvent, washed with n-hexane (15 mL  2) and dried under vacuum.  The green solid was 

extracted in toluene (45 mL) and filtrate was evaporated under vacuo.  The crude product 

was dissolved in CH2Cl2 (5.0 mL), and recrystallized by gradual addition of n-hexane (20 

mL), followed by standing at -30 °C for 72 h.  The supernatant solvent were removed by a 

cannula with filter paper, and the crystal was washed with n-hexane (2.0 mL  2) and dried 

under vacuum.  The complexes were characterized by elemental analysis, FT-IR 

spectroscopy at room temperature in CHCl3 on JASCO FT/IR 4200 and 500-MHz 
1
H-NMR 

spectroscopy at room temperature in CD2Cl2 on a Jeol JNM-ECA500 spectrometer.  

Isolated yield, 26% (400 mg).  
1
H-NMR (CD2Cl2, ppm): 2.06-2.08 (s, 12H, o-CH3), 

2.41 (s, 6H, p-CH3), 3.95 (s, 5H, Cp-H), 7.07-7.11 (t, 6H, mes-CH and imidazolium-H).  IR 

(CHCl3): 1950 cm 
-1

 (CO).  Anal. Calcd for C27H29BrN2FeO: C, 60.81; H, 5.48; Br, 14.98. 

Found: C, 59.81; H, 5.61; Br, 16.95. 
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Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for MMA polymerization with H-(MMA)2-Br/CpFe(CO)(IMes)Br was as follows.  In a 

50-mL round-bottom flask CpFe(CO)(IMes)Br (26.7 mg, 0.05 mmol), toluene (2.23 mL), 

n-octane (0.27 mL), MMA (2.14 mL, 20 mmol), and H-(MMA)2-Br (0.36 mL of 553.4 mM in 

toluene, 0.20 mmol) were added sequentially under dry argon at room temperature where the 

total volume of reaction mixture was thus 5.0 mL.  Immediately after mixing, aliquots (0.80 

mL each) of the solution were injected into glass tubes which were then sealed (except when a 

stopcock was used) and placed in an oil bath kept at desired temperature.  In predetermined 

intervals, the polymerization was terminated by cooling the reaction mixtures to -78 ºC.  

Monomer conversion was determined from the concentration of residual monomer measured 

by gas chromatography with n-octane as an internal standard.  The quenched reaction 

solutions were diluted with toluene (ca. 20 mL), washed with water three times, and 

evaporated to dryness to give the products that were subsequently dried overnight under 

vacuum at room temperature.   

 

Measurements 

For poly(MMA) and poly(MA), Mn and Mw/Mn were measured by size-exclusion 

chromatography (SEC) in chloroform at 40 ºC on three polystyrene-gel columns [Shodex 

K-805L (pore size: 20-1000 Å; 8.0 mm i.d. × 30 cm); flow rate, 1.0 mL/min] connected to a 

Jasco PU-980 precision pump and a Jasco 930-RI refractive-index detector, and a Jasco 

970-UV ultraviolet detector.  The columns were calibrated against 13 standard poly(MMA) 

samples (Polymer Laboratories; Mn = 630-1,200,000; Mw/Mn = 1.06-1.22) as well as the 

monomer.   

Cyclic voltammograms were recorded by using a Hokuto Denko HZ-3000 apparatus.  

A typical procedure is as follows:  CpFe(CO)(IMes)Br (13.3 mg, 0.025 mmol) was dissolved 

into a 100 mM solution of n-Bu4NPF6 (supporting electrolyte) in CH2ClCH2Cl (5.0 mL) under 

dry argon in a baked glass tube equipped with a three-way stopcock.  Voltammograms were 

recorded under argon at a scan rate 0.1 Vs
-1

 in a three-electrode cell equipped with a platinum 

disk as a working electrode, a platinum wire as a counter electrode, and an Ag/AgCl electrode 

as a reference. 
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FT-IR spectra of the CpFe(CO)(IMes)Br was recorded by using JASCO FT/IR 4200.  

The sample-was prepared that CpFe(CO)(IMes)Br (2.7 mg, 5.0 × 10
-3

 mmol), H-(MMA)2-Br 

(5.6 mg, 0.020 mmol) and toluene (1.0 mL) were added into the baked glass tube equipped 

with a three-way stopcock under dry argon.  After mixing at 60 °C for 8 h, the solvent was 

evaporated.  The residue was dissolved in degassed CHCl3 and purged in the sealed liquid 

KBr cell where the thickness was 0.1 mm.  Measurements were carried out under inert 

atmosphere. 
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Chapter 5 

 

 

Pentamethylcyclopentadienyl (Cp*) Iron Catalysts: 

High Activity and Versatility for Functional Monomers 

 

 

 

 

Abstract 

A series of pentamethylcyclopentadienyl Fe(II) complexes, ligated by one carbonyl 

(CO) and one phosphine [Cp*Fe(CO)(L
phos

)Br; Cp* = C5Me5; L
phos

 = PPh3, PMePh2, PMe2Ph, 

P(m-tol)3, and P(p-tol)3], were employed for living radical polymerization.  In conjunction 

with a bromide initiator [H-(MMA)2-Br], these Cp*Fe complexes catalyzed living radical 

polymerization of methyl methacrylate (MMA) better controlled than those with the 

corresponding cyclopentadienyl (Cp) complexes [CpFe(CO)(L
phos

)Br; Cp = C5H5].  The 

finer control was demonstrated by successful monomer-addition experiments, a wider range 

of controllable molecular weight (Mn = 10
4
-10

5
 or DPn = 100-1000), and narrower molecular 

weight distributions (Mw/Mn ~ 1.2).  FT-IR analysis of initiator-catalyst model reactions 

showed that an efficient carbonyl release from the original coordinatively saturated 18e 

complex into the unsaturated 16e form is important in the catalysis to generate a growing 

radical from the initiator.  The higher catalytic activity allowed controlled polymerizations of 

other monomers that are not available for the Cp catalysts, such as methyl acrylate and a 

functional methacrylate with poly(ethylene glycol) pendent group. 
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Introduction 

 

Transition metal-catalyzed living radical polymerization is one of powerful tools to 

prepare controlled polymeric architectures for a wide variety of commodity as well as 

functional monomers (Scheme 1).
1
  In this system, a metal catalyst is critical in controlling 

molecular weight and its distribution, polymerization rate, and versatility in terms of 

monomers and reaction conditions.  The catalyst (Mt
n
; n = valence number) activates the 

carbon-halogen bond in an initiator (R-X; X = halogen) or in a dormant polymer terminal 

