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Abstract 

The traditional automated line production is hard to deal with the diversified and rapid changing 
requirements of consumers anymore. This is because the automated line production systems are 
inflexible and are not easy to alter a design or production process after a production line is 
implemented. As a result, cell production is turned to be the manufacturing style that suits to the 
modern agile manufacturing philosophy, which focuses on meeting the demands of customers by 
adopting flexible and reconfigurable manufacturing practices. Cell production has the mass 
production line split into a number of self-contained units. Each cell is responsible for a significant 
part of the finished article and, rather than each person only carrying out one very specific task, team 
members are skilled at a number of roles. Therefore, in cell production, it is easy to reconfigure 
workplace and is flexible to assign jobs for new manufacturing tasks. So far, cell production is still 
mainly implemented by human workers.  

On the other hand, because of the increasing human labor cost and long training time for novice 
workers, along with the fast advances of robotics technology and factory automation technology, 
robot cell production or autonomous cell production robotic systems will stand for the future 
development direction of the manufacturing industry. Currently, robot cell production is still in its 
initial developing stage. A critical problem of robot cell production is that the task of teaching robots 
is excessively time-consuming, which leads to increase in time cost and becomes the bottleneck of 
increasing the flexibility and popularity of robot cell production.  

The essence of teaching robots is to transfer knowledge from human workers to robots. Thus, to 
solve the robot teaching problem, it is significant to acquire human knowledge for robots and make 
robots be able to automatically and properly reuse the acquired knowledge for similar new 
manufacturing tasks. Herein, the human knowledge refers to how human workers adjust the robot 
program for a certain manufacturing task according to the given environment state by tuning the 
positions of seizing/placing points of the target workpiece, by inserting intermediate points and time 
delays in the motion trajectory, or by changing the robot motion speed and so on. Such human 
knowledge plays a crucial role in ensuring and improving the stability and efficiency of the 
performance of the industrial robots, especially when they are set into the automatic running mode. 

Thus, by acquiring and reusing the human knowledge, the time cost of employing robots can be 
dramatically reduced. Moreover, by accumulating human knowledge for robots, even after 
experienced workers are retired, it is still possible to keep the productivity and manufacturing 
efficiency of a company. In addition, this also gives a chance that novice workers are able to learn 
from robots during their implementation of robot teaching tasks. Therefore, the originality of this 
research is on developing a system to realize interactive knowledge acquisition and reuse for 
teaching industrial robots. Herein, ‘interactive’ means that not only robots are able to learn from 
human workers, but also it is possible for human workers to learn from robots through their 
implementing the robot-teaching tasks. This research appears especially important in the recent years, 
during which more and more experienced workers were going to retire from their jobs and it takes a 
long time to train new workers. 

In this research, a knowledge-based system has been developed for acquiring and reusing human 
knowledge in the robotic assembly domain. For an assembly task (i.e. the assembling process of a 
certain workpiece from picking it up from its initial position to placing it at/in the destination) is not 
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trivial but complicated in which many factors such as workpiece features (i.e., shape, size, weight 
and so on), tool features (i.e., number of fingers, open width, length, load of weight, and seizing type 
such as gripping by two fingers, absorbing by a vacuum and so on), environments (i.e., the number 
of obstacles nearby the destination, and the relative positions and distances between the obstacles 
and the destination) and so on should be considered, a novel concept of hierarchical knowledge 
modularization has been proposed. Hierarchical knowledge modularization means that a 
knowledge-based system acquires and represents the knowledge implemented in a robotic 
manufacturing task in terms of a hierarchical set (i.e., different levels) of knowledge modules, 
organizes these knowledge modules as a plan for the observed task, and saves the plan and the task 
description as a case in the case base of the system. In this way, the system can flexibly retrieve a 
case or modules of several cases and reuse it or them for a new task. In other words, the system can 
re-organize different levels of knowledge modules in different cases to generate the solution for a 
new task. 

Explanation-based learning (EBL) is a deductive learning method that can learn from a single 
training example with the help of a pre-encoded domain theory. It is used to acquire human 
knowledge by observing robot programs of experienced workers and corresponding task descriptions. 
In the developed knowledge-based system, the original EBL has been modified with regards to the 
operationality criterion. The new proposed operationality criterion is a set of rules that demand the 
learned knowledge should be expressed in two ways: 1. easily understandable by human workers, 
i.e., explanations of the observed robot program are saved in the learned result; and 2. reusable by 
robots to generate program automatically, i.e., the observed robot program is generalized as a 
program schema. This new proposed operationality lays the foundation for interactive knowledge 
acquisition and reuse for teaching industrial robots. On the one hand, by reusing the learned robot 
program schemata, robots can automatically generate programs for tasks that are similar as the ones 
they have learned from human workers. On the other hand, the explanations of the programs 
generated by the robots can be provided for novice human workers, which makes the novice human 
workers be able to learn from robots during they perform robot-teaching tasks. 

The modified EBL has been further repeatedly and hierarchically used to abstract different levels 
of knowledge modules from the observed assembly task. The learning result, i.e., the generalized 
assembly plan is composed of different levels of knowledge modules. Together with its 
corresponding task description, they are represented and saved as a case in the case base of the 
knowledge-based system. In addition, the modified EBL has further been improved to have two 
learning modes. The first learning mode is learning from an example directly given by human 
workers, which is the modified EBL method. The second learning mode is learning expertise on 
error recovery by observing revisions made by human workers in handling execution errors that 
occur in teaching the robots or in reusing previously acquired knowledge. A criterion for saving the 
learned knowledge has also been proposed to control the number of the cases in the knowledge 
base. 

Case-based reasoning (CBR) is the process of solving new problems based on the solutions of 
similar past problems. In this research, a modified CBR method has been developed to reuse the 
acquired cases to automatically generate robot programs for new assembly tasks. Because the saved 
cases are composed of hierarchical knowledge modules in this proposed system, a past case not only 
can be reused as a whole, but also can be reused partly by synthesizing different parts of several 
cases to generate a program for a new complex task in a variant environment. 

In the knowledge-based system, EBL and CBR are integrated to reduce the utility cost of the 
acquired knowledge. This is because the cost of reusing the cases of knowledge modules is 

 iv



increasing along with more and more knowledge is acquired and saved in the knowledge base. By 
abstracting the training examples into generalized knowledge modules, the improved EBL helps 
reduce the number of the saved cases. By providing a flexible retrieving method that is able to partly 
reuse the past cases for new tasks in variant environments, the modified CBR method improves the 
reusing efficiency of the saved cases. In addition, the knowledge-based system is possible to be 
applied as a media in integrating product design and manufacturing for reducing the lead time for 
companies. This is because the proposed system has saved errors occurred in the manufacturing 
process, and some errors that are difficult to be settled during the robot-teaching process can be 
solved easily by making changes in the design of a product. By using the proposed system, a product 
designer can simulate the robotic manufacturing process and be aware of the errors that may occur 
during the robotic manufacturing process. In this way, the designer is able to consider such errors 
from the product designing perspective and may further solve some of these errors by revising the 
product design before the robot-teaching process. In addition, the proposed system can automatically 
generate the preliminary robot program for assembling a product as soon as the data of its design has 
been input. Thus, the lead time can be reduced by using the proposed system. 
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Chapter 1 

Introduction 

The traditional automated line production system, or also can be called mass production system, is 

dedicated to meeting the enormous customer needs of a single or small group of standardized 

products, in which each product passes through the same sequence of operations, and the machines 

and other equipments are laid-out in the order they are used.  

The profits of line production come from several sources. The primary cause is a reduction of 

nonproductive effort of all types. In craft production, the craftsman must bustle about a shop, getting 

parts and assembling them. He must locate and use many tools many times for varying tasks. In line 

production, each worker repeats one or a few related tasks that use the same tool to perform identical 

or near-identical operations on a stream of products. The exact tool and parts are always at hand, 

having been moved down the manufacturing/assembly line consecutively. The worker spends little 

or no time retrieving and/or preparing materials and tools, and so the time taken to manufacture a 

product using line production is shorter than when using traditional methods. As factory automation 

(FA) has been introduced into line production, more and more tasks are predominantly carried out by 

machines and robots. Therefore, the probability of human error and variation is also reduced. In 

addition, a reduction in labor costs, as well as an increased rate of production, enables a company to 

produce a larger quantity of one product at a lower cost than using traditional, non-automated- 

line-production methods. 

However, automated line production system is inflexible because it is not easy to alter a design 

or production process after a production line is implemented. Also, all products produced on one 

production line will be identical or very similar, and introducing variety to satisfy individual tastes is 

very difficult.  

In recent years, as the requirements of consumers for products has become manifold and has 

been altering rapidly, the product types are becoming more diversified and the period of product 

demand is becoming shorter. Therefore, coupled with the fierce global competition of production, it 

is the trend that production of products is shifting from mass production of few product types to 

multi-product production in varying volume. As a result, cell production, or cellular manufacturing, 

is turned to be the manufacturing style that suits to the modern agile manufacturing philosophy [1], 

which focuses on meeting the demands of customers by adopting flexible and reconfigurable 

manufacturing practices. 

Cell production has the mass production line split into a number of self-contained units. Each 

team or ‘cell’ is responsible for a significant part of the finished article and, rather than each person 

 1



only carrying out only one very specific task, team members are skilled at a number of roles, so it 

provides a means for job enrichment and job rotation. Cell production is a form of team working and 

helps ensure worker commitment, as each cell is responsible for a complete unit of work. Cells 

would usually have responsibility for organizing work rosters within the cell, for covering holiday 

and sickness absences and for identifying recruitment and training needs. Cells deal with other cells 

as if they were customers, and take responsibility for quality in their area. 

So far, cell production is still mainly implemented by human workers. In other words, the current 

cell production is still human cell production. Although human cell production is more adaptable to 

the high-mix low-volume market demand fluctuations and has lower production cost and higher 

quality compared with mass production, along with the fast advances of robotics technology and 

factory automation technology, robot cell production or autonomous cell production robotic systems 

will stand for the future development direction of the manufacturing industry [2-4]. 

1.1 Next Generation Manufacturing: Robot Cell Production 

In human cell production, the product quality and task performance are greatly influenced by the 

skills, experiences, physical and mental conditions, and other personal factors of human workers. 

Thus, the disadvantage of human cell production is that it is difficult to maintain the production 

quality and efficiency at a reliable level due to human factors such as experienced worker retirement 

and novice worker recruitment. An ideal solution for this problem is to employ robots in cell 

production to perform the physical manufacturing tasks instead of human workers. 

The advantages of robot cell production are as the following: 1. Product quality and production 

efficiency can be steadily maintained. 2. 24-hour continuous production is possible with the robot 

operation. This is beneficial to flexibly scheduling the manufacturing jobs and reducing the stock 

cost of parts and finished products. 3. The cost of employing robot is much lower than that of hiring 

human labors. This is especially true for developed countries. 4. A robot work cell can be configured 

in a relatively small limited space. Thus, it helps save the cost of plant construction area. 

It is true that robot cell production is superior in many respects to human cell production. 

Nevertheless, this does not indicate that humans are completely being replaced by robots in robot 

cell production. The term ‘robot cell production’ just signifies that robots are utilized to the fullest 

extent in the whole manufacturing process including preliminary work such as part feeding and post 

process such as quality inspection of finished products in a work cell. The objective is to integrate 

robotics technology and various factory automation technologies to achieve the optimal design and 

control of the work cells in cell production. 

Generally, a robot work cell is composed of a working platform, several robots, sensors, and 

other automated equipments such as part feeders and fixtures. All of the robots and equipments are 

confined in the limited space on the working platform. With the support of sensors and other 
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automated equipments, robots fetch out parts or workpieces from part feeders or bins, assemble the 

parts to make the products, inspect the quality of the finished products, and at the end put out the 

qualified products onto conveyors. 

The ultimate purpose of the development of a robot cell production system is to the four goals 

described below [2]: 

1) A system suitable for multi-product production in varying volumes; 

2) A flexible system that can be adjusted easily to the product types and the size of production; 

3) A system which is versatile and which can be standardized, in order to reduce the introduction 

cost of the system; 

4) A system compliant with international safety standards, which is developed with the latest 

control safety technologies and can be used worldwide. 

1.2 Problem of Excessive Robot Teaching Time in Robot Cell 
Production 

Currently, robot cell production is still in its initial developing stage. There are many problems to be 

researched and solved such as the dexterity of robot tools and the accuracy of sensors. Among many 

problems in robot cell production, a critical one is that the task of teaching robots is excessively 

time-consuming [5-7]. This has become a bottleneck to improving the flexibility of robot work cells, 

which keeps small and medium size enterprises (SMEs) away from robotic automation. This 

problem is especially severe in the robotic assembly domain. 

The robot system used by nowadays manufacturers consists of four parts, including the robot arm, 

the robot controller, a teaching pendent, and a personal computer (PC). Robot teaching is the most 

important and difficult work in robotic manufacturing. Workers teach a robot in the following 4 

steps: 1. making a program for the task of assembling a workpiece; 2. setting the robot in teaching 

mode, enabling the teaching pendant, and teaching the robot the coordinates of points in the program 

with the teaching pendant; 3. checking the effectiveness of the teaching by letting the robot execute 

the commands one by one with the teaching pendant; 4. disabling the teaching pendant, setting the 

robot in playback mode to check the automatic execution of the robot program. 

