
DISASTER PREVENTION RESEARCH INSTITUTE 

BULLETIN No. 52 FEBRUARY, 1962 

CONSIDERATIONS ON THE VIBRATIONAL 

     BEHAVIORS OF EARTH DAMS 

 BY 

 HATSUO ISHIZAKI AND NAOTAKA HATAKEYAMA 

     KYOTO UNIVERSITY, KYOTO, JAPAN



                                                      1 

DISASTER PREVENTION RESEARCH INSTITUTE 

           KYOTO  UNIVERSITY 

 BULLETINS 

Bulletin No. 52 February, 1962 

     Considerations on the Vibrational Behaviors 

                of Earth Dams 

                       By 

             Hatsuo  ISHIZAKI and Naotaka HATAKEYAMA



 2 
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                of Earth Dams 

                       By 

             Hatsuo ISHIZAKI and Naotaka HATAKEYAMA 

                       Synopsis 

   Hitherto the vibrations of earth dams have been discussed as to shear-

ing ones. But according to the results of numerical calculations by the finite 

difference method on the fundamental dam section as a two-dimensional 

body, the vibration should be considered to be a two-dimensional one with 

vertical as well as horizontal displacements. The theoretical two-dimension-

al vibration is compared with the shearing one in steady and transitional 

states. 

                      Introduction 

   Earth dams, embankments or levees, with fundamental triangle sections, 

have the bases much longer than the heights. When the earth dam is disturb-

ed in the horizontal direction at the base, the vibrational distortions due 

to bending are very small, so that the problems of earth dams have been 

treated as to the shearing vibration. But as the results of field experi-

ments, model tests and some theoretical  considerations,
, on which some pa-

pers were already published by the authors (1957), the vibration should be 
considered to be a two-dimensional one, taking vertical as well as horizont -
al displacements into account. In addition, the test of model dams, which 
were made of mixed cement, wheat flour and machine oil and fixed on the 

shaking table, showed the fact that the first cracks were developed per -

pendicular to the dam slope near the bases of dams and that the second 
cracks followed the first and so on, until the dam body was broken down. 
The cracks in early stages would be  caused by the tensile stresses near the 

surface of the dam. 

   In this paper the earth dam is supposed to be an elastic body on the
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rigid ground and to be applied by horizontal disturbance at its base, and 

some numerical calculations are made by the finite difference method on 

the fundamental dam section as a two-dimensional body. The displacements 

and the principal stresses of points in the dam body are derived from these 

calculations. From these results, the horizontal displacements and the shear-

ing stresses of the fundamental dam section as a two-dimensional body are 

calculated and they are compared with those of the shearing vibration in 

steady and transitional states. 

  Differential Equations of Motion and Finite Difference 

    Equations for the Symmetrical Wedge-Shaped Dam 

1. Differential equations 

   The assumed section of the dam which is symmetrical and uniform in 

                              the longitudinal direction is treated. 

                            We apply the finite difference method 

 4011 to analyse the vibrations of dams with 
 6' • 

                            the slopes of 1  : 1 and  1  : 2. Taking  co-

                              ordinates shown in  Fig. 1, u and v are 

 0 the components of the elastic  displace-
           B i

n the x and y directions re-
    Fig. 1. Coordinate system. 

                              spectively, so that the equations of 

motion of the dam are expressed by the following ones, 

       pa62u62u62u 62v              te—(2+2p)ax, +p  +(2+,u)  exay  (1) 
        62v62v                    o-v62u  

           p at, —  (2+2p)63,2+pax,+(k+p) axay  (2) 

where 2 and p are Lame's constants and p is the density of the dam. The 

stress-components are expressed as follows, 

                         6v \au  
             a.=A( 6u)+2p  ax+ 8yax 

                2( av  )+2pay          ax8y ay  (3) 

                 Teti=( au ± av                    ayax 

The solution of Eqs. (1) and (2) must be satisfied by the following con-

ditions
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   (1) The normal stress and the shearing stress should vanish on the 

free surface of the dam at all time, and therefore, in the case of the slope 

of 1  : 1, boundary conditions are expressed by the  following equations  : 

            (2+11)(  au Ov )=±..( au +  8v   )  Ox ayIP\ayax 
        auav (4) 

 8x-ay 
In the case of the slope of  1  : 2, it follows  : 

      52(  au  Ov1 au +2 au'+4 8v +2  av   ax ay  / ±2,O x ayayax  1 

    4( 8uOv au ±  8v (5)  ax  ay /±3\( 8yax 

   (2) The transversal wave, which is expressed  u=A sin  pt, should act 
at the base of the dam. 