(~~~C-X) via homolytic cleavage to generate a carbon-centered growing radical (R・ or 

~~~C・), while undergoing one electron-oxidation from Mt
n
 to Mt

n+1
.  The radical species are 

capable of initiating radical propagation, and after some growing steps with monomers, they 

are capped with the halogen in the oxidized catalyst (Mt
n+1

), thereby to regenerate a dormant 

species and the original lower valence-state complex (Mt
n
).  Among transition metals, 

ruthenium (Ru)
2
 and copper (Cu)

3
 complexes are highly active and induce not only living 

homopolymerizations but also random and block copolymerizations of many monomers. 

Iron complexes offer another class of transition metal catalysts that are increasingly 

getting important: environmentally benign, safe, less toxic, biocompatible, and abundant.
4
  

Since the first successful report with FeCl2(PPh3)2,
5
 the potency of divalent iron (Fe

II
) 

 

Scheme 1.  Transition-Metal Catalyzed Living Radical Polymerization  
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complexes in living radical polymerization has in fact been demonstrated.
6-19

  However, as 

polymerization catalysts, iron complexes are generally inferior to ruthenium and copper 

counterparts, especially in terms of versatility and tolerance of polar monomers and solvents.   

To overcome these problems, a saturated (18 electron) half-metallocene iron 

complexes would be promising for active catalysts, if the author follow his research group’s 

previous structural design for active ruthenium-based vanguards [e.g., (Ind)RuCl(PPh3)2
20

 and 

Cp*RuCl(PPh3)2;
21

  Ind (indenyl) = C9H7; Cp* (pentamethylcyclopentadienyl) = -C5Me5], 

whose metal belongs to group 8 as with iron.  The stronger electron-donation from the 

multiple ligands would enhance catalytic activity for the living radical polymerization 

involving one electron redox.  Most importantly, it has been proposed that the saturated 

“18e” complexes need to turn into unsaturated “16e” forms via a ligand release to accept a 

halogen on the activation process.  The transformation should be one of the most essential 

processes for superior catalysis or polymerization control.
22

   

In Chapter 3, the author focused on 18e “hetero-ligated” cyclopentadienyl iron 

complexes coordinated with a carbonyl (CO) and a phosphine [CpFe(CO)(L
phos

)Br; L
phos

 = 

phosphine] and expected that either ligand would be selectively and smoothly released on the 

activation.  Because of the coordinatively saturated 18e structure and the robust coordination 

of a CO ligand, these catalysts indeed turned out to be highly active in living radical 

polymerization of methyl methacrylates (MMA) and, when isolated, to be so stable as to be 

handled even under air at room temperature.  Once they encounter an initiator (R-Br) at 

60 °C, however, they immediately and irreversibly release the CO ligand to generate in-situ a 

real active catalyst [CpFe(L
phos

)Br] that is active enough to induce living radical 

polymerization of MMA.  However, their catalytic activity is insufficient to polymerize 

acrylates and polar functional methacrylates. 

In this chapter, the author designed pentamethylcyclopentadienyl iron(II) complexes 

[Cp*Fe
II
(CO)(L

phos
)Br] with a similar carbonyl-phosphine hetero ligation toward further 

 

Scheme 2.  Synthesis of Cp*Fe(CO)(L
phos

)Br  
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improvement of the Cp-iron catalyst family, i.e., to be more active, easier to handle, and more 

versatile and tolerant of functional monomers.  The design is in part based on ruthenium 

complexes that the high electron ability of Cp* ligand enhances catalytic activity.
21,23

  Thus, 

a series of Cp*Fe(CO)(L
phos

)Br were prepared by the reactions of Cp*Fe(CO)2Br with 

phosphine under UV-irradiation (Scheme 2).
24

  They accordingly showed better catalytic 

performances in MMA polymerization than the CpFe catalysts in terms of molecular weight 

control and sustained activity (up to >90% conversion).  More importantly, some Cp* 

complexes gave controlled polymers even from methyl acrylate (MA) and a methacrylate 

(PEGMA) carrying a poly(ethylene glycol) pendent group. 

 

Results and Discussion 

 

1. Ligand Effects on the Catalytic Performance of Cp*Fe(CO)(L
phos

)Br 

To investigate the effects of the phosphine ligands in hetero ligation, the author first 

employed a series of Cp*Fe(CO)(L
phos

)Br [L
phos

 = PPh3, PMePh2, PMe2Ph, P(m-tol)3, and 

P(p-tol)3] and their common dicarbonyl precursor [Cp*Fe(CO)2Br] for living radical 

polymerization of MMA in toluene at 60 °C ([MMA]0/[H-(MMA)2-Br]0/[iron complex]0 = 

4000/40/10 mM) (Figure 1).  All the hetero-ligated complexes induced smooth 

polymerization, and monomer conversion reached over 90% within 48 h [Figure 1(A)].  The 

molecular weights of the obtained PMMAs were increased in direct proportion to monomer 

conversion and were close to the calculated values assuming that one initiator produced one 

polymer chain [Figure 1(B)].  After the polymerizations, the brown color, derived from the 

catalyst, was disappeared to be transparent by water-washing, indicating “catalyst removal” 

possible.  On the other hand, the dicarbonyl version resulted in a slower polymerization, a 

limited conversion (~50%) and poorly controlled molecular weight distributions (MWDs; 

Mw/Mn > 2).  In this case, the catalyst color was not disappeared via the water-washing 

procedure after the polymerization.  Thus, the hetero-ligated complexes were more active 

and better catalysts. 

Within the Cp*Fe family, polymerization rate was dependent on the phosphine 

ligands: P(p-tol)3 ≈ P(m-tol)3 ≈ PMePh2 > PPh3 > PMe2Ph.  This would be linked to the 

structural conversion of the saturated 18e complex into the corresponding unsaturated 16e 

variant upon the halogen abstraction from the dormant carbon-halogen terminal, as 

demonstrated for CpFe(CO)(L
phos

)Br.
25
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2. Model Reactions with Dormant End Model 

Thus, model reactions of the Cp*Fe catalysts with the initiator [H-(MMA)2-Br] at the 

polymerization temperature (60 °C) were analyzed by monitoring changes in the carbonyl 

 

Figure 1.  Ligand effects of Cp*Fe(CO)(L
phos

)Br on living radical polymerization of 

MMA with H-(MMA)2-Br in toluene at 60 °C: [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 

40 mM; [Cp*Fe(CO)(L
phos

)Br]0 = 10 mM.  Ligand: CO (E); PPh3 (C); P(p-tol)3 (G); 

P(m-tol)3 (J); PMePh2(H); PMe2Ph (B).  (A) Time-conversion plots; (B) Conversion-Mn 

plots; (C) SEC curves. 
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ligands by FT-IR; H-(MMA)2-Br was considered as the smallest homolog of the dormant 

PMMA species capped with bromine.  Figure 2 shows FT-IR spectra (1600-2200 cm
-1

 

region) of a catalyst-initiator equimolar mixture before (upper) and after (down) the reactions.  

The peaks at around 1900-2000 cm
-1

 are derived from the CO stretching of the ligand and 

those around 1730 cm
-1

 from the ester C=O in the initiator. 

Notably, upon mixing with the dormant model, the carbonyl signals of all 

Cp*Fe(CO)(L
phos

)Br catalysts but the PMe2Ph derivative almost disappeared [Figure 

2(A)-(D)], suggesting conversion of the saturated and hetero-ligated 18e complexes into 

carbonyl-free unsaturated 16e complexes Cp*Fe(L
phos

)Br. 

The same model systems were also analyzed by 
31

P NMR spectroscopy to see the 

phosphine coordination status.  Even after mixing with the dormant model, the signals of the 

phosphine ligands remained unchanged regardless of the phosphine structures, and no peaks 

 

 

Figure 2.  FT-IR analysis of Cp*Fe(CO)(L
phos

)Br/H-(MMA)2-Br in CHCl3 at 25 °C: 

[Cp*Fe(CO)(L
phos

)Br]0 = 5.0 mM; [H-(MMA)2-Br]0 = 20 mM.  Condition: “Before 

Heating” (gray line); “After Heating”, aged at 60 °C for 8 h before measurement (solid 

line).  Cp*Fe(CO)(L
phos

)Br: (A) Cp*Fe(CO)(PPh3)Br; (B) Cp*Fe(CO)[P(p-tol)3]Br; (C) 

Cp*Fe(CO)[P(m-tol)3]Br; (D) Cp*Fe(CO)(PMePh2)Br; (E) Cp*Fe(CO)(PMe2Ph)Br. 
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indicative of free phosphines were observed, either, all excluding the possible phosphine, 

rather than carbonyl elimination. 

With a vacant site for halogen extraction from the dormant end (~~~C-Br) now 

available, the 16e complexes would be real “active” catalysts for living radical polymerization, 

as observed with CpFe(CO)(L
phos

)Br catalysts.
25

  Comparison with similar model reactions 

for the CpFe family indicates that the 18e-16e conversion apparently occurs faster with the 