Robot teaching is awfully time-consuming for the following two main reasons. First, workers 

have to teach robots repeatedly even for similar assembly tasks. For example, to screw four bolts 

into four holes in a box, workers have to teach the robot four times, although the mechanics of 

screwing are common each time. Second, the robot program usually has to be revised repeatedly for 

new tasks in order to become robust in the real-life manufacturing environment. This is because 

workers often have to repeat their efforts many times to find the appropriate positions for the seizing 

point, placing point, and approach points of a given workpiece.  In addition, workers often have to 

revise the robot program in response to the occurrence of errors in the playback mode. This is 
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because, in the teaching mode, the actions of the robot are discrete, and the speed of motion is very 

slow. However, in the playback mode, the robot’s actions are executed continually at high speed. 

Thus, unexpected errors that did not happen in the teaching mode may occur in the playback mode. 

In this case, the workers have to revise the corresponding part of the robot program to correct such 

errors by tuning the robot motion speed, time delays, signal communications, or key point positions 

and so on. 

By far, various methods have been proposed to facilitate the task of teaching robots [8]. Many 

researchers have applied virtual reality technologies [9-11], while others have used intuitive teaching 

methods such as leading robots directly by human hands [12] or instructing robots by voice [13]. 

Although these methods indeed simplify the task of teaching robots, they overlooked the essential 

fact the task of teaching robots is to transfer knowledge from human workers to robots. 

1.3 Contributions of the Dissertation 

The purpose of this research is to integrate the expertise and experiences of skilled workers that are 

accrued from long years performing of manufacturing and assembly tasks into the robot cell 

production systems. This has great significance to robot cell production, because it is only human 

having the unique advantages of excellent adaptability to new environments, unrivaled flexibility to 

uncertainties, remarkable learning ability, and creativity of novel knowledge. This is also why robots 

can not completely replace humans and should be taught by humans for carrying out inexperienced 

tasks in robot cell production. 

If we take a robot cell production system as a human, then the robots and other automated 

equipments in the system is the body of the human, human workers can be regarded as the soul of 

the human, and the work of this research is to create the brain of the human, which is a 

knowledge-based system. The objective of developing this knowledge-based system is to acquire 

human knowledge of teaching robots assembly operations, accumulate the knowledge in the 

knowledge base, and reuse the knowledge for similar assembly tasks. In this research, the novel 

concept of hierarchical knowledge modularization has been proposed.  

Toward implementing the hierarchical knowledge modularization idea in real-world robot cell 

production systems, this dissertation contributes in the following senses: 

• Presenting what is the knowledge in robotic assembly, from what the knowledge can be 

acquired, and the method used in acquiring the knowledge (Chapter 3); 

• Providing a new systematic approach for hierarchically generalizing all the know-hows 

implemented by human workers in the whole process of teaching robots assembly 

operations, systematizing the generalized knowledge into different levels of reusable 

knowledge modules, learning new knowledge from error recovery examples, and evaluating 

whether the acquired knowledge modules are worth saving into the knowledge base 
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(Chapter 4); 

• Proposing the method how to flexibly reuse the acquired knowledge modules for new 

assembly tasks and how the automatically generate robot programs for robots in the robot 

cell production systems (Chapter 5). 

1.4 Overview of the Dissertation 

The followings are the general description s of the contents of each chapter. 

Chapter 2 introduces the basic approaches, i.e. explanation-based learning (EBL) and case-based 

reasoning (CBR), used for knowledge acquisition and reuse, and how EBL and CBR are integrated 

to construct the proposed knowledge-based system. 

Chapter 3 presents the overall structure of the proposed knowledge-based system for acquiring, 

sharing, and reusing human knowledge in the robotic assembly domain. The original EBL is 

modified to acquire tacit knowledge from the robotic programs of skilled workers. A new 

operationality criterion within the EBL framework is proposed, which demands that the learned tacit 

knowledge should be understandable by workers and reusable by robots. By accessing the 

knowledge accumulated in the knowledge base, workers can learn the tacit knowledge implemented 

in robotic programs made by other workers. In this way, robotic programs become a vehicle for 

transferring tacit knowledge of skilled workers. This enables skill-succession even after the original 

skilled workers have retired. However, the modified EBL is only developed in acquiring knowledge 

from lower level tasks such as ‘pickup’ and ‘place’ but not a whole assembly task. 

Chapter 4 improves the modified EBL method developed in Chapter 3. The improved EBL 

method has two learning modes. The first learning mode is a hierarchical use of the modified EBL 

presented in Chapter 3 for higher level tasks. The second learning mode can learn from error 

recovery training examples, which is the novel proposal of the improved EBL method. Evaluation 

criteria of saving the acquired knowledge are also provided in the improved EBL method. The most 

significant distinction of the improved EBL method is that the acquired knowledge is represented 

and saved as different levels of knowledge modules in assembly plans. The knowledge modules in 

an assembly task not only can be reused in whole, but also can be flexibly reused in part. 

Chapter 5 proposes an application of CBR in offline automatically programming for robots in 

robot cell assembly production by reusing knowledge acquired from human workers. The features 

and rules used for retrieving different levels of the saved knowledge modules are presented. The 

method of automatically generating robot programs by reusing the retrieved knowledge modules is 

provided. The knowledge modules acquired from the same assembly task is saved as a case in the 

knowledge base. The past learned cases can be reused flexibly in three ways: 1. one case is reused 

wholly for a new task; 2. one case is partly reused for a new task; 3. several cases are partly reused 

to synthesize the robot program for a new task in a variant environment. 
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Chapter 6 discusses the merits of integrating EBL and CBR in constructing the proposed 

knowledge-based system. The proposed system also can help share knowledge between product 

designers and manufacturing workers. The method for integrating the product design process and the 

product manufacturing process by using the proposed system is addressed. This further contributes 

to reduce the lead time in robot cell production. 

Finally, Chapter 7 summarizes this dissertation and points out the directions for future works. 
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Chapter 2 

Methodology of Knowledge Acquisition and Reuse 

This chapter introduces the basic concepts and algorithms of the methods used in this study. 

Section 2.1 introduces the concept and the algorithm of the knowledge acquisition method: 

explanation-based learning (EBL). 

Section 2.2 presents the framework and the working mechanism of the knowledge reusing 

method: case-based reasoning (CBR). 

Section 2.3 explains how EBL and CBR are applied and integrated for developing the 

knowledge-based system proposed in this dissertation. 

2.1 Explanation-based Learning (EBL) 

2.1.1 The Concept of EBL 

EBL is a deductive learning method that learns from untutored observation, in which the observed 

human expert needs no knowledge of the internal workings of the system and is never asked to 

articulate the information or methods he/she uses [14]. With a pre-encoded knowledge base, called 

domain theory in EBL, EBL can perform a knowledge-intensive analysis of a single training 

example [15]. The analysis involves first explaining why the training instance is an example of the 

concept to be learned, called goal concept, and then generalizing the explanation structure in a 

principled manner so it can be used to recognize a larger class of instances of the goal concept than 

the original training instance. A seeming paradox of EBL is that in order to produce its final 

description of the goal concept, the learning system must possess an initial description of that same 

concept [16]. In fact, without an initial description of the goal concept, it would be impossible for the 

system to explain why the given training instance is an example of the goal concept. The way to 

untangle the paradox is to acknowledge that learning can involve knowledge transformation, as well 

as knowledge acquisition [17]. EBL methods do not acquire truly “new” knowledge, but rather 

transform existing knowledge that is unusable or impracticable into a form that is usable [18, 19]. 

Hirsh described the implementation of EBL within a logic-programming environment [20]. 

Figure 2.1 shows the structure of EBL. Traditionally, an EBL problem is defined as the following: 

Given: 

• Goal Concept: A concept definition describing the concept to be learned. (It is assumed that this 

concept definition fails to satisfy the Operationality Criterion.) 

• Training Example: An example of the goal concept. 
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Figure 2.1 The structure of EBL. 

• Domain Theory: A set of rules and facts to be used in explaining how the training example is an 

example of the goal concept. 

•Operationality Criterion: A set of predicates or rules specifies the form in which the learn concept 

definition must be expressed. 

Determine: 

• A generalization of the training example that is a sufficient concept definition for the goal concept 

and that satisfies the operationality criterion. 

The EBL method has the following two steps [15]: 

1. Explain: Construct an explanation in terms of the domain theory that proves how the training 

example satisfies the goal concept definition. 

• This explanation must be constructed so that each branch of the explanation structure terminates 

in an expression that satisfies the operationality criterion. 

2. Generalize: Determine a set of sufficient conditions under which the explanation structure holds, 

stated in terms that satisfy the operationality criterion. 

• This is accomplished by regressing the goal concept through the explanation structure. The 

conjunction of the resulting regressed expressions constitutes the desired concept definition. 

2.1.2 Operationality Criterion 

Operationality criterion is a key concept in EBL, which determines the utility of the new learned 

knowledge. Operationality criterion is one of the inputs in the Mitchell’s system [15], and is defined 

as: operationality criterion specifies the form in which the learned concept definition must be 

expressed; the concept definition must be expressed in terms of the predicates used to describe the 

training example or other selected, easily evaluated, predicates from the domain theory. DeJong and 

Mooney [14] argued that there were two problems with Mitchell’s definition of operationality 

criterion: 1. The process of specifying the operationality criterion for a particular domain is not itself 

operational; there is no mention of how these predicates are actually selected or how easy their 

evaluation must be to meet the operationality criterion. 2. The specification of predicates alone will 

not insure ease of evaluation.  
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DeJong and Mooney gave their solution as the following [14]. It should be acknowledged that 

EBL system has two logically distinct components: a learning element and a performance element. 

The purpose of learning is to improve the processing ability of the performance element. The notion 

of operationality must be judged with respect to the abilities of a particular performance element. 

While both the learning and the performance element operate on the same knowledge base, they 

reflect the world knowledge in subtly different ways. In DeJong and Mooney’s EBL system which 

learns schemata, the operationality criterion is a set of goals that the system could easily achieve 

using normal means by simply instantiating an existing schema. There are two important 

implications of this definition: 1. the operationality criterion is derivable from the system’s 

performance and, therefore, should not be independently input to the system, 2. The operationality 

criterion is dynamic, not static; as the system learns new schemata, additional goals become 

operational since the system can use the new schemata as building blocks to construct future 

explanation.  

Segre built the ARMS system [21-23] on DeJong and Mooney’s EBL model which learns 

schemata [14], and examined the operationality/generality trade-off and how it affected performance 

of EBL systems [24]: If the newly acquired knowledge structure is available to the system, it is said 

to be operational. If the new structure does not improve the performance of the system in some 

fashion, it is not worth learning. However, not all operational knowledge is created equal: the cost of 

using the new knowledge structure is called operationality. The more operational the structure, the 

easier (e.g., less expensive) it is for the system to apply it. The diversity of examples covered by the 

new structure is directly related to its generality: likely to be useful. The more general the structure, 

the more expensive its application tends to be. 

Keller redefined operationality criterion in terms of performance system that uses the learned 

concept description, and in terms of the criteria for evaluating that system’s performance [17]. The 

revised operationality definition is: given a concept description, a performance system that makes 

use of the description to improve performance, and performance objectives specifying the type and 

extent of the system improvement desired; then the concept description is considered operational if it 

satisfies the following two requirements: 1. Usability - the description must be usable by the 

performance system, 2. Utility - when the description is used by the performance system, the 

system’s performance must improve in accordance with the specified objectives. 

2.1.3 An Example of EBL Application 

Figure 2.2 shows the work flow of the EBL algorithm, mainly on how the explanation structure is 

constructed. 

Safe-To-Stack is an example used by Mitchell [12] to illustrate the EBL algorithm. The task is to 

learn to recognize pairs of objects <OBJ1, OBJ2> such that it is safe to stack OBJ1 on top of OBJ2 
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(In this example, the uppercase items such as OBJ1 and numbers are constants; the lowercase items 

such as x, y are variables).  

 

 
Figure 2.2 Flowchart of the EBL algorithm. 

The problem is given as the following: 

Given: 

•Goal Concept: Pairs of objects <x, y> such that Safe-To-Stack (x, y). 

• Training Example: 

On (OBJ 1, OBJ2) 

Type (OBJ 1, BOX) 

Type (OBJ2, ENDTABLE) 

Color (OBJ1, RED) 

Color (OBJ2, BLUE) 

Volume (OBJ 1, 2) 

Density (OBJ 1, 0.3) 

• Domain Theory: 

Lighter (x, y) => Safe-To-Stack (x, y) 
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Volume (x, vx) & Density (x,dx ) & Equal ( wx,vx*dx) => Weight (wx, vx*dx) 

Weight (x, wx) & Weight (y, wy) & Less-Than (wx, wy) => Lighter (x, y) 

Type (y, ENDTABLE) => Weight (y, 5) (default) 

Less-Than(0.6, 5) 

• Operationality Criterion: The concept definition must be expressed in terms of the predicates used 

to describe examples (e.g., Volume, Color, Density) or other selected, easily evaluated, predicates 

from the domain theory (e.g., Less-Than). 

Determine: 

• A generalization of training example that is a sufficient concept definition for the goal concept and 

that satisfies the operationality criterion. 

 

Figure 2.3 Learning procedure of ‘Safe-to-Stack’. 

Figure 2.3 shows how the operational concept definition for the goal concept Sate-To-Stack(x, y) 

is generalized from a specific example that OBJ1 is safe to stack on OBJ2. 

In Figure 2.3, there are two layers of predicates above each dashed line. The first layer that is not 

underlined is the specific explanation tree for the goal concept. The second layer that is underlined is 

the generalized explanation tree for the goal concept. The first layer and the second layer of the 

explanation structure correspond to the first step and the second step in the EBL method.  

