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                     1. Introduction 

   To calculate the harmonic, biharmonic and similar functions by the finite 

difference method, it is difficult, in many cases, to solve the algebraic linear 

equations deduced by it and in these cases successive approximations are used. 

This is  known as the method of iteration or relaxation. But it is also trouble-

some and arduous to get exact values by this method which satisfy the equa-

tions. The author has tried to solve the algebraic linear equations deduced by 

the difference method not according to successive approximations. Since the 

finite difference method of itself is an approximate method, it seemed to be 

unimportant to solve the algebraic equations exactly. However, if we can solve 

them by only one course of computation and get the exact values, it is con-

venient to estimate the errors by the finite difference and we are released 

from the trouble of computing the same equations many times. 

   In the following the author explains a method to solve the above equations 

exactly on Laplace's and Poisson's equations, each of which is one of the sim-

plest partial differential equation and the most important in engineering. After 
that, the method is developed to solve the biharmonic equation and eigenvalue 

problems. 
   Although this method is not always applicable to any problem, and difficult 

when the boundary conditions are complicated, in many cases it is easier than 

the iteration or relaxation method. In this paper the rectangular domains are 

mainly considered. 

             2. Laplace's and Poisson's equations 

(1) Principles of the method 

   Since the Laplace equation is a special case of the Poission equation, the 

 •2 method is explained on the latter, that is 

                                      a2a2                       v2w =Ax,y), v2—+ (21)                                           a
x2ay2 

• • 

30As well known, to determine a value which satisfies 

                    the above equation by finite difference, 5 points in 

                    the domain must be related as (Fig. 1) 
 •4 

    Fig. 1.  4wo  —  202  —  ws  —  =  Co.  (22)
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   If n points are arranged in one i 2 3n-in 
                             ••  -o-----e 

 row as Fig. 2, the difference equations Fig. 2. 

 in this case are as follows. 

                        /  4w1—  W2  =  C1 

 4W2  —  WI  —  W3  =  C2                             

(  4203  —  W2  —  204  =-  Cy  (23) 

 4w•_1—  Wn-2 —  Wn=  Cn-/ 

 \  4wn—  W  71-1=  C71. 

The values  Cl (j  =1, 2, 3 n) are known factors composed of the right-hand 

term of the original equation and the boundary values. 

   wi which satisfies the equation (23) can be expressed by the next formula . 

 an+iwi=anCi+an-1C2+  +a2C•-1+a1Crt,  (24) 

 ai+1=-/ca1—ai-i, 

 ai=1,  a2=x=4.  (25) 

 In general, the values  w  j(j=  1, 2, 3 n) are shown by the following matrix. 

 ,W  j.  ,  an  an-1  an-2  an-3 a2  al  ,  Cl' 
               W2  an-1  a2a.--i  a2an-2  a2a•-3   az  C2 
 a•-1-1= (26)               W

3 an-2  azan-2 a3an, awn-3  a3 C3. 

 ,Wn,  \  a1  a2  as    C(n,  (en/ 

These results are easily deduced from the equation (23). 

   When there are 2n points in 2                          (ii)  (12) (13)   (1,71i-1)an) 
rows as in Fig. 3, we can calculate 

the values  wil (i  =1,  2  ; j  =1, 2                        i---1---1—----ll n) like the above case, combining (21) (22) (23)  (Z?)-1)  (Zr) 

the values  wii and  wa/. If we put Fig. 3. 

 1 us=  Wii+W2)               /7.1=Wii— w25,  (27) 

the same equations as (23) result for  ul and  77i, instead of  wi, but the coeffi-

cients are different. For instance for the unknowns  wii,  W21, 

                          1 4w11—  W21  —  W12  =  C11                            1  
414/21  —  W11  —  WP2  =  C21.
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From these equations 

 3u1—  u2=  +C21,  5771  —172  C11  —  C21  (28) 

Now we can get the values  to,  'a  j after we put the value  K as 3 and 5 into 

the formula (26) and replace the value C1 by  CI  ;I-  C2i and  C11—C21. It is 

very easy to determine the values  toil from the values t tj,  77j by the equation 

(27). 

   When the points are arranged in more than 2 rows, we can calculate the 

values  w/1 in the same way as above, combining suitably the unknowns in one 

column. If the points are given in 3 rows, the values of are 

                   K=4,  4-1/2,  4+1/2, 

and we can determine the values  771,  tj,  tj by the next equations. 

 17,=wij—Wyj 

 t  j=  wii+  -V  2  W2I±W31 

 1=  Wi  —  V  2  W2i±  Wsi 

After  1ij,  t  j,  11 were determined, it is very easy to get the velues  w/)(i  =1, 2, 

 3  ;  j  =1, 2, n) from them as in the case when there are 2 rows. 

