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Abstract 

 

The increase in customer’s complaints about chlorinous odor in drinking water has led 

water utilities to seek methods to improve the water quality. A promising treatment 

process known for musty odor removal is ozonation. During ozonation, ozone (O3) 

and its decomposition product (•OH) are utilized to oxidize micropollutants prior to 

chlorination. Ozonation, however, produces bromate ion, a probable carcinogen in 

humans. The simplest way to elevate •OH and minimize bromate ion at the same time 

is an advanced oxidation process (AOP). This study attempted simultaneous control of 

chlorinous odor and bromate ion in drinking water treated by ozonation and AOP 

(O3/H2O2 process) with operation in batch and continuous modes. The contribution of 

trichloramine (NCl3, a suspected odor compound causing chlorinous odor in drinking 

water) to chlorinous odor in drinking water was evaluated using the triangle sensory 

test and headspace GC-MS analysis. Furthermore, to effectively formulate treatment 

process for chlorinous odor control, aquatic organic matter in Yodo River was 

characterized using a fractionation technique in order to seek the major contributors to 

chlorinous odor. 

 

To evaluate the effectiveness of ozonation and AOP in controlling chlorinous odor, a 

bench-scale ozonation reactor was operated in batch mode under various reaction 

conditions. The strength of chlorinous odor, indicated by “Threshold Odor Number 

(TON)”, decreased by approximately 50% for the water treated by ozonation and AOP 

compared to chlorination alone. Changes in the concentrations of ammonium ion and 

bromide ion, as well as pH, had no effects on odor strength reduction. Increasing the 

O3 dose to extremely high levels led to slight improvement of chlorinous odor 

removal, while typical O3 doses (1-2 mg/L) seemed to have no effect on chlorinous 

odor reduction. Trichloramine was minor odor compound in chlorinous odor. 

 

The effect of ozonation and AOP on chlorinous odor removal in a more practical 

setup was evaluated with an ozone column contactor. Results of chlorinous odor 

removal obtained using this continuous reactor quantitatively corresponded with those 



obtained using the bench-scale reactor, indicating that differences in operation mode 

have no effect on chlorinous odor reduction. Although trichloramine was a minor 

odorous compound in water treated by conventional treatment processes, 

trichloramine can cause a limitation of odor control by ozonation and AOP (note that 

ammonium ion, which is a trichloramine precursor, cannot be oxidized by O3 and 

•OH). The lowest odor strength of source water treated by ozonation and AOP was 

approximately 30. The molar ratio of H2O2 to O3 at 0.5 (AOP0.5) was found to be 

effective for the formation of •OH. Furthermore, it was observed that the oxidation of 

organic compounds in natural river water leads to the formation of ammonium ion. 

Based on the musty odor removal by ozoantion and AOP, AOP0.5 with an O3 dose of 

1 mg/L should be utilized for simultaneous control of musty odor and bromate ion 

below their Japanese standard values when the concentrations of musty-odor 

compounds (e.g., geosmin and 2-methylisoborneol (2-MIB)) in source water increase 

to 77 ng/L and 40 ng/L for geosmin and 2-MIB, respectively. When the 

concentrations of geosmin and 2-MIB are higher than 125 ng/L and 83 ng/L, 

respectively, AOP0.5 with higher O3 dose is necessary. 

 

Source water treated by rapid sand filtration (RSF) mainly consisted of hydrophobic 

acid (HoA), hydrophilic acid (HiA), and transphilic (Trs), while in the water treated 

by ozonation, hydrophilic fractions (HiA, hydrophilic neutral (HiN), and Trs) were 

dominant. Base fraction (Bas), including hydrophilic base (HiB) and hydrophobic 

base (HoB) fractions, was the major fraction causing chlorinous odor in water treated 

by RSF. Chlorinous odor in ozonated water was mainly produced during the 

chlorination of HiA and HiN fractions. With the fact that ozonation followed by 

granular activated carbon (GAC) or biological activated carbon (BAC) is normally 

used, and trichloramine formation from ammonium ion in ozonated water may not be 

negligible. Thus, the treatment of ion exchange after ozonation/AOP and GAC is 

recommended in order to eliminate the remaining odor precursors such as ammonium 

ion. 
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Chapter 1 

 

Introduction 

 

 

1.1 Background 

 

Drinking water treatment requires the removal of numerous compounds and 

microorganisms from source water. In order to produce safe drinking water, effective 

disinfection is an important unit operation. Chlorine is widely used for the inactivation 

of harmful microorganisms before the water is supplied to the public. Residual 

chlorine is needed in water distribution systems to protect drinking water from the 

regrowth of pathogens. However, a high dose of chlorine can lead to customer’s 

complaints about the taste and smell of the tap water, and raise the risk of undesired 

disinfection byproduct (DBP) formation (Krasner and Barrett, 1984; Nikolaou et al., 

1999). 

 

Organoleptic properties of drinking water are greatly related to customer’s satisfaction 

on drinking water quality. Because people naturally judge that odor-containing water 

is unsafe for consumption, bad taste and odor can prompt complaints and loss of 

consumer confidence on drinking water quality. Accordingly, the American Water 

Works Association in 1996 conducted a survey with in the drinking water industry 

and found that approximately 40% of water treatment plants had received customer 

complaints on the taste and odor of their water (Suffet et al., 1996). Such complaints 

have resulted in water treatment plants in the US spending on average more than 4% 

of the total budgets on addressing the organoleptic problems. A similar situation also 

happened in France (Welte and Montiel, 1999). People have complained about the 

drinking water quality due to the presence of an odor, even when the water had been 

produced using advanced treatment technology (e.g., nanofiltration). It has led to 

growing attentions on the identity of precursors of odor compounds for several years 
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(Freuze et al., 2004; Freuze et al., 2005; Freuze et al., 2006). Furthermore, Bhandari 

and Grant (2007) reported that the level of customer satisfaction with water quality 

influenced the estimation of willingness to pay for the operation and maintenance of 

water treatment plant. Thus, organoleptic issue has to be included in drinking water 

production for achievement of both customer’s satisfaction and maintenance of water 

treatment plant. 

 

Organoleptic problems in drinking water are caused by natural, industrial or treatment 

processes (Bartels, et al., 1986). Natural odor compounds produced from algal 

metabolism (e.g., geosmin and 2-methylisoborneol (2-MIB)) have been identified as 

contributors to bad taste and odor for decades. The odor threshold level (minimum 

concentration at which human can feel odor) of these compounds is extremely low (20 

ng/L or less) (Matsui et al., 2009 and reference therein). There are numerous 

researches that focus on the removal of these natural odor compounds (Hargesheimer 

and Watson, 1996; von Gunten, 2003a and references therein; Matsui et al., 2009). 

With the development of treatment technologies, ozonation has been found to be an 

effective process for removing natural odor compounds (von Gunten, 2003a and 

reference therein), and the demand for ozonation use has increased. 

 

Unpleasant taste and odor can be produced not only from compounds in the natural 

water source, but also unintentionally during processes in treatment plants and 

distribution systems. While chlorine is applied in conventional treatment processes to 

inactivate pathogenic microorganisms, chlorination often causes unpleasant odor 

called chlorinous odor that has an odor descriptor as “chlorine-like” or “bleach” odor 

(Suffet et al., 2004). Chlorinous odor is the smell of not only chlorine itself but also 

the reaction products during water chlorination.  

 

In Japan, a survey of 462 people on dissatisfaction in drinking water quality showed 

that taste and odor comprised approximately 30% and 15% of the complaints, 

respectively, and approximately 25% of customers disliked the use of chlorine in 

drinking water (Mizkan company, 2009). This dissatisfaction may lead to the decrease 

number of people who directly drink tap water. In another survey on water usage, only 
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37.5% of 1839 people were found to consume tap water directly, whereas the rest 

used additional treatments (e.g., boil, filtration) prior to consumption (Cabinet Office, 

2009). Itoh et al. (2007) surveyed 3186 people on water usage by questionnaire, and 

reported that more than 80% of customers (both male and female) did not consume 

tap water directly even if water was treated by advanced treatment processes 

(ozonation followed by granular activated carbon (GAC)). These surveys imply that 

the presence of odor causes the distrust on the drinking water quality. Hence, to 

enhance the reliability of people on drinking water quality, safe and odor-free water is 

needed. One possible solution is the removal of precursors of chlorinous odor before 

the water is chlorinated. 

 

Trichloramine, a chlorination byproduct, is generally formed when the chlorination 

process is applied to water containing ammonium ions or organic-nitrogen compounds 

(Shang and Blatchley, 1999). It has been suspected that trichloramine is a major 

odorous compound in drinking water since its odor threshold concentration was found 

to be the lowest among chlorine species (Welte and Montiel, 1999). Its odor threshold 

level detected by human-sensory test is approximately 20 !g/L or less (Bruchet et al., 

2004, Yanagibashi, 2008). It can be rapidly formed at a high chlorine-to-nitrogen 

molar ratio (more than 1), which is usually used in drinking water chlorination 

treatment (Donnermair and Blatchley III, 2003). However, there is no report on the 

contribution of trichloramine to odor in drinking water. As such, trichloramine and its 

odor considered as tap water odor (odor contribution) should be studied in order to 

avoid aesthetic problems (i.e., odor). 

 

Chlorinous odor has become a challenging issue for water quality control since people 

complain on odor in drinking water. One proposed solution is the application of a 

strong oxidant to oxidize the precursors of chlorinous odor before chlorination. 

Oxidation by O3 and hydroxyl radical (•OH) seems to be an appropriate solution when 

treatment by a strong oxidant is needed. 

 

Ozonation is a typical oxidation process that can produce •OH. The process can be 

incorporated into conventional water treatment processes. Because O3 is a strong 
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oxidant, it is applied to water treatment for several purposes, including decoloration, 

taste and common odor control, elimination of micro-pollutants (von Gunten, 2003a). 

However, the effect of O3 on the control of chlorinous odor has not been fully 

investigated. In order to produce odor-free water using eco-friendly technology (no 

waste after treatment), knowledge of the effect of ozonation on chlorinous odor is 

essential. 

  

Bromate ion (BrO3
-
), a brominated disinfection byproducts (DBPs), has been a major 

concern on the ozonation of bromide-containing waters because it has been classified 

as a probable carcinogen in humans. The WHO has set the guideline value of bromate 

ion at 10 !g/L (WHO, 2008). The European Union, the US and Japan have set the 

standard for bromate ion at the same level (10 !g/L) (von Gunten, 2003b and 

references therein; MHLW, 2008). Conversion of bromide ion to bromate ion during 

ozonation is affected by natural organic matter (NOM), O3 dose, pH, hydrogen 

peroxide (H2O2), bromide ion, ammonium ion, temperature, and alkalinity (von 

Gunten, 2003a; 2003b).  

 

While O3 is a selective oxidant, •OH is a nonspecific and much stronger oxidant. In 

order to increase the oxidation capability, the formation of •OH is generally preferred. 

•OH is formed during the self-decomposition process of molecule O3. The •OH 

formation highly depends on various parameters such as NOM, O3 dose, pH, and 

bromide concentration (von Gunten, 2003a). To achieve the oxidation of precursors of 

chlorinouse odor and control of bromate ion formation below the standard of drinking 

water quality, an upgrade from conventional ozonation to advanced oxidation 

processes (AOPs) may be necessary (von Gunten and Oliveras, 1998; Camel and 

Bermond, 1998; von Gunten, 2003a).  

 

Advanced oxidation processes (AOPs) can offer effective water purification in term of 

not only the inactivation of microorganisms but also the elimination of common odor 

compounds (i.e., geosmin and 2-MIB) (Kim et al., 2004). Several variations include: 

the combination of O3 and hydrogen peroxide (H2O2), O3/H2O2 process; the 

combination of O3 and ultraviolet (UV), O3/UV process; the combination of H2O2 and 
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UV, H2O2/UV process (von Gunten, 2003b). AOPs can oxidize refractory pollutants 

into smaller and more biodegradable compounds that can be further treated by a 

process such as GAC (Jung and Madjid, 2004). 

 

Because the O3/H2O2 process has the capability to produce high levels of •OH, it is 

particularly promising for the decomposition of recalcitrant compounds (von Gunten, 

2003a). Several studies showed that an O3/H2O2 process with a H2O2-to-O3 ratio of 

0.5 was the most effective in producing •OH (Acero and von Gunten, 2000; Acero and 

von Gunten, 2001). The addition of H2O2 can also suppress bromate ion formation 

during ozonation (von Gunten, 2003b). 

 

Dissolved organic matter (DOM) is a complex mixture of organic compounds in 

source water that makes up a major component of DBP precursors and has properties 

that may influence the water treatment process. Previous studies reported that 

hydrophilic acid fraction was main precursors of trihalomethanes (THMs), and 

hydrophobic neutral fraction was the most reactive precursor to the formation of 

haloacetic acids (HAAs) (Marhaba et al., 2000; Imai et al., 2003). Moreover, 

chlorination of DOM can cause unpleasant odor (Zazouli et al., 2007 and references 

therein), but its mechanisms are not clearly understood. In order to formulate a 

treatment process suited for chlorinous odor removal, DOM fractions in natural water 

should be examined so that the major contributors to chlorinous odor can be 

identified.  

 

In this study, the conventional ozonation and AOP (O3/H2O2 process) with bench and 

pilot scale experiments were conducted to simultaneously control disinfection 

byproducts (DBPs), particularly bromate ion, and chlorinous odor in drinking water. 

The main purpose of this research was to investigate treatment processes that produce 

drinking water with less chlorinous odor and a lower concentration of bromate ion. 

Furthermore, the contribution of trichloramine to chlorinous odor in drinking water 

was evaluated. The study determined the effects of various operating parameters (e.g., 

O3 dose, ratio of H2O2 to O3, Ct-value) and water quality conditions (e.g., pH, 

concentration of bromide ion and ammonium ion) on the simultaneous control of 
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chlorinous odor and bromate ion formation. In addition, the organic fractions 

contributing to chlorinous odor in water treated with and without ozonation were 

identified using a fractionation technique.  

 

1.2 Research Objectives 

 

This research aims to achieve the simultaneous control of chlorinous odor and 

ozonation byproduct (bromate ion) using an advanced oxidation process. Also, the 

characterization of major organic fractions causing chlorinous odor is attempted.  

 

Specific purposes include: 

1. To evaluate the effect of ozonation and AOP (O3/H2O2 process) on the control of 

chlorinous odor 

2. To study the effects of operating parameters for ozonation and AOP on the 

removal of chlorinous odor 

3. To evaluate the contribution of trichloramine to the odor of chlorinated water 

4. To assess the possibility of the simultaneous control of bromate ion and 

chlorinous odor formation 

5. To investigate the effect of •OH on the removal of chlorinous odor  

6. To investigate the effect of ozonation and AOP on odor control by the use of an 

ozone column reactor 

7. To identify the major fraction of DOM, with and without ozonation, causing 

chlorinous odor in drinking water 

 

1.3 The structure of this dissertation 

 

Chapter 1 presents general background, objectives, and the structure of this thesis. 

Chapter 2 provides the available information from previous studies and basic 

knowledges related to this work. Chapter 3 discusses the use of a bench scale reactor 

operated in batch mode to examine the possibility of using ozonation and an advanced 

oxidation process or AOP (O3/H2O2 process) to simultaneously minimize chlorinous 
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odor and bromate ion formation. The effects of operating parameters (i.e., O3 dose, 

concentration of ammonium ion, initial bromide concentration, and pH) on the 

simultaneous control of chlorinous odor and bromate ion are also discussed in this 

chapter. In addition, the effect of hydroxyl radical (•OH) on chlorinous odor control in 

each oxidation processes (e.g., ozonation and AOP) are discussed. In chapter 4, a 

series of experiments in continuous mode with a pilot scale ozone bubble column is 

conducted in order to study the control of chlorinous odor and bromate ion at the same 

time in a more practical set up. Furthermore, the formation of •OH, indicated by 

oxidation of pCBA, in ozonation and O3/H2O2 process is evaluated with tracer test and 

a tank-in-series model. Chapters 3 and 4 also discusses the contribution of 

trichloramine to odor in chlorinated water. Chapter 5 provides the informations of 

fractions causing the chlorinous odor in water treated by RSF and ozonation. 

Additionally, treatment processes for the control of chlorinous odor are purposed. In 

chapters 6 and 7, conclusions and suggested future works are presented, respectively.  
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Chapter 2 

 

Literature Review 

 

 

This chapter aims to present the basic knowledge and available information on 

drinking water odor, ozonation, advanced oxidation processes (AOP), and aquatic 

organic matter. Furthermore, the factors related to the formation of bromate ion and 

hydroxyl radical (•OH) are summarized based on previous studies.  

 

2.1 Odor in drinking water 

 

The production of drinking water has to take into consideration not only the safety 

issues (Camel and Bermond, 1998; Chiang et al., 1999; Croué et al., 1999; Boyer and 

Singer, 2008), but also aesthetic issues. The odor issues have become increasingly 

important since people started to concern on physical properties of drinking water. 

People naturally assume that water with an odor is unsafe for consumption (McGuire, 

1995; Young et al., 1996; Suffet et al., 2004, Dietrich, 2006). Therefore, to meet the 

expectations of water consumers in terms of safe and aesthetic water, odor issues have 

to be addressed. 

 

Odor compounds in drinking water can be classified into two groups based on their 

sources: naturally produced odor compounds (e.g., geosmin, 2-methylisoborneol 

(2-MIB)) and unintentionally human-made products (chlorination byproducts) such as 

trichloramine, N-chloroaldimines, aldehydes. The information on these compounds is 

provided below. 
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2.1.1 Natural odor compounds 

 

Natural odor, “earthy/musty-like” odor, was found to originate mainly from alicyclic 

alcohols (e.g., geosmin and 2-MIB) and it was one of the major causes of the odor 

problems (Kajino and Sakamoto, 1995). Their odor intensity may increase under 

warmer climate (Terauchi et al., 1995). Geosmin and 2-MIB, produced by 

microbiological processes and blue-green algae, can cause taste and odor problems in 

the range of 10-20 ng/L (Bao et al., 1996 and references therein). In Japan, both 

geosmin and 2-MIB are regulated at 10 ng/L by the standards of drinking water 

quality (MHLW, 2008). A sequential treatment of ozonation and granular activated 

carbon (GAC) is the most common technique to remove 2-MIB and geosmin. 

Advanced oxidation technologies, however, can effectively and better remove these 

common odor compounds than ozonation because of higher •OH production (Camel 

and Bermond, 1998; von Gunten, 2003a; Bruchet et al., 2004; Lee, 2006; Peter and 

von Gunten, 2007). The reaction rate constants of geosmin (k•OH/geosmin) and 2-MIB 

(k•OH/2-MIB) to •OH are 7.8 and 5.09!10
9
 M

-1
s

-1
, respectively (Peter and von Gunten, 

2007).  

 

2.1.2 Chlorinous odor compounds 

 

Chlorination is usually used for the inactivation of microorganisms carrying 

waterborne diseases, and is the final treatment step before water is distributed through 

the pipeline network. Because of its residual effects, chlorine can preserve the water 

quality from bacterial regrowth along the distribution system. However, the excess use 

of chlorine can lead to the formation of not only harmful disinfection byproducts 

(DBPs) such as THMs, HAAs (Glaze, 1987; Ueno et al., 1996; William et al., 1997; 

Bruchet et al., 2004; Dietrich, 2006; Ates et al., 2007; Deborde and von Gunten, 2008; 

Hrudey, 2009), but also odorous compounds (Bruchet et al., 2004; Froese et al., 1999; 

Freuze et al., 2004; Freuze et al., 2005; Freuze et al., 2006). 

 

Chlorinous odors, “chlorine-like” odor, are often considered as a cause of off-flavor of 
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tap water (Froese et al., 1999; Welte and Montiel, 1999). Chlorinous odor is formed 

when odor precursors react with chlorine. The compounds causing chlorinous odor in 

tap water are roughly categorized into two groups: trichloramine (an inorganic 

chlorination byproduct) and other odorous chlorination byproducts (e.g., aldehydes 

and N-chloroaldimines). These have been believed to be major contributors of 

off-flavors in tap water (Bruchet et al., 2004; Freuze et al., 2005; Yanagibashi, 2008). 

 

2.1.2.1 Trichloramine  

 

Among the various byproducts of water chlorination, trichloramine (NCl3), an 

inorganic chlorination byproduct, has been considered one of the major odor 

compounds due to its high volatility. It has the lowest odor threshold concentration 

among chlorine species, as shown in Table 2.1. Trichloramine can form from the 

chlorination of waters containing trichloramine precursors. Trichloramine precursors 

in raw water can be categorized into two groups: ammonium ion (NH4
+
); and 

organic-nitrogen compounds (e.g., amino acids and proteins). Previous researches has 

found that the oxidation of glycine or serine (free amino acids) by •OH can produce 

ammonium ion as an end-product (Berger et al., 1999; Karpel et al., 2002; Leitner et 

al., 2002).  

 

Table 2.1 Detected odor threshold value of chlorine species 

Compound Odor threshold (!g/L) References 

20 

Bruchet et al., 2004; 

 Weaver et al., 2009 Trichloramine 

2 or less Yanagibashi, 2008 

Dichloramine 150 Bruchet et al., 2004 

Monochloramine 650 Bruchet et al., 2004 

Hypochlorous acid 280 Bruchet et al., 2004 

 

The formation of trichloramine highly depends upon pH, the molar ratio of chlorine to 
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ammonia-nitrogen (Cl/N), temperature, and contact time (Wolfe et al., 1984; 

Kirmeyer et al., 1993). The formation scheme of trichloramine by chlorination is 

shown in eqs. 2.1 - 2.4 (Yiin and Margerum, 1990). Neutral pH is suitable for 

monochloramine formation, whereas acidic condition are preferred in dichloramine 

and trichloramine formation (Jafvert and Valentine, 1992).  

 

 NH4
+
 + H2O       H3O

+
 + NH3

 
 (2.1) 

 NH3 + Cl2         NH2Cl  monochloramine       (2.2) 

 NH2Cl + Cl2       NHCl2  dichloramine          (2.3) 

 NHCl2 + Cl2       NCl3   trichloramine      (2.4) 

 

The formation of chloramines also relates to the Cl/N ratio. Donnermair and Blatchley 

III (2003) reported that monochloramine was produced at low Cl/N, and further 

addition of free chlorine resulted in the increase of Cl/N and enhanced the formation 

of dichloramine and trichloramine. In the case of the chlorination of amino acids, a 

high ratio of chlorine (Cl) to amino acids leads to the formation of trichloramine 

(Bruchet et al., 1992). 

 

Several researches found that trichloramine is a potentially harmful compound to 

human through inhalation in swimming pool (Massin et al., 1998; Bernard et al., 2003). 

Trichloramine has also been found to induce changes in enzymes and tissues within the 

organs of mammals when water containing high concentration of trichloramine was 

administrated (e.g., mild changes in enzymes within the kidney, thyroid, and liver of 

rats when trichlormine concentration was above 2 mg/L) (Nakai et al., 2000). However, 

the odor threshold values have been estimated to be much lower than the 

recommended value of airborne trichloramine concentration (0.5 mg/m
3
) (WHO, 2006), 

which usually indicates the harmful level. Thus, trichloramine plays an important role 

as an odor compound rather than to a hazardous compound. Because there has been no 

report on the relationship between trichloramine concentration and the odor strength of 
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drinking water, the relationship between odor strength and trichloramine concentration 

should be investigated in order to better understand the impact of trichloramine on the 

odor in drinking water. 