2. Finite difference equations 
 '!he first step in the solution of the differential equation is the replace-

ment of the differential equations by a set of finite difference approxima-
tions. The dam is divided into constant spacings h and k in the x and y 
directions respectively. Any point in the dam denotes a typical node 0 at 
any time of t, and  u and v are the displacements in the x and y directions. 

    1 7 hEight surrounding nodes 1, 2, 3, 7,  6
..2  •  5                             8 suffixes will be used to indicate values  k 1111of the variables at correspondingly 

 •/    z numbered nodes. And the displace-

                             ments of node 0 at the time of t-s- and  k 

                                t+ r are  uz,  v1 and ULF,  v11 as shown 

 •  

  ; 8in Fig. 2. Each partial differential 
     Fig. 2. Point  pattern.                             t erms of Eqs. (1) and (2) are expressed 

approximately by Taylor's series. From Eqs . (1) and (2) the components 
of the displacement after one time interval  r will be expressed by the fol -
lowing finite difference equations in two cases respectively . In the case of 
the interval for the finite difference h=k , it follows  : 

    Zeit =2{1- C+31(r )2,               hJ ph)2\u1+ us) 
           +  )(-h)2  (us+  u4)(vs-vs + v7 - vs)           4ph(6)
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 v„=  2{1- (2+p312)()2}vo- vi-1-(2±P21(h)2(v21-v4) 
          +(-1PLX-r—h4p)h2 (vi+v3)-1-(2±ii)(h)2 (U5U6 +u7 - u8) (7) 

In the case of the interval for the finite difference h=2k, it  follows  : 

    u„=2{1-(24pP)( ;r}uo-urd-(2±4p2P)( kr)2(u7+u3) 
          +(:9X )2(u2-Fu4)+(28+,011)( rk  (V5  V6  +  V7  -  V8)  (8) 

    v„=2{1 -(42+91()2}vo-v/1-(1L)(—r 12(v2+v4) 
     4pk P k 

           +(41LpX kr)2(V1 + V3) +(111(÷ (116 Ug +U7 - u8) (9) 
Similarly, boundary conditions on the free surface of the dam are expressed 

by the following equations from Eqs. (4) and (5) in two cases respectively. 

 u4  +vi  -  v  3=  ±2{  (2+  it)/P}(u7  -  us) 
 (10)                      = ±2{(2-1-P)/P)(v2- v4) - 

or 

 u6-1-u6-u7-u8d-v6  -  vs-  v7-Fv8 =  ±2{  (2+  it)/  ti}(us  -  us -  u7+  us) } 
 = ±2{ (2+ ft)/p)-(vs + vs - v7- vs)j 

 (11) 
In the case of h=2k, it follows : 

    us +2(v2 - v4) =522p                      {zii-u3+8(v2 - v4) +4(us - u4) +2(v1- vs)}1 
 u1-  u3-  2(v2-  v4)  =  {2  (us  -  u4)  +  (vi  -  vs)} 

 (12) 

 Or 

 U6  -  U6  -  u7+  u81-2(v5+  v6  -v7  -  v8) 

 =+2p {5u6+3u6-5u7- 3us +2(5vs +v6 - 5v7- 31;0}           52 

 (13) 
 us  -  us  -  u7+us-  2(v6+  vs  -  v7-  vs) 

 3  =  ±-
4{2(us  +us  -  u7-  us)  +  (vs  -  vs  -  v7+  vs)  } 

We can perform the numerical calculations on the vibrations of  the  dam 

by using above Eqs. (6),  (7), (10), (11), or (8), (9), (12), (13) step by 

step at every short time interval.
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                 Numerical Calculations 

   We assume that the maximum amplitude of the transversal wave is 1 

and that longitudinal and transversal wave velocities are  VV  =200  m/s and 

 178=100  m/s respectively. Therefore, Poisson's ratio of the dam is 1/3. 