Cp*Fe derivatives, which accounts for the faster polymerizations and the narrower MWDs 

with these catalysts.   

In contrast, the C≡O peak for the PMe2Ph complex obviously remained intact after the 

reaction [Figure 2(E)], suggesting a slow carbonyl release and thereby a slow transformation 

into the 16e complex.  This is consistent with the slower polymerization and the broader 

MWDs (especially at the initial stage) observed with this catalyst [Figure 1, (A) and (C)].   

Specifically for the triphenylphosphine-based complexes [L
phos

 = PPh3, P(p-tol)3, 

P(m-tol)3], two minor peaks newly emerged at higher wave numbers (1980 and 2030 cm
-1

) 

upon the disappearance of the carbonyl 1900-2000 cm
-1 

bands, and the positions of the new 

signals were exactly the same as for the dicarbonyl complex [Cp*Fe(CO)2Br] [Figure 

2(A)-(C)].  Such by-products did not form from similar CpFe complexes nor from 

Cp*Fe(CO)(PMePh2)Br.  Given the poor catalytic performance of the dicarbonyl complex 

(see above and Figure 1), however, the real active catalysts should be the in-situ formed 

carbonyl-free 16e complexes [Cp*Fe(L
phos

)Br].  The role of the dicarbonyl complex is under 

investigation, but it might contribute to the deactivation process (radical-halogen coupling), 

because the polymer MWDs at the final conversions were obviously narrower than that with 

Cp*Fe(CO)(PMePh2)Br, which did not give the dicarbonyl complex. 

 

3. Comparison with Cp-Based Complexes  

Thus, the author focused on the difference between the Cp- and the Cp*-based 

complexes [(Z)Fe(CO)(L
phos

)Br; Z = Cp, Cp*] in the catalysis for MMA polymerization.  

Figure 3 shows conversion-Mn plots and SEC curves at around 90% conversion for the 

polymerizations with both catalyst series carrying PPh3, P(m-tol)3, and PMePh2.  There was 

little difference in overall polymerization rate (i.e., time to reach ~90% conversion) between 

the two categories with the same phosphine ligand.  On the other hand, polymer MWDs 

were obviously narrower, and molecular weights better controlled (closer to the calculated), 

for the Cp* complexes, especially with PPh3 and P(m-tol)3.  From these results, the Cp* 
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complexes catalyzed a faster reversible activation between dormant and active species with a 

higher initiating efficiency   

Shown in Table 1, the contribution of Cp* as a conjugated electron-donating group 

was indeed supported by the lower redox potentials measured by cyclic voltammetry (CV).  

The half-wave oxidation potentials (E1/2) are invariably lower for Cp* by >0.2 V for three 

phosphine ligands.   

Table 1.  Cyclic Voltammetry Analyses of CpFe(CO)(L
phos

)Br and Cp*Fe(CO)(L
phos

)Br
a 

Ligand Epa (V) Epc (V) E1/2 (V) E (V) 

PPh3 

Cp 0.90 0.72 0.81 0.18 

Cp* 0.63 0.46 0.55 0.18 

P(m-tol)3 

Cp 0.83 0.65 0.74 0.18 

Cp* 0.62 0.40 0.51 0.22 

PMePh2 

Cp 0.88 0.71 0.79 0.17 

Cp* 0.63 0.44 0.53 0.19 

a
 [Iron complex]0 = 5 mM; [n-Bu4NPF6]0 = 100 mM in CH2ClCH2Cl at 25 °C. 

E1/2 = (Epa + Epc)/2; E = Epa - Epc. 

 

 

Figure 3.  Comparisons between CpFe(CO)(L
phos

)Br and Cp*FeBr(CO)(L
phos

)Br on living 

radical polymerization of MMA with H-(MMA)2-Br in toluene at 60 °C: [MMA]0 = 4000 

mM; [H-(MMA)2-Br]0 = 40 mM; [Iron Catalyst]0 = 10 mM.  Iron catalyst: 

CpFe(CO)(PPh3)Br (E); CpFe(CO)[P(m-tol)3]Br (C); CpFe(CO)(PMePh2)Br (G); 

Cp*Fe(CO)(PPh3)Br (J); Cp*Fe(CO)[P(m-tol)3]Br (H); Cp*Fe(CO)(PMePh2)Br (B). 
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Within the Cp or Cp* families, the oxidation potential also depended on the phosphine 

ligands, and the observed order PPh3 > PMePh2 > P(m-tol)3, though not very significant, 

agrees with the rate order in MMA polymerization (see above and Figure 1). 

 

4. High Catalytic Activity and Controllability  

To demonstrate the high catalytic activity and controllability of Cp*Fe(CO)(L
phos

)Br, 

we performed a monomer-addition experiment with the meta-tolyl phosphine complex [L
phos

 

= P(m-tol)3].  When a conversion reached around 90% in the polymerization of MMA, a 

fresh MMA was added to the polymerization solution.  Even in the second phase, MMA was 

smoothly consumed to give an additional 85% conversion (total 175% relative to the first 

feed) (Figure 4).  Beyond the second monomer addition, molecular weight increased in 

direct proportion with conversion, and the SEC (MWD) curves shifted to higher molecular 

weight keeping narrow distributions (Mw/Mn = 1.16), although a slight tailing was detected.  

As a concurrent addition of the catalyst was not required, the catalytic activity seemed to be 

kept during the second-stage polymerization. 

The high catalytic activity of Cp*Fe(CO)[P(m-tol)3]Br encouraged the author to 

synthesize higher molecular weight polymers with narrow MWDs.  Thus, the author varied 

the monomer/initiator feed ratio from 100 through 400 to 1000, targeting Mn up to 10
5
 at 

 

 

Figure 4.  Monomer-addition experiment in the polymerization of MMA with 

H-(MMA)2-Br/Cp*Fe(CO)[P(m-tol)3]Br in toluene at 60 °C: [MMA]0 = [MMA]add = 4000 

mM; [H-(MMA)2-Br]0 = 40 mM; [Cp*Fe(CO)[P(m-tol)3]Br]0 = 4.0 mM. 
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100% conversion (Figure 5).  Under all these conditions, conversion reached over 90%, and 

the molecular weights invariably agreed well with the calculated values based on the feed 

ratio and conversion, keeping fairly narrow MWDs (Mw/Mn < 1.4).  These results 

demonstrate a high catalytic activity or a high turn-over frequency of the Cp*Fe catalyst.   

 

5. Polymerization of Functional Monomers 

The higher catalytic activity of the Cp* catalysts also promised application for other 

monomers, especially functional monomers.  We then addressed a polymerization of a 

methacrylate (PEGMA) carrying a poly(ethylene glycol) pendant, one of the popular 

functional monomers.  Figure 6 shows a comparison of the PEGMA polymerizations with 

Cp*Fe(CO)(PMePh2)Br and CpFe(CO)(PMePh2)Br.  The Cp catalyst gave a decelerated 

polymerization with a limited conversion (~70%), whereas the Cp* derivative induced an 

almost quantitative polymerization (conversion >90%).  Moreover, the latter produced 

better-controlled polymers with narrower MWDs [Mw/Mn = 1.29 (Cp*) vs 1.51 (Cp)].  Thus, 

the enhancement of electron density by the Cp* ligand was found to improve catalytic activity 

for a functional monomer. 

 

Figure 5.  Synthesis of high molecular weight PMMA targeted 100 (A), 200 (B), 400 (C), 

1000 mer (D) with H-(MMA)2-Br/Cp*Fe(CO)[P(m-tol)3]Br in toluene at 60 °C: 

[MMA]0/[H-(MMA)2-Br]0/[Cp*Fe(CO)[P(m-tol)3]Br]0 = 4000/40/10 mM (A); 4000/20/4.0 

mM (B); 4000/10/2.0 mM (C); 5000/5.0/1.0 mM (D). 
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However, this catalyst was still insufficient for an amine-containing monomer, 

N,N’-dimethylaminoethyl methacrylate (DMAEMA), for which polymer MWD was much 

broader, though conversion reached high (>90%) in 25 h.  The interaction of the amino 

moiety with the catalyst would disrupt the equilibrium balance between dormant and active 

species.  Further ligand-design is required for such functional monomers with higher polarity 

and coordinating nature. 

 

Given the catalytic activity of Cp*Fe(CO)(PMePh2)Br for PEGMA, a sequential block 

copolymerization of MMA and PEGMA was performed with H-(MMA)2-Br (Figure 7).  

MMA (100 eq to initiator) was first polymerized in conjunction in toluene at 60 °C.  When 

MMA conversion reached 80% in 25 h, PEGMA (50 eq) and an additional feed of the catalyst 

(2.0 mM) were added into the reaction mixture.  The added PEGMA was smoothly 

consumed, and its conversion reached around 80% within 48 h (total 72 h).  SEC curves 

shifted to higher molecular weight, indicative of long-lived growing species, but small 

shoulders were seen on both sides of the main peak, probably due to dead and coupling 

polymers.   

 

 

 

 

Figure 6.  Comparisons between CpFe(CO)(PMePh2)Br and Cp*Fe(CO)(PMePh2)Br on 

living radical polymerization of PEGMA with H-(MMA)2-Br in toluene at 60 °C: 

[PEGMA]0 = 500 mM; [H-(MMA)2-Br]0 = 5.0 mM; [Iron catalyst]0 = 5.0 mM. Iron 

catalyst: CpFe(CO)(PMePh2)Br (E); Cp*Fe(CO)(PMePh2)Br (J). 
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6. Polymerization of MA 

As reported in Chapter 3, a hetero-ligated Cp-based complex [CpFe(CO)(PMePh2)Br] 

that is effective for MMA (Mw/Mn ~ 1.3) is less active and cannot control polymerization of 

MA (Mw/Mn > 2).  For MA, the growing radical is inherently reactive, and thus a faster 

