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1. Introduction

To calculate the harmonic, biharmonic and similar functions by the finite
difference method, it is difficult, in many cases, to solve the algebraic linear
equations deduced by it and in these cases successive approximations are used.
This is known as the method of iteration or relaxation. But it is also trouble-
some and arduous to get exact values by this method which satisfy the equa-
tions. The author has tried to solve the algebraic linear equations deduced by
the difference method not according to successive approximations. Since the
fmite difference method of itself is an approximate method, it seemed to be
unimportant to solve the algebraic equations exactly. However, if we can solve
them by only one course of computation and get the exact values, it is con-
venient to estimate the errors by the finite difference and we are released
from the trouble of computing the same equations many times.

In the following the author explains a method to solve the above equations
exactly on Laplace’s and Poisson’s equations, each of which is one of the sim-
plest partial differential equation and the most important in engineering. After
that, the method is developed to solve the biharmonic equation and eigenvalue
problems.

Although this method is not always applicable to any problem, and difficult
when the boundary conditions are complicated, in many cases it is easier than
the iteration or relaxation method. In this paper the rectangular domains are

mainly considered.
2. Laplace’s and Poisson’s equations

(1) Principles of the method

Since the Laplace equation is a special case of the Poission equation, the

'Y, method is explained on the latter, that is
62 62
Prw=£(x%,5), 722672+W' ......... 2D
S 0 f As well known, to determine a value which satisfies
the above equation by finite difference, 5 points in
4 the domain must be related as (Fig. 1)
L

Fig. 1. 4y — Wy — Wo— Wy —wy=Cy, +oorereerres (22)



If » points are arranged in one | 2 3 n-1 n
row as Fig. 2, the difference equations Fig. 2.

in this case are as follows.
4w, — Wy = C
4w, —wy —wy=C,

4ws — we— wy=Cs

The values C; (7=1, 2, 3--+-- n) are known factors composed of the right-hand
term of the original equation and the boundary values.

w; which satisfies the equation (23) can be expressed by the next formula.

Ane1W1 = anCi+ an-1Co+ -+ Fa2CroataiCry  coorverreneniinn (24)
Aj+1 = KO3 — Aj-1,

a1 = 1, az=.‘i=4-.

In general, the values wy(j =1, 2, 3---- n) are shown by the following matrix.

wy On On-1 On-2 Qn-g= " az a1y (CrY
we Qn-1 020n-1 QpOn-2 OGg0n-3°* """ az || Ce
Ont = L e 2
" wy On-g G8n-g O30n—s Gslin-3> """ as || Cs (26)
wn a1 ag (72 SRR R AR ERRRTE an I\Cn/

These results are easily deduced from the equation (23).
When there are 2z points in 2

42 13 an-hH aAm
rows as in Fig. 3, we can calculate 1 7
the values wq; (=1, 2;7=1, 2------
n) like the above case, combining " @ @  @nd  @w
the values w1y and wy;. If we put Fig. 3.

[ U= W15+ Way

Uy=W15— Wey,
the same equations as (23) result for #; and ;, instead of wj, but the coeffi-
cients are different. For instance for the unknowns wii, e,

( 4w,y — way — w2 =Cny

dwg; — w1y — Wop=Cyy.



From these equations
Buy—to=C1 +Ca1, 5ili—ilg=Cr1—Cay.  coreeverreennnnin (28)

Now we can get the values %;, i, after we put the value £ as 3 and 5 into
the formula (26) and replace the value Cy by Ci;+Cpy and Ciy—Coy. It is
very easy to determine the values w¢; from the values #; ; by the equation
@n.

When the points are arranged in more than 2 rows, we can calculate the
values wq; in the same way as above, combining suitably the unknowns in one

column. If the points are given in 3 rows, the values of « are
k=4, 4—/2, 4++/2,
and we can determine the values j, 5, #; by the next equations.