 

Although trichloramine concentration can be determined by UV absorbance 

measurement at high concentration (Gazda et al., 1995), its concentration in drinking 

water is usually much lower. Also, conventional titrimetric techniques (DPD ferrous 

titration) cannot precisely measure trichloramine concentration because of the 

interference by organic chloramines (Shange and Blatchley III, 1999; Donnermair and 

Blatchley III, 2003). Kosaka et al. (2009) has, however, developed a selective 

analytical method for precise trichloramine measurement using headspace-gas 

chromatography/mass spectrometry (HS-GC/MS).  

 

2.1.2.2 Other organic odorous byproducts  

 

Recently, organic chlorination byproducts (e.g., aldehydes, N-chloroaldimines) have 

also been suspected to be odorous DBPs that cause off-flavor in drinking water 

(Froese et al., 1999; Freuze et al., 2004; Freuze et al., 2005; Freuze et al., 2006, 

Dotson and Westerhoff, 2009). Organic odorous byproducts can be generated from the 

chlorination of amino acids, and their odor threshold levels in drinking water are very 

low (Brosillon et al., 2009). Thus, amino acids seem to be important precursors of 

odorous chlorination byproducts. 

 

The chlorination of amino acids can produce various species of N-chlorination 

byproducts, depending on the amino acids (e.g., alanine, valine, phenylalanine, 

glycine) (Freuze et al., 2004; Freuze et al., 2005; Freuze et al., 2006). The odor of 

nitrogenous chlorination byproducts relied on starting compounds (i.e., odor 

precursors). Several studies have found that the threshold odor concentrations of the 

various chlorination byproducts of amino acids differ as shown in Table 2.2. 

Hisamoto (2009) similarly reported that the odor strengths of chlorination byproducts 

from amino acids were different as shown in Table 2.3. 
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Table 2.2 Odor threshold concentration of the chlorination by-products of amino 

acids in water (!g/L) 

Aldehyde Nitrile Chloroaldimine 

Amino acids Freuze et al. 

(2005) 

Froese et al. 

(1996) 

Freuze et al. 

(2005) 

Freuze et al. 

(2005) 

Phenylalanine 30 4 1200 3 

Valine 4 0.9-2.3 430 0.20 

Leucine 5 0.15-2.0 210 0.25 

 

Previously, aldehydes (R-CH=O) have been reported to be odorous DBPs that result 

from the chlorination of amino acids (Hrudey et al., 1988; Froese et al., 1999). 

Aldehyde formation from the chlorination of nitrogenous organic compounds depends 

on the reaction conditions, such as Cl/N, pH, temperature, and reaction time. The 

optimum conditions for aldehydes formation from a previous study were as follows: 

the molar ratio of Cl/N, 1.5; pH, 9; reaction time, 2 hrs; temperature, 20 ºC (Froese et 

al., 1999). Although aldehydes are also well-known as ozonation byproducts, the 

formation of aldehydes during ozonation was insignificant as the cause of chlorinous 

odor (Froese et al., 1999). Because aldehydes are biodegradable, they are easily 

removed by GAC or biological activated carbon (BAC), which is usually utilized after 

ozonation (Froese et al., 1999, von Gunten, 2003a). Welte and Montiel (1999) 

investigated the formation of odor compounds in water supplied from a water 

treatment plant in Paris. They found that aldyhydes did not have an effect on 

chlorinous odor in drinking water. Therefore, the contribution of aldehydes to odor in 

drinking water may be negligible. 
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Table 2.3 Threshold odor values of various chlorination byproducts from amino acids 

(concentrations, 0.1 !M; pH, 7; residual chlorine after 24 hrs, 1 mg/L)  

(Hisamoto, 2009)  

Chlorinated amino acids Odor Strength (TON) 

Lysine (Lys) 22 

Tryptophan (Trp) 24 

!-Alanine (!-Ala) 24 

Glutamine (Gln) 28 

Threonine (Thr) 30 

Alanine (Ala) 33 

Cysteine (Cys) 36 

Serine (Ser) 38 

Isoleucine (Ile) 41 

Glycine (Gly) 43 

Aspartic acids (Asp) 44 

Histidine (His) 48 

Glutamic acids (Glu) 48 

Arginine (Arg) 58 

Methionine (Met) 58 

Proline (pro) 62 

Valine (Val) 67 

Leucine (Leu) 69 

Asparagine (Asn) 71 

Phenylalanine (Phe) 101 

Tyrosine (Tyr) 102 

  

Recently, N-chloroaldimines (R-CH=NCl) have been suspected to be odorous DBPs 

in drinking water. The odor of N-chloroaldimines is characterized as “unexplainable” 

(Freuze et al., 2006 and references therein). N-chloroaldimines has several 

characteristics that potentially create odor in drinking water: long half-life of 

approximately 50 hrs at 20 ºC, and extendable to 500 hrs at 25 ºC; low odor threshold 
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level, less than 1 !g/L; formation at high Cl/N, more than 1 (Freuze et al., 2004; 

Freuze et al., 2005). Brosillon et al. (2009) reported that the detected 

N-chloroaldimines levels in real drinking water complained on odor in France was 

close to or higher than the odor threshold values detected in laboratory conditions. 

Therefore, the minimization of N-chloroaldimines is a necessary step in producing 

odorless water (Freuze et al., 2006). 

 

Although several researches focused on the contribution of specific odorous 

compounds to the odor of drinking water, the major contributor to odor has not been 

reported. At the same time, odor is usually generated from several odorous 

compounds together in tap water odor, so evaluation by chemical analysis of a 

specific compound is very difficult to achieve. In addition, the detection limit of odor 

using chemical analysis is somewhat higher than that of human sense. Thus, in order 

to properly determine the contribution of major odorous compounds to heterogeneous 

odor in drinking water, odor analysis using the human sense of smell is appropriate.  

 

2.2 Odor evaluation method for drinking water  
 

The threshold odor test (Standard Method 2150B) is the most common method for 

odor analysis of drinking water (APHA, 2005). “Threshold value” is the lowest level 

of concentration or the highest dilution that panels can detect. Thus, the threshold odor 

test, commonly referred as “Threshold odor number (TON)”, is used to determine 

odor strength of water samples. For TON analysis, the sample is diluted with 

odor-free water until the minimum detectable odor is achieved. The analysis typically 

occurs at 40 ºC to 60 ºC (APHA, 2005). In order to accurately determine odor in 

sample, the triangle sensory test was developed (Yanagibashi, 2008).  

 

During the triangle sensory test, the sample under investigation is presented with other 

two odor free samples. These three samples are identical by appearance. Then, panels 

are asked to choose the sample with different smell from others two times. The 

position of odor sample is randomly changed for the selection of the second time. 

Panels can proceed to a sample with a higher dilution if they can correctly select the 
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test sample twice. The measurement of threshold values depends on a number of 

factors: experimental methodology, experience of' panels, purity of odor/flavor 

chemical, sex, and age. Also, APHA (2005) recommends that the number of panels 

should be 5 or more for precise analysis.  

 

2.3 Ozonation  

 

Ozonation is mainly used for disinfection of microorganisms and oxidation of 

micropollutants (e.g., for taste and odor control). When ozonation is applied to water, 

it can produce two primary oxidants: molecular ozone (O3) and hydroxyl radical 

(•OH), a stronger oxidant. O3 is generally used for disinfection, while •OH is used for 

the oxidation of trace pollutants (von Gunten, 2003a).    

 

Several researches found that ozonation was a very effective process to remove natural 

odor compounds (i.e., geosmin and 2-MIB) (Camel and Bermond, 1998; von Gunten, 

2003a; Bruchet et al., 2004; Peter and von Gunten 2007). The efficiency of trace 

organics removal by ozonation during full-scale water treatment is shown in Table 2.4. 

However, no information on chlorinous odor removal by ozonation is available. 

Ozonation can play both positive (e.g., oxidation of odor compounds in raw water and 

oxidation of amino acids to nitrate ion) and negative roles (e.g., generation of 

ammonium ion) in terms of the odor of finished water (Leitner et al., 2002 and 

references therein). However, our present knowledge does not include information on 

which role is more dominant under the conditions commonly found in drinking water 

treatment practice. 
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Table 2.4 Degree of removal of organic micropllutants during ozonation in full-scale 

drinking water treatment plants (Gottschalk et al., 2000) 

Substances Removal efficiency (%) Remarks 

Musty odor compounds 

(i.e., 2-MIB and geosmin) 

" 95 AOP improves the 

efficiency removal 

Aromatic compounds " 100  

Aldehydes, alcohols Low Typical products of 

ozonation, easily 

biodegradable 

N-containing organic 

compounds 

" 50 AOP may increase 

oxidation rate 

Polyaromatic 

hydrocarbons (PAH) 

High  

 

Because •OH is a reactive and nonselective oxidant to micropollutants, its formation 

is needed in order to increase the oxidation capability with regard to the removal odor 

compounds (Acero and von Gunten, 2001; Peter and von Gunten, 2007). •OH 

formation depends on many factors, including bromide ion and ammonium ion 

concentrations, O3 dose, and characteristics of natural organic matter (NOM) (Camel 

and Bermond, 1998; Acero and von Gunten, 2001; von Gunten 2003a). The 

improvement of oxidation capability can be observed when pH and O3 dose are 

increased (Acero and von Gunten, 2000). Furthermore, suspended particles should be 

removed before ozonation is applied in order to avoid the reduction of oxidation 

efficiency and the increase of O3 demand (Gottschalk et al., 2000).  

 

Normally, studies on ozonation efficiency are conducted in a simple reactor in 

semi-batch or batch mode, in which oxidation reaction occurs in a transient state (i.e., 

O3 concentration during reaction is time-dependent). On the other hand, actual 

ozonation in water treatment plant is operated in steady state (continuous mode), O3 

concentration is much independent of time because of continuous injection of O3 gas. 

Previous research found that the difference of mixing condition between operation in 
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batch mode and continuous mode leads to the change of O3 decomposition or •OH 

formation (Buffle et al., 2006). However, there is no report of the effect of reaction 

mode (i.e., batch and continuous modes) on the oxidation of odor precursors and 

bromate ion formation has been available. 

 

Although the removal of micropollutants and pathogens by ozonation depends on O3 

dose and reaction time, the optimum condition for ozonation is hard to define by these 

two operating parameters because the change of these two parameters affect the 

formation of undesirable DBPs especially bromate ion (note that bromate ion 

formation relates to residual O3 and •OH). The study of the mechanism of •OH 

formation or O3 decomposition is difficult to achieve because •OH is difficult to 

measure due to its highly reactivity, which leads to the extremely low concentration in 

water (Elovitz and von Gunten, 1999). Thus, a new approach to evaluate the 

ozonation performance with regard to oxidation capability has come up with the use 

of •OH exposure or Ct-value (C, concentration of •OH; t, reaction time) (Camel and 

Bermond, 1998; Elovitz and von Gunten, 1999; Acero and von Gunten, 2001; von 

Gunten, 2003a; 2003b; Zhang et al., 2005). This assessment can also be used as a tool 

to optimize ozonation (involving both oxidation-disinfection and bromate ion 

formation control). Because the reactivity of p-chlorobenzoic acid (pCBA) is very low 

to O3 (Elovitz and von Gunten, 1999), the only reactant to oxidize pCBA is •OH 

during ozonation and AOP. Thus, the formula to calculate •OH exposure (  

! 

[•OH]dt" ) 

for batch mode is as follows :  

 

  

! 

d[pCBA]

dt
= "k•OH / pCBA[pCBA][•OH] (2.5) 

 

Integration of eq. 2.5 yields 

 

  

! 

ln
[pCBA]

[pCBA]0

" 

# 
$ 

% 

& 
' = (k•OH/pCBA [•OH]dt

0

t

)  (2.6) 

 

where k•OH/pCBA is the reaction rate of •OH with an ozone-resistant probe (pCBA). Its 
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value is 5!10
9
 M

-1
s

-1
 (Elovitz and von Gunten, 1999). The term Ct-value represents 

the time-integrated concentration of •OH. 

 

2.3.1 Advantages for the application of ozonation 

 

Because O3 is a strong oxidant, it can be a better option than chlorine in controlling 

some waterborne pathogens. Former studies have shown that O3 can effectively 

inactivate oocysts of the protozoa parasite-Cryptosporidium, which is highly resistant 

to free chlorine and monochloramine (Kim et al., 2004). Furthermore, several 

researches have found that ozonation can control harmful DBPs (e.g., THMs and 

HAAs), pesticides, and pharmaceuticals products (Camel and Bermond, 1998 and 

references therein; von Gunten, 2003a and references therein; 2003b and references 

therein). Furthermore, ozonation can control not only taste and common odors (e.g., 

geosmin and 2-MIB), but also decoloration of water (von Gunten, 2003a and 

references therein). 

 

Another important factor that has contributed to the increase in O3 use is the reduced 

chlorine dose needed in water after ozonation (Glaze, 1987). With the decrease in 

Cl/N, a reduction in odorous DBPs is expected, while the disinfection capability 

remains the same (Chin and BéruBé, 2005). Knowing that the chloramines form in 

water with lower ratio of Cl/N, including monochloramine and dichloramine, are less 

odorous than the chloramines formed in higher Cl/N (trichloramine) (Donnermair and 

Blatchley III, 2003; Bruchet et al., 2004), a decrease in chlorinous odor can be 

expected due to the reduction in chlorine dose.  

 

Ozonation has several advantages in the control and improvement of drinking water 

quality. However, as shown below, there are some drawbacks as well (von Gunten, 

2003a; 2003b). 
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2.3.2 Ozonation byproducts  

 

Ozonation byproducts are a complex class of chemicals, but bromate ion (BrO3
-
), 

aldehydes, ketones, carboxylic acids, hydroxyl acids, alcohols and esters are most 

common (von Gunten, 2003b). The most important DBP that forms during ozonation 

of bromide-containing waters is bromate ion. It is a probable carcinogen to human 

(IARC, 1999). The WHO has set the guideline concentration of bromate ion at 10 

!g/L for drinking water quality (WHO, 2008). The US and Japan have also regulated 

bromate ion at the same level (10 !g/L) (von Gunten, 2003b; MHLW, 2008)  

 

Figure 2.1 shows the reaction scheme of bromate ion formation during ozonation. 

Both oxidants (O3 and •OH) act in sequence on the oxidation of bromide ion (Br
-
). O3 

oxidizes bromide ion to form hypobromous acid (HOBr) and hypobromite (OBr
-
). 

Then, the oxidation of hypobromite by O3 leads to the formation of bromite (BrO2
-
), 

followed by the formation of bromate ion. •OH plays an important role in the 

oxidation of bromide ion and HOBr/OBr
-
, to form bromide radical (Br•) and bromide 

oxide radical (OBr•), respectively. Then, both intermediate radicals (Br• and OBr•) 

react with O3 to form bromate ion (von Gunten and Oliveras, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Reaction scheme for bromate ion formation during ozonation of 

bromide-containing waters. Adapted from von Gunten and Oliveras, 1998; Pinkernell 

and von Gunten, 2001; and von Gunten, 2003b. 
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The formation of bromate ion by ozonation highly depends on O3 dose, pH, bromide 

ion concentration, ammonium ion concentration, hydrogen peroxide (H2O2) dose, 

dissolved organic matter (DOM), and temperature (von Gunten, 2003b). Prior studies 

suggested that the formation of bromate ion could become significant during 

ozonation of water with a bromide ion concentration above 100 !g/L (von Gunten, 

2003b). Addition of ammonium ion to suppress bromate ion is suitable for water at 

low ammonia concentration because of the limitation of bromate ion suppression by 

ammonium ion (Pinkernell and von Gunten, 2001). The use of an optimum O3 dose is 

one option for simultaneous disinfection, micro-pollutant removal, and control of 

bromate ion formation (Neumann et al., 2007). Likewise, lowering pH during 

ozonation is a simple and effective option for the control of bromate ion formation 

(Krasner et al., 1995; Huang et al., 2003; von Gunten, 2003b). Echigo et al. (2009) 

indicated that ozonation under acidic conditions is the best way to simultaneously 

control ozonation byproducts (e.g., aldehydes, total organic bromines (TOBr), and 

bromate ion). However, the endeavor to decrease bromate ion by the change of 

operating conditions (e.g., O3 dose, pH) may affect the oxidation capacity related to 

the control of odor in drinking water. 

 

Because •OH is a highly reactive and nonspecific oxidant, an increase in •OH 

formation may successfully control chlorinous odor. Hence, advanced oxidation 

processes (AOPs), an upgraded treatment process from the conventional ozonation to 

increase •OH formation, are challenging and interesting option. 

 

2.4 Advanced oxidation processes (AOPs) 

 

AOPs are oxidation processes that can increase •OH formation (von Gunten, 2003a). 

It can also decrease bromate ion formation due to the consumption of O3 (von Gunten, 

2003b). Common AOPs include: the combination of O3 and H2O2 (O3/H2O2 process), 

O3/UV process, and H2O2/UV process (von Gunten and Oliveras, 1997). The simplest 

way to modify conventional ozonation into an AOP is by combining O3 and H2O2.  
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Although H2O2 can increase •OH formation, the overdose of H2O2 may inhibit the 

•OH formation depending on the concentration of radical scavengers in water (Kosaka 

et al., 2001). Thus, H2O2 can be either promoters or inhibitors of •OH formation. As 

shown in eqs. 2.7 and 2.8, H2O2 can accelerate O3 decomposition to produce •OH by 

reacting with O3 as HO2
-
 (Gottschalk et al., 2000). The overall equation for •OH 

formation shown in eq. 2.9 shows that two molecules of O3 can produce two 

molecules of •OH. On the other hand, H2O2 can play as •OH scavengers (shown in eq. 

2.10) when the concentration of •OH scavengers is too high (Acero and von Gunten, 

2000).  

 

H2O2       HO2
-
 + H

+
             pKa = 11.8 (2.7) 

 

O3 + HO2
-
      •OH + O3•

-
          k = 2.2 x 10

6
 M

-1
s

-1
 (2.8) 

 

2O3 + H2O2       2•OH + 3O2 (2.9) 

 

H2O2 + •OH      HO2• + H2O        k = 2.7 x 10
7
 M

-1
s

-1
 (2.10) 

 

The optimum ratio of H2O2 to O3 is an important operating condition. Previous studies 

have found that the optimum molar ratio of O3/ H2O2 for producing •OH is in the 

range of 0.35 to 0.5 (Acero and von Gunten, 2000; Acero and von Gunten, 2001). 

Also, the mass ratio of O3/ H2O2 for the effective removal of taste and common odor 

compounds (e.g., geosmin and 2-MIB) has been found to be in the range of 0.4 to 1.0 

(Bruchet et al., 2004). 

 

Addition of H2O2 not only enhances •OH formation, but also suppresses bromate ion 

formation. H2O2 can convert intermediate substances of bromate ion formation (i.e., 

HOBr/OBr
-
) back to bromide ion (Br

-
), and this reduction reaction leads to a decrease 

in bromate ion concentration (Figure 2.1). The mechanism in the H2O2-HOBr reaction 

system of the reduction of bromate ion is explained by eqs. 2.11 and 2.12. However, 

the control of bromate ion by additional H2O2 can possibly sacrifice some •OH if an 
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excess concentration of H2O2 is present.  

 

OBr
-
 + H2O2      Br

-
 + H2O + O2  (2.11) 

 

HOBr + HO2
-
     Br

-
 + H2O + O2  (2.12) 

 

Although some odorous compounds (e.g., aldehydes) produced during ozonation can 

later be removed by GAC (Froese et al., 1999), customers may still find odor and 

quality of drinking water treated by advanced water purification (e.g., ozonation and 

GAC) to be unsatisfactory (Itoh et al., 2007). To design water treatment process for 

odor control, information on chlorinous odor precursors after treatment by advanced 

water purification is required.  

 

2.5 Fractionation of Dissolved Organic Matter (DOM) 

 

Dissolved organic matter (DOM) is a complex mixture of organic compounds 

including humic substances, hydrophilic acids, proteins, lipids, hydrocarbons and 

amino acids. It has been found to be a main precursor of DBPs. Also, some studies 

report that the chlorination of DOM may produce an unpleasant odor, taste, and color 

in drinking water (e.g., Zazouli et al, 2007). In order to control odorous DBP 

formation, the behavior of NOM during chlorination needs to be understood. 

 

Aquatic humic substances (AHS) are a common component of DOM in river water. 

They are yellow-brown, non-volatile organic acids, and many of them are classified as 

hydrophobic organics (Pomes et al., 2000; Imai et al., 2001). It has been discovered 

that chlorination of AHS produces DBPs (e.g., THMs and HAAs) (Pomes et al., 2000; 

Nikolaou and Lekkas, 2001; Imai et al., 2003). Chiang et al. (2002) found that the 

hydrophobic acid fractions are the main precursors of THMs, whereas another study 

(Imai et al., 2003) reported that the main precursors of THMs are hydrophilic acid 

fraction. AHS can be easily removed by a conventional treatment process: coagulation, 

flocculation, sedimentation, and sand filtration (Fabris et al., 2008).  
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While AHS serve as DBP precursors, non-humic fractions or hydrophilic groups, 

including amino acids, have been found to be precursors of chlorinous odor, and they 

can not be sufficiently eliminated in conventional treatment processes (Marhaba et al., 

2000; Freuze et al., 2006). Also, Imai et al. (1998) reported that hydrophilic acids are 

the predominant fraction in Lake Biwa, which serves as the source of the Yodo river. 

Hydrophilic fractions are mostly biodegradable compounds (Buchanan et al., 2005), 

so they can potentially cause biological regrowth in the distribution system. Therefore, 

in order to provide safer drinking water without odor, it is recommended that fractions 

contributing to harmful DBPs and odor formation should be controlled before water is 

chlorinated and distributed to consumers.  

 

In each unit treatment process, DOM displays various behaviors, depending on its 

physical and chemical properties. For example, a previous study reported that 

coagulation is effective in removing high MW compounds of DOM (more than 50% 

removal), whereas the removal of smaller compounds of DOM using this process is 

negligible (Chiang et al., 2002). In contrast, ozonation can convert large organic 

compounds into smaller compounds, which are more biodegradable (Chiang et al., 

2002). Once the relationship between DOM properties and removal in each treatment 

unit is understood, an effective water treatment process can be designed.  

 

For more than three decades, many researches have attempted to study the physical 

properties and chemical reactions of DOM during chlorination. Leenheer (2004) 

found that free amino groups significantly consumed chlorine demand, which may 

affect the Cl to N ratio and lead to the formation of different odorous DBPs (e.g., 

aldehydes, N-chloroaldimines). However, little information on chlorinous odor 

precursors is available due to the complexity and heterogeneity of DOM. In order to 

minimize chlorinous odor formation, it is necessary to determine which fractions are 

responsible for chlorinous odor. 