 Tab"?  1. As seen from the equation (24),  aj 

                            can be expressed by  K and these relations 
    al1 

                           are shown in Table 1. Expressing the 
 Cry 

 K2-1number of rows by m, how to combine 
 as  K3-2K the unknowns to transform the equation 
   ao-  K4_30+1 into the form of equation (23) and what 

 K3  —4K3  +  3K values of  jc should be taken for in each 
 „li  5„4  6,2-1                             case is shown in Table 2, when the rows 
 as  K7  —  6K3  10K3-4K 

 asS— 7K"+ 15K 4 — 10K2 + 1                            are from 1 to 5. The values of e(v= 1, 

M 

   aio I K9 —80 + 210 —200 +5K 2, 3, 4 ) which are necessary to corn-

                           pute  aj by Table 1 are shown in Table 3. 

(2) Extension to infinite points arranged 

   When there are many points or n is large, the value of  an becomes very 

great and the following considerations are  available. From the equation (24), 

 w1=  an   ci  an-1  c.2  + al                          Cn-i+Cn.  (29)  an+i  an+i  an+i  an+i 

In this case, n is so large that  ani-1 and an are far greater than  a2,  al . That
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is to say, we may compute the several terms at the beginning of the right-

hand side of the formula (29) and neglect other terms. This means that the 

values at the points far from the points  wi do not influence the value of 

   If n is infinity, the coefficient of the first term at the right-hand side of 

the equation (29) takes the value, 

 lin   an  –  k  =0 .267949,  (210) 

when  K=4. This can be obtained easily from the relation (25). Since n is large, 

 =   an  am-i  an+1-Yky(211) 
 an+  aw-i  an  an+2-"Y 

and we can simplify the formua (29) into the following form. 

 wi  =kCi+k2C2+k3C3+   (212) 

   In Fig. 2, the points are arranged in one row  (I)         on) on a straight line but the equation (29) or (212) 

is applicable to every case in which the points are 

on any type oflines, provided the line does not 

cross over itself. When the many points are ar- (-1 

ranged on a ring, as Fig. 4, the values of a point 

on that ring is obtained by the next equation which  - 

is got from the formula (29).Fig. 4. 

 (a2m+i—a2,z)wo  =  (  an+iara+  araxi)Co  +  (am-ian-/  +  ana2)(  +  C-1)  +   •(213) 

Here Co,  Cl,  C_1,  are the given values at each point. From the above 

equation, the coefficient of  Cy-1 is 

 =  a.a._y+1+  anay    (214) 
 an+12±an2  , 

or by the relation (211), 

     k' (215)                             Y =1 — k2, 

and the equation (213) is  written as 

 too=  le1Co+k'2(C1-1-C-1)+k13(C2+C-2)+   (216) 

                                                                                                                                                                                  • We can determine by this formula the unknown values in an infinite line. 

   We have considered above the case when the points are arranged on only 

one row but this principle can be extended to cases of many rows as in the
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case of section (1). 

(3) Applications 

   (i) An example shown as Fig. 5, is as follows.  In this case m=n=3, 
so we must take  K as the value 4,  4±-1/ 2 from Table 2 and calculate  al, a2, 

  --1 as,  a4 at first. As  aj are expressed by  x 
                           in Table 1, we can get these values at 

 .(i I)  •(i2)  .a3)  j                             once. The values of the first column 

                            which satisfy Poisson's equation are 
 •(21)  ("22)  ,(2.3) 

 a4Ei=a301+as02-1-alOs,  (217) 

 J31)  .(32)  133) where  el represents one of  ail,  ti, ti and 
 01, 02, Os are suitable combinations of 

                            given values  C/j. After we have got the 
          Fig. 5. values  T71,  ti,  t1 then  w11, w21,  wsi can 

be determined from the relations shown 
                                           Table 4. The coefficients  st  j for 

in the last column of Table 2. The                                                     Poisson's equation when m= 
values in the second column of the figure  n=3, 

are also  computed by the next formula as  flow/i=  E/3/  JC4),  /30=224. 

above. (11) 

 a4E2  =  a201  +a2202+as03, (218)  '-'-ii -..., 1 2 3 

or employing the next relation 1 67 22 7 
                  2 22 14 6 
 cz22=  as+  ai, 3 7 6 3 

the equation (218) is (12) 

                                                                                      „,,i    a4E*2 = a201+ (a3+ al )02 + an03.z- -,1 2  1 3 
/72, t2,  12 can be determined from this1 22 74 22 

                    2 14 28 14 f
ormula.                3 

6 20 6    Th
e results are shown by Table 4* 

and in these tables each number is coef-                               (22) 

ficient of known factor  C. If the values  '---i'l 1 2  I 3 
 Cii were given, we could get the values 1 14 28 14 