The first step is to construct an explanation of how the training example satisfies the goal concept. 
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As shown in the first layer in figure 3, the pair of objects <OBJ1, OBJ2> satisfies the goal concept 

Safe-To-Stack because OBJ1 is Lighter than OBJ2. Furthermore, this is known because the Weights 

of OBJ1 and OBJ2 can be inferred. For OBJ1, the Weight is inferred from its Density and Volume, 

whereas for OBJ2 the Weight is inferred based on a rule that specifies the default weight of 

ENDTABLEs in general. Through this chain of inferences, the first layer of the explanation structure 

demonstrates how OBJ1 and OBJ2 satisfy the goal concept definition. Note that the specific 

explanation tree has been constructed so that each of its branches terminates in an expression that 

satisfies the operationality criterion (e.g., Volume (OBJ1, 2), Less-Than (0.6, 5)). 

In order to determine general sufficient conditions under which the explanation holds, the second 

step involves regressing (back propagating) the goal concept step by step back through the 

explanation structure. The second layer in figure 3 illustrates the second step of Mitchell’s EBL 

method in the context of the Safe-To-Stack example. In the topmost step of this layer, the goal 

concept expression Safe-To-Stack (x, y) is regressed through the rule Lighter (x, y) => Safe-To-Stack 

(x, y) to determine that Lighter (x, y) is a sufficient condition for inferring Safe-To-Stack (x, y). 

Similarly, regressing Lighter (x, y) through the next step in the explanation structure yields the 

expression Weight (x, wx) & Weight (y, wy) & Less-Than (wx, wy). This expression is in turn 

regressed through the final steps of the explanation structure to yield the operational definition for 

Safe-To-Stack (x, y). To illustrate the goal regression process in greater detail, consider the final 

steps of figure 3 in which the expression Weight (x, wx) & Weight (y, wy) & Less-Than (wx, wy) is 

regressed through the final steps of the explanation structure. Each conjunct of the expression is 

regressed separately through the appropriate rule, in the following way. The conjunct is unified 

(matched) with the consequent (right-hand side) of the rule to yield some set of substitutions 

(particular variable bindings). The substitution consistent with the example is then applied to the 

antecedent (left-hand side) of the rule to yield the resulting regressed expression. Any conjuncts of 

the original expression which cannot be unified with the consequent of any rule are simply added to 

the resulting regressed expression (with the substitutions applied to them). As illustrated in the figure, 

regressing the conjunct Weight (x, wx) through the rule Volume (x, vx) & Density (x, dx)  & Equal 

(wx,vx*dx) => Weight (x, vx*dx) therefore yields Volume (x, vx) & Density (x, dx) & Equal (wx, 

vx*dx). Regressing the conjunct Weight (y, wy) through the rule Type (y, ENDTABLE) => Weight 

(y, wy) yields Type (y, ENDTABLE). Finally, since no rule consequent can be unified with the 

conjunct Less-Than (wx, wy), this conjunct is simply added to the resulting regressed expression 

after applying the substitutions produced by regressing the default rule Type (y, ENDTABLE) => 

Weight (y, 5), which yield the conjunct Less-Than (wx, 5). The final, operational definition for 

Safe-To-Stack (x, y) is therefore: 

Volume (x, vx) & Density (x, dx) & Equal (wx, vx*dx) & Less-Than (wx, 5) & TYPE (y, 

ENDTABLE) => Safe-To-Stack (x, y). 
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This expression represents a justified generalization of the training example, for which the 

explanation structure serves as a justification. It is the generalized operational concept definition for 

the goal concept Safe-To-Stack (x, y), and can be used by other similar examples. 

2.2 Case-based Reasoning (CBR) 

2.2.1 The Concept of CBR 

CBR is the process of solving new problems based on the solutions of similar past problems [52-58]. 

Schank and Jona [59] described the nature of CBR as follows: “Most people prefer not to have to 

think hard if they can help it. They will try to get by with whatever worked before, even if it is less 

than optimal. We believe that, roughly speaking, people's everyday cognition consists of about 90% 

retrieving of past solutions and only about 10% or less of actual novel problem solving.” 

 

Figure 2.4 The working process of CBR. 

Figure 2.4 illustrates the work process of CBR. The core of any CBR system is a knowledge base. 

It is composed of a case base and a general knowledge base. The case base contains previous 

problem-solving cases. It saves the past problem-solving experiences and knowledge in the form of 

cases. The general knowledge base holds techniques in the form of rules or algorithms that are used 

in the 4 Rs in a CBR cycle. 4 Rs (i.e. retrieve, reuse, revise, retain) are the four key steps and 

functions of a CBR system: 

1. Retrieve: Given a target problem, retrieve cases from case base that are relevant to solving it. A 
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case consists of a problem, its solution, and, typically, annotations about how the solution was 

derived. 

2. Reuse: Map the solution from the previous case to the target problem. This may involve adapting 

the solution as needed to fit the new situation. 

3. Revise: Having mapped the previous solution to the target situation, test the new solution in the 

real world (or a simulation) and, if necessary (e.g., an unexpected effect or error occurs), revise.  

4. Retain: After the solution has been successfully adapted to the target problem, store the whole 

resulting experience as a new case in case base. 

2.2.2 An Example of CBR Application 

Case-based Menu Planner (CAMP) developed by Marling, et al. is a pure case-based planner [25]. 

CAMP employs the case-based reasoning (CBR) technique to suggest menus to users. The heart of a 

CBR system is its case base. CAMP’s case base holds dozens of daily menus that were compiled 

from reputable sources and modified as needed to ensure that they satisfy the RDIs (Reference Daily 

Intakes) and the Dietary Guidelines of Americans and Aesthetic standards. In a CBR system, a case 

contains a past solution and the features that indicate when the solution is likely to be useful again. A 

solution in CAMP is a daily menu. Features that indicate a menus’ usefulness are: its nutrient vector, 

the types of meals and number of snacks included, and included foods. 

 
Figure 2.5 A flow chart for CAMP [25]. 

 14



CAMP operates by retrieving and adapting daily menus from its case base. A flow chart for 

CAMP is show in Figure 2.5. An individual’s calorie level and any optional nutrition and personal 

preference criteria are input first. Nutrition criteria are added to ensure that the RDIs are met. The 

menu best suiting the criteria is retrieved from the case base. 

A reusability metric is used to select and retrieve a case based on the ease of adapting it to meet 

current goals. Before a case can be reused in CAMP, it must be adapted until it meets all 

user-specified constraints, plus additional constraints imposed as minimum RDIs. To find the best 

case, CAMP checks each case against all constraints. Any case meeting all constraints constitutes an 

exact match and is retrieved. When a case does not comply with a constraint, a penalty score is 

assigned based on how difficult it would be to bring the case into compliance. The penalty scores 

were determined through consultation with the expert and refined through trial and error. CAMP 

finds the case that is easiest to adapt, striking a balance between the number and severity of 

constraint violations. 

CAMP's retrieval algorithm is shown as the below: 

For each case in the case base do: Apply the reusability metric to obtain a penalty score; 

Sort cases by penalty score; 

Retrieve the case with the lowest penalty score. 

A detailed account of case retrieval in CAMP is available in [26].  

If the best case, as determined by the reusability metric, is not an exact match, it is adapted until 

it complies with any unmet constraints. Adaptation is generally considered to be the most difficult 

part of CBR. The primary case adaptation methods are substitution, transformation, and derivational 

analogy [27]. In substitution, replacements are found for parts of an old solution which do not suit 

current needs. In transformation, individual components of an old solution are modified to suit the 

current problem. In derivational analogy, as exemplified by PRODIGY/ANALOGY [28], an old 

problem-solving method, rather than an old problem solution, is reused. CAMP employs substitution 

and transformation during adaptation. 

CAMP's adaptation framework, based on the expert's manual approach to adapting menus, is as 

follows: 

1. Check the number of snacks. Adjust, if necessary. 

2. Check meal types. Swap meals to accommodate preferences, if necessary. 

3. Eliminate any forbidden food items. 

4. Check calorie level. Adjust serving sizes, if necessary. 

5. Fix any nutrient specific deficiencies. 

CAMP's database plays two roles in case adaptation. First, it maintains the small, medium, and 

large serving sizes for each food, used to adjust serving sizes. Second, it maintains the nutrient 

vector for each food, used to calculate the effects of making changes to the menu. 
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Figure 2.6 A menu planned by CAMP [25]. 

The adapted menu becomes the system output. Figure 2.6 shows a representative menu planned 

by CAMP. The menu shown was constrained by the user to include one snack, a total of 1800 to 

2200 calories, at least 800 mg of calcium, and no more than 30% of calories from fat. It provides one 

snack, 2109 calories, 1557 mg of calcium, and 26% of calories from fat, meeting all constraints. 

2.3 The Knowledge Acquisition and Reuse Method in This Dissertation 

In this dissertation, the EBL method is used to acquire knowledge and the CBR method is 

employed to reuse the acquired knowledge. The originality of this dissertation lies in its novel 

development of a method for hierarchical knowledge modularization in the robotic manufacturing 

domain by integrating EBL and CBR, as shown in Figure 2.7. Hierarchical knowledge 

modularization means that a knowledge-based system acquires and represents the knowledge 

implemented in a robotic manufacturing task in terms of a hierarchical set (i.e., different levels) of 
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knowledge modules, organizes these knowledge modules as a plan for the observed task, and saves 

the plan and the task description as a case in the case base of the system. In this way, the system can 

flexibly retrieve a case or modules of several cases and reuse it or them for a new task. In other 

words, the system can re-organize different levels of knowledge modules in different cases to 

generate the solution for a new task.  

 

Figure 2.7 The knowledge acquisition and reuse method by integrating EBL and CBR. 

In this dissertation, the traditional EBL is used to generalize the rule for a lowest level subgoal 

from the training example (Chapter 3). By the hierarchically multiple use of the traditional EBL 

method for different levels of goal and subgoal, the knowledge in the training example can be 

learned and generalized as rules and a hierarchical set of knowledge modules (Chapter 4). The 

reason for this novel hierarchical application of EBL is that the tasks in robotic manufacturing 

should be and can be hierarchically analyzed and divided [10]. In addition, in this dissertation, a new 
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definition of operationality criteria for the EBL method is proposed, which requires the acquired 

knowledge should be represented in a way that satisfies two requirements. The first is operability in 

that it needs to be easy to transform into robot programs (i.e., commands and parameters). The 

second is understandability in that it needs to be easy for human workers to understand the 

knowledge implemented in the robot program. 

CBR is employed for knowledge reuse (Chapter 5). Its main task is to generate the preliminary 

robot program for a new input task by reusing a cases or modules of several cases in the case base 

(i.e., a part of the knowledge base). In this dissertation, two modifications are made based on the 

traditional CBR method. The first is that EBL is used to acquire new cases. The second is that a past 

case not only can be reused in whole, but also it can be reused in part by synthesizing different 

modules of several cases to generate the program for a new complex task in a varying environment. 

In this dissertation, the novel concept of hierarchical knowledge modularization has been 

proposed. The fundamental method for knowledge acquisition and reuse to realize this concept has 

been developed. The future study will focus on the following issues. 1. How to integrate other 

machine learning method with EBL to acquire knowledge. This is because EBL is good at learning 

strategic knowledge for high level abstract tasks, while other methods such as reinforcement learning 

is adept in discovering basic knowledge for low level specific tasks. 2. How to apply hierarchical 

knowledge modularization in fault analysis and error recovery. Hierarchical knowledge 

modularization eases identifying the location of the error by specifying and organizing learned 

knowledge in different levels of knowledge modules and is able to provide solution support from the 

perspective of knowledge reuse. 3. How to develop a better human-system interaction interface to 

facilitate human to add or revise knowledge modules in the knowledge base. 
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Chapter 3 

The Construction of the Knowledge-based System 

3.1 Introduction 

This chapter presents the overall structure of the knowledge-based system (KBS) and the modified 

EBL method proposed in this dissertation. The modified EBL is used in learning tacit knowledge 

from robot programs of lower level tasks such as ‘pickup’ and ‘place’ in the robotic assembly 

domain. With the modified EBL, a new operationality criterion is proposed for the generalized tacit 

knowledge, which demands that it should be expressed in two ways: 1. easily understandable by 

human workers, and 2. reusable by robots to generate program automatically. 

Section 3.2 explains what the tacit knowledge is in the robotic assembly domain. 

Section 3.3 explains why EBL is used in this research. 

Section 3.4 describes the overall structure of the proposed KBS and the construction of the 

domain theory. 

Section 3.5 presents the leaning mechanism of the modified EBL method with a concrete 

example. 

Section 3.6 gives the experiments and analysis to explain the limitation of the proposed method. 

Section 3.7 compares the proposed method with other methods and presents the importance of 

learning tacit knowledge. 

Section 3.8 gives the conclusion 

3.2 Tacit Knowledge in Robotic Assembly 

 

Figure 3.1 Robotic assembly work cell [30]. 
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As shown in Figure 3.1, robotic assembly refers to using two or more robots in a work cell to 

complete the assembly of a wide variety of products that are made of various workpieces. 