J Uyj=Wyy— Wsy
ij=w11+1/7wzj+waj
]\ Z,1=w11—1/7w21+w31

After i1y, t;, t; were determined, it is very easy to get the velues wy(i=1, 2,

3;7=1, 2,-----:n) from them as in the case when there are 2 rows.
Tabls 1. As seen from the equation (24), a;
can be expressed by « and these relations
1 . .
“ are shown in Table 1. Expressing the
@2 LY .
« 21 number of rows by m, how to combine
| o, W= the unknowns to transform the equation
| as k1—3x2+1 into the form of equation (23) and what
! .
| @ 10 —dicd + 3 values of « should be taken for in each
6 4 2 . .
@ #%—5ut+6x7—1 case is shown in Table 2, when the rows
as 7 — 6k + 101 —duc
@ | WS T b 1505 — 10e241 are from 1 to 5. The values of #(y=1,
o] k9= 8k7+ 2115 —20u3+ 5 2, 3, 4o ) which are necessary to com-

pute a; by Table 1 are shown in Table 3.
(2) Extension to infinite points arranged

When there are many points or # is large, the value of an becomes very
great and the following considerations are available. From the equation (24),

an
W=

Cit M1, B i+ P G e (29)
R+1 Gn+1

An+1 An+1 a

In this case, 7 is so large that @n+: and as are far greater than az, a;. That
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is to say, we may compute the several terms at the beginning of the right-
hand side of the formula (29) and neglect other terms. This means that the
values at the points far from the points w: do not influence the value of ..
If » is infnity, the coeflicient of the first term at the right—han‘d side of

the equation (29) takes the value,
in % _p_0267949, = cerrereniienn (210)

70 Q1

when £=4. This can be obtained easily from the relation (25). Since # is large,

Gnt1-y _ _Gn -1 1Y By e
Qn+1 —an+1 an An+2-Y ) kY. (211)
and we can simplify the formua (29) into the following form.
Wy =BC + B2 Ca+E3Cs+ s e (212)
In Fig. 2, the points are arranged in one row )
on a straight line but the equation (29) or (212) o &
is applicable to every case in which the points are \
on any type of lines, provided the line does not ':
cross over itself. When the many poinis are ar- “f /
\ ’
ranged on a ring, as Fig. 4, the values of a point N, !
on that ring is obtained by the next equation which \‘f--—’
is got from the formula (29). Fig. 4
(@pe1—02n)Wo = (@n+18n+ ans) Co+ (@ne18n-1+ nag)(Cr+Coy )+ oemee o (213)
Here Cy, Ci, Cogyeeeee are the given values at each point. From the above
equation, the coefficient of Cy-: is
1o Gnyeitlaay
k L an+12+an2 ’ (214)
or by the relation (211),
kY .
kly = = kz, .................. (215)
and the equation (213) is written as
Wy = k’1C0+k’z(C1+C_1 )+k's(cz+ C)+-eee JEEETEPTPRITOPR (216)

We can determine by this formula the unknown values in an infinite line.
We have considered above the case when the points are arranged on only

one row but this principle can be extended to cases of many rows as inthe



case of section (1).

(38) Applications

(1) An example shown as Fig. 5, is as follows. In this case m=n=3,
so we must take & as the value 4, 4++/2 from Table 2 and calculate ai, az,

be determined from the relations shown

af) (12) (13)

(21) (22) (23)

(31) (32) (33)
Fig. 5.

T
4

as, as at first.  As a; are expressed by «
in Table 1, we can get these values at
once. The values of the first column

which satisfy Poisson’s equation are
a4€1=a361+agﬁz+alﬂs, """""" (417)

where £, represents one of i1, Z;, £, and
01, 62, s are suitable combinations of
given values Ci;. After we have got the

values 4y, £, t; then wjy, Wa, Ws can

Table 4. The coefficients 8¢5 for

in the last column of Table 2. The - . —

Poisson’s equation when 7=
values in the second column of the figure n=3,
are also computed by the next formula as Bowys=3.B1sCi; Bo=224.
above. (11)

sz = azly + a?fa +azlls, - (218) X 1 2 3
or employing the next relation 1 67 22 7
2 22 14 6
ai=as+ 2, 3 7 6
the equation (218) is (12)
a6z =zl + (as+ar )2+ a-fs. ,\]\ 1 2 3
i3, I3, Iz can be determined from this 22 7 22
f 14 28 14
ormula.
3 6 20 6
The results are shown by Table 4%

and in these tables each number is coef- <22>'
ficient of known factor C;;. If the values ‘N 1 2 ‘ 3
Ciy were given, we could get the values | 1 14 28 14 ‘
wyy at once by them. The shape of this 2 28 84 28 i
example is symmetrical, so we can get all 3 14 8 14

* On Laplace’s equation, similar nesults were already given by H. Licbmann.