 Wij at once by them . The shape of this 2 28 84 28 

example is symmetrical, so we can get all 3 14 28 14 

 * On  Laplace's equation, similar nesults were already given by H . Liebmann.
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 64, 65  .  tit  73  /r values from 3 tables for points (11), (12), 

                         (22) and tables for other points are not 

27  •  .  43 necessary. 
                            This method should be compared with 

8  •  • 24 the relaxation method by this example.  In 
 Mr. G. Allen's book*. an example of the 

 t • • 17 Laplace equation is shown. The boundary 

                         values of this example are as in Fig. 6 and 

 0  1  4  916 the results by the relaxation method are shown 
         Fig. 5. in Table 5,(2). By the author's method, we 

can get the values of w11 as follows, using Table 4. 

 224w11=  67(65+27)+22(68+8)+7(73+43+1+1)+6(24+4)+3(17+9), 

 Or 
                     8908   wit=  224

. 

The values of other points are calculatable in this manner by the table, and 

          Table 5. the results are shown in Table  5.(1). 

 Pont  (1) (2)                                   These calculations from the beginn- 

       890EPing are a little more troublesome than 

     , 

 (11) —39.7679 40        224the relaxation method, but when the 

       10,264 values shown in Table 4 were obtained  (12) —45.8214 46        224b
eforehand, it is far easier by this 

       10,  700 method and we can get exact values.   (13) —
224— =  47.7679  48                              B

y the relaxation method, it is very 

                        , 

  (21)4224760 =21.2500 21  0 0  0  0 0 

         6,216 6,   (22) =27.7500 28     224 
0 .129ii259.468  i 

  (23) 6224,1--52  =  29.2500 29 
                                 259437616   0 ••• t 

     ,  

  (31)22244   = 9.4821 9 
                                           468•616.558  

 3,280 • I   (32)
2248  =14.6786 15 

     ,  

 (33)32246=17.4821 17 1 1 1 1   1 
                                                      Fig. 7. 

  * D . N. de G.  Allen, Relaxation Method, p. 57, 1954.
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elaborate work to get exact values. Moreover Table 4 is available to the pro-

blems of different boundary values, provided the shape of  the, domain remains 

unchanged. 

   When the boundary values are given  as. shown in Fig. 7, the values of 

the inner points are determined as shown in the figure by the coefficients in 

Table 4. 

   (ii) The next example is similar to (i) but m = 4 and  n  =  4. In this                                11 '
case the values of  x are obtained from Table 2 as—2(7±-1/ 5 ),—2  (9±1/  5  ) 

and the results are shown as Table 6. 

                Table  6, The cofficients  st  j  for  Poisson  's equation, 

 Rowti  =  EetiCii,  /30=6,600. 

   (11) 

 1"----..., 1 2 3 4 

 1 1,987 674 251 88 

 2 674 458 242 101 
 3  251. 242 158 74 

4 88 101 74 37 

 (12') 

i.1 2  J 3 4 

 

1  . 674 2,238 762 251 
 2 458 916 559 242 
 3 242 409 316 158 
 4 101  162 138 74 

   (22) 

 ij, 1 2 3 4 
 1 458 916 559 242 

 2 916 2,647 1,078 409 
 3 559 1,078 697 316 
 4 242 409 316 158 

                 3.  Bi  harmonic equations 

(1) Principles of the method 

   We will treat in this paragraph the next differential equation,
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 rliv=f(x, y).  (31) 

When the unknowns are arranged as shown in Fig. 2, we can see easily the 

solution of this equation by comparing it with the Poisson equation. From 

the solution of the latter by finite differences shown as the equation (24), 

 '1411`  'an  an-1  an-a a?  a1 2 

        W2  an-1    a2  C2 
  a2n+i  (32) 

 an-2    as  

•  W  72,)  al  az  az    an-1 an,  \C,,, 

Or we write briefly 

 'r n  rn-i  7n-2   rz  Ti 

           W2  rin  Tin-1 7 flb-2  Tir C2 
 rn+1(33)                 r" r. r"n-i r"i ri" 

 (n)n  r  (n)  n-1  r  (n)  2  r  (`)i, 

The coefficients  Ti are expressed by in Table 7 when  n=1 to 5. When 

there are more than one row, the values  wii can be obtained as in the case 

of the Poisson equation, combining the unknowns in one column. 