 

There are several methods for categorizing and studying the behavior of DOM 

fractions: MW separation, hydrophobic-hydrophilic separation (also known as ion 
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exchange separation), ultraviolet (UV) spectroscopy, and carbon-13 nuclear magnetic 

resonance (
13

C NMR) (Nikolaou and Lekkas, 2001). The method most widely used 

for categorizing DOM is separation based on hydrophobic-hydrophilic and acid-base 

properties. This technique utilizes polar and non-polar properties of each molecule at 

different pH conditions. 

 

DOM fractions separated through ion exchange can be categorized into 7 classes: 

hydrophobic bases (HoB), hydrophobic acids (HoA), hydrophobic neutrals (HoN), 

hydrophilic bases (HiB), hydrophilic acids (HiA), hydrophilic neutrals (HiN) and 

transphilic organic carbon (Trs) (Leenheer, 2004).  Because of the difficulty in 

completely separate hydrophobic compounds from hydrophilic compounds, the 

“transphilic fraction” is operationally defined to represent organic fraction between 

the hydrophobic and hydrophilic fractions. A classification of organic compounds 

according to the 5 DOM fractions can be seen in Figure 2.2 (Imai et al., 2001 and 

references therein). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Classification of organic solutes for dissolved organic matters (DOMs)         

(Imai et al., 2001) 
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2.6 The effect of ozonation on DOM fraction 

 

With the fact that non-humic fractions and small MW organics (amino acids) are not 

significantly removed by conventional treatment processes (Chiang et al., 2002; 

Fabris et al., 2008), the remaining fractions of small MW compounds may contribute 

to the formation of chlorinous DBPs after chlorination such as aldehydes or 

N-chloroaldimines. Thus, these small MW compounds should be removed before 

chlorination. 

 

Ozonation has been found to be more effective in removing DBPs precursors than 

conventional treatment processes due to its oxidation capability (Chiang et al. 2002). 

Ozonation could reduce DBP formation by more than 40%. Furthermore, ozonation 

can oxidize odorants produced by microorganisms, hydrogen sulfide aldehydes, and 

phenols (Chang et al., 2002 and references there in; von Gunten, 2003a). However, a 

previous work has shown that the ozonation of some amino acids (e.g., glycine, 

serine) can produce either nitrate ion or ammonium ion as end-products, with the 

increase in ammonium ion concentration possibly leading to an increase in chlorinous 

odor (Donnermair and Blatchley III, 2003). A similar study also found that ozonation 

of nitrogenous organic compounds in water could produce odorous aldehydes such as 

isobutyraldehyde and 2-methylbutyraldehyde (Huang et al., 2005). 

 

Because ozonation of larger organic compounds can produce smaller and more 

biodegradable organic compounds, ozonation can sometime improve the treatment 

efficiency of other treatment units. For example, the oxidation of organic compounds 

through ozonation enhances the performance of GAC adsorption (Chiang et al., 2002). 

Each treatment unit has different effects on the removal of organic compounds and  

micropollutants (Yee et al., 2009). While coagulation removes large MW and 

hydrophobic DOM, GAC can remove lower MW and hydrophilic fractions. In 

addition, membrane filtration may be able to control DBP formation. As such, the 

study of odor produced from each organic fraction is an important step in designing 

treatment processes for odor control. 
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2.7 Summary 

 

This chapter provided the available information on odor problems in drinking water, 

ozonation, AOP, and ozonation byproducts. The new and exciting challenges obtained 

from the information of this chapter are listed below. 

 

• Information on how the parameters used in the application of ozonation and AOP 

affect chlorinous odor control should be sought out, as this knowledge may be 

very useful in helping water utilities produce odorless water. 

• The effects of ozonation under different operating conditions (batch and 

continuous modes) on the oxidation capability and bromate ion control should be 

addressed. 

• Among chlorine species, trichloramine has been suspected to be a major odorous 

compound causing chlorinous odor, but this hypothesis has not yet been proven 

for the heterogeneous odor of tap water, which may consist of several odorous 

compounds. Trichloramine’s contribution to chlorinous odor should be further 

investigated. 

• To provide the information of precursors of chlorinous odor, the removed and 

remaining DOM in each treatment process should be studied and determined 

with odor sensory test. 
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Chapter 3 

 

Simultaneous Control of Bromate Ion and Chlorinous 

Odor in Drinking Water by Ozonation and Advanced 

Oxidation Process (O3/H2O2 Process) with Batch 

Reactor 

 

 

Abstract - Simultaneous control of chlorinous odor and bromate ion formation was 

attempted by using ozonation and advanced oxidation process (AOP, O3/H2O2 process). 

A bench-scale ozonation reactor in batch mode was operated with various parameters 

(pH, O3 dose, ammonium ion and bromide ion concentrstions). Also, the relationship 

between trichloramine (NCl3, a suspected odor compound in drinking water) and 

chlorinous odor in drinking water was studied by a headspace GC-MS analysis and the 

triangle sensory test. Odor strength after chlorination decreased by more than 50% for 

the samples pretreated with conventional ozonation and AOP compared to samples 

treated only by chlorination. The change in hydroxyl radical exposure (•OH-ct) when 

AOP was applied did not show the clear difference in chlorinous odor removal 

compared with conventional ozonation. Trichloramine seemed to be a minor odorous 

compound in the chlorinated water. Changes in pH and ammonium ion and bromide 

ion concentrations did not clearly affect the efficiency of odor removal, whereas a 

slight improvement in odor removal was observed when the O3 dose was increased to 

an extreme level. AOP could be an option for the simultaneous control of chlorinous 

odor and disinfection byproducts (DBPs). 

 

3.1 Introduction 

 

Chlorinous odor is an important component of the public’s perception on drinking 
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water quality. Ozonation and advanced oxidation processes (AOPs) are possible and 

simple options for the removal of odor precursors in raw water prior to chlorination. 

However, the effect of ozonation and AOP on chlorinous odor formation has not yet 

been understood.  

 

Trichloramine (NCl3) has been considered one of the major odorous compounds 

(Bruchet et al., 2004; Yanagibashi, 2008). The traditional method of evaluating 

drinking water odor is a sensory test with human subjects, and this method is not 

capable of differentiating trichloramine. Hence, a headspace GC-MS analysis and the 

triangle sensory test need to be simultaneously applied to evaluate the contribution of 

trichloramine to chlorinous odor in drinking water. 

 

In addition, ozonation can produce bromate ion (BrO3
-
) as a disinfection byproduct 

(DBP). Bromate ion formation is affected by several parameters, including pH, O3 

dose, ammonium ion concentration, and bromide ion concentration. Because changes 

in operating parameters result in a different oxidation capability, the influence of the 

various parameters on odor control should be evaluated. 

 

The objectives of this chapter are (1) to evaluate the effect of ozonation and the 

O3/H2O2 process (hereinafter called AOP) on chlorinous odor following chlorination, 

(2) to assess the possibility of the simultaneous control of bromate ion and chlorinous 

odor, and (3) to evaluate the contribution of trichloramine to the odor of chlorinated 

water. In order to meet these objectives, a series of ozonation (or AOP)/chlorination 

sequential experiments were performed under various operating conditions. For the 

preliminarily study of trichloramine’s contribution to tap water odor, a small survey of 

the trichloramine concentration in tap water was carried out before the ozonation and 

AOP experiments were performed. 
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3.2 Materials and Methods 

 

3.2.1 Source water 

 

For the survey of trichloramine in tap water, water samples were collected from 6 

locations (hereinafter called A, B, C, D, E, and F) in the Kansai area. The samples 

were stored in a glass bottle at 4 ºC until the analysis, which included chlorine residual 

and trichloramine measurements, as well as a sensory test. To test the hypothesis that 

the odor in surveyed tap water is only contributed from trichloramine, the sample 

collected at the location D was determined odor strength compared to trichloramine in 

the stock solution at the same concentration. 

 

For the ozonation and AOP experiments, raw water was collected from the Yodo River 

(Osaka, Japan) three times, and stored at 4 ºC after filtration through 0.45 !m 

membrane filters (mixed cellulose ester, ADVANTEC). For the experiments to study 

the effects of bromide ion and ammonium ion concentrations on the simultaneous 

control of odor and DBP formation, the raw water (dissolved organic carbon (DOC), 

2.6 mg/L; bromide ion, 28 !g/L; ammonium ion, 36 !g/L) collected on October 6, 

2008 (hereinafter called YRW1) was used. For the experiments to study the effects of 

O3 dose (under typical doses, 1 and 2 mg/L), the water (DOC, 2.4 mg/L; bromide ion, 

38 !g/L) collected on January 19, 2009 (hereinafter called YRW2) was used. Finally, 

to study the effect of pH and O3 doses (a typical O3 dose and an extreme condition, 1, 3, 

and 5 mg/L), a conventional ozonation was carried out only with the raw water (DOC, 

2.5 mg/L; bromide ion, 33 !g/L) collected on May 14, 2009 (hereinafter called 

YRW3). 

 

3.2.2 Chemical preparation 

 

All the chemicals used in this study were purchased from Wako Pure Chemical 

Industries, except o-dianisidine dihydrichloride (Tokyo Kasei Kogyo Co., Ltd). Stock 
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chemical solutions were prepared by ultra pure water (Milli-Q water) produced by a 

Millipore (Tokyo, Japan) Acadamic-A10 purification system. The concentration of 

sodium hypochlorite (NaOCl) solution (at least 5%) was determined by the 

DPD-Ferrous titration method (APHA et al., 2005). Trichloramine stock solution was 

synthesized by mixing ammonium solution and sodium hypochlorite solution at a 

molar ratio of 1:3.15 under an acidic condition (adjusted with sulfuric acid to pH 3-4) 

with a T-mixer, and stored in the dark for 24 hours without headspace. Trichloramine 

concentration of the stock solution was measured by direct UV measurement at 336 

nm ("= 190 M
-1

cm
-1

) (Schurter et al., 1995). 

 

3.2.3 Procedure 

 

In order to study the effect of trichloramine on odor in tap water, a two-part survey was 

conducted to study the assumptions that trichloramine is only major odorous 

compounds in tap water. First, tap water from 6 locations (labeled as A-F) was 

collected, and odor contribution from trichloramine was evaluated. Second, to 

investigate an odorous compound in tap water, trichloramine solution was diluted to 

the actual concentration of the sample collected at the location D (note that water 

treated by conventional process) with Milli-Q water. Then, the odor strength of both 

samples (tap water and trichloramine solution) was analyzed by the triangle sensory 

test. 

 

The study involving ozonation and AOP consisted of three sets of experiments. First, 

to study the effects of bromide ion and ammonium ion concentrations on the 

simultaneous control of odor and DBPs, YRW1 was treated at an O3 dose of 2 mg/L 

and pH 7 under various conditions (i.e., elevated bromide ion or ammonium ion 

concentrations to 100 !g/L) compared with the baseline condition (DOC, 2.6 mg/L; 

bromide ion, 28 !g/L; ammonium ion, 36 !g/L). Second, to study the effect of O3 dose, 

YRW2 was treated at an O3 dose of 1 or 2 mg/L (a typical ozone dose applied in water 

treatment) at pH 7. Finally, to study the effects of pH and extreme O3 doses on 

chlorinous odor control, YRW3 was treated by conventional ozonation at an O3 dose of 
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1, 3, and 5 mg/L with pH 6 or 7. Ozonation and AOP treatment were conducted in 

batch mode. Figure 3.1 shows the schematic of the ozonation and AOP experiments. 

The stock solution of O3 was prepared in an ice-bathed bottle through the bubbling of 

O3 gas into Milli-Q water. The stock O3 solution was injected to the samples through a 

syringe. The injection volume of stock O3 solution varied depending on the dose of O3. 

The molar ratios of H2O2 to O3 were set at 0.0 (i.e., conventional ozonation, hereinafter 

called Ozone), 0.5 (AOP0.5), 1.0 (AOP1), and 3.0 (AOP3). After injection of O3 

solution, ozonated samples were chlorinated at approximately pH 7 for 24 hours. The 

source water was also chlorinated without ozonation/AOPs (AOP0.5, AOP1, and 

AOP3) as the control experiment (Control). Chlorine residual after 24 hours was 

controlled at 1 mg/L. As the probe compound of •OH, p-chlorobenzoic acid (pCBA, 

0.5 !M) was used. The remaining H2O2 after treatment by AOP was quenched through 

the addition of a sufficient amount of sodium hypochlorite (NaOCl). All the 

experiments were duplicated for quality control. Operating conditions for ozonation of 

each water sample are shown in Table 3.1. 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic of the ozonation and AOP (No treatment by AOP for YRW3) 
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Table 3.1 Operating conditions for ozonation of each water sample 

Parameters 
YRW1

* 

(DOC, 2.6 mg/L; Br
-
, 28 

!g/L; NH4
+
, 36 !g/L) 

YRW2 

(DOC, 2.4 mg/L; 

Br
-
, 38 !g/L) 

YRW3 

(DOC, 2.5 mg/L; 

Br
-
, 33 !g/L) 

O3 dose (mg/L) 2 1, 2 1, 3, 5 

H2O2/O3 molar 

ratio 
0, 0.5, 1, 3 0, 0.5, 1, 3 0 

pH 7 7 6, 7 

pCBA (!M) 0, 0.5 0, 0.5 0, 0.5 

        Note:  
*
 Elevated Br

-
 or NH4

+
 concentrations to 100 !g/L before ozonation 

  

3.2.4 Analytical Methods 

 

-Trichloramine analysis 

 

Headspace gas chromatographic mass spectrometry (HS-GC/MS) was used for 

trichloramine analysis (Kosaka et al., 2009), with several modifications. In this 

analysis, a gas chromatograph (GC) (6890 Plus, Agilent) was connected to a mass 

spectrometer (MS) (JMS-AX505H, JEOL). Trichloramine was separated with an 

HP1MS capillary column (15m!0.25mm i.d.!0.32 !m, J&W Scientific). For the 

headspace extraction, 40 mL of sample was sealed in a 50 mL-vial bottle with a 

TEF-lined septum and an aluminum cap. The sample was then incubated in a water 

bath for 45 min at 35 ºC, before 3 mL of headspace was removed and injected into the 

GC-MS. The GC-MS was operated under the following conditions: injection mode, 

pulsed-split; carrier gas, helium; flow rate, 1.1 mL/min; initial temperature, 30 ºC; 

initial isothermal stage, 1.5 min; time program after the initial isothermal stage, to 90 

ºC at 30 ºC/min. Trichloramine was monitored at selected ion monitoring mode (m/z 

=118.9096 for quantification; 84 and 86 for confirmation). A calibration curve was 

prepared through the dilutions of the trichloramine stock solution in sulfuric acid 

solution (pH 3). The detection limit was 15 !g/L as NCl3 or 9 !g/L as Cl2. 
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-Triangle sensory method  

 

Panels  

 

Panels were volunteers from Kyoto University (Kyoto, Japan). All volunteers were 

healthy during the time of examination. For precise work, 6 panels who passed the 

preliminary test with odor-surrogate solutions were selected from the volunteers 

(APHA et al., 2005). Sensory tests were conducted in a well-ventilated room at 25 ! 

2 ºC. Panels were asked not to smoke or eat at least 15 min before the session. 

 

Sensory Test 

 

The odor strength of samples was evaluated without quenching chlorine. The samples 

were diluted with Milli-Q water using various dilution ratios (ranging from 5 to 400), 

with two blanks prepared for each sample. Before dilution, 300 mL-flasks were 

heated at 70 
o
C for 45 min and then rinsed with Milli-Q water 2-3 times (APHA et al., 

2005). The sample and blank flasks were incubated at 40 
o
C for at least 20 min. Then, 

six panels were separately asked to select the flask with an odor out of the three flasks 

(identical in appearance). If they selected the correct flask, the order of the flasks was 

changed and the same procedure was repeated, so as to confirm that they had not 

coincidentally selected the correct one. The panels who answered correctly twice for 

the same sample set were then asked to run the same procedure for a sample set with 

a higher dilution ratio. This process was repeated until the panel gave a wrong answer. 

No information on the sample or purpose was provided to the panels during the 

sensory test. The highest dilution ratio that a panel could detect, or the odor strength 

(dimensionless number), is referred to as the Threshold Odor Number (TON). The 

TON value reported for each condition was the geometric mean of the TON values 

from four panels, excluding the highest and lowest values. As a preliminary 

experiment, stock trichloramine solution was diluted with Milli-Q water at various 

dilution ratios, and the odor threshold value of trichloramine was measured by the 

triangle sensory test. 



 35 

 

-Bromide ion, bromate ion, and pCBA analysis 

 

The concentrations of bromide and bromate ions were determined with an ion 

chromatograph (HPLC, Shimadzu). Bromide ion was analyzed with a 

Shim-pack-IC-SA2 column and a guard column (IC-SA2) with a carbonate buffer 

(mobile phase, 12 mmol/L NaHCO3 and 0.6 mmol/L Na2CO3; detection, UV at 210 

nm; and injection volume, 200 !L). For bromate ion analysis, a Shim-pack-IC-SA3 

column protected with an IC-GA3 guard column was used for separation with a 

post-column derivertization method (post column reagent, o-dianisidine solution; 

detection, UV/Visible at 450 nm; injection volume, 200 !L). A reverse phase HPLC 

analysis was performed for pCBA analysis with an inertsil-ODS-3 column (eluent, 

60% of methanol and 40% of 0.1% phosphoric acid; detection, UV at 254 nm; 

injection volume, 200 !L). 

 

- O3, H2O2, and dissolved organic carbon (DOC) analysis  

 

The DOC of the samples was analyzed with a TOC-5000A analyzer (Shimadzu). 

Dissolved O3 concentration was measured using the Indigo colorimetric method with 

a Multispec-1500 spectrophotometer (Shimadzu) (APHA et al., 2005). Stock H2O2 

concentration was determined by direct UV measurement at 240 nm (Bader et al., 

1988; "= 40 M
-1

cm
-1

) with a Multispec-1500 spectrometer (Shimadzu).  

 

3.3 Results and Discussion 

 

3.3.1 Survey of trichloramine in tap water 

 

Residual chlorine concentrations in the tap water from 6 locations are shown in Table 

3.2. The concentration of residual chlorine ranged from 0.2 to 0.6 mg/L. These 

concentrations met the minimum level of free chlorine residual listed in the regulation 

for Japanese water quality (0.1 mg/L). The residual chlorine levels indicated that the 
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amount of chlorine addition was high enough to prevent bacterial regrowth in tap 

water. In contrast, the excess dose of residual chlorine may react with odor precursors 

and cause an off-flavor problem as seen in Figure 3.2. The higher residual chlorine 

levels resulted in the enhancement of odor strengths. 

 

Table 3.2 Residual chlorine concentrations in representative samples at each location 

Locations Residual Chlorine (mg/L) 

A 0.22 

B 0.37 

C 0.36 

D 0.51 

E 0.31 

F 0.59 
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Figure 3.2 The relationship between odor strength and residual chlorine 

concentration in the survey of tap water 
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Figure 3.3 shows the relationship between odor strength and trichloramine 

concentration. It implies that higher trichloramine enhanced the odor strength in tap 

water. Thus, trichloramine can be a major chlorinous odor compound in tap water. 
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Figure 3.3 The relationship between odor strength (TON) and trichloramine  

(survey samples) 

 

To determine whether trichloramine is predominant odorant among various 

chlorinous odor compounds, the odor threshold concentration of a trichloramine stock 

solution was compared to the actual threshold concentration in tap water treated by a 

conventional treatment process. Table 3.3 summarizes the threshold level of the 

trichloramine stock solution and tap water collected at location D. The TON value 

(dilution factor) of trichloramine solution, after the trichloramine concentration was 

adjusted to the same level as tap water, was approximately two times higher than tap 

water. The threshold level of the trichloramine stock solution was 22 !g/L as NCl3 or 

13 !g/L as Cl2, which was similar to the finding of a previous study (Bruchet et al., 
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2004). The detected concentration of trichloramine in tap water was 51 !g/L as NCl3 

or 30 !g/L as Cl2. The difference in detected trichloramine concentration between the 

trichloramine stock solution and tap water can be explained by the assumption that 

other odor compounds (e.g., N-chloroaldimines) serve as predominant odorants (odor 

threshold values of a few !g/L or less, which are much lower than trichloramine) 

(Freuze et al., 2005) and therefore interfere in the test of trichloramine’s odor 

contribution to heterogeneous odor. In other words, humans have a difficulty in 

distinguishing the trichloramine odor from other odors present in the tap water. Thus, 

chlorinous odorants in tap water may involve not only trichloramine, but other 

odorous compounds as well.  

 

Table 3.3 Average detected odor threshold level (6 panels). 

Trichloramine 

Parameters 

Tap Water Stock solution 

TON value 14 32 

Threshold level, !g /L as NCl3 (as Cl2) 50 (30) 22 (13) 

 

3.3.2 Odor threshold value of trichloramine  

 

The average odor threshold value of trichloramine of six panels was 22 !g/L as NCl3 

(13 !g/L as Cl2). The difference between this result and those in previous studies 

(Bruchet et al., 2004; Yanagibashi, 2008) may be due to the varying sensitivities of 

the panels, which depended on many factors such as age, gender, and experience with 

the sensory tests. To avoid underestimating the contribution of trichloramine, the odor 

threshold concentration of trichloramine is considered as the lowest value, 2 !g/L as 

Cl2 or 3.4 !g/L as NCl3 (Yanagibashi, 2008). 
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3.3.3 Influence of ammonium ion and bromide ion 

concentrations on the simultaneous control of chlorinous 

odor and bromate ion formation at an O3 dose of 2 mg/L 

 

The odor strength of chlorinated water (Control) without ozonation/AOP was around 

100, whereas YRW1 itself without chlorination presented relatively low odor strength 

(TON#7) (Figure 3.4). This result indicated that the main part of the odor in tap water 

after chlorination was mostly attributed to chlorinous odor. Comparison of the odor 

strengths between samples treated with chlorination alone and other conditions 

clearly showed that ozonation and AOP could reduce the odor strength by 50% or 

more for a fixed chlorine residual. On the other hand, no clear difference was 

observed in odor removal efficiency between ozonation and AOPs, even when the 

water samples were exposed to different amounts of •OH (Figures 3.4 and 3.5). This 

observation can be explained by the hypothesis that a major fraction of chlorinous 

odor precursors is reactive wiht both molecular O3 and •OH, while the rest is resistant 

to both molecular O3 and •OH. Thus, the removal of chlorinous odor may be 

unaffected by changes in •OH exposure. Changes in ammonium ion and bromide ion 

concentrations in raw water did not have major impacts on the odor strength. The 

average TON after chlorination of ozonated and AOP water was below 40.  
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Figure 3.4 Odor strengths after chlorination for various oxidation conditions (YRW1) 

 

In order to study the effect of •OH on the removal of chlorinous odor, the •OH 

exposure was calculated based on eq 2.6. Figure 3.5 shows the •OH exposure at 

different oxidation conditions. Ozonation was the most effective process for the 

formation of •OH indicated by •OH exposure for YRW1. When H2O2 was added, 

•OH exposure decreased by 15-30% (AOP0.5-AOP3). These results were unexpected 

by the author because additional H2O2 generally improves •OH formation (Acero and 

von Gunten, 2001; von Gunten, 2003a; 2003b). However, this result was similar with 

one previous study. Wert et al. (2009) mentioned that the presence of high 

concentration of •OH scavengers might cause a 10-40% reduction in •OH exposure. 