Numerical calculations are made in the following two cases. 

   (1) We suppose that the height of the dam is  H=10 m, the width of 

its bottom B=20 m, the interval for the finite difference method h=k=2 m 

                                                           0.9.90           7=029""t =  167- o U)              (7--0.007.5")  ArAy000  ig19 

        A__aroWA               _AN/48S 
                                                    43,0/7027                                                        038an 

     Ariiriffint 0/53riiri2tiC 
 =  0 

 z'=U.  

t  =22  t  043  a (2) 

                            011, 
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              4-,__ 

                              (711111ra                      0875g2 
        4111.1fillarriF612\3q 670 

     41-mirommi0697 
 09_23                                             

z •  =  0 

                                  -5687             t=3? r 0 100..01,758;  (3) 

                                         2860 -2892 
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t  u=0 
 u=0 
   Fig. 3. Displacements due to the two-dimensional vibration by th

e  external wave 
     period 0.24 sec.
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 t=  2  dr  (5, 
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                                     Fig. 4-2. 

    Fig. 4. Displacements due to the two-dimensional vibration by the external wave 

      periad 0.30  sec-..
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• and the periods of the incidental wave acting at the base  T=  0.24", 0.30" 

and 0.42" Dividing one period of  T=  0.24", 0.30" and 0.42" into thirty, 

forty and sixty parts respectively, corresponding one time intervals are 

 0.0075", 0.0075" and 0.0070" Some results of calculations are shown in 

Figs. 3, 4 and 5. 

    (2) We suppose that the height of the dam is  H=10 m, the width of 
its bottom  B=40  m, the interval for the wave acting at the base  T=  0.24" 

Dividing one period into thirty-two parts, one time interval is  0.0075", 

 T=042"  t 0477 
 1)  

=  0070  ')  0783 

                                                6 
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    Fig. 5. Displacements due to the two-dimensional vibration by the external wave 

      period 0.42 sec.
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   Fig. 6. Displacements due to the two-dimensional vibration by the external wave 

     period 0.24 sec. 

Some results of calculations are shown in  Fig . 6. 

             Considerations on Displacements 

   Several examples of numerical calculations confirm th
e following con-

siderations.
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   (1) It is clear that the incidental wave propagates in the dam with 

the passage of time and that  the , dam deforms gradually. 

   (2) All displacements at any points of the dam are almost horizontal 

until the incidental wave arrives at the top of the dam. But, with the 

elapse of time, the vertical displacement gradually increases after the wave 

had arrived at the top of the dam. 

   (3) In the center line of the symmetrical dam, the displacements are 

always horizontal. In the center of the dam, therefore, the vibration re-

sembles the shearing one. 

   (4) As the wave propagates in the dam from the base to the top, the 

dam begins to expand and contract on the right and left sides of the lower 

parts of the dam respectively. But after a while, the dam begins to con-
tract and expand on the right and left sides of the lower parts of the dam. 

Such a condition proceeds upward until the slopes of the right and left 

sides are entirely contracted and expanded. Next, at the top, the right 

side of the dam is expanded and the left side is contracted. And in one 

period, the right and left sides are entirely expanded and contracted res-

pectively. The vibrational characteristics of the gentle slope dam have 

quite the same tendency as the steep slope dam. 

   (5) The inner parts as well as the surface of the dam are expanded 

and contracted. 

   (6) The vibration which accompanies the expansion and contraction 

of the dam body is entirely different from the shearing one as explained 

 above. 