   Here the boundary conditions must be considered to make available the 

formula (32) or (33). In the case of bending problems of flat plate freely 

 suppprted at the boundary, the original equation (31) should be rewritten as 

follows. 

 pew=  v,  p2v=f(x, y), 

and on the boundaries  v=0, f(x,  y)=0, so (33) becomes directly the solution 

of the equation (31) if we consider  Cil as the values of h2 f(x, y) at each 

point. 
   However generally we must correct the formula (33)  to be  consistent with 

the boundary conditions. This is in some cases very easy but in others very 

difficult or troublesome. For the developement of this method, it is important 

to investigate how to simplify the conditions. 

   As mentioned above, the calculation of the supported plate is easiest, the 

author explains this problem as an example, at first, and then, the square 

plate which is supported at two edges and fixed at the other, and finally the 
square plate fixed at the every boundary.
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1-- (2) Application 
ft 
.1_  *(ii)  a12)  —  413)  a14)  its)  . (i) The freely supported 

                                      square plate 

 •2h 02)  03)  04)  125) As shown by Fig. 8, 25 
                                    points are taken in the plate 

 •31)  i32)  03)  04)  05) and  m=  n=5.  Since  n= 5 in 
                                    this case, from Table 7 

 „(m)  j42)  .613)  .(44)  fIC45)   '  r6  =  K"  +  22e  -  8e  -  240+90 
 7-,  =  e  —  5K  b  +8X4  —  3K2  ±  3 

 OD •52)  453)  •(54)  .(55)   J  r4  =  2e  -  80+100 
 r3=3e  -  9e  +90-3 

 rz=  4e  -  8/C  3 

           Fig. 8.  ri  =  50-12k2+3. 

We must take here  K as 3, 4, 5,  4±-1/  3 because of  m=5 and we can obtain 

                                   Table 7. 

 n  7 .1  f  (  a)  fCK) 

 1  72  .222  62 
 73 a12 1 

    73  a32  K4  —2K2  +  1 
 2 72  en2  +  a12  K2+1 

   71  2ai  az  2a 

 74  a42  lc"  —4K4  +40 

 73  a22  +  .222  +  ai2  K4—x2+2 
 3 7

2  a2a3  +  5522  +  az  2K3 

     71  2a1a3  +  a22  3K2  —  2 

 75  0%62  KB  —60  +11m  4  —6N2 +1 

 74  ,42  +  m2  +  .222  +  .212  Kr)  —  3  tel  +  3m2  +  2 
    4 73  In  ce4  +  a2a32  +  (522  +  ck2  2K5  —  4K3  +4K 

 42  a2a4  +  +  2a22crs  +  as  3K  4  —162  —  l 

     71  2a4+  2002as  4m3-6m 

       76  a62  K10  +  22ms-8ms  —  246 4  +  9K2 

 75  ,52  ±  a42  +  (432  +  (222  +  al2  xs  —  5x"  +  8m  4  —  3K2  +  3 

     5 74  a4  ab  ±  cr2^242  +  a2a32  +  a23  +  a23+  a2  2,c  —8K6  +  100 
            73  a:3m4  +  a2a3a4  +  a33  +  a3a22  +  a3  3a6  —91c  4  +  9N2  —  3 

 72  a2a3+  2  a22a,  +  a2a32  +  '14  4/c2-8a2 

        71  2a5±2a2a4+  cr32  5x  4  —1-2ic2  +  3
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 n  7'  ' f(7)the coefficients for ti,  t'1, ti,  s,,s',.. 
                         To get the values of the second column  wiz, 

  7'3 72                     we should use the second row of the matrix (33), 3 
7,2  73+71 

   7'1  72but we must not calculate the values by c again 
                    and the relation shown in Table 8 are available. 

 7,,'  73 
                     So it is very easy  also to get the values wt.:.after 

473'74+72 
  72'  73+  71we have determined the  n 7" f(7) 

 71' 72 values t2, ti',  Ii,  S1,  S1. 
               75 73 

 75' 74 The values of the third                          74"  74  +72 
 741  73+73column zo t 3 are also 

 5  73'  74+72                           5 73" 75  +  73  +71 
 72' 72+71 72" 74+72 revealed by the relations 

 71' 72 711'  7s shown in Table 9. As 

 _  

    Table 8. Table 9. the shape of the plate 

      Table 10. The coefficient  pij for the freely supperted plate when  m=n  =5, 
 wii=E02jh4fti(x,  .Y). 