halogen-capping (deactivation) would be particularly significant.  Additionally, the less 

bulky monomer possibly interacts with the catalyst and thereby disrupts the ligand 

configuration to interfere catalytic performance.  From these viewpoints, the Cp*Fe 

derivatives were promising, relative to the CpFe, because of their lower redox potential and 

the more bulky structure.   

Thus, MA was polymerized with four Cp*Fe(CO)(L
phos

)Br catalysts [L
phos

 = PPh3, 

PMePh2, P(m-tol)3, P(p-tol)3] in conjunction with H-(MMA)2-Br in toluene at 80 °C 

([MA]0/[initiator]0/[catalyst]0 = 4000/40/10 mM) (Figure 8).   With P(m-tol)3 and P(p-tol)3 

ligands, fairly narrow MWDs and molecular weight increase were observed, although the 

polymerizations markedly slowed down at a limited conversion (~60%) [Figure 8, (a) and (b)].  

On the other hand, the PPh3 or PMePh2 complexes gave uncontrolled polymers [Figure 8, (c) 

 

 

 

Figure 7.  SEC curves of PMMA and PMMA-b-PPEGMA obtained with 

H-(MMA)2-Br/Cp*Fe(CO)(PMePh2)Br in toluene at 60 °C: [MMA]0 = 2000 mM; 

[H-(MMA)2-Br]0 = 20 mM; [Cp*Fe(CO)(PMePh2)Br]0 = 5.0 mM; [PEGMA]add = 1000 

mM; [Cp*Fe(CO)(PMePh2)Br]add = 2.0 mM. 
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and (d)].  These results show that, with bulkier and more electron-donating Cp* and 

phosphine ligands, Cp*Fe(CO)(L)Br is relatively effective for MA polymerization, but that 

further ligand design might improve its catalytic performance for acrylates.   

 

 

Figure 8.  Polymerization of MA with H-(MMA)2-Br/Cp*Fe(CO)(L
phos

)Br in toluene at 

80 °C: [MA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [Cp*Fe(CO)(L
phos

)Br]0 = 10 mM.  

Cp*Fe(CO)(L
phos

)Br: (A) Cp*Fe(CO)[P(m-tol)3]Br; (B) Cp*Fe(CO)[P(p-tol)3]Br; (C) 

Cp*Fe(CO)(PPh3)Br; (D) Cp*Fe(CO)(PMePh2)Br. 
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Conclusion 

 

A series of hetero-ligated Cp*Fe(II) complexes with carbonyl and phosphine ligands 

[Cp*Fe(CO)(L
phos

)Br; L
phos

 = PPh3, PMePh2, PMe2Ph, P(m-tol)3, P(p-tol)3] were active 

catalysts for living radical polymerizations of MMA, MA, and a PEG-functionalized 

methacrylate (PEGMA).  Importantly, the introduction of the Cp* ligand, relative to Cp, 

allowed a better polymerization control for a functional methacrylate (PEGMA) and acrylate 

(MA).  FT-IR analysis on model reactions revealed a fast carbonyl release that transforms 

the original 18e complex [Cp*Fe(CO)(L
phos

)Br] into an unsaturated 16e form 

[Cp*Fe(L
phos

)Br], most probably acting a true “active” catalyst with a high turn-over 

frequency in the dormant-active equilibrium.   

Such an in-situ transformation of a stable precursor into a true “active” catalyst would 

be useful for actual applications.  We have also tried to prepare the 18e diphosphine Cp* 

complexes [Cp*Fe(L
phos

)2Br], which likely turn into the same 16e intermediate 

[Cp*Fe(L
phos

)Br] during the polymerization.  However, they were rather impractical because 

the starting complexes are too unstable to be isolated.  As another way for such an in-situ 

generation of the intermediate catalyst, we have found that a direct usage of 18e dicarbonyl 

iron complex with pentaphenylcyclopentadienyl ligand [(-C5Ph5)Fe(CO)2] in the presence of 

a phosphine ligand was also available for the living radical polymerization [This catalyst was 

discussed in the next chapter (Chapter 6)].  

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99%) was dried overnight over calcium chloride and purified by 

double distillation from calcium hydride before use.  MA (TCI; purity >99%) was dried 

overnight over calcium chloride and purified by distillation from calcium hydride before use.  

Poly(ethylene glycol) methyl methacrylate [PEGMA; CH2=CMeCO2(CH2CH2O)nMe; Me = 

CH3; n = 8.5 on average] (Aldrich) and N,N’-dimethylaminoethyl methacrylate (DMAEMA) 

(TCI; purity >98 %) were of commercial source and purified by passing through an inhibitor 

removal column (Aldrich) and degassed by reduced pressure before use.  The MMA dimer 

bromide [H-(MMA)2-Br; H-(CH2CMeCO2Me)2-Br] as an initiator was prepared according to 
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literature.
26

  Cp2Fe2(CO)4 (Aldrich; purity >99%) and Cp*2Fe2(CO)4 (Azmax; purity >98%) 

were used as received and handled in a glove box (M. Braun Labmaster 130) under a 

moisture- and oxygen-free argon atmosphere (H2O <1 ppm; O2 <1 ppm).  

Triphenylphosphine (PPh3: Aldrich, purity >99%), methyldiphenylphosphine (PMePh2: 

Aldrich, purity >99%), dimethylphenylphosphine (PMe2Ph: Aldrich, purity >97%), 

tri-p-tolylphosphine [P(p-tol)3: Wako, purity >98%], tri-m-tolylphosphine [P(m-tol)3: Aldrich, 

purity >97%] were used as received.  Toluene, THF, CH2Cl2 and n-hexane (Kishida Kagaku; 

purity >99%) were passed through purification columns (Solvent Dispensing System; Glass 

Contour) and bubbled with dry nitrogen for more than 15 min immediately before use.  

CHCl3 (Wako Chemicals, anhydrous; purity >99%) was bubbled with dry nitrogen for more 

than 15 min immediately before use.  Cyclohexane (Wako, anhydrous) was used as received.  

n-Octane (internal standard for gas chromatography) and 1,2,3,4-tetrahydronaphthalene 

(tetralin; internal standard for 
1
H NMR analysis) was dried over calcium chloride and distilled 

twice from calcium hydride. 

 

Catalyst Syntheses 

CpFe(CO)2Br
27

 and CpFe(CO)(PMePh2)Br
28

 were synthesized according to literatures.  

Cp*Fe(CO)2Br was synthesized by the method of King et al.
29

  IR (CHCl3): 2028, 1979 cm 

-1
 (CO).  Anal. Calcd for C12H15BrFeO2: C, 44.08; H, 4.62; Br, 24.44. Found: C, 44.31; H, 

4.45; Br, 24.65. 

A series of Cp*Fe(CO)(L
phos

)Br were synthesized by the method of Barras et al. as 

follows:
24

  A cyclohexane (100 mL) and THF (7.0 mL) mixed solution of Cp*Fe(CO)2Br 

(1.0 g, 3.06 mmol) and 1.5 equivalent of phosphine [L
phos

 = PPh3, PMePh2, PMe2Ph, P(m-tol)3 

or P(p-tol)3] was magnetically stirred and was irradiated under UV (Riko, UVL-400P; 400W) 

at 25 °C for 4 h under dry argon.  The solutions changed from rust to green irrespective of 

phosphine employed.  The reaction mixture was evaporated and then the residue was washed 

with n-hexane (15 mL  2). The residue was extracted in toluene (60 mL) and filtered at 

25 °C to remove precipitates, and the filtrate was evaporated in vacuo to dryness to remove 

the solvent.  The crude product was dissolved in CH2Cl2 (7.0 mL), and recrystallized by 

gradual addition of n-hexane (60 mL), followed by standing at -30 °C for 72 h.  The 

supernatant solvent were removed by a cannula with filter paper, and the crystal was washed 

with n-hexane (2.0 mL  2) and dried under vacuum.  The complexes were characterized by 

elemental analysis, FT-IR spectroscopy at room temperature in CHCl3 on JASCO FT/IR 4200 
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and 500-MHz 
1
H-NMR spectroscopy at room temperature in CDCl3 on a Jeol JNM-ECA500 

spectrometer.  

Cp*Fe(CO)(PPh3)Br; Isolated yield, 75%. 
1
H-NMR (ppm): 1.3-1.5 (m, 15H, Cp-CH3), 

7.3-7.6 (m, 15H, Ar-H).  IR (CHCl3): 1931 cm
-1

 (CO).  Anal. Calcd for C29H30BrFeOP: C, 

62.06; H, 5.39; Br, 14.24. Found: C, 62.04; H, 5.32; Br, 14.31. 

Cp*Fe(CO)(PMePh2)Br; Isolated yield, 35%.  
1
H-NMR (ppm): 1.4-1.6 (m, 15H, Cp- 

CH3), 2.00 (d, 3H, P-CH3), 7.4-7.8 (m, 10H, Ar-H).  IR (CHCl3): 1928 cm
-1

 (CO).  Anal. 

Calcd for C24H28BrFeOP: C, 57.74; H, 5.65; Br, 16.01. Found: C, 57.74; H, 5.54; Br, 16.14. 

Cp*Fe(CO)(PMe2Ph)Br: Isolated yield, 72%.  
1
H-NMR (ppm): 1.4-1.5 (m, 15H, Cp- 

CH3), 1.60 (d, 3H, P-CH3), 1.86 (d, 3H, P-CH3), 7.4-7.7 (m, 5H, Ar-H).  IR (CHCl3): 1925 

cm
-1

 (CO).  Anal. Calcd for C19H26BrFeOP: C, 52.20; H, 6.00; Br, 18.28. Found: C, 52.01; 

H, 5.93; Br, 18.03. 

Cp*Fe(CO)[P(m-tol)3]Br: Isolated yield, 70%.  
1
H-NMR (ppm): 1.3-1.5 (m, 15H, 

Cp-CH3), 2.29 (m, 9H, Ph-CH3), 7.1-7.3 (m, 12H, Ar-H).  IR (CHCl3): 1931 cm
-1

 (CO).  

Anal. Calcd for C32H36BrFeOP: C, 63.70; H, 6.01; Br, 13.24. Found: C, 64.56; H, 5.95; Br, 

12.58. 

Cp*Fe(CO)[P(p-tol)3]Br: Isolated yield, 67%.  
1
H-NMR (ppm): 1.2-1.3 (m, 15H, 

Cp-CH3), 2.31 (m, 9H, Ph-CH3), 7.1-7.4 (m, 12H, Ar-H).   IR (CHCl3): 1930 cm
-1

 (CO).  

Anal. Calcd for C32H36BrFeOP: C, 63.70; H, 6.01; Br, 13.24. Found: C, 62.57; H, 5.84; Br, 

16.11. 

 

Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for MMA polymerization with H-(MMA)2-Br/Cp*Fe(CO)(PMePh2)Br was as follows.  In a 

50-mL round-bottom flask Cp*Fe(CO)(PMePh2)Br (25.0 mg, 0.05 mmol), toluene (2.23 mL), 

n-octane (0.27 mL), MMA (2.14 mL, 20 mmol), and H-(MMA)2-Br (0.36 mL of 553.4 mM in 