            Calculations of Principal Stresses 

   The displacements of any points of the dam at any time have been 

derived from the above-mentioned calculations, so the principal stress and 

its direction may be easily calculated. Maximum and minimum stresses 

may be expressed approximately by the following relationships  : 

   In the case of the interval for 

mi.2A+np^..the finite difference h=k, it  follows  ; 

                 , 

 amax=u1—U3 ± V2114)± P(ui — us — v2 + v4)2 + (u2 — u4 +— vs)                      2h 

 (14) 

In the case of the interval for the finite difference h=2k, it follows  ;
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  Fig. 7. Principal stress distributions due to the two-dimensional vibration by the 

    external wave period 0.24 sec.
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   Fig. 8. Principal stress distributions due to the two-dimensional vibration by the 
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     2+p   O'maz=U3+2(V2— V4)} 
 maw4k 

                         s— 2(1)2 — v4))2 +{2(usv1— vs}2      4k— u+(15) 

The angle of inclination of the principal stress may be expressed similarly . 
In the case of  h=k, it follows 

                                     U2— U4+111— V3        t an 20 = (16) 
 u; —  U3  —  V2+  V4 

In the case of  11=2k, it follows ; 

                             2(u2 —+vi — vs                     tan 20= 
                                  ui—us-2(v2—v4)  (17) 

           Considerations on Principal Stresses 

   Some results of the calculations are shown in Figs. 7, 8, 9 and 10. 
The states of the expansion and contraction during the vibration are clear-

ly shown by those figures. Several examples of the numerical calculations 

have led to the following considerations. 

   (1) On the surface of the dam, maximum principal stresses grow along 
the dam slopes. In the inner parts of the dam, the directions of the princi-

pal stresses are parallel to the surface slope, though the angles of the 

principal stresses are somewhat varied. 
   (2) As the wave propagates in the dam from the base, at first the ten-

sion grows on one side of the lower surface. With passage of time, the 

position of the maximum tensile stress moves upward and downward. 
   (3) By the fact that the tension and compression grow at the surface 

and the inner parts of the dam the vibration of the dam should be con-

sidered to be a two-dimensional one with vertical as well as horizontal dis-

placements, so that the treatment of the dam by the shearing vibration 
would be imperfect. 

   (4) It is an obvious fact that the earth structures are easily cracked 
by tension. Earth dams when subjected to the seismic disturbance may 

have the cracks perpendicular to the slope surface by tension. As afore-

said, the results of the breaking tests of the model dams indicated the fact 

that the cracks grow in the slope at the right angle to the surface. How-

ever, the above-mentioned results are obtained from the calculations on the
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assumption of the elastic body. The response of such structures to strong 

gound motions would give the non-elastic behavior, so the analytical treat-

ments of such problems would be extremely difficult. 

          Considerations on Shearing Vibrations 

   The problems of the vibration of earth dams have been treated as those 

of the  shearing  'vibration, which has been mainly treated in steady state. 

The shearing vibration merely takes into consideration the horizontal de-

formation due to shear, so it is different from the above-mentioned two-

dimensional vibration. However, we will try to compare the horizontal 

displacement and shearing stress in the dam as the two-dimensional elastic 

body with those of the shearing vibration in steady and transitional states. 

1. The differential equation of motion and finite difference equation 

   Referring to coordinate shown in Fig. 11, u is the component of the 

 aelastic displacement in the x direction and p 

AILis the density of the dam body. Assuming that                       the dam section is symmetrical and that the 

 8width of the dam in the x direction changes in 
                     proportion to dam height, equation of motion 

Fig. 11. Coordinate system. may be expressed as  follows  : 

            62u=_,u1_ay(,,au)• (18)                 8E2pyVay 

The boundary conditions for the Eq. (18) are given by8
y0 at  y=0 and 

u=Asinpt at y=H. 

   (A) In the case of steady state, the solution which satisfies Eq. (18) 

is obtained as follows  : 

           u—A•J`4Y)  •sin  pt  (19) 
                   ,jo(  P 

where  C-=(u/p)1/2  =  transversal wave velocity. 