In the robotic assembly domain, whether workers are moving a robotic arm to pick up or place a 

workpiece, the task is non-trivial, and a number of contingencies could arise, each affecting the 

applicability or outcome of the robotic program. Thus, the nuances of the real world necessitate that 

workers have to be familiar with the physical properties of workpieces in a particular situation as 

well as their kinematic characteristics when they are moved by robots in high speed. In addition, 

workers have to deal with various environment situations. For example, suppose that the task is to 

palletize a group of blocks in a plate, as shown in Figure 3.2. When placing the first block into the 

plate, to make a stable insertion, the approach position of the block should be close to the target hole. 

In placing the second block, the robotic operation seems to be the same as the first one. However, to 

avoid collision with the first palletized block, an intermediate approach point is added, which makes 

the second block first approach the target hole at a position above the palletized block before 

approaching at a closer position to its destination. 

 

Figure 3.2 Example: adding an intermediate point. 

It is difficult to observe these types of knowledge explicitly in robotic operations. However, such 

knowledge is indeed implemented in the form of robotic programs by inserting intermediate points, 

by adjusting the specific positions and velocities of the robots, by inserting extra commands to adjust 

the timing of the operations, and so on. Experienced workers could interpret such programs and 

selectively recognize which parts of the program are critical for its successful performance. However, 

for less-experienced workers, it would be quite difficult to understand robotic programs made by 

skilled workers, which gives rise to the problem of skill-succession. 
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Such assembly skills and experiences that are implemented within robotic programs are the tacit 

knowledge owned by skilled workers. The efficiency of a robotic assembly work cell could be 

dramatically improved if the tacit knowledge of skilled workers could be shared with other workers 

and transferred to robots. In this paper, we propose a knowledge-based system based on EBL to 

share and reuse the tacit knowledge of skilled workers. 

3.3 The Reason for Using EBL in Knowledge Acquisition 

The basic idea of EBL is that with sufficient background knowledge, humans appear to learn quite a 

lot from one example and use the learned results to guide their problem solving efforts next time 

around. Two features of EBL make it appropriate for learning tacit knowledge in the robotic 

assembly domain: 1. EBL can learn from a single example. This feature is very important, because it 

is difficult to obtain many training examples in the robotic assembly domain due to the long teaching 

time. Moreover, each robot teaching example usually contains distinguished knowledge, specific to 

its unique assembly situation. 2. EBL can generalize from an example without human tutoring. This 

feature makes EBL appropriate for learning tacit knowledge. However, in the proposed KBS, to 

adapt EBL to acquiring knowledge from robotic programs, two modifications should be made to the 

construction of the domain theory, and the definition of the operationality criterion. 

Segre has first applied EBL in the robotic manufacturing domain in his ARMS system [21-23]. 

The ARMS was developed on a simulated environment, and was aimed to construct an autonomous 

system. Different from the ARMS system, the KBS proposed in this study is built on real robotic 

manufacturing systems. Furthermore, the proposed system emphasizes knowledge sharing between 

human workers and robots, besides the function of automatically reusing the learned knowledge in 

similar tasks. Thus, a new operationality criterion is proposed within the EBL framework, which 

demands that the learned knowledge should be expressed in two ways: 1. easily understandable by 

human workers, and 2. reusable by robots to generate program automatically. 

In addition to EBL, many other methods have also been applied in a variety of robotic 

manufacturing problems for acquiring and reusing expert knowledge. According to the way how the 

expert knowledge is acquired and reused, we classify these methods into three types: self-adapting 

(SA) method, learning from demonstration (LfD) method, and knowledge based (KB) method. 

In the recent 2 decades, the SA method has prevailed in the AI area and in the robotic 

manufacturing domain. Nuttin [31] and Prabhu [32] used reinforcement learning (RL) and artificial 

neural networks (ANN) in designing learning controllers respectively for peg-into-hole assembly 

task and deburring task. Lopez-Juarez [33] and Chen [34] applied ANN and online-learning method 

in peg-into-hole assembly. Noda [35, 36] developed an active search algorithm based on active 

learning for optimizing robot motion trajectory. In the SA method, the researchers use their prior 

knowledge to model the objective system/problem. Then the parameters in their models are refined 
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or optimized by responding to feedback of the online robot operations. 

Within LfD method, a state-action mapping policy is learned from examples or demonstrations 

provided by a teacher. Then the learned policy is reused to guide the robot operation in future tasks. 

Argall [4] made a survey on LfD and categorized LfD research in terms of demonstrator, problem 

space, policy derivation and performance. Hovland [37] employed hidden Markov model (HMM) to 

transfer human peg-into-hole assembly skill to robot based on a set of training data gathered from 

human. Friedrich [38] developed an extended programming by demonstration method (PbD) to 

create a plan for a given task not only on the basis of the given demonstration data. Additionally the 

user is asked for the intention he followed with the demonstration. Therewith a generalized plan 

from a single demonstration can be reused for a whole set of tasks. The idea is the same as EBL. 

Dillmann [39] improved the PbD method, in which the goal is to modify information gained by the 

demonstration in that way that different target systems are supported. 

In the KB method, human knowledge is encoded as facts and rules in a knowledge base. And 

task plans can be generated based on the knowledge base. Hwang [40] developed a knowledge based 

framework to support task-level programming and operational control of robots. Fujita [41] 

employed the KB method in the assembly shop process design support system of his company. 

Generally, the SA method requires a large number of training data or experiments; the LfD 

method concentrates on making a robot mimic human operations without explaining the know-how 

in the operations; the KB method focuses on planning for a task by existing rules in a knowledge 

base. In this study, the aim is to acquire the tacit know-how from a single robot teaching example of 

human workers. This is because each robot teaching example contains the unique know-how of the 

human teacher. Therefore, in the proposed method, a modified EBL is used to explain the operation 

of the human worker and to generalize it as a rule, and the KB method is used to generate program 

for new similar tasks. 

3.4 The Structure of the KBS 

As Figure 3.3 shows, the proposed KBS works as a medium between workers and the robotic system 

in a work cell. Workers interact with the KBS through a human-system interface. The KBS is mainly 

composed of the learning part, the planning part, and the domain theory. 

3.4.1 The Learning Part 

The learning part consists of the explainer and the generalizer. The function of the learning part is to 

acquire knowledge from robotic teaching demonstrations of skilled workers. The inputs of the 

learning part are a task and its corresponding training example, i.e., the robot program for the task. 

Its output is the acquired knowledge for the task. 
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Figure 3.3 The structure of the knowledge-based system. 

In the KBS, the tasks are classified into 2 types: 1. Pick-up, and 2. Placing. This classification is 

based on the following considerations. The assembly process of any workpiece can be segmented 

into the pick-up phase and the placing phase. In factories, workers also program and teach robots for 

the pick-up and the placing operations of a workpiece separately. In fact, this classification of the 

tasks is the classification of the knowledge implemented by workers. Thus, classifying the tasks in 

this way can make the acquired knowledge more flexible and reusable for workers in actual factory 

environments. 

As Figure 3.3 shows, a task and its corresponding training example are input into the explainer of 

the learning part. The explainer explains how the training example accomplishes the task by using 

the rules in the learning knowledge base and the data retrieved from the workpiece and tool database. 

Its result is an explanation tree. Then the generalizer generalizes knowledge from the explanation 

tree according to the operationality criterion. The generalizer outputs the generalized knowledge in 

two ways. One represents the knowledge in terms that is easily understood by workers, i.e., the 

knowledge translation shown to workers through the human-system interface. The other is a 

generalized rule that can be used by the planning part, and is saved into the planning knowledge 

base. 

3.4.2 The Planning Part 

The planning part is the planner in Figure 3.3. Its function is to generate robot programs for input 

tasks. The planner generates robot programs by using rules in the planning knowledge base and data 
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in the workpiece and tool database. The output robot programs will be sent to the robot system. 

3.4.3 The Domain Theory 

The domain theory, i.e., the knowledge base, is the most important part of the KBS. It is composed 

of the learning knowledge base (LKB), the operationality criterion (OC), the planning knowledge 

base (PKB), and the workpiece and tool database (WTD). 

The WTD provides data on workpieces and robot tools that can be used by both the learning part 

and the planning part. For example, the block data are given in the form: 

wp(ID,Type-Subtype,[Height,Length,Width])1.  

The following is a specific example: 

wp(5,block-1,[49.5,24.5,14.5]). 

The OC is a set of language processing rules, which is pre-encoded in the domain theory. It 

defines the terms in which the knowledge learned from the learning part should be expressed. It 

requires the learned knowledge to be expressed in two ways: 1. a representation in natural language 

that can be easily understood by workers; and 2. a rule formulated with predicates from the planning 

part, i.e. a rule that can be reused by the planning part. 

The LKB and the PKB are the core of the KBS, as they the parts that contain knowledge. 

3.4.4 The Learning Knowledge Base (LKB) 

The LKB is composed of a base of basic learning rules and a base of analysis rules. 

The training example is composed of robotic commands and parameters. To analyze the training 

example, the learning part must understand the meanings of the robotic commands. The basic 

learning rules are the rules that explain each robotic command or each commonly used combination 

of robotic commands. For example, consider the rule 

      grip(T1,HN,T2):- 

         cmd(N1,dly(T1)), 

         cmd(N2,hclose(HN)), 

         cmd(N3,dly(T2)), 

         T1>0.2, T2>0.2, 

         N2=:=N1+1, 

         N3=:=N2+1. 

It means that the action of gripping is realized by a combination of three commands ‘dly(T1)’, 

‘hclose(HN)’, and ‘dly(T2)’. ‘T1>0.2’, ‘T2>0.2’ mean that the delay time should be longer than 0.2 

                                                  
1 In the following descriptions of predicates, characters initiated with capital letters or upper case 
characters represent variables, while lower case characters are constants. 
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second. ‘N2=:=N1+1’, ‘N3=:=N2+1’ mean that the sequence of the three commands is ‘dly(T1)’, 

‘hclose(HN)’, and ‘dly(T2)’. In other words, the gripping action is achieved by closing a robot tool, 

and there should be delays both before and after closing the robot tool. This combination of 

commands is a rule/operation that is commonly used in writing robotic programs for seizing 

workpieces. Thus it is pre-encoded in the domain theory. 

The analysis rules are used to analyze the work cell state of a task and the corresponding tacit 

knowledge of skilled workers implemented in the training example. There are three main kinds of 

rules in the base of analysis rules: 

1. Rules for analyzing work cell state data, which are mainly used to analyze the robot movement 

speed in automatic mode, the relationship between robot tool and target workpiece, and the 

environment state nearby the assembly destination. 

2. Rules for analyzing parameters, which are used to explain how human workers chose the 

coordinates of the seizing, placing, and approach points for a workpiece. 

3. Rules for analyzing robot commands, which are used to analyze which operation strategy (i.e., 

robotic program schema) is used in the robot program in a training example. 

There are four types of operation strategies:  

1. Essential strategies – There are two essential strategies for pickup and placing tasks respectively. 

They are almost the same, and the only one difference is whether the command to the robot tool is 

‘close gripper’ or ‘open gripper’: “move to safe point, approach the target point, get at the target 

point, close/open gripper, retreat to approach point, move back to safe point.”  

2. Time-delay strategies – To make an assembly operation stable, or to coordinate cooperation 

between a robot and other facilities, sometimes it is necessary to add time delays ‘dly N’ into an 

essential strategy. These are the time-delay strategies. For example, if a pickup task requires high 

precision, to make the robot tool stable in high-speed motion, it needs to delay 1 second before the 

tool gets to the target point. 

3. Speed-changing strategies – These strategies are used for adjusting the speed of a robot tool by 

adding a speed-changing command ‘ovrd’ into an essential strategy. For example, in a placing task 

‘screw a pin’, to make the pin align precisely with the target hole, the robot tool must move the pin 

at a very low speed from the approach point to the hole. However, in other parts of the trajectory, the 

robot tool does not need to move at such a low speed. In other words, to accomplish a task both 

stably and efficiently, speed-changing strategies play an important role. 

4. Intermediate-point-adding strategies – Usually, the environment state in a work cell is 

complicated. In any a pick-up or placing task, to avoid collisions, it is often necessary to add 

intermediate points into an essential strategy. 
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All of the rules and strategies in the LKB are explicit knowledge that we can generalize from the 

operation manual of robots or common sense. Thus, we summarize them and encode them to 

construct the LKB, which is the most important part of the KBS.  

On the other hand, the tacit knowledge of skilled workers is contained in their robotic programs, 

i.e., the training examples. It is how skilled workers selectively combine the above rules and 

strategies to construct a complicated operation strategy for a pickup/placing task. In most cases, the 

pickup/placing task is given in a particular environment or with particular requirements. In other 

words, the tacit knowledge of skilled workers can be generalized as a rule: Given the features/ 

requirements of a particular pickup/placing task, the rule determines which type of complicated 

operation strategy should be selected. 

In brief, the LKB provides general knowledge of robotic assembly in the form of discrete rules 

and strategies. It is used by the learning part to analyze the input tasks and training examples. The 

output of the learning part is the acquired tacit knowledge, which is generalized as a rule and saved 

in the PKB. 

3.4.5 The Planning Knowledge Base (PKB) 

The PKB is composed of a basic planning base and a planning rule base. 

The basic planning base is composed of 2 parts: 

1. Robotic program schemata – Most robotic programs are composed of several staple commands 

(e.g.,  ‘mov’, ‘mvs’, ‘dly’, ‘ovrd’, ‘hclose’, ‘hopen’, etc.). In addition, robots are often operated 

within routine schemata. Thus, it is possible to summarize all the potential complicated operation 

strategies for the pickup/placing tasks in the robotic assembly domain. Hence, the robotic program 

schemata of the potential complicated operation strategies are generalized and encoded in the basic 

planning base. 