  (11) 

  1 2  3 4 

                     

I  5 
  1 0.127567 0.104265 0.069655 0.041679 0.019436 

  2 0.104265 0.116362 0.092475 0,060764 0.029656 
  3 0.069655  0,092475  0.082655  0.058413 0.029643 

  4 0.041679 0.060764 0.058413 0.043360 0.022625 

  5  0.019436  0.029656  0.029643  0.022625  0.011999 

 (12) 
--..i 1 

i"--,1 1 2 3 4 5 

  1  0.104265  0.197222  0.145944 0.089091 0.041679 
  2  0.116362  0.196740  0.177126  0.122130  0.060764 

  3  0.092475  0.152310  0.150888  0.112298 0.058413 

  4 0.060764 0.100092 0.104124 0.081038 0.043360 

  5  0.029656  0.049079  0.052280  0.041642  0.022625 

   (13) 
-

:,,,,j-̀-,, ,1 2 3 4 5 

z 

  1 0.069655  0.145944  0.216658  0.145944 0.069655 

  2 0.092475 0.177126 0.226396 0.177126 0.092475 

  3 0.082655  0.150888 0.181953  0.150888  0.082655 

  4 0.058413  0.104124 0.122717 0.104124 0.058413 

  5 0.029643 0.052280 0.061078 0.052280 0.029643
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 (22  ) 

   1 2  I 3 4  I 5 
   1 0.116362 0.196740 0.177126 0.122130 0.060764 

   2 0.196740 0.349532 0.296832  0.201389 0.100092 

   3 0.177126 0.296832 0.281250 0.203168 0.104124 

   4 0.122130 0.201389 0.203168 0.153940 0.081038 
   5 0.060764 0.100092 0.104124 0.081038 0.043360 

   (23) 

 i.-..._ 1  I 2 3 4 5 
   1 0.092475 0.177126 0.226396 0.177126 0.092475 

   2  0.152310  0.296832  0.398611  0.296832  0.152310 
   3 0.150888 0.281250 0.349112 0.281250 0.150888 
   4  0.112298  0.203168  0.243031  0.203168  0.112298 
   5  0.058413 0.104124  0.122717  0.104124  0.058413 

   (33) 
 --''

i 1 2 3 4 5 

   1 0.082655 0.150888 0.181953 0.150888 0.082655 
   2 0.150888 0.281250 0.349112 0.281250  0.0150888 
   3 0.181953  0.349112  0.459689  0.349112  0.181953 
   4  0.150888  0.281250  0.349112 0.281250  0.0150888 
   5 0.082655 0.150888 0.181953 0.150888 0.082655 

is symmetrical, it is not necessary to calculate the values of the fourth and 

the fifth column and the results are shown by Table 10. 

   (ii) The square plate freely supported at two 
edges and fixed at other edges 

   As shown as Fig. 9, on the freely supported 

edge we must put 

 wo  =0,  w2=  -  w1,                                            o, ur, 

and on the fixed edge 

 wo=0.  wo=wi. 

Then the difference of the boundary conditions be- Fig. 9. 

tween the supported edge and the fixed edge is  2w1. If we replace  C11 by 

 C1J-2w15 and  Cos by  Co  1-2wo, in the case (i), we can get the  coefficients
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of  Cti in this case. 

 r6=x1°-40+6x6+90+36, 

 r5=x8-3tb+4r'+3,c2+15, r'5=r4,  7r6=2"3 

 ri  =  2,0  -  4e  +  60  ±  12v  ,  r'4=e+2c6-&4+18c2+24,  r"4=7-13 

 7-3=3e-3,0+9e-9,  1-'3=2e-1-40+60+12K,  r3H=K8+20+12x4 

 +60+27 

 r2=40-  12x,  r'2=3x6+8x4  -30-  12,  r"z=r'3 

 ri=5x4-120+3,  r'i=r2,  rHi=r3. 

By these relations we can get the following results (Table 11). 

   (iii) The fixed square plate 

 In the results of (ii) we should replace  Cal by  Ci1-  2w/1 and  Cab by  Cu 

     Table 11. The  Coefficients  oij for the plate freely supported at the two edges 
              and fixed at the other when m=n=5, 

 wti=-ISeih4fti(x, y). 
   (11) 

 ,:/ 1 2 3 4 5 

   1 0.088142 0.053154 0.024886 0.010479 0.003725 

   2 0.064658 0.058443 0.036463 0.018892 0.007684 

   3 0.037877 0.042813 0.031635 0.018511 0.008126 
   4 0.018809 0.023869 0.019330 0.012071 0.005511 

   5 0.006164 0.008153 0.006791 0.004301 0.001972 

   (12) 
 '-'i-4 , 1 2 3 4 5 

   1 0.053154  0.113028 0.063633 0.028611 0.010479 

   2 0.058443 0.101120 0.077335 0.044146 0.018892 

   3 0.042813 0.069512 0.061324  0.039761 0.018511 

   4 0.023869 0.038138 0.035940 0.024840 0.012071 
   5 0.008153  0.012956 0.012454 0.008763 0.004301 

   (13) 