   (B) In the case of transitional state, the solution of Eq. (18) is made 
by the calculus for finite differences taking account of time . The dam 
body is divided into the constant spacing h in the y direction . The finite 
difference equation direvied from the Eq . (18) by considering the point
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pattern illustrated in Fig. 12 is                                                                   ._r 
            r2C21, 

                h2 2i142.--u1) 

                 P 0 >        ++742 —2u0)1+2u0 (20) /0ff 
where  i is the number of division from the top 

of the dam.  2 

    At  the top of the dam the difference equa- Fig. 12. Point pattern. 

tion is 

                        4r2C2  u
il  /12  (u2—uo)-F2u0  —  tcr  (21) 

We can perform the numerical calculations on the vibration of earth dams 

by the above equations step by step. 

2. Numerical calculations 

   It is supposed that the height of the dam is  H=10 m, the velocity of 

the transversal wave of the dam is  V8=100 m/s, maximum amplitude of the 

transversal wave is 1 and the fundamental period of the dam in elastic range 

 is 0.261". In transitional state, the interval for finite difference method is 

taken to be  h=H/10=  1 m. One period of incidental wave at  T=  0.24", 

 0.30" and 0.42" is divided into thirty, forty and sixy parts respectively. 

The calculations are performed about one period. 

3. Comparison between the two-dimensional vibration and the 

   shearing one of earth dams 

   We compare the horizontal displacement and shearing stress of the dam 

as the two-dimensional elastic body with those of the shearing vibration in 

steady and transitional states. 

(A) Comparison of vibrations taking the elapse of time into consideration 

   One example of the displacement and shearing stress distributions of 

the two-dimensional and shearing vibrations in transitional state is shown 

in Fig. 13. From this figure, we have obtained some considerations as fol-

lows. 

   (a) On the two-dimensional vibration, the displacement and stress dis-
tributions at the surface of the dam are fairly different from those in the 

center of the dam.
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   Fig. 13. Displacements and shearing stress distributions in the horizontal direction. 

   (b) When the displacement becomes large, the displacement distribu-
tions show generally to be regular in the case of the two-dimensional  vibra- 

tion of the dam with the steep slopes and they show the shape to be curved 

inside at the top of the dam if the slopes are gentle. The distributions of 

the shearing vibration are analogous to those of the two-dimensional vibra-

tion of the dam with the gentle slopes. 

(B) Comparison of vibrations irrespective of time 

   In order that three vibrations may be generally compared with each 

other, the distributions of the horizontal displacement when the displace-

ment at the top of the dam is maximum and those of the maximum stress 

which shows the maximum value irrespective of time, are considered about 

during one period. 

   (a) Distributions of horizontal displacement : The distributions of the 

horizontal displacement are shown in Fig. 14. The modes of vibrations are 

compared as follows ; (1) On the two-dimensional vibration , the mode of 
the slope surface of the dam is like that of the center of the dam . (2)  In 
the case of  T=0.30", the modes of the three vibrations make no great 

difference. (3) In the case of  T=0 .24", the displacements make great



                                                      21 

 T  =  024° 7=030' T=042" 

.-.  

 

1  I  I  ilI  ,.." 

                     i  i 17' 

    I,/ ' .1 • ,1/ 
  C'/1'    o ,/,/i                     - -,. 

                              1'7 

        I /.                        1;7 

 ,11/ 
..,  

 0  2  4  0  1  2  0  05  1 
 LLJ  L_LJ  LI _J 

         Two-dimensionaltSurface-- Two-dimensionolfSurface----  Shearing  !Steady  ---  -
          vibration,  1,  1  Center-----  vibration. 1:2 (Center- vibration(7i-ansitional — 

   Fig. 14. Displacements in the horizontal direction, caused by the maximum dis-
     placement at the top of the dam. 

difference between the shearing vibration in steady state and the other 

two. (4) In the case of  T=  0.42", the displacements are generally small 

and those of the shearing vibration in steady state are much smaller than 

the other two. 

   (b) Distributions maximum shearing stresses : The distributions of 

the maximum shearing  T=024"  T=0.30"  T=042 

stresses are shown in Fig. 