toluene, 0.20 mmol) were added sequentially under dry argon at room temperature where the 

total volume of reaction mixture was thus 5.0 mL.  Immediately after mixing, aliquots (0.80 

mL each) of the solution were injected into glass tubes which were then sealed (except when a 

stopcock was used) and placed in an oil bath kept at desired temperature.  In predetermined 

intervals, the polymerization was terminated by cooling the reaction mixtures to -78 ºC.  

Monomer conversion was determined from the concentration of residual monomer measured 
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by gas chromatography with n-octane as an internal standard.  The quenched reaction 

solutions were diluted with toluene (ca. 20 mL), washed with water three times, and 

evaporated to dryness to give the products that were subsequently dried overnight under 

vacuum at room temperature. 

For MA, the same procedures as descried above were applied and for PEGMA, the 

same procedures as described above were applied except that monomer conversion was 

determined by 
1
H NMR from the integrated peak area of the olefinic protons of the monomers 

with tetralin as internal standard.  The products were similarly isolated but without washing 

with water because of their hydrophilicity. 

 

Measurements 

For poly(MMA) and poly(MA), Mn and Mw/Mn were measured by size-exclusion 

chromatography (SEC) in chloroform at 40 °C on three polystyrene-gel columns [Shodex 

K-805L (pore size: 20-1000 Å; 8.0 mm i.d. × 30 cm); flow rate, 1.0 mL/min] connected to a 

Jasco PU-980 precision pump and a Jasco 930-RI refractive-index detector, and a Jasco 

970-UV ultraviolet detector.  The columns were calibrated against 13 standard poly(MMA) 

samples (Polymer Laboratories; Mn = 630-1,200,000; Mw/Mn = 1.06-1.22) as well as the 

monomer.  For poly(PEGMA), DMF containing 10 mM LiBr was applied as an eluent. 

Cyclic voltammograms were recorded by using a Hokuto Denko HZ-3000 apparatus.  

A typical procedure is as follows:  Cp*Fe(CO)(PMePh2)Br (17.5 mg, 0.035 mmol) was 

dissolved into a 100 mM solution of n-Bu4NPF6 (supporting electrolyte) in CH2ClCH2Cl (7.0 

mL) under dry argon in a baked glass tube equipped with a three-way stopcock.  

Voltammograms were recorded under argon at a scan rate 0.1 Vs
-1

 in a three-electrode cell 

equipped with a platinum disk as a working electrode, a platinum wire as a counter electrode, 

and an Ag/AgCl electrode as a reference. 

FT-IR spectra of the Cp*Fe complexes were recorded by using JASCO FT/IR 4200.  

The sample was prepared that Cp*Fe(CO)(PMePh2)Br (2.5 mg, 5.0 × 10
-3

 mmol), 

H-(MMA)2-Br (5.6 mg, 0.020 mmol) and toluene (1.0 mL) were added into the baked glass 

tube equipped with a three-way stopcock under dry argon. After mixing at 60 °C for 8 h, the 

solvent was evaporated.  The residue was dissolved in degassed CHCl3 and purged in the 

sealed liquid KBr cell where the thickness was 0.1 mm. Measurements were carried out under 

inert atmosphere. 
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Chapter 6 

 

 

Pentaphenylcyclopentadienyl Iron Catalyst: 

Fast Transformation into Active Catalyst 

 

 

 

 

Abstract 

Iron dicarbonyl complex bearing a pentaphenylcyclopentadiene (-C5Ph5: Cp
Ph

), 

(Cp
Ph

)Fe(CO)2Br, was employed for living radical polymerization of methyl methacrylate 

(MMA) in conjunction with a bromide initiator [H-(MMA)2-Br].  The complex itself was 

stable and inactive for the polymerization of MMA, however, in the presence of 

triphenylphosphine (PPh3), it smoothly polymerized MMA to give controlled polymers with 

narrow molecular weight distributions (~ 90% conversion within 24 h; Mw/Mn = 1.2).  

Analyses of the model reaction with FT-IR and 
31

P-NMR clarified that the carbonyl ligands 

were efficiently exchanged with the phosphine for the complex to transform into real active 

catalyst.  The ligand exchange was much faster than with other cyclopentadiene-based 

family [i.e., CpFe(CO)2Br, Cp = -C5H5; Cp*Fe(CO)2Br, Cp* = -C5Me5], which was 

reflected in the superiority in the catalytic activity, i.e., faster polymerization and narrower 

molecular weight distributions.  The high catalytic activity was also proved by the monomer 

addition experiment, fine control even for higher molecular weight polymer (Mw/Mn < 1.2 

under 1000 mer condition), and control for methyl acrylate.  Such an in-situ transformation 

from a stable complex to an active catalyst would be advantageous to practical applications. 
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Introduction 

 

For organic reactions and polymerizations, transition metal-catalyzed systems have 

contributed a great deal to the development because of the versatile and tunable property of 

the catalyst with the diverse combination of ligands and the central metal.
1
  Transition-metal 

catalyzed living radical polymerization
2
 is one of such catalytic systems where the complex 

contributes to control of the radical propagation in addition polymerization of vinyl 

monomers (Scheme 1).
3
  Here, the catalysis is a reversible activation for carbon-halogen 

bond (C-X: X = halogen) at the growing end involving one-electron redox (Mt
n
↔XMt

n+1
) to 

generate carbon-centered radical (C•) by “halogen abstraction” and to cap (deactivate) the 

radical species by “halogen return”.  Such a temporal activation allows lower concentration 

of the radical species, leading to a controlled polymerization free from undesirable side 

reactions.  Thanks to the feasible procedures and diversity of the applicable monomers 

including functional ones, this is now a powerful tool to construct novel functional polymeric 

materials with well-defined structures.   

For the catalyst evolution in transition-metal catalyzed living radical polymerization, 

the main efforts have been directed for and improvement of the catalytic activity toward 

syntheses of higher molecular weight polymers with narrow molecular weight distributions 

(MWDs), a wide applicability for various monomers including high polar ones, and a 

reduction in the catalytic amount.  On the other hand, as the systems have been utilized for 

curious applications, the practical utilities are also required in addition to those catalytic 

functions.  For example, the rare or precious metals for the catalysts should be replaced with 

 

 

Scheme 1.  Transition Metal-Catalyzed Living Radical Polymerization  
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ubiquitous ones to suppress a depletion of natural resources.  Also, too active or poisonous 

catalysts might be hard to be handled for industrial processes.  From these practical 

viewpoints, iron should be one of the most ideal central metals for the complex.
4
  Since the 

first discovery with FeCl2(PPh3)2 by the author’s group,
5
 a variety of iron complexes have 

been developed for the catalysts,
6-24

 however there are few examples to satisfy both of 

catalytic activity for variety of monomers and practical utilities with convenience in handling.   

In Chapter 3 and 5, the author have found that carbonyl-phosphine hetero-ligated 

cyclopentadienyl complexes [Cp’Fe(CO)(L
phos

)Br; Cp’ = -C5H5 (Cp)
23

 or -C5(CH3)5 

(Cp*)
24

: L
phos

 = phosphine], prepared via the ligand exchange for Cp’Fe(CO)2Br in the 

presence of phosphine ligand on heating or under UV irradiation, are active to catalyze living 

radical polymerization (Scheme 2).  Although they are stable even under oxygen, once they 

encounter an initiator for the metal-catalyzed living radical polymerization at the 

polymerization temperature (>60 °C), they turned into unsaturated active species 

[Cp’Fe(L
phos

)Br] via the carbonyl release to catalyze the polymerization.  Such a 

transformation was confirmed by FT-IR and 
31

P NMR for the model reaction with the initiator 

[H-(MMA)2-Br].  Thus, in these polymerizations, stable complexes with convenience in 

handling are in-situ transformed into “real” active ones to trigger the controlled radical 

propagation.  As for the difference between the Cp and Cp* complexes, the latter apparently 

shows higher catalytic activity to give narrower MWDs for wide range of monomers.  Same 

as the ruthenium analogues,
25

 the five methyl-substitutions with electron donating ability 

 
 

Scheme 2.  Living Radical Polymerization with (Cp’)Fe(CO)(L
phos

)Br  
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reduces the redox potential to enhance the catalytic activity.  Thus, properties of the 

Cp-based anionic ligand can affect the catalytic activity as well as the neutral ligands (i.e., 

