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ABSTRACT 

 

Maeda, M. 2002. A study on prevention of groundwater contamination by nitrate in arable 

land. Doctoral Dissertation, Kyoto University, Japan. 

 

The studies undertaken in the present thesis aimed at the prevention of groundwater 

contamination by nitrate (NO3) from agricultural sources by gaining a better understanding of 

the mechanisms of NO3 leaching in arable land. The use of wick samplers and monolith 

lysimeters was proposed as practical monitoring methods for NO3 leaching in upland fields 

under natural conditions. Wick samplers, which enable to draw water from saturated and 

unsaturated soil without external application of suction, can be installed in actual upland 

fields. Monolith lysimeters, which are defined as a facility whereby undisturbed soil cores are 

placed into bottomed pipes with a drain below the ground, have a large potential to evaluate 

NO3 leaching in structured soils where preferential flow may occur. Nitrate leaching from 

different fertilizers and in structured soil was monitored and the data obtained in the 

experiments were evaluated using simple mathematical approaches. Excessive N from 

chemical fertilizers caused substantial NO3 leaching, while compost application was 

promising to achieve high yields and low N leaching during a few years but led to the same 

level of NO3 leaching as that in the plots subjected to chemical fertilizer application over 

longer periods of time. Nitrate concentrations in soil water at 1-m depth in the plots with 

chemical fertilizer application could be described by an N and water balance equation. 

Preferential flow in soil had a substantial influence on NO3 leaching. The preferential water 

movement was well described by a modified version of the ‗tank-in-series model‘, which 

involves a distribution function of non-reactive tracer travel time. Thus, the experiments and 

mathematical approaches presented could provide full information on NO3 leaching in upland 

fields for policy decisions or regulations to prevent groundwater contamination.



 v 

KEY WORDS  

 

Andisols, Bromide, Chloride, Copper, Groundwater, Leaching, Methemoglobinemia, 

Monolith lysimeter, Natural abundance, Nitrate, Nitrogen and water balance equation, 

Preferential flow, Tanks-in-series model, Zinc, Wick sampler. 



 vi 

ACKNOWLEDGMENTS 

 

Many people have supported and guided me over many years, so that I was able to complete 

this thesis. I would like to express my sincere gratitude to all of them. 

 

First of all, I wish to thank three reviewers at the Division of Environmental Engineering, 

Kyoto University: 

 Professor Kenzo Nishimaki, who initiated me into research on contaminant movements in 

a soil system, for his excellent guidance, informative suggestions and continuous 

encouragement,   

 Professor Shinsuke Morisawa and Professor Hiroshi Tsuno for their rigorous review of 

the manuscript. 

The author is also indebted to: 

 Instructor Dr Satoshi Fukutani, Kyoto University, for his patient attitude to my 

manuscript. 

 

My constant thanks go to: 

 Laboratory Chief, Dr Yasuo Ozaki, who was always available for discussions, for his 

guidance and collaboration. 

 Senior Researcher, Dr Kaoru Abe, who has continuously advised and encouraged me. 

 

This thesis owes much to the staff members at the Department of Soil Sciences, Swedish 

University of Agriculture, where I had studied preferential transport of solutes in soil during 

the period 1998-1999. Special thanks are due to: 

 Associate Professor Lars F. Bergström for valuable discussions and critical review of 

manuscripts for Chapters 4 and 5.  



 vii 

 Professor Arne Gustafson for providing me with the most favorable research environment 

to collaborate with active Swedish researchers. 

 Docent Lave Persson, who introduced me to useful information on drilling techniques for 

collection of soil monoliths, and Docent Göran Johansson for sampling soil monoliths. Dr 

Martin Larsson for his constructive comments on a manuscript for Section 3.2. Hans 

Bonde for his creative idea and great help to prepare experimental setups. Also, thanks 

are due to the other staff members at the Division of Water Quality Management for their 

generous support.  

 

I acknowledge many helpful suggestions from: 

 Professor Tadakatsu Yoneyama at the University of Tokyo on δ
15

N. 

 Professor Shuichi Hasegawa at Hokkaido University on soil physics. 

 Associate Professor Naoya Satta at Iwate University, who was my mentor throughout my 

research. 

 

This thesis was conducted thanks to many colleagues and co-workers: 

 Satoshi Ohno, Toyama Agr. Exp. Sta., with whom I always discussed daily problems. 

 Dr Bandunee C. Liyanage, the Open University of Sri Lanka, Dr Zhao Bingzi, Chinese 

Academy of Sciences, and Hidehiro Okamoto, Tottori Agr. Exp. Sta. for their stimulative 

discussions and assistance. 

 Dr Kenji Matsumori, NIRE, Dr Hiroshi Obara, NIAES, and Dr Kunihiko Katou, NARCH, 

for soil surveys at the Yawara Experimental Sta. of NARC. 

 Hideki Okada, Morinaga Co., for analytical help in measurements of δ
15

N. 

 The staff members at the Yawara Experimental Sta. of NARC for their skillful assistance 

in field work and helpful advice regarding the construction of monolith lysimeters – 

especially Mamoru Hamano, Etsuo Narushima, Hiroshi Murakami, Tetsuya Najihara, 



 viii 

Toru Yoshioka, Toshimitsu Azuma, and Yoshiaki Seki. 

 The other staff members at the Department of Soils and Fertilizers, NARC for fruitful 

discussions and analytical help.  

 Kumiko Nakano, Yoko Hashimoto, and Hideko Ozaki, who were indispensable for 

creating a friendly environment in my laboratory, for their great assistance in the fields 

and the laboratory.  

 

Finally, I would like to thank my family: my wife Yuka and two sons Soichiro and Kanta for 

their warm encouragement. I am grateful to my parents for giving me the opportunity to study 

at the university and being helpful all the time. 

 



 ix 

LIST OF TABLES 

 

Table 2.1.  Contribution of groundwater to drinking water supply in selected countries .... 9 

Table 2.2.  National average N fertilizer applications to arable land in selected countries, 

in 1999, 1979, and 1961 ................................................................................... 11 

Table 2.3.  Nitrogen balance in fields for selected crops in Japan ..................................... 12 

Table 2.4.  Management measures for mitigation of NO3 impacts on groundwater .......... 16 

Table 3.2.1.  Numerical simulation parameters ..................................................................... 30 

Table 3.2.2.  Changes of matric potential at a depth of 15 cm outside wick sampler ........... 32 

Table 3.2.3. Mean, maximum, and minimum total N concentrations in water sampled by 

wick and porous suction cup samplers ............................................................. 40 

Table 4.1.  Selected properties of the investigated soil ...................................................... 55 

Table 4.2.  Crop rotation and N application rate and δ
15

N value of the different N-sources

 .......................................................................................................................... 56 

Table 4.3.  Precipitation, potential evapotranspiration, and air temperature in the field ... 63 

Table 4.4.  Nitrogen uptake by crops ................................................................................. 63 

Table 4.5.  Total N content, C/N ratio, and 
15

N values in the topsoil
a
 after fertilizer 

treatments ......................................................................................................... 65 

Table 4.6.  Nitrate N concentrations and 
15

N values in soil water at 1-m depth receiving 

four  different fertilizer treatments ................................................................. 69 

Table 4.7.  Potential NO3-N present in soil (PNP), potential NO3-N concentration (PNC) 

by the N and water balance equation, and 6-yr average NO3-N concentration in 

soil water at 1-m depth ..................................................................................... 72 

Table 4.8.  Nitrate N and Cl concentrations, mole ratios of NO3-N to Cl, and 
15

N values 

in soil water sampled from different soil depths and ground water in plots 

receiving ammonium nitrogen fertilizer ........................................................... 74 

Table 5.1.  Some properties of the Ultuna soil ................................................................... 87 

Table 5.2.  Water inputs in the three irrigation treatments ................................................. 91 

Table 5.3.  Inputs and leaching of Br, N, Zn, and Cu ......................................................... 93 

 

 



 x 

LIST OF FIGURES 

 

Fig. 1.1.   Trends of population, total production of cereals, and consumption of 

nitrogenous fertilizers in the world since 1961 .................................................. 2 

Fig. 1.2.   Organization of the thesis ................................................................................... 4 

Fig. 2.1.   Nitrogen cycling in soil .................................................................................... 13 

Fig. 3.1.   Monitoring methods for nitrate leaching in fields ............................................ 19 

Fig. 3.2.1.  Laboratory setup to measure the water collection efficiency of wick samplers

 .......................................................................................................................... 27 

Fig. 3.2.2.  Relation between soil water content and matric potential ................................ 29 

Fig. 3.2.3. Water collection efficiency in relation to rainfall intensity for wick samplers 

with a wall height of 7.5, 15, and 22.5 cm ....................................................... 30 

Fig. 3.2.4. Fictitious region in cylindrical coordinates, superimposed finite element 

network, and boundary conditions ................................................................... 33 

Fig. 3.2.5.  Simulated distribution of a) matric and b) total potential for wick samplers 

with a wall height of 7.5, 15, and 22.5 cm ....................................................... 35 

Fig. 3.2.6.  Simulated distribution of a) matric and b) total potential under the rainfall 

intensities of 1.88 and 3.85 mm h
-1

 .................................................................. 37 

Fig. 3.2.8.  Amount of leachate collected in wick samplers and rainfall distribution during 

corn planting ..................................................................................................... 38 

Fig. 3.2.9.  Amount of leachate collected in wick samplers differing in wall height and 

rainfall 48 h after rain stoppage ........................................................................ 39 

Fig. 3.3.1.  Schematic diagram of the drilling unit for collection of soil monoliths .......... 43 

Fig. 3.3.2.  Basic movements of the drilling system for the collection of soil monoliths .. 45 

Fig. 3.3.3.  Manipulations of the drilling system for the collection of soil monoliths ....... 46 

Fig. 3.3.4. Structure of a monolith lysimeter station for leaching studies ......................... 47 

Fig. 3.3.5.  Accumulated amounts of water input and leachate from a lysimeter. ............. 49 

Fig. 3.3.6.  Bromide and chloride concentrations vs. cumulative leachate from a lysimeter

 .......................................................................................................................... 49 

Fig. 4.1.   (a) Annual cumulative precipitation and (b) groundwater changes in two plots 

receiving ammonium fertilizer and one plot without fertilizer, from 1994 to 

2001 .................................................................................................................. 62 

Fig. 4.2.   Mean NO3-N concentrations in soil water at 1-m depth in the four fertilizer 

treatments, from 1994 to 2001 ......................................................................... 67 

Fig. 4.3.   Nitrate N concentration in groundwater in two plots receiving ammonium 

fertilizer and one plot without fertilizer, from 1994 to 2001 ............................ 75 

Fig. 5.1.  Sensitive analysis of the parameters n and fm used in the modified 

tanks-in-series model. a) Change of n in case of fm = 1; and b) change of fm in 



 xi 

case of n = 1.4 .................................................................................................. 83 

Fig. 5.2.   Integration of the distribution function of tracer travel time multiplied by the 

moment arm from zero to  of normalized time ............................................... 85 

Fig. 5.3.   Relation between the peak of distributions of tracer travel time and normalized 

time for different values on the parameters n and fm ........................................ 85 

Fig. 5.4.   Breakthrough curves of NO3-N, NH4-N, Zn, and Cu through a soil column 

under a steady-state flow condition .................................................................. 90 

Fig. 5.5.   Accumulated amounts of precipitation and leachate during the period 22 July 

1998 to 25 January 1999 .................................................................................. 91 

Fig. 5.6.   Concentrations of a) Br, b) NO3-N, c) NH4-N, d) Zn, and e) Cu, and f) pH 

values in leachate during the period 22 July 1998 to 25 January 1999 ............ 94 

Fig. 5.7.  Measured and simulated distributions of tracer travel time vs. normalized time

 .......................................................................................................................... 96 

Fig. 5.8.   Values of n and fm in the three precipitation regimes ....................................... 97 

Fig. 5.9.   Zn concentrations in leachate of all monoliths during the period from 22 July 

1998 to 25 January 1999 ................................................................................ 100 

 



 xii 

LIST OF ABBREVIATIONS 

 

Organizations:  

EPA, Environmental Protection Agency; FAO, Food and Agriculture Organization; MAFF, 

Ministry of Agriculture, Forestry and Fishery; NARC, National Agricultural Research Center 

or National Agriculture Research Center; OECD, Organization for Economic Co-operation 

and Development; USDA, U.S. Department of Agriculture. 

  

Chemicals:  

NH4, ammonium; Cl, chloride; Cu, copper; NO3, nitrate; NO2, nitrite; N, nitrogen; PVC, 

polyvinyl chloride; Zn, zinc. 

 

Treatments:  

SC, swine compost; CU, coated urea fertilizer; AN, ammonium fertilizer; NF, no fertilizer; 

N-C, exposed to natural precipitation and without chemicals; N-A, exposed to natural 

precipitation and treated with chemicals; D-A, exposed to ‗double‘ natural precipitation and 

treated with chemicals; T-A, exposed to ‗triple‘ natural precipitation and treated with 

chemicals. 

 

Others:  

AEC, anion CEC, exchange capacity; cation exchange capacity; ANCA-SL, automated 

nitrogen and carbon analysis–solid/liquid; PTO, power take-off system; SD, standard 

deviation; SE, standard error. 



 xiii 

LIST OF SYMBOLS 

 

Symbol Definition 

a  Fitting parameter for Eq. [3.1] 

b Fitting parameter for Eq. [3.1] 

C Concentration (mg L
-1

) / Content (g kg
-1

) 

CiNO3-N  NO3-N concentration resulting from denitrification (mg L
-1

) 

Cmix  N content of a mixture of materials A and B (g kg
-1

) 

CNO3-N NO3-N concentration before the reaction of denitrification (mg L
-1

) 

CSC N content of compost (g kg
-1

) 

Csoil N content of soil (g kg
-1

) 

c Fitting parameter for Eq. [3.4] 

d Fitting parameter for Eq. [3.4] 

E Distribution function of travel time  

EW  Excess water (mm yr
-1

) 

fm  Ratio of water in mobile regions to maximum water content in soil (—) 

fNO3-N Fraction of unreacted NO3 to initial NO3 in a volume 

h Total potential (cm) 

k Unsaturated hydraulic conductivity (cm s
-1

) 

k (subscript) kth tank in equally sized completely mixed flow tanks in series 

Ksat Saturated hydraulic conductivity (mm h
-1

) 

Kd Soil-solution distribution coefficient of a chemical (cm
3
 g

-1
) 

L Laplace transform function 

M Mass of tracer applied (mg m
-3

) 

M1 First moment of E (τ) 

M2 Second moment of E (τ) 

Mfm,n (τmax, Emax)  Peak coordinate of a function, E (τ) 

n Number of equally sized completely mixed flow tanks in series (—) 

PNC Potential nitrate concentration (mg L
-1

) 

PNP  Potential nitrate present in soil (kg ha
-1

 yr
-1

) 

q Water flow rate (cm s
-1

) 

R Infiltration rate (mm d
-1

) 

Rf Retardation factor of chemical transport in soil (—) 

Rsample  
15

N/
14

N ratio of samples 

Rstandard 
15

N/
14

N ratio of atmospheric N2 

r Radius distance (cm) 



 xiv 

LIST OF SYMBOLS (CONTINUED) 

 

Symbol Definition 

s Laplace transform parameter 

t  Time (d / s) 

V Maximum water content in a freely drained monolith (mm) 

z Vertical distance (cm) / Gravity potential (cm) 

ε
15

N enrichment factor (‰) 

Γ Gamma function 

δ
15

N δ
15

N values of a substrate after the reaction of denitrification (‰) 

δ
15

NSC δ
15

N value of compost (‰) 

δ
15

Nsoil δ
15

N value of soil (‰) 

δ
15

Nmix δ
15

N value of a mixture of soil and compost (‰) 

δ
15

Nini δ
15

N values of a substrate before the reaction of denitrification (‰) 

θ Porosity of soil (—) 

θ Volumetric water content of soil for Eq. [3.1] (m
3
 m

-3
) 

θr Residual soil water content for Eq. [3.1] (m
3
 m

-3
) 

θsat  Soil water content at saturation for Eq. [3.1] (m
3
 m

-3
) 

ρ Bulk density of soil (g cm
-3

) 

τ Normalized time (—) 

ψ Matric potential (cm) 



 1 

Chapter 1 

 

 

INTRODUCTION 

————————————————————————————————————— 

 

1.1 BACKGROUND 

 

The provision of a safe and stable supply of food and water is essential for mankind. The 

increase in the world population was supported by the improvement of agricultural practices, 

including fertilizer application, irrigation, and plant breeding. In fact, total production of 

cereals in the world has increased by a factor of 2.3 while the world population has increased 

by a factor of 1.9 since 1961 (Fig. 1.1). Particularly, chemical fertilizers have played a major 

role in the increase of cereal production (Brown, 1999) and their world consumption has 

increased as much as 7.4 times since 1961 (Fig. 1.1). Also, the large population in the world 

requires more water for agriculture, industry, and living conditions (Brown, 1999). 

Groundwater became more important as an alternative source of water supply for surface 

water, because the water quality of surface waters had been adversely affected by intensive 

human activities. 

 Under these circumstances, excessive application of nitrogenous fertilizers was 

reported to cause groundwater contamination by nitrate (NO3). Namely, we must strike a 

balance in the use of N fertilizer to fulfill the food demand while avoiding imperiling water 

demand. We must adopt proper measures to address this problem, because the amelioration of 

contaminated groundwater would be impossible or is very costly. The Japanese Government 
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Fig. 1.1.  Trends of population (thin line, left axis for scale), total production of cereals (thick line, 

left axis for scale), and consumption of nitrogenous fertilizers (broken line, right axis for 

scale) in the world since 1961. Illustrated from data by FAO (2001). 

established an environmental quality standard for NO3-N in groundwater (10 mg N L
-1

) and 

enforced the Basic Law on Food, Agriculture, and Rural Areas to promote food 

self-sufficiency and sustainable agriculture in harmony with the surrounding environment in 

1999. 

 Utilization efficiency of N fertilizers for outdoor cultivation of vegetables is mostly 

less than 40% (Nishio, 2000). A large proportion of the unused N may leach out of the root 

zone and eventually to reach groundwater. It is difficult for farmers or policy-makers to select 

the most effective measures in the field to improve the N utilization efficiency and to 

minimize the risk of N leaching, because the mechanisms of NO3 leaching are not well 
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understood and thereby the effects of improved practices can not be evaluated.  

 The difficulty in the prediction of NO3 leaching originates mainly from the 

following two facts: (i) most of the agricultural soils contain high levels of organic-N; (ii) 

water flow in soil is not straightforward. In most of the soils, more than 90% of soil-N is in 

organic forms (Vinten and Smith, 1993). Parts of organic-N of soils and manure applied to the 

soils are mineralized and, at the same time, parts of mineral-N in soil can be converted to 

organic forms. On the other hand, these reaction rates, which can not be ignored in 

considering the N mass balance owing to their large proportion, are very difficult to determine 

because they vary considerably depending on the environmental conditions. Furthermore, 

water filtration in the vadose zones is transient and uneven under natural conditions. 

Preferential water flow in soil would bring NO3 to groundwater quickly beyond expectation. 

Many soil scientists have conducted studies on the complicated water flows in soil, but still 

their results are not easily adaptable to the prediction of NO3 leaching.  

 

 

1.2 OBJECTIVES AND ORGANIZATION 

 

The study undertaken in the present thesis aims at the prevention of groundwater 

contamination by NO3 in arable land by gaining a better understanding of the mechanisms of 

NO3 leaching associated with agricultural practices, through experimental and theoretical 

modeling approaches (Fig. 1.2). The objectives of each chapter are to:  

(i) Outline the NO3 problems in groundwater (Chapter 2); 

(ii) Review and develop the monitoring methodology of NO3 leaching (Chapter 3); 

(iii) Determine the effects of application of different fertilizers on NO3 leaching (Chapter 4); 

(iv) Determine the effects of preferential flow on leaching of NO3 and heavy metals 

(Chapter 5).  
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In Chapter 2, the relation between NO3 contamination of groundwater and agricultural 

practices was reviewed. In the first section, human concern and standard limits related to the 

NO3 concentration in water were presented. In the second section, the current status of 

groundwater contamination was described in some countries. Also, the reason why fertilizer is 

applied at higher N rates than the amount that crops would take up throughout the growing 

period was given based on the N uptake patterns of crops. In the following sections, N 

dynamics in soil and factors influencing NO3 leaching were reviewed. In the last section,  

 

 

Monitoring methods for NO3 leaching

(Chap. 3)

NO3 leaching

Types of N fertilizer

(Chap. 4)

NH4-N

Manure-N

Coated urea

Preferential flow of NO3 

in structured soil

(Chap. 5)

Upland fields

Awareness of NO3 problems & Countermeasures

(Chap. 2)

NO3

Monitoring methods for NO3 leaching

(Chap. 3)

NO3 leaching

Types of N fertilizer

(Chap. 4)

NH4-N

Manure-N

Coated urea

Preferential flow of NO3 

in structured soil

(Chap. 5)

Upland fields

Awareness of NO3 problems & Countermeasures

(Chap. 2)

NO3

 

Fig. 1.2.  Organization of the thesis. 
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agricultural management practices to mitigate NO3 contamination of groundwater were 

discussed. 

 In Chapter 3, monitoring methods for NO3 leaching in upland fields were 

introduced and the practical use of wick samplers and monolith lysimeters were discussed in 

detail. The monitoring methods must be accurate, easy to use, and inexpensive, in order to 

evaluate many agricultural management measures under various environmental conditions. In 

the first section, several kinds of lysimeters, porous suction cup samplers, etc. were described 

together with their advantages and disadvantages. In the second section, the performance of 

wick samplers, which is a promising method for monitoring NO3 leaching in fields, was 

investigated in terms of water collection efficiency. In the third section, a drilling system for 

collection of soil monoliths was developed. This unique model can be attached to the 

three-point hitch system, which is a standard for all tractors, on the rear of a tractor. 

 In Chapter 4, NO3 leaching was examined in agricultural Andisol fields treated with 

ammonium N, coated urea, swine compost, or not subjected to fertilizer application for 7 yr. 

Nitrate concentration in the soil water at 1-m depth was monitored using porous ceramic cup 

samplers and subsequently evaluated using the N and water balance equation proposed by 

OECD, which calculates the risk of groundwater contamination (OECD, 1999). Also, total N 

and δ
15

N in the topsoils and the vertical distribution of NO3-N and δ
15

N in soil water were 

studied after 6 yr of continuous fertilizer application. 

 In Chapter 5, the preferential flow of NO3 and heavy metals in heavy clay soil was 

analyzed and a transfer function model was developed to evaluate the preferential flow 

occurring in soil. Ammonium (NH4-N) and NO3-N, zinc (Zn), and copper (Cu) were applied 

on the surface of monolith lysimeters containing heavy clay soil, in which preferential flow 

could have a substantial influence on chemical leaching (Bergström, 1995). The selected 

heavy metals are frequently occurring at relatively high levels in compost from livestock 

waste. Concurrently, bromide (Br) as a non-reactive tracer was applied on the lysimeters to 
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provide information on water movement through the profiles. A modified version of the 

tanks-in-series model for soil systems to describe a distribution function of non-reactive tracer 

travel time was used to characterize the flow behaviour of Br. 