In addition, Kosaka et al. (2001 and references therein) reported that H2O2 could be 

either a promoter of •OH formation or a scavenger of •OH, depending on the 

concentration of the scavenger in the water. Thus, it was deduced that the 

concentration of promoters in YRW1 was sufficient for •OH formation, and H2O2 

added to YRW1 served as scavengers.  
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Figure 3.5 •OH exposure for various oxidation conditions (YRW1, pCBAt=0 0.5 !M) 

 

Figure 3.6 shows the bromate ion formation under various oxidation conditions. 

Clearly, the use of ozonation increased the bromate ion concentration compared with 

the control. When the bromide ion concentration was elevated to 100 !g/L, the 

bromate ion concentration exceeded the Japanese standard values. This result was in 

agreement with the previous works that ozonation of water with a bromide ion 

concentration above 100 !g/L could produce a significant concentration of bromate 

ion (von Gunten, 2003b). However, bromate ion formation could be reduced with 

AOPs by the addition of H2O2. von Gunten and Oliveras (1996) reported that H2O2 

possibly suppressed bromate ion formation by reducing hypobromous acid (HOBr) or 

hypobromite (OBr
-
) to bromide ion.  
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Figure 3.6 Bromate ion formation in various oxidation conditions (YRW1) 

 

Ammonium ion addition did not clearly reduce bromate ion formation. As was 

described previously, the effect of ammonium ion addition on bromate ion control 

though the conversion of HOBr to NH2Br is limited, and depends on the initial 

ammonium concentration (Pinkernell and von Gunten, 2001). Thus, YRW1 

(ammonium ion concentration = 36 !g/L) may have contained a sufficient amount of 

ammonium to scavenge HOBr, and the addition of ammonium ion to 100 !g/L did 

not further reduce the bromate ion concentration.   

 

For this set of experiments with YRW1, conventional ozonation and AOP0.5 could 

produce a sufficient exposure of •OH as indicated by the pCBA removal, and keep 

the bromate ion concentration below the Japanese standard value when operated 

under low bromide conditions. When water contains bromide ion above 100 !g/L, the 

higher ratio of H2O2 to O3 (e.g., AOP3) is needed to suppress the bromate ion in 

accordance with the Japanese standard value.  
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Figure 3.7 The formation of trichloramine in various oxidation conditions (YRW1) 

 

The effects of oxidation conditions on the trichloramine formation after chlorination 

are summarized in Figure 3.7. The addition of ammonium ion greatly enhanced 

trichloramine formation in samples pretreated with ozonation and AOPs before 

chlorination, whereas the others (baseline and bromide ion addition) showed a slight 

increase in trichloramine concentration. Since trichloramine formation directly 

depends on the ratio of chlorine to nitrogen (Cl/N) and initial nitrogen concentration 

(Jafvert and Valentine, 1992), the application of a high chlorine dose to quench 

excess H2O2 during AOPs may have resulted in a much higher conversion ratio to 

trichloramine. A theoretical calculation with a Complex Pathway Simulator 

(COPASI) for varying ammonium ion concentration at a fixed chlorine residual (1 

mg/L) showed that when the ammonium ion concentration was increased from 40 

!g/L to 1000 !g/L, the difference in trichloramine concentration was 9 !g/L or less 

as NCl3 (Satoh et al., 2009). Thus, no clear change in trichloramine formation was 

shown for chlorination alone when the ammonium ion concentration was adjusted to 

100 !g/L.  
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Figure 3.8 The relationship between odor strength and trichloramine (YRW1) 

 

Because the increase in trichloramine concentration observed after ozonation and 

AOP does not correspond to the odor strength (Figure 3.8), it is plausible that 

trichloramine may not be a major odor compound in chlorinated YRW1. The reduced 

odor strength is possibly due to the oxidation of precursors of other odor compounds 

of which chemical identities are still unknown.  

 

3.3.4 Effect of O3 dose (at typical values, 1 mg/L and 2 mg/L) 

during ozonation and AOP on chlorinous odor control 

 

Because a lower O3 dose is preferable for controlling bromate ion formation (Krasner 

et al., 1995; von Gunten, 2003a; Huang et al., 2003), ozonation and AOP experiments 

were conducted with YRW2 with varying O3 dose in a typical range, 1 and 2 mg/L. 

As the volume of Milli-Q water used to dilute the control sample was the same as the 
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volume of O3 solution injected into the samples, changing O3 dose from 2 mg/L to 1 

mg/L resulted in two “Control” samples, as seen in Figure 3.9. The change in O3 dose 

from 2 mg/L to 1 mg/L did not affect the odor strength following chlorination. The 

odor strengths of the control samples (chlorination alone) for O3 doses of 1 mg/L and 

2 mg/L were 138 and 95, respectively. The average of the remaining odor strengths 

for conventional ozonation and AOPs was 45. Because of some variation in the 

sensory test, it was difficult to conclude that the change of O3 in a typical dose (2 

mg/L or less) has an effect on the reduction of odor strength. A high dose of O3 is, 

however, not cost effective. The results again confirm that the use of ozonation and 

AOP can decrease the chlorinous odor by approximately 50% compared with 

chlorination alone.  

 

The results of •OH exposure for varying O3 dose from 2 mg/L to 1 mg/L are different 

from the previous data set shown in Figure 3.5. AOP0.5 and AOP1 were 

approximately 15% better than the conventional ozonation in terms of •OH exposure 

(Figure 3.10). Because H2O2 could be either a promoter or a scavenger (Kosaka et al., 

2001), it was considered that H2O2 was in large excess for AOP3, and that •OH was 

mostly scavenged by H2O2, leading to a lower oxidation capacity. The reduction of O3 

dose from 2 mg/L to 1 mg/L decreased •OH exposure by approximately 40% for all of 

the conditions. However, increasing the •OH exposure when operating under a typical 

O3 dose did not improve the efficiency of odor removal. The average odor strength of 

sample after treated by a series of ozonation (or AOP)/chlorination was approximately 

40. It is assumed that there is a limitation on odor removal through ozonation and 

AOP. A possible reason for this limitation on odor control is that the odor strength of 

the negative control (residual chlorine concentration at 1 mg/L in Milli-Q water) was 

approximately 20, which was high and was 50% of the odor strength of the sample 

following treatment with ozonation and AOP. Also, the remaining odor may be 

contributed by trichloramine (note that ammonium ion, which is a trichloramine 

precursor, can not be oxidized by O3 and •OH). 
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Figure 3.9 Odor strengths for O3 doses of 1 mg/L, and 2 mg/L (YRW2) 
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Figure 3.10 •OH exposures for O3 doses of 1 mg/L, and 2 mg/L  

(YRW2, pCBAt=0 0.5 !M) 
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Bromate ion formation during conventional ozonation and AOPs with O3 doses of 2 

mg/L and 1 mg/L is presented in Figure 3.11. Reducing the O3 dose from 2 mg/L to 1 

mg/L reduced bromate ion concentration by 60% for conventional ozonation, whereas 

for AOP0.5, AOP1, and AOP3, bromate ion concentration was suppressed to 3.5 

!g/L, 3.3 !g/L and 1.9 !g/L, respectively. A lower O3 dose resulted in a decrease in 

the oxidation efficiency for both •OH and O3 that led to the reduction of HOBr 

formation. Furthermore, AOPs have been found to be effective in reducing other 

DBPs, such as THMs and HAAs (Chin and Bérubé, 2005). According to the reasons 

described above regarding the control of DBP and •OH formation, AOP0.5 or AOP1 

operated with an O3 dose of 1 mg/L is proposed for the simultaneous control of odor 

and DBPs in drinking water, as long as other requirements (e.g., the decomposition of 

micropollutants) are met (See chapter 4).  
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Figure 3.11 Bromate ion formation for O3 doses of 1 mg/L, and 2 mg/L (YRW2) 
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Figure 3.12 Trichloramine formation for O3 doses of 1 mg/L, and 2 mg/L (YRW2) 

 

Lowering the O3 dose from 2 mg/L to 1 mg/L reduced the trichloramine formation for 

the AOPs, while no clear difference was observed in case of the conventional 

ozonation (Ozone) (Figure 3.12). An explanation similar to ones provided for 

previous experiments can be applied here. That is, the decrease of Cl/N ratio caused 

by the reduction of chlorine dose for quenching excess H2O2 when operated at an O3 

dose of 1 mg/L resulted in less trichloramine formation, whereas chlorine dose for 

chlorination of the control sample and ozonated sample (Ozone) did not significantly 

change. The higher trichloramine formation for O3 dose of 2 mg/L was the same 

reason as the explanation above for Figure 3.7. A higher Cl/N ratio resulted in an 

increase in trichloramine formation. Still, it is important to note that the increase in 

trichloramine concentration in AOPs operated with an O3 dose of 2 mg/L did not 

affect the odor following chlorination as shown in Figure 3.13. 
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Figure 3.13 The relationship between odor strength and trichloramine (YRW2) 

 

3.3.5 Effect of pH and extremely high O3 dose in 

conventional ozonation on chlorinous odor control 

 

To ozonate the test sample, the stock O3 solution was injected into the samples, 

depending upon the target O3 dose. The dilution of the samples was directly 

proportional to the O3 doses. Thus, the 3 samples of “Control” seen in Figure 3.14 

represent the control samples for different O3 dose for fair comparison. The 

chlorinous odor strength, indicated by the odor strength of the three control samples, 

was approximately 100. That is, the dilution of the samples for ozonation had a 

negligible effect on the odor evaluation. After chlorination of ozonated samples, the 

odor strength decreased by more than 50% when compared to samples treated with 

chlorination alone. The increase in O3 dose from 1 mg/L to 5 mg/L improved the 

efficiency of odor removal from 60% to 80%. It was deduced that the reduction in 

chlorinous odor intensity may result from the oxidation of precursors of chlorinous 
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odor by both O3 and •OH, and the treatment efficiency mainly depended on the O3 

dose compared to pH. A comparison of odor removal under different pH conditions 

(acidic and neutral) displayed an ambiguous trend, but lowering the pH showed the 

benefit on the control of bromate ion (Figure 3.15).  

 

0

50

100

150

200

1 3 5

Control

pH 6

pH 7

O
d

o
r 

S
tr

en
g

th
 (

T
O

N
)

Ozone dose (mg/L)
 

 

Figure 3.14 Odor strengths for a conventional ozonation with varying pH and O3 

dose (YRW3) 

 

Figure 3.15 suggests that lowering pH decreased the bromate ion concentration by 

approximately 50%. This is because lowering pH can suppress the conversion of 

BrO
-
/HBrO to BrO3

-
 (Pinkernell and von Gunten, 2001; von Gunten, 2003b). 

Ozonation with a high O3 dose (more than 2 mg/L) could not control bromate ion 

formation, even when the pH was changed to an acidic pH during ozonation. Thus, 

lowering the pH for the control of bromate ion formation is suggested for ozonation 

only with a typical O3 dose. Application of an extremely high O3 dose may need other 

options (e.g., additional H2O2) for keeping bromate ion below the standard value. 
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Figure 3.15 also indicates that lowering the pH has little effect on the •OH depression, 

as indicated by pCBA removal, when compared to the neutral pH condition. A similar 

result was obtained by von Gunten (2003a). Although elevation of •OH and 

molecular O3 itself by increasing O3 dose improved the removal efficiency of 

chlorinous odor, the change of oxidation capability with regard to lowering pH from 7 

to 6 did not increase odor strength.  
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Figure 3.15 Bromate ion formation and •OH exposure (Ct-value) during ozonation 

(YRW3, pCBAt=0 0.5 !M) 

 

Average trichloramine concentrations in the control samples with O3 doses of 1 mg/L, 

3 mg/L, and 5 mg/L were 72 !g/L, 67 !g/L, and 52 !g/L respectively (Figure 3.16). 

The decrease in trichloramine concentration observed in the control samples for O3 

doses of 3 mg/L and 5 mg/L resulted from the change of dilution corresponding to the 

ozone doses. Trichloramine concentrations of ozonated samples were higher than 

those of the control sample, and increased with increasing O3 dose. Furthermore, 

higher concentrations of trichloramine were observed at neutral pH compared to 
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acidic pH. This was due to the formation of ammonium ion resulting from the 

oxidation of organic-nitrogen compounds by ozonation.  
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Figure 3.16 Trichloramine formation during ozonation with varying pH and O3 dose 

(YRW3) 

 

The relationship between odor strength and trichloramine concentration shown in 

Figure 3.17 indicates that the increase in trichloramine concentration does not lead to 

an increase in the odor strength. Thus, it was deduced that trichloramine was not a 

major odor compound in drinking water. The remaining odor can be explained by 

reasons similar to those mentioned above. 

 

From three sets of experiments (involving YRW1, YRW2, and YRW3), the chlorine 

demands of ozonated samples were found to be slightly less than those of the control 

samples. Similar results were found by Glaze (1987). This decrease in chlorine 

demand was due to the oxidation of some organic compounds by residual O3 and •OH. 

Chlorine demands of water treated by AOP were higher than those of the control 
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samples due to the remaining H2O2 levels, which depended on the O3/H2O2 ratio used. 

In practice, the remaining H2O2 should be removed by other treatments (e.g., GAC, 

BAC) prior to chlorination, in order to decrease chlorine consumption.   
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Figure 3.17 The relationship between odor strength and trichloramine (YRW3) 

 

The suitable molar ratio of H2O2 to O3 for controlling odor and bromate ion formation 

at the same time was difficult to determine because it depended on characteristics of 

source water quality (e.g., O3 dose, pH, and bromide ion concentration). A higher 

ratio of H2O2 to O3 could reduce not only bromate ion but also •OH formation, which 

may sacrifice oxidation capacity. The •OH formation must therefore be taken into 

consideration for the simultaneous control of drinking water odor and bromate ion 

formation. Generally, AOP0.5 and AOP1 were the best processes for •OH production 

and bromate ion control. As shown above, the operation system may require 

modification such as a lower pH or higher molar ratio of O3/H2O2 due to variations in 

source water quality. Thus, it is necessary that the treatment system be flexible. 
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3.4 Conclusions 

 

A bench-scale ozonation reactor operated in batch mode was used to evaluate the 

possibility of chlorinous odor reduction by an advanced oxidation process. The major 

findings were as follows: 

• The use of ozonation and AOP (O3/H2O2 process) decreased the odor 

strength (TON) by more than 50% compared to chlorination alone.  

• No relationship between odor strength and trichloramine was observed. Thus, 

trichloramine was possibly a minor contributor to chlorinous odor.  

• Changes in O3 dose (in a typical range), pH, and ammonium ion and bromide 

ion concentrations during ozonation and AOP did not change the efficiency of odor 

removal compared with the odor removal efficiency by ozonation and AOP in normal 

condition of water. Increase O3 dose of 1 mg/L to extremely high concentration (5 

mg/L) improved chlorinous odor reduction by 20%. 

• The removal efficiency of chlorinous odor in water treated by AOP was 

similar to that of the water treated by conventional ozonation, but AOP was better for 

not only controlling DBP formation (e.g., bromate ion, THMs, and HAAs) but also 

enhancing •OH formation. With the fact that musty odor compounds (e.g., 2-MIB, 

geosmin) are resistant to O3, •OH may be required. Thus, AOP could be an alternative 

for the simultaneous control of chlorinous odor and DBP formation. 
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Chapter 4 

 

Minimization of Chlorinous Odor and Bromate Ion 

Formation by Ozonation and Advanced Oxidation 

Process (O3/H2O2 Process) with an Ozone Bubble 

Contactor 

 

 

Abstract – This study attempted the simultaneous control of chlorinous odor and 

bromate ion formation in a more practical set up. Water collected after sand filtration 

was fed through an ozone column contactor running with O3 doses of 1 and 4 mg/L. 

The molar ratios of hydrogen peroxide (H2O2) to ozone (O3) were controlled as 0 

(Ozone), 0.5 (AOP0.5), 1.0 (AOP1.0), and 2.0 (AOP2.0). Odor strength decreased 

approximately 50% by ozonation and AOP compared with chlorination alone. 

Increasing O3 dose resulted in a higher •OH exposure, which slightly enhanced the 

odor reduction. Upon comparing the performance between batch-mode reactor (O3 

served by dissolved O3) and ozone column reactor (O3 provided by flowing O3 gas) in 

terms of odor reduction, no discernable difference was observed. AOP0.5 produced 

the highest •OH exposure with an acceptable level of bromate ion, even when the O3 

dose was increased to 4 mg/L. This experiment confirmed that trichloramine is a 

minor odorous compound, and that AOP could be an alternative solution for the 

simultaneous control of chlorinous odor and bromate ion formation when 

concentrations of micropollutants (e.g., 2-MIB, geosmin) increased. 

 

 

4.2 Introduction 

 

Hydroxyl radical (•OH) is a very reactive and nonselective oxidant (Acero and von 
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Gunten, 2001). •OH formation is the key to the successful oxidation of ozone 

(O3)-resistant micropollutants (e.g., geosmin, 2-MIB) (von Gunten, 2003a; Peter and 

von Gunten, 2007). For the bench scale experiments in chapter 3, •OH formation was 

investigated without taking in account the effect of mixing condition and the O3 

transferred from gas phase. In contrast, for practical ozonation, the effect of hydraulic 

characteristics on •OH formation has to be taken into consideration (von Gunten et al., 

1999). Buffle et al. (2006) found that various mixing conditions during the reaction 

led to a different concentration of O3 and •OH in the initial state (instantaneous 

occurrence after addition of O3). Also, a change in O3 decomposition at the initial 

phase may result in a different molar ratio of •OH to O3 (Rct) including the bromate 

ion formation (von Gunten and Oliveras, 1997). Furthermore, the different 

mechanisms of O3 mass transfer (gas-to-liquid in practical ozonation; liquid-to-liquid 

in the experiments of previous chapter) may have significant effects on •OH and 

bromate ion formations. Therefore, the study of the control of chlorinous odor and 

bromate ion by ozonation and AOP in a more practical setup is necessary. To obtain a 

configuration similar to the real ozone contactor used in water treatment plants, an 

ozone column reactor is a simple option.  

 

This chapter attempted the simultaneous control of chlorinous odor and bromate ion 

formation using an ozone bubble column in continuous mode. The performance of 

ozonation and AOP in controlling chlorinous odor and bromate ion under different 

•OH exposure with an ozone bubble contactor is discussed and compared to the result 

in chapter 3. The contribution of trichloramine to drinking water odor was also 

evaluated using data obtained in continuous mode. Finally, the optimum condition for 

controlling odor and bromate ion formation was investigated. 

 

4.2 Materials and Methods 

 

4.2.1 Source water 

 

The water used in this chapter was obtained from a water treatment plant in the Kansai 
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area following treatment by sand filtration (RSF) (DOC, 1.0!0.1 mg/L; pH, 7.1!

0.2; Br
-
, 39!4 !g/L). 

 

4.2.2 Chemical preparation 

 

All chemical preparations were as described in chapter 3. 

 

4.2.3 Procedure 

 

A schematic diagram of the ozone bubble contactor is shown in Figure 4.1. The glass 

column reactor (working volume, 9 L; height, 1.8 m; inner diameter, 8 cm) was 

operated continuously in counter-current mode with water flowing downward and gas 

flowing upward. The pressure and flow rate of oxygen gas were maintained at 0.2 

Mpa and 0.25 L/min, respectively. O3 was generated from pure oxygen using an 

ozone generator (AZH-3S, Hamamatsu Vegetable). Remaining O3 in the gas phase 

was removed by activated carbon in a glass column prior to discharging it into the 

atmosphere. The RSF water was fed into the flow-through reactor at a flow rate of 

0.32 L/min.  

 

The molar ratios of H2O2 to O3 were controlled at 0.0 (i.e., ozonation, hereinafter 

called Ozone), 0.5 (AOP0.5), 1.0 (AOP1.0), and 2.0 (AOP2.0). Each condition of the 

H2O2-to-O3 ratio was run with an applied O3 dose of 1 and 4 mg/L approximately 

(note that O3 dose 1 mg/L is also for comparison with the data from chapter 3). 

Applied O3 dose is the mass of O3 added to unit volume of water entering a reactor 

vessel. H2O2 was injected into the ozone contactor under the water level to minimize 

the loss of H2O2 due to oxidation by O3 gas. Chlorinated samples without 

ozonation/AOP called the control samples. Chlorine residual after 24 hours was kept 

at 1 mg/L. 0.5 !M of p-chlorobenzoic acid (pCBA) was used as a probe compound of 

•OH. The remaining H2O2 after ozonation and AOP was quenched by sodium 

hypochlorite (NaOCl).  
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In order to investigate the flow pattern inside the ozone column reactor, tracer test was 

run with 1000 !g/L bromide ion (Br
-
) solution and pure oxygen using a tank-in-series 

model. All experiments were duplicated for quality control, except the experiments 

that utilized pCBA and the tracer test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic diagram of ozone bubble column 

 

4.2.4 Analytical Methods  

 

For ammonium ion analysis, a Shodex-IC-YS50 column protected with a guard 

column (Shodex-IC-YS-G) for separation was used with 2 mM of methanesulfonic 

acid solution as a mobile phase and a post-column fluorometric derivatization solution 

for the reaction of ammonia (post column reagent, o-phthaldialdehyde (OPA) 

solution; excitation light, UV at 364 nm; emission light, UV at 425 nm; injection 
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volume, 50 !L) (Kuo et al., 2005). Other analyses (pCBA, O3 dose, bromate ion, 

trichloramine, sensory test) were as listed in chapter 3. 

 

4.3 Results and Discussion 

 

4.3.1 Characterization of flow pattern of the ozone column 

contactor 

 

The hydraulic flow of the ozone contactor was characterized by a step input 

(continuous addition) of bromide ion, a positive step method of determining 

residence-time distribution. The model calculation using a tank in series model (two 

CSTRs (complete stirred tank reactors): volume of upper tank (V1), 2 L; volume of 

lower tank (V2), 7 L) showed a good fit with the observed data (Figure 4.2). The 

average concentrations of pCBA collected in the sampling ports were used to 

determine •OH exposure in each modeled tank. The design HRT (30 min) was similar 

to the data obtained from the tracer test (27.2 min). Therefore, the existing HRT (27.2 

min) was used to calculate •OH.  
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Figure 4.2 Cumulative residence-time distribution function, F(t), for the tracer test 
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4.3.2 Effect of ozonation and AOP on the control of chlorinous 

odor and bromate ion formation 

 

Tables 4.1 and 4.2 show the dissolved O3 concentrations in the ozone column reactor 

for applied O3 doses of 1 mg/L and 4 mg/L, respectively. Dissolved O3 concentration 

in the ozone column reactor was close to zero at an applied O3 dose of 1 mg/L. At an 

applied O3 dose of 1 mg/L, the percentage of O3 consumption, which was calculated 

by dividing the O3 consumption by the applied O3 dose, increased by 13% when H2O2 

was added, compared to the ozonation (Ozone) case. Raising the applied O3 dose to 4 

mg/L slightly increased the concentration of dissolved O3, but the efficiency of O3 

consumption in ozonation dropped by 20% compared to that of the 1 mg/L applied O3 

dose trial. The addition of H2O2 improved the efficiency of O3 consumption to more 

than 80%. This result can be explained by the faster decomposition of O3 when 

activated by H2O2 (von Gunten, 2003a). Such information on O3 adsorption efficiency 

is very useful for the improvement of existing ozone contactors in terms of reducing 

O3 usage and increasing oxidation capability. 