phosphine and carbonyl).   

From these backgrounds, the author embarked on a further modification of the 

half-metallocene iron complex toward a more useful catalyst for the living radical 

polymerization, focusing on another class of cyclopentadiene-based ligand, 

pentaphenylcyclopentadiene (-C5Ph5; Cp
Ph

).
26-29

  The Cp
Ph

 is apparently different from the 

methyl substituted (-C5Me5; Cp*) in terms of bulkiness and electronic property, and indeed 

some examples have been reported on the Cp
Ph

-complexes exhibiting unique ligand 

exchange,
27

 redox behavior,
28

 and catalysis.
29

  For example, it was shown that a carbonyl 

replacement reaction with a phosphorous donor ligand for (Cp
Ph

)Ru(CO)2Br occurs via a 

dissociative mechanism much faster than other cyclopentadiene-family due to the bulkier 

structure of the -C5Ph5.
27

  The similar iron complex [(Cp
Ph

)Fe(CO)2Br] is also one of the 

given Cp
Ph

-based derivatives, however according to the literature, the carbonyl ligand is not 

exchanged with phosphine by thermolysis or UV photolysis unlike the Cp and Cp* 

counterparts.
30,31

  With the author’s findings that carbonyl ligand is specifically released 

under the condition for living radical polymerization with carbonyl-phosphine hetero-ligated 

cyclopentadienyl complexes [Cp’Fe(CO)(L
phos

)Br], the author expected that even for the 

dicarbonyl Cp
Ph

-complex [(Cp
Ph

)Fe(CO)2Br] the CO ligands are replaced with phosphine 

ligand under the condition to give a real active catalyst [(Cp
Ph

)Fe(L
phos

)Br] similar to with 

Cp’Fe(CO)(L
phos

)Br (Scheme 3). 

 

Scheme 3.  Living Radical Polymerization with (Cp
Ph

)Fe(CO)(L
phos

)Br  
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Thus, the author used the dicarbonyl complex [(Cp
Ph

)Fe(CO)2Br] for metal-catalyzed 

living radical polymerization of methyl methacrylate (MMA), coupled with a bromide 

initiator [H-(MMA)2-Br].  The polymerization did not occur in the absence of phosphine, 

whereas just an addition of catalytic amount of phosphine induced smooth and quantitative 

polymerizations to give controlled polymers with predictable molecular weights and narrow 

molecular weight distributions.  Analysis of the model reaction with the initiator with FT-IR 

and 
31

P NMR revealed that phosphorus complexes are in-situ generated free from the 

carbonyl.  This system is active enough to produce high molecular weight polymers keeping 

the controllability and to control for other monomers, such as a functional methacrylate and 

methyl acrylate (MA). 

 

Results and Discussion 

 

1. Living Radical Polymerization of MMA with (Cp
Ph

)Fe(CO)2Br in the Presence of 

PPh3 

The author first employed the dicarbonyl complex [(Cp
Ph

)Fe(CO)2Br] for MMA 

polymerization in toluene at 60 °C, coupled with H-(MMA)2-Br as an initiator 

([MMA]0/[H-(MMA)2-Br]0/[(Cp
Ph

)Fe(CO)2Br]0 = 4000/40/4.0 mM).  The complex showed 

no catalytic activity for MMA polymerization, similar to other dicarbonyl cyclopentadienyl 

derivatives [CpFe(CO)2Br
23

 and Cp*Fe(CO)2Br
24

].  Such dicarbonyl cyclopentadienyl 

complexes seem to be less active for MMA, although the two vanguards show catalytic 

activity for styrenes and acrylates in the presence of larger amount of metal alkoxide [i.e., 

Ti(Oi-Pr)4 or Al(Oi-Pr)3] as a cocatalyst.
8
  Rather surprisingly, once just same amount of 

PPh3 was added as the catalyst ([PPh3]0 = 4.0 mM), MMA was smoothly consumed and the 

conversion reached around 90% within a few days.  With 2 equivalence of PPh3 was added, 

the polymerization was further accelerated (90% in 24 h) and further increase (4 eq) was less 

effective on the polymerization rate.  Regardless of the phosphine amount, molecular 

weights of the produced PMMAs were linearly increased in proportion to the conversion in 

accordance with the calculated values, and the distributions were fairly narrow (Mw/Mn = 1.2 

for ~ 90% conversion).  Thus, just the catalytic amount of phosphine ligand dramatically 

changed the catalytic activity of the complex for living radical polymerization. 
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2. FT-IR and 
31

P NMR Analyses for Model Reaction 

The starting complex [(Cp
Ph

)Fe(CO)2Br] is electronically saturated with 18e, and then 

some ligand-related reaction should occur to trigger the living radical polymerization.  The 

author thus analyzed FT-IR and 
31

P NMR for the model reaction with the initiator 

[H-(MMA)2-Br] in the presence of PPh3 to examine the catalyst transformation during the 

polymerization. 

For FT-IR analysis, the three components were mixed in toluene at 60 °C under dry 

argon for 8 hours ([H-(MMA)2-Br]0/[(Cp
Ph

)Fe(CO)2Br]0/[PPh3]0 = 20/5.0/10 mM), as the 

model reaction of the polymerization.  After an evaporation of the toluene, the residue was 

dissolved in CHCl3 for the measurement.  As a result, the peaks derived from CO stretching 

 

Figure 1.  Polymerization of MMA with H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 in toluene 

at 60 °C: [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [(Cp
Ph

)Fe(CO)2Br]0 = 4.0 mM; 

[PPh3]0 = 0 (E), 4.0 (J), 8.0 (H), 16 (B) mM.  
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on the complex at 2038 and 1999 cm
-1

 of wavenumber were perfectly disappeared [Figure 

2(B)], although they were observed for the sample before the heating procedure [Figure 2 (A)].  

This result would indicate an irreversible dissociation of the CO via the model reaction.  As 

the peaks were not disappeared just for heating with PPh3 [Figure 2(C)], the carbonyl ligands 

would be dissociated only for the reaction with the initiator or the one-electron activation of 

carbon halogen bond. 

The same reaction was analyzed with 
31

P-NMR to see the coordination behavior of the 

added phosphine (Figure 3).  Before heating the mixture, only one peak was observed at 

around 0 ppm, derived from the “free” triphenylphosphine, meaning that the added phosphine 

was not coordinated into the iron at the ambient temperature (Figure 3A).  After heating it at 

60 °C, this peak was totally disappeared, and new three peaks were instead appeared at 18, 32, 

 

Figure 2.  FT-IR analysis of H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 in CHCl3 at 25 °C: 

[(Cp
Ph

)Fe(CO)2Br]0 = 5.0 mM; [PPh3]0 = 10 mM; [H-(MMA)2-Br]0 = 20 mM.  Condition: 

(A) “Before Heating” (dashed line); (B) “After Heating”, aged at 60 °C for 8 h with 

H-(MMA)2-Br and PPh3 before measurement (solid line); (C) “After Heating”, aged at 

60 °C for 8 h with PPh3 before measurement (gray line).  
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and 44 ppm (Figure 3B).  Although the accurate attributions for these peaks were still 

unknown, some phosphine bearing complexes are most likely generated through the model 

reaction.  As the FT-IR analyses indicated the formation of carbonyl free complexes, they 

would be the divalent [(Cp
Ph

)Fe(PPh3)Br] and [(Cp
Ph

)Fe(PPh3)2Br], or the trivalent 

[(Cp
Ph

)Fe(PPh3)Br2]. 

Given these analyses for the model reaction, the author proposes the catalyst 

transformation in the living radical polymerization as shown in Scheme 4.  The starting 18e 

complex [(Cp
Ph

)Fe(CO)2Br] is too stable to induce ligand exchange with phosphine by 

thermolysis or UV photolysis, however once it encounters the halide initiator for living 

 

Figure 3.  
31

P NMR analysis of H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 in CD2Cl2 at 

25 °C: [(Cp
Ph

)Fe(CO)2Br]0 = 10 mM; [PPh3]0 = 20 mM; [H-(MMA)2-Br]0 = 40 mM.  

Condition: (A) “Before Heating”; (B) “After Heating”, aged at 60 °C for 8 h in toluene 

before measurement.  
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radical polymerization [i.e., H-(MMA)2-Br], it releases the carbonyl ligand to accept the 

bromine from the initiator to give the radical species [H-(MMA)2•] and the trivalent complex 

[(Cp
Ph

)Fe(CO)Br2].  In the presence of triphenylphosphine, it would coordinate into the 

trivalent Fe(III) via the ligand exchange with the remained CO ligand to give the 

PPh3-coordinated Fe(III) complex [(Cp
Ph

)Fe(PPh3)Br2].  This Fe(III) complex would 

efficiently return the bromine to the radical species to turn into the corresponding Fe(II) 

complex [(Cp
Ph

)Fe(PPh3)Br], which work as a “real” active catalyst afterward.  In the 

absence of PPh3, the generating carbonyl Fe(III) complex [(Cp
Ph

)Fe(CO)Br2] would be too 

unstable to return the bromine, leading to no polymerization due to some decomposition.
32 

 