2. Parameter calculation rules – These rules are used to calculate the exact coordinates of point 

parameters in the robotic program. 

The planning rule base contains two main kinds of rules: 

1. Rules for analyzing tasks – When a task is input into the planning part, the planning part first 

analyzes the features or requirements of the task with these rules. Then, it uses the rules learned from 

the learning part to select a robotic program schema from the planning basic base. Subsequently, 

given the state data in the input task, it uses the parameter calculation rules to calculate the point 

coordinates, and generates the robotic program that can be used by the robotic system. The features 

and requirements of a task refer to the type of the target workpiece, the type of the robot tool, the 

relationship between the workpiece and the tool, the speed with which the robot is required to run in 

automatic mode, etc. 
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2. Rules learned from the learning part – In fact, most of the complicated operation strategies (i.e., 

robotic program schemata) in the robotic assembly domain can be generalized and encoded in the 

domain theory of the KBS. They are explicit knowledge. The tacit knowledge of skilled workers is 

in knowing how to select an appropriate operation strategy and use it flexibly for a particular task. 

Thus, the tacit knowledge must be learned from training examples. To make the tacit knowledge 

reusable, it is generalized as indexing rules for robotic program schemata in the planning rule base. 

3.5 The Modified Explanation-based Learning (EBL) Method 

In this section, a specific example is given to illustrate how the tacit knowledge is generalized as a 

rule and shared with workers by the modified EBL method. 

 

Figure 3.4 Example: palletizing blocks. 

As shown in Figure 3.4, there are two queues of blocks with the same frictional properties and 

density but different weights. The same color blocks have the same heights, but have different size 

cross-sections. The blocks in the right queue are thinner than the blocks in the left queue. The green 

blocks are the highest, while the blue ones are the lowest. The red blocks are higher than the yellow 

ones. Note that the width of the blocks, but not the color, is the key feature that affects the operation 

strategies. 

In the example, four tasks and their corresponding training examples are given in turn to be 

learned by the KBS. They are picking up and placing the blue and the yellow blocks in the right 

queue in Figure 3.4. Because the learning mechanism is the same for the four tasks, only the learning 

process for picking up the blue block is presented in details. The other three are only given to 

compare the learning results. 

In learning from picking up the blue block, the task input to the learning part of the KBS is as 

follows: 

Task goal: pickup. 

Robot motion speed in automatic mode: auto_ovrd(80). 

Initial position of the target block: 
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ini_pos(5, block-1, [691.27, -219.85, 49.5, -179.89, 0.38, 0.02]). 

The fact ‘auto_ovrd(80).’ indicates that the robot’s motion speed in automatic mode is 80% of its 

maximum motion speed. In the fact ‘ini_pos(5, block-1, [691.27, -219.85, 49.5, -179.89, 0.38, 

0.02]).’, ‘5’ is the ID number of the blue block. ‘block-1’ is its type. ‘[691.27, -219.85, 49.5, -179.89, 

0.38, 0.02]’ is the coordinate of the point that indicates its initial position, at the center of the upper 

side of the target block. 

The other input, the training example is as follows: 

Robot commands and parameters: 

cmd(1,mov(phome)).          %Mov Phome 

cmd(2,mov(p5,50)).         %Mov P5,-50 

cmd(3,mvs(p5)).                 %Mvs P5 

cmd(4,dly(0.3)).                 %Dly 0.3 

cmd(5,hclose(1)).            %HClose 1 

cmd(6,dly(0.3)).                 %Dly 0.3 

cmd(7,mvs(p5,50)).           %Mvs P5,-50 

cmd(8,mov(phome)).         %Mov Phome 

point(phome, [612.390, 0.180, 463.520, -179.890, 0.380, 0.020]). 

point(p5, [691.270, -219.850, 210.000, -179.890, 0.380, 0.02]). 

In the above, the elements in the right column (Mov Phome, etc.) are the primitive robotic 

commands in the robotic program. The left column (cmd(1,mov(phome))., etc.) is the transformation 

of the primitive robotic commands. The primitive robotic commands are transformed into facts of 

the training example, which can be understood by the KBS. Each robotic command is tagged with a 

number to indicate its order in the robotic program. In this way, the repeated commands can be 

distinguished by their sequence numbers. 

After the above two inputs are input into the learning part, the “explainer” starts to explain how 

the training example accomplishes the pickup task. The explaining process is a search through the 

rules in the LKB, as shown in Figure 3.5. 

The search tries rules one by one to construct an explanation tree, and terminates when all the 

leaf nodes of the explanation tree have been proved by the facts of the training example and the task, 

or by facts in the LKB. Such facts are the underlined terms in Figure 3.5. Because of limitations of 

space, Fig. 5 cannot show the whole explanation tree. Thus, the sub-trees of seize_point and 

pickup_act are not shown completely. After all the leaf nodes are proved, the arguments in the 

searched rules (i.e., the terms above the dashed lines in Figure 3.5) are instantiated with the values in 

the facts. In this way, as the terms under the dashed lines in Figure 3.5 show, an instantiated 

explanation tree is obtained. 
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Figure 3.5 Explanation tree of the exam
ple: picking up the blue block in the right queue. 
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Then, according to the operationality criterion, the “generalizer” generalizes tacit knowledge 

from the instantiated explanation tree by selecting key arguments and transforming them into an 

understandable knowledge translation and a reusable generalized rule. In Figure 3.5, the red 

arguments are the selected key arguments, which present the features/requirements of the pickup 

task, the seizing position of the blue block, the pickup operation strategy, etc. 

The learning result is made up of two parts. The first is the knowledge translation for workers:   

IF: 

The automatic running speed is: high_auto_speed; 

The workpiece type is:   block-1; 

The robot tool type is:   clip;  

The robot hand open width is:   hand_open_width_bigger_than_workpiece_width; 

THEN: 

The seizing position on the workpiece is:   one_fourth_of_height_from_top; 

The pickup operation is:    

move to a safe point, approach the seizing point at a distant position (to avoid collision with 

nearby workpieces), move to the seizing point, seize the target workpiece, retreat to the 

approach point, move back to the safe point. 

The second is a generalized rule for the planning part: 

pickup_plan(ID_W,block-1, 

ID_H,clip,P_name,hand_open_width_bigger_than_workpiece_width,high_auto_speed, 

[P_Coordinate,Command_Sequence ]):- 

seizeponit(ID_W,block-1,ID_H,one_fourth_of_height_from_top,P_name,P_Coordinate), 

pickupact(ID_W,block-1,clip,1-2,P_name,Command_Sequence). 

The above generalized rule does not include the detailed pickup operation actions. Instead, it 

contains the code for the pickup strategy used in the training example, which is ‘1-2’. In the planning 

part, this is a rule to transform ‘1-2’ into robotic commands by using the robotic program schema 

whose code is ‘1-2’ in the basic planning base. In ‘1-2’, ‘1’ indicates the type of the operation 

strategy, and ‘2’ indicates its sub-type.  

The pickup strategy used here is an essential one, since picking up the blue block is a simple task. 

The tacit knowledge in this example is that the robot tool should approach the blue block at a distant 

position. Because there are other blocks near the blue one, approaching it from a distance can avoid 

collisions in moving it after picking it up. 

In placing the blue block, the placing strategy used is also an essential one, whose code is ‘1-1’. 

The tacit knowledge in this task is that the robot should approach at a position near the destination to 

make the blue block align with the target hole. In addition, the releasing point is at half the depth of 

the hole to make the blue block slide smoothly into the hole. (In the palletizing example in Fig. 4, the 

 30



cross-sections of the target holes are bigger than the cross-sections of their corresponding blocks. 

Thus the placing tasks are loose insertions.) 

For picking up the yellow block in the right queue, the tacit knowledge learned is the same as 

that of picking up the blue block. Thus, the KBS does not need to save the generalized rule learned 

from this task in the PKB, while it simply presents the knowledge translation for the workers. 

However, for placing the yellow block, the tacit knowledge learned is different from that of 

placing the blue block. For this task, the placing strategy used is ‘2-1’: 

move to a safe point, approach the releasing point at a distant position (to avoid collision with 

obstacles nearby destination), approach at a position near the releasing point, move to the 

releasing point, release the target workpiece, retreat to the distant approach point, move back to 

the safe point. 

This is a complicated placing strategy, which is formulated by adding a distant approach point (i.e., 

an intermediate point) into the essential placing strategy ‘1-1’. In placing the yellow block, the 

previously placed blue block is taken as an obstacle near the destination as shown in Fig. 2. To avoid 

collision with the blue block, a distant approach point should be added. The generalized rule learned 

from this task is different from that of placing the blue block, thus the KBS will save it in the PKB. 

The four tasks given in this section illustrated the Modified EBL method. In the next section, we 

show how the learned knowledge is reused by the planning part of the KBS. 

3.6 Experiments and Analysis 

As mentioned above, the KBS learned the knowledge of palletizing the blue and the yellow blocks in 

the right queue in Figure 3.4, and the learned knowledge is generalized as reusable rules to palletize 

the remaining blocks without being taught by the human. Through this learning procedure, the PKB 

of the KBS can be updated, since new generalized rules are added into its planning rule base. 

In this section, experiments are conducted by using the planning part of the KBS to generate 

robot programs for palletizing the other six blocks. The purpose is as follows: 1. to show how the 

planning part works, 2. to test the integrity and consistency of the domain theory, and 3. to show the 

boundaries of reuse implied by the generalized rules. 

Three aspects of the experimental analysis are presented. Aspect 1 shows how the planning part 

works and that the generalized rule is valid for similar tasks. Aspects 2 and 3 show cases in which 

the generalized rule is not valid, that is, problems that can occur in the PKB. 

3.6.1 How the Planning Part Works 

To generate the robot program of picking up the red block in the right queue, the task input into the 

“planner” is: 
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Task goal: pickup. 

Robot motion speed in automatic mode: auto_ovrd(80). 

Initial position of the target block: 

ini_pos(7, block-1, [691.27, -219.85, 70, -179.89, 0.38, 0.02]). 

The “planner” first uses rules in the PKB to analyze the features/requirements of the task. Then it 

matches these feature/requirements with those in the premises of the generalized rules. In other 

words, the planning process is also a search of the rules. Unlike learning, it is a search through the 

PKB. Figure 3.6 shows the searched rules. 

 

Figure 3.6 Tree of searched rules for picking up the red block in the right queue. 

Finally, the generalized rule learned from picking up the blue block matches with the input task. 

This rule retrieves the pickup robotic program schema ‘1-2’ and the corresponding parameter 

calculation rule from the basic planning base. In this way, the “planner” outputs the robot program 

for picking up the red block as follows: 

The seize point coordinate is 

[691.27, -219.85, 204.5, -179.89, 0.38, 0.02] 

The pickup command sequence is: 

mov(psafe) , mov(p6, 50) , mvs(p6) , dly(0.3) , 

hclose(1) , dly(0.3) , mvs(p6, 50) , mov(psafe). 

This robot program can be executed successfully to pick up the red block in the right queue. In 

the same way, the “planner” generates a valid program for placing the red block. By reusing the 

learned knowledge in this way, the robot-teaching time can be reduced. 
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3.6.2 Inconsistent Theory Problem 

In Figure 3.4, the blocks in the right queue belong to the same type ‘block-1’. This is because their 

widths are almost the same. However, the “planner” fails to generate a program for picking up the 

green block in the right queue. This is caused by a confliction between the rules in the domain theory. 

In WTD, the “planner” finds that the width of the green block is 15, its type is ‘block-1’, and the 

open width of the robot tool is 20. In the planning rule base, there is a rule ‘compare_wh’ saying 

that: 

If:  

robot _tool_open_width – workpiece _width > 5, 

Then: hand_open_width_bigger_than_workpiece_width; 

If:  

robot _tool_open_width – workpiece _width =< 5, 

Then: similar_hand_open_width_and_workpiece_width. 

This rule is used for analyzing the relationship between a robot tool and the target workpiece. 

Therefore, for the green block, the task features/requirements analysis result is as follows: 

The workpiece type is:   block-1; 

The robot hand open width is:   similar_hand_open_width_and_workpiece_ width. 

However, in the planning rule base, the rule learned from picking up the blue block is: 

IF: 

The automatic running speed is: 

high_auto_speed; 

The workpiece type is:   block-1; 

The robot tool type is:   clip; 

The robot hand open width is:   hand_open_width_bigger_than_workpiece_ width; 

THEN: 

The seize position on the workpiece is:   one_fourth_of_height_from_top; 

The pickup operation is: 

move to a safe point, approach the seizing point at a distant position (to avoid collision with 

nearby workpieces), move to the seizing point, seize the target workpiece, retreat to the 

approach point, move back to the safe point. 

This means that there is no rule in the PKB that can be used for picking up the green block. This 

failure is caused by the conflict between the rule ‘compare_wh’ and the learned rule for picking up 

the blue block. 

In this example, the learned rule determines the pickup strategy by considering both the type of 

the block and the comparison between its width and the open width of the tool. The comparison is 

decided by the pre-encoded rule ‘compare_wh’, which does a calculation with the data (i.e. the 
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width) of the block and the tool. In this case, a minor variance of the block data will lead to 

completely different comparison result. If the width of the green block was not 15, but was 14.99, 

then there would be no such ‘planner’ failure. 

Or on the other hand, assume that we change the ‘compare_wh’ rule to be 

If: 

robot _tool_open_width – workpiece _width > =5, 

Then: hand_open_width_bigger_than_workpiece_width; 

If: 

robot _tool_open_width – workpiece _width < 5, 

Then: similar_hand_open_width_and_workpiece_width. 