65 78 70
21 4
s 24
. 17
0 !v 4 g 16}

Fig. 5.

values from 3 tables for points (11), (12),
(22) and tables for other points are not
necessary.

This method should be compared with
In
Mr. G. Allen’s book*, an example of the
The boundary

values of this example are as in Fig. 6 and

the relaxation method by this example.
Laplace equation is shown.

the results by the relaxation method are shown
in Table 5,(2). By the author’s method, we

can get the values of wi; as follows, using Table 4.

92410, = 67(65-+27) +22(68-+8) +7(73+43+ 1 + 1) +6(24+4) +3(17+9),

224

The values of other points are calculatable in this manner by the table, and

or
Wy =
Table 5.
Point ¢)) (2
an 8’232& =39.7679 | 40
(12) %:45.8214 46
(3) | 250 —ar76m9 | a8
€2 4'2;20 =21.2500 | 21
(22) 6’2326 =27.7500 | 28
(23) —%%:29.2500 29
(31) 25;24 - 9.4821 | 9
(32) 3&228 =14,6786 | 15
(33) 3&216 =17.4821 | 17
—* D. N

the results are shown in Table 5.(1).
These calculations from the beginn-
ing are a little more troublesome than
the relaxation method, but when the
values shown in Table 4 were obtained
beforehand, it is far easier by this
method and we can get exact values.

By the relaxation method, it is very

0 0 0 0
0 {29 .259 468 1
0 259 437 616 1
0 468 616 .558 1
1 { 1 1 !
Fig. 7.

. de G. ‘Allen, Relaxation Method, p. 57, 1954.
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elaborate work to get exact values. Moreover Table 4 is available to the pro-
blems of different boundary values, provided the shape of the domain remains
unchanged.

When the boundary values are given as.shown in Fig. 7, the values of
the inner points are determined as shown in the figure by the coefficients in
Table 4.

(ii) The next example is similar to (i) but m=4 and n=4. In this
case the values of r are obtained from Table 2 as %(7:!:1/_5'), %(9:!: v5)

and the results are shown as Table 6.

Table 6. The cofficients By for, Poisson’s equation,
Bows ;= 2.B15Cepn Ba=6,600.

1
> 1 2 3 4
1 1,987 674 251 88
2 674 458 242 101
3 251. 242 158 74
4 88 101 7 37
12)
Il 1 2 3 4
1 674 2,238 762 251
2 458 916 559 242
3 242 409 316 158
4 | 10 162 138 74
(22)
J
RS 1 2 3 4
1 458 916 559 242
2 916 2,647 1,078 409
3 559 1,078 697 316
4 242 409 316 158

3. Biharmonic equations

(1) Principles of the method

We will treat in this paragraph the next differential equation,



74w~=f(x’ y)‘ .................. (31) :

When the unknowns are arranged as shown in Fig. 2, we can see easily the
solution of this equation by comparing it with the Poisson equation. From

the solution of the latter by finite differences shown as the equation (24),

(W Gn OG- Gngoerae aP (O

, Wy Qpgq serrerererrrreaiarrenaes az| | Cq
An+1 = L 32
S " 32)

Lwn a1 Gz Qg e tn-1 an) \Cn

Or we write briefly

W, Tan  Ta-1 Tn-g "= T2 T C,
Wy 'a r'asr T'a-zr’s Th C.

Tn+1 = P n 7 pgeeeeeneeeenenes P T I (33)
Wa) \F® o ® | e, s, 1@ ] (C,).

The coefficients 7; are expressed by x in Table 7 when #=1 to 5. When
there are more than one row, the values w;; can be obtained as in the case
of the Poisson equation, combining the unknowns in one column.

Here the boundary conditions must be considered to make available the
formula (32) cr (33). In the case of bending problems of flat plate freely
suppprted at the boundary, the original equation (31) should be rewriiten as
follows.

rfw=v, pv=f(x,y),

and on the boundaries v=0, f(x, ¥)=0, so (33) becomes directly the solution
of the equation (31) if we consider Ciy as the values of A% f(x, y) at each
point.

However generally we must correct the formula (33) t6 be consistent with
the boundary conditions. This is in some cases very easy but in others very
difficult or troublesome. For the developement of this method, it is important
to investigate how to simplify the conditions.