15. From this figure,  ;\- ,,,\ 

           ,il they are compared as fol-  \
,,-_-- 1 \\"\ )1, 

                                                            .,,\:

t lows ; (1) In the case of'-'s /‘ /• t  i                 \ :. 
      : 11 the incidental wave period

i/iIl',j          i!.I' ,  T=0 .24", on the two-/        ,.

/i                 ,zi//;.I!'     viv dimensional vibration, the ,!,f"//7  
stress at the surface of  02  3  I                                

I  .  . I  . I 
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The stress of the shar vibrationTransitional  

ing vibration in steady Fig. 15.  Maximum shearing stress distributions. 

state is much greater than that in transitional state and the maximum stress 

appears roughly at the same position. The stress at the bottom in transi-

tional state is less than that in steady state. (2) In the case of  T=0.30", 

the stress of the shearing vibration in steady state is nearly the same as
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that in  transitional  state, but at the upper part of the dam, the stress in 

transitional state is larger than that in steady state. The stress distribu-

tion of this vibration in transitional state is fairly uniform in the direction 

of the height. On the two-dimensional vibration, distribution of it is like 

the case of the shearing vibration in steady state and the stress at the bot-

tom of the dam is small. (3) In the case of  T=0.42", the stress of the 

shearing vibration in transitional state is larger than that in steady state. 

The stress distribution of it in transitional state is uniform in the direction 

of the height. The stress distribution of the two-dimensional vibration is 

like the shearing vibration in transitional state. 

4. Considerations 

   From the above-mentioned results, we are aware that the shearing vi-

bration in transitional state is more similar to the two-dimensional vibration 

than to the shearing vibration  in steady state, as the two-dimensional one 

is also treated in transitional state. And yet, these vibrations are fairly 

different, though we have not taken the soil damping into account in these 

calculations. But setting the case that the vibration is in steady state, 

 when the incidental wave period is confirmed to the fundamental period of 

the dam, the stress and the displacement of the dam are maximum. In 

this calculation, the fundamental period of the dam is 0.26" for the shear-

ing vibration, which is nearer to the incidental wave period  0.24" As 

many natural periods grow at the two-dimensional vibration, it is difficult 

to find out the natural period in this numerical calculation. However, in 
the case of the incidental external wave period  T=  0.24", there is the 

greatest difference between the two-dimensional vibration and the shearing 
one. We have compared the two  vibratiQris in above-mentioned calculations, 

but it is clearly shown from the results of the numerical calculation of the 

two-dimensional vibration that the dam body expands  and contracts during 

the vibration. So the treatment of the shearing vibration would be  im-

perfect. 

                       Summary 

   We have considered the vibrational behaviors of earth dams, using 
numerical calculations by the finite difference method on the fundamental 

dam section treated as the two-dimensional body. Hitherto, the vibration
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of earth structures which have the fundamental triangle  section has been 

discussed as to the shearing  vibration; so we have compared the two-

dimensional vibration in transitional state with the shearing vibrations in 

steady and transitional states. From the numerical calculations developed 

above, we have made the following basic considerations. 

   (1) Since tension and compression are  caused, at the surface and inner 

parts of the dam body, the vibration of the dam body should be consider-
ed as the two-dimensional one with vertical as well as horizontal displace-

ments. 

   (2) Comparing the distributions of the horizontal displacements and 

stresses of these vibrations, the two-dimensional vibration differs materially 

from the shearing vibration. 

   From the above-mentioned considerations, it would  he imperfect to 

treat the vibration of earth dams as the shearing one. However, in this 

calculation, we assume the earth dam to be an elastic body on the absolute-

ly rigid base and we have not taken the soil damping into consideration. 

Earth-dams, embankments or levees are constructed on the comparatively 

soft ground, namely alluvium. The complicated characteristics of soils, 

which are affected by density, cohesion, angle of internal friction, pore 

pressure and deformation of soil particles, should be taken into considera-
tion on the vibration of earth structures. So we are going to have com-

plicated problems to be solved as to the vibrational behaviors of earth dams. 
   Finally, the writers wish to thank Mr. Masami Seriu for his work in 

the numerical calculation. 
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