 Lastly, in Chapter 6, the preceding chapters were summarized and general 

conclusions were drawn. In addition, based on the findings of this thesis project, the 

remaining but necessary themes related to NO3 leaching in arable land were suggested for 

future research.   
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Chapter 2 

 

 

OVERVIEW OF NITRATE CONTAMINATION OF 

GROUNDWATER 

————————————————————————————————————— 

 

2.1 HEALTH CONCERN RELATED TO NITRATE IN GROUNDWATER 

 

Nitrate contamination of groundwater has received considerable attention due to potential 

human health impacts from groundwater use for drinking water. Nitrate causes a problem 

when it is converted to nitrite (NO2), while nitrate (NO3) itself is not toxic. The toxicity of 

NO2 is associated with methemoglobinemia, which occurs when NO2 oxidizes hemoglobin to 

methemoglobin, resulting in a decrease in the oxygen-carrying capacity of blood (Addiscott et 

al., 1991; Canter, 1996). Infants under 3 mo of age are the most susceptible because their 

stomach is not acid enough to inhibit the microbes that convert NO3 to NO2 (Canter, 1996).  

 The World Health Organization (WHO) recommended guidelines for drinking water 

quality (NO3: ≤50 mg NO3 L
-1

; NO2: ≤0.2 mg NO2 L
-1

) in 1992, and the U.S. limit for NO3-N 

in drinking water is 10 mg N L
-1

 (Canter, 1996), to offer the greatest protection to infants. The 

European Community (EC) directive (80/778/EEC) implements the WHO recommendation. 

In Japan, the water quality standard of NO3-N for drinking water has been 10 mg N L
-1

 since 

1958 and that of NO2-N (0.05 mg N L
-1

) was added into the items relating to monitoring for 

drinking water in 1998. In addition, an environmental quality standard for NO3-N in 

groundwater was set at 10 mg N L
-1

 to preserve water supply sources in 1999 (Hayami, 1993).  

 Another aspect for environmental concern is the potential eutrophication in closed 
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water bodies like lakes and closed seas (Koshino, 1976; Tabuchi and Takamura, 1985), where 

increased N levels promote the growth of algae, resulting in a decrease in the amount of 

dissolved oxygen. Eutrophication should be avoided due to the simplification of the 

ecosystems in the water bodies and the implication for drinking water supply affected by the 

growth of toxic algae.  

 

 

2.2 STATUS OF GROUNDWATER CONTAMINATION BY NITRATE AND 

FERTILIZER APPLICATION 

 

Western countries have turned their attention to NO3 in groundwater since the 1960s because 

their major source of drinking water is groundwater (Ooe et al., 1999; Ogawa, 2000), as 

shown in Table 2.1 (Kobayashi, 1994). According to the U.S. Environmental Protection 

Agency (EPA), 1.2% of community water system wells and 2.4% of rural domestic wells 

were projected to contain more than 10 mg L
-1

 NO3-N; approximately 4.5 million people 

drank nitrate-contaminated water (U.S. EPA, 1992). Also, in the European countries, drinking 

water sources are contaminated by NO3, exceeding the WHO guidelines of 11.3 mg L
-1

 

(Kumazawa, 1999). In France, more than 1 million people drank water that contained more 

than 11.3 mg L
-1

 NO3-N in 1981, with groundwater accounting for 91% (Fried, 1991). In the 

U.K., NO3-N concentrations were found to exceed 11.3 mg L
-1 

in 192 wells for drinking water 

in 1990, and such polluted areas were designated as nitrate-sensitive areas (Ogawa, 2000). In 

eastern and central England, NO3 concentrations were increasing in groundwater, which 

provides 30-50% of drinking water (Spalding and Exner, 1993). Eight percent of the public 

waterworks in Denmark and 5% of those in former West Germany supplied groundwater 

containing more than 11.3 mg L
-1

 NO3-N (Fried, 1991). In the Netherlands, the average 

concentration of NO3-N in 56 shallow wells was 20 mg L
-1 

with the highest value being 81 
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Table 2.1.  Contribution of groundwater to drinking water supply in selected countries. 

 

 Year Water supplied population Ratio of groundwater to drinking water supply 

  (× 1000 persons) (%) 

Denmark 1986 3,084 100 

France 1986 54,500 64 

West Germany 1986 59,900 64 

Netherlands 1986 14,590 59 

Italy 1984 51,943 50 

Finland 1986 39,710 49 

U.S.A. 1986 219,000 30 

U.K. 1986 56,000 28 

Sweden 1986 7,242 25 

Spain 1986 37,200 24 

Japan 1986 113,859 22 

After Kobayashi, Y. (ed.). 1994. Source protection of Drinking Water Supply. Gihoudou, Tokyo.  

 

mg L
-1 

(Ogawa, 2000). In Japan, a national groundwater survey conducted by the 

Environment Agency revealed that 9% in 1982 and 6.3% in 1998 of groundwater contained 

more than 10 mg L
-1

 NO3-N (Environment Agency, 1993; Environment Agency, 1999).  

 Agriculture was reported to be the leading source of NO3 contamination in 

groundwater (Kawanishi et al., 1991; Hallberg and Keene, 1993; Kumazawa, 1999; U.S. 

Geological Survey, 1999). The Royal Society in the U.K. estimated that the total amount of N 

leached from agricultural land was about 326,000 t in 1987 while N inputs from sewage and 

industrial effluent to freshwater and lakes were 150,000-160,000 t (House of Lords, 1989). In 

the Big Spring Basin of northeastern Iowa, which is fully used for agriculture, the NO3-N 

concentration increased from 3 mg L
-1 

in the 1960s to nearly 10 mg L
-1 

in the early 1980s, 

while the amount of fertilizer N applied in the areas increased 2.5 to 3 times as a function of 

increasing rates of N application as well as the increase in the vegetated area (Hallberg, 1986). 

In Japan, NO3-N concentrations exceeding 10 mg L
-1

 were detected in 15% of agricultural 

wells, but only in 0.05% of the wells in paddy fields (Kumazawa, 1999). Nagai (1991) 

reported that the NO3-N concentration in groundwater continuously increased from less than 5 

mg L
-1 

in the early 1970s to 20 mg L
-1 

in the late 1980s under tea fields, where N fertilizer 

was intensively used, in Sizuoka. Hirata (1996) documented that the NO3-N concentration in 
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groundwater reached a maximum level of 90 mg L
-1 

under vegetable fields receiving N 

fertilizer at 500 kg N ha
-1

. Ogawa (2000) showed that, below upland fields, the NO3-N 

concentration in groundwater increased along with the direction of the groundwater flow.  

  Nitrogen is one of the most important plant nutrients. Needless to say, N fertilizer 

played an important role in the Green Revolution in the 1960s. National average nitrogenous 

fertilizer application rates, which were calculated from the data provided by the Food and 

Agriculture Organization (FAO, 2001), are listed in Table 2.2. Necessary N doses are different 

among countries owing to the difference in cover corps and climate conditions. Nitrogen 

application rates had increased in all the countries, especially in the developed countries from 

1961 to 1979 (Table 2.2). Since the late 1970s, the N application rates have decreased in some 

developed countries (indicated as III), including Japan, because of the awareness of the excess 

application. On the other hand, the N application rates are still increasing in developing 

countries (indicated as I). The national average N application rate in Japan is not high in this 

list and is decreasing. Nevertheless, groundwater contamination by NO3 has been reported, as 

mentioned above.  

 Nitrogen application rates widely ranged from 90 kg ha
-1

 for rice to 958 kg ha
-1

 for 

celery in Japan (Table 2.3; Nishio, 2001). Excessive N in soil, which is shown as surplus N in 

Table 2.3, may cause large N gaseous and leaching losses from arable land, unless the patterns 

of N uptake by crops match N available in soil. Conversely, some excessive N is necessary as 

insurance when considering the N losses. Rainfall immediately after fertilization would bring 

a considerable amount of mineral-N in soil to deeper vadose zones, because crops at an early 

stage had not absorbed much N in soil by that time.  

 Nitrogen surplus increased with the N application rate (Table 2.3). Generally, crops 

need more N in soil at the stage of vegetative growth than at that of reproductive growth. Leaf 

vegetables such as celery and spinach are harvested at the stage of vegetative growth. Fruit 

vegetables such as tomato are continuously harvested at the stages of both vegetative and  
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Table 2.2.  National average N fertilizer applications to arable land in selected countries, in 1999, 

 1979, and 1961 (kg N ha
-1

). 

 

 Type
a
 Year 

  1961 1979 1999 

   

World average I 9 43 63 

     

Ireland I 18 218 399 

Netherlands III 245 619 375 

Egypt I 77 217 354 

South Korea I 107 215 265 

Malaysia I 32 138 255 

U.K. II 69 192 220 

China I 5 109 196 

Viet Nam I 3 16 195 

Sri Lanka I 61 90 186 

Germany III 72 185 170 

France II 32 123 140 

Bangladesh I 2 29 124 

Norway III 58 136 121 

Chile I 4 15 119 

Denmark III 48 149 110 

Indonesia I 5 34 109 

Japan III 112 159 106 

Greece III 30 122 105 

Italy III 27 117 101 

New Zealand I 2 9 100 

Philippines I 7 44 87 

Spain I 20 58 86 

Finland II 22 82 81 

India I 2 21 79 

Thailand I 1 9 73 

Sweden III 31 86 69 

U.S.A. II 17 55 64 

Mexico I 6 36 52 

Canada I 2 18 35 

Brazil I 3 21 31 

Australia I 1 6 23 

Kenya I 1 5 15 
a
 I, Increased throughout the period 1961-1999; II, Increased from 1961 to 1979, then did not change; 

III, Increased from 1961 to 1979, then decreased to 1999. 

 

reproductive growth. Accordingly, leaf and fruit vegetables require a large amount of N in soil 

throughout the growing period, even at harvest (Type A), which induces more NO3 leaching 

during the bare period after harvest. On the other hand, the crops of Types B and C do not 

need much N in soil at harvest because head-formating vegetables such as cabbage in Type B 

are harvested at the late stage of vegetative growth and other crops in Type C at the stage of 
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Table 2.3.  Nitrogen balance in fields for selected crops in Japan (modified after Nishio, 2001;  

  Souma, 1988). 

 

N uptake pattern
a
 Crop Mineral N application N uptake N surplus 

   (kg N ha
-1

)  (kg N ha
-1

)  (kg N ha
-1

) 

Type A Celery 958 226 732 

 Egg plant 643 160 483 

 Tea 628 278 350 

 Tomato 321 101 220 

 Spinach 220 63 157 

     

Type B Chinese cabbage 315 130 185 

 Cabbage 338 217 121 

     

Type C Onion 248 93 155 

 Water melon 161 72 89 

 Potato 156 74 82 

 Radish 133 94 39 

 Rice 90 96 -6 

a
 Nitrogen uptake patterns are illustrated below: 

Type A:  

Continuous uptake 

 

 

 

 

Type B:  

Two-peak-chevron uptake 

 

 

 

Type C:  

Chevron uptake 

 

 

 

 

 

reproductive growth (Souma, 1988). This is the reason for the larger N application rates for 

crops in Type A.  

 Adequate application of livestock manure to arable land is recommended for 

recycling valuable nutrient resources. However, excessive use of livestock manure as well as 

chemical fertilizer on arable land may cause groundwater contamination (Thomsen et al., 

1993; Adams et al., 1994; Chang and Entz, 1996). Although mineralized N from organic-N in 

manure must be considered as N input to arable land, evaluation of the mineralization rate of 

organic-N in manure is not easy (Addiscott, 1991). 
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2.3 THE NITROGEN CYCLING IN ARABLE LAND 

 

The N cycling is shown in Fig. 2.1. The main N inputs to arable land are the application of 

fertilizer and manure, and precipitation. The average application rates of chemical fertilizer 

and manure are 113 and 60 kg N ha
-1

 in Japan, respectively (Mishima et al., 1999). The most 

common N fertilizer is urea (49% of total domestic demand in 1996; MAFF, 1998), followed 

by ammonium sulfate (20%), high-analysis compound fertilizer (13%), and ammonium 

phosphate (11%). Air-borne N inputs amount to about 10 kg N ha
-1

yr
-1 

(Tabuchi and Takamura, 

1985; Hirata, 1996).  

 Nitrogen can exist in various forms in soil. In most of the soils, more than 90% of 

soil-N occurs in organic forms (Vinten and Smith, 1993). The decomposition of organic 
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Fig. 2.1.  Nitrogen cycling in soil. 
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matter converts some organic-N to mineral-N (NH4-N, NO2-N, NO3-N) through microbial 

processes (mineralization). At the same time, mineral-N can be converted to organic-N by 

microbial assimilation (immobilization). Ammonium N is oxidized to NO2-N and then NO3-N 

by microorganisms (nitrification). Crops take up mineral-N from fertilizer or N mineralized 

from organic matter. Nitrate N is freely leached below root zones, while NH4-N is adsorbed 

onto the soil surface with negative charges. Gaseous N losses occur due to denitrification 

under anaerobic conditions and ammonium volatilization under alkaline conditions. 

Furthermore, a considerable extent of N2 fixation occurs in specialized groups of 

microorganisms for grain and pasture legumes. 

 Nitrate leaching is the process whereby NO3 in the soil solution is displaced from 

root zones by rainfall or irrigation water and eventually penetrates into groundwater. General 

knowledge of the N cycling must be considered to select fertilization practices in a field. 

 

 

2.4 FACTORS INFLUENCING NITRATE LEACHING 

 

A number of agricultural practices and hydrogeological factors influence NO3 leaching. The 

magnitude of the adverse impacts of these factors must be evaluated to improve agricultural 

management, resulting in the maintenance of crop yield while reducing NO3 leaching.  

 Fertilization management influences the amount of available-N in soil for crops. 

Substitution of slow-release fertilizers for readily available conventional fertilizers suppressed 

N leaching in short-term studies (Sakata et al., 1995; Matsumaru, 1997b; Maeda et al., in 

press). Split applications or banding of fertilizer reduced NO3 leaching (Power et al., 2000). 

Nitrate leaching is also affected by manure types with different amounts of available-N 

(Beckwith et al., 1998). Residual N from previously applied manure is mineralized and may 

be available for leaching in continuously managed fields (Angle et al., 1993; Thomsen et al., 
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1993; Bergstöm and Kirchmann, 1999; Maeda et al., in press). 

 Cropping systems, tillage, and other production practices can be considered as other 

influencing factors. Nitrate leaching was reduced by the introduction of catch crops such as 

perennial ryegrass and soybean (Aronsson and Torstensson, 1998; Power et al., 2000). The 

effects of tillage practices on NO3 leaching were often site-specific (Power et al., 2000). 

Nitrate leaching was larger where crop irrigation was used (Burart and Kolpin,1992). 

 Local conditions such as climate and soil type also affect NO3 leaching. Nitrate 

concentrations of leachate increased with larger precipitation in Wisconsin (Andraski et al., 

2000) and Denmark (Eriksen et al., 1999), whereas they decreased in Minnesota (Randall et 

al., 1997). While watering treatment did not affect significantly NO3-N leaching, soil types 

differing in texture and organic matter content affected it substantially (Bergström and 

Johansson, 1991). Matsumaru (1997b) showed, using repacked lysimeters, that 25-32% of 

fertilizer-N leached out in volcanic ash soil, while 58-66% of that in sandy soil at the same 

application rates of fertilizer as in the volcanic ash soil. Preferential water flow in soil brings 

NO3 to groundwater quickly (Maeda and Bergström, 2000). Preferential flow refers to 

macropore flow, fingering, and funneled flow (Steenhuis et al. 1995). Macropores, which 

reflect soil structure, root decay, wormholes, etc., constitute preferred flow pathways for 

infiltration of water in soil. Fingering occurs due to wetting front instability such as changes 

in hydraulic conductivity with depth and compression of air ahead of the wetting front. 

Funneled flow takes place when sloping geological layers cause pore water to flow laterally, 

accumulating in a low region. Nitrate leaching increases as the organic matter content 

increases, due to increased mineralization rates (Bergström and Johansson, 1991). Anion 

exchange capacity (AEC) values of soil are often significant for NO3 adsorption. Nitrate 

retention was mainly due to increased AEC at low pH values and was strongly correlated with 

the clay and oxide contents (Canter, 1996). 
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2.5 MEASURES FOR THE PREVENTION OF NITRATE CONTAMINATION 

 

The attention of the present study focused on measures for the prevention of NO3 

contamination from the viewpoint of the ‗polluter pays‘ principle. In addition, the remediation 

of contaminated groundwater is difficult and costly, since contaminants from a non-point 

source like arable land tend to diffuse. Preventive measures for minimizing agriculturally 

based NO3 contamination of groundwater are listed in Table 2.4. Measures for the treatment 

of NO3 in groundwater were reviewed by Canter (1996). 

 Several technical measures can be used for reducing NO3 leaching in arable land. 

The basic concept is associated with matching available N in root zones to meet crop N 

demand all the time. Slow-release fertilizers, mulches, effective application methods of 

fertilizer, and use of catch crops can improve N recovery rates by crops, resulting in high 

yields and low N leaching. Based on a lysimeter study, Matsumaru (1997b) demonstrated that  

 

 

Table 2.4.  Management measures for mitigation of NO3 impacts on groundwater. 

 

Technical measures: 

○ Improvement of N recovery rates by new types of fertilizer / cropping systems  

/ optimum coordination of crop need and fertilizer application; 

○ Recycling of organic wastes; 

○ Provision of land use barriers to N losses from agricultural watersheds. 

 

Policy measures: 

○ The Basic Law on Food, Agriculture and Rural Areas (enacted in 1999):  

proper use of fertilizers; improvement of soil fertility by effective use of livestock manure; 

○ Designation of Nitrate-sensitive Areas. 

 

Educational measures: 

○ Farmer extension; 

○ Consumer awareness of the linkage between low-input products and the environment; 

○ Community-supported agriculture. 

 

Economic measures: 

○ Taxation of N discharge / fertilizer;  

○ Subsidies for sustainable agriculture; 

○ Display for products grown under sustainable agriculture systems, enabling consumer choice. 
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slow-release fertilizer could markedly increase the yield of and N uptake by upland rice and 

taro in sandy soil, resulting in the suppression of N leaching, compared with conventional 

chemical fertilizer. The catch crops following intensive farming are also effective in the 

reduction of N leaching (Aronsson and Torstensson, 1998; Power et al., 2000). Mulching with  

a plastic film can lead to the increase of crop yields and reduction of N leaching by improving 

the water and biological conditions in soil. Split applications of fertilizer are also options for 

increasing N recovery by crops. Coordination of crop need and fertilizer application must be 

taken into account depending on the climate and soil conditions.  

 Inadequate treatments of organic wastes from livestock industries have resulted in 

N enrichment of water (Tabuchi, 2001). Application of livestock wastes to arable land is 

recommended for recycling valuable nutrient resources. In addition, some consumers have 

tended to prefer agricultural products grown with organic fertilizers in the last decade.  

 Wetlands and paddy fields can be barriers to N losses from agricultural land 

(Tabuchi, 2001). Nitrate concentrations in stream water that had penetrated from groundwater 

flowing below upland fields were reduced when the water flew through paddy fields (Abe et 

al., 1999), because the paddy fields have a large potential of N removal by uptake and 

denitrification (Maeda and Ozaki, 1994).  

 The other measures presented in Table 2.4 are potentially useful in controlling NO3 

contamination of groundwater associated with agricultural practices. These approaches can be 

used either singly or in various compatible combinations. 
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Chapter 3 

 

 

DEVELOPMENT OF MONITORING METHODS 

FOR NITRATE LEACHING 

————————————————————————————————————— 

 

3.1 REVIEW OF MONITORING METHODS IN UPLAND FIELDS 

3.1.1 Introduction 

 

Many management measures have been proposed to reduce NO3 leaching losses in upland 

fields as described in Section 2.5. Conventional lysimeter facilities have been found to be 

very useful for the assessment of NO3 leaching. However, the size and cost of the facilities 

limit the number of experimental treatments or replicates. Substitutes for this conventional 

method have been developed and discussed for the last few decades (National Agriculture 

Research Center, 1999). In this section, the monitoring methodology of NO3 leaching and its 

problems were reviewed. 

 Chemical analysis of NO3 in water is only routine work; the difficulty in the 

measurements of NO3 losses lies in collection methods of infiltrating water (Addiscott et al, 

1991). Nitrate leaching is measured by the use of several methods: lysimeters, a combination 

of porous suction cup samplers and tensiometers, drainage systems, groundwater monitoring, 

etc. (Fig. 3.1) These methods must be accurate, easy to use, and inexpensive, in order to 

evaluate many management measures under various environmental conditions. 
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Fig. 3.1.  Monitoring methods for nitrate leaching in fields. (1) PVC pipe; (2) Leachate collection 

vessel; (3) Sampler bucket with wall; (4) Wicks; (5) Leachate collection vessel; (6) 

Sampling tube; (7) Vent tube; (8) Porous cup; (9) Leachate collection vessel; (10) 

Infiltrating-water flux; (11) Tensiometer; (12) Matric potential measurement system. 

 

3.1.2 Lysimeter facilities 

 

Lysimeters, which are defined as blocks of soil enclosed in suitable containers and exposed to 

natural surroundings, have been used to determine water percolation over the past 300 yr 

(Bergström, 1990). The conventional lysimeters, which are made of concrete, contain 

repacked soil, and usually are a few meters in size, have been used for studies on N use 
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efficiency or water percolation since they can measure water balance accurately (Nonaka and 

Kamura, 1995; Matsumaru, 1997a, 1997b; Jinno and Honna, 1999). In constructing the 

lysimeter, the soil profile should be moved from the field to the lysimeter layer by layer, and 

the bulk density should remain as similar as possible to that of the original soil because 

repacking of soil affects the drainage volume and solute concentration from the lysimeter 

(Bergström, 1987; Bergström, 1990). Surface runoff is ignored when this method is employed. 

If tall plants are grown in the lysimeter, rain water may scatter at the level of the plant leaves 

and may not penetrate into the lysimeter. Soil in the lysimeter has less chances of becoming 

compacted than in actual fields. 

 

 

3.1.3 In situ lysimeters 

 

One way to overcome the above disadvantages of the lysimeter facilities would be to install in 

situ lysimeters in actual fields. The top of the in situ lysimeter should be placed below the 

tillage depth to allow management practices over the lysimeters. 

 Pan lysimeters are one kind of in situ lysimeters. A metal pan with a tube soldered 

to the raised edge of the pan is pushed into the side wall of a trench. Plastic tubing connects 

the pan-tube to a collection vessel (Wilson and Dorrance, 1995). The pan lysimeter collects 

gravitational water without disturbance of the soil structure above the pan. However, Kaneko 

and Yamamoto (1999) pointed out that the pan lysimeter should be improved so as to collect 

both matrix and gravitational flows when considering N and water balance. 