3. Comparison with Other Cyclopetadienyl Ligands: Effects of the Phenyl Group  

To examine effects of the pentaphenylcyclopentadiene ligand, the catalysis for the 

MMA polymerization was compared with the other dicarbonyl cyclopentadiene-based iron 

complexes [CpFe(CO)2Br and Cp*Fe(CO)2Br] under the same condition using 2 equivalent of 

PPh3.  As shown in Figure 4, both of them also induced the polymerization in the presence 

of PPh3, but the polymerizations were slower than (Cp
Ph

)Fe(CO)2Br.  At the early stage with 

low conversion, the molecular weight distributions of the polymers with the two complexes 

were much broader than with (Cp
Ph

)Fe(CO)2Br [Mw/Mn > 2 vs < 1.3 with (Cp
Ph

)Fe(CO)2Br], 

although final distribution indexes at the high conversion were similar to those with the Cp
Ph

 

complex.   

To examine the causes of these differences in the polymerization behaviors, the author 

followed the time course of the model reaction with FT-IR for the three complexes 

[CpFe(CO)2Br, Cp*Fe(CO)2Br, and (Cp
Ph

)Fe(CO)2Br].  The reaction condition was same as 

above: the initiator, the complex, and PPh3 were mixed in toluene at 60 °C under dry argon 

([H-(MMA)2-Br]0/[iron complex]0/[PPh3]0 = 20/5.0/10 mM).  Figure 5 shows FT-IR spectra 

 

Scheme 4.  Proposed Polymerization Mechanism of (Cp
Ph

)Fe(CO)2Br/PPh3 
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with the range of 1600-2200 cm
-1

 of wavenumber for CpFe(CO)2Br (A), Cp*Fe(CO)2Br (B) 

and (Cp
Ph

)Fe(CO)2Br (C).  The top spectrum is for “before heating” (0 h), and the lower are 

for “after heating” in predetermined times (2, 4, and 8 h).  For the every complex, there were 

two peaks at around 2000 cm
-1

 from the stretching of CO ligands, and one peak at around 

1730 cm
-1

 from CO in the initiator before the heating procedure.  As shown above, in the 

case of (Cp
Ph

)Fe(CO)2Br, the peaks from carbonyl ligands were disappeared, indicating an 

irreversible elimination of the ligands to give “real” active catalysts.  The transformation 

seemed to be very fast: the peaks were almost vanished in 2 h.  On the other hand, with the 

other two complexes, the carbonyl peaks were not disappeared, although their intensity was 

gradually weakened.  Thus, it was found that (Cp
Ph

)Fe(CO)2Br more smoothly releases the 

carbonyl for the activation of the radical initiator than the other cyclopentadienyl complexes, 

 

Figure 4.  Effects of iron catalyst on living radical polymerization of MMA with 

H-(MMA)2-Br/PPh3 in toluene at 60 °C: [MMA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; 

[Iron Catalyst]0 = 4.0 mM; [PPh3]0 = 8.0 mM.  Iron Catalyst: (Cp
Ph

)Fe(CO)2Br (J), 

CpFe(CO)2Br (H), Cp*Fe(CO)2Br (B).  
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and this would contribute to better control of the polymerization, especially at the early 

polymerization stage. 

 

4. Effects of Phosphine Additives 

Taking advantage of the in-situ introduction of the added PPh3, the author examined 

effects of the phosphine ligand to modify the activity toward more useful catalytic system.  

Thus, five kinds of phosphines [L
phos

 = PPh3, P(m-tol)3, PMePh2, PMe2Ph, P(n-Bu)3] were 

compared as additives for the MMA polymerization with [(Cp
Ph

)Fe(CO)2Br] as a starting 

catalyst in conjunction with H-(MMA)2-Br in toluene at 60 °C (Figure 6).  All the 

phosphines induced smooth polymerizations and the MMA conversion reached over 90% 

within 50 h.  Addition of PPh3, P(m-tol)3 and PMePh2 gave controlled molecular weights and 

narrow MWDs (Mw/Mn < 1.3), while PMe2Ph and P(n-Bu)3 resulted in less controlled 

polymers with broad MWDs (Mw/Mn > 2.0).  Such higher basic phosphine would enhance 

the catalytic activity too much, leading to less ideal equilibrium balance for the control with 

higher concentration of active species. 

 
 

Figure 5.  FT-IR analysis of dicarbonyl half-metallocene iron complex combined with 

H-(MMA)2-Br and PPh3 in CHCl3 at 25 °C aged at 60 °C before measurement: [Iron 

Complex]0 = 5.0 mM; [PPh3]0 = 10 mM; [H-(MMA)2-Br]0 = 20 mM.  Reaction Time: 0 h 

(dashed line); 2 h (gray line); 4 h (broken line); 8 h (solid line).  Iron Complex: 

CpFe(CO)2Br (A); Cp*Fe(CO)2Br (B); (Cp
Ph

)Fe(CO)2Br (C).  
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5. High Catalytic Activity of (Cp
Ph

)Fe(CO)2Br: Monomer Addition Experiments and 

Synthesis of High Molecular Weight Polymers 

To check the catalytic activity of (Cp
Ph

)Fe(CO)2Br in conjunction with PPh3, the 

author carried out so called “monomer-addition” experiment.  When the MMA-conversion 

reached 87% in the polymerization with (Cp
Ph

)Fe(CO)2Br/PPh3, a fresh MMA was added.  

Even in the second phase, MMA was smoothly consumed to give additional 74% conversion 

(totally 161%, for 120 h) (Figure 7).  The molecular weights increased in direct proportion 

 

Figure 6.  Effects of phosphine for (Cp
Ph

)Fe(CO)2Br/phosphine catalytic systems on 

living radical polymerization of MMA with H-(MMA)2-Br in toluene at 60 °C: [MMA]0 = 

4000 mM; [H-(MMA)2-Br]0 = 40 mM; [(Cp
Ph

)Fe(CO)2Br]0 = 4.0 mM; [phosphine]0 = 8.0 

mM.  Phosphine: PPh3 (J); P(m-tol)3 (E); PMePh2 (H); PMe2Ph (C); P(n-Bu)3 (B).  



Pentaphenylcyclopentadienyl Iron Catalyst 

 127 

with the conversion and the SEC curves shifted to higher molecular weight keeping the 

unimodal shape and narrow MWD (Mw/Mn = 1.25), although just a slight tailing was detected.  

As a concurrent addition of the catalyst was not required, the catalyst was still active at the 

latter stage as well as the terminal carbon-bromine bond. 

The high controllability encouraged the author to synthesize higher molecular weight 

polymers with narrow MWDs.  The author thus performed the polymerization for the 

monomer/initiator ratio to be 1,000, targeting 100,000 of Mn for 100% conversion (Figure 8).  

The conversions reached about 90% within 96 h and the MWDs of the obtained PMMAs 

were quite narrow (Mw/Mn < 1.2).  The molecular weights agreed well with the theoretical 

values calculated values based on assumption that one molecule of bromide initiator 

generated one living chain even for nearly 100,000 of Mn.  From these results, it was found 

that (Cp
Ph

)Fe(CO)2Br shows high activity and controllability for living radical polymerization 

of MMA in the presence of PPh3. 

 

 

 

Figure 7.  Monomer-addition experiment in the polymerization of MMA with 

H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 in toluene at 60 °C: [MMA]0 = [MMA]add = 4000 

mM; [H-(MMA)2-Br]0 = 40 mM; [(Cp
Ph

)Fe(CO)2Br]0 = 4.0 mM; [PPh3]0 = 8.0 mM.  
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6. Polymerization of Methyl Acrylate 

The author then examined the polymerization of MA with the same systems.  In the 

MA polymerization, the carbon-halogen bond in the dormant species is tighter and the 

growing radical species is more reactive than with MMA, and hence both of activation and 

deactivation need to be further promoted to control the polymerization: more sophisticated 

catalysis is required.  As for the analog complexes [(Cp’)Fe(CO)(L
phos

)Br; Cp’ = Cp, Cp*], 

the Cp* derivatives give a glimpse of the controllability (Mw/Mn ~ 1.3-1.4), but the conversion 

was limited (< 60%),
24

 while the Cp cannot control the polymerization.
23 

Figure 9 shows the time-conversion curves and SEC profiles of the produced 

poly(MA)s with (Cp
Ph

)Fe(CO)2Br, coupled with three kinds of phosphine: PPh3, P(m-tol)3, 

and PMePh2.  Although there was little difference in the catalysis for the MMA 

polymerizations among the three ligands (Figure 9), the polymerization behaviors were 

dependent on the phosphine ligand.  An addition of PMePh2 gave faster polymerization, 

however the MWDs were obviously broader.  With PPh3 and P(m-tol)3, the conversion 

reached over 80%, and the molecular weights are increased with the conversions, finally to 

give narrower MWDs (Mw/Mn ~ 1.3-1.4).  Thus, the combination of (Cp
Ph

)Fe(CO)2Br and 

phosphine found to be effective even for control of MA polymerization. 

 

Figure 8.  Synthesis of high molecular weight PMMA targeted 1000 mer with 

H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 in toluene at 60 °C:  [MMA]0 = 5000 mM; 

[H-(MMA)2-Br]0 = 5.0 mM; [(Cp
Ph

)Fe(CO)2Br]0 = 1.0 mM; [PPh3]0 = 2.0 mM.  
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7. Polymerization of Functional Methacrylates 

The bulkiness of pentaphenylcycelopentadiene (Cp
Ph

) was expected to contribute to 

some protection from the interaction of the central iron with functional groups or the 

poisoning.  Thus, the author attempted the polymerization of some methacrylates carrying 