 

Odor strength (TON) in chlorinated water decreased by approximately 50% when 

ozonation or AOP was applied to raw water, compared to the control sample (Figure 

4.3). This result implies that O3 and/or •OH can oxidize precursors of chlorinous odor. 

Increasing the applied O3 dose to 4 mg/L, an extremely high O3 dose, slightly 

improved chlorinous odor removal (by 10-30%) in all samples except AOP2.0. 

However, no difference between ozonation and AOP in terms of odor removal was 

observed. The average odor strength for water treated with ozonation or AOP 

followed by chlorination was approximately 30. The same result was observed in 

chapter 3 when the O3 dose was increased to an extreme level. When the average of 

the odor strength was taken using the only one data set at a time (4 data points, after 

the highest and lowest odor strength were dropped), the lowest average odor strength  

(20) was achieved in one of the two AOP0.5 trials operated with an applied O3 dose of 

4 mg/L. When the average of the odor strengths was taken using both data sets (8 data 
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points total), the lowest average odor strength (26) was observed in the AOP1.0 case. 

Therefore, the ratio of H2O2 to O3 recommended for the achievement of chlorinous 

odor removal was in the range of 0.5 to 1.0.  
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Figure 4.3 Odor strengths after chlorination for various oxidation conditions 

 

The formation of bromate ion along the ozone column reactor with applied O3 dose of 

1 mg/L (a) and 4 mg/L (b) is shown in Figure 4.4. At an applied O3 dose of 1 mg/L, 

no significant formation of bromate ion was observed (below 10 !g/L). Increasing the 

applied O3 dose to an extreme level (4 mg/L) significantly elevated bromate ion 

concentration (to 18 !g/L). Bromate ion concentration decreased when H2O2 was 

added. AOP therefore succeeded in controlling bromate ion below the standard of 

drinking water quality, even when the applied O3 dose was increased to an extreme 

level (4 mg/L). Similar results were reported by von Gunten and Oliveras (1998). 
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Table 4.1 Summary of dissolved O3 concentrations for applied O3 dose of 1 mg/L, mg/L  

Distance from the inlet (cm)! O3 dose (mg/L)!
Conditions 

0! 30! 60! 90! 120! 150! 180! Input! Output! Consumed!

% O3 

consumption!

Ozone! 0! 0.019! 0.019! 0.050! 0.067! 0.089! 0.076! 1.3! 0.4! 0.9! 72!

AOP0.5! 0! 0.013! 0.013! 0.016! 0.016! 0.035! 0.020! 1.3! 0.2! 1.1! 85!

AOP1.0! 0! 0.005! 0.008! 0.003! 0.004! 0.011! 0.010! 1.3! 0.2! 1.1! 82!

AOP2.0!
0! 0.005! 0.008! 0.008! 0.007! 0.006! 0.004! 1.3! 0.2! 1.1! 84!

 

 

Table 4.2 Summary of dissolved O3 concentrations for applied O3 dose of 4 mg/L, mg/L 

Distance from the inlet (cm)! O3 dose (mg/L)!
Conditions 

0! 30! 60! 90! 120! 150! 180! Input! Output! Consumed!

% O3 

consumption!

Ozone! 0! 0.502! 0.485! 0.617! 0.640! 0.717! 0.634! 4.0! 1.9! 2.1! 52!

AOP0.5! 0! 0.022! 0.024! 0.035! 0.054! 0.075! 0.033! 4.2! 0.6! 3.7! 85!

AOP1.0! 0! 0.005! 0.016! 0.015! 0.013! 0.014! 0.014! 4.1! 0.6! 3.6! 86!

AOP2.0! 0! 0.012! 0.017! 0.012! 0.009! 0.016! 0.014! 4.2! 0.5! 3.7! 88!

6
2
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(a) Applied O3 dose 1 mg/L 
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Figure 4.4 Bromate ion formations for various oxidation conditions operated with 

(a) applied O3 dose of 1 mg/L and (b) applied O3 dose of 4 mg/L 
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4.3.3 Effect of •OH exposure on chlorinous odor control 

 

Using the assumption about a CSTR that the fluid at the inlet is instantaneously 

perfectly mixed, the fluid within the reactor is homogeneous mixture, and the 

concentration of substance within the reactor is the same as the outlet concentration 

(Metcalf and Eddy, 2003). The column reactor is generally translated into a series of 

tank reactors in numeric solutions because it is easier to analyze at steady state. The 

equations used to calculate •OH exposure for the ozone column reactor are shown in 

eqs. 4.1- 4.5. The assumptions underlying the equations are as follows: 

1. The volumetric flow rate into and out of the control volume is constant. 

2. The liquid within each CSTR is completely mixed. 

3. The control volume is considered at steady state. 

 

The oxidation rate of pCBA (r);  

           
  

! 

r =
dC

dt
= "k•OH/pCBA[•OH]CpCBA   (4.1) 

 

The mass balance of the system; 

 Accumulation rate = In – Out + Reaction rate  (4.2) 

          
  

! 

V
dCpCBA

dt
=Q(CpCBA0

"CpCBA ) + rV           (4.3) 

 

At steady state (

! 

dCpCBA

dt
= 0 ), substitute eq. (4.1) to (4.2);  

    

  

! 

[•OH] =
Q(CpCBA0

"CpCBA )

k•OH/pCBAVCpCBA

   (4.4) 

 

Thus, Ct-value can be obtained from; 

   

  

! 

Ct " value =
Q(CpCBA0

"CpCBA )

k•OH/pCBAVCpCBA

T    (4.5) 

 

where;  C = concentration of •OH, [•OH]; M 
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        T  = hydraulic retention time of pCBA, HRT; min 

 Q = flow rate; L/min
 

 CpCBA   = final concentration of pCBA; !M 

 CpCBA0  = initial concentration of pCBA; !M 

 V = volume of a tank; L 

 k•OH/pCBA = reaction rate of •OH with pCBA, 5 x 10
9
 M

-1
s

-1
 

 

Figure 4.5 shows the •OH exposure for various oxidation conditions. Increasing the 

applied O3 dose to 4 mg/L elevated the •OH exposure by more than 50%. It also 

clearly indicates that AOP0.5 was the most effective process for •OH formation. 

Similar results have been reported by von Gunten (2003a). AOP0.5 enhanced the •OH 

exposure to 0.69!10
-3

 !M•s and 2.41!10
-3

 !M•s at applied O3 doses of 1 and 4 

mg/L, respectively. While addition of H2O2 increased •OH exposure in AOP0.5, a 

decrease in •OH exposure in the range of 20-30% was observed for AOP1 and AOP2, 

compared to AOP0.5. This decrease may have resulted from the presence of excess 

promoters of •OH formation (Kosaka et al., 2001). As H2O2 can be either a promoter 

or inhibitor of •OH, H2O2 seems to act as an inhibitor of •OH for AOP1.0 and AOP2.0. 

The •OH exposure also greatly depended in O3 dose. The increase in applied O3 dose 

from 1 mg/L to 4 mg/L elevated the •OH formation by 100-250 %. 

 

It was also found that the •OH exposure in AOP0.5 was enhanced by more than 250% 

when the applied O3 dose was raised from 1 mg/L to 4 mg/L, while the •OH exposure 

in the conventional ozonation samples increased by only about 100% when the O3 

dose was raised. This result may be due to the 30% increase in O3 consumption at an 

applied O3 dose of 4 mg/L for AOP0.5 compared to ozonation, whereas the O3 

consumption efficiency at an applied O3 dose of 1 mg/L for AOP0.5 increased by only 

10% compared to ozonation (Tables 4.1 and 4.2). However, a significant reduction in 

chlorinous odor was not achieved by using an applied O3 dose of 4 mg/L compared to 

applied O3 dose of 1 mg/L. Odor strength only slightly decreased at higher •OH 

exposures. 
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Figure 4.5 •OH exposure for various oxidation conditions 
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Figure 4.6 The relationship between odor strength and •OH exposure 
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The relationship between •OH exposure and odor strength is shown in Figure 4.6. An 

increase in •OH exposure appeared to induce a slight reduction in odor strength. •OH 

may be effective in the oxidation of organic odor precursors (e.g., amino acids) 

(Leitner et al., 2002). Because NH4
+
, a trichloramine precursor, is not oxidized by 

•OH and O3, odor produced from trichloramine (odor contribution) may not be 

negligible. The effect of trichloramine on odor contribution is discussed later. 

 

In addition to the •OH exposure, the removal efficiency of natural odor compounds 

(i.e., geosmin and 2-MIB) was estimated. The calculations were based on eqs 4.6 and 

4.7.  

 

From eq. 4.4; 

    
  

! 

[•OH] =
Q

kV

C
0

C
"1

# 

$ 
% 

& 

' 
(    (4.6) 

    

  

! 

C

C
0

=
1

1+ kT[•OH]
   (4.7) 

 

where;  C = final concentration of odor compound; ng/L 

        C0  = initial concentration of odor compound; ng/L 

 T  = hydraulic retention time, HRT; min 

 Q = flow rate; L/min 

 V = volume of tank; L 

 k = reaction rate of •OH with odor compound (k•OH/geosmin = 7.8 x 10
9
 

M
-1

s
-1

; k•OH/2-MIB = 5.09 x 10
9
 M

-1
s

-1
) (Peter and von Gunten, 2007). 

 

The removal efficiencies of musty odor compounds by ozonation and AOPs are 

shown in Figure 4.7. The removal efficiency of geosmin was 87% for treatment with 

an applied O3 dose of 1 mg/L. The removal efficiencies for AOP0.5, AOP1, and 

AOP2 were 91%, 89%, and 88%, respectively when operated with applied O3 dose of 

1 mg/L. Increasing the applied O3 dose to 4 mg/L raised the geosmin removal 

efficiency to 95% for ozonation, while AOPs operated with an applied O3 dose of 4 
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mg/L succeeded in removing approximately 99% of geosmin. AOP with higher O3 

dose increased the removal efficiency of geosmin by approximately 10% compared to 

AOP with applied O3 dose of 1 mg/L. 

 

For 2-MIB, the removal efficiency was 75% for ozonation operated with an applied 

O3 dose of 1 mg/L. Addition of H2O2 enhanced the 2-MIB removal efficiencies by 

approximately 3%. Increasing the applied O3 dose to 4 mg/L yielded a 90% removal 

efficiency of 2-MIB, while a 95% removal was achieved when AOP0.5 was applied. 

For musty odor removal by ozonation and AOP, conventional ozonation with an 

applied O3 dose of 1 mg/L should be upgraded to an AOP in order to reduce natural 

odor compounds below their odor threshold concentration (geosmin, 4 ng/L; 2-MIB 

15 ng/L) when the concentrations of geosmin and 2-MIB in source water are more 

than 31 and 60 ng/L, respectively (Peter and von Gunten, 2007). For Japanese 

standard of drinking water quality (MHLW, 2008), the levels of both geosmin and 

2-MIB should be lower than 10 ng/L. Thus, AOP0.5 with an applied O3 dose of 1 

mg/L should be applied when the concentrations of geosmin and 2-MIB are more than 

77 and 40 ng/L, respectively. Although ozonation with higher O3 dose could oxidize 

the odor compounds below the regulation value, bromate ion was above the Japanese 

standard value as seen in Figure 4.4. AOP0.5 with a higher O3 dose is needed when 

the concentrations of geosmin and 2-MIB are higher than 125 ng/L and 83 ng/L, 

respectively. These results imply that ozonation needed to be upgraded to an AOP in 

order to achieve the simultaneous control of odor and bromate ion formation.  
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Figure 4.7 The estimation of removal efficiency of musty odor compounds by •OH 

(a) Geosmin and (b) 2-MIB 
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4.3.4 Effect of trichloramine on odor in chlorinated water 

 

Ammonium ion concentrations were measured in order to study the effect of O3 and 

•OH on the oxidation byproduct formation when organic compounds were oxidized. 

The results are shown in Figure 4.8. Initial concentrations of ammonium ion (in 

Control) were lower than the ammonium ion concentrations in water treated by 

ozonation and AOP. Ammonium ion concentrations increased by a factor of 2 to 3 

after ozonation and AOP. This result goes along with the assumption that ammonium 

ion is an ozonation byproduct that forms when nitrogenous organic compounds are 

oxidized (Shang et al., 1999; Berger et al., 1999; Leitner et al., 2002). The ammonium 

ion concentrations in samples treated with an applied O3 dose of 1 mg/L were higher 

than the concentrations in samples treated with an applied O3 dose of 4 mg/L. This 

disparity was attributed to the difference in the initial ammonium concentration, as 

observed in the control samples, and may have resulted because the sample used for 

the 1 mg/L and 4 mg/L applied O3 trials were collected on different days.  
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Figure 4.8 Ammonium ions for the various oxidation conditions 
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Figure 4.9 illustrates the relationship between trichloramine formation and ammonium 

ion concentration. As seen in the regression line (solid line, R
2
 = 0.858) of Figure 4.9, 

trichloramine formation highly depends on the level of ammonium ion following 

ozonation and AOP. The relationship between trichloramine formation and 

ammonium ion for control samples showed the different trend with other samples. 

This implied that the trichloramine precursors in control samples were possibly 

different from sample treated by ozonation and AOP. The plausible reason is that 

trichloramine in water treated by ozonation and AOP is produced from the reaction of 

chlorine to ammonium ion, whereas in control samples, trichloramine forms from 

chlorination of organic compounds.  
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Figure 4.9 The relationship between trichloramine formation and ammonium ion  

 

Figure 4.10 shows the formation of trichloramine under various oxidation conditions. 

Trichloramine formations in samples treated by an applied O3 dose of 1 mg/L were 

higher than the concentration in samples treated by an applied O3 dose of 4 mg/L 

because of the different initial concentrations of ammonium ion (Figure 4.8). 
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Although low concentrations of ammonium ion were observed in the control samples 

compared to samples treated by ozonation and AOP (Figure 4.8), the trichloramine 

concentrations in the control samples were sometimes higher than the concentration in 

samples treated by ozonation or AOP. This implies that the chlorination of organic 

compounds in RSF water (Control) produces trichloramine as a chlorination 

byproduct. 
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Figure 4.10 The formation of trichloramine under various oxidation conditions 

 

No clear relationship between trichloramine concentration and odor strengths was 

found as shown in Figure 4.11. That is, trichloramine was not a major odorous 

contributor to chlorinous odor in tested samples. The odor reduction may be 

influenced from the decrease of nitrogenous organic compounds (e.g., amino acids) in 

which its odor threshold concentrations lower than trichloramine odor threshold 

values (Bruchet et al., 2004; Freuze et al., 2005). 
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Figure 4.11 The contribution of trichloramine to odor in chlorinated water 

 

A limitation for the control of chlorinous odor was present with ozonation and AOP, 

as seen in the lack of a clear reduction in chlorinous odor even when the •OH 

exposure was increased to 2.41!10
-3

 !M•s. To determine if the observed limitation 

in chlorinous odor removal was caused by trichloramine, trichloramine concentrations 

for each sample were converted to a corresponding odor strength based on the lowest 

odor threshold concentration at 3.4 !g/L as NCl3 (Yanagibashi, 2008). The estimated 

odor contribution from trichloramine is the detected trichloramine concentration 

divided by odor threshold concentration of trichloramine (3.4 !g/L as NCl3). To 

calculate the odor contribution of trichloramine, the calculation based on the 

assumption that the dilution decreases only individual concentration of odor 

compound, and total odor strength is equivalent to the summation of individual odor 

strength. The comparison between the observed odor strengths and estimated odor 

strength values is shown in Figure 4.12. The estimated values of odor strength 

calculated from the trichloramine concentration made up only 20 to 30% of the 

observed odor strength in the control sample. This result verified that trichloramine is 
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a minor odor compound in water treated by conventional treatment processes (RSF 

and chlorination). Major odor contributors in the control samples are suspected to be 

products from the chlorination of organic compounds (e.g., amino acids), which have 

very low odor threshold values (less than 1 !g/L) (Freuze et al., 2005). Trichloramine 

had larger impact on the remaining odor strength of water pretreated by ozonation and 

AOP. The estimated odor strengths were equivalent to 40 to 80% of the observed data 

for samples treated by ozonation and AOP. This implied that trichloramine possibly 

caused perceptible chlorinous odor in drinking water even water treated by ozonation 

or AOP. In fact, tap water consists of several odor compounds (Brosillon et al., 2009). 

Thus, the remaining odor in water treated by ozonation and AOP also possibly caused 

by other unidentified chlorinous odorants. Brosillon et al. (2009) found that 

N-chloroaldimines exhibited in tap water and its concentration was close to their 

threshold level (1 !g/L) even that water was treated by ozonation. Thus, future study 

needs to focus on a combination of ozonation or AOP with ion exchange to remove 

remaining compounds causing chlorinous odor such as ammonium ion. 
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Figure 4.12 The comparison between odor strength estimated from trichloramine 

concentration compared with observed odor strength 
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4.3.5 The comparison of the performance between batch-mode 

reactor and ozone column contactor 

 

The results (e.g., TON, bromate ion, •OH exposure) were compared to the results of 

the previous chapter (O3 dose 1 mg/L without pH adjustment). In chapter 3, the 

experiments were conducted with the single injection of dissolved O3 into test samples, 

whereas practical ozonation normally provides continuous injection of O3 gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Differences in •OH formation between the two reactors may have a great impact on 

odor control with regard to the different •OH formation when gas-liquid contactor is 

applied for controlling odor (Buffle et al., 2006). The •OH exposures for both 

experiments were shown in Table 4.3. •OH exposures in ozone column reactor were 

higher than in bench scale reactor. This implied that ozonation reaction in the steady 

state, exhibited in ozone column reactor, plays an important role on the formation of 

•OH exposure. 

 

Table 4.3 The comparison of •OH exposures between batch-mode reactor and ozone 

bubble column (O3 dose of 1 mg/L) 

•OH exposure (!M!s) 
Conditions 

Batch-mode reactor Ozone bubble column 

Ozone 0.00012! 0.00060!

AOP0.5 0.00014! 0.00069!

AOP1.0 0.00013! 0.00062!

AOP2.0 n/d 0.00055!

AOP3.0 0.00010 n/d 

Note: n/d  no data  

 

Figure 4.13 summarizes the effects of •OH exposure on odor strength removal for 

both reactors, batch-mode reactor and ozone column reactor. Although batch-mode 

reactor had a lower •OH exposure than ozone column reactor, the remaining odor 

strength was similar (approximately 30-40). The remaining odor strengths were 
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suspected to be produced from unidentified chlorination products and trichloramine.   

 

0

20

40

60

80

100

120

140

0 0.0002 0.0004 0.0006 0.0008

Batch-mode reactor

Ozone column reactor
O

d
o
r 

st
re

n
g
th

 (
T

O
N

)

•OH exposure (!M•s)
 

 

Figure 4.13 The relationship between the formation of •OH exposures and odor 

strengths for batch-mode reactor and ozone column contactor 

 

Table 4.4 shows the formation of bromate ion in both reactors, batch-mode reactor 

and ozone column contactor, when O3 dose of 1 mg/L was applied. It is noted that the 

higher bromate ion concentration was observed when dissolved O3 was used. It was 

suspected that bromate ion may quickly form at the initial phase of ozonation, where 

predominant oxidant is •OH (rapid decomposition of O3) (Buffle et al., 2006). The 

mechanism of O3 gas transferred into water as a form of dissolved O3 in ozone column 

reactor is fast and complex (it probably changes to •OH immediately after contact to 

NOM), and that may result in a either short or long lifetime of dissolved O3 in a test 

solution. Because the injection of dissolved O3 solution greatly produced bromate ion 

than the used of O3 gas even the values of •OH exposure in batch-mode reactor were 

less, the O3 decomposition rate is suspected to play a major role of bromate ion 

formation (von Gunten, 2003b).  
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Table 4.4 The comparison of the bromate ion formation between batch-mode reactor 

(Br
-
 concentration in raw water = 37 !g/L) and ozone bubble column (Br

-
 

concentration in raw water =41"2.8 !g/L) at O3 dose of 1 mg/L 

Bromate ion concentration (!g/L) 
Conditions 

Batch-mode reactor Ozone bubble column 

Ozone 4.17! 2.00!

AOP0.5 3.46! 0.70!

AOP1.0 3.34! 0.25!

AOP2.0 n/d 0.15!

AOP3.0 1.87 n/d 

Note: n/d  no data  

 

4.4 Conclusions 

 

A series of ozonation and AOP experiments in continuous mode with an ozone 

column contactor was conducted in order to study the efficiency of odor removal at 

applied O3 doses of 1 mg/L and 4 mg/L in a more practical setup. The results are 

highlighted below: 

  

• Ozonation and advanced oxidation process (H2O2/O3 process) with ozone column 

reactor could minimize chlorinous odor by more than 40-50% compared with 

chlorination alone.  

• Odor strength of samples slightly decreased with increasing •OH exposure.  

• AOP succeeded to suppress bromate ion below the Japanese regulation of drinking 

water quality even when the O3 dose was increased to 4 mg/L.  

• The oxidation of organic compounds by ozonation and AOP in Yodo river water 

produced ammonium ion as end-products. 

• Trichloramine was a minor odorous contributor to chlorinous odor for water treated 

by conventional treatment.  

• A limitation is present for the control of chlorinous odor in drinking water treated 
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with ozonation or AOP. The lowest odor strength was approximately 30. 

• Upon comparing the performance of batch-mode reactor (reagent is dissolved O3) 

with ozone column reactor (reagent is O3 gas), there was no significant reduction in 

chlorinous odor.  

• •OH exposures in ozone column contactor were much higher than occurrence in 

batch-mode reactor, whereas bromate ion concentrations were lower in continuous 

mode. 

• Although the control efficiencies of chlorinous odor for ozonation and AOP in 

ozone column contactor were similar, AOP0.5 with O3 dose of 1 mg/L can 

simultaneously control odor and bromate ion below Japanese standard values when 

the concentrations of geosmin and 2-MIB are more than 77 ng/L and 40 ng/L, 

respectively. AOP0.5 with O3 dose of 4 mg/L is needed for odor control when the 

concentrations of geosmin and 2-MIB are higher than 125 ng/L and 83 ng/L, 

respectively. 
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Chapter 5  

 

Characterization of Chlorinous Odor Precursors by a 

Comprehensive Fractionation Technique 

 

 

Abstract – Waters treated by rapid sand filtration (RSF) and ozonation were 

characterized by a fractionation technique to study the primary fraction of NOM 

causing of chlorinous odor. The odor contribution, the dilution factors multiplied by 

the percentage of dissolved organic matter (DOM), in each fraction was determined 

by the triangle sensory test. The DOM of water treated by the filtration process mainly 

consisted of hydrophobic acid (HoA), transphilic (Trs), and hydrophilic acid (HiA) 

fractions, while only hydrophilic fraction was dominant in the ozonated water. Base 

fraction (Bas) was found to be the major organic precursor of chlorinous odor in water 

treated by RSF. Odor strength of ozonated water was mainly produced from the 

chlorination of HiA and hydrophilic neutral (HiN) fractions. Chlorination of base 

fraction required a high dose of chlorine. Ozonation had an effect on odor reduction 

by oxidizing and converting hydrophobic and base fractions to more hydrophilic 

fractions.  