 Wick samplers, which use fiber wicks, are alternative systems. The wicks are 

self-priming and act as a hanging water column, which enable to draw water from saturated 

and unsaturated soil without external application of suction (Boll et al., 1992). Arimitsu 

(1982) used a sampler with a wall and showed that the soil column enclosed in the sampler 
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wall acted also as a hanging water column. However, the suction exerted by the wicks or wall 

is difficult to control, because it is a function of the flow rate (Boll et al., 1992). Furthermore, 

the water collection efficiency for wick samplers, defined as the volume of water collected by 

the sampler divided by the water flux from the root zone, changes with the rainfall intensity 

and wall height (Maeda et al., 1999). Accordingly, selection of the most suitable in situ 

lysimeters depends on the environment in the studied field and on the purpose of the study.  

 A larger in situ lysimeter can not be installed without soil disturbance above the 

lysimeter. Further studies should be carried out on the appropriate size of in situ lysimeters 

and the installation method. 

  

  

3.1.4 Monolith lysimeters 

 

Monolith lysimeters are filled with undisturbed soil (i.e., soil monolith) by driving metal or 

PVC (polyvinyl chloride) casings into soil. The advantages of the monolith lysimeters have 

been recognized for structured soils where preferential water flow often occurs. The soil 

enclosed in the casing is cut off from the underlying soil and a leachate collection system is 

attached to the base of the casing. Many different techniques for collecting soil monoliths 

were reviewed by Bergström (1990). 

 A new drilling method for the collection of soil monoliths up to a 100 cm depth was 

developed in Sweden (Persson and Bergström, 1991) and modified by our group in Japan so 

as to attach the drill system to any type of tractors (see Section 3.3). The drill consists of a 

steel cylinder with four mounted cutting teeth at the bottom, into which a PVC tube (286 mm 

i.d.) is inserted. The system is attached on the rear of a tractor. The hydraulic power of the 

tractor is used for pushing, lifting, and rotating the drill.  

 The monolith lysimeters seem to occupy an intermediate position in terms of cost 
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and convenience of use (Addiscott et al., 1991). Although large-sized monolith lysimeters 

often require high costs for installation and transportation, they have been extensively used 

because they offer more natural conditions. In contrast, medium- or small-sized monolith 

lysimeters (i.e., with a surface area of about 1 m
2
 or less) are suitable for studies where a large 

number of treatments or replicates are needed (Bergström, 1990). 

 

 

3.1.5 Porous suction cup samplers 

 

Porous suction cup samplers have been widely used due to their easy installation and 

maintenance, and low cost (Addiscott et al., 1991). In contrast to the lysimeters described 

above, the porous suction cup sampler is used to obtain only solute concentrations in the soil 

water. The suction cup is installed in a hole prepared with a soil auger. Plastic tubing connects 

the suction cup to a collection vessel. For soil water sampling, suction is applied to the vessel 

by a vacuum pump.  

 For the determination of NO3 leaching loss from soil, the water flux must be 

calculated using expensive tools such as tensiometers, which measure the matric potential of 

the soil. In addition, it remains to be determined whether the NO3 concentration in the soil 

water extracted by the porous suction cup sampler is the same as that in water leaching from 

the soil. This method would be most useful for sampling the water likely to drain from 

non-structured soils with less preferential flow, and least relevant in structured clay soils 

(Addiscott et al., 1991).  
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3.1.6 Drainage systems 

 

Tile drainage systems are often used to improve the drainage conditions in heavy clay soils. 

The drainage system is the best choice for the assessment of NO3 discharge in fields where it 

is already established and an impermeable layer exists under the system, because it collects 

both preferential and matrix flows in the soil (Hayashi and Hatano, 1999). Surface runoff, 

interflow, and drainflow in the fields can be collected by the drainage system (Addiscott et al., 

1991). However, depending on the groundwater conditions, the drainage system may give 

unreliable results of the total amount of water that moves from the root zone because a 

considerable amount of water percolates past the drainage system (Bergström, 1987).  

 

 

3.1.7 Groundwater survey 

 

Nitrate leaching losses in a field can be determined by the difference between inflow and 

outflow N-loadings in the groundwater below the field (Ogawa, 2000). Groundwater 

monitoring is important for evaluating the effects of certain agricultural practices above the 

groundwater. However, groundwater remediation will have already exacted a high cost or 

found to be impossible before groundwater contamination can be detected. Thus, this 

approach would not involve preemptive monitoring.  

 

 

3.1.8 Soil sampling 

 

Soil sampling using a soil auger or core sampler is a cheap and convenient option. It does not 

supply data on leaching rates of NO3, but successive sampling provides information on the 
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changes in the amount of NO3 in soil (Addiscott, 1991). This destructive sampling method 

does not allow to continue soil sampling in the same plot. Soil disturbance by soil sampling 

may affect the dynamics of N and water in the fields. 

 

 

3.1.9 Conclusion 

 

There is no perfect method of determining NO3 leaching in fields at present. It much depends 

on the soils studied and the available resources. On fairly uniform unstructured soil, porous 

suction cup samplers are the best choice to determine the NO3 concentration in the soil water 

while additional tools are necessary to determine NO3 fluxes. Lysimeters offer more reliable 

results on N and water balance than the combination of the porous suction cup samplers and a 

method to determine the water flux. Larger monolith lysimeters enclosing undisturbed soil are 

preferable if the financial resources are sufficient, while small monolith lysimeters can be 

selected for studies that require a large number of treatments or replicates. In situ lysimeters 

are options if the financial resources are limited. Drainage collection systems can be used 

where impermeable clay subsoil exists under the system. 

 We must have answers to the following questions when selecting a NO3-monitoring 

method (Maeda, 2000): 

(i) What kind of soil is used for the study? 

(ii) What depth do we define as leaching depth? 

(iii) How much area is necessary for NO3 monitoring, based on the scale of management 

practices? 

(iv) What is the contribution of preferential flow to total infiltrating flow in the field? 

(v) Does surface runoff occur in the fields? 
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After the NO3-monitoring starts, the following aspects should be examined: 

(vi) How large is the variance of replicates and thereby how many replicates are necessary? 

(vii) How frequent time-intervals for sampling are suitable? 

(viii) How large is the impact of soil disturbance when sampling or the installation of the 

tools? 

(ix) Is NO3 concentration in sampled water the same as that in water leaching from the root 

zones?  

 

 

3.2 WATER COLLECTION EFFICIENCY OF WICK SAMPLERS UNDER STEADY 

STATE FLOW CONDITIONS 

3.2.1 Introduction 

 

Wick samplers, which is one kind of in situ lysimeters as mentioned in Section 3.1.3, have 

been developed to measure the concentration and the flux of solute in the vadose zone 

(Holder et al., 1991; Boll et al., 1992). For wick samplers, hanging fiber wicks are used. The 

wick is self-priming and acts as a hanging water column, which enables to draw water from 

saturated and unsaturated soil without external application of suction (Boll et al., 1992). Wick 

samplers have several major advantages over other sampling techniques: (1) they provide 

information on the solute flux as well as the concentration, (2) they enable to collect samples 

continuously at the same spot, and (3) they do not need any power supply. Several researchers 

have studied the performance of wick samplers in terms of the water collection efficiency, 

which is generally defined as the volume of water collected by a sampler divided by the water 

flux from the root zone (Radulovich and Sollins, 1987). The water collection efficiency 

should be close to 100% to measure accurately the water and solute flux. Under near-saturated 

conditions in three kinds of soil (sand, silt loam, and clay soils) differing in their texture, 
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Holder et al. (1991) reported that the water collection efficiency of a wick sampler exceeded 

100% at high water potentials and was less than 100% at low water potentials. Brandi-Dohrn 

et al. (1996) showed that the water collection efficiency was 66-88% in a silt loam soil under 

natural rainfall conditions, presumably due to the lack of accounting for the surface runoff. 

However, no satisfactory information on the factors affecting the water collection efficiency is 

available. Arimitsu (1982) used a sampler with a wall and showed that the soil column 

enclosed within the sampler wall acted also as a hanging water column, but the relation 

between the wall height and water collection efficiency was not described. 

 It is necessary for the improvement of wick samplers to better understand their 

performance in terms of water collection efficiency. In this study, the author used a wick 

sampler with a wall under constant rainfall intensity. The objective of this paper was to 

analyze the effects of the rainfall intensity and wall height of wick samplers on the water 

collection efficiency using experimental data and a numerical analysis. In addition, N 

leaching in an actual upland field was measured using the wick sampler and the validity of the 

wick sampler was discussed. 

 

 

3.2.2 Materials and methods 

3.2.2.1 Laboratory tests 

 

The wick samplers were made of polyvinyl chloride (PVC) cylinders 29.8 cm in diameter 

with a drain hole 3.5 cm in diameter at the bottom (Fig. 3.2.1). Three capillary-wick tails 

(Daiki Rika, COMH-2-04, 0.8 cm in diameter, 10 cm long) hung down from the bottom. A 

capillary sheet (Sakata, AM-5000) was placed at the bottom to maintain a good contact with 

soil. Flow rates of the capillary-wick tail and the capillary sheet under saturated conditions, 

which were measured by hanging materials 20 cm long each on the beaker filled with water, 
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Fig. 3.2.1.  Laboratory setup to measure the water collection efficiency of wick samplers. 

 

were 0.14 mL s
-1

 for the tail and 0.29 mL s
-1

 for the capillary sheet 1 cm wide, respectively. 

The maximum flow rate through three capillary-wick tails was equivalent to a rainfall 

intensity of 21 mm h
-1

 on the PVC cylinder. 

 The effect of the wick sampler wall height on the water collection efficiency was 

studied under constant rainfall intensity using an artificial rainfall system (Sankei Rika, 

SK-7100-25). Three frame lysimeter facilities 100 cm ×100 cm in area and 80 cm in depth 

(Fig. 3.2.1) were uniformly packed with soil to reach a bulk density of 0.7 Mg m
-3 

in a 

greenhouse. The soil used was classified as an Andosil, Hydric Hapludand (Soil Survey Staff, 

1990). Drain systems in the lysimeter facilities were set up to maintain a water table at 70 cm 

below the surface. The saturated hydraulic conductivity of the soil was measured by the 
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falling-head method. Soil water characteristic curve was obtained using the sand column 

method (0-10 cm) and the pressure plate method (10-100 cm). Three wick samplers with 

different wall heights, namely 7.5, 15, and 22.5 cm, were used. The wick samplers were set up 

in the soil so that the top of the wick samplers was located at a depth of 15 cm from the 

surface. The top of the wick sampler must be placed below the tillage depth for prolonged 

observations such as leaching studies from applied manure. The amount of water discharged 

from the wick samplers was measured using a tipping-bucket flowmeter (Hirose Rika, 

HR-YO-30). 

 Six rainfall intensities ranging from 1 to 5 mm h
-1

 (CV: < 4%) were applied for 

three or four days until the steady state flow was reached. Water collection efficiency of the 

wick sampler was calculated as the ratio of the discharge flow rate from the wick sampler to 

the rainfall intensity. A tensiometer (Sankei Rika, SK-5406) was also installed in the soil 15 

cm apart from the wall of the 15 cm wick sampler to examine the matric potential at a depth 

of 15 cm. 

 

 

3.2.2.2 Field tests 

 

Wick samplers were set up, on 22 April 1997, to measure N leaching in a sweet corn field at 

the NARC (National Agriculture Research Center) Yawara Station in Ibaraki, Japan (36
o
01‘ N, 

140
o
03‘ E). The field was 9 m×12 m and used to grow sweet corn in summer and Chinese 

cabbage in winter in three consecutive years preceding this test; 400 kg N ha
-1

 of chemical 

fertilizer was applied to the field each year. In the year of this test, 200 kg N ha
-1

 of chemical 

fertilizer was applied on 30 April 1997 and corn was planted from 5 May to 6 August. 

 Three wick samplers had walls 30, 40, and 50 cm high in triplicate. Each wick 

sampler had a collection chamber with a sampling tube and an air vent tube to prevent 
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pressure changes in the chamber. Wick samplers were installed as the bottom at a depth of 70 

cm. To compare total N concentrations in sampled water, porous suction cup samplers (18 

mm in outer diameter, 60 mm long, Nikkato Co., Japna) were installed in triplicate at the 

same depth as the bottom of the wick samplers. 

 Leachate in the collection chambers was collected immediately after rainfall events. 

Total N concentration of the leachate was determined using a T-N analyzer (TN-05, 

Mitsubishi Kasei Co., Japan). Rainfall was measured using a rain gauge (34-T, 

Ota-Keiki-Seisakusho Co., Japan). Total rainfall during the test period was 456 mm. 

 

 

3.2.3 Results and discussion 

3.2.3.1 Laboratory tests 

 

The saturated hydraulic conductivity of the soil was 180 mm h
-1

 (0.005 cm s
-1

). Soil water  
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Fig. 3.2.2.  Relation between soil water content and matric potential (θ—). 
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characteristic curve (θ—ψ) was described by the following equation derived by Haverkamp et 

al. (1977) and the parameters were obtained by a least square fit (Fig. 3.2.2 and Table 3.2.1). 

b
a










1

1)(

rsat

r  [3.1] 

where ψ is the matric potential (cm), θsat is the soil water content at saturation (m
3
 m

-3
), θr is  

the residual soil water content (m
3
 m

-3
), and a and b are parameters. 

 Figure 3.2.3 shows the relationship between the water collection efficiency and 

rainfall intensity for the wick samplers with three different wall heights. The figure shows that  

 

Table 3.2.1.  Numerical simulation parameters. 

 

Parameter Value Parameter Value 

Ksat (mm h
-1

) 180 a 0.034 

θsat 0.747 b 2.46 

θr 0.50 c 0.21 

  d 2.51 

Parameters were obtained from measurements except for c and d. 

Parameters c and d were obtained from Hasegawa et al. (1994). 
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Fig. 3.2.3.  Water collection efficiency in relation to rainfall intensity for wick samplers with a wall 

 height of 7.5, 15, and 22.5 cm. 
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the water collection efficiency of the wick sampler with a 22.5 cm wall height was 60-100% 

and that of the wick sampler with a 15 cm wall height was 20-60%, while that of the wick 

sampler with a 7.5 cm wall height was extremely low. The water collection efficiency of the 

wick sampler with a 15 cm wall height increased with rainfall intensity and leveled out at high 

rainfall intensities, while the water collection efficiency of the wick sampler with a 22.5 cm 

wall height decreased with increasing rainfall intensity. Holder et al. (1991) showed that the 

water collection efficiency increased with increasing water potential in three kinds of soil. 

Matric potential at the depth of 15 cm outside the wick sampler increased with the increase in 

the rainfall intensity (Table 3.2.2). Taking it into account that a high rainfall intensity induces 

a high water potential in soil, the increase in the water collection efficiency of the wick 

sampler with a 15 cm wall height was in agreement with the observation of Holder et al. 

(1991). On the other hand, the decrease in the water collection efficiency with rainfall 

intensity of the wick sampler with a 22.5 cm wall height was considered to be due to the 

restriction of the drain hole discharge when the rainfall intensity was high. The author shall 

discuss this assumption later. 

 The author attempted to analyze the water collection efficiency using numerical 

simulations in which Richards' equation (Richards, 1931) was solved by the finite element 

method. Richards' equation, which consists of Darcy‘s law and the equation of continuity, 

was formulated by the Gerlarkin finite element method (Neumann, 1973). Matric potentials 

and flow rates of water in soil are simulated by a program coded in FORTRAN 77. 

 Darcy‘s law:  

      q = –kh = –k ( + z)            [3.2] 

 Equation of continuity: 

 
     

t
= – q

 [3.3] 

where q is the water flow rate (cm s
-1

), k is the unsaturated hydraulic conductivity (cm s
-1

), h 
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Table 3.2.2.  Changes of matric potential at a depth of 15 cm outside wick sampler. 

 

Rainfall intensity  

(mm h
-1

) 

Matric potential  

(cm) 

1.31 ─29 

1.88 ─ 

3.80 ─24 

3.85 ─25 

3.91 ─22 

4.62 ─20 

─, no data were collected because of the malfunction of the tensiometer. 

 

is the total potential (cm), z is the vertical distance (cm) or gravity potential (cm), θ is the 

volumetric water content (m
3
 m

-3
), and t is time (s). 

 The following expression proposed by Haverkamp et al. (1977) was used for the 

unsaturated hydraulic conductivity ─ matric potential curve (k─ψ): 

d
c

Kk






1

1
)( sat  [3.4] 

where Ksat is the saturated hydraulic conductivity (mm h
-1

), and c and d are parameters. 

 Parameters c and d were obtained based on the measurements performed by 

Hasegawa et al. (1994) who used also Hydric Hapludands. The parameters were calculated by 

the least square fit based on the k value determined by Hasegawa et al. (1994) (ψ > ─100 cm) 

and our data on Ksat. Equation [3.1] was used for the soil water characteristic curve (θ─ψ). 

 Boundary and initial conditions are given as follows. Figure 3.2.4 shows the 

fictitious region in cylindrical coordinates, superimposed finite element network, and 

boundary conditions for the wick sampler with a 15 cm wall height. The same boundary 

conditions were used for the other wick samplers. The z coordinate in each node between 10 

and 55 cm from the water table was modified for the other wick samplers: the nodes for the 

wick sampler with a 15 cm wall height have z coordinates of 0, 10, 20, 30, 40, 45, 50, 55, 60, 

65, and 70 cm from the bottom to the top (Fig. 3.2.4), those for the wick sampler with a 7.5 

cm wall height 0, 10, 22.5, 35, 47.5, 50, 52.5, 55, 60, 65, and 70 cm, and those for the 22.5 cm 
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Fig. 3.2.4.  Fictitious region in cylindrical coordinates, superimposed finite element network, and 

 boundary conditions.  Condition: wick sampler with a wall height of 15 cm.  

 

wall wick sampler 0, 10, 17.5, 25, 32.5, 40, 47.5, 55, 60, 65, and 70 cm. r is the radius 

distance from the center of the wick sampler in Fig. 3.2.4. 

 Boundary conditions: 

 ψ= ─10 cm or q = 0 (on the upper side of the wick sampler bottom)    [3.5] 

 Matric potentials at the wick sampler bottom were set up at a value of ─10 cm, 

assuming that there is no pressure drop in the wicks and the soil-wick interface. And then, 

fluxes at the wick sampler bottom were set up at zero when the gradient of total potentials at 

wick sampler bottom became negative. 

 ψ = 0   (at the level of the water table) [3.6] 

 q = 0   (on the wick sampler wall and the lower side of the wick sampler bottom) 

 [3.7] 
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 Initial conditions: 

 ψ = 0  (at the level of the water table) [3.8] 

 ψ = ─10 cm (except for the level of the water table) [3.9] 

 Calculations were continued until the wick sampler discharge flow rate reached a 

steady state (about 2000 min) and then the water collection efficiency was calculated. 

 Numerical simulation results (lines in Fig. 3.2.3) show that the water collection 

efficiency increased with the wall height and rainfall intensity. In consideration that the 

discharge from the wick sampler drain hole is restricted, the limitation curve is expressed by 

the saturated hydraulic conductivity multiplied by the cross-sectional area ratio of the drain 

hole to the cylinder divided by the rainfall intensity. We also observed that the drain hole 

discharge rate was restricted when the rainfall intensity exceeded 3.5 mm h
-1

. It is therefore 

necessary to design a wick sampler in which the cross-sectional area ratio of the drain hole (A 

cm
2
) to the cylinder (S cm

2
) exceeds the ratio of rainfall intensity (R mm h

-1
) to saturated 

hydraulic conductivity (Ksat mm h
-1

). 

A/S > R/ Ksat [3.10] 

 The A/S ratio must exceed a value of 1/36 to avoid a restriction under a rainfall 

intensity of 5 mm h
-1

 because the saturated hydraulic conductivity was 180 mm h
-1

. The A/S 

ratio in our experiment was 1/72. The area of the drain hole should have been twice as large 

as that of the used one.  

 The experimental values exceeded the simulated values under a low rainfall 

intensities. Although the wick sampler with a 7.5 cm wall height did not collect water in the 

experiment, simulation showed the presence of outflow when the rainfall intensity exceeded 

3.5 mm h
-1

. This discrepancy is probably due to the fact that the auther used the parameters on 

unsaturated hydraulic conductivity obtained from the literature. However, our argument is 

valid as the general trend in the experimental data was well simulated. 

 Since Eq. [3.2] shows that infiltrating water flows according to the gradient of the 
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total potential, it is necessary to examine the distribution of the total potential in soil for the 

determination of the water collection efficiency. Total potential was calculated by setting the 

gravity potential at a depth of 70 cm as zero and adding the matric potential and gravity 

potential. The distribution of the total potential inside the wick sampler must be consistent 

with that outside the wick sampler so that the water collection efficiency reaches 100%.  

 First of all, the water collection efficiency will be examined for wick samplers with 

a wall height of 7.5, 15, and 22.5 cm. The distribution of the matric and total potential inside 

and outside the three wick samplers was simulated at a low rainfall intensity (1.88 mm h
-1

). 

Along with the increase of the wick sampler wall height, the gradient of the matric potential 

inside the wick sampler with depth became smaller (Fig. 3.2.5 a) and the distribution of the  
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Fig. 3.2.5.  Simulated distribution of a) matric and b) total potential for wick samplers with a wall 

 height of 7.5, 15, and 22.5 cm.  Condition: Rainfall intensity, 1.88 mm h
-1

. Gravity 

 potential at the depth of 70 cm was defined as zero. Inside: center of the wick sampler. 

 outside: 45 cm from the center of the wick sampler  
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total potential was closer to that outside the wick sampler (Fig. 3.2.5 b). The difference in the 

matric potential inside and outside the wick sampler at the depth of 15 cm (i.e., at the top 

depth of wick samplers) resulted in a diversion of the flow from the wick samplers. The use of 

a higher wick wall resulted in the decrease of the difference in matric potential and 

consequently the diversion of the water flow was reduced. The water collection efficiency 

therefore increased with the increase of the wall height (see Fig. 3.2.3). There was no water 

flow in the wick sampler with a 7.5 cm wall height, because the matric potential at the bottom 

of the wick sampler with a 7.5 cm wall height was less than -10 cm exerted by wicks. 

 The water collection efficiency under different rainfall intensities will be examined. 

The distribution of the matric and total potential inside and outside the wick sampler with a 15 

cm wall height was simulated under a low rainfall intensity (1.88 mm h
-1

) and a high rainfall 

intensity (3.85 mm h
-1

). Higher rainfall intensity led to a higher matric potential to a depth of 

60 cm from the soil surface (Fig. 3.2.6 a). On the other hand, the values of the matric potential 

at the bottom of the wick sampler and at the level of the water table were fixed at -10 cm 

exerted by wicks and 0, respectively. As a result, under the higher rainfall intensity, the 

distribution of the matric and total potential (Fig. 3.2.6 b) inside the wick sampler was closer 

to that outside the wick sampler. It was not considered in this simulation that the discharge 

from the wick sampler drain hole may be restricted when the rainfall intensity was high. 

Taking this restriction into account, the matric potential inside the wick sampler is likely to 

increase due to the water flow interference at the bottom of the wick sampler. 