In this case, there also would be no conflict between the rule ‘compare_wh’ and the learned rule. 

Then, the “planner” will be able to reuse the learned rule successfully to generate a robotic program 

for picking up the green block. 

This experiment reveals that due to real-time uncertainty factors (e.g. the minor variance of the 

workpiece data), it is difficult to make the pre-encoded rules to be completely consistent with the 

new learned rules. This is the inconsistent theory problem that may exist in any knowledge-based 

system. In the proposed KBS, the method of solving this problem is that an expert manually revises 

the rules to resolve their contradiction. Another method is to introduce a feature weighing 

mechanism to compare the importance/influences of the conflicting features in the rules. Then the 

KBS uses the rules by respecting the feature of the greatest importance/influence. The feature 

weighing mechanism will be the subject of our future research. 

3.6.3 Incomplete Theory Problem 

In Figure 3.4, the blocks in the left queue belong to type ‘block-2’, because their widths are almost 

the same. After the task of picking up the blue block in the left queue is input into the KBS, the 

“planner” finds that there is no rule in the PKB available for picking it up. This is the incomplete 

theory problem of the PKB. In the proposed KBS, the method of solving this problem is to give a 

training example of this task. Then the proposed KBS can learn from the training example and 

update the PBK. 

In this experiment, a training example of picking up the blue block in the left queue is given to 

the KBS. The KBS learns the following rule: 

IF: 

The automatic running speed is: 

high_auto_speed; 

The workpiece type is:   block-2; 

The robot tool type is:   clip;  
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The robot hand open width is:   similar_hand_open_width_and_workpiece_ width; 

THEN: 

The seize position on the workpiece is:   one_fourth_of_height_from_top; 

The pickup operation is: 

move to a safe point, approach the seizing point at a distant position (to avoid collision with 

nearby workpieces), slow down the speed (to avoid collision between the robot tool and the 

target workpiece), approach the seizing point, move to the seizing point, seize the target 

workpiece, retreat to the approach point at the distant position, resume normal speed, move 

back to the safe point. 

In the basic planning base, the code for the pickup strategy used in this training example is ‘3-2’. 

This pick-up strategy is a complicated one, which is formulating by adding an intermediate approach 

point and a speed change into the essential pickup strategy. Because the width of the blue block is 

similar to the open width of the robot tool, in the high speed automatic mode, the robot tool is prone 

to collide with the block. Therefore, the speed of the robot tool should slow down when it moves to 

the seizing point. In addition, an approach point that is close to the block should be added to align 

the robot tool with the block. In the following experiments, the rules learned from picking up and 

placing the blue block are reused successfully in picking up and placing the rest blocks in the left 

queue. 

3.7 Discussion 

3.7.1 Comparison with Other Method 

In this section, we compare the proposed method with other methods, i.e., the SA method, the LfD 

method and the KB method introduced in Section 3.3 from the perspective of the ability of sharing 

and reusing expert knowledge. 

In the SA method, the expert knowledge is used to model the objective system or to define the 

feedback/reward function. Then the system is optimized through online learning from its exploration. 

Thus, the SA method is an unsupervised learning method. Within the SA method, the knowledge is 

inductively learned from multiple/repetitive explorations by the system itself, but is not learned from 

human experts. Therefore, the limitation of the SA method is that it sacrifices the communication 

with human so as to lack expressiveness and inferential richness of the learned knowledge. It makes 

the SA method lose the chance that expert knowledge may help it converge within less exploration 

times. On the other hand, the proposed method emphasizes knowledge sharing. The knowledge 

acquired by the proposed method can not only be reused by the system, but also can be understood 

and reused by human. 
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The LfD method acquires human knowledge from demonstrations given by human. However, it 

just learns the state-action mapping policy, but ignores the analysis of the demonstrations. Thus, the 

quality of the learned knowledge is limited by the quality of the given demonstrations. Moreover, the 

LfD method often requires a set of training demonstrations for learning. The proposed method can 

learn from a single training example by analyzing it with the LKB and generalizing the explanation 

with the OC. The analyzing ability makes the proposed method can critically learn from an example 

instead of learning a state-action mapping policy in a passive way. In addition, the ability of learning 

from a single example is important in that each example has the particular knowledge of the expert 

who gave the example. Especially in real robotic manufacturing, it is difficult to provide many 

training examples. 

The KB method is the method used in the planer of the proposed KBS. Compared to other KB 

system, the proposed KBS uses a modified EBL to update its PKB, which makes the KB method 

enhance the extendibility and practicability. 

3.7.2 Importance of Sharing Tacit Knowledge 

Within factory automation, many kinds of automations like robotic technologies are introduced and 

did contribute to improving the productivity of manufacturing. However, these trends are causing 

another novel problem, the so-called de-skilling hypothesis of human workers induced by the 

automation [42]. In other wards, the more automation is incorporated into the manufacturing process, 

the less the worker understands the process; the more sophisticated the machine becomes, the less 

control and comprehension of the machine the worker has. 

In the current factories, skills on how to operate and maintain the automation, e.g., robots, to 

keep them work continuously without failures are tacit knowledge. The tacit knowledge is of 

importance because the technical hitches caused by the wrong instructions to the robot do make the 

production lead time longer, but there is no way to share and reuse the tacit knowledge needed to 

avoid those kinds of technical hitches that are currently grasped in mind by only few experienced 

workers. Thus, construction of a novel knowledge infrastructure is needed that can support the 

maintenance and the transfer of the tacit knowledge of manufacturing among the human workers. 

As for knowledge management and knowledge creation, the SECI model proposed by Nonaka is 

well known [43]. He mentioned that the creation of knowledge is a continuous process of dynamic 

interactions between tacit and explicit knowledge. We completely agree with this idea, but so far few 

discussions have been made on how to realize that knowledge creation cycle technically with the 

support of machine learning methodologies and how to design an entire system from a perspective of 

human-machine collaborative systems. Therefore, in this paper, based on the considerations above, 

we propose the KBS based on a modified EBL method to facilitate tacit knowledge sharing and 

reusing between human workers and robots. 
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3.8 Conclusion 

In this chapter, the overall structure of a KBS to acquire tacit knowledge for sharing and reusing in 

the robotic assembly domain is proposed. The original EBL has been modified to acquire tacit 

knowledge from the robotic programs of skilled workers. A new operationality criterion is proposed, 

which demands that the learned tacit knowledge should be understandable by workers and reusable 

by robots. With the KBS, workers can learn the tacit knowledge implemented in robotic programs 

made by other workers. In this way, robotic programs become a vehicle for transferring tacit 

knowledge of skilled workers. This enables skill-succession even after the original skilled workers 

have retired. In addition, the proposed KBS can generate robotic programs for assembly tasks in 

similar cases. Thus, it enables human workers to avoid repeatedly teaching robots similar assembly 

tasks. This reduces the robot teaching time dramatically. The proposed KBS thus helps share tacit 

knowledge in the robotic assembly domain, and improves the efficiency and flexibility of robotic 

manufacturing. 

However, in this chapter, the modified EBL is only used in acquiring knowledge from lower level 

tasks such as ‘pickup’ and ‘place’ but not a whole assembly task. The knowledge reusing method is 

also confined to lower tasks. In the following chapters, more complicated to acquire and reuse 

knowledge for higher level tasks are developed and presented. 
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Chapter 4 

The Hierarchical Knowledge Modularization Method 

4.1 Introduction 

In this chapter, the modified EBL method proposed in the Chapter 3 is improved to make it to be 

able to learn from error recovery training examples. The improved EBL is also hierarchically used to 

acquire knowledge from higher level tasks, which are whole assembly tasks. 

Section 4.2 briefly introduces the improved EBL method. 

Section 4.3 presents the hierarchical knowledge acquisition process of the improved EBL 

method with a concrete real-world assembly example. 

Section 4.4 describes how the learned knowledge is reused and how the improved EBL is used to 

learn from an error recovery example. 

Section 4.5 gives the saving evaluation and reusing selection methods of the acquired 

knowledge. 

Section 4.6 gives the conclusion. 

4.2 Improvement of the Modified EBL 

The most distinguished feature of the improved EBL method is that it has two modes of learning: 1. 

learning from an example directly given by human workers, which has been presented in Chapter 2; 

2. learning expertise on error recovery by observing revisions made by human workers in handling 

execution errors that occur in reusing previously acquired knowledge. The second learning mode of 

the improved EBL method is completely new and different from the original EBL. As acquired 

human expertise is reused for similar assembly tasks, errors may occur in the execution of robot 

programs generated by reusing the generalized plans. In this case, human workers will revise the 

program to resolve the errors. Then, the second learning mode can be used to learn from these error 

recovery examples. 

In this study, an assembly task is defined as a process to assemble a single workpiece including 

picking it up from its initial position and placing it at its destination. Human expertise (i.e., 

knowledge) means how workers plan the robot’s actions (i.e., commands) for a given assembly task 

and how they design the trajectory for robot motion (i.e., point parameters) according to a certain 

environment. 

Figure 4.1 outlines the flowchart of the improved EBL method, which is divided into two: the 

learning part and the planning part (i.e., the grey part in Figure 4.1). In the learning part, the inputs 
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are an assembly task (i.e., the goal) and its training example (i.e., the robot program). The output is 

the acquired human expertise, which will be saved in the planning knowledge base. The input in the 

planning part is a new given assembly task that has to be accomplished. The output is the 

executable robot program for the given task and hints for human workers. The hints represent 

human expertise that should be paid attention (i.e., mainly how to decide the seizing/placing and 

approach point in the robot motion trajectory) in the execution of the generated robot program. 

Then, human workers upload the generated robot program to the robot controller and test it in the 

playback mode. The planning part will ask workers whether error occurs in the test. If the answer is 

no (i.e., no error occurs), the planning part will make saving evaluation of the new task to decide 

whether it is worth being learned and saved. If the answer is yes (i.e., error occurs), workers must 

revise the robot program. And the planning part will ask workers to input the revised program. This 

is how the workers interact with the planning part of the system (i.e., dashed-line framed parts 

‘Test’, ‘Error?’, ‘Revising’ in Figure 4.1). Then, the learning part will learn from the error recovery. 

In this case, both the generated program and the revised program will be taken in as the training 

example. And the assembly task includes the new given assembly task description, and the original 

task description of the generated program that is saved in the domain theory. 

 
Figure 4.1 The structure of the improved EBL method. 
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4.3 Acquisition of Human Expertise 

4.3.1 Description of an Assembly Task and Its Training Example 

The left photo of Figure 4.2 shows the workpiece to be assembled, i.e., a fin-block (a fin-block is a 

device for extinguishing arcs in circuit breakers). The right photo shows its destination and the 

destination environment for the assembly task, in which the assembled fin-block is shown in its 

final assembled state. The improved EBL method requires two inputs to learn from the 

robot-teaching demonstration of assembling this fin-block: the first is its assembly task description 

and the second is the robot program for attaining the task. 

 
Figure 4.2 Example: assembling fin-block in circuit breaker. 

The assembly task description is: 

Task ID:            28. 

Task name:           assemble fin-block. 

Workpiece:           id(10), name(fin-block). 

Tool:                id(6), name(gripper2). 

Assembly operation:    simple_peg_hole_insertion. 

Initial position:     

p_ini(209.260,-615.490,228.720,-180.000,0.000,72.810). 

Destination position:     

p_des(585.050,-308.610,272.310,179.980,-0.200,157.490). 

Destination environment: 

hole_width(25),hole_depth(33),obstacle(front,5,69). 

Here, ‘Task ID’ indicates the order for the assembly task that distinguishes it from other assembly 

tasks in the assembly series, which is a sequence of assembly tasks for assembling a product (e.g., 

the product to be assembled in Figure 4.2 is a circuit breaker). The ‘Task name’ is the name of the 
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task. As there are repetitive tasks in an assembly series, several tasks can have the same task name 

(e.g., there are three fin-blocks to be assembled, which have the same task name ‘assemble 

fin-block’ and different task IDs ‘28’, ‘29’, and ‘30’ are assigned to each). The IDs and names of 

the workpiece and tool can help extract data on the fin-block and data on the robot tool used to 

assemble it from the workpiece database. The ‘simple_peg_hole_insertion’ describes the assembly 

operation to insert the fin-block into a hole (i.e., a square hole) in the body of the circuit breaker. 

The ‘Initial position’ of the fin-block, i.e., ‘p_ini’, is indicated by the center of the underside of the 

fin-block. The ‘Destination position’, i.e., ‘p_des’, is indicated by a point that is on the inner 

surface of the body of the circuit breaker, which corresponds to the center of the fin-block at the 

bottom when it is assembled. The destination environment is described as a hole that is 25 mm in 

width with a depth of 33 mm. There is also an obstacle nearby, which is 5mm in front of the 

destination and has a height of 69 mm. 

The experienced workers’ robot program for this assembly task is: 

%pickup 

Commands: 

Ovrd M_NOvrd 

HOpen 1 

Mov p1 

Mov p2,-50 

Ovrd 10 

Dly 0.1 

Mvs p2 

Dly 0.3 

HClose 1 

Dly 1 

Mvs p2,-50 

Ovrd M_NOvrd 

Dly 0.1 

Mov p3 

Parameters: 

p1(344.060,430.570,423.240,106.130,-20.520,154.730). 

p2(209.260,-615.490,260.810,-180.000,0.000,72.810). 

p3(368.950,31.110,505.450,-179.800,-0.030,-109.290). 