functional side groups, such as poly(ethyleneglycol) (PEGMA), dimethylamino group 

(DMAEMA), and hydroxyl group (HEMA).  However, these polymerizations were less 

controlled.  These functional groups would likely interact with the iron when vacant 

coordination sites were generated via the CO release in competition with the phosphine, 

resulting in a deactivation for the catalysis.   

 

Figure 9.  Polymerization of MA with H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/phosphine in 

toluene at 80 °C: [MA]0 = 4000 mM; [H-(MMA)2-Br]0 = 40 mM; [(Cp
Ph

)Fe(CO)2Br]0 = 10 

mM; [phosphine]0 = 20 mM.  Phosphine: PPh3 (J); PMePh2 (H); P(m-tol)3 (B).  



Chapter 6 

 130 

Conclusion 

 

The iron dicarbonyl complex bearing pentaphenylcyclopentadiene [(Cp
Ph

)Fe(CO)2Br] 

is too stable for the carbonyl ligand to be exchanged with phosphine ligands under thermal or 

UV irradiation stimulus, however, on heating with an initiator of living radical polymerization 

in the presence of a catalytic amount of a phosphine ligand, the carbonyl ligands were 

smoothly exchanged with it to give “real” active catalyst, which were supported by FT-IR and 

31
P-NMR analyses for the model reaction.  Thanks to the smooth transformation, the 

complex effectively catalyzed living radical polymerization in the presence of a phosphine 

ligand and the initiator to give controlled molecular weights and narrow molecular weight 

distributions.  Such in-situ transformation from the stable complex to the real active catalyst 

would be ideal toward practical applications of living radical polymerizations.   

 

 

Experimental Section 

 

Materials 

MMA (TCI; purity >99%) was dried overnight over calcium chloride and purified by 

double distillation from calcium hydride before use.  MA (TCI; purity >99%) was dried 

overnight over calcium chloride and purified by distillation from calcium hydride before use.  

Poly(ethylene glycol) methyl methacrylate [PEGMA; CH2=CMeCO2(CH2CH2O)nMe; Me = 

CH3; n = 8.5 on average] (Aldrich) and N,N’-dimethylaminoethyl methacrylate (DMAEMA) 

(TCI; purity >98 %) were of commercial source and purified by passing through an inhibitor 

removal column (Aldrich) and degassed by reduced pressure before use.  The MMA dimer 

bromide [H-(MMA)2-Br; H-(CH2CMeCO2Me)2-Br] as an initiator was prepared according to 

literature.
33

  Iron pentacarbonyl [Fe(CO)5] (Kanto Kagaku, purity >95%) was used as 

received.  Pentaphenyl-2,4-cyclopentadienylbromide [(Cp
Ph

)Br] (Aldrich, purity >90%) was 

used as received and handled in a glove box (M. Braun Labmaster 130) under a moisture- and 

oxygen-free argon atmosphere (H2O <1 ppm; O2 <1 ppm).  Triphenylphosphine (PPh3: 

Aldrich, purity >99%), methyldiphenylphosphine (PMePh2: Aldrich, purity >99%), 

dimethylphenylphosphine (PMe2Ph: Aldrich, purity >97%), tri-n-butylphosphine [P(n-Bu)3: 

Aldrich, purity >97%], tri-m-tolylphosphine [P(m-tol)3: Aldrich, purity >97%] were used as 

received.  Toluene, CH2Cl2 and n-hexane (Kishida Kagaku; purity >99%) were passed 
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through purification columns (Solvent Dispensing System; Glass Contour) and bubbled with 

dry nitrogen for more than 15 min immediately before use.  CHCl3 (Wako Chemicals, 

anhydrous; purity >99%) was bubbled with dry nitrogen for more than 15 min immediately 

before use.  n-Octane (internal standard for gas chromatography) and 

1,2,3,4-tetrahydronaphthalene (tetralin; internal standard for 
1
H NMR analysis) was dried 

over calcium chloride and distilled twice from calcium hydride. 

 

Catalyst Syntheses 

CpFe(CO)2Br
34

 and Cp*Fe(CO)2Br
35

 were synthesized according to literatures. 

(Cp
Ph

)Fe(CO)2Br was synthesized by the method of Field et al. as follows:
36

  A 

toluene (65 mL) solution of (Cp
Ph

)Br (1.08 g, 2.05 mmol) and Fe(CO)5 (0.486 g, 2.46 mmol) 

was magnetically stirred at 25 °C for 24 h under dry argon and the solution gradually turned 

to red.  The reaction mixture was evaporated and then the residue was extracted into CH2Cl2 

(20 mL) and added n-hexane (15 mL).  After stirring, the suspension was filtered at 25 °C to 

remove precipitates, and n-hexane (15 mL) was added to the filtrate.  The mixture was stand 

at -30 °C for 72 h to yield dark red purple crystals.  The supernatant solvent were removed 

by a cannula with filter paper, and the crystal was washed with n-hexane (2.0 mL  2) and 

dried under vacuum.  The complexes were characterized by elemental analysis, FT-IR 

spectroscopy at room temperature in CHCl3 on JASCO FT/IR 4200.  

Isolated yield, 49% (0.64 g).  IR (CHCl3): 2038, 1999 cm 
-1

 (C≡O).  Anal. Calcd 

for C37H25BrFeO2: C, 69.73; H, 3.95; Br, 12.54. Found: C, 69.50; H, 4.02; Br, 13.73. 

 

Polymerization Procedures 

Polymerization was carried out by the syringe technique under dry argon in baked 

glass tubes equipped with a three-way stopcock or in sealed glass vials.  A typical procedure 

for MMA polymerization with H-(MMA)2-Br/(Cp
Ph

)Fe(CO)2Br/PPh3 was as follows.  In a 

50-mL round-bottom flask (Cp
Ph

)Fe(CO)2Br (10.2 mg, 0.016 mmol), PPh3 (8.4 mg, 0.032 

mmol), toluene (1.82 mL), n-octane (0.21 mL), MMA (1.71 mL, 16 mmol), and 

H-(MMA)2-Br (0.26 mL of 609.14 mM in toluene, 0.16 mmol) were added sequentially under 

dry argon at room temperature where the total volume of reaction mixture was thus 4.0 mL.  

Immediately after mixing, aliquots (0.60 mL each) of the solution were injected into glass 

tubes which were then sealed (except when a stopcock was used) and placed in an oil bath 

kept at desired temperature.  In predetermined intervals, the polymerization was terminated 
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by cooling the reaction mixtures to -78 °C.  Monomer conversion was determined from the 

concentration of residual monomer measured by gas chromatography with n-octane as an 

internal standard.  The quenched reaction solutions were diluted with toluene (ca. 20 mL), 

washed with water three times, and evaporated to dryness to give the products that were 

subsequently dried overnight under vacuum at room temperature. 

For MA, the same procedures as descried above were applied.  For PEGMA, 

DMAEMA and HEMA, the same procedures as described above were applied except that 

monomer conversion was determined by 
1
H NMR from the integrated peak area of the 

olefinic protons of the monomers with tetralin as internal standard.  The products were 

similarly isolated but without washing with water because of their hydrophilicity. 

 

Measurements 

For poly(MMA) and poly(MA), Mn and Mw/Mn were measured by size-exclusion 

chromatography (SEC) in chloroform at 40 ºC on three polystyrene-gel columns [Shodex 

K-805L (pore size: 20-1000 Å; 8.0 mm i.d. × 30 cm); flow rate, 1.0 mL/min] connected to a 

Jasco PU-980 precision pump and a Jasco 930-RI refractive-index detector, and a Jasco 

970-UV ultraviolet detector.  The columns were calibrated against 13 standard poly(MMA) 

samples (Polymer Laboratories; Mn = 630-1,200,000; Mw/Mn = 1.06-1.22) as well as the 

monomer.  For poly(PEGMA), poly(DMAEMA) and poly(HEMA), DMF containing 10 

mM LiBr was applied as an eluent. 

FT-IR spectra of the (Cp
Ph

)Fe(CO)2Br/PPh3/H-(MMA)2-Br catalytic system were 

recorded by using JASCO FT/IR 4200.  The sample-was prepared that (Cp
Ph

)Fe(CO)2Br (3.2 

mg, 5.0 × 10
-3

 mmol), PPh3 (2.6 mg, 0.010 mmol), H-(MMA)2-Br (5.6 mg, 0.020 mmol) and 

toluene (1.0 mL) were added into the baked glass tube equipped with a three-way stopcock 

under dry argon.  After mixing at 60 °C for predetermined time, the solvent was evaporated.  

The residue was dissolved in degassed CHCl3 and purged in the sealed liquid KBr cell where 

the thickness was 0.1 mm.  Measurements were carried out under inert atmosphere. 

31
P-NMR spectra of (Cp

Ph
)Fe(CO)2Br/PPh3/H-(MMA)2-Br catalytic system were 

recorded by 500-MHz spectroscopy at room temperature in CD2Cl2 on a Jeol JNM-ECA500 

spectrometer using H3PO4 as a standard.  The sample-was prepared that (Cp
Ph

)Fe(CO)2Br 

(6.4 mg, 0.010 mmol), PPh3 (5.2 mg, 0.020 mmol), H-(MMA)2-Br (11.2 mg, 0.040 mmol) 

and toluene (1.0 mL) were added into the baked glass tube equipped with a three-way 

stopcock under dry argon.  After mixing at 60 °C for 8 h, the solvent was evaporated.  The 
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residue was dissolved in CD2Cl2 and purged in the sealed NMR-tube with a H3PO4 toluene-d
8
 

solution sealed in a capillary under inert atmosphere. 
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