 

 

3.2.3.2 Field tests 

 

The author designed wick samplers in the same soil as in the laboratory tests. The water 

collection efficiency of wick samples with a wall height of 10, 20, 30, 40, and 50 cm was 
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Fig. 3.2.6.  Simulated distribution of a) matric and b) total potential under the rainfall intensities of 

 1.88 and 3.85 mm h
-1

.  Condition: Wick sampler with a wall height of 15 cm. Gravity

 potential at the depth of 70 cm was defined as zero. Inside: center of the wick sampler. 

 outside: 45 cm from the center of the wick sampler 

simulated under steady state flow conditions, assuming that the matric potential at 100-cm 

depth is –10 cm from observed data after heavy rainfalls in the field. The simulated results 

were shown in Fig. 3.2.7. It is clear that the wall height must exceed 30 cm to achieve high 

water collection efficiency in this condition. According to this result, wick samplers with a 

wall height of 30, 40, and 50 cm were used to test the performance under field conditions. 

 The average amount of leachate collected by wick samplers was illustrated in Fig. 

3.2.8. Leacate was collected by the wick samplers only twice on 26 May and 22 June, when 

total amounts of rainfall for 48 h before the rain stoppage exceeded 70 mm. This is consistent 

with Hasegawa et al. (1994) who reported downwards water flux in the similar soil during the 

period from June to August was associated with rainfall that occurred twice and reached 65.0 

mm and 85.5 mm for 24 h. The higher wall of the wick sampler, the more amount of the 

leachate was recorded, as indicated by the laboratory test.  
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Fig. 3.2.7.  Simulated water collection efficiency in relation to rainfall intensity for wick samplers 

 with a wall height of 10, 20, 30, 40, and 50 cm.  Gravity potential at the depth of 100 cm 

 was defined as zero. 
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Fig. 3.2.8.  Amount of leachate collected in wick samplers and rainfall distribution during corn 

 planting. Test period: from 5 May to 6 August 1997. 
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 The variance in the amount of leachates, which is plotted with the amount of 

rainfall for 48 h before rain stoppage in Fig. 3.2.9, decreased with the wall height of the wick 

sampler. This reason is not clear but the higher wall height may make the system stable. 

 There is no vital difference in mean, maximum, and minimum total N 

concentrations between the wick and porous suction cup samplers (Table 3.2.3). In contrast to 

this result, Steenhuis et al. (1995) documented that wick samplers could represent water 

through the vadose zone accurately in a loamy and clay loam soil, whereas porous suction cup 

samplers did not due to occurrence of water movement along the sampler tubes in the loamy 

and failure in catching preferential flow in the clay loam soil. Because the field in the present 

study has received the same management for 4 yr, the influence by the variety of infiltrating 

water flow may have been masked. The difference in maximum and minimum concentrations  
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Fig. 3.2.9.  Amount of leachate collected in wick samplers differing in wall height and rainfall 48 h 

after rain stoppage. Wall heights of wick sampler were 30 cm (□), 40 cm (●), and 50 cm 

(×). 
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Table 3.2.3.  Mean, maximum, and minimum total N concentrations in water sampled by wick and 

   porous suction cup samplers. 

 

Type Wall height N Mean Maximum Minimum 

 (cm)  (mgN L
-1

 ) 

Wick sampler 30 3 59.7 83.6 45.8 

 40 3 54.3 67.8 49.6 

 50 3 61.0 72.6 54.4 

Porous suction cup sampler  3 63.3 91.0 46.9 

Sampled on 26 May 1997. 

 

decreased with increasing the wall height of the wick sampler, indicating also that the higher 

wall height may make the system stable. 

 The total N concentrations, which were mostly NO3-N, in leachates by all wick 

samplers were substantially higher than our water quality standard of 10 mg L
-1

 in 

groundwater or for drinking water (Table 3.2.3). To prevent the groundwater contamination, 

NO3 concentration in this leachate is recommended to be less than 10 mg N L
-1

, although the 

water with high NO3 concentration may be diluted in groundwater and be mitigated by 

denitrification in groundwater. Total N leaching from the corn field was estimated to be 31 kg 

ha
-1

 for the wick sampler with 30-cm wall, 61 kg ha
-1

 for that with 40-cm wall, and 67 kg ha
-1

 

for that with 50-cm wall. These values account for 16%, 31%, and 34% of the applied N for 

the sweet corn in the field, respectively. Sweat corn absorbed only 62 kg ha
-1

, accounting for 

31% of the applied N. On the N balance, considerable amount of N is unknown; part of this N 

may be retained by soil or lost by denitrification.  

 

 

3.2.4 Conclusion 

 

When both the rainfall intensity and wall height of the wick sampler increased, the 

distribution of the total potential inside the wick sampler became closer to that outside the 

wick sampler. As a result, the water collection efficiency, which is an indicator of the 
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performance of wick samplers, increased with the increase of the rainfall intensity and wall 

height. The author also suggested that the cross-sectional area ratio of the drain hole to the 

cylinder should be taken into account. Although these trials were performed under steady state 

flow conditions and using repacked soil, the results may contribute to the development and 

the use of wick samplers. Also in the field studies, the water collection efficiency of wick 

samplers increased with the increase of wall height. Total N concentrations in leachate 

collected by the wick samplers were the similar to those in soil water collected by the porous 

suction cup samples. Nitrogen leaching was estimated at 30-70 kg ha
-1

 in the sweet corn field, 

which received 200 kg N ha
-1

 as chemical fertilizer. 

 

 

3.3 DEVELOPMENT OF A MONOLITH LYSIMETER FOR LEACHING STUDIES 

3.3.1 Introduction 

 

Monolith lysimeters were described in Section 3.1.4. Many methods for collecting soil 

monoliths employ hydraulic pressure to push the casings into the soil (Bergström, 1990; 

Shipitalo and Edwards, 1993; de Rooij and Wit, 1996), while the soil around the casing must 

be removed to reduce friction. In other cases, a large hammer was dropped onto the top edge 

of a casing to push it into the soil (Moyer et al. 1996). The method described here is an 

improvement of the method developed by Persson and Bergström (1991), which uses a 

drilling technique to remove the soil around a casing instead of pushing it down. The main 

advantage of this method is that the soil is less disturbed than by other methods because of the 

low friction between the soil and the casing-wall. However, this drill unit could not be 

attached to any types of tractors because the unit was mounted on the front-end loader of a 

tractor, which selected a certain type of tractors and was costly. Therefore, the author 

modified the Persson and Bergström model to attach the whole drill unit to the three-point 
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hitch system, which is a standard for all tractors, on the rear of a tractor.  

 One problem related to lysimeter studies is the potential ‗sidewall flow‘, which 

refers to the process that water or solute runs along the lysimeter wall, if there is a significant 

gap between the soil and the lysimeter-wall. This problem affects solute movement in the 

same way as preferential flow. Accordingly, the sidewall flow in a monolith lysimeter 

collected by the developed drill system was evaluated using two anions as tracers of water. 

 

 

3.3.2 Development and performance of a drill system 

 

This drilling method enables to collect soil monoliths up to a 100 cm depth. This drill system 

consists of 3 parts: (i) a system-lifting part; (ii) a drill-rotating part; and (iii) a 

drill-pressing/lifting part (Fig. 3.3.1). The hydraulic power of a tractor is used for pressing, 

lifting, and rotating the drill; the Power Take-Off system (PTO) is used for lifting the whole 

system when the system is transported or the drill-cylinder is installed. Since the whole 

system is mounted on a Massey Ferguson 3060 machine (main hydraulic pump: 50 L min
-1

; 

180 kgf cm
-2

, second pump: 29 L min
-1

; 175 kgf cm
-2

) in our experiments, the moment for the 

rotation was 479 kgf m (4.6 kN m) at 30 r.p.m. and the forces for pushing and lifting the 

drill-unit were 3.4 t (34 kN) and 2.4 t (23 kN), respectively (see APPENDIX). The system is 

1234 mm wide, 1000 mm deep, and 2371 mm high when the cylinder-rod is housed at the 

lowest position (Fig. 3.3.1). This height is appropriate for transporting the drill system on 

Japanese roads by truck (maximum legal height: 3.8 m including the height of a truck). 

 The drill unit consists of a steel cylinder with four mounted cutting teeth at the 

bottom, into which a polyvinyl chloride (PVC) casing (VP300; 1180 mm long; 286 mm i.d.) 

is inserted (Fig. 3.3.1). The cutting teeth and the PVC casing have the same inner diameter.  
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Fig. 3.3.1.  Schematic diagram of the drilling unit for collection of soil monoliths.  (1) Cutting teeth; 

 (2) Drill cylinder; (3) PVC casing (VP300); (4) Gear box; (5) Extension rod; (6) System 

 lift  connected to PTO (Power Take-Off); (7) Lock for lift-up prevention. 

 

 

3.3.3 Collection process and placement of soil monoliths 

 

Manipulation procedures of the drill system are presented in Fig. 3.3.2 and Fig. 3.3.3. During 

the transport of the whole drill system to a sampling field, the cylinder-rod is housed at the 

lowest position as shown in Step1 (Fig. 3.3.2). In the field, the cylinder-housing is lifted by 

extension of the cylinder and then the housing unit is connected to the upper beam of the 

frame (Fig. 3.3.3a). In Step 2, the gearbox is lifted by compressing the cylinder-rod, to make 

room for fixing the PVC casing. After fixing the PVC casing (Fig. 3.3.3b), the whole system 
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is further lifted by operating a system-lifting part to install the drill cylinder outside the PVC 

casing (Step 3; Fig. 3.3.3c and d). The whole system is settled on the ground by connecting 

the frame with the tractor to prevent the system from being raised by the counterforce to 

pressing the drill (Step 4; Fig. 3.3.3e). After balancing the whole system upright, the drill 

rotates around the PVC casing with being pressed (Fig. 3.3.3f). The soil shaved off by the 

tooth of the drill is transferred to the soil surface through the plane of the drill. The soil 

monolith inside the drill does not rotate while the drill goes down (Step 5). Removal of the 

soil on the plane may facilitate the soil transport (Fig. 3.3.3f). When the bottom of the PVC 

casing reaches a 1060 mm depth, the drill rotates together with the PVC casing to shear the 

soil inside the casing from the underlying soil (Step 6). Lastly, the soil monolith enclosed in 

the drill unit is lifted out of the hole and is separated from the drill cylinder on the ground in 

the inverse steps.  

 The time required for attaching the whole system to the tractor is approximately 60 

min. Sampling times for a soil monolith up to a 100-cm depth of Andisoils (Kuroboku soil), 

Ultisols (Red soil), and Entisols (Sandy soil) are approximately 20 min, 1.5 h, and 2 min, 

respectively. For the Entisols, the bottom of the soil monolith collected should be covered at 

the base of the hole before lifting the drill, to prevent the soil from falling out of the PVC 

casing. 

 The soil at 60 mm from the bottom is replaced by a sheet of nylon mesh (200 mesh; 

NXXX 25, NBC Industry), 3 kg (ca. 30 mm high) of clean gravel (particle size: 5-10mm), and 

a stainless punched (about 1000 holes with a diameter of 5.5 mm) dish 30 mm high, to 

prevent soil particles from leaching out of the monolith. The resulting monolith is placed into 

a bottomed PVC pipe (VU350) with a drain below the ground (Fig. 3.3.4). The drained water 

from the soil monolith is led through the PVC pipe (VP30) to the collection vessel in a 

basement. Gallon glass (3.8 L, equivalent to 59 mm) or polyethylene bottles (20 L, equivalent 

to 311 mm) are used as the collection vessels. This whole system is called a monolith 



 45 

Step 1 Step 2 Step 3
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System lift
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Gear box
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Fig. 3.3.2.  Basic movements of the drilling system for the collection of soil monoliths.   Step 

1: Transporting position; Step 2: Setting of the PVC casing; Step 3: Setting of the  drill 

cylinder; Step 4: Starting position; Step 5: Collecting the monolith; Step 6: Shearing the

 monolith from the underlying soil. 
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a) Lock the cylinder-housing at the upper 

beam of the frame

b) Fix the PVC casing

c) Install the drill cylinder outside the PVC casing

d) Lock the drill cylinder

e) Place and balance the system on the ground

f) Press the drill down with rotation; Removal 

of the soil on the plane

a) Lock the cylinder-housing at the upper 

beam of the frame

b) Fix the PVC casing

c) Install the drill cylinder outside the PVC casing

d) Lock the drill cylinder

e) Place and balance the system on the ground

f) Press the drill down with rotation; Removal 

of the soil on the plane
 

 

Fig. 3.3.3.  Manipulations of the drilling system for the collection of soil monoliths. 
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Fig. 3.3.4. Structure of a monolith lysimeter station for leaching studies.  (1) Leachate collection 

 vessel; (2) Bottom-supporting dish (SUS); (3) Gravel (5-10 mm); (4) Nylon mesh (200 

 mesh); (5) Undisturbed soil; (6) Collar to maintain rainproof conditions; (7) PVC tube 

  (VP300); (8) PVC tube (VU350). 

lysimeter. The soil surrounding the monolith lysimeters is managed in the same way as in the 

lysimeters to secure similar conditions to those for crops in the fields, including adequate 

solar radiation. 

 

 

3.3.4 Effect of sidewall flow in a monolith lysimeter 

3.3.4.1 Materials and methods 

 

A soil monolith, 100 cm long, was collected at the Yawara Experimental Station of NARC on 

20 December 2000, and was installed into a monolith lysimeter station at NARC (Kannondai) 

on 4 January 2001. The soil is classified as an Andisoil according to the USDA soil 

classification system (Soil Survey Staff, 1999). Two solutes were applied to different parts of 

the soil surface of the soil monolith. No plant was grown on the lysimeter during the test 
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period. Ten mmol of KBr and KCl were dissolved in each 50 mL of distilled water. The KBr 

and KCl solutions were sprayed on the equally large annular and central disc zones of the 

lysimeter surface, respectively. Thereafter, 1 L of distilled water, which is equivalent to 15.6 

mm for the lysimeter, was irrigated using a watering pot (taking >30 min) twice in a day (9:30 

a.m. and 3:30 p.m.) on 5-7 January, 9-20 January, 22-24 January, and on 5-7 April (21 d). No 

water was irrigated on 26-27 January, 17-18 February, 1 March, 4-6 March, and 26 March (9 

d). One liter of water was irrigated at 9:30 a.m. on the other days from 4 January to 4 April 

(64 d). The lysimeter also received rainfall.  

 

 

3.3.4.2 Results and discussion 

 

The total amount of water input by irrigation (1591 mm) and precipitation (275 mm) was 

1866 mm while that of water leached out of the lysimeter was 1552 mm (Fig. 3.3.5). The 

difference between the input and the output corresponded to the full amount of evaporation 

and increase in the water content of the soil monolith throughout the test period. Since the 

water holding capacity of a similar soil was estimated to be ca. 620 mm (Hasegawa, 2000), 

the water input was sufficient to replace the soil water in the monolith twice. 

  Bromide (Br) concentration in the leachate increased after ca. 400 mm of water 

input whereas the chloride (Cl) concentration decreased towards 400 mm and thereafter 

increased (Fig. 3.3.6). The recovery rates of Br and Cl were 87.3% and 421%, respectively. 

The peaks of the breakthrough curves of Br and Cl appeared at 600 mm and 800 mm, 

respectively. Preferential transport of Br was not observed in this test, although Br was 

applied near the edge of the lysimeter. Again, the accumulated leachate showing the Br peak 

indicates that the water holding capacity of this monolith was ca. 600 mm, which was well 

consistent with an estimate made by Hasegawa (2000). These results led to the conclusion 
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Fig. 3.3.5.  Accumulated amounts of water input and leachate from a lysimeter. 
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Fig. 3.3.6.  Bromide and chloride concentrations vs. cumulative leachate from a lysimeter. 
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that the ‗sidewall flow‘ should be small in this monolith. In contrast to Br, the recovery rate of 

Cl was remarkably high because agricultural soil usually contains a large amount of Cl 

derived from chemical fertilizers KCl or NH4Cl. The Cl that was derived from fertilizer and 

occurred in the soil was presumably eluted from the monolith, together with Cl applied in this 

test. Thus, the initial distribution of Cl in the soil may have caused the difference in the peak 

appearances of Cl and Br. 

 To sum up, sidewall flow in terms of soil sampling was not obserbed for Andisols. 

This problem is more serious for some clay soils or soils with a very high organic matter 

content and may occur after the soil shrinks under natural dry-wet cycles (Bergström, 1990). 

Bergström et al. (1994), who analyzed this problem for the same kind of monolith lysimeters, 

concluded that the effects of sidewall flow on solute movement were negligible for clay and 

sandy soils. This problem, however, must be further assessed for other Japanese soils. 

 

APPENDIX:  

Calculation of the forces and moment of the drill powered by MF3060: 

 

The main pump was used for rotating the drill. 

 Flow rate of oil in the main pump (Sm): 50 L min
-1

 = 0.83×10
-3

 m
3
 s

-1
 

 Oil pressure in the main pump (Pm):  180 kgf cm
-2 

= 1.76×10
7
 N m

-2
 

 Work for the main pump (Wm):       Wm=Sm×Pm 

     = 0.83×10
-3

×1.76×10
7 

= 14.6 kW 

  When the drill was rotated at 30 r.p.m. (= π rad s
-1

, R), 

 The moment of the drill:  Wm/R = 4.6 kN m 

 

 

The second pump was used for pressing and lifting the drill. 
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 Oil pressure in the second pump (Ps):   175 kgf cm
-2 

= 1.72×10
7
 N m

-2
 

 Diameter of the cylinder-rod (D1): 2.8 mm = 28×10
-3

 m 

 Inner diameter of the cylinder-housing (D2): 5.0 mm = 50×10
-3

 m 

 

  Force for pressing: Ps×D1
2 

π/4 = 1.72×10
7
×(50×10

-3
)
2 

π/4 =34 kN 

 Force for lifting: Ps×(D1
2
-D2

2
) π/4 = 23 kN 
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Chapter 4 

 

 

NITRATE LEACHING IN AN ANDISOL TREATED 

WITH DIFFERENT TYPES OF FERTILIZERS 

————————————————————————————————————— 

 

4.1 INTRODUCTION 

 

Nitrate leaching from arable land, which causes contamination of groundwater, has become a 

matter of worldwide concern. In Japan, NO3-N concentrations exceeding 10 mg L
-1

 were 

found in 6.3% of groundwater samples investigated in 1998 (Environment Agency, Japan, 

1999). Excessive use of readily available conventional chemical fertilizers and livestock 

manure on agricultural land is the main source of groundwater contamination (Thomsen et al., 

1993; Adams et al., 1994; Chang and Entz, 1996). To reduce N loss from agricultural land, it 

is essential to substitute slow-release fertilizers for readily available fertilizers and to establish 

proper application rates of manure. However, little information is available on the impact of 

such fertilizers on NO3 leaching in Japanese Andisols.  

Application of livestock manure to arable land is recommended for recycling 

valuable nutrient resources. Some consumers prefer agricultural products grown with organic 

fertilizers. Nitrate leaching is affected by the type of manure, because of the different amounts 

of available N (Beckwith et al., 1998). Compost, which has an advantage in handling as water 

content and offensive odors are reduced and pathogens are eliminated, is a major product of 

livestock manure in Japan. Because most livestock farmers do not have sufficient farm land 

for recycling manure, excessive manure must be transferred to other farmers (Harada and 
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Yamaguchi, 1998). Accordingly, livestock compost has been applied not only to pastures but 

also to vegetable fields, where fertilization is usually more intensive. Although compost is 

considered as a slow-release fertilizer, excessive application may cause unintended NO3 

leaching (Gerke et al., 1999). Residual N from previously applied manure is mineralized and 

may be available for leaching in continuously managed fields (Angle et al., 1993; Thomsen et 

al., 1993; Bergstöm and Kirchmann, 1999). Although many studies have clarified the 

relationship of NO3 leaching to manure application in grasslands, few studies have been done 

in intensive vegetable cropping systems. 

In Japan, slow-release fertilizers have been used to save labor in farming systems 

where frequent application of chemical fertilizer is needed and to increase N recovery by 

crops (Saigusa et al., 1993). Substitution of slow-release fertilizers for readily available 

conventional fertilizers has shown a decrease in N leaching in short-term studies (Sakata et al., 

1995; Matsumaru, 1997). Although NO3-N concentrations in subsurface flow under pastures 

increased more rapidly with readily available fertilizer than with slow-release fertilizers, 

NO3-N concentrations for both systems continued to increase even after 10 yr (Owens et al., 

1992).   

Nitrate leaching may be influenced by local conditions such as climate and soil type, 

as well as fertilization practice. Nitrate concentrations of leachate increased with increased 

precipitation in Wisconsin (Andraski et al., 2000) and Denmark (Eriksen et al., 1999), 

whereas they decreased in Minnesota (Randall et al., 1997). Bergström and Johansson (1991) 

noted that NO3-N concentration was not significantly affected by watering treatments, but 

substantially by soil type (texture and organic matter content). The climate in most of Japan 

belongs to the Asian monsoon category, in which average annual rainfall reaches 1800 mm 

(Kuwabara, 1989), and heavy rainfall events often occur with typhoons in summer. More than 

half of the upland fields in Japan are covered with Andisols (Soil Conservation Survey 

Conference, 1991), which are volcanic ash soils. Andisols have special properties such as high 
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anion exchange capacity, low bulk density, and high organic matter content (Shoji et al., 1993; 

Kimble et al., 2000), which have a profound effect on NO3 leaching.  

The present study examined the effects of repeated application (over 7 yr) of 

different fertilizers (swine compost, coated urea, ammonium N, and no fertilizer) to an 

Andisol on NO3 leaching under the Japanese climate. Nitrate concentration in soil water at 

1-m depth was evaluated with an N and water balance equation, which calculates the risk of 

groundwater contamination by nitrogen (OECD, 1999). Total N and δ
15

N in the topsoils and 

the vertical distribution of NO3-N and δ
15

N in soil water were studied after 6 yr of continuous 

fertilizer application. 

 

 

4.2 MATERIALS AND METHODS 

4.2.1 Experimental site  

 

Field experiments were set up in April 1994 and continued for 7 yr. The experimental field 

was located at the Yawara Experimental Station of the National Agricultural Research Center, 

Ibaraki, Japan (36
o
01‘ N, 140

o
03‘ E). Prior to this experiment, komatsuna (Brassica 

campestris L. var. perviridis) had been grown in the whole field at low fertilizer application 

rates of 48 kg ha
-1

 N, 21 kg ha
-1

 P, and 40 kg ha
-1

 K. The soil is classified as an Andisol 

(Hydric Hapludand) according to the USDA soil classification system (Soil Survey Staff, 

1999). The soil texture was loam in the Ap horizon (0-22 cm), and clay loam in the AB (22-34 

cm), Bw (34-60 cm), 2A1 (60-78 cm), and 2A2 (78-100 cm) horizons. Soil texture in layers 

deeper than 1 m were as follows: 1-2.8 m: clay loam, 2.8-3.75 m: clay, 3.75-3.9 m: sandy clay, 

and 3.9-4.4 m: sandy clay loam. The soil structures were weak subangular blocky to a depth 

of 60 cm and subangular blocky from 60 to 100 cm. Hydraulic conductivity was quite high to 

a depth of 1 m (Table 4.1). Although no runoff was observed throughout the experimental 
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period, water was sometimes ponding on the soil surface after heavy rainfalls. The 

groundwater usually fluctuated around 3 to 4 m below the soil surface and was sometimes 

shallower after heavy rainfall. Selected soil properties are listed in Table 4.1. 