%place 

Commands: 

Mov p3 
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Mov p4,-150 

Mvs p4,-35 

Ovrd 10 

Dly 0.1 

Mvs p4 

Dly 0.3 

HOpen 1 

Dly 0.3 

Ovrd M_NOvrd 

Mov p4,-150 

Mov p3 

Parameters: 

p4(585.050,-308.610,310.330,179.980,-0.200,157.490). 

 
Figure 4.3 Robot's motion trajectory in ‘assemble fin-block’. 

The parameters in the program are the point coordinates for the center of the robot’s tool tip in its 

motion trajectory. As shown in Figure 4.3, 4 points (i.e., p1, p2, p3, and p4) are indispensable in an 

assembly task. ‘p1’ and ‘p3’ respectively are safe points in the ‘pickup’ part and ‘place’ part. The 

role of safe points is to make the robot tool move to a safe position when it picks up or places the 

target workpiece. In this way, the robot tool can avoid collision with obvious obstacles. It is easy 

for human workers to teach safe points. ‘p2’ is the seizing point where the robot tool seizes the 
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fin-block. ‘p4’ is the placing point where the robot tool places the fin-block while assembling it. 

Workers need expertise to teach the seizing point and the placing point. There are always approach 

points near the seizing point (i.e., ‘p2,-50’ in this example) and the placing point (i.e., ‘p4,-150’, 

‘p4-35’ in this training example). The approach points are useful to make accurate ‘pickup’ and 

‘place’ operations. This is human expertise, such as how the point parameters are determined, and 

how the delays are set in the robot program. 

4.3.2 The Hierarchical Knowledge Modularization Learning Process 

The process of acquiring human expertise by using the improved EBL also consists of two steps: 

explaining and generalizing. The improved EBL is hierarchically used to explain the goal (i.e., 

‘assemble’ in Figure 4.4) and its different levels of subgoals of the input assembly task (i.e., ‘pickup’, 

‘place’, ‘command’ and ‘parameter’ in Figure 4.4) 

 

Figure 4.4 The hierarchy of the explaining process. 

The explaining process involves a search through the learning knowledge base. At the start, all 

the arguments in the goal and the rules that are searched are variables. As Fig. 5 shows, the goal is to 

accomplish a given assembly task whose ID is ‘Task_ID’. The rules explain the picking-up part and 

the placing part of the assembly task separately. In both parts, the commands and parameters in the 

robot program are also explained separately. After all the leaf nodes have been proved by the facts in 

the assembly task description and the robot program, the arguments in the rules and goal are 

instantiated with the values in the facts. Then, an instantiated explanation tree that is specific to the 

given assembly task is obtained. The instantiated explanation tree explains how this particular robot 

program accomplishes the assembly task. 

The explaining process for the robot commands involves translating them into a language that 

can be easily understood by humans. For example, with the following three rules in the learning 

knowledge base: 
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Rule 1: seize_the_target_workpiece(W_Name):- 

                        wp(W_ID,W_Name,_), 

                        grip(T1,HN,T2). 

Rule 2: delays_before_and_after_close_tool(T1,T2):- 

                        grip(T1,HN,T2). 

Rule 3: grip(T1,HN,T2):- 

                        cmd(N1,dly(T1)), 

                        cmd(N2,hclose(HN)), 

                        cmd(N3,dly(T2)), 

                        T1>0.2, T2>0.2, 

                        N2=:=N1+1, 

                        N3=:=N2+1. 

and the fact ‘Workpiece: id(10), name(fin-block)’ in the assembly task description and the facts ‘Dly 

0.3’, ‘HClose 1’, and ‘Dly 1’ in the training example, the improved EBL method can translate the 

commands ‘Dly 0.3, HClose 1, Dly 1’ in the training example in into ‘seize the target fin-block’, 

‘delay T1 before and T2  after closing the robot tool’, and ‘T1 and T2 should be longer than 0.2 

sec’, which are easily understood by human. 

Similarly, explaining the parameters involves analyzing the point parameters in the robot 

program. The learning function analyzes the point parameters by taking into consideration the 

related workpiece data, tool data and facts on the environment. The explanation gives reasons for 

how and why experienced workers determined the seizing point ‘ps’, the placing point ‘pp’, and the 

approach points as those in the robot program. 

The workpiece data and tool data can be retrieved from the workpiece database by using their 

respective IDs given in the assembly task description. In the ‘assemble fin-block’ example, the data 

of the fin-block is: 

ID: 10. 

Name: fin-block. 

Type:block. 

Length: 21 mm. 

Width: 20 mm. 

Height: 42 mm. 

Max_length: 22 mm. 

Max_width: 22 mm. 

Max_height: 50 mm. 

Weight: 25 g. 

Material: plastic, metal. 
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Texture: hard. 

Color: brown, silver. 

The data of the robot tool used to perform the ‘assemble fin-block’ task is: 

ID: 6. 

Name: gipper2. 

Type: two-finger. 

Inside_open_width: 25 mm. 

Outer_open_width: 55 mm. 

Finger_length: 120 mm. 

Max_load: 5000 g. 

Figure 4.5 is part of the explanation tree of a subgoal that explains the placing point ‘pp’ of the 

fin-block, i.e., the point ‘p4’ in the ‘place’ part of the robot program. This partial explanation tree 

shows how the rules in the learning knowledge base are searched to explain the subgoal 

‘placing_position(H,R)’. The search terminates until the leaf nodes are proved by the facts in the 

assembly task description and the robot program, or the facts in the workpiece data base, which are 

the underlined items in Figure 4.5. 

 

Figure 4.5 Partial explanation tree of the placing point subgoal. 
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In Figure 4.5, the placing point ‘pp(P_pl.X, P_pl.Y, P_pl.Z, P_pl.A, P_pl.B, P_pl.C)’ of the 

fin-block is instantiated by the point ‘p4(585.050, -308.610, 310.330, 179.980, -0.200, 157.490)’ in 

the ‘place’ part of the robot program. The destination position ‘p_des(P_des.X, P_des.Y, P_des.Z, 

P_des.A, P_des.B, P_des.C)’ of the fin-block  is instantiated by the destination position 

‘p_des(585.050, -308.610, 272.310, 179.980, -0.200, 157.490)’ (i.e., a point on the bottom surface of 

the left hole in the body of the circuit breaker) in the assembly task description. The coordinates of 

the destination position ‘p_des’ are obtained from the sensor. The coordinates of the placing point 

‘pp’ (i.e., the point ‘p4’ in the robot program) is taught by human workers based on the coordinates 

of the destination position ‘p_des’. Here, the ‘X, Y’ coordinates and the ‘A, B, C’ angle coordinates 

of the placing point ‘pp’ of the fin-block are the same as the corresponding ‘X, Y’ and ‘A, B, C’ 

coordinates of the destination position, only their ‘Z’ coordinates (i.e, P_pl.Z and P_des.Z) are 

different. In other words, the human workers place the fin-block above the target hole. Therefore, the 

subgoal ‘placing_position(H, R)’ involves figuring out the height (i.e., ‘H’) of the placing point ‘pp’ 

above the hole’s top orifice and the ratio (i.e., ‘R’) of this height to the maximum height (i.e., 

Max_height in fig. 6, which is instantiated by 50 in arguments of workpiece data ‘wp’) of the 

fin-block. After all the leaf nodes of the partial explanation tree is instantiated, the values of ‘H’ and 

‘R’ can be obtained, which are respectively 6 and 0.12. In this way, this partial explanation tree 

explains that the robot will release its tool at a height of 6 mm above the top orifice of the hole while 

inserting the fin-block into the target hole to avoid a collision between the tool and the hole. The 

ratio of this height to the maximum height of the fin-block is 0.12. 

Then, the subsequent generalizing process is accomplished by selecting several key arguments 

that appear in the instantiated explanation tree and transforming them into operable and 

understandable forms according to the new operationality criterion. 

The examples discussed in this section illustrate how the human expertise embedded in the robot 

program of the assembly task ‘assemble fin-block’ is analyzed by the improved EBL method. To 

make the human expertise both operable to generate robot programs for similar ‘simple block-hole 

insertion’ assembly tasks and understandable by human workers, the operationality criterion (i.e., a 

set of rules and language processing functions) generalizes the assembly task description and the 

instantiated explanation tree as: 

Assembly plan 

ID: ap00011 

Name: simple_block_hole_insertion 

%pickup 

Sub ID: 01 

Table 4.1 Assembly plan of picking up the first fin-block 

Primitive robot Command explanations Parameter explanations 
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command 

schema 

Ovrd M_NOvrd 

HOpen 1 
Preparation(set normal speed, open tool);  

Mov Phome Move to safe point;  

Mov Ps,-Ds 
Approach seizing point at a distance of Ds 

to it; 

Approach distance Ds = 50 

mm, 

Ds >= fin-block_max_height. 

Ovrd 10  

Dly Ts 

Slow down speed, 

delay Ts=0.1 second; 
 

Mvs Ps Arrive at seizing point; 
Seizing point is at 0.76*height 

of the fin-block. 

Dly Tc1 

HClose 1 

Dly Tc2 

Seize the target fin-block, 

Delay Tc1 before and Tc2  after closing 

the robot tool, Tc1 and Tc2 should be 

longer than 0.2 second; 

 

Mvs Ps,-Ds Retreat to approach point;  

Ovrd M_NOvrd 

Dly Tr     

Recover normal speed, 

delay Tr=0.1 second; 
 

Mov Pphome Move to safe point near destination.  

%place 

Sub ID: 02 

Table 4.2 Assembly plan of placing the first fin-block 

Primitive robot 

command 

schema 

Command explanations Parameter explanations 

Mov Pphome Move to safe point near destination;  

Mov Pp,-Dp1 
Approach placing point at a distance of 

Dp1 to it; 

The first approach distance 

Dp1=150,  

Dp1 >= tallest_obstacle_height 

+ fin-block_max_height. 

Mov Pp,-Dp2 
Approach placing point at a distance of 

Dp2 to it; 

The second approach distance 

Dp2=35. 

Ovrd 10  

Dly Tsp 

Slow down speed, 

delay Tsp=0.1 second; 
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Mvs Pp Arrive at placing point; 

Placing point is at H=6 mm, 

about 0.12*max_height of the 

fin-block, above the top orifice 

of the hole. 

Dly To1 

HOpen 1 

Dly To2 

Release the fin-block, delay To1 before and 

To2  after opening the robot tool, To1 and 

To2 should be longer than 0.2 second; 

 

Ovrd M_NOvrd Recover normal speed;  

Mvs Pp,-Dp1 Retreat to the first approach point;  

Mov Pphome Retreat to safe point near destination.  

Indexing rule 

assembly_task(Task_ID,block,two-finger,simple_peg_hole_insertion, 

[obstacle(front,_,_),_]):-  assembly_plan(ap00011). 

Notes 

While the fin-block is being picked up, the approach distance, Ds, should not be shorter than 

the maximum height of the fin-block to prevent the seized fin-block and other nearby 

fin-blocks from colliding. 

While the fin-block is being placed, the first approach distance, Dp1, should not be shorter 

than the sum of the height of the tallest obstacle and the maximum height of the fin-block to 

prevent the fin-block and the obstacle from colliding. 

The above, including how to determine the parameters of the heights for picking up and placing 

down the fin-block, the time delays, and speed changes (i.e., Table 1-2) represent the human 

expertise acquired from the robot program of the assembly task ‘assemble fin-block’. This is saved 

in the planning knowledge base together with its assembly task description.  

The assembly plan can be reused to generate robot program for a similar assembly task. The 

command and parameter explanations in the assembly plan can help human workers understand how 

the generated robot program works.  

The indexing rule is used by the planning function to retrieve the saved assembly plan. In other 

words, the indexing rule defines the generality boundary of the generalized assembly plan. The 

indexing rule in the above example means: 

If the type of workpiece is block, the type of robot tool is two-finger, the assembly operation is 

simple_peg_ hole_insertion, and the obstacle is in front of the destination; then the assembly plan 

that can be reused is one whose ID is ap00011. 

The notes will be output by the planning function for workers along with explanations of the 

robot program. 
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4.4 Acquisition of Error Recovery Knowledge 

4.4.1 Error Occurred in Reusing the Acquired Knowledge 

In Figure 4.2, there are a total of three fin-blocks to be assembled into three square holes (i.e., the 

left, the middle, and the right holes) in the body of the circuit breaker. The two squares in Figure 4.2 

to the right of the assembled fin-block indicate the middle and the right holes, which are the 

destinations for the other two fin-blocks to be assembled. The initial state of the other two fin-blocks 

is almost the same as that of the first except for their initial positions. The robot tool and assembly 

operation are the same for assembling all three fin-blocks. Thus, the assembly task description for 

assembling a fin-block into the middle hole is as: 

Task ID:      29. 

Task name:    assemble fin-block. 

Workpiece:    id(10), name(fin-block). 

Tool:         id(6), name(gripper2). 

Assembly operation:    simple_peg_hole_insertion. 

Initial position: 

p_ini(209.260,-585.400,228.720,-180.000,0.000,72.810). 

Destination position:     

p_des(600.050,-308.610,272.310,179.980,-0.200,157.490). 

Destination environment: 

hole_width(25),hole_depth(33),obstacle(front,5,69), obstacle(left,18,50). 

Here, the differences between this assembly task description and the one in the last section are: 

the task ID, the initial position, the destination position, and particularly the destination environment. 