 --- 1 2 3 4 5 

   1  I 0.024886 0.063633  0.116753 0.063633 0.024886 
   2 0.036463 0.077335 0.108405 0.077335 0.036463 

   3 0.031635 0.061324  0.077638 0.061324 0.031635 

   4 0.019330 0.035940 0.043650 0.035940 0.019330 

   5 0.006791 0.012454 0.014928 0.012454 0.006791
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   (21) 

   1  1 2  1 3 4 5 
   1 0.064658 0.058443 0.036463 0.018892  • 0.007684 

  2 0.152620 0.126708 0.079955 0.043209 0.018293 

   3 0.105471 0.111283  0,.080122 0.047177 0.020928 

   4 0.055507 0.067017 0.052811 0.032654 0.014902 

   5 0.018809 0.023869 0.019330 0.012071 0.005511 

   (22) 
 -'-
i-•\ 1  I 2  3 4 5 

   1 0.058443  0.101120 0.077335 0.044146 0.018892 
   2 0.126708 0.232575 0.169917 0.098248  0.043209 
   3 0.111283 0.185893 0.158460 0.101350 0.047177 
  4  0.067017  0.108318 0.099671  0.067713  0.032654 
   5 0.023869 0.038138 0.035940 0.024340 0.012071 

   (23) 

 i 1  1 2 3 4 5 

   1 0.036463 0.077335  0.108804 0.077335  0.036453 
   2  0.079955  0.169917  0.250868  0.169917  0.079955 
  3 0.080422 0.158460 0.206821  0.158460 0.080422 
  4 0.052811 0.099671 0.123220 0.099671 0.052811 
  5 0.019330 0.035940 0.043649 0.035940 0.019330 

   (31) 
 ---i--\ 1 2 3 4 5 

   1  0.037877  0.042813  0.031635  0.018511 0.008126 
  2 0.105471 0.111283 0.080422 0.047177 0.020928 

  3  0.174521  0.156995  0.106707 0.061259  0.027014 
  4 0.105471 0.111283 0.080422 0.047177 0.020928 

  5  0.037877 0.042813  0.031635  0.018511 0.008126 

   (32) 

  1 2 3 4 5 

  1  0.042813  0.069512  0.061324  0.039761 0.018511 
  2  0.111283  0.185893  0.158460  0.101350 0.047177 
  3  0.156995 0.281227 0.218253 0.133720 0.061259 
  4  0.111283  0.185893  0.158460  0.101350 0.047177 
  5  0.042813  0.069512  0.061324 0.039761  0.018511
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   (33) 

 t 1 2 3  I 4 5 
   1 0.031635 0.061324 0.077638 0.061324 0.031635 

   2 0.080422 0.158460 0.206821 0.158460 0.080422 
   3 0.106707 0.218253 0.308241  0.218253  0.106707 
   4  0.080422  0.158460  0.206821  0.158460  0.080422 
   5 0.031635  0,061324  0.077638 0.061324 0.031635 

 -  2wi5 and the coefficients of the fixed plate can be obtained . When we 

replace the factor  Cii and  Ci5 as above, each equation has 10 unknowns but 

according to the symmetric law we can transform the equations containing only 

3 unknowns and eliminate them. The results are shown by Table 12. 

          Table 12. The coefficients  stj for the  fixed plate when  m=n=5, 
 wij=EBtill'fii(x,  1)• 

   (11) 
  -------j   ------.1 2 3 4 5 

      1 0.069243 0.039208 0.016795 0.006033  0.001433 
   2 0.039208 0.035198  0.020687  0.009314 0.002634 
   3  0.016795  0.020687  0.015044  0.007786  0.002374 
   4  0.006033  0.009314  0.007786  0.004349  0.001333 
   5 0.001433 0.002634 0.002374  0.001333 0.000358 

   (12) 

\i  1 1 2 3 4 5 
   1 0.039208  0.101412  0.055575 0.022658 0.006033 

   2  0.035804 0.079089  0.060313  0,031158  0.009708 

   3 0.021404 0.046438 0.042246 0.024868 0.008291 

   4 0.009708 0.021923 0.022024 0.013832 0.004638 

   5 0.002634 0.006563 0.006958 0.004392  0.001333 

   (13) 

  1 2 3 4 5  1-\ ,,    

1  0.016795  0.055575  0.109240  0.055575  0.016795 

   2 0.021404 0.060588 0.092446 0.060588 0.021404 
   3 0.015940 0.042604 0.058856  0,042604 0.015940 

   4  0.008291  0.022229  0.029704  0.022229  0.008291 

   5 0.002374 0.006957 0.009357  0.006957 0.002374
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   (22) 
 - '-'-