 

 

Table 4.1.  Selected properties of the investigated soil. 

 

Chemical properties of the topsoil (n=3)
a
 

Soil profile 

(cm) 
pH(1:2.5) 

CEC
b
 

(cmolc kg
-1

) 

AEC
c
 

(cmolc kg
-1

) 

T-N
d
 

(g kg
-1

) 

T-C
d
  

(g kg
-1

) 

C/N ratio 

 

δ
15

N
e
 

(‰) 

        

0-15 4.6 ± 0.0
f
  36.7 ± 0.6 3.4 ± 0.3 4.0 ± 0.1 44.9 ± 1.6 11.3 ± 0.1 +5.9 ± 0.1 

        

 
Physical properties of the soil (n=2)

g
 

 
Soil profile 

(cm) 

Hydraulic conductivity
h
 

(mm h
-1

)  

Water content at tension
i
 

(m
3
m

-3
) 

  0 kPa 1 kPa 10 kPa 100 kPa 

      

15–20 5.6 0.72 0.68 0.43 0.35 

35–40 4.1 0.72 0.71 0.54 0.43 

55–60 3.5 0.75 0.73 0.54 0.45 

75–80 5.3 0.75 0.72 0.53 0.47 

95–100 2.9 × 10
-1

 0.56 0.55 0.46 0.36 

195–200 6.9 × 10
-4

 — — — — 

295–300 1.7 × 10
-4

 — — — — 

395–400 7.0 × 10
-3

 — — — — 

      

 
a
 The topsoil sample was obtained before the start of the experiment (in April 1994) and air-dried for 2 

weeks. 
b
 Cation exchange capacity (CEC) for the soil was measured at pH 7 by the Schollenberger method 

(Kamewada, 1997). 
c
 Anion exchange capacity (AEC) for the soil was measured at the soil pH (Rowell, 1994) 

d
 Total N and C content in soil was analyzed with a NC analyzer (NC-95A, Sumitomo Bunseki Center, 

Japan) 
e
 δ

15
N was measured with an ANCA-SL mass spectrometer (Europa Scientific, UK; Yoneyama and Yoshida, 

2000). 
f
 Mean ± SE. 

g
 The soil cores were sampled in August 1996. 

h
 Saturated hydraulic conductivity was measured by the falling-head method (Katou, 1997).  

i
 Water content at different tensions was obtained by using the sand column method for 0 and 1 kPa and the 

pressure plate method for 10 and 100 kPa. 
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4.2.2 Experimental design 

 

The four N fertilizer treatments (SC: swine compost, CU: coated urea, AN: ammonium N, and 

NF: no fertilizer) with 2 replicates for each were initiated in the spring of 1994 (Table 4.2). 

Eight plots (8 m by 7 m each) were installed in a 0.12 ha field. Each plot was at least 5 m 

apart and surrounded by wooden boards, which were 15 cm above and 30 cm below the soil 

surface, to prevent soil in different plots from mixing. The outer area for the experimental 

plots was treated by the same procedure as AN plots, which is conventional management for 

farmers in this region (Ibaraki Agricultural Center, 1998), to minimize the difference in the 

amount of solar radiation for crops on the edge of plots. Fertilizers were applied twice a year 

just before crop cultivation at rates of 800 kg N ha
-1

yr
-1

 for the SC plots and 400 kg N ha
-1

 yr
-1

 

for the AN and CU plots during the experiment except for the first year, when N was applied 

at rates of 1000 kg ha
-1

 yr
-1

 for the SC plots and 500 kg ha
-1

 yr
-1

 for the AN and CU plots 

 

 

Table 4.2.  Crop rotation and N application rate and δ
15

N value of the different N-sources. 

 

Year Growing period Crop 
Compost 

(SC) 

Coated urea 

(CU) 

Ammonium N  

(AN) 

  

Application rate of N (kg ha
-1

) 

 

1994 May – Aug. sweet corn 600 300 300 

 Sep. – Nov. Chinese cabbage 400 200 200 

1995–1996 May – Aug. sweet corn 400 200 200 

 Sep. – Nov. Chinese cabbage 400 200 200 

1997 May – Aug. sweet corn 400 200 200 

 Sep. – Jan. cabbage 400 200 200 

1998–2000 May – Aug. sweet corn 400 200 200 

 Sep. – Dec. Chinese cabbage 400 200 200 

      

Total   5800 2900 2900 

      

δ
15

N value of fertilizers (‰) 

 

 +14.3 ± 0.0
a
 +0.2 ± 0.1 +0.7 ± 0.1 

    

a
 Mean ± SE, n=2.  
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(Table 4.2). The application rate of SC was based on the assumption that application of a 

double amount of N as SC has the equivalent fertilizer effect on crop growth to that as 

inorganic fertilizer under Japanese field conditions (Harada, 1997). The fields were plowed to 

about 15-cm depth after the fertilization. For AN, N fertilizer containing 70% of N as 

(NH4)2SO4 and 30% as (NH4)2HPO4 was used. This fertilizer contained phosphorus (P) and 

potassium (K), as well as N at a ratio of 10: 4.3: 8.3 for N: P: K. For CU, polyolefin-coated 

urea, LP100
®
 (which requires 100 d for 80% N release in water at 25

o
C, Chisso-Asahi Co., 

Japan), was used for sweet corn and LP40
®
 (which requires 40 d for 80% N release) for 

Chinese cabbage or cabbage, and P and K were compensated for by PK compound fertilizer at 

the same rates as for AN plots. SC was produced without any admixtures. The N content of 

SC was 44 g kg
-1

 on a dry matter basis and only 3.6% of N was in inorganic form (ammonium 

N). The C/N ratio of SC was 6.6. The water content of fresh SC was 22% (average for 7 yr). 

The application rates changed from 1.0 to 1.4 t ha
-1

 based on the compost character. The 

concentrations of P and K of SC were 27 and 24 g kg
-1

, respectively, resulting in higher 

application rates of P and K in this plot than in the AN and CU plots. 

Sweet corn (Zea mays L.) was grown from May to August, Chinese cabbage 

(Brassica rapa L. var. amplexicaulis) from September to December, and cabbage (Brassica 

oleracea L. var. capitata) from September to January. Sweet corn was planted at 30-cm 

intervals between plants and 70-cm between ridges, whereas Chinese cabbage and cabbage 

were at 40-cm between plants and 70-cm between ridges. Seeding of sweet corn and 

transplanting of Chinese cabbage and cabbage were conducted about 4 d after fertilizer 

application. All parts of sweet corn, Chinese cabbage, and cabbage were removed from plots 

except for the roots of Chinese cabbage and cabbage.  

 The field was once irrigated 40 mm on 7 September 1994 using irrigation tubes, 

because the soil was too dry for transplanting Chinese cabbage. Otherwise the field was 

rainfed. 
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4.2.3 Sampling and measurements 

 

Daily precipitation was recorded in the field with a rain gauge (34-T, Ota-Keiki-Seisakusyo, 

Japan). Air temperature was measured at a meteorological station located about 1 km from the 

experimental field. 

To monitor the groundwater in the field, the author used 3 observation wells made of 

4-m long PVC tubes, having a screen reaching 1.5 m from the bottom end. Two wells were set 

up in the AN and NF plots before the experiment started, and an additional well was set up in 

the other AN plot in the summer of 1997. Ground water was sampled and water table was 

measured by using a water level dip meter (WL50M, Imai Co., Japan) on the same days as 

soil water sampling. Hourly monitoring was made using two tensiometers with a data logger 

(SK-5500-EL-3SD, Sankei-Rika Co., Japan), which measure not only negative but also 

positive water head (–1000 to +1000 cm), installed in March 1998 with 2 replicates at a depth 

of 4 m in the outer area for the plots.  

 At harvest, the fresh weight of crop samples was measured. Ten plants in each plot 

were cut into 1×1 cm pieces and dried at 70 
o
C for one week. Dried plant samples were then 

ground into powder and digested by a modified Kjeldahl method using conc. H2SO4 and 30% 

H2O2 (Mizuno and Minami, 1980). Total N of digested plant samples was determined using a 

continuous flow analytical system (Traccs 800, Bran+Luebbe, Germany). 

Topsoil up to a 15-cm depth was sampled at 2 places in each plot, after Chinese 

cabbage was harvested in December 1999. These soil samples in each plot were mixed and 

air-dried for 2 weeks. Total N and C content in the soil was determined with an NC analyzer 

(NC-95A, Sumitomo Buseki Center, Japan) and natural abundance of 
15

N (δ
15

N) was 

analyzed with an ANCA-SL mass spectrometer (Europa Scientific, UK; Yoneyama and 

Yoshida, 2000). The δ
15

N value (‰) was expressed according to the following equation: 
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10001
standard

sample15 









R

R
N  [4.1] 

where Rsample and Rstandard are the ratios of 
15

N/
14

N of the sample and the atmospheric N2, 

respectively. 

Five porous ceramic cup samplers (18 mm in outer diameter; 60 mm long, Nikkato 

Co., Japan) were installed at a depth of 1 m in one plot of each fertilizer treatment. Wick 

samplers were established in the other plot of each treatment as described elsewhere (Maeda 

and Ozaki, 1998). The whole systems, including porous cups, acrylic supporting-pipes (18 

mm in outer diameter; 800 mm long), and polyethylene sampling tubes (1-mm inner 

diameter), were placed below 30-cm depth to allow management practices above the systems 

in the experimental plots. After a trench was dug to 30-cm depth, the porous cup samplers, 

supported by an acrylic pipe, were installed at an angle of 30
o
 on the bottom of the trench. 

Polyethylene sampling tubes were connected to samplers, buried at a depth of 30 cm, and 

brought to the soil surface outside the experimental plots. After placement of the porous cup 

samplers in their positions, trenches were backfilled with the original soil. Three of the 5 

porous cup samplers were installed in the spring of 1994 and the other 2 were added in the 

winter of 1994. The porous cup samplers were at least 2 m apart. Additional porous cup 

samplers were added in 1998 at depths of 200, 250, 300, 350, 400, and 430 cm with 3 

replicates at each depth. These porous cup samplers at deeper than 200 cm were vertically 

installed and at least 1 m apart after a trenches was dug to 50-cm depth. For soil water 

sampling, a suction of 80 kPa was applied by an electronic vacuum pump (Daiki-Rika Co., 

Japan). The sampling flasks were covered with an aluminum sheet and placed in the field for 

24 hours. Soil water sampling was conducted at least once a month, depending on 

precipitation. By the summer of the second year of the experiment, soil water was often 

sampled to make clear the change in NO3-N concentration. From March 1997 to March 1998, 

soil water sampling was discontinued, although field management by the same fertilizer 
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treatments was conducted for crops. 

Water samples were stored at 5
o
C until chemical analysis. Nitrate N and Cl 

concentrations of filtered samples (0.20 μm membranes; 25A, GL Science Co., Japan) were 

analyzed with an ion chromatgraph (DX320J, Dionex, Japan). δ
15

N of water samples, which 

were concentrated on a hot plate and then freeze-dried, was analyzed with the ANCA-SL 

mass spectrometer.  

An experimental year refers to the 12-month period from 1 April of a year to 31 

March of the following year. 

 

 

4.2.4 Nitrogen and water balance equation 

 

The following N and water balance equation on the soil surface (OECD, 1999) was used for 

predicting NO3-N concentration in soil water at 1-m depth:  

100     
EW 

PNP
PNC  [4.2] 

where PNC (mg L
-1

) is the potential nitrate concentration, PNP (kg ha
-1

 yr
-1

) the potential 

nitrate present in soil, and EW (mm yr
-1

) excess water (the difference between water input and 

evapotranspiration). PNP is obtained by subtracting the amount of N uptake, which refers to 

N in all parts of the crops removed from the plots, from that of N application in a year. In this 

calculation, N content changes in soil during the management are not considered.  

 

 

4.2.5 Rayleigh equation 

 

The following Rayleigh equation can be applicable to the relation between NO3 concentration 
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and δ
15

N values in soil water during denitrification processes (Mariottti et al., 1981): 

NNO3ini

1515 ln  fNN   [4.3] 

where δ
15

N and δ
15

Nini are δ
15

N values of the substrate after and before the reaction of 

denitrification (‰), respectively. ε is an enrichment factor (‰), and fNO3-N the fraction of 

unreacted residual substrate, which is obtained by dividing NO3-N concentration (CNO3-N) 

resulting from denitrification, by initial NO3-N concentration (CiNO3-N). Böttcher et al. (1990) 

investigated the contribution of denitrification in groundwater using this equation of Eq. [4.3]. 

Equation [4.3] can be rearranged to predict NO3-N concentration after denitrification as: 

)exp( ini

1515

NiNO3NNO3


 NN
CC


   [4.4] 

 

 

4.2.6 Statistical analysis 

 

Statistical treatments of data were performed to determine the effects of fertilizer application 

on N uptake by crops, N in topsoil, and NO3 concentration in soil water, using Tukey‘s 

multiple-comparison test at the 0.05 significance level (SAS Institute Japan, 1993). Student‘s t 

test was used at the 0.05 significance level to evaluate the differences in N content and δ
15

N 

values between the topsoils sampled before the start of the experiment and after 6-yr 

continuous fertilizer application. 

 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Climate, groundwater, and N uptake by crops 

 

The combined water input by precipitation (7890 mm) and irrigation (40 mm) during 1 April 
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1994 to 31 March 2001 totaled 7930 mm, with an annual average (1 April-31 March) of 1133 

mm (Fig. 4.1 and Table 4.3), varying from 880 mm in 1994/1995 to 1455 mm in 1998/1999. 

This level is almost the same as the annual average precipitation (1154 mm) of 30 yr 

(1971-2000) for this region (Japan Meteorological Agency, 2001). Average temperature 

during the experimental period was 14.6
o
C (Table 4.3). The average potential 

evapotranspiration estimated by the Thornthwaite method (Thornthwaite, 1948) was 795 mm  

yr
-1

. The actual evapotranspiration (70% of the potential evapotranspiration, Kobayashi,  

1989) and the resulting excess water (EW) were 557 and 576 mm yr
-1

, respectively. 

 The groundwater fluctuated between 120 and 400 cm during the experimental 

period (Fig. 4.1). The groundwater rose to less than 2-m depth a few times in summers after 

heavy rainfall, but did not within 1-m depth where the soil water was sampled. 
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Fig. 4.1.  (a) Annual cumulative precipitation and (b) groundwater changes in two plots receiving 

ammonium fertilizer (□; ○) and one plot without fertilizer (×) , from 1994 to 2001. Solid 

lines refer to hourly data in ammonium fertilizer plots using tensiometers. 
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Table 4.3.  Precipitation, potential evapotranspiration, and air temperature in the field. 

 

 1994 

/1995 

1995 

/1996 

1996 

/1997 

1997 

/1998 

1998 

/1999 

1999 

/2000 

2000 

/2001 

Average 

         

Precipitation (mm) 880 894 978 1105 1455 1194 1424 1133 

Potential evapotranspiration
a 

(mm) 847 798 726 774 791 827 801 795 

Annual average air temperature 

(
o
C) 15.4 14.5 13.4 14.4 14.7 15.2 14.6 14.6 

         
a
 Calculated using the method of Thornthwaite (1948) 

 

 

 Annual N uptake by crops under different fertilizer treatments is listed in Table 4.4. 

The 7-yr average N uptake was highest in the SC plot (257 ± 5 kg N ha
-1

 yr
-1

; 31 % of the 

applied N), which was significantly (P < 0.05) higher than the other plots, followed by the CU  

 

 

 

 

Table 4.4.  Nitrogen uptake by crops (kg N ha
-1

 yr
-1

, n=2)
 a

. 

 

Fertilizer 

treatment 

Crop 1994 

/1995 

1995 

/1996 

1996 

/1997 

1997 

/1998 

1998 

/1999 

1999 

/2000 

2000 

/2001 

Total 

          

SC Corn 94a  77a  98a  108a  102a  97a  91a  667a  

 

Chinese cabbage 

/ cabbage
b
 89a  

 

204a  120a  201a  176a  167a  176a  1133a  

          

 Total 183a 281a 218a 309a 278a 264a 267a 1800a  

          

CU Corn 80ab  57ab  62ab  81b  84ab  74ab  89a  527b  

 

Chinese cabbage 

/ cabbage 102a  

 

196a  86a  162a  160a  164a  162a  1032a  

          

 Total 182a  253a  148ab  243a  244ab  238ab  251a  1559b  

          

AN Corn 61b  46ab  32b  62b  45bc  43bc  70b  359c  

 

Chinese cabbage 

/ cabbage 88a  

 

192a  85a  149a  178a  171a  179a  1042a  

          

 Total 149ab  238a  117b  211a  223b  214b  249a  1401b  

          

NF Corn 55b  24b  26b  32b  30c 23c  35c  225d  

 

Chinese cabbage 

/ cabbage 34b  

 

23b  1b  1b  10b  7b  1b  77b  

          

 Total 89b  47b  27c  33b  40c  30c  36b  302c  

          
a
 Mean values within each crop or totals in each year followed by the same letter are not significantly 

different based on Tukey‘s multiple-comparison test (P > 0.05). 
b
 Cabbage was grown in 1997/1998 and Chinese cabbage in the other years. 
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plot (223 ± 3 kg N ha
-1

 yr
-1

; 54 %) and the AN plot (200 ± 7 kg N ha
-1

 yr
-1

; 48 %). The 

difference between the two chemical fertilizer plots (AN and CU) was not significant (P > 

0.05). In the NF plot, 43 ± 5 kg N ha
-1

 yr
-1

 was taken up by crops, which is significantly 

smaller than those in the other plots (P < 0.05). Nishio (2001) reported that Japanese average 

N recovery rates by sweet corn, Chinese cabbage, and cabbage were computed to be 41%, 

41%, and 64%, respectively. The N recovery rates by sweet corn (36% on average for CU; 

25% for AN) were lower and those by Chinese cabbage and cabbage (71% for CU; 72% for 

AN) higher than the national average values. 

 

 

4.3.2 Changes in N content and δ
15

N value in topsoil 

 

After 6 yr of fertilization, the total N content in the topsoil increased significantly in the SC 

plot (P < 0.05), remained the same in the CU plot, and decreased in the AN and NF plots (not 

significantly at P > 0.05), compared to the original value (Tables 4.1 and 4.5). The N applied 

to the AN and CU plots did not appear to accumulate in the topsoil, suggesting the removal 

of N by crop uptake and gaseous and leaching losses.  

In the SC plot, the total N of the topsoil increased by 2.0 g N kg
-1

. The bulk density 

of topsoil was 0.9 Mg m
-3

 in the winter of 1999. Assuming that the topsoil was 15 cm deep, 

the N increment of the topsoil in the SC plot was 2700 kg N ha
-1

. This value accounts for 54% 

of N applied to the SC plot during the 6-yr experimental period. In this estimate, soil N 

mineralization in the SC plot was not considered. On the other hand, if we assume that the 

amount of N mineralized from soil organic N in the SC plot was the same as that in the NF 

plot during the 6 yr, the difference in N content between the SC and NF plots (2.5 g N kg
-1

) 

can be considered as SC-derived N. Namely, the amount of SC-derived N was 3375 kg N ha
-1

 

and 68% of the applied N as SC. These results suggest that a large part of N from SC  
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Table 4.5.  Total N content, C/N ratio, and 
15

N values in the topsoil
a
 after fertilizer treatments 

 (Mean ± SE, n=2)
b
. 

 

Fertilizer treatment T-N 

(g kg
-1

) 

C/N 

 

δ
15

N 

(‰) 

    

SC 6.0 ± 0.4*a  8.7 ± 0.1*b +9.9 ± 0.1*a 

CU 3.9 ± 0.1b 11.2 ± 0.1a +6.3 ± 0.2b 

AN 3.4 ± 0.2b 11.1 ± 0.0a +6.4 ± 0.0b 

NF 3.5 ± 0.2 b 11.4 ± 0.1a +6.8 ± 0.1*b 
a
 Topsoils were sampled from a 0-15 cm depth after 6-yr repeated application of fertilizers (1994-1999). 

b
 Mean values within each column followed by the same letter are not significantly different based on 

Tukey‘s multiple-comparison test (P > 0.05). 

* Mean values are significantly different from the values of the original soil (Table 4.1) based on Student‘s t 
test (P < 0.05). 

 

accumulated in the topsoil in organic forms over the 6 yr. Although the C/N ratio of the 

compost was 6.6, which is low enough to release N (Kuwatsuka, 1984; Janssen, 1996), 54 to 

68% of the applied N accumulated in the topsoil. The C/N ratio of the soil in the SC plot 

became 8.7 after 6 yr of repeated compost application. The repeated application of SC may 

have caused the lower C/N ratio, resulting in larger N mineralization in the late experimental 

period. Moreover, 31% of the applied N was taken up by crops during the first 6 yr, 

suggesting that most part of mineralized N from SC was taken up by crops. 

The δ
15

N value of the topsoil in the SC plot was significantly higher than those in 

other plots (P < 0.05), probably due to the accumulation of compost N with a high δ
15

N value 

of +14.3‰ (Tables 4.2 and 4.5). The N content of the NF topsoil decreased during the 6 yr 

while the δ
15

N value significantly increased (Tables 4.1 and 4.5), likely owing to preferred 

loss of light N (
14

N ) from soil (Yoneyama, 1996). The mass balance of topsoil in the SC plot 

is given by: 

SC

15

SCsoil

15

soilmix

15

mix NCNCNC    [4.5] 

where Cmix, Csoil, and CSC are N contents of a mixture of soil and SC, soil, and SC-derived N 

in the mixture (g kg
-1

), respectively. δ
15

Nmix, δ
15

Nsoil, and δ
15

NSC refer to δ
15

N values (‰) of 

the mixture, soil, SC, respectively. This equation can be rearranged to calculate CSC as 

follows: 
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SC

15

soil

15

soilmix

15

mix
SC

N

NCNC
C



 
   [4.6] 

When N loss from the soil was not taken into account, the N content and δ
15

N value of the 

original soil sampled before the experiment can be used as Csoil (4.0 g kg
-1

, Table 4.1) and 

δ
15

Nsoil (+5.9‰), respectively. The SC-derived N of the mixture (Cmix=6.0 g kg
-1

;
 

δ
15

Nmix=9.9‰) of soil and SC (δ
15

NSC=+14.3‰) was then estimated to be 2.5 g kg
-1

, which 

was higher than the N difference between the SC soil and the original soil (2.0 g kg
-1

). On the 

other hand, if we consider the N loss from the soil in the SC plot was as much as that in NF 

plot, the N content and δ
15

N value of the soil in the NF plot should be used as Csoil (3.5 kg 

kg
-1

) and δ
15

Nsoil (+6.8‰), respectively. Thus, CSC was calculated to be 2.5 g kg
-1

, which was 

consistent with the measured N difference between the SC and NF soils (Table 4.5). This 

confirms that N loss from the soil also occurred in the SC plot and that the N from SC 

contributed to the N increment in the topsoil.  