As mentioned above, the calculation of the suppdrted plate is easiest, the
author explains this problem as an example, at first, and then, the square
plate which is supported at two edges and fixed at the other, and finally the
square plate fixed at the every boundary.
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T (2) Application
* .
b an  Jao . ja» e  jas . (1) The freely supported
square plate
(21) e len ke les As shown by Fig. 8, 25
points are taken in the plate
a0 oo ey lew  les and m=n=5. Stce 7=5in
this case, from Table 7
41) @ a3y jas “5) yo=r10+ 22 — 88 — 24k +9k?
rs=x8—5k%+4+8k*—3k%+3
1) (52) k53 (54) (55) J ri=2¢"—8c5410x3
rs=3¢"— 94+ 9x2-3
ra=4K"— 8k3
Fig. 8. r1=5¢'—12¢2+3.
We must take here « as 3, 4, 5, 4-£1/3 because of 72=>5 and we can obtain
Table 7.
7| v e GO
1 Y2 az? K2
7 a? 1
73 ag? kt—2x2+1
2 Y2 az?+ a? k2+1
71 2a102 2k
Vs a? 1 — s+ A2
5 73 a3?+ a? + an? ri—w242
72 xay+a?+az 2?
7 20 a3+ az? 322 -
s a? x8—6lc"—ijlllc‘—6n2 +1
Y4 a +a? + a? + ay? 5 —3uct+ 32+ 2
4 s asas+ apas? + a®+ 25— 4434 4ie
L2 wma,+ +2aa3tas Bit—3x2—1
b2 2a4 +2az03 443 —6x
s ag? K04 22;:’? — 88— 2444492
s s+l + ag? +a? + ar? 18 —5kB+8ict—3k?+3
5 b2 a5t mald + aaas?+ ad+ a8+ ap 217 — 8" + 1043
b2 aen+ pasan+ as®+ asaz?+ as 365~k 4+ 92— 3
72 aant2a’ e+ azas? +a, 4P —8x3
71 2a5 42204 + 3? Skd—124243
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the coefficients for #;, #'y, £, Si1, S1.

To get the values of the second column s,

we should use the second row of the matrix (33),

but we must not calculate the values by « again

and the relation shown in Table 8 are available,

So it is very easy also to get the values w,; after

n| 7! §iC2)
7’3 72
3| 72 73471
71 Y2
7' 73
4 73! vst+72
4
72 7tn n ‘ o ‘ 10>
7 72
o N s 73
B 4
74" Yty
74! Y5+ 73 s 4” o
5 oyl Yot 72 s ’)‘5+73+71
!
7 Y2t m " vt
n' 72 7" 3
Table 8. Table 9.

we have determined the
values #z, ', ti, S1, 1.
The values of the third
column w are also
revealed by the relations
shown in Table 9. As
the shape of the plate

Table 10. The coefficient Bz; for the freely supperted plate when m=n=>5,

wyy= 2. Bushfi (% ¥).

(11)
Rl 1 2 3 4 5
1 0.127567 0.104265 0.069655 0.041679 0.019436
2 0.104265 0.116362 0.092475 0,060764 0. 029656
3 0.069655 0.092475 0.082655 0.058413 0.029643
4 0.041679 0.060764 0.058413 0. 043360 0.022625
5 0.019436 0. 029656 0.029643 0.022625 0.011999
(12)
~_ 7 |
i~ ’ 1 2 3 4 5
1 0.104265 0.197222 0.145944 0. 089091 0. 041679
2 0.116362 0.196740 0.177126 0.122130 0. 060764
3 0.092475 0.152310 0.150888 0.112298 0.058413
4 0.060764 0.100092 0.104124 0.081038 0.043360
5 0. 029656 0.049079 0. 052280 0.041642 0. 022625
(13)
J )
}\ 1 2 3 4 5
1 0.069655 0.145944 0.216658 0. 145944 0.069655
2 0.092475 0.177126 0.226396 0.177126 0.092475
3 0.082655 0.150888 0.181953 0.150888 0.082655
4 0.058413 | ~0.104124 0.122717 0.104124 0.058413
5 0.029643 0.052280 0.061078 0.052280 0.029643