 

 

5.1 Introduction 

 

Previous two chapters showed that ozonation could decrease chlorinous odor 

compared to chlorination alone, but its complete removal was difficult to achieve even 

with AOP. Since ozonation can oxidize and convert organic micropollutants into other 

forms (Owen et al., 1995), it may change the treatability of each treatment process 

depending on the characteristic of pollutants. In order to efficiently apply a treatment 

unit after ozonation for the control of chlorinous odor, all fractions of dissolved 
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organic matter (DOM) for waters after ozonation need to be characterized to find the 

remaining fraction causing chlorinous odor. Furthermore, in order to effectively apply 

ozonation for the control of chlorinous odor, the effects of ozonation on the fraction 

causing chlorinous odor need to be addressed.  

 

One common way to characterize DOM is to fractionate it into several isolates by a 

series of ion-exchange operation with several types of resins as shown in chapter 2. 

This chapter aims to evaluate the contribution of each DOM and ozonated DOM 

fraction to chlorinous odor with this technique.  

 

5.2 Materials and Methods 

 

5.2.1 Water Sample 

 

Water after treatment by rapid sand filtration at a water treatment plant in Osaka was 

stored at 4 ºC before fractionation. For the study of the contribution of DOM fractions 

to chlorinous odor, the filtrated water (hereinafter called to RSF1: dissolved organic 

carbon (DOC), 0.85 mg/L; ammonium ion (NH4
+
), 1 !g/L, bromide ion (Br

-
), 22 

!g/L) was sampled on December 1, 2009. The sensory tests were duplicated for all the 

fractions. To study the effect of ozonation on the DOM fraction responsible for 

chlorinous odor and remaining fractions in ozonated water, filtrated sample 

(hereinafter called to RSF2: DOC, 0.86 mg/L; NH4
+
, 2 !g/L, Br

-
, 40 !g/L) and 

ozonated water (hereinafter called to OW: DOC, 0.85 mg/L; NH4
+
, 4 !g/L, Br

-
, 7 

!g/L), were collected on March 4, 2010. OW was sampled after treated by a 

conventional ozonation (O3 dose, 1.75 mg/L; water flow rate, 0.32 L/min; reaction 

time, 30 min; water temperature, 9.5 ºC) with the same ozone bubble column used in 

the chapter 4.  
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5.2.2 Chemical and materials 

 

All chemicals used are described in chapter 3. 

 

For the fractionation, resin adsorption chromatography technique (Leenheer, 2004; Jo, 

2008) was employed in this study. Superlite
TM

 DAX-8 resin (40-60 mesh), 

Dowex
®
-Marathon

®
- MSC strong cation-exchange resin (20-50 mesh), Amberlite

®
 

XAD-4 (20-60 mesh), and Dowex
®
-Marathon

®
- MSA strong anion-exchange resin 

(20-50 mesh) were used for DOM separation. Organic compounds were separated into 

7 fractions including hydrophobic acid (HoA), hydrophobic neutral (HoN), 

hydrophobic base (HoB), hydrophilic base (HiB), hydrophilic acid (HiA), hydrophilic 

neutral (HiN), and transphilic (Trs). Original water, treated by either RSF or ozonation, 

called as “Control.” 

 

5.2.3 Procedure 

 

A series of different synthetic resins (e.g., DAX-8, MSC, XAD-4, MSA) were 

employed for fractionation of DOM mixtures into 7 classes: HoA, HoB, HoN, Trs, 

HiA, HiB, and HiN. The procedure of fractionation was divided into 3 major steps: 

cleaning process, fractionation, and desorption process. 

 

5.2.3.1 Cleaning process 

 

- DAX-8 and XAD-4 

 

I. Resins were rinsed with 1 mol/L NaOH daily for 5 successive days.  

II. The resins were sequentially washed by soxhlet extraction for 24 hr each with 

methanol, acetonitrile, and methanol before stored in methanol. 

III. The methanol was removed from the resins with pure water (hereinafter called 

Elix water), produced by Elix 10 kit Millipore system (Tokyo, Japan), by using a 

slurry technique in a large beaker. 
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IV. The resins were packed as methanol-water slurry into a glass column. 0.5 L (wet 

volume) of DAX-8 resin and 0.2 L (wet volume) of XAD-4 resin were used. Both 

resins were rinsed with Elix water until free of methanol (DOC concentration: less 

than 0.2 mg/L). It was required approximately 200 bed volumes (BV) of water to 

achieve this DOC level. 

V. The packed columns were rinsed several times with 10 BV of 0.1 mol/L NaOH 

and 0.1 mol/L HCl in turn, until the DOC concentration of the effluent reach 0.2 

mg/L or less. 

VI. When the resins were reused, the procedure 4 and 5 were repeated. 

 

- MSC 

 

I. Approximately 0.5 L (wet volume) of the resin was packed into a glass column, 

and then rinsed with Elix water until the DOC concentration of the effluent was 

less than 0.2 mg/L. 

II. 3 ~ 6 BV of 1 mol/L HCl was fed for the regeneration of the resin. 

III. Elix water was fed to the column until the pH of the effluent reach 5 or above. 

IV. Elix water was fed until the DOC concentration of the effluent was less than 0.2 

mg/L. 

 

- MSA 

 

I. Approximately 0.5 L (wet volume) of the resin was packed into a glass column, 

and then rinsed with Elix water until the DOC concentration of the effluent was 

less than 0.2 mg/L. 

II. 5 ~ 7 BV of 1 mol/L NaOH was fed for the regeneration of the resin. 

III. Elix water was fed until the pH of the effluent was below 9. 

IV. Elix water was fed until the DOC concentration of the effluent was less than 0.2 

mg/L. 
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Figure 5.1. The schematic diagram of the procedure for DOM fractionations 
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5.2.3.2 Fractionation 

 

Figure 5.1 shows the schematic diagram of the procedure for DOM fractionation. The 

fractionation procedure consists of three stages: 

 

- Stage 1. 

 

The columns of DAX-8, MSC, and XAD-4 were fixed to a stand in this order and 

connected in series. All the joints and tubings were made of Teflon. Elix water was 

fed at a flow rate of 15 BV/hr (125 mL/min) before 0.01 mol/L HCl was fed at a flow 

rate of 15 BV/hr replacing the solutions in the column and tubings. Water sample was 

adjusted to pH 2 with hydrochloric acid (HCl) before feeding to the columns at the 

flow rate of 15 BV/hr. The DOC concentrations of samples passed through DAX-8, 

MSC, and XAD-4 were called as DOC2, DOC4, and DOC5, respectively. The 

samples passing through the series of columns were collected, and its DOC was 

analyzed. The effluent from the XAD-4 resin was stored at 4 ºC before the stage 2. 

 

- Stage 2. 

 

The water sample passed through XAD-4 (DOM5) was neutralized to pH 7 with 

NaOH (products used for nitrogen analysis). If the DOC after neutralization (DOC5’) 

was increased, the difference of the DOC concentration between DOC5’ and DOC5 

was defined as blank. Then, the sample was passed through the MSA column at a flow 

rate of 200 mL/min. The effluent, HiN fraction, was collected, and its DOC 

concentration was measured and named as DOC6 before stored at 4 ºC.  

 

 - Stage 3. 

 

DAX-8 after washing was packed into a column and fixed to the stand. NaOH was 

added to 3 L of desorption solution (DOC7), collected after the desorption process 
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from MSC resins, to adjust the pH to 12. The sample was fed to the column of DAX-8 

resin at a flow rate of 25 BV/hr (40 mL/min) by the use of a milli-pump (SPC Cont, 

Waters). The DOC of the effluent was obtained as DOC8. For the desoption of the 

HoB fraction, approximately 5 BV (0.75 L) of 0.01 mol/L NaOH was fed at a flow 

rate of 25 BV/hr (40 mL/min) for washing the resin. The resin was reversed 

upside-down and fixed to the stand before 10 BV (1.5 L) of 75% of acetonitrile 

(CH3CN) was fed at a flow rate of 5 BV/hr (16 mL/min). The obtained effluent 

represented the HoB fraction. CH3CN was evaporated by a vacuum-rotary evaporator 

(Rotary evaporator RE 71, Yamato). 

 

5.2.3.3 Desorption process 

 

 - DAX-8 

 

I. Approximately 5 BV (2.5 L) of 0.01 mol/L of HCl was fed through a column at a 

flow rate of 15 BV/hr (125 ml/min) for washing the resin. 

II. The resin was reversed upside-down and fixed to the stand. 

III. 20 ~ 60 BV (10-30 L) of 0.01 mol/L NaOH was fed through a column at a flow 

rate of 5 BV/hr (~ 40 mL/min). The effluent (DOC = DOC3) was the HoA 

fraction. The DOC concentration (DOC3’) of 0.01 mol/L of NaOH was measured 

in advance. The subtraction of DOC3’ from DOC3 was defined as blank. 

IV. Elix water was fed through the column at a flow rate of 5 BV/hr (40 mL/min) until 

the pH of the effluent was below 9. 

V. Approximately 10 BV (5 L) of 75% of CH3CN was fed through the column at a 

flow rate of 5 BV/hr (40 mL/ min). The desorped solution from the DAX-8 resin 

was the HoN fraction. 

VI. CH3CN was evaporated by the vacuum-rotary evaporator. 

  

- MSC 

 

I. Approximately 5 BV (2.5 L) of Elix water was fed at a flow rate of 15 BV/hr (125 
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mL/min) for washing the resin. 

II. 6 BV (3 L) of 1 mol/L NaCl was fed at a flow rate of 125 mL/min. The DOC of 

effluent was noted as DOC7. 

 

- XAD-4 

 

I. Approximately 5 BV (1 L) of 0.01 mol/L HCl was fed through a column at a flow 

rate of 125 mL/min for washing the resin. 

II. The resin was reversed upside-down and fixed to the stand. 

III. 10 BV (2 L) of 75 % of CH3CN was fed at a flow rate of 40 mL/min. The effluent 

was the Trs fraction. 

IV. CH3CN was removed by the vacuum-rotary evaporator. 

 

- MSA 

 

I. Approximately 5 BV (2.5 L) of Elix water was fed at the flow rate of 200 mL/min 

for washing the resin. 

II. 6 BV (3 L) of 1 mol/L NaCl was fed at a flow rate of 200 mL/min. The effluent 

was the HiA fraction. 

 

5.2.3.4 DOC calculation of each fraction 

 

The DOC concentrations of the fraction obtained were calculated as follows: 

 

DOC of DOM = DOC1 (5.1) 

DOC of HoA = DOC3!volume of eluted sample/original sample (5.2) 

DOC of HoN  = DOC1 – DOC2 – HoA (5.3) 

DOC of HoB  = DOC7 – DOC8 (5.4) 

DOC of HiB = DOC8!volume of eluted sample/original sample (5.5) 

DOC of Trs  = DOC4- DOC5 (5.6) 

DOC of HiA = DOC5 – DOC6 (5.7) 
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DOC of HiN  = DOC6 (5.8) 

 

5.2.3.5 Concentration 

 

The isolates were concentrated by the use of vacuum-rotary evaporator (rotary 

evaporator RE71, Yamato). Then, the concentrate was filtrated by passing through 

GA-100 glass fiber filter (ADVANTEC, Toyo Koshi Kaisha, Ltd.). Then, the pH of 

the concentrated solutions was neutralized in order to minimize decomposition of 

organic compounds before stored at 4 ºC. 

 

5.2.3.6 Chlorination procedure 

 

The concentrations of DOC for all the fractions including the original samples were 

adjusted to approximately 1 mg/L. The solution pH was adjusted to 7 with HCl and 

NaOH before chlorination. The concentration of residual chlorine after 1 day was 

controlled at 1 mg/L. Then, the chlorinated samples were measured the TON value 

and trichloramine concentration. 

 

5.2.4 Analytical Methods 

 

The DOC of the samples was analyzed with a TOC-5000A analyzer (Shimadzu). The 

specific UV-absorbance (SUVA) has been shown to be a good indicator for aromatic 

content of aquatic NOM, especially UV-absorbance at 254 nm, UV254 (the most 

suggested to represent aromatic organic structure). UV-254 values were measured on 

a Multispec-1500 spectrophotometer (Shimadzu) using a 1 cm cell. SUVA values 

were calculated as the ratio of the UV-254 to a DOC concentration of particular 

samples. Other analyses (e.g., TON, ammonium ion, O3 gas) can be seen in chapter 3 

and 4. After fractionation of RSF1 waters, all the analyses were duplicated (set1 and 

set2) for quality control. 
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5.3 Results and Discussion 

 

This chapter aimed to characterize the contribution of DOM fractions to chlorinous 

odor after chlorination, and the fraction contributing to chlorinous odor after 

ozonation and chlorination. 
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Figure 5.2. The DOC concentrations and the percentage of DOM fractions in RSF1 

compared to the total DOM concentration (0.84 mg/L)  

 

The DOC concentrations and the percentage of the DOM fractions of RSF1 compared 

to the DOC of RSF1 itself (0.84 mg/L) were shown in Figure 5.2. HoA, HiA, and Trs 

fractions were the three major fractions of DOM (31%, 23%, and 18%, respectively).  

The concentrations were 0.267, 0.191, and 0.150 mg/L for HoA, HiA, and Trs, 

respectively. In contrast, the concentration (0.005 mg/L) of the HoB fraction was 

found to be negligible (less than 1% of DOM fractions). Similar results were reported 

from other studies that the HoB fraction in surface water was negligible (Imai et al., 

2001; Jo, 2008).  
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5.3.1 The contribution of DOM fractions to chlorinous odor 

 

Figure 5.3 shows the average values of odor strength and the contribution to odor 

strength of organic fractions. HiB fraction, which presumably consists of amino acids, 

presented the strongest average odor strength (140) among the DOM fractions for the 

fixed DOM concentration (1 mg/L). HiN fraction also presented relatively strong odor 

strength (TON = 71), compared to the TON value of the control sample (TON = 63). 

The other fractions showed less odor strength than the control sample. Thus, both HiB 

and HiN fractions were the major DOM fractions responsible for chlorinous odor. 
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Figure 5.3. Odor strengths and percentage contributions of odor strength for each 

organic fraction in RSF1 

 

While both HiB and HiN fractions were the main precursors of chlorinous odor based 

on the normalized DOC concentration, the HiB fraction was the main reason of 

chlorinous odor formation in RSF1 because of the highest percentage of odor strength 

contribution (13.3%) (note that odor strength contribution, calculated by the dilution 

factors multiplied by the percentage of DOM, is the percentage of odor produced from 
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chlorination of organic fractions in water source). Although the odor strength for a 

unit DOC was not significantly higher than other fraction, the HiA fraction was the 

second major contributor of chlorinous odor (TON = 10) when TON value (46) was 

multiplied by its DOC percentage (22.7%). The contribution of other fractions to odor 

was less than 10. The main cause of high contribution to odor strength in hydrophilic 

fractions (HiB and HiA fractions) is that a conventional treatment process (e.g., RSF) 

usually known as a process used for removing a hydrophobic organic fraction, 

whereas hydrophilic fraction cannot be significantly eliminated (Croué et al., 1993). 

Thus, many precursors of chlorinous odor like amino acids that are in hydrophilic 

fraction still exist in the water before chlorination, and its products after reacting to 

chlorine causes of chlorinous odor (Freuze et al, 2004; Freuze et al, 2005). 

 

Tables 5.1 and 5.2 show the chemical properties of RSF1 for sample sets 1 and 2, 

respectively. Because of the extremely low percentage of HoB fraction in the water, 

the parameters (e.g., trichloramine, odor strength) for the HoB fraction were analyzed 

once and data were shown in sample set 1. Even though the HoB fraction produced an 

extremely high concentration of trichloramine (251 !g/L as NCl3), it had the lowest 

percentage of odor contribution (less than 1%), indicating that it is not a significant 

fraction in odor formation. This is an evidence that trichloramine was not a major 

contributor of chlorinous odor. Interestingly, the chlorination of HoB fraction 

produced very high concentration of trichloramine although it contained low 

concentration of ammonium ion (3 !g/L). On the other hand, trichloramine 

concentrations were extremely low for HiB fraction (non detectable) even though HiB 

fraction contained the highest concentration of ammonium ion (60 and 119 !g/L for 

data sets 1 and 2, respectively) among the DOM fractions. This may be explained by 

the assumption that organic compounds in both HiB and HoB fractions are highly 

reactive to chlorine (faster than ammonium ion in case of organic compounds in HiB 

fraction), but their chlorination byproducts are different. The chlorination of HoB 

fraction may greatly produce inorganic chlorinated byproducts (e.g., trichloramines), 

whereas the chlorination of HiB fraction results in the formation of chlorinated 

organic byproducts.  
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Because bromide ion that is oxidized by chloramines or chlorines can lead to chlorine 

consumption (Gazda et al., 1995; Chang et al., 2001), high bromide ion concentration 

can cause the stability of trichloramine. Bromide ion concentrations before 

chlorination were presented in Tables 5.1 and 5.2. The concentrations of bromide ion 

for each fraction were rather low (less than 50 !g/L). With the previous finding in 

chapter 3 that the elevation of bromide ion to 100 !g/L did not affect the odor strength. 

Furthermore, the reaction of bromide ion to trichloramine was much slower than the 

oxidation of bromide ion by chlorine (Gazda et al., 1995). In addition, chlorine 

reactivity with ammonium ion is faster than bromide ion by 300 times (Deborde and 

von Gunten, 2008). Thus, the effects of bromide ion on the reaction between chlorine 

and ammonium ion were negligible. 

 

To estimate chlorine demand of organic compounds in each fraction, the consumption 

of chlorine by ammonium ion is considered. The formula to calculate chlorine 

consumption by ammonium ion based on the assumption that nitrogen gas (N2) is the 

major end-product as shown in eq. 5.9 with the molar ratio of 1.5:1. Chlorine demand 

by organic compounds in each fraction (excluding chlorine demand by ammonium 

ions) is summarized in Table 5.3. 

 

2NH4
+
 + 3HOCl       N2 + 3H2O + 5H

+
 + 3Cl

-
  (5.9)

 

 

Among organic fractions, HiB fraction presented the highest chlorine demand utilized 

by organic compounds (2.09 and 1.94 mg/L as Cl2 for the data sets 1 and 2, 

respectively). This is in agreement with a previous study that amino sugars and amino 

groups in Bas fraction (HiB+HoB) produce significant chlorine demand (Leenheer, 

2004). The second largest consumer of chlorine was HoA fraction. The chlorine 

demands consumed by organics in HoA fraction were 1.87 and 1.94 mg/L as Cl2 for 

data sets 1 and 2, respectively. This may result from high SUVA values in HoA 

fraction (0.027 and 0.025 cm
-1

•mg
-1

 for data sets 1 and 2, respectively) as seen in 

Tables 5.1 and 5.2. Since SUVA is known as a good surrogate of the aromatic content 

of NOM and aromatic content is unsaturated and high reactive component (Nikolaou 

et al., 2001; Chang et al., 2002; Fabris et al., 2008), these compounds can accelerate 
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the chlorination reaction causing of high chlorine demand. Another fractions (e.g., 

HoN, Trs, HiA) presented low SUVA (less than 0.010 cm
-1

•mg
-1

) and chlorine 

consumption by organic compounds (1.50 mg/L approximately) lower than HoA 

fraction. In a similar study, Weiss et al. (2004) also observed a higher SUVA value in 

hydrophobic fraction than hydrophilic fraction.  

 

In Table 5.4, odor strengths of the DOM fractions are compared with the contributions 

of trichloramine to odor strength. The estimated odor strength contribution from 

trichloramine is the detected trichloramine concentration divided by odor threshold 

concentration of trichloramine (3.4 !g/L as NCl3). Because of no contribution of 

trichloramine to odor in HiB and HiA fractions, it clearly indicated that organic 

compounds in HiB and HiA fractions were the major components causing chlorinous 

odor as mention above. The estimated odor strengths in original RSF water (22 and 39 

for data sets 1 and 2, respectively) were lower than observed odor strengths (67 and 

58 for data sets 1 and 2, respectively). This could be explained by that the major odor 

was not contributed by trichloramine, and its causes of chlorinous odor in RSF water 

are possibly included unidentified odor compounds and condition of chlorination 

(note that odor strength of negative control; residual chlorine concentration at 1 mg/L 

in Milli-Q water, was approximately 20). As mention in chapter 4, the assumption for 

the estimation of odor strength contributed by trichloramine is that the dilution 

decreases only individual concentration of odor compound, and total odor strength is 

equivalent to the summation of individual odor strength. In fact, the concentrations of 

each compound change when the water is diluted. Also, each odor chlorination 

byproduct may produce different odor, which it may interfere with the evaluation of 

trichloramine. Thus, the calculation of estimated odor strength from trichloramine 

included some discrepancy. That is why some fractions in sample set 1 (i.e., HoA, Trs, 

HoB) had estimated odor strengths that were higher than observed odor strengths.  

 

Chlorination of HiB fraction presented the highest odor strength, whereas 

trichloramine was not detected. The reason of strong odor formation from the 

chlorination of HiB fraction may be explained by the formation of organic odorants 

(e.g., N-chloroadimines, aldehydes) from the chlorination of organic compounds (e.g., 



 93 

amino acids) (Freuze et al., 2004; Freuze et al, 2005). In addition, high chlorine 

demand to oxidize organic compounds in HiB fraction has an impact on increase of 

chlorine flavor (Krasner and Barret, 1984). 
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Table 5.1 Chemical properties for sample set 1 of RSF1 

Parameters Control HoA HoN Trs HiA HoB HiB HiN 

Chlorine demand (mg/L)! 1.90! 1.95! 1.47! 1.42! 1.85! 1.37! 2.55! 1.75!

Residual chlorine (mg/L)! 0.97! 0.87! 0.84! 0.97! 0.87! 0.97! 0.82! 0.97!

Adjusted DOC (mg/L)! 0.85! 0.98! 1.03! 1.02! 0.92! 1.01! 0.91! 0.88!

NH4
+
 (!g/L)! 3! 10! 11! 9! 51! 3! 60! 40!

pH! 7.5! 7.35! 7.55! 7.36! 7.35! 7.10! 7.2! 7.64!

UV254 (cm
-1

)! 0.020! 0.026! 0.009! 0.000! 0.007! 0.001! 0.007! 0.004!

SUVA (cm
-1

•mg
-1

)! 0.024! 0.027! 0.009! 0.000! 0.008! 0.001! 0.008! 0.005!

Br
-
 (!g/L)! 20! 35! n/d! 4! n/d! n/d! n/d! 23!

NCl3 (!g/L as NCl3)! 74! 81! 84! 210! n/d! 251! n/d! n/d!