 

 

4.3.3 Nitrate concentration in soil water at 1-m depth 

 

Nitrate N concentrations in soil water at 1-m depth rose markedly in the summer of the 

second year (1995/1996) and fluctuated between 30 and 60 mg L
-1

 in the AN and CU plots 

(Fig. 4.2). Nitrate N concentration in the SC plot began to increase in the fourth year 

(1997/1998), reaching the same level as in the AN and CU plots in the late period of the 

experiment. These NO3-N concentrations were higher than the Japanese standard of 

groundwater (10 mg L
-1

 NO3-N), which may be associated with intensive vegetable cropping 

and high precipitation. In the NF plot, NO3-N concentration was about 10 mg L
-1

 for the first 

4 yr and decreased to 5 mg L
-1

 towards the end of the experiment.  

Variations in NO3-N concentrations in the AN and CU plots showed a similar 
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temporal pattern, except that NO3-N concentrations in the CU plot was lower than that in the 

AN plot by ca. 10 mg L
-1

 throughout the experimental period (Fig. 4.2). This reduction of N 

leaching is consistent with Sakata et al. (1995) and Matsumaru (1997), despite the fact that in 

those studies, the experimental periods were relatively short and repacked soils were used. 

 

 

1 Apr. 1 Apr. 1 Apr. 1 Apr. 1 Apr. 1 Apr.1 Apr. 1 Apr.

1994/1995 1998/1999 1999/2000 2000/20011996/19971995/1996 1997/1998

Sampling date

N
O

3
-N

 c
o
n

c
e
n

tr
a
ti
o
n

 (
m

g
 L

-1
)

SC

CU

AN

NF

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

1 Apr. 1 Apr. 1 Apr. 1 Apr. 1 Apr. 1 Apr.1 Apr. 1 Apr.

1994/1995 1998/1999 1999/2000 2000/20011996/19971995/1996 1997/1998

Sampling date

N
O

3
-N

 c
o
n

c
e
n

tr
a
ti
o
n

 (
m

g
 L

-1
)

SC

CU

AN

NF

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

 

Fig. 4.2.  Mean NO3-N concentrations (n=5) in soil water at 1-m depth in the four fertilizer 

treatments, from 1994 to 2001. SC: swine compost, CU: coated urea fertilizer, AN: 

ammonium fertilizer, NF: no fertilizer. Vertical bars indicate standard errors (±SE). 
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Both of the two reports noted that N derived from coated urea fertilizer remained in the 

topsoil at the end of the experiments, although its later leaching was not examined. The 

present study confirmed reduction of N leaching by using coated urea fertilizer over 7 yr. The 

difference in NO3-N concentrations in soil water between the CU and AN plots probably 

resulted from differences in crop uptake of N from respective sources (Table 4.4). While the 

N application rates in the CU plot were the same as those in the AN plot, N uptake by crops in 

the CU plot was larger. Therefore, less N application of CU would likely result in the same 

level of crop yields as in the conventional AN plot accompanying less N leaching than in the 

AN plot. Owens et al. (1992) examined NO3-N concentration in subsurface flows in 

watersheds receiving NH4NO3 or slow-release N (methylene urea) for 10 yr. Although NO3-N 

concentrations in the area treated with slow-release N area rose more slowly than under the 

area treated with NH4NO3, the concentrations in both areas were still increasing even at the 

end of the experiment. Owens et al. (1992) could not conclude whether use of slow-release N 

provides long-term suppression of N leaching. In contrast, the present study showed that, as 

the whole, NO3-N concentrations remained at certain levels in the AN and CU plots and the 

NO3 leaching was smaller in the CU plot over the 7 yr. The discrepancy between the present 

results and Owen et al. (1992) may be due to a difference in experimental scales. It may take 

longer time to elucidate the effects of N fertilization on N loadings at watershed scale as 

Owen et al. (1992). In other words, a few years may be enough to evaluate the effects of 

slow-release N fertilizer on N leaching at a depth of about 1 m in small field plots as in the 

present study. 

Nitrate N concentrations in soil water at 1-m depth in the SC plot did not change 

during the first 3 yr, because a large portion of N applied as SC accumulated in the topsoil. 

However, the NO3-N concentrations in the SC plot was continuously increased and became 

similar to those in the AN and CU plots in the late period of the experiment. Increasing N 

mineralization owing to the lowered C/N ratio of the soil resulted in an increase in NO3-N 
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concentration at 1-m depth in the late period of the experiment (Fig. 4.2). It is also likely to 

occur that the residual organic N from previously applied manure was mineralized, so that the 

total amount of mineralized N increased over the years (Angle et al., 1993; Thomsen et al., 

1993; Bergstöm and Kirchmann, 1999). Repeated application of composts may 

simultaneously increase the risk of serious NO3 leaching, although the level of soil fertility 

may increase (Addiscott et al., 1991).  

Nitrate concentrations and δ
15

N values in soil water at 1-m depth were measured in 

February 1998 when NO3-N concentration was high in the AN and CU plots and in April 

2000 when NO3-N concentration was low (Table 4.6). Nitrate concentrations in soil water at 

1-m depth in the SC and NF plots were significantly lower than in the AN and CU plots in 

February 1998 (P < 0.05). In April 2000, NO3-N concentration in the SC plot, which was 

significantly different from in the AN plot (P < 0.05) but not significantly from in the CU plot 

(P > 0.05), did not change from February 1998, while the NO3-N concentrations in the AN 

and CU plots decreased during the period. 

 The δ
15

N values of soil water in the SC plot were significantly higher than those in 

the other plots, which ranged from 0.8 to 2.2‰, on both sampling dates (P < 0.05). The δ
15

N  

 

 

Table 4.6.  Nitrate N concentrations and 
15

N values in soil water at 1-m depth receiving four 

 different fertilizer treatments (Mean ± SE, n=5)
a
. 

 

Fertilizer treatment Sampled on 25 February 1998  Sampled on 18 April 2000 

 NO3-N 

(mg L
-1

) 


15

N 

 (‰) 

 NO3-N 

(mg L
-1

) 


15

N 

 (‰) 

      

SC 24.3 ± 2.8b +13.3 ± 0.3a  24.6 ± 1.5b +12.1 ± 0.1a 

CU 55.1 ± 4.1a +1.7 ± 0.1b  27.8 ± 5.3ab +1.3 ± 0.1c 

AN 69.2 ± 11.6a +0.8 ± 0.1c  40.8 ± 4.0a +2.2 ± 0.3b 

NF 11.9 ± 0.7c +2.0 ± 0.2b  5.4 ± 0.7c +2.0 ± 0.4bc 

      
a
 Mean values within each column followed by the same letter are not significantly different based on 

Tukey‘s multiple-comparison test (P > 0.05). 
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values of soil water could be a mixture of those from mineralized soil and compost N, 

nitrified urea (from CU), ammonium (from AN), and some inputs of deposition (Yoneyama, 

1996). The δ
15

N values of soil water at 1-m depth (Table 4.6) clearly reflected those of the N 

sources (Table 4.2). The δ
15

N values in the AN- and CU-fertilized plots were slightly higher 

than those of the fertilizer (+0.7‰ for AN and +0.2‰ for CU). The δ
15

N values for the SC 

plot were slightly lower than that of SC (+14.3‰). These differences are explained by the 

contribution of mineralized soil N or airborn N. Although the δ
15

N value of soil N was +5.9‰ 

(Table 4.1), that of soil water N in the NF plot was +2‰. The reason for this is that δ
15

N of 

rainfall has generally negative values from -10 to 0‰ (Yoneyama, 1996). Airborn N input is 

about 10 kg N ha
-1

yr
-1

 in this region (Tabuchi and Takamura, 1985). Thus, the source of 

NO3-N in soil water in the NF plot should be a mixture of air-born N and mineralized soil N. 

Similarly, the contribution of different N sources may cause the change in δ
15

N values 

between fertilizer sources and soil water N. However, we must take a care in the 

understanding of δ
15

N values in soil water N components, since reactions such as nitrification, 

immobilization, denitrification, and ammonia volatilization may cause the changes in δ
15

N 

values (Yoneyama, 1996). 

 

 

4.3.4 Effects of precipitation and soil type 

 

The highest NO3-N concentrations were observed in the spring of 1998 and the lowest in the 

spring and summer of 2000/2001 in the AN and CU plots after the summer of the second year 

(1995/1996) when the influence of fertilization clearly appeared (Fig. 4.2). The highest 

precipitation, recorded in 1998/1999, may have caused the lower NO3-N concentration in the 

following year (Table 4.3 and Fig. 4.1), because the large rainfall resulted in dilution of 

NO3-N concentrations in soil water and possibly also decrease in NO3-N by denitrification. 
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The NO3-N concentrations in the AN and CU plots appreciably decreased from February 

1998 to April 2000 while the δ
15

N values showed small changes (Table 4.6), indicating that 

the contribution of denitrification due to high precipitation was probably small.  

 The retardation of NO3 transport in soil related with high anion exchange capacity 

(AEC) was not observed in this experiment, although Katou (2001) estimated the retardation 

factor of NO3 was about 2 for a similar Andisol using repacked column experiments. The 

average water contents of the soil to a depth of 1 m were 700 mm (0.7 m
3
 m

-3
) at 0 kPa and 

500 mm (0.5 m
3
 m

-3
) at 10 kPa (Table 4.1), which were large values because of the low bulk 

density. Field capacity of a similar soil was determined to be ca. 620 mm in the field using 

TDR (Hasegawa, 2000). On the other hand, EW was only 468 mm (the difference between 

cumulative precipitation, 1267 mm and evapotranspiration, 799 mm) during the period of 

May 1994 to July 1995 when the influence of the AN and CU application did not appear on 

NO3-N concentration in soil water at 1-m depth. Namely, NO3 derived from fertilizers reached 

to a depth of 1 m through the soil before the water stored in the soil to the 1-m depth was 

completely displaced by new water inputs. Thus the high AEC did not cause the delay in NO3 

leaching. The discrepancy between our result and the estimate by Katou (2001) is possibly 

explained in terms of uneven water flows caused by the presence of aggregates. Percolating 

water tends to pass the small intraaggregate pores. Nitrate movement into the intraaggregate 

pores may be only due to the diffusion (Addiscott, 1991). There is, therefore, less chance for 

NO3 to be absorbed onto the soil in the present field experiment, compared to the repacked 

soil experiment (Katou, 2001). 

Nitrogen release by mineralization from the Andisol with a high total N content 

presumably affected NO3-N concentration in soil water at 1-m depth in the NF plot. The effect 

of absence of fertilizer application (NF plot) on NO3-N concentration appeared in the 6th yr 

of the experiment, while that of the chemical fertilizer application (AN and CU plots) in the 

second year (Fig. 4.2). Nitrogen mineralized from the NF soil was not only absorbed by crops 
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but also leached out. Actually, N content of the topsoil in the NF plot decreased from 4.0 to 

3.5 g kg
-1

 over the 6 yr (Table 4.5), which is equivalent to 675 kg N ha
-1

. 

 

 

4.3.5 Estimation of NO3 concentration with the N and water balance equation 

 

PNCs calculated by using Eq. [4.2] were presented with 6-yr average NO3 concentrations in 

four treatments in Table 4.7. The PNCs satisfactorily predicted the NO3-N concentrations in 

the AN and CU plots, indicating that excessive N for crops from AN and CU would cause 

NO3 leaching in due time. The difference in PNC between the AN and CU plots (Table 4.7) 

were due to that in N crop uptake (Table 4.4). This difference in PNC was, however, smaller 

than that in monitored NO3-N concentration (Table 4.7 and Fig. 4.1). On the other hand, the 

calculated PNC in the SC plot was substantially overestimated, presumably because a large 

part of N from SC accumulated in the topsoil in the organic form during the experimental 

period. The N available for NO3 leaching in the SC plot were estimated to be 767 kg ha
-1

  

 

 

Table 4.7.  Potential NO3-N present in soil (PNP), potential NO3-N concentration (PNC) by the  N 

 and water balance equation, and 6-yr average NO3-N concentration in soil water at  1-m 

 depth. 

 

Fertilizer treatment PNP
a 

(kg ha
-1

 yr
-1

) 

PNC
b 

(mg L
-1

) 

6-yr average NO3-N
c
 

(mg L
-1

)  

    

SC 571 99 16 

CU 192 33 28 

AN 214 37 36 

NF ─43 —      7 

    
a
 PNP was obtained by subtracting the amount of N uptake, which refers to N of all parts of the crops 

removed from the fields, from that of N application in a year. Data sets during the period 

1994/1995-2000/2001 were used for the calculations. 
b
 PNC was used as an estimate of NO3-N concentration in soil water at 1-m depth. EW was estimated to be 

576 mm yr
-1

. 
c
 Data sets during the period 1994/1995-2000/2001 except for 1998/1999 were used for the calculations. 
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during the 6-yr experimental period 1994/1995 to 1999/2000, which was obtained by 

subtracting total uptake N (1533 kg ha
-1

, Table 4.4) and accumulated N in the topsoil (2700 kg 

ha
-1

) from total applied N (5000 kg ha
-1

, Table 4.2), assuming that denitrification and 

ammonium volatilization were negligible. In this consideration, PNP and PNC for the SC plot 

are computed to be 128 kg ha
-1

 yr
-1

 and 24 mg L
-1

, respectively. This PNC is better consistent 

with the monitored NO3-N concentration than the PNC without consideration of N 

accumulation in soil (Table 4.7).  

Even if we know seasonal changes in NO3 concentration, we could not regulate NO3 

leaching based on such changes. From this point of view, the N and water balance equation is 

enough to evaluate chemical fertilizations for NO3 leaching. For compost, however, an 

increment of total N in topsoil should be taken into account to evaluate NO3 leaching. 

 

 

4.3.6 Vertical distribution of NO3-N concentration in soil water 

 

Nitrate N concentrations in soil water declined with depth and those at depths more than 300 

cm were almost equal to that in groundwater in the AN plots after 6-yr continuous fertilizer 

application (on 18 April 2000), as shown in Table 4.8. The groundwater table rose to less than 

2 m depth a few times in summers (Fig. 4.1), although, on the sampling date, the groundwater 

table was at 3.6 m below the soil surface. There may be two possible explanations for the 

decrease in NO3-N concentration in the deep layers. One is that rising groundwater washed 

away NO3 in the soil solution. The other is that anaerobic conditions resulting from rising 

groundwater caused denitrification.  

 Chloride concentrations decreased with depth as well as NO3-N, but the rate of the 

decline for NO3-N was larger than that for Cl (Table 4.8). Although both anions of Cl and 

NO3 are mobile in soil systems, Cl does not participate in biological or chemical reactions  
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Table 4.8.  Nitrate N and Cl concentrations, mole ratios of NO3-N to Cl, and 
15

N values in soil 

 water sampled from different soil depths and ground water in plots receiving ammonium 

 nitrogen fertilizer (AN) (±SD, n=2-5). 

 

Depth NO3-N Cl NO3-N/Cl δ
15

N CNO3-N 
b
 

(cm) (mg L
-1

) (mg L
-1

) (mol / mol) (‰) (mg L
-1

) 

100 40.8 ± 8.9 65.7 ± 7.6 1.6 +2.2 ± 0.6 ─
c
 

200 46.5 ± 7.5 56.4 ± 9.0 2.1 -0.7 ± 0.6 ─
d
 

250 9.6 ± 4.0 28.9 ± 3.1 0.8 -0.5
a
 ─

d
 

300 3.8 ± 0.6 23.1 ± 0.8 0.4 +8.9
a
 27 

350 3.2 ± 0.1 23.1 ± 0.7 0.4 +7.6
a
 29 

400 3.2 ± 0.0 22.4 ± 1.5 0.4 +7.6
a
 29 

430 3.5 ± 0.6 22.7 ± 1.5 0.4 +9.1 ± 0.6 27 

Ground water 3.9 ± 1.0 23.7 ± 0.6 0.4 +6.8 ± 0.6 31 

All water samples were obtained on 18 April 2000. 
a
 Single sample analysis because of insufficient amount of water. 

b 
Nitrate concentration in soil water after denitrification was predicted using the Rayleigh equation [4.4].

 

c 
Nitrate concentration and 

15
N values in soil water at 1-m depth was used as initial values.  

d 
Calculations were not treated because 

15
N values in soil water were lower than that at 1-m depth.  

 

while NO3 does. The decrease of NO3-N/Cl ratio indicates the occurrence of denitrification in 

deeper soil. 

 The δ
15

N values of soil water deeper than 300 cm showed higher values than those 

at 100 cm depth (Table 4.8). This fact also suggests the occurrence of denitrification in deeper 

soil. Böttcher et al. (1990) showed that microbial denitrification in groundwater accorded with 

the Rayleigh equation with an enrichment factor ε = -15.9‰ (see Eq. [4.3]), although this 

factor in previous studies ranged from –7.8 to –30‰ (Arai and Tase, 1992). Assuming that ε 

was –15.9‰ and NO3-N at 1-m depth (40.8 mg L
-1

, δ
15

Nini = +2.2‰) moved to the deeper 

depths, NO3-N concentrations calculated using Eq. [4.4] are 27-31 mg L
-1

, which is greater 

than the measured values 3.2-3.9 mg L
-1

. This indicates that the contribution of denitrification 

was not large. Further studies on the dynamics and quality of the groundwater on a larger 

scale would be helpful to elucidate the mechanisms of the decrease in NO3-N concentrations 

in soil water with depth.  

  Nitrate N concentration in groundwater in the AN and NF plots was monitored 

during the experiment (Fig. 4.3). Nitrate N concentration increased in both plots after 6 yr of 

repeated fertilizer treatment, since the groundwater in different plots may have been mixed.  
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Fig. 4.3.  Nitrate N concentration in groundwater in two plots receiving ammonium fertilizer (□; 

○) and one plot without fertilizer (×), from 1994 to 2001. 

The results indicate a large time lag between agricultural practice and NO3-N contamination 

in groundwater.   

 

 

4.4 CONCLUSIONS 

 

Chemical fertilizers (AN and CU), and compost made by swine waste (SC) were continuously 

applied on an Andisoil during 6 yr at standard application rates in Ibaraki, Japan. Plots with 

no fertilizer (NF) were established as a control. Sweet corn and Chinese cabbage / cabbage 

were grown in the plots.  

 In the AN and CU plots, NO3-N concentrations in soil water at 1-m depth started 

increasing from 15 months after the initiation of the experiment, and reached ca. 40-60 mg L
-1

 

in the AN plot and 30-50 mg L
-1

 in the CU plots. Nitrate N concentrations in soil water in the 

SC plot began to increase in the fourth year, reaching the same level as those in the AN and 

CU plots in the late experimental period. Organic N from SC first accumulated in the topsoil 

and mineralized subsequently so as to have NO3-N concentration similar to those in the AN 
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and CU treatments towards the end of the experiment. Thus, over longer periods, 

accumulation or changing characters of the organic N may cause substantial N mineralization 

in soil, resulting in large NO3 leaching. 

 The groundwater table rose to less than 2 m depth a few times after heavy rainfall in 

summer, resulting in a decrease in NO3-N concentration of soil water at deeper depths. During 

such events, NO3 from the soil water would be mixed with groundwater by vertical-transverse 

dispersion. In addition, rising groundwater may have caused anaerobic conditions in soil 

resulting in denitrification. Thus, the vertical movement of groundwater played a significant 

role in NO3 dissipation in the deep soil layers.   

Excessive N from chemical fertilizers applied to Andisols can cause NO3 leaching at 

1-m depth under the Japanese climate (Asian monsoon). Substitution of compost for chemical 

fertilizer is promising in establishing high yields and low N leaching only during shorter 

periods. However, continuous application of compost would cause substantial N leaching. 

Hence, accurate simulation should be conducted to establish the best combination of chemical 

fertilizer and compost, and to evaluate the effects of groundwater movement on denitrification 

and dilution of groundwater nitrate. 
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Chapter 5 

 

 

LEACHING PATTERNS OF NITROGEN AND 

HEAVY METALS EVALUATED WITH A 

MODIFIED TANKS-IN-SERIES MODEL 

————————————————————————————————————— 

 

5.1 INTRODUCTION 

 

Management of livestock wastes and sewage sludge has been of large concern during the past 

decades. In view of recycling such waste products, adequate applications on arable land are 

recommended. However, these waste products contain not only various nutrients but also high 

concentrations of heavy metals, especially zinc and copper (McGrath et al., 1994; Harada et 

al., 1993), which may cause adverse environmental effects. 

 The mobile fraction of most sludge-applied metals is generally small, unless soils 

are coarse-textured or very acid (McBride, 1995). However, in some field experiments, 

evidence of metal leaching at relatively high rates has been found (Richards et al., 1998; Fatta 

et al., 1997; Campbell and Beckett, 1988). McBride et al. (1997) estimated heavy metal 

leaching by using the metal/chromium ratio in soil and that in sludge, and thereby indirectly 

showed that large fractions of heavy metals had migrated out of the topsoil layer. Higher 

concentrations and leaching losses of heavy metals were measured in sludge amended plots 

than in control plots, in an experiment in which wick samplers were used (Richards et al., 

1998). The relatively high mobility of heavy metals in the above-mentioned examples was 
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presumably due to preferential flow and movement of organically complexed forms of metals 

(McBride et al., 1997; Richards et al., 1998). While Richards et al. (1998) suggested the 

existence of preferential flow by examining dyed flow paths, they did not use any 

non-reactive tracer to further evaluate the occurrence of preferential flow and the heavy metal 

leaching. Added to this, measurements of leaching losses by wick samplers are somewhat 

questionable (Maeda et al., 1999). Overall, very few studies on heavy metal leaching have 

been conducted, in which the effects of preferential flow have been elucidated. Camobreco et 

al. (1996) showed that preferential flow, which was evaluated using a non-reactive tracer, 

could accelerate metal leaching through undisturbed soil columns, but their results were 

obtained under steady-state flow conditions, which are quite different from natural field 

situations. Several studies characterizing tracer movement under non-steady state flow 

conditions have been performed in monolith lysimeters, but most of them have looked at 

leaching of nitrate (NO3) and various pesticides (e.g. Bowman, 1988; Bergström and 

Johansson, 1991), and only a few on heavy metal leaching (Sheppard et al. 1987). In addtion, 

if non-reactive tracers are not used in such experiments, which is often the case, the effects of 

preferential flow occurring in soil are difficult to evaluate. One advantage of lysimeters is that 

lateral flows do not occur and infiltrating water cannot bypass the collection system at the 

bottom of the lysimeters. 

 A great deal of information on preferential flow of a non-reactive tracer can be 

thoroughly evaluated by use of mathematical simulation models. Since the classical 

combination of Richards‘ and convection-dispersion equations is not able to describe 

preferential flow and non-equilibrium transport of solutes (Feyen et al., 1998), new modelling 

approaches have been developed (Feyen et al., 1998; Jarvis, 1994; Steenhuis et al., 1994). 