14

(22)
N‘ 1 { 2 3 4 5
1 0.116362 ‘ 0.196740 0.177126 0.122130 0.060764
2 0.196740 0. 349532 0.296832 0.201389 0.100092
3 0.177126 0.296832 0.281250 0.203168 0.104124
4 0.122130 0.201389 0.203168 0.153940 0.081038
5 0. 060764 0.100092 0.104124 0.081038 0. 043360
(23)
] T
U
Nl 1 2 3 4 5
1 0,092475 0.177126 0.226396 0.177126 0.092475
2 0.152310 0.296832 0.398611 0.296832 0.152310
3 0.150888 0.281250 0.349112 0.281250 0.150888
4 0.112298 0.203168 0.243031 0.203168 0.112298
5 0.058413 0.104124 0.122717 0.104124 0.058413
(33)
\j 1 2 3 4 5
1 0.082655 0.150888 0.181953 | 0.150888 0.082655
2 0.150888 0.281250 0.349112 0.281250 0.0150888
3 0.181953 0.349112 0. 459689 0.349112 0.181953
4 0.150888 0.281250 0.349112 0.281250 0.0150888
5 0.082655 0.150888 0.181953 0.150888 |  0.082655

is symmetrical, it is not necessary to calculate the values of the fourth and
the fifth column and the results are shown by Table 10.

(ii) The square plate freely supported at two
edges and fixed at other edges

As shown as Fig. 9, on the freely supported

edge we must put

wo=0, wy=—w, w' oS
and on the fixed edge

wo=0. ws=w,,
Then the difference of the boundary conditions be- Fig. 9.

tween the supported edge and the fixed edge is 2w.. If we replace Ci, by
Cij—2w;y and Csy by Cs;—2ws: in the case (i), we can get the coefficients
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of Cyy in this case.

re=x1"—4x8+6£°+ 92136,

rs=k8—3c8+4e3+3c24+15, 71'o=714, =73

T4=2k" - 4 +6x3+12x, 7=kt +268— g4+ 18c2424, 7v'i=7"s

73=3k%—3k3+9x2 -9, 7's=2¢"+4x5+ 63+ 12, 13! =xk8+ 25+ 12k
+6x24-27

ro=4x5- 12x, 7/2=3k+8c1—3c2-12, r'a=171"3

71="5¢4— 12?43, 7'1="73, r'i=rs.

By these relations we can get the following results (Table 11).
(iti) The fixed square plate
In the results of (ii) we should replace Ci by Cii—2ws and Cis by Cis

Table 11. The Coefficients B;j for the plate freely supported at the two edges
and fixed at the other when m=n=35,

wey= 2. B1 AV 1% ¥).