1---4-._1 2 3I4 5 
   1 0.035197 0.079089 0.060587 0.031158 0.009315 

   2  0.079089  0.184960  0.131917  0.068453  0.021923 

   3 0.060587  0.131917 0.113621 0.065769 0.022229 

   4 0.031158 0.068453  0.065769  0.040591 0.013832 

   5  0.009315  0.021923  0.022229  0.013832 0.004348 

   (23) 
 ----..j 

 i....---\1     2 3 4 5 

   1 0.020687 0.060313 0.092446 0.060313 0.020687 

   2 0.046437 0.131917 0.213438  0.131917  0,046437 

   3 0.042603 0.113773 0.162095 0.113773 0.042603 
   4 0.024868 0.065769 0.089017 0.065769 0.024868 

   5  0.007786  0.022024  0.029704  0.022024  0.007786 

   (33) 

 / 1 2 3 4  I 5 
   1  1 0.015044 0.042245 0.058856 0.042245 0.015044 

   2  0.042245  0.113621  0.162095  0.113621 0.042245 
   3 0.058856 0.162095 0.252132 0.162095 0.058856 
   4 0.042245 0.113621 0.162095 0.113621 0.042245 
   5 0.015044 0.042245 0.058856 0.042245 0.015044 

   The values shown in above tables are considered to be influence numbers 

of the plate for deflections or they express the deflections of every points 

when at a point, a unit load is applied. We can get the deflections of the 

plate under any given load by these tables. 

   (iv) Above examples are all square plates, so an example of a rectangular 

plate when  m  =3,  n  =  4 should be shown. Since the procedures are the same 
as in the above cases, the results alone will be shown by Table 13. 

     Table 13. The coefficients  sti for the freely supported plate when  m=3,  n=4, 
 too=  Estilofti(x,  3), 

   (11) 

\,i1 2 3 4 
   2-\., 

  1  0.119198  0.089855  0.052242  0.023295 

  2  0.086979  0.087504  0.059292 0.028475 

  3 0.041864 0.048464 0.035782  0.017984
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   (12) 
 ---/- 1 2  I  3 4 

  1 0.089855 0.171440 0.113150 0.052242 

  2 0.087504 0.146271 0.115979 0.059292 

  3 0.048464 0.077646 0.066448 0.035782 

 (21) 
 '---
1-\  1 2 3 4 

  1 0.086979 0.087504 0.059292 0.028475 
  2 0.161062 0.138319 0.088025 0.041279 

  3  0.086979  0.087504  0.059292 0.028475 

   (22) 
 ----/-":"-1, 1 2 3 4 

  1  0.087504  0.146271  0.115978  0.059292 
  2  0.138319  0.249086  0.179598  0.088025 
  3 0.087504 0.146271 0.115978 0.059292 

                 4. Eigenvalue problems 

   The principles of the calculations are mentioned by examples. 

   (1) A differential equation related to the problems of the transverse vibra-

tion of a stretched string is 

                           d2w -1-2w =0 .                          dx2 

By the difference method the above equation is 

 (2  -  AL/2)wo-  w1-  w3=  0. 

When we take 3 points in the string as Fig. 10 and assume  w  =0 at the ends, 

from the formula (26), 

 wil  I  (11 (2)  (3)  1 
      a4  W2  I  =0, i 

 ,W3)  h- H 
or  a4=  O.Fig. 10. 

 a4 is expressed by in Table 1 and then
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 c3  —  =O. 

We must take as  (2—  2h2) in this case and the above equation is 

 (2  —2h2){(2  —  2h2)  —  2}=0, 

or  (2  —2h2)(2-42h2+22114)= 0. 

Then  2h2  =  2,  2±1%2. 

These are the eigenvalues approximated by the difference method. 

   When we take 5 points in the string, we may put 

 a6=0 

From Table 1,  e-40+3,c=0 

Substituting =  2-2h2 into this  equation 

 (2  —2112){(2  —2h2)2-1}{(2  —2h2)2—  3}=0. 

The roots of this equation are 

 2h2  =1, 2, 3,  2±1/3  . 

The lowest value of  2h2 is  2-1/  3  and if we take the length of the string as 

1, then  h  =  1/6. So 

 =  2  —  3  =  9.65.  (1/6)2 

This is nearly equal to the correct value  7r2. When the eigenvalues have been 

determined, it is very easy to get the corresponding modes. 

   (2) The next example is on the vibration of a stretched mambrane. 
The differential equation in this case is 

 V2w-F2.w  =O. 

If we take  2  x7 points in a rectangular membrane shown as Fig. 11, and  w  = 

 411)  4(12)  413)  414)  415)  0)  417)  

 •21)  422)  4123)  424)  42S)  J25)  427)  

                                  Fig.  11.
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 0 at the boundary, 

                           m=2, n=7. 

Then from Table 1, 

 ct8=,c7—  +11,ka  —41C  =  0, 

 Or  /KO-2)(0-40+2)=0. 