Most of these models are deterministic, which means that an extensive amount of information 

is required to complete the parameterization. An alternative for modelling preferential flow in 

soils is a transfer function approach (Jury, 1982; Jury and Gruber, 1989; Utermann et al., 
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1990; Grochulska and Kladivko, 1994), whereby the soil system is characterized entirely in 

terms of a distribution function of non-reactive tracer travel time to a given depth. For this 

type of approach, only information about application of a tracer on the soil surface, tracer 

concentrations, and water fluxes at a given depth, are necessary. Probability density functions, 

such as lognormal functions (Jury, 1982; Vanderborght et al., 1997) and gamma functions 

(Jury and Gruber, 1989; Grochulska and Kladivko, 1994), have been used as distribution 

functions to describe non-reactive tracer travel time, because they provide good fit to 

experimental data. However, the parameters of probability density functions do not have any 

physical and chemical meanings related to the water flow in soil systems. To overcome this 

shortcoming, the tanks-in-series model could be an alternative because the meaning of the 

used parameter is evident (Fogler, 1992). The extremes represented by a completely mixed 

and a plug-flow reactor are never fully realized in non-ideal reactors. The tanks-in-series 

model uses a single parameter to account for complex mixing patterns in a non-ideal reactor. 

The parameter is the number of ideal tanks in series, which gives approximately the same 

distribution of non-reactive tracer travel time as a non-ideal reactor. The model can be 

expanded to calculate the conversion and effluent concentrations of chemicals by applying the 

reaction engineering analysis (Fogler, 1992). 

 In this study, the author used a modified version of the tanks-in-series model for soil 

systems to describe a distribution function of non-reactive tracer travel time and validated the 

model with experimental data obtained in monolith lysimeters. Rainfall intensity may be one 

of the main factors affecting preferential flow. However, when transfer function models have 

been used to describe water flow under natural field conditions, tracer travel time to a given 

depth has been assumed to depend on the amount of water applied (precipitation minus 

evaporation) or the amount of leachate, regardless of intensity or intermittence of applied 

water (Jury, 1982; Jury and Gruber, 1989). To test the importance of rainfall intensity for the 

soil used in our study, the influence of three precipitation regimes was followed. The main 
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objective was to investigate the influence of preferential flow on leaching of heavy metals and 

N. For this purpose, Ammonium (NH4-N) and NO3-N, zinc (Zn), and copper (Cu) were 

applied on the surface of monolith lysimeters containing a heavy clay soil, in which 

preferential flow could have a substantial influence on chemical leaching (Bergström, 1995). 

The chosen elements are frequently occurring at relatively high concentrations in livestock 

waste and sewage sludge. Concurrently, bromide (Br) as a non-reactive tracer was applied on 

the lysimeters to provide information on water movement through the profiles. As mentioned 

above, the flow behaviour of Br was subsequently characterized with a modified 

tanks-in-series model. 

 

 

5.2 THE MODEL 

5.2.1 Model description 

 

The theory of the model described here is based on the tanks-in-series model (Fogler, 1992). 

The distribution of travel time (residence time) of a non-reactive tracer is determined by the 

injection of the compound into the feedstream entering the reactor, and then the number (n 

(–)) of equally sized and completely mixed flow tanks in series is obtained as a parameter. 

The parameter n shows the degree of mixing of flow in the reactor, and varies from one, for 

ideal completely mixed flow, to infinity, for ideal plug flow. 

 This tanks-in-series model was modified for soil systems as described below. The 

following assumptions were made: (i) when water content in soil exceeds the maximum 

amount of water held in a freely drained monolith, infiltration occurs and its rate is equal in 

all tanks; (ii) soil has stagnant flow regions and their ratio to the maximum amount of water in 

a monolith, when freely drained, does not change during the experiment; and (iii) rainfall does 

not contain the studied tracer. 
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 Assuming that the water flows are completely mixed in each tank, the mass balance 

of a tracer in the kth tank is given by: 

RCRCC
n

Vf

dt

d
1-kkk

m 







 [5.1] 

where C (mg L
-1

) is the tracer concentration, fm (–) is the ratio between water in mobile 

regions and the maximum water content in a freely drained monolith, R (mm d
-1

) is the 

infiltration rate, t (d) is time, and V (mm) is the maximum water content in the freely drained 

monolith. The subscript k denotes the order of the tank.  

 Wierenga (1977) showed, both theoretically and experimentally, that tracer 

movement in a silty clay loam under transient water flow conditions closely resembles that 

under steady flow conditions, if tracer concentration was plotted vs. cumulative leachate (Rt) 

instead of vs. time (t). This assumption for the used soil was confirmed under different 

precipitation regimes. Normalized time ( (–)) is defined as the cumulative leachate divided 

by the field capacity water content, i.e.: 

V

Rt
   [5.2] 

Combining Eqs. [5.1] and [5.2] gives: 
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Using the Laplace transform, Eq. [5.3] will be transformed as follows: 

 [5.4] 

where s is the Laplace transform parameter. The Laplace transform of Ck is given by: 

 



0

kk ][   deCC sL  [5.5] 

Rearrangement of Eq. [5.4] gives the expression: 
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The initial condition on the soil surface is given by the Dirac delta function, namely: 

 
V

M
C o   [5.7] 

where M (mg m
-3

) is the mass of the tracer applied on a lysimeter surface. Accordingly, the 

Laplace transform solution may be given by: 
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Inverting the Laplace transform solution of Eq. [5.8] (Ikeda, 1980), the solution of Eq. [5.3] 

can be written as:  
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The distribution function of travel time (E()) is obtained by dividing the effluent rate of the 

tracer by the applied mass, according to: 
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E() can then be derived by: 
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where Γ is called a gamma function and n will be mathematically expanded to positive 

numbers. Eq. [5.11] becomes a form of gamma probability density function by itself. 

Although a gamma probability density function has sometimes been used for E() (Jury and 

Gruber, 1989; Grochulska and Kladivko, 1994), the mathematical grounds and relations of the 

parameters to soil systems have not yet been discussed and theoretically supported by Eq. 

[5.11]. 
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Fig. 5.1.  Sensitive analysis of the parameters n and fm used in the modified tanks-in-series model. a) 

Change of n in case of fm = 1; and b) change of fm in case of n = 1.4. The peaks of E() are 

marked with a circle. 
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5.2.2 Model application 

 

In a first step, the sensitivity of the parameters n and fm was examined (Fig. 5.1). As values on 

the parameter n became larger, the behaviour of the soil system approached that of a 

plug-flow reactor. Namely, the peak of E() moved from  = 0 to  = 1 and became larger as 

the peak approached  = 1. Smaller values on the parameter fm, which means larger stagnant 

regions, made the peak of E() larger and the maximum value occurred a bit earlier. In 

addition, Eq. [5.11] shows mathematically that a new graph of E() is obtained by magnifying 

that of the original version of E() (i.e., fm = 1) by the factors 1/ fm (vertically) and fm 

(horizontally), respectively (Fig. 5.1). 

 The moment analysis has been used to select the values on parameters for 

distribution functions, so that the moments of a distribution function are equal to those of the 

sample data (Toride and Leij, 1996; Utermann et al., 1990; Jury and Gruber, 1989). The mean 

(  ) and variance (
2
) of tracer travel time in our model were obtained as follows: 

m
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where M1 and M2 are the first and the second moment of E(). It was necessary for this 

analysis that the experimental period was long enough. For example, it was necessary for 

determination of fm that  should be more than five in case of n=1.4 (Fig. 5.2). In order to 

avoid this problem, the author focused on the peak of E() (Fig. 5.1). The coordinate of the 

peak was obtained by a differential calculation, i.e.: 
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where Mfm, n (max, E max) was the coordinate of the peak of E(). Mfm, n was expressed by the 

combination of the parameters fm and n (Fig. 5.3). The peak coordinates of the experimental 



 85 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

fm = 0.5

fm = 0.6

fm = 0.7

fm = 0.8

fm = 0.9

fm = 1.0




E
 (

  
 )

0 
d









E
 (

  
 )

0 
d










n = 1.4

Normalized time ()
 

Fig. 5.2.  Integration of the distribution function of tracer travel time multiplied by the moment 

arm from zero to  of normalized time. 
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Fig. 5.3.  Relation between the peak of distributions of tracer travel time (E()) and normalized time 

() for different values on the parameters n and fm. 
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data (E()) in each lysimeter was visually determined and the corresponding parameters fm 

and n were obtained by using the graphs shown in Fig. 5.3. This was done because Eq. [5.14] 

contains a gamma function and it cannot be solved for fm and n. 

 Measured concentrations of bromide were divided by M (10 000 mg m
-2

 = 100 kg 

ha
-1

) and multiplied by V (218 mm) according to Eq. [5.11]. 

 

 

5.3 MATERIALS AND METHODS 

5.3.1 Soil properties 

 

The soil monoliths were collected at Ultuna, Sweden (59
o
48‘N, 17

o
39‘E) in June, 1998. This 

soil is a heavy clay soil with a clay content of ca. 40 % throughout the profile, with illite as 

the dominant clay mineral (Wiklander and Lotse, 1966). It is classified as Fuluventic 

Eutrochrept according to the USDA soil classification system (Soil Survey Staff, 1975). There 

are many coarse and fine tubular pores throughout the profile, formed by earthworms and 

roots. The topsoil structure is moderate/medium to coarse subangular blocky when moist, but 

becomes massive with cracks when dry (Messing and Jarvis, 1990). 

 For determination of chemical properties, the soil was air dried for 5 days and 

sieved (mesh size 2 mm). Soil pH (1:2.5), cation exchange capacity (CEC), and inorganic and 

organic carbon contents (determined by loss on ignition) were determined in the laboratory. 

For determination of Cu and Zn concentrations in soil, the soil was digested by 7M HNO3
 
at a 

temperature of 120 oC for 2 h (Swedish standard SS028311) and then concentrations in the 

solutions were measured by atomic absorption spectrophotometry (IL551, Instrumentation 

Laboratory). Bulk density and saturated hydraulic conductivity were measured on cores (72 

mm in diameter, 100-mm long) collected in the monoliths used in this study. Some chemical 

and physical soil properties are listed in Table 5.1. 
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Table 5.1.  Some properties of the Ultuna soil. 

 

      Soil depth (cm) 

Soil property 0–10 10–20 20–30 30–40 40–50 

 

Bulk density (g cm
-3

) 

 

1.35 

 

1.50 

 

1.60 

 

1.65 

 

1.50 

Hydraulic conductivity (cm h
-1

) 6.1 1.4 × 10
-2

 4.4 × 10
-3

 4.4 × 10
-3

 4.4 × 10
-3

 

  

0–20 cm 

  

20–50 cm 

 

pH (1:2.5) 7.8  7.8  

Zn (mg kg
-1

) 88  106  

Cu (mg kg
-1

) 24  24  

CEC (cmolckg
-1

) 19.43  15.03  

Inorganic Carbon (%) 0.04  0.03  

Organic Carbon (%) 1.33  0.74  

 

 To examine sorption of NH4-N, NO3-N, Zn, and Cu to soil, a column experiment 

was performed to obtain breakthrough curves of the elements under a steady-state flow 

condition. Sieved topsoil was used for this purpose. The details of the column-flow system 

followed what has earlier been described by Nishimaki et al. (1994). The column had an inner 

diameter of 1.9 cm and a length of 9 cm. The column was filled with deionized water, then 20 

g of the soil was added, which resulted in a bulk density (ρ) of 0.85 g cm
-3

. The flow rate 

through the column was 5.4 cm h
-1

. The experiment was started by passing 1.0 mol L
-1

 CaCl2 

through the column for 24 h, followed by similarly passing deionized water during the next 24 

h. Then, the input solution (pH 5.8), including 0.2 mmol L
-1

 KBr, 2 mmol L
-1

 NH4NO3, 0.2 

mmol L
-1

 CuCl2, and 0.2 mmol L
-1

 ZnCl, was supplied until ca.130 pore volumes of effluent 

solution had eluted. Retardation factors Rf (—) were calculated as the pore volumes when the 

relative concentration was 0.5 (Radioactive waste management center, 1990). Soil-solution 

distribution coefficients Kd (cm
3
 g

-1
) were calculated by the following equation (Inoue and 

Kaufman, 1962): 




1f
d




R
K     [5.15] 

where θ (—) is the porosity (θ = 0.64). 
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5.3.2 Collection of monoliths and experimental treatments 

 

Twelve 500-mm deep monoliths, enclosed in polyvinyl chloride (PVC) pipes (295-mm inner 

diameter and 586-mm long) were collected by use of a coring technique described by Persson 

and Bergström (1991). After collection, the lysimeters were prepared for gravity drainage by 

placing a porous plastic sheet over the bottom end of the monoliths. Before installation of the 

lysimeters in a lysimeter station, all monoliths were slowly filled with tap water from the 

bottom end until water was ponding on the soil surface. After saturation, the monoliths were 

allowed to drain freely for 1 week to reach a moisture content close to field capacity. The 

lysimeters were then placed in pipes permanently installed (below ground level) at the 

lysimeter station in Uppsala, Sweden. Before installation, all lysimeters were weighed to 

determine the field-capacity water content in each monolith. The change of water content in 

soil over the experimental period was also measured by weighing. The maximum amount of 

water in a monolith, after being freely drained, was 218 mm.  

 Three precipitation regimes were used in triplicate: (i) N-C and N-A, which were 

exposed to natural precipitation during the period 22 July 1998 to 25 January 1999; (ii) D-A, 

which was exposed to ‗double‘ natural precipitation from 22 July to 9 November 1998, and 

then natural precipitation only until 25 January 1999; and (iii) T-A, which was exposed to 

‗triple‘ natural precipitation from 22 July to 9 November 1998, and then natural precipitation 

until 25 January 1999. Weekly supplemental irrigation for D-A and T-A was calculated as the 

difference between the target value and the cumulative natural precipitation during the week, 

which was then applied on the soil surface during one or two days (< 20 mm d
-1

) in the 

following week. Rainfall simulators (giving a rainfall intensity of ca. 4 mm h
-1

) filled with tap 

water were used for irrigation. The amounts of water added in each treatment are listed in 

Table 5.2. The pH of tap water was 7.4. 

 Nitrogen and heavy metals, dissolved in 100 mL of water, were uniformly applied 
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on each monolith by using an atomizer (Atomizer No.163, Devilbiss). Nitrogen was applied 

as NH4 NO3 at a rate of 100 kg N ha
-1 (50 kg NO3-N ha

-1
 and 50 kg NH4-N ha

-1
), zinc as ZnCl 

at a rate of 100 kg Zn ha
-1

, and copper as CuCl2 at a rate of 40 kg Cu ha
-1

. The used N rate 

represents the normal dose for barley under Swedish conditions. The selected Zn and Cu 

application rates were determined so that the concentration of metals in the topsoil would 

likely be within the maximum concentrations of metals allowed in agricultural soils treated 

with sewage sludge in countries within the European Community (150-300 mg Zn kg
-1

; 

50-140 mg Cu kg
-1

) (McGrath et al., 1994). Simultaneously, bromide was applied as KBr at a 

rate of 100 kg Br ha
-1

. During application, the chemicals were mixed with the upper 5 cm of 

soil with a trowel. All chemicals were applied on 22 July 1998. No application was done on 

three control lysimeters (N-C), of which one was destructively sampled on 22 December, to 

determine bulk density and saturated hydraulic conductivity. All control lysimeters were 

exposed to natural precipitation only (see above), during the entire period. 

 

 

5.3.3 Leachate sampling and water analysis. 

 

Water leaching through the monoliths was led in plastic (polyethylene) pipes to glass 

sampling bottles placed in the belowground measuring station. The bottles were weighed after 

every rainfall event to determine the leachate volumes. Simultaneously, subsamples were 

taken for chemical analysis. 

 Concentrations of NO3-N, NH4-N, and Br were determined by flow-injection 

analysis (Fiastat 5010 Analyzer, Tecator AB) according to colorimetric methods; NO3-N, 

according to the Cd-reduction method (APHA, 1985), NH4-N, with a combined flow-injector 

gas-diffusion method (Tecator, 1984), and Br, according to the phenol red method (Anfält and 

Twengström, 1986). Concentrations of Zn and Cu were measured by inductively coupled 
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plasma spectroscopy (ICP-AES JY70 PLUS, Jobin Yuon), and pH was determined by use of a 

pH meter (PHM82 Standard pH meter, Bergman & Beving). 

 

 

5.4 RESULTS AND DISCUSSION 

5.4.1 Sorption of NH4-N, NO3-N, Zn, and Cu to soil 

 

The relative concentration of the elements was calculated as a ratio between the concentration 

in the effluent of the packed soil column and that in the input solution (Fig. 5.4). The 

retardation of the breakthrough curves of the elements to that of a non-reactive tracer results 

from sorption of the elements to soil (Radioactive waste management center, 1990). NO3-N 

was not sorbed to soil because the behaviour of NO3-N was similar to that of a non-reactive  

 

 

NH4-N

Zn

Cu 

Br

DDD
D

D

D

D

D
D

D

D
D
D
D

D
D
D
D

D
DDD
D
D
D

D

DDD
D
D
D
DDDDDDDDDDD

DD

DDD
D

GGGGGGGGGGGGGGG
G

G

G
G
G
G
G
G
GGG GG

JJJJJJJJJJJJJJJJJJJJJ
JJ
JJJ

J
J

E

E

EEEEE
E

E
EE
E
E
EEEEEE

EE
EE
EEEEEEEEEE

E
EEEEEEEEE

EEEEEE

H

H

HH

HHH

HHH

HHHHHHHH
H
HH

HH

H
HHHHHHHHHHHHHHHH

H
HHHH
H

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

R
e

la
ti
v
e

 c
o

n
c

e
n

tr
a
ti

o
n

 (
-)

Effluent pore volume (-)

NO3-N

 
 

Fig. 5.4.  Breakthrough curves of NO3-N, NH4-N, Zn, and Cu through a soil column under a 

steady-state flow condition.  
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tracer, in this case, Br (Fig. 5.4). The relative concentrations of Cu did not reach 0.5 during 

the period, which means that the Rf value for Cu must have exceeded 130. The Kd values for 

NH4-N, Zn, and Cu in soil were 11, 75, and over 97 mL g
-1

, respectively. 

 

 

5.4.2 Weather and drainage conditions 

 

The total precipitation was 252 mm during the experimental period (22 July 1998 - 25 

January 1999), which is about 60 mm less than the 30-yr normal precipitation during the same 

period. The supplemental irrigation made the total water inputs 396 and 540 mm, for D-A and 

T-A, respectively (Table 5.2 and Fig. 5.5). 

 

Table 5.2.  Water inputs in the three irrigation treatments. 

 

 Water inputs (mm) 

Treatment July 22-Nov. 9 Nov. 10 - Jan. 25 

N-C 154 mm 98 mm 

N-A 154 mm 98 mm 

D-A 298 mm 98 mm 

T-A 442 mm 98 mm 
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Fig. 5.5.  Accumulated amounts of precipitation and leachate during the period 22 July 1998 to 25 

January 1999. 
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 The soil was, more or less, frozen from 10 November onwards, and precipitation 

thereafter often occurred as snow. Still, the accumulated snow occasionally melted and water 

sometimes infiltrated in December and January when the temperature continued to be above 

freezing for several days. During such periods, water from the melted snow was typically 

ponding on the soil surface for a few days because the soil was still frozen. The average total 

amounts of leachate were 148 mm for N-C and N-A, 261 mm for D-A, and 403 mm for T-A 

(Fig. 5.5). These values accounted for 59 %, 66 %, and 75 % of the total water inputs, 

respectively. The differences in water content of the soil monoliths before and after the 

experiment were 5.2 mm (2 % of the input) for N-C and N-A, 3.2 mm (1% of the input) for 

D-A, and 8.2 mm (2 % of the input) for T-A. Accordingly, the amounts of evaporation during 

the experiment were 99 mm for N-C and N-A, 132 mm for D-A, and 129 mm for T-A. 

 At the end of October for T-A and in the middle of January for D-A, the cumulative 

amounts of leachate reached a level, which was equivalent to the amount of water (218 mm) 

that was present in each monolith after being freely drained. The N-C and N-A monoliths did 

not reach this water saturation level during the period (i.e., it was only 68 % of the field 

capacity moisture content at the end of the experiment). 

 

 

5.4.3 Bromide leaching 

 

Br recoveries in leachate were, on the average, 40 % for N-A, 61 % for D-A, and 74 % for 

T-A during the experiment (Table 5.3). Br concentrations for D-A and T-A reached about 40 

mg L
-1

 in the beginning of the experiment and then decreased below 10 mg L
-1

 towards the 

end (Fig. 5.6). Br concentrations for N-A also increased to about 40 mg L
-1

, although, a bit 

later than D-A and T-A, and then decreased to the same level as D-A and T-A. In other words, 

Br concentrations in the peak of the breakthrough curves were quite similar for all treatments  
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Table 5.3.  Inputs and leaching (Mean±SD, n=3) of Br, N, Zn, and Cu (kg ha
-1

). 

 

Treatment Br NO3-N NH4-N Zn Cu 

  

 Inputs (Application + in rainfall and irrigation) 

N-C   0 + 0  0 + 1  0 + 1   0 + 0  0 + 0 

N-A 100 + 0 50 + 1 50 + 1 100 + 0 40 + 0 

D-A 100 + 0 50 + 3 50 + 1 100 + 0 40 + 0 

T-A 100 + 0 50 + 5 50 + 1 100 + 0 40 + 0 

 Leaching  

N-C  1.0 ± 0.3 9.1 ± 6.0 0.5 ± 0.4 0.18 ± 0.15 0.02 ± 0.01 

N-A 40.0 ± 3.3 32.9 ± 10.3 0.7 ± 0.2 0.48 ± 0.10 0.03 ± 0.00 

D-A 60.7 ± 5.7 55.2 ± 12.8 1.0 ± 0.3 1.27 ± 0.42 0.05 ± 0.00 

T-A 74.4 ± 4.0 62.5 ± 5.6 1.6 ± 0.2 1.24 ± 0.77 0.08 ± 0.02 

 

 

which had received Br, and the peaks appeared in the order of the water input rates, such that 

the decrease in Br concentrations after the peak was more rapid when water inputs were larger. 

If the water entering the soil moved downwards as matrix flow, the Br peak concentration 

would appear when the accumulated leachate reached an amount of water corresponding to 

the water content at field capacity in a monolith. However, in all treatments the Br peaks 

eluted before the accumulated leachate reached this level, which is a clear indication of 

preferential flow. 