an
J
e 1 2 |3 4 5
1 | o0.088142 0.053154 0.024886 0.010479 0.003725
2 0.064658 | 0.058443 0.036463 0.018892 0.007684
3 | 0.037877 | 0.042813 0.031635 | 0.018511 0.008126
4 | 0.018%09 | 0.023869 0.019330 0.012071 0.005511
5 | 0.006164 | 0.008153 0.006791 0.004301 0.001972
12)
o 2 3 4 5
1 0.053154 0.113028 0.063633 | 0.028611 0.010479
2 | 0.058443 0.101120 0.077335 | 0.044146 0.018892
3 | 0.042813 0.069512 0.061324 0.039761 0.018511
4 | 0.023869 0.038138 0.035940 0.024840 0.012071
5 | 0.008153 | 0.012956 0.012454 | 0.008763 0.004301
13)
N\ 1 2 3 4 5
1 0.024886 0.063633 0.116753 | 0.063633 0.024886
2 0.036463 0.077335 0.108405 | 0.077335 0.036463
3 | 0.031635 0.061324 | 0.077638 0.061324 0.031635
4 | 0.019330 0.035940 0.043650 0.035940 0.019330
5 0.006791 0.01245¢ | 0014928 | 0.012454 0.006791
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21)
Fi ;
\i 1 2 3 4 ‘ 5
1 0.064658 0.058443 0.036463 | 0.018892 / © 0.007684
2 0.152620 0.126708 0.079955 0.043209 0.018293
3 0.105471 0.111283 0.080422 0.047177 0.020928
4 0.055507 0.067017 0.052811 0.032654 0.014902
5 0.018809 0.023869 0.019330 0.012071 ‘ 0.005511
(22)
& 1 2 3 4 | 5
H
1 0.058443 0.101120 0.077335 0.044146 0. 018892
2 0.126708 0.232575 0.169917 0.098248 0. 043209
3 0.111283 0.185893 0. 158460 0.101350 0.047177
4 0.067017 0.108318 0.099671 0.067713 0. 032654
5 0.023869 0.038138 0. 035940 0.024840 0.012071
(23)
] 1 2 3 4 5
1 0. 036463 0.077335 0. 108804 0.077335 0.036463
P 0.079955 0.169917 0.250868 0.169917 0.079955
3 0.080422 0.158460 0.206821 0.158460 0.080422
4 0.052811 0.099671 0.123220 0.099671 0.052811
5 0.019330 0. 035940 0. 043649 0. 035940 0.019330
(31
AR 2 3 4 5
1 0.037877 0.042813 0.031635 0.018511 0.008126
2 0.105471 0.111283 0.080422 0.047177 0.020928
3 0.174521 0.156995 0.106707 0.061259 0.027014
4 0.105471 0.111283 0.080422 0.047177 0.020928
5 0.037877 0.042813 0.031635 0.018511 0.008126
(32)
o 1 2 3 4 5
1 0.042813 0.069512 0.061324 0.039761 0.018511
2 0.111283 0.185893 0.158460 0.101350 0.047177
3 0.156995 0.281227 0.218253 0.133720 0. 061259
4 0.111283 0.185893 0.158460 0.101350 0.047177
5 0.042813 0.069512 0.061324 0.039761 0.018511
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(33)
Ny 1 2 3 4 5
1 0.031635 0.061324 0.077638 0.061324 0.031635
2 0.080422 0.158460 0.206821 0.158460 0.080422
3 0.106707 0.218253 0.308241 0.218253 0.106707
4 0.080422 0.158460 0.206821 0.158460 0.080422
5 0.031635 0.061324 0.077638 0.061324 0.031635

—2w;; and the coefficients of the fixed plate can be obtained. When we
replace the factor Ci; and Cis as above, each equation has 10 unknowns but
according to the symmetric law we can transform the equations containing only

3 unknowns and eliminate them. The results are shown by Table 12,

Table 12. The coefficients B;j for the fixed plate when m=n=5,
wey= 2. Bushf15(x ¥).

an
J
T~ 1 2 3 4 \ 5
1 0.069243 0.039208 0.016795 0.006033 0.001433
2 0.039208 0.035198 0. 020687 0.009314 0. 002634
3 0. 016795 0.020687 0. 015044 0.007786 0. 002374
4 0.006033 0. 009314 0.007786 0. 004349 0.001333
5 0.001433 0. 002634 0.002374 0.001333 0. 000358
12)
J
52 2 3 4 s
1 0. 039208 0.101412 0.055575 0. 022658 0.006033
2 0. 035804 0. 079089 0.060313 0.031158 0.009708
3 0.021404 0.046438 0. 042246 0.024868 0.008291
4 0.009708 0.021923 0.022024 0.013832 0. 004638
5 0. 002634 0. 006563 0.006958 0. 004392 0.001333.
a3
X 1 2 3 4 5
1 0. 016795 0.055575 0.109240 0. 055575 0.016795
2 0. 021404 0.060588 0.092446 0.060588 0.021404
3 0. 015940 0. 042604 0. 058856 0. 042604 0. 015940
4 0.008291 0.022229 0.029704 0.022229 0.008291
5 0.002374 0.006957 0.009357 0. 006957 0.002374
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(22)

7 ‘ i
gy 1 2 3 4 5 |
1 0.035197 0.079089 0.060587 0.031158 0.009315
2 0.079089 0.184960 0.131917 0.068453 0.021923
3 0.060587 0.131917 0.113621 0.065769 0. 022229
4 0.031158 0.068453 0.065769 0. 040591 0.013832
5 0.009315 0.021923 0.022229 0.013832 0.004348

(23)

P 2 B _— 5|
1 0.020687 0.060313 0.092446 | 0.060313 0.020687
2 0. 046437 0.131917 0.213438 0.131917 0.046437
3 0. 042603 0.113773 0.162095 0.113773 0.042603
4 0.024868 0.065769 0.089017 0.065769 0. 024868
5 0.007786 0. 022024 0.029704 0022024 0.007786
(33)
j s |

™o I R T IR T b
1 | 0.015044 0.042245 \ 0. 058856 0.042245 0. 015044
2 0.042245 0.113621 0.162095 0.113621 0.042245
3 0.058856 0.162095 0.252132 0.162095 0.058856
4 0.042245 0.113621 0.162095 0.113621 0.042245
5 0. 015044 0.042245 0.058856 0.042245 0. 015044

The values shown in above tables are considered to be influence numbers
of the plate for deflections or they express the deflections of every pcints
when at a point, a unit load is applied. We can get the deflections of the
plate under any given load by these tables.