Note: n/d  Not detected   

9
4
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Table 5.2 Chemical properties for sample set 2 of RSF1 

Parameter Control HoA HoN Trs HiA HoB HiB HiN 

Chlorine demand (mg/L)! 1.90! 2.03! 1.48! 1.42! 2.00! ND.! 2.84! 2.05!

Residual chlorine (mg/L)! 0.92! 0.72! 1.02! 1.07! 0.82! ND. 1.02! 0.99!

Adjusted DOC (mg/L)! 0.86! 1.02! 0.98! 1.02! 0.94! ND. 0.86! 0.81!

NH4
+
 (!g/L)! 9! 12! n/d! 23! 97! ND. 119! 47!

pH! 7.5! 7.6! 7.6! 7.4! 7.4! ND. 7.0! 7.6!

UV254 (cm
-1

)! 0.021! 0.026! 0.010! 0.002! 0.011! ND. 0.009! 0.003!

SUVA (cm
-1

•mg
-1

)! 0.024! 0.025! 0.010! 0.001! 0.011! ND. 0.010! 0.003!

Br
-
 (!g/L)! 24! 47! 7! n/d! n/d! ND. n/d! 39!

NCl3 (!g/L as NCl3)! 131! 33! 82! 128! n/d! ND. n/d! 44!

Note: n/d  Not detected    

ND. No data        

 

 

 

 

 

 

 

 

 

 

9
5
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Table 5.3 Chlorine demands of organics in each fraction for RSF1  

Sample Parameters Control HiN HoA HiA HiB HoN Trs HoB 

Total chlorine demand (mg/L) 1.9! 1.75! 1.95! 1.85! 2.55! 1.47! 1.42! 1.37!

Chlorine consumption by ammonium ions (mg/L) 0.02! 0.30! 0.08! 0.39! 0.46! 0.08! 0.07! 0.02!Set 1 

Chlorine consumption by organics (mg/L) 1.88! 1.45! 1.87! 1.46! 2.09! 1.39! 1.35! 1.35!

Total chlorine demand (mg/L) 1.9! 2.05! 2.03! 2.00! 2.84! 1.48! 1.42! ND.!

Chlorine consumption by ammonium ions (mg/L) 0.07! 0.36! 0.09! 0.74! 0.90! n/d! 0.17! ND. Set 2 

Chlorine consumption by organics (mg/L) 1.83! 1.69! 1.94! 1.26! 1.94! 1.48! 1.25! ND. 

Note: ND. No data   

9
6
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Table 5.4 Observed odor strengths compared to the contribution of trichloramine in each fraction for RSF1  

Sample Parameters Control HiN HoA HiA HiB HoN Trs HoB 

Observed odor strength (observed TON) 67! 77! 17! 45! 95! 35! 52! 38!
Set 1 

Odor strength contributed from trichloramine 22! n/d! 23! n/d! n/d! 25! 61! 74!

Observed odor strength (observed TON) 58! 65! 34! 47! 186! 49! 50! ND.!
Set 2 

Odor strength contributed from trichloramine 39! 13! 10! n/d! n/d! 24! 38! ND.!

Note: n/d  Not detected    

ND. No data       

9
7
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5.3.2 The effect of ozonation on the DOM fractions contributing 

to chlorinous odor  

  

Water was collected at the outlet of RSF process and ozonation to study not only the 

influence of ozonation on the organic fraction causing chlorinous odor, but also the 

remaining fractions responsible for chlorinous odor after ozonation. The DOC 

concentrations of each fraction and the percentages of DOM for water before and 

after ozonation were summarized in Figure 5.4. DOM concentrations of RSF2 and 

OW were 0.858 and 0.849 mg/L, respectively. Thus, the DOM concentration of the 

control sample was unaffected by ozonation. Because the concentration of HoB 

fraction was negligible, base fraction (hereinafter called to Bas) was used for 

representing the combination of HoB and HiB in order to save time during the 

fractionation process. To obtain the DOC concentration of Bas fraction in DOC7, 

DOC4 was subtracted from DOC2. As seen in previous discussion that chlorination 

of HiB fraction produced strongest chlorinous odor, the concentration of Bas fraction 

was supposed to represent the major contributor of chlorinous odor in RSF2 water.  
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Figure 5.4. The DOC concentrations and the percentages of DOM fractions for 

RSF2 and OW 
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Ozonation changed the property of DOM significantly. The concentration of Bas 

fractions in RSF2 was 0.10 mg/L. After ozonation, DOC of Bas fraction was reduced 

by 50% as shown in Table 5.5. Similar trend was also found in the oxidation of 

hydrophobic fraction (HoA + HoN). After ozonation, the DOC concentration of HoA 

and HoN fractions decreased by more than 50%, whereas DOC concentrations of 

HiA, HiN and Trs fractions were increased after ozonation by 57%, 12%, and 16%, 

respectively. This can be explained with the hypothesis that O3 and •OH oxidize 

organic compounds in the hydrophobic fraction, and the products become more 

hydrophilic compounds (e.g., carboxylic acids, and alcohols). This assumption is 

supported by the information of ozonation that O3 and •OH can react quickly with 

double bonds, aromatic compounds and deprotonated amines (von Gunten, 2003a). 

Huang et al. (2005) also reported that the concentration of aromatics, amines and 

amino acids (exhibit in Base fraction) could be decreased by ozonation, whereas the 

increase of alcohols and aliphatic carboxylic acids were observed. Chang et al. 

(2002) found that ozonation could decrease aromatic C=C double bonds, whereas the 

structures of single bond (e.g., O-H, C-H) was present in ozonated water. Therefore, 

hydrophilic fraction became dominant in the ozonated water, accounting for more 

than 60% of DOM. Because the formation of harmful DBPs (e.g., THMs and HAAs) 

depends on types of organic fraction, changes of organic fractions after ozonation 

can potentially produce other DBPs (Marhaba et al., 2000). Although ozonation has 

been found to reduce the overall disinfection byproducts formation potential 

(DBPFP), which includes THMs and HAAs (Chiang et al., 2002), major organic 

fractions contributing to chlorinous odor can be changed after ozonation.  
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Table 5.5 The organic fractions for RSF2 and OW  

DOC (mg/L) 

Organic 

fraction 
RSF2 OW 

Removal 

Efficiency 

(%) 

Control 0.858! 0.849! 1!

HoA 0.245! 0.113! 54!

HoN 0.075! 0.017! 77!

Trs 0.160! 0.190! -16!

HiA 0.134! 0.314! -57!

Bas 0.100! 0.050! 50!

HiN 0.146! 0.166! -12!

Summation of 

fractions 
0.860! 0.850 -!

 

Figure 5.5 shows the odor strength for the fractions of water before and after 

ozonation. Odor strengths of several hydrophilic fractions (HiA, HiN and Trs) 

increased in the range of 30-50% after ozonation, while the odor strength of Bas 

fraction decreased approximately 60%. Furthermore, the TON value of HoA fraction 

decreased from 57 to 20 when RSF2 was ozonated. This may result from ozonation 

changes the structure of organic compounds in each fraction, and unidentified 

ozonation byproduct presents a different intensity of odor after chlorination. 

Although odor strength of hydrophilic fractions increased after ozonation, TON 

value of the control sample for OW decreased by 50% compared to RSF2. It was 

suspected that precursors of strong odor compounds in Bas or HoA fractions were 

oxidized by ozonation and the products from ozonation of organics in HoA and Bas 

fractions were in Trs, HiA, and HiN fractions in which its odor strength (TON) was 

less than the original odor compounds in HoA and Bas fractions.  

 

Because the DOC concentration of HiA fraction after ozonation greatly increased (by 

57%), the percentage of odor strength contribution for HiA fraction (21%) was 

higher than Bas fraction (3%). Thus, HiA found to be the major fraction causing 

chlorinous odor instead of the Bas fraction when the difference in DOC percentage 
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was considered (i.e., odor strength of each fraction was multiplied). Chlorination of 

HiN fraction in OW increased the percentage of odor strength contribution from 6 to 

14. That is, HiN was the second major contributor to chlorinous odor. This was 

possibly explained by the change in chemical structure after ozonation. 
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Figure 5.5. The odor strengths (TONs) and percentage contributions of odor 

strength for organic fractions of RSF2 and OW 

 

Tables 5.6 and 5.7 show the chemical properties of RSF2 and OW. High 

concentrations of ammonium ion in Bas fraction for RSF2 and OW (approximately 

120 !g/L) were observed, while trichloramine was not detected in Bas fraction. 

According to the previous assumption that the formation of trichloramine in Bas 

fraction is mainly from the chlorination of HoB fraction and the reaction of chlorine 

to HiB fraction is much faster than to ammonium ion in HoB fraction, Bas fraction of 

RSF2 mostly consisted of HiB fraction, and the concentration of HoB fraction was 

negligible. Thus, the chlorination of HiB fraction in Bas fraction was a predominant 

reaction for the formation of odor byproducts in RSF2. 
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The SUVA value for the control sample of RSF2 was reduced by the ozonation 

(0.010 to 0.001 cm
-1

•mg
-1

) as shown in Tables 5.6 and 5.7. Similar results were 

reported by Chang et al. (2002) and Chiang et al. (2002). This suggests that 

ozonation can effectively lower the SUVA value, which usually represents the 

quantity of unsaturated bonds in organic matters (Chang et al., 2002 and references 

therein). With the fact that unsaturated bonds in organic is reactive to chlorine. Thus, 

the reduction of SUVA can lead to the lower chlorine consumption. 

 

The chlorine demand of organic compounds (without ammonium ion effects) in each 

fraction was shown in Table 5.8. It indicated that ozonation changed chlorine 

demand. Chlorine demand decreased by 22% in the control sample of RSF2 

compared to OW. Similar results were found by Glaze (1987). Reduction of chlorine 

demand for HiA and Trs fractions after ozonation were 41 and 12%, respectively. 

Because ozonation can change the chemical structure of organic compound by 

reaction to double bonds, activated aromatic compounds, deprotonated amines (von 

Gunten, 2003a), this may affect chlorine reactivity of organic compounds. After 

ozonation, chlorine demand of HoA fraction also decreased by 10%. This can be 

explained by the great reduction of DOC concentration for HoA fraction after treated 

by ozonation (more than 50%). The chlorine demands for other fractions compared 

to OW changed only slightly (less than 10%). 

 

Table 5.9 presents the comparison between observed odor strengths and the 

contribution of trichloramine to odor strengths. It indicated that the estimated odor 

strength from trichloramine in the control sample of RSF2 was 25% of observed 

odor strength, while it was 80% of observed odor strength for control sample of OW. 

This indicated that trichloramine was minor odor compound in chlorinated water 

treated by conventional treatment, but it still caused chlorinous odor even water 

treated by ozonation. After ozonation, the main organic fractions causing chlorinous 

odor of the DOM isolates (with trichloramine effects) were HiA, HiN and Bas 

fractions with the odor strengths of 46, 55, and 56, respectively. 
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Table 5.6 Chemical properties for RSF2 

Parameter Control HoA HoN Trs HiA HiN Bas 

Chlorine demand (mg/L)! 2.00! 1.98! 1.32! 2.39! 1.74! 1.70! 3.06!

Residual chlorine (mg/L)! 0.99! 0.87! 0.89! 0.97! 0.78! 1.17! 1.12!

Adjusted DOC (mg/L)! 0.86! 1.11! 0.99! 1.09! 1.00! 0.81! 1.02!

NH4
+
 (!g/L)! 2! 92! 19! 52! 51! 105! 121!

pH! 7.1! 7.0! 6.8! 6.9! 7.5! 7.0! 7.2!

UV254 (cm
-1

)! 0.009! 0.009! 0.003! 0.010! 0.005! 0.000! 0.012!

SUVA (cm
-1

•mg
-1

)! 0.010! 0.008! 0.003! 0.009! 0.005! 0.000! 0.012!

Br
-
 (!g/L)! 40! 19! n/d! n/d! n/d! 47! n/d!

NCl3 (!g/L as NCl3)! 43! 38! 70! 111! 34! 41! n/d!

Note: n/d  Not detected   

1
0

3
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Table 5.7 Chemical properties for OW 

Parameter Control HoA HoN Trs HiA HiN Bas 

Chlorine demand (mg/L)! 1.57! 1.32! 1.34! 1.84! 1.32! 1.16! 2.94!

Residual chlorine (mg/L)! 1.28! 0.94! 1.08! 1.14! 0.77! 0.76! 1.22!

Adjusted DOC (mg/L)! 1.10! 1.02! 0.96! 0.98! 1.09! 0.87! 1.06!

NH4
+
 (!g/L)! 4! 22! 2! 10! 69! 33! 117!

pH! 7.3! 7.1! 7.1! 6.9! 7.2! 7.1! 6.9!

UV254 (cm
-1

)! 0.001! 0.006! 0.003! 0.006! 0.002! 0.000! 0.014!

SUVA (cm
-1

•mg
-1

)! 0.001! 0.006! 0.003! 0.006! 0.002! 0.000! 0.013!

Br
-
 (!g/L)! 7! 32! 6! n/d! n/d! 86! n/d!

NCl3 (!g/L as NCl3)! 68! 39! 36! 66! 34! 53! n/d!

Note: n/d  Not detected  

1
0

4
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Table 5.8 Chlorine demands of organics in each fraction for RSF2 and OW 

Sample Parameters Control HiN HoA HiA Bas HoN Trs 

Total chlorine demand (mg/L) 2.00! 1.70! 1.98! 1.74! 3.06! 1.32! 2.39!

Chlorine consumption by ammonium ions (mg/L) 0.02! 0.80! 0.70! 0.39! 0.92! 0.14! 0.40!RSF2 

Chlorine consumption by organics (mg/L) 1.98! 0.09! 1.28! 1.35! 2.14! 1.18! 1.99!

Total chlorine demand (mg/L) 1.57! 1.16! 1.32! 1.32! 2.94! 1.34! 1.84!

Chlorine consumption by ammonium ions (mg/L) 0.03! 0.25! 0.17! 0.52! 0.89! 0.02! 0.08!

 

 

OW 

Chlorine consumption by organics (mg/L) 1.54! 0.91! 1.15! 0.80! 2.05! 1.32! 1.76!

1
0

5
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Table 5.9 Observed odor strengths compared to the contribution of trichloramine in each fraction for RSF2 and OW  

Sample Parameters Control HiN HoA HiA Bas HoN Trs 

Observed odor strength (Observed TON) 52! 34! 57! 32! 141! 24! 24!
RSF2 

Odor strength contributed from trichloramine 13! 12! 11! 10! n/d! 20! 33!

Observed odor strength (Observed TON) 25! 71! 20! 56! 56! 24! 35!
OW 

Odor strength contributed from trichloramine 20! 16! 11! 10! n/d! 11! 19!

Note: n/d  Not detected   

1
0

6
 



 107 

 

As mentioned above that ozonation lowered SUVA values corresponding to the 

decrease of chlorine demand, the decrease of chlorinous odor possibly resulted from 

the reduction of Cl/N. Ozonation can also decrease chlorinous odor by converting 

chlorinous DBP precursors (e.g., amino acids) to non-chlorinous odor precursors (e.g., 

nitrate ion) (Berger et al., 1998; Leitner et al., 2002 and references therein). However, 

HiA and HiN fractions, main fractions causing chlorinous odor after ozonation, 

consist of organic compounds, and ammonium ions released after ozonation may not 

be negligible (discussed in chapter 4), it was suggested that ozonated water should be 

treated by a series process of granular activated carbon (GAC) or biological activated 

carbon (BAC) with an ion-exchange prior to chlorination in order to minimize the 

organic odor precursors and trichloramine precursor (NH4
+). 

 

5.4 Conclusions 

 

This chapter aims to characterize the DOM fractions causing chlorinous odor by the 

use of resin adsorption chromatography technique (fractionation). The results were 

summarized as follows: 

 

• HoA, HiA, and Trs fractions were major organic fractions in source 

water treated by RSF. 

• Base fraction, including HoB and HiB fractions, was the major 

contributor to chlorinous odor in river water treated by RSF. 

• Among organic fractions, HoB fraction was a major precursor of 

trichloramine. 

• Ozonation decreased chlorinous odor by the oxidation of hydrophobic 

and base fractions, and oxidized organic fractions became more 

hydrophilic.    

• Hydrophilic fractions (HiA, HiN, and Trs) were the major fractions in 

ozonated water. 

• HiA and HiN fractions were predominant precursors of chlorinous odor 
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in ozonated water. 
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Chapter 6 

 

Conclusions 

 

 

This research has addressed several issues on the control of chlorinous odor by the 

oxidation with O3 and •OH. The aim of this research is to accomplish safe and 

odorless drinking water by advanced oxidation process (AOP). The major findings in 

each chapter are summarized below:  

 

In chapter 3, a bench scale of ozonation reactor was used with batch-mode operation 

and various operating parameters in order to investigate the possibility of application 

of O3 and •OH for the control of chlorinous odor and bromate ion at the same time. 

The major findings are summarized here: 

• Ozonation and AOP (O3/H2O2 process) decrease chlorinous odor in 

drinking water by more than 50% compared to chlorination alone. 

• Odor strength reduction is clearly unaffected by pH, and bromide ion 

and ammonium ion concentrations. 

• Increase of O3 in a typical value (1-2 mg/L) does not have an effect on 

the improvement of odor strength removal, whereas an extremely high 

O3 dose slightly increase the efficiency of TON removal. 

• Trichloramine has no relationship with odor strength. Thus, 

trichloramine is a minor odorous contributor. 

 

In chapter 4, several conditions for ozonation obtained from previous chapter were 

performed with a pilot scale of ozone bubble contactor to attempt the simultaneous 

control of chlorinous odor and bromate ion formation in a more practical set up. The 
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major findings from this chapter are: 

• Ozonation and AOP (O3/H2O2 process) can decrease odor strength by 

more than 50% compared to chlorination alone. 

• H2O2 addition enhances •OH exposure, and the increasing •OH 

exposure has an effect on odor strength removal.  

• The oxidation of nitrogenous organic compounds by ozonation and 

AOP in Yodo river water produces ammonium ion as end-byproducts. 

• Trichloramine is a minor odorous contributor to chlorinous odor for 

water treated by conventional treatment, but its odor contribution can 

cause a limitation of odor control by ozonation and AOP (note that 

ammonium ion, a trichloramine precursor, cannot be oxidized by O3 

and •OH). 

• Comparing odor control by ozonation and AOP in batch-mode reactor 

with ozonation and AOP in ozone bubble contactor, no significant 

reduction in chlorinous odor is observed although •OH exposure in 

ozone bubble reactor is higher. Bromate ion formation in ozone column 

reactor is lower than in batch-mode reactor. 

• Based on the removal of musty odor compounds (e.g., geosmin and 

2-methylisoborneol (2-MIB)) by ozonation and AOP, the operation of 

AOP0.5 with an O3 dose of 1 mg/L can be a viable option for 

simultaneous control of odor compounds and bromate ion below their 

Japanese standard values when the concentrations of musty odor 

compounds in natural water increase to 77 ng/L and 40 ng/L for 

geosmin and 2-MIB, respectively. When the concentrations of geosmin 

and 2-MIB are higher than 125 ng/L and 83 ng/L, respectively, 

AOP0.5 with a higher O3 dose is needed. 

 

In chapter 5, the fractionation technique was applied to investigate the major 

precursors of chlorinous odor, and the O3-resistant organic compound causing 
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chlorinous odor. The major findings from this chapter are highlighted below: 

• NOM of source water treated by RSF is mainly composed of 

hydrophobic acid (HoA), hydrophilic acid (HiA), and transphilic (Trs) 

fractions. 

• Base fraction (Bas), including hydrophilic base (HiB) and hydrophobic 

base (HoB), is a major fraction of chlorinous odor precursors when 

water treated by conventional treatment processes. 

• Chlorination of HoB fraction produces a high concentration of 

trichloramine. 

• Ozonation has an effect on odor strength removal by oxidation of 

hydrophobic and Bas fractions, and oxidized organic fractions become 

more hydrophilic. 

• The major organic precursors of chlorinous odor in ozonated water are 

hydrophilic fractions (HiA and HiN).  
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Chapter 7 

 

Future Research 

 

 

This research has revealed our knowledge on the simultaneous control of chlorinous 

odor and bromate ion concentration by advanced oxidation process (O3/H2O2 

process). Also, the predominant organic fraction corresponding to precursors of 

chlorinous odor has been shown for water with and without ozonation. To produce 

odorless drinking water with ozonation, severally challenging research should be 

included from this study: 

 

1. With the information that high •OH exposure can improve the odor reduction, 

increase in O3 dose to extremely high dose such as 10 mg/L may improve the 

efficiency of chlorinous odor control. 

 

2. In this study, hydrophilic organic fraction was shown to be the predominant after 

ozonation. Also, trichloramine formation may not be negligible because ammonium 

ions are resistant to O3 and •OH. Thus, this useful information should be further 

examined by the series treatment of granular activated carbon (GAC) or biological 

activated carbon (BAC) and ion exchange after ozonation and AOP in order to 

eliminate or biodegrade the remaining odor precursors. 

 

3. Other separation technique such as molecular weight (MW) separation, carbon-13 

nuclear magnetic resonance (13C NMR) should be applied to identify the major 

precursor of chlorinous odor in each organic fraction. 
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4. According to this research was applied ozonation and AOP to oxidize odor 

precursors before chlorination. Other treatment process such as membrane filtration 

should be also evaluated. 

 

5. The contribution of other odorous organic DBP (i.e., N-chloaldimines, odorous 

aldehydes) should be evaluated for the control of chlorinous odor. 



 114 

References 

 

 

Acero, J.L., and von Gunten, U. : Characterization of oxidation processes: ozonation 

and the AOP O3/H2O2, J.-Am. Water Works Assoc., Vol. 93, pp. 90-100, 2001. 

 

Acero, J.L., and von Gunten, U. : Influence of carbonate on ozone/hydrogen peroxide 

based advanced oxidation process for drinking water treatment, Ozone Sci. Eng., Vol. 

21, pp. 305-328, 2000. 

 
American Public Health Association (APHA), American Water Works Association 

(AWWA) and Water Environment Federation (WEF). Standard Methods for the 

Examination of Water and Wastewater, 21st Edition, American Public Health 

Association, Washington DC, 2005. 

 

Ates, N., Kitis, M., and Yetis, U. : Formation of chlorination by-products in waters 

with low SUVA-correlations with SUVA and differential UV spectroscopy, Water 

Res., Vol. 41, pp. 4139-4148, 2007. 

 

Bao, M. L., Barbieri, K., Burrini, D., Griffini, O., and Pantani, F. : Determination of 

trace levels of taste and odor compounds in water by microextraction and gas 

chromatography-ion-trap detection-mass spectrometry, Water Res., Vol. 31, pp. 

1719-1727, 1997. 

 

Bartels, J.H.M., Burlingame, G.A., and Suffet, I.H. : Flavor profile analysis: taste and 

odor control of the future, J.-Am. Water Works Assoc., Vol. 83, pp. 50-55, 1986. 