Because of  m=2, the values of are two kinds, one is  3-2h2 and another 

is  5-21/2 We put these  values into the above equation and get 

 2h2=3,  3±1/  2  ±i/  2 when  ujO,  i7j=0 

 2h2=5,  5±-1/  2, 5±-1/ 2 ±-1/1' when  ul=  0,  /7,0. 

                      5. Conclusion 

   The author has developed a method to solve the partial differential equa-

tion by the difference method and shown some examples. Although the method 

is not yet sufficiently considered or studied in detail and there are some points 

to be corrected, it is  believed that the method can be applied to many problems 

in engineering. The tables in this paper will be available to calculate the 

functions in practice. To make this method more useful, it is necessary to 

prepare more tables. 
   I wish to thank Prof. R. Tanabashi and Prof. Y. Yokoo, of the Disaster 

Prevention Research Insti., Kyoto University for information throughout this 

paper.



                 Publications of the Disaster Prevention Research 
                                 Institute 

                The Disaster Prevention Research Institute publishes reports of the 
             research results in the form of bulletins. Publications not out of print may 

             be obtained free of charge upon request to the Director, Disaster Prevention 
             Research Institute, Kyoto University, Kyoto, Japan. 

 Bulletins  : 

                    No. 1  On the Propagation of Flood Waves by Shoitiro Hayami, 1951. 
                    No. 2 On the Effect of Sand Storm in Controlling the Mouth of the 

                        Kiku River by Tojiro Ishihara and Yuichi  Iwagaki, 1952. 
                    No. 3 Observation of Tidal Strain of the Earth (Part I) by Kenzo Sassa, 

                         Izuo Ozawa and Soji Yoshikawa. And Observation of Tidal Strain 
                          of the Earth by the Extensometer (Part  II) by  Izuo Ozawa, 1952. 

                     No. 4 Earthquake Damages and Elastic Properties of the Ground by Ryo 
                         Tanabashi and Hatsuo Ishizaki, 1953. 

                     No. 5 Some Studies on Beach Erosions by Shoitiro Hayami, Tojiro 
                        Ishihara and Yuichi Iwagaki, 1953. 

                     No. 6 Study on Some Phenomena Foretelling the Occurrence of Destruc-
                        tive Earthquakes by Eiichi Nishimura, 1953. 

                     No. 7 Vibration Problems of Skyscraper. Destructive Element of Seismic 
                         Waves for Structures by Ryo Tanabashi, Takuzi Kobori and Kiyoshi 
                           Kaneta, 1954. 

                     No. 8 Studies on the Failure and the Settlement of Foundations by  Sakurii 
                           Murayama, 1954. 

                     No. 9 Experimental Studies on Meteorological Tsunamis Traveling up the 
                         Rivers and Canals in Osaka City by Shoitiro Hayami, Katsumasa 

                        Yano, Shohei Adachi and Hideaki Kunishi, 1955. 
                     No.10 Fundamental Studies on the Runoff Analysis by Characteristics by 

                        Yuichi  Iwagaki, 1955. 
                      No.11 Fundamental Considerations on the Earthquake Resistant Properties 

                         of the Earth Dam by Motohiro Hatanaka, 1955. 
                     No.12 The Effect of the Moisture Content on the Strength of an  Al. 

                        luvial Clay by  Sakur6 Murayama,  Koichi Akai and  T6ru Shibata, 1955. 
                     No.13 On Phenomena Forerunning  Earthquakes by Kenzo Sassa and Eiichi 
                         Nishimura, 1956. 

                     No.14 A Theoretical Study on Differential Settlements of Structures by 
                           Yoshitsura Yokoo and Kunio Yamagata, 1956. 

                     No.15 Study on Elastic Strain of the Ground in Earth Tides by Izuo Ozawa, 
                        1957. 

                     No.16 Consideration on the Mechanism of Structural Cracking of Reinforced 
                         Concrete Buildings due to Concrete Shrinkage by Yoshitsura Yokoo 

                           and S. Tsunoda. 1957. 
                     No.17 On the Stress Analysis and the Stability Computation of Earth Em-

                        bankments by  KOichi Akai, 1957. 
                      No.18. On the Numerical Solutions of  Harmonic,  Biharmonic and Similar 

                         Equations by the Difference Method not Through Successive Approxima-
                         tions by Hatsuo Ishizaki. 1957. 

                               Bulletin No. 18 Published August, 1957 

 fib'  l  32  $  8  Fl  10  Ei  Ep  Till 

 WEI  32  S  8  n  15  El 
                          ANI ita Aft  Y

T  45 IX -g )c KA X 9t f"R 
 FP  OU  45  Of  tt  E 

 -zp4ATH,)11[NA 
 Fri  NO  PA  4t  FP  811  f*