(iv) Above examples are all square plates, so an example of a rectangular
plate when m=3, z=4 should be shown. Since the procedures are the same

as in the above cases, the results alone will be shown by Table 13.

Table 13. The cocfficients B:j for the freely supported plate when m=3, n=4,
wry= LBk f1xs ).

1
e o
1 0.119198 0. 089855 0. 052242 0. 023295
2 0. 086979 0. 087504 0. 059292 0.028475

3 0. 041864 0,048464 0.035782 0. 017984
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(12)
J . B
\.f,l _ 2 3 L _}_, o
1 0.089855 0.171440 0. 113150 0. 052242
2 0. 087504 0.146271 0.115979 0. 059292
3 0. 048464 0. 077646 0. 066448 0.035782
€49
R T B e
Lt ; N
1 0. 086979 0. 087504 0. 059292 0. 028475
2 0. 161062 0.138319 0.088025 0.041279
3 0.086979 0. 087504 0. 059292 0. 028475
(22)
Fi
i\ 1 2 3 4
1 0. 087504 0.146271 0.115978 0. 059292
0.138319 0. 249086 0.179598 0. 088025
3 0. 087504 0.146271 0.115978 0. 059292

4. Eigenvalue problems

The principles of the calculations are mentioned by examples.
(1) A differential equation related to the problems of the transverse vibra-

tion of a stretched string is

d*w
d? +w=0,

By the difference method the above equation is
(2= n*)wy — wi —wy =0,

When we take 3 points in the string as Fig. 10 and assume w=0 at the ends,
from the formula (26),

W\ | ) @ (&) |
ag| Wy ’ =0, i - i I
ws) k=% —
or a.=0. Fig. 10.

a4 is expressed by « in Table 1 and then
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&3 —2¢=0,
We must take & as (2—2k?%) in this case and the above equation is
Q- {(2-r?)-2}=0,
or (2-21*)(2—-42h*+22h*) =0.
Then =2, 244/ 2.

These are the eigenvalues approximated by the difference method.

When we take 5 points in the string, we may put
as=0
From Table 1, &5 —4e3+3c=0
Substituting & =2— Ak* into this equation
(2-2){(2- 22— 1}{(2—2h*)?-3}=0.
The roots of this equation are
=1, 2,3,2+v3.

The lowest value of Ah% is 2—4/3 and if we take the length of the string as
1, then 2=1/6. So

=2-v3 _
A=210 =965

This is nearly equal to the correct value n2. When the eigenvalues have been

determined, it is very easy to get the corresponding modes.
(2) The next example is on the vibration of a stretched mambrane.

The differential equation in this case is
Prw+iw=0.

If we take 2X7 points in a rectangular membrane shown as Fig. 11, and w=

(1) (12) (13) 14) S) fgS) 4]

en e lea  log 5 lee J;g{)

Fig. 11.
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0 at the boundary,
m=2, n="1.
Then from Table 1,
as=x"—6k5+410k* - 4x =0,

or e(x2—-2)(k*—4x24+2)=0.

Because of m=2, the values of & are two kinds, one is 3—A%? and another

is 5—21* We put these values into the above equation and get

M*=3, 3+4/2, 3+y/2+v2  when u;x0, ii;=0
M=5, 54+/2, 541/ 2++/2  when u;=0, ii;*x0.

5. Conclusion

The author has developed a method to solve the partial differential equa-
tion by the difference method and shown some examples. Although the method
is not yet sufficiently considered or studied in detail and there are some points
to be corrected, it is believed that the method can be applied to many problems
in engineering. The tables in this paper will be available to calculate the
functions in practice. To make this method more useful, it is necessary to
prepare more tables.
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