Because the fin-block assembled in the left hole is taken to be an obstacle, there is 

‘obstacle(left,18,50)’ in the destination environment, which means the obstacle is 18 mm to the left 

of the destination and its height is 50 mm (i.e., the assembled fin-block). 

The new assembly task description is input into the planning function. By analyzing the above 

new assembly task description, the planning function can obtain the facts that include the type of the 

second fin-block (i.e., block), the type of the robot tool used (i.e., two-finger), the assembly 

operation (i.e., simple_peg_hole_insertion), and the obstacles in destination environment (i.e., 

obstacle(front,5,69), obstacle(left,18,50)). These facts satisfy the precondition features of the head of 

the indexing rule learned from assembling the first fin-block, and activate this indexing rule. 

Therefore, according to this indexing rule learned in Section 4.3.2, the assembly plan ‘ap00011’ is 

reused to generate a robot program for this new assembly task as: 

%pickup 

Commands: 
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Ovrd M_NOvrd 

HOpen 1 

Mov p5 

Mov p6,-50 

Ovrd 10 

Dly 0.1 

Mvs p6 

Dly 0.3 

HClose 1 

Dly 1 

Mvs p6,-50 

Ovrd M_NOvrd 

Dly 0.1 

Mov p7 

Parameters: 

p5(344.060,430.570,423.240,106.130,-20.520,154.730). 

p6(209.260,-585.400,260.810,-180.000,0.000,72.810). 

p7(368.950,31.110,505.450,-179.800,-0.030,-109.290). 

%place 

Commands: 

Mov p7 

Mov p8,-150 

Mvs p8,-35 

Ovrd 10 

Dly 0.1 

Mvs p8 

Dly 0.3 

HOpen 1 

Dly 0.3 

Ovrd M_NOvrd 

Mov p8,-150 

Mov p7 

Parameters: 

p8(600.050,-308.610,311.310,179.980,-0.200,157.490)). 

As the robot program above is generated for the robot, the explanations for the commands and 

parameters and the notes in the assembly plan are also output for human workers through an 
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interface. Then, workers test the above program in playback mode. In the test, the robot picks up the 

fin-block and successfully moves it to the second approach point of the placing position. However, 

while the robot is moving the fin-block to its placing point ‘p8’, the robot tool collides with the 

assembled fin-block, i.e., an error occurs. 

The reason for this collision error is that the robot has stretched its two fingers left and right 

while placing the fin-blocks in the destination holes. Thus, collisions can be avoided if obstacles are 

located at front (i.e., the black part above the fin-block in Figure 4.2) or back of the destination. 

However, collisions cannot be avoided if the obstacles are located to the left or right of the 

destination. While experienced workers were assembling the first fin-block into the left hole, 

because there was no obstacle located at the left or right side of the destination, they made the 

placing point ‘pp’ to be as near as possible to the top orifice of the hole, i.e. H=6 mm in assembly 

plan ‘ap00011’ to make the insertion stable. In contrast, while the robot was assembling the second 

fin-block into the middle hole, the assembled fin-block became an obstacle that was located at the 

left of the second fin-block’s destination. Moreover, the distance between the assembled fin-block 

and the destination was 18 mm, which was shorter than half the tool’s outer open width of 22.5 mm, 

and consequently collision error occurred. 

4.4.2 Learning from Error Recovery 

To correct the error in assembling the second fin-block, the human expert revises only one item in 

the generated program. That is to raise the placing point ‘p8’ of the second fin-block to make it 

higher than the top of the assembled fin-block. In this way, the collision between the tool and the 

assembled fin-block can be avoided. 

The specific revision made by the human expert was to change the coordinate of the placing 

point ‘pp’ of the second fin-block to: 

p8(600.050,-308.610,327.260,179.980,-0.200,157.490). 

The human expertise in this revision can be acquired by the second learning mode of the 

improved EBL method, which is learning from a revision in error-recovery if an error occurs in 

reusing the acquired human expertise. The second learning mode is the most important 

distinguishing feature of the improved EBL method. The original EBL doesn’t have this learning 

mode. 

Different from the first learning mode, in the second learning mode the robot program input into 

the learning function includes both the revised robot program and the robot program generated by 

the planning function. In addition, the assembly task includes both the new assembly task description 

of assembling the second fin-block and the previous assembly task description of assembling the 

first fin-block of the reused assembly plan. Another difference between the two learning modes is 

that in learning from the direct-teaching example, the learning function just analyzes the input 
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assembly task description and the corresponding robot program. However, in learning from the 

error-recovery example, apart from analyzing the newly input assembly task description and its 

corresponding revised robot program, the learning function also compares the newly input assembly 

task description with the previous assembly task description in the reused assembly plan, and 

compares the revised robot program with the reused assembly plan to find differences between them. 

Human expertise on revising robot program is contained in the differences of the assembly task 

descriptions and the robot programs. Then, the operationality criterion generalizes the differences 

from the comparisons. 

The key to acquiring human expertise from the error- recovery example is to find the factors that 

lead to the error in the new assembly task description and the recovery measures for this error in the 

revised program. In the example of assembling the second fin-block, the factor that leads to the 

collision is that the obstacle located to the left of the destination (i.e., the first assembled fin-block). 

And, the recovery measure given by the human expert was to raise the placing point ‘p8’ of the 

second fin-block to make it higher than the top of the first assembled fin-block. 

The human expertise acquired from this error-recovery training example is: 

Assembly plan 

ID: ap00012 

Name: simple_block_hole_insertion 

%pickup 

Sub ID: 01 

Table 4.3 Assembly plan of picking up the second fin-block. 

Primitive robot 

command schema 
Command explanations Parameter explanations 

Ovrd M_NOvrd 

HOpen 1 
Preparation(set normal speed, open tool);  

Mov Phome Move to safe point;  

Mov Ps,-Ds 
Approach seizing point at a distance of Ds to 

it; 

Approach distance Ds = 50 

mm, 

Ds>=fin-block_max_height. 

Ovrd 10  

Dly Ts 

Slow down speed, 

delay Ts=0.1 second; 
 

Mvs Ps Arrive at seizing point; 
Seizing point is at  

0.76*height of the fin-block. 

Dly Tc1 

HClose 1 

Dly Tc2 

Seize the target fin-block, Delay Tc1 before 

and Tc2  after closing the robot tool, Tc1 

and Tc2 should be longer than 0.2 second; 
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Mvs Ps,-Ds Retreat to approach point;  

Ovrd M_NOvrd 

Dly Tr     

Recover normal speed, 

delay Tr=0.1 second; 
 

Mov Pphome Move to safe point near destination.  

%place 

Sub ID: 02 

Table 4.4 Assembly plan of placing the second fin-block. 

Primitive robot 

command schema 
Command explanations Parameter explanations 

Mov Pphome Move to safe point near destination;  

Mov Pp,-Dp1 
Approach placing point at a distance of Dp1 

to it; 

The first approach 

h distance Dp1=150,  

Dp1>= 

tallest_obstacle_height + 

fin-block_max_height. 

Mov Pp,-Dp2 
Approach placing point at a distance of Dp2 

to it; 

The second approach 

distance Dp2=35. 

Ovrd 10  

Dly Tsp 

Slow down speed, 

delay Tsp=0.1 second; 
 

Mvs Pp Arrive at placing point; 

Placing point is at H=22 mm,

about 0.44*max_height of 

the fin-block, above the top 

orifice of the hole,  

H > left_obstacle_height 

–  hole_depth. 

Dly To1 

HOpen 1 

Dly To2 

Release the fin-block, delay To1 before and 

To2  after opening the robot tool, To1 and 

To2 should be longer than 0.2 second; 

 

Ovrd M_NOvrd Recover normal speed;  

Mvs Pp,-Dp1 Retreat to the first approach point;  

Mov Pphome Retreat to safe point near destination.  

Indexing rule 

assembly_task(Task_ID,block,two-finger,simple_peg_ 

hole_insertion,[obstacle(front,_,_),obstacle(left,LD,_), tool(_,_,_,_,Outer_open_width,_,_),  

LD <= Outer_open_width/2, _]):-  assembly_plan(ap00012). 
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Notes 

While the fin-block is being picked up, the approach distance, Ds, should not be shorter than 

the maximum height of the fin-block to avoid collision between the seized fin-block and 

other nearby fin-blocks. 

While the fin-block is being placed, the first approach distance, Dp1, should not be shorter 

than the sum of the height of the tallest obstacle and the maximum height of the fin-block to 

avoid collision between the fin-block and the obstacle. 

While the fin-block is being placed, if there is an obstacle to the left of the destination, the 

placing point ‘Pp’ should be higher than the obstacle to the left of the destination. 

The human expertise acquired in assembling the second fin-block (i.e., Table 3-4) is almost the 

same as that acquired in assembling the first one (i.e., Table 1-2). The only difference is in 

determining the position of the placing point ‘Pp’ in Table 4. The specific differences have been 

marked with a grey background. The new generalized indexing rule means that: 

If the type of workpiece is block, the type of robot tool is two-finger, the assembly operation 

is simple_peg_hole_ insertion, there are two obstacles，one is in front of the destination, the 

other is at the left side of the destination, and half the outer open width of the robot tool (i.e., 

Outer_open_width/2) is bigger than or equals the distance (i.e., LD)between the destination 

position and the left obstacle; then, the assembly plan that can be reused is one whose ID is 

ap00012. 

Compared with the indexing rule learned in assembling the first fin-block, this indexing rule 

requires more precondition features in its head. In other words, the generality boundary of assembly 

plan ‘ap00012’ is smaller than that of assembly plan ‘ap00011’.  

In the planning part, there is a rule defines that the assembly plan of smaller generality boundary 

should be activated first, this is because such assembly plan has stricter reusing precondition. 

Therefore, when generating robot program for assembling the third fin-block, assembly plan 

‘ap00012’ will be selected. The generated robot program can be executed successfully in the test. 

4.5 Saving Evaluation and Reusing Selection 

As more and more assembly tasks are learned by the proposed method, there should be evaluation 

criteria to decide whether the acquired human expertise for a new assembly task is worth being 

saved in the planning knowledge base. And the evaluation criteria are: 

If an error occurs in the execution of a robot program generated by the planning function, and 

the function asks human workers to revise the robot program; then the human expertise 

acquired from this error-recovery assembly task must be saved in the planning knowledge 

base. 

If any one (or more than one) of the following four points: 1. name of workpiece, 2. name of 
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tool, 3. assembly operation, or 4. destination environment in the new assembly task 

description is different from that (or those) in the assembly task descriptions of the saved 

human expertise; then the human expertise acquired from this new assembly task is worth 

saving in the planning knowledge base. 

For example, when the planning function reused the assembly plan of the first fin-block for 

assembling the second fin-block, a collision occurred during the execution of the generated program. 

Then, the workers revised the generated program to solve this error. Thus, the human expertise 

acquired from assembling the second fin-block must be saved, although the human expertise 

acquired from assembling the first fin-block has already been saved in the planning knowledge base. 

To assemble the third fin-block in the right hole, the assembly plan of the second fin-block is 

reused. The generated program can be executed successfully. Because the name of the workpiece, 

the name of the tool, the assembly operation, and the destination environment in the assembly task 

description for assembling the third fin-block are the same as those for assembling the second 

fin-block, the human expertise acquired from assembling the third fin-block will not be saved in the 

planning knowledge base for this does not satisfy either of the evaluation criterion of saving 

acquired human expertise. 

Herein, both the assembly plans of the first and the second fin-blocks are saved in the planning 

knowledge base. Thus, a problem for assembling the third fin-block is that which assembly plan 

should be selected. The reusing selection is done by the following 4 steps: 

Step1: When a new assembly task is input into the planning function, there is a set of general rules 

used to analyze features of the new task. 

Step 2: An indexing rule will be activated if the features in its head can be satisfied/matched by the 

analyzed features of the new input task. 

Step 3: The result of Step 2 has 3 possible cases: 1. No indexing rule can be activated. Then, the 

workers have to teach the robot. 2. Only one indexing rule is activated. Then, the planning part 

reuses the corresponding assembly plan to generate program for the new input task. 3. More than one 

indexing rules are activated. Then, go to step 4. 

Step 4: If there are more than one indexing rules are activated in Step 3, then the indexing rule that 

has the largest number of features in its head will be selected.  

Compared with the indexing rule of the first fin-block, the indexing rule of the second fin-block 

has more features (i.e., obstacle(left,LD,_), tool(_,_,_,_,Outer_open_width,_,_),  LD <= 

Outer_open_width/2) in its head. Thus assembly plan of the second fin-block is selected for 

assembling the third fin-block. This is because the more features an indexing rule has in its head, the 

more preconditions the indexing rules requires. In other words, the indexing rule that has more 

features has a smaller generality boundary and is more similar as the new input task. 
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4.6 Conclusion 

The modified EBL method proposed in the Chapter 3 is improved in this chapter. The improved EBL 

method has two learning modes. The first learning mode is a hierarchical use of the modified EBL 

presented in Chapter 3 for higher level tasks. The second learning mode can learn from error 

recovery training examples, which is the novel proposal of the improved EBL method. Saving 

evaluation criteria of the acquired knowledge and its reusing method are also discussed in this 

chapter. 

It is worth noting that the acquired knowledge is represented as different levels of knowledge 

modules in the assembly plan. The knowledge modules in an assembly task can not only be reused in 

whole, but also can be flexibly reused in part. The method for flexibly reusing the knowledge 

modules will be given in the next chapter. 
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APPENDIX  

Explanation for Terminology in Chapter 4 