 

Bader, H., Sturzenegger, V., and Hoigné, J.: Photometric method for the 

determination of low concentration of hydrogen peroxide by the peroxidase catalyzed 

oxidation of N, N-diethyl-p-phenylenediamine (DPD), Water Res., Vol. 22, pp. 

1109-1115, 1988. 

 



 115 

Berger, P., Leitner, K.V.N., Doré, M., and Legube, B. : Ozone and hydroxyl radicals 

induced oxidation of glycine, Water Res., Vol. 33, pp. 433-441, 1999. 

 

Bernard, A., Carbonnelle, S., Michel, O., Higuet, S., de Burbure, C., Buchet, J.P., 

Hermans, C., Dumont, X., and Doyle, I. : Lung hyperpermeability and asthma 

prevalence in schoolchild: unexpected associations with the attendance at indoor 

chlorinated swimming pools, , Occup. Environ. Med., Vol. 60, pp. 385-394, 2003. 

 

Bhandari, B. and Grant, M. : User satisfaction and sustainability of drinking water 

schemes in rural communities of Nepal, Sustainability: Sci., Practice, & Policy, Vol. 3, 

pp. 12-20, 2007. 

 

Boyer, T.H. and Singer, P.C. : Stoichiometry of removal of natural organic matter by 

ion exchange, Environ. Sci. Technol., Vol. 42, pp. 608-613, 2008. 

 

Brosillon, S., Lemasle, M., Renault, E., Tozza, D., Heim, V., and Laphanche, A. : 

Analysis and occurrence of odorous disinfection by-products from chlorination of 

amino acids in three different drinking water treatment plants and corresponding 

distribution networks, Chemosphere, Vol. 77, pp. 1035-1042, 2009. 

 

Bruchet, A., Costentin, E., Legrand, M.F., and Mallevialle, J. : Influence of the 

chlorination of natural nitrogenous organic compounds on taste and odors in finished 

drinking water, Water Sci. Technol., Vol. 25, pp. 323-334, 1992. 

 

Bruchet, A., Duguet, J.P., and Suffet, I.H. (Mel). : Review: Role of oxidants and 

disinfectants on the removal, masking and generation of tastes and odours, Environ. 

Sci & Bio/Tech., Vol. 3, pp. 33-41, 2004.  

 

Buchanan, W., Roddick, F., Porter, N., and Drikas, M. : Fractionation of UV and VUV 

pretreated natural organic matter from drinking water, Environ. Sci. Technol., Vol. 39, 

pp. 4647-4654, 2005. 

 



 116 

Buffle, M.O., Schumacher, J., Salhi, E., Jekel, M., and von Gunten, U. : Measurement 

of the initial phase of ozone decomposition in water and wastewater by means of a 

continuous quench-flow system : Application to disinfection and pharmaceutical 

oxidation, Water Res., Vol. 40, pp. 1884-1894, 2006. 

 

Cabinet Office, Government of Japan. <in Japanese> : National survey on water, 2009. 

 

Camel, V., and Bermond, A. : Review paper: the use of ozone and associated 

oxidation processes in drinking water treatment, Water Res., Vol. 32, pp. 3208-3222, 

1998. 

 

Chang, E.E., Lin, Y.P., and Chiang, P.C. : Effects on bromide on the formation of 

THMs and HAAs, Chemosphere, Vol. 43, pp. 1029-1034, 2001. 

 

Chang, C.N., Ma, Y.S., and Zing, F.F. : Reducing the formation of disinfection by 

products by pre-ozonation, Chemosphere, Vol. 46, pp. 21-30, 2002. 

 

Chiang, P.C., Chang, E.E., and Liang, C.H. : NOM characteristics and treatabilities of 

ozonation precesses, Chemosphere, Vol. 46, pp. 929-936, 2002. 

 

Chiang, P.C., Ko, Y.W., Liang, C.H., and Chang, E.E. : Modeling an ozone bubble 

column for predicting its disinfection efficiency and control of DBP formation, 

Chemosphere, Vol. 39, pp. 55-70, 1999. 

 

Chin, A., and Bérubé, P.R. Removal of disinfection by-product precursors with 

ozone-UV advances oxidation process, Water Res., Vol. 39, pp. 2136-2144, 2005. 

 

Croué, J.P., Lefebvre, E., Martin, B., and Legube, B. : Removal of dissolved 

hydrophobic and hydrophilic organic substances during coagulation/flocculation of 

surface waters, Water Sci. Technol., Vol. 27, pp. 143-152, 1993. 

 

Croué, J.P., Violleau, D., Bodaire, C., and Legube, B. : Removal of hydrophobic and 



 117 

hydrophilic constituents by anion exchange resin, Water Sci. Technol., Vol. 40, pp. 

207-214, 1999. 

 

Mizkan company (Culture for human life with Aqua). <in Japanese> : Dissatisfaction 

factors of drinking water quality, 2009. 

 

Deborde, M., and von Gunten. : Reactions of chlorine with inorganic and organic 

compounds during water treatment-kinetics and mechanisms: a critical review, Water 

Res., Vol. 42, pp. 13-51, 2008. 

 

Dietrich, A.M. : Aesthetic issues for drinking water, J. Water Health, Vol. 4, pp. 11-16, 

2006. 

 

Donnermair, M.M., and Blatchley III, E.R. : Disinfection efficacy of organic 

chloramines, Water Res., Vol. 37, pp. 1557-1570, 2003. 

 

Dotson, A., and Westerhoff, P. : Occurrence and removal of amino acids during 

drinking water treatment, J. Am. Water Works Assoc., Vol. 101, pp. 101-115, 2009. 

 

Echigo, S., Zhang, X.R., Lei, H., Smith, M.E. and Minear, R.A. : Evaluation of control 

strategies for disinfection byproducts for small water supplies using ozone as an 

alternative disinfection process, Water Sci. Technol.: Water Suppl., Vol. 9, pp., 

431-437, 2009.  

 

Elovitz, M.S., and von Gunten, U. : Hydroxyl radical/Ozone ratios during ozonation 

processes. I. The Rct concept, Ozone Sci. Eng., Vol. 21, pp. 239-260, 1999. 

 

Fabris, R., Chow, C.W.K., Drikas, M., and Eikebrokk, B. : Comparison of NOM 

character in selected Australian and Norwegian drinking water, Water Res., Vol. 42, 

pp. 4188-4196, 2008. 

 

Freuze, I., Brosillon, S., Arlot, J., Laplanche, A., Tozza, D., and Cavard, J. : Impact of 



 118 

UV-irradiation on the formation of odorous chloroaldimines in drinking water, 

Chemosphere, Vol. 63, pp. 1660-1666, 2006. 

 

Freuze, I., Brosillon, S., Herman, D., Laplanche, A., Démocrate, C., and Cavard, J. : 

Odorous products of the chlorination of phenylalanine in water formation, evolution, 

and quantification, Environ. Sci. Technol., Vol. 38, pp. 4134-4139, 2004. 

. 

Freuze, I., Brosillon, S., Laplanche, A., Tozza, D., and Cavard, J. : Effect of 

chlorination on the formation of odorous disinfection by-products, Water Res., Vol. 39, 

pp. 2636-2642, 2005. 

 

Froese, K.L., Wolanski, A., and Hrudey, S.E. : Factors governing odorous aldehyde 

formation s disinfection by-products in drinking water, Water Res., Vol. 33, pp. 

1355-1364, 1999. 

 

Gazda, M., Kumar, K., and Margerum, D. W. : Non-metal redox kinetics: oxidation of 

bromide ion by nitrogen trichloride, Inorg. Chem., Vol. 34, pp. 3536-3542, 1995. 

 

Glaze, W.H. : Drinking-water treatment with ozone, Environ. Sci. Technol., Vol. 21, 

pp. 224-230, 1987.  

 

Gottschalk, C., Libra, J.A., and Saupe, A. : Ozonation of water and waste water, 

Wiley-VCH Verlag GmbH, Federal republic of Germany, Weinheim D-69469, pp. 

176, 2000. 

 

Hargesheimer, E.E., and Watson, S.B. : Drinking water treatment options for taste and 

odor control, Water Res., Vol. 30, pp. 1423-1430, 1996. 

 

Hisamoto, Y. : Evaluation of chlorinous odor formation potential from dissolved 

organic nitrogen compounds, Bachelor thesis, Kyoto University, Japan, 2009. 

 

Hrudey, S.E., Gac, A., and Daignault, S.A. : Potent odor causing chemicals arising 



 119 

from drinking water disinfection, Water Sci. Technol., Vol. 20, pp. 55-61, 1988. 

 

Hrudey, S.E. : Review: chlorination disinfection by-products, public health risk 

tradeoffs and me, Water Res., Vol. 43, pp. 2057-2092, 2009. 

 

Huang, W.J., Fang, G.C., and Wang, C.C. : The formation and fate of disinfection 

by-products from ozonation of polluted raw water, Sci. Total Environ., Vol. 345, pp. 

261-272, 2005. 

 

Huang, W.J., Tsai, Y.Y., and Chu, C.H. : Evaluation of disinfection by-products 

formation during ozonation of bromide-containing ground water, J. Environ. Sci. 

Health., Vol. 38, pp. 2919-2931, 2003. 

 

IARC : Some chemicals that cause tumours of the kidney or urinary bladder in rodents 

and some other substances. Lyon, International Agency for Research on Cancer, 

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 73, pp. 

481–496, 1999. 

 

Imai, A., Fukushima, T., Matsushige, K., Inoue, T., and Ishibashi, T. <in Japanese> : 

Fractionation of dissolved organic carbon from the waters of Lake Biwa and its 

inflowing rivers, Jpn. J. Limnol., Vol. 59, pp. 53-68, 1998. 

 

Imai, A., Fukushima, T., Matsushige, K., and Kim, Y.H. : Fractionation and 

characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing 

rivers, and other organic matter sources, Water Res., Vol. 35, pp. 4019-4028, 2001. 

 

Imai, A., Matsushige, K., and Nagai, T. : Trihalomethane formation potential of 

dissolved organic matter in a shallow eutrophic lake, Water Res., Vol. 37, pp. 

4284-4294, 2003. 

 

Itoh, S., Shiro, S., Hirayama, N., Echigo, S., and Ohkouchi, Y. <in Japanese> : Factors 

related to citizens satisfaction with tap water and analysis of improvement needs in 



 120 

water supply system, Environ. Sanit. Eng. Res., Vol. 20, pp. 27-34, 2006. 

 

Jafvert, C.T., and Valentine, R. L. : Reaction scheme for the chlorination of 

ammoniacal water, Environ. Sci. Technol., Vol. 26, pp. 577-586, 1992.  

 

Jo, I. <in Japanese>: Contribution of hydrophilic and basic fraction of dissolved 

organic matter to the transformation potential of haloacetic acids by an comprehension 

fractionation technique, Master thesis, Kyoto University, Japan, 2008. 

 

Jung, HS., and Madjid, M. : A study on the relationship between biodegradability 

enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide, Water 

Res., Vol. 38, 2596-2604, 2004. 

 

Kajino, M. and Sakamoto, K. : The relationship between musty-odor-causing 

organisms and water quality in lake Biwa, Water Sci Technol., Vol. 31, pp. 153-158, 

1995. 

 

Karpel Vel Leitner, N., Berger, P., and Legube, B. : Oxidation of amino groups by 

hydroxyl radicals in relation to the oxidation degree of !-carbon, Environ. Sci. 

Technol., Vol. 36, pp. 3083-3089, 2002. 

 

Kim, J.H., von Gunten, U., and Mariñas, B.J. : Simultaneous prediction of 

Cryptosporidium parvum Oocyst inactivation and bromate formation during ozonation 

of synthetics waters, Environ. Sci. Technol., Vol. 38, pp. 2232-2241, 2004. 

 

Kirmeyer, G.J., Foust, G.W., Pierson, G.L., Simmler, J.J., and Lechevallier, M.W. : 

Optimizing chloramines treatment. Prepared for the American Water Works 

Association Research Foundation, 1993. 

 

Kosaka, K., Seki, K., Kimura, N., Furubayashi, H., and Asami, M. <in Japanese> : 

Development of an analytical method for trichloramine in drinking water by 



 121 

HS-GC/MS, Proc. 60th JWWA Annual Meeting, pp. 402-403, 2009. 

 

Kosaka, K., Yamada, H., Shishida, K., Echigo, S., Minear, R.A., Tsuno, H., and 

Matsui, S. : Evaluation of the treatment performance of a multistage ozone/hydrogen 

peroxide process by decomposition by-products, Water Res., Vol. 35, pp. 3587-3594, 

2001. 

 

Krasner, S.W., and Barrett, S.E. : Aroma and flavor characteristics of free chlorine 

and chloramines, Proc. AWWA WQTC, AWWA, Denvor, Colo., pp. 381- 398, 1984. 

 

Krasner, S.W., Gramith, J.T., Coffey, B.M., Yates, R.S. : Impact of water quality and 

operational parameters on the formation and control of bromate during ozonation, 

Water Suppl., Vol., 13, pp. 145-156, 1995. 

 

Kuo, C.T., Wang, P.Y., Wu, C.H. : Fluorometric determination of ammonium ion by 

ion chromatrography using post column derivatization with o-phthaldialdehyde, J. 

Chromatogr., A., Vol. 1085, pp. 91-97, 2005.   

 

Lee, K.H. : Formation of ketoacids and AOC during ozonation in drinking water, 

Environ. Eng. Res., Vol. 11, pp. 293-302, 2006. 

 

Leenheer, J.A. : Comprehensive assessment of precursors, diagenesis, and reactivity to 

water treatment of dissolved and colloidal organic matter, Water Sci. Technol.: Water 

Suppl., Vol. 4, pp. 1-9, 2004. 

 

Leitner, N.K.V., Berger, P., and Legube, B. : Oxidaion of amino groups by hydroxyl 

radicals in relation to the oxidation degree of the !-Carbon, Environ. Sci. Technol., 

Vol. 36, pp. 3083-3089, 2002.   

 

MaGuire, M.J. : Off-flavour as the consumer’s measure of drinking water safety, 

Water Sci. Technol., Vol. 31, pp. 1-8, 1995. 



 122 

 

Marhaba, T.F., and Van, D. : The variation of mass and disinfection by-product 

formation potential of dissolved organic matter fractions along a conventional surface 

water treatment plant, J. Hazard. Mater., A74, Vol. 74, pp. 133-147, 2000. 

 

Massin, N., Bohadana, A.B., Wild, P., Héry, M., Toamain, J.P., and Hubert, G. : 

Respiratory symptoms and bronchial responsiveness in lifeguards exposed to nitrogen 

trichloride in indoor swimming pools, Occup. Environ. Med., Vol. 55, pp. 258-263, 

1998. 

 

Matsui, Y., Ando, N., Sasaki, H., Matsushita, T., and Ohno, K. : Branched pore kinetic 

model analysis of geosmin adsorption on super-powdered activated carbon, Water 

Res., Vol. 43, pp. 3095-3103, 2009. 

 

Metcalf & Eddy, Tchobanoglous, G., Burton, F. L., and Stensel, H. D. : Wastewater 

Engineering, Treatment and Reuse, 4th Edn, McGraw Hill Education, pp. 1329, 2003. 

 

Ministry of Health, Labor and Welfare (MHLW), Japan : The revision of drinking 

water quality standard, (in Japanese), 2008. 

 

Nakai, J.S., Poon, R., Lacavalier, P., Chu, I., Yagminas, A., and Valli, V. E. : Effect of 

subchronic exposure of rats to dichloramine and trichloramine in drinking water, 

Regul. Toxicol. Pharmacol., Vol. 31, pp. 200-209, 2000. 

 

Neumann, M.B., von Gunten, U., and Gujer, W. : Sources of parameter uncertainty in 

predicting treatment performance: the case of preozonation in drinking water 

engineering, Environ. Sci. Technol., Vol. 41, pp. 3991-3996, 2007. 

 

Nikolaou, A.D., Kostopoulou, M.N., and Lekkas, T.D. : Organic by-products of 

drinking water chlorination, Global Nest: the Int. J., Vol. 1, pp. 143-156, 1999. 

 

Nikolaou, A.D., and Lekkas, T.D. : The role of natural organic matter during 



 123 

formation of chlorination by-products: a review, Acta hydrochim. Hydrobiol., Vol. 29, 

pp. 63-77, 2001. 

 

Owen, D.M., Amy, G.L., Chowdhury, Z.K., Paode, R., Mccoy, G., and Viscosil, K. : 

NOM characterization and treatability, J.-Am. Water Works Assoc., Vol. 87, pp. 46-63, 

1995. 

 

Peter, A., and von Gunten, U. : Oxidation kinetics of selected taste and odor 

compounds during ozonation of drinking water, Environ. Sci. Technol., Vol. 41, pp. 

626-631, 2007. 

 

Pinkernell, U., and von Gunten, U. : Bromate minimization during ozonation: 

Mechanistic considerations, Environ. Sci. Technol., Vol. 35, pp. 2525-2531, 2001. 

 

Pomes, M.L., Larive, C.K., Thurman, E.M., Green, W.R., Orem, W.H., Rostad, C.E., 

Copten, T.B., Cutak, B.J., and Dixon, A.M. : Sources and haloacetic 

acid/trihalomethane formation potentials of aquatic humic substances in the 

Wakamura River and Clinton Lake near Lawrence, Kansas, Environ. Sci. Technol., 

Vol. 34, pp. 4278-4286, 2000. 

 

Satoh, N., Echigo, S., Itoh, S., and K. Kosaka <in Japanese>, Control of bleach odor 

compounds by ion exchange treatment, Environ. Sanitary Eng. Res., Vol. 23, pp. 

112-115, 2009. 

 

Schurter, L.M., Bachelor, P.P., and Margerum, D.W. : Nonmetal redox kinetics: 

Mono-, Di-, and Trichloramine reactions with cyanide ion, Environ. Sci. Technol., 

Vol. 29, pp. 1127-1134, 1995. 

 

Shang, C., and Blatchley III, E.R. : Differentiation and quantification of free chlorine 

and inorganic chloramines in aqueous solution by MIMS, Environ. Sci. Technol., Vol. 

33, pp. 2218-2223, 1999. 

 



 124 

Suffet, I.H., Corado, A., Chou, D., McGuire, M.J., and Butterworth, S. : AWWA taste 

and odor survey, J.-Am. Water Works Assoc., Vol. 88, pp. 168-180, 1996. 

 

Suffet, I.H.(Mel), Schweitzer, L., and Khiari, D. : Olfactory and chemical analysis of 

taste and odor episodes in drinking water supplies, Environ. Sci. & Bio/Technol., Vol. 

3, pp. 3-13, 2004. 

 

Terauchi, N., Ohtani, T., Yamanaka, K., Tsuji, T., Sudou, T., and Ito, K. : Studies on a 

biological filter for musty odor removal in drinking water treatment processes, Water 

Sci. Technol., Vol. 31, pp. 229-235, 1995. 

 

Ueno, H., Moto, T. Sayato, Y., and Nakamuro, K. : Disinfection by-products in the 

chlorination of organic nitrogen compounds: by-products from Kynurenine, 

Chemosphere, Vol. 33, pp. 1425-1433, 1996. 

 

von Gunten, U. : Review: Ozonation of drinking water: Part I. Oxidation kinetics and 

product formation, Water Res., Vol. 37, pp. 1443-1467, 2003a. 

 

von Gunten, U. : Review: Ozonation of drinking water: Part II. Disinfection and 

by-products formation in presence of bromide, iodide or chlorine, Water Res., Vol. 37, 

pp. 1469-1487, 2003b. 

 

von Gunten, U., Elovitz, M., and Kaiser., H.-P. : Calibration of full-scale ozonation 

systems with conservative and reactive traces, J. Water SRT-Aqua, Vol. 48, pp. 

250-256, 1999. 

 

von Gunten, U., and Oliveras, Y. : Kinetics of the reaction between hydrogen 

peroxide and hypobromous acid: Implication on water treatment and natural systems, 

Water Res., Vol. 31, pp. 900-906, 1997. 

 

von Gunten, U., and Oliveras, Y. : Advanced oxidation of bromide-containing waters: 

bromate formation mechanism, Environ. Sci. Technol., Vol. 32, pp. 63-70, 1998. 



 125 

 

Weaver, W.A., Li, J., Wen, Y., Johnston, J., Blatchey, M.R., and Blatchey II, E.R. : 

Volatile disinfection by-product analysis from chlorinated indoor swimming pools, 

Water Res., Vol. 43, pp. 3308-3318, 2009. 

 

Weiss, W.J., Bouwer, E.J., Ball, W.P., ÓMelia, C.R., Aboytes, R. and Speth, T.F. : 

Riverbank filtration: Effect of ground passage on NOM character, J. Water Suppl.: Res. 

Technol., Vol. 53, pp. 61-83, 2004. 

 

Welte, B., and Montiel, A. : Study of the possible origins of chlorinous taste and odour 

episodes in a distribution network, Water Sci. Technol., Vol. 40, pp. 257-263, 1999. 

 

Wert, E.C., Rosario-Ortiz, F.L., and Snyder, S.A. : Effect of ozone exposure on the 

oxidation of trace organic contaminants in wastewater, Water Res., Vol. 43, pp. 

1005-1014, 2009. 

 

Williams, D.T., LeBel, G.L., and Benoit, F.M. : Disinfection by-products in Canadian 

drinking water, Chemosphere, Vol. 34, pp. 299-316, 1997. 

 

Wolfe, R.L., Ward, N.R., and Olson, B.H. : Inorganic chloramines as drinking water 

disinfectants: a review, J.-Am. Water Works Assoc., Vol. 76, pp. 74-88, 1984.  

 

World Health Organization (WHO): Guidelines for safe recreational water 

environments, Vol. 2: swimming pools and similar environments, 2006.  

 

World Health Organization (WHO): Guidelines for drinking-water quality, third 

edition incorporating the first and second agenda, Vol. 1, Recommendations, 2008.  

 

Yanagibashi, Y. <in Japanese> : A study on inhalation exposure of chemicals in 

drinking water, Ph.D. Dissertation, Kyoto University, Japan, 2008.  

 

Yee, L.F., Abdullah, M.P., Abdullah, A. Ishak, B., and Abidin, K.N.Z. : 



 126 

Hydrophobicity characteristics of natural organic matter and the formation of THM, 

Malaysian J. Anal. Sci., Vol. 13, pp. 94-99, 2009. 

 

Yiin, B.S., and Margerum, D.W. : Non-metal redox kinetics: reaction of trichloramine 

with ammonia and with dichloramine, Inorg. Chem., Vol. 29, pp. 2135-2141, 1990. 

 

Zazouli, M.A., Nasseri, S., Mahvi, A.H., Mesdaghinia, A.R., Younecian, M., and 

Gholami, M. : Determination of hydrophobic and hydrophilic fractions of natural 

organic matter in raw water of Jalalieh and Tehranspars water treatment plants 

(Tehran), J. Appl. Sci., Vol. 7, pp. 2651-2655, 2007. 

 

Zhang, X., Echigo, S., Lei, H., Smith, M.E., Minear, R.A., and Talley, J.W. : Effects 

of temperature and chemical addition on the formation of bromoorganic DBPs during 

ozonation, Water Res., Vol. 39, pp. 423-435, 2005.  

 

 