 A common problem with lysimeters is that water and water-carried chemicals may 

flow along the lysimeter wall, thereby affecting solute movement in the same way as 

preferential flow. The extent of this problem for the type of lysimeter used in this study was 

assessed in an experiment presented by Bergström et al. (1994) in which monoliths of a clay 

and a sandy soil were treated with two non-reactive tracers (
36

Cl and tritiated water). One was 

applied in the center of the monolith surfaces and the other along the wall. In each soil, both 

tracers appeared simultaneously in leachate, which show that ‗sidewall flow‘ is not a problem 

for this type of lysimeter. 
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Fig. 5.6.  Concentrations of a) Br, b) NO3-N, c) NH4-N, d) Zn, and e) Cu, and f) pH values in 

leachate during the period 22 July 1998 to 25 January 1999. Each value represents the 

mean of three replicates. 
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5.4.4 Model results 

 

Preferential flow is caused mainly by two mechanisms. One is the existence of stagnant 

regions (dead space). This mechanism can be expressed in terms of the parameter fm. The 

other is due to uneven water-flow rates. Some regions with rapid flow rates, such as 

macropores, and matrix flow regions will result in a large variability of flow rates. This 

condition may be expressed in terms of the parameter n. 

 Experimental results are plotted in Fig. 5.7, together with fitting curves for different 

values on the parameters fm and n used in the model. Generally, experimental data was well 

predicted by the modified tanks-in-series model. The values on fm ranged from 0.6 to 1.0 and 

those of n are from 1.1 to 2.0. These results suggest that the heavy clay soil used in this study 

might have 0-40% of stagnant regions in the profile. If the degree of mixing and stagnant 

regions were smaller without preferential flow, the peak of E() would appear at  = 1 (Fig. 

5.1). The peaks of E() were, however, observed far earlier than  = 1 in all treatments (Fig. 

5.7). In other words, the mixing conditions in the monoliths were pronounced. This high 

degree of mixing suggests that matrix flow, and different kinds of preferential flow, occurred 

simultaneously in this clay soil. The values of fm increased with those of n for N-A and D-A, 

although, the values of n were constant for T-A (Fig. 5.8). It is possible that a high degree of 

mixing occurred in small mobile regions. No clear relationships between the two parameters 

and the precipitation regimes could be seen (Fig. 5.8). Therefore, it may be safely assumed for 

this heavy clay soil that E() can be expressed in terms of the cumulative leachate, regardless 

of precipitation regime. In other words, these results showed that the precipitation regime did 

not affect the degree of preferential flow in the studied columns. 

 During later periods of the experiment, measured values of tracer travel time were 

lower than simulated values in all monoliths (Fig. 5.7). These periods coincide with 

freeze-thaw periods. The flow conditions during such periods seemed to be quite different  
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Fig. 5.7.  Measured and simulated distributions of tracer travel time (E()) vs. normalized time ().  

(i), (ii), and (iii) represent the three respective replicates. 



 97 

E

E

E

G

G

G I

I

I

0.5

0.6

0.7

0.8

0.9

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4

R
a
ti
o
 o

f 
m

o
b
ile

 r
e
g
io

n
s
 t
o

 t
h
e
 w

a
te

r 
c
o

n
te

n
t 

in
 s

o
il 

(f
m

)

Number of tanks (n)  

Fig. 5.8.  Values of n and fm in the three precipitation regimes (N-A: ○, D-A: □, T-A: ×). 

 

from those occurring during the summer months. Low concentrations of Br (low distributions 

of normalized tracer travel time) were seen in the first discharge after a long period of snow 

accumulation, which is similar to an observation by Bergström and Jarvis (1993). They 

explained this in terms of redistribution of the tracer to smaller unfrozen pores on freezing, 

and that, upon melting, percolating water would be practically free from the tracer. 

 

 

5.4.5 Nitrogen leaching 

 

Total leaching losses of inorganic N (NO3-N and NH4-N) for N-C was about 10 kg ha
-1

 (Table 

5.3). Nitrate leaching losses increased with increasing water inputs and accounted for 66, 110 

and 125 % of the total inputs of NO3-N in the N-A, D-A, and T-A treatment, respectively. 
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 Despite the fact that NO3-N was applied at a rate which was only half that of Br, the 

pattern by which NO3-N appeared in leachate was similar to that of Br, except that the 

background concentrations of NO3-N (cf. the N-C treatment) were higher and NO3-N peak 

concentrations were slightly lower than the corresponding Br concentrations (Fig. 5.6). Over 

the experimental period, NO3-N concentrations in the treatments that received N (N-A, D-A, 

and T-A) were higher than what is recommended for drainage water leaving agricultural soils 

in Sweden (5.0 mg L
-1

). NO3-N concentrations for N-C were about 10 mg L
-1

 in the beginning 

of the period and then decreased to 2 mg L
-1

 towards the end. Such concentrations are typical 

for Swedish clays soils similar to this one, which are exposed to agricultural practices 

(Bergström and Johansson, 1991). In terms of NO3-N leaching, the N-C load accounted for 

about 20 % of the input of the other treatments. 

 The similar leaching pattern of NO3-N and Br, means that NO3-N presumably also 

moved through the soil profiles by preferential flow. In contrast, Bergström (1995) stated that 

preferential flow appeared to be of little significance for NO3-N transport; at least, it did not 

increase leaching in a similar soil. This was explained in terms of an even distribution of N in 

the soil matrix, and water rapidly flowing through preferential flow paths should therefore not 

carry significant amounts of NO3-N. A similar explanation was given by Larsson (1999). In 

the treatments receiving supplemental irrigation in this study, NO3-N leaching losses were 

higher than the input of NO3-N with fertilizer, indicating high background concentrations and 

NO3-N formation in soil (Table 5.3). It is also important to note that there was no crop 

growing in the monoliths used here, which is normally the largest N-sink in agricultural soils. 

 The occurrence of NH4-N in leachate was quite different from those of NO3-N and 

Br (Fig. 5.6). Also, the difference in NH4-N concentrations between the treatment that did not 

receive N (N-C) and those that received N (N-A, D-A, and T-A) was not clear. NH4-N 

leaching accounted for 1.4-3.2 % of the total inputs of NH4-N. One of the reasons for this is 

sorption of NH4-N in the topsoil, which was shown to occur in the sorption test (see Section 
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4.1). Some of NH4-N may have been discharged as NO3-N after nitrification (Table 5.3). 

 

 

5.4.6 Leaching of heavy metals 

 

Heavy metal leaching accounted for minor parts of their inputs. The leaching losses generally 

increased with increasing water input rates, but there was no difference in Zn leaching losses 

between D-A and T-A (Table 5.3). Volume weighted mean concentrations of Zn were 0.12 mg 

L
-1

 for N-C, 0.32 mg L
-1

 for N-A (P < 0.05, t-test), 0.49 mg L
-1

 for D-A (P < 0.05), and 0.31 

mg L
-1

 for T-A. The corresponding values for Cu were 0.016 mg L
-1

 for N-C, 0.023 mg L
-1

 for 

N-A (P < 0.05), 0.020 mg L
-1

 for D-A, and 0.021 mg L
-1

 for T-A. Zn and Cu concentrations in 

the treatments, which received the element, were higher than those in the control. An increase 

of Cu leaching losses with water input rates was largely due to an increase of the accumulated 

leachate.  

 Zn concentrations increased over time (Fig. 5.6), starting with those of the T-A 

treatment, followed by the D-A treatment. The highest Zn concentrations occurred in the D-A 

treatment, with a peak value of 1.4 mg L
-1

 in October. After a decrease in 

November/December, the Zn concentrations for all treatments were, again, relatively high in 

January. In contrast to the development of Zn concentrations over time, Cu concentrations 

were high in the beginning of the period, but decreased relatively soon after application and 

leveled out towards the end of the period (Fig. 5.6). There was no clear difference in Cu 

concentrations among the treatments. A comparison of the Kd values (see Section 4.1) for Cu 

and Zn, revealed that more Cu was sorbed to soil than Zn. The volume weighted average Zn 

concentrations in leachate of the monoliths, which received the element, exceeded the 

Swedish standard for drinking water (0.3 mg L
-1

). The peak concentrations of Zn were quite 

different among the irrigation treatments, in contrast to the peak concentrations of Br and 
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NO3-N, which were similar among the treatments (Fig. 5.6). 

 The Zn concentrations in leachate of all monoliths are shown in Fig. 5.9 to examine 

the relation to preferential flow in more detail. Zn concentrations for D-A (iii), T-A (i), and 

T-A (ii) were consistently high, with the maximum concentration shown for D-A (iii) (Fig. 

5.9). Concentrations for D-A (iii) and T-A (i) were high in the beginning and then decreased. 

High concentrations, followed by rapid decreases, are highly related to low values of fm (Figs.  
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Fig. 5.9.  Zn concentrations in leachate of all monoliths during the period from 22 July 1998 to 25 

January 1999. (i), (ii), and (iii) represent the three respective replicates. 



 101 

5.7 and 5.9). Low values of fm and n are indicative of more pronounced preferential flow; i.e.,  

an earlier appearance and a higher peak of E() (Fig. 5.1). Preferential flow did not 

necessarily cause high concentration of Zn, as seen for T-A (iii). However, it was quite clear 

that preferential flow enhanced heavy metal leaching. 

 The heavy metal concentrations before the metal applications were 88 mg Zn 

kg
-1

and 24 mg Cu kg
-1 in the topsoil (Table 5.1). If these metals, which were applied at rates 

of 100 kg Zn ha
-1

 and 40 kg Cu ha
-1

, were distributed equally in the top 5 cm of soil, the 

concentrations of heavy metals in this layer would be 236 mg Zn kg
-1

and 83 mg Cu kg
-1

, 

respectively, which is within the range of the EC limits. Nevertheless, Zn concentrations in 

leachate were quite high, whereas Cu leaching was negligible in this experiment. This could 

be explained not only in terms of differences in sorption behaviour (see Section 4.1), but also 

because of the low concentration of organic carbon in the used soil (Table 5.1). Organic 

matter forms complexes with metals by exchange and chemisorption reactions. Cu has a high 

affinity for organic matter and moves through soil bound to organic colloids (del Catilho et al., 

1993). In other words, mobility of Cu would increase with increasing organic matter content 

in soil. 

 The pH of leachate decreased from about 8 to 6.5 during the period (Fig. 5.6). 

Average pH of precipitation was 6.7 and that of tap water was 7.4. The decrease in pH, which 

enhances the mobility of heavy metals (McBride, 1995), may be a contributing factor to the 

high concentrations of Zn during winter. If pH in supplemental irrigation water was similar to 

that of natural precipitation, leaching of heavy metals would have been higher than what our 

results showed. 
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5.5 CONCLUSIONS 

 

By use of a non-reactive tracer (Br), the author confirmed that preferential flow through the 

500-mm deep clay monoliths is an important flow pattern. Preferential flow Br in the 

monoliths was well described by the modified tanks-in-series model with the parameters n 

and fm; that is, in terms of the degree of mixing of water in soil and the ratio between mobile 

regions and the maximum amount of water in a monolith, when freely drained. When 

determining parameter values, the required experimental period was made shorter by using a 

peak coordinate of distribution of Br travel time, instead of the moment analysis. In the soil 

used here, the model could use the cumulative leachate as the only variable in the distribution 

function of tracer travel time under non-steady flow conditions. Accordingly, the modified 

tanks-in-series model for a non-reactive tracer may enable us to consider a soil monolith as a 

non-ideal reactor characterized by the parameters n and fm. This approach can be a helpful 

tool when chemical leaching through soils with different preferential flow process are 

compared. Combining the model for a non-reactive tracer with chemical reaction models 

(including sorption, transformation, and biodegradation) will then contribute to give us a 

complete picture of chemical leaching. Leaching of N occurred in the form of NO3-N, which 

was also largely displaced through preferential flow, as was the case for Zn, which occurred at 

relatively high concentrations in leachate, whereas leaching of Cu was negligible. Further 

studies are necessary to examine leaching of N and heavy metals from real organic 

amendments, over prolonged periods. 
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Chapter 6 

 

 

SUMMARY AND CONCLUSIONS 

————————————————————————————————————— 

 

6.1 THEMES  

 

The final goal of the studies undertaken in this thesis was to prevent groundwater 

contamination by NO3 from agricultural sources. Although N fertilizer is essential for crop 

production, excessive N could leach out of arable soils and eventually cause NO3 

contamination of groundwater. Therefore, the mechanisms of NO3 leaching under 

environmental conditions must be better understood for the prediction of groundwater 

contamination and establishment of sustainable agricultural systems.  

 For this purpose, the author selected and took up three research themes in this 

thesis: (i) awareness of the NO3 problem, (ii) development of methods for monitoring NO3 

leaching, (iii) analysis of the effects of various methods of fertilizer application and 

preferential flow on NO3 leaching. The author presents the summary of the preceding chapters 

and the conclusions of this thesis. Finally, the author proposes future needs to expand the 

results of the thesis to a general understanding of NO3 leaching processes. 

 

 

6.2 SUMMARY 

 

In Chapter 2, the relation between NO3 contamination of groundwater and agricultural 
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activities was reviewed.  

 The Japanese Government set the environmental quality standard for NO3-N in 

groundwater at 10 mg N L
-1

 in 1998, based on the admissible level for avoiding infant 

methemoglobinemia. In Japan, 6.3% of groundwater contained NO3 exceeding 10 mg L
-1

 in 

1998 and agriculture is a leading source of NO3 in groundwater.  

 Excessive N in soil may lead to large N gaseous and leaching losses from arable 

land, unless the patterns of N uptake by crops match N available in soil. However, conversely, 

excessive N is necessary as insurance in some cases. One reason for this is that rainfall, which 

can not be predicted and controlled, would bring NO3 in soil to deeper vadose zones, 

particularly immediately after fertilization. Another is that some vegetables physiologically 

require a high content of N in soil even at harvest. Besides, the N mineralization rate of 

manure, which should be applied to arable land, is difficult to predict under natural 

conditions. 

 The magnitude of the adverse impact of the factors influencing NO3 leaching must 

be evaluated to improve agricultural management, resulting in the maintenance of crop yields 

while reducing NO3 leaching. These factors include fertilizer management, cropping systems, 

soil types, and climatic conditions. The main concept of preventive measures is to match 

available-N in soil to crop demand-N all the time. 

 

 In Chapter 3, methods for monitoring NO3 leaching in upland fields were 

introduced and the practical use of wick samplers and monolith lysimeters was discussed.  

 The monitoring methods must be accurate, easy to use, and inexpensive, in order to 

evaluate many agricultural measures for preventing groundwater contamination under various 

environmental conditions. There is no perfect method of determining NO3 leaching in fields at 

present. It much depends mainly on the soils studied and the available resources. 

Conventional lysimeter facilities have drawbacks in limiting the number of experimental 
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treatments or replicates because of the high cost. In situ lysimeters such as wick samplers, 

which are installed in actual fields, are promising alternatives. However, the in situ lysimeters 

are not fully satisfactory. On fairly uniform unstructured soil, porous suction cup samplers are 

the best choice to determine the NO3 concentration in soil water while other tools are 

necessary to determine the NO3 fluxes. Monolith lysimeters containing undisturbed soil are 

suitable for structured or sandy soils where preferential water flow often occurs. The monolith 

lysimeters are recommended for studies where a large number of treatments or replicates are 

needed. Drainage collection systems can be used where impermeable clay subsoil exists under 

the system. 

 In the second section, the performance of wick samplers was investigated in terms 

of water collection efficiency. Water collection efficiency of wick samplers, defined as the 

volume of water collected by a sampler divided by the water flux from the root zone, should 

be close to 100%. The author used three wick samplers differing in wall height in an Andisol 

(Hydric Hapludand) under constant rainfall intensity and examined the effects of the rainfall 

intensity and wall height on the water collection efficiency based on experimental data and a 

numerical analysis. The water collection efficiency of wick samplers increased with the 

rainfall intensity and wall height because the increase in both rainfall intensity and wall height 

resulted in a distribution of the total potential inside the wick sampler close to that outside the 

wick sampler. Furthermore, the ratio of the cross-sectional area of the drain hole to that of the 

cylinder must be taken into account in the design of a wick sampler. The performance of the 

wick samplers in an actual field showed a similar trend to that in laboratory tests. Nitrogen 

leaching was measured in the sweet corn field treated with chemical fertilizer at 200 kg N ha
-1

 

using the wick samplers. Nitrogen leaching in the field was estimated at 30-70 kg ha
-1

 during 

the test period from 5 May to 6 August 1997. 

 In the third section, a drilling system for the collection of soil monoliths was 

developed. This unique model can be attached to the three-point hitch system, which is a 
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standard for all tractors, on the rear of a tractor. ‗Sidewall flow‘, which refers to the process 

that water or solute runs along the lysimeter wall, was not observed for an Andisol monolith 

sampled using this drilling system. 

 

 In Chapter 4, NO3 leaching was studied in an Andisol (Hydric Hapludand) treated 

with three types of N fertilizers in addition to a control (SC: swine compost, CU: coated urea, 

AN: ammonium N, or NF: no fertilizer) for 7 yr. Sweet corn (Zea mays L.) was grown in 

summer, followed by Chinese cabbage (Brassica rapa L. var. amplexicaulis) or cabbage 

(Brassica oleracea L. var. capitata) in autumn each year. In the chemical fertilizer plots 

treated with AN or CU, the NO3-N concentration in soil water at 1-m depth increased 

markedly in the summer of the second year and fluctuated between 30 and 60 mg L
-1

. In the 

SC plot, the NO3-N concentration started increasing in the fourth year, reaching the same 

level as in the AN and CU plots in the late period of the experiment. In the NF plot, the 

NO3-N concentration was about 10 mg L
-1

 for the first 4 yr and decreased to 5 mg L
-1

. The 

potential NO3-N concentrations determined by an N and water balance equation satisfactorily 

predicted the NO3-N concentration in the AN and CU plots, but substantially overestimated 

that in the SC plot, presumably because a large portion of N from SC first accumulated in soil 

in the organic form. Nitrate N concentration in the soil water decreased with depth from 1 to 

4.3 m. The groundwater table rose to less than 2-m depth in summer. The rising groundwater 

washed away soil NO3 and induced anaerobic conditions in soil, resulting in denitrification. 

The latter was supported by the fact that the NO3-N/Cl ratios of soil water at depths of more 

than 3 m were lower and those δ
15

N values were higher than at 1 m in the AN plot, although 

the contribution of denitrification may be small. Our results indicate that, under the 

Japanese climate (Asian monsoon), excessive N from chemical fertilizers applied to Andisols 

can cause substantial NO3 leaching, while compost application may enable to achieve high 

yields and low N leaching during a few years but would lead to the same level of NO3 
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leaching as in chemically fertilized plots over longer periods of time.  

 

 In Chapter 5, the leaching rates of N and heavy metals (zinc and copper) were 

measured in 500-mm deep monolith lysimeters containing a heavy clay soil (Fuluventic 

Eutrochrept). The purpose was to investigate the influence of preferential flow on the leaching 

of these chemicals under different precipitation regimes. Nitrogen was applied at a rate of 100 

kg ha
-1 (50 kg NO3-N ha

-1 
and 50 kg NH4-N ha

-1
), Zn at a rate of 100 kg ha

-1
, and Cu at a rate 

of 40 kg ha
-1

. Simultaneously, Br was applied at a rate of 100 kg ha
-1 

to provide information 

on water movement through the profiles. A modified version of the ‗tank-in-series model‘ was 

used to describe a distribution function of non-reactive tracer (Br) travel time and compare the 

results with experimental data obtained in the lysimeters. Rapid discharge of Br in the 

monoliths was taken as clear evidence for preferential flow. This flow behaviour was well 

described by the model through the parameters n and fm; that is, in terms of the degree of 

mixing of water in soil and the ratio between mobile regions and the maximum amount of 

water in a monolith, when freely drained. When determining parameter values, the required 

experimental period was made shorter by using a peak coordinate of distribution of 

non-reactive tracer travel time, instead of the moment analysis. The model could use the 

cumulative leachate as the only variable in the distribution function of tracer travel time under 

non-steady flow conditions. Nitrogen leaching occurred in the form of NO3-N, which was 

also largely displaced through preferential flow. Zinc leaching was also enhanced by 

preferential flow, whereas Cu leaching was negligible. Concentrations of NO3-N and Zn in the 

leachate in the treatments, which received the element, often exceeded the Swedish or 

Japanese drinking water guidelines. The results obtained in this study show that preferential 

flow may have a substantial influence on the leaching of heavy metals and N, and the 

combination of monolith lysimeters and the modified tanks-in-series model may be used to 

classify soils in terms of the occurrence of such flow behaviour. 
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6.3 CONCLUSIONS 

 

The present study addressed the above three themes through critical reviews, field 

experiments, and theoretical discussions.   

 For the first theme, the author pointed out that balancing both effects of nitrogenous 

fertilizer, namely crop growth promotion and human health concern, should be considered at 

any levels and suggested that the mechanisms of NO3 leaching must be understood to propose 

optimum balanced practices in a field.  

 For the second themes, the author suggested that the use of wick samplers and 

monolith lysimeters was the most suitable method. Wick samplers are not fully satisfactory at 

present but could be improved based on the findings of this thesis. Monolith lysimeters have a 

large potential to evaluate NO3 leaching in structured soils and enable to carry out studies 

where a large number of treatments or replicates are needed. The developed drill system, 

which can be attached to the three-point hitch system of a tractor, was found to be a useful 

and convenient device to collect soil monoliths.  

 For the last themes, NO3 leaching from different fertilizers and in structured soil 

where preferential flow would occur was monitored and the data obtained in the experiments 

were well evaluated with approaches based on simple mathematics. Although precise 

prediction of N fate in the environment is required in some cases, the risk evaluation of 

agricultural management for NO3 leaching should also provide sufficient information for 

policy making or regulation.  

 

 

6.4 FURTHER NEEDS 

 

This study presented the performance of wick samplers and monolith lysimeters for NO3 
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leaching monitoring. For practical use of wick samplers, selection of materials for wicks is the 

most important issue. We need to develop wicks that provide the same matric potentials at the 

top of the wick, as those at the corresponding soil depth outside the sampler, regardless of the 

water conditions, so that water entering the collection vessel can be the same as infiltrating 

water. As for monolith lysimeters, we need to test sidewall flow for different soils and the 

effects of the surface area of a monolith on crop growth. 

 The author demonstrated that the N and water balance equation proposed by OECD 

could predict NO3 leaching for chemical fertilizers but not for composts. The fate of 

manure-N applied to fields must be farther examined using 
15

N-labeled manure. Only one 

kind of compost was used in this study. Due to the diversity of the kinds of manure, different 

manures may show different results from that in the present study. 

 Lateral flow of groundwater was not considered in this study. Analysis of 

three-dimensional flow of groundwater may enable to analyze the quality changes of 

groundwater on a large scale and over a prolonged period. 

 The modified tanks-in-series model was used to evaluate the preferential flow of a 

non-reactive tracer in a structured soil. This model should be validated in different soils for 

expansion of the use. Combining the model with chemical reaction models (including 

sorption, transformation, and biodegradation) should enable to obtain a complete picture of 

NO3 leaching. 

 Leaching processes of phosphorus and pesticides have not been investigated in 

Japan, because these chemicals are more absorbed on soil or organic matter than nitrate. 

However, presently, phosphorus losses should not occur to avoid eutrophication of waters and 

also due to the limiting resources of phosphate rock. Because some pesticides may function as 

environmental endocrine disrupters, the dynamics of such pesticides with trace concentration 

must be studied under environmental conditions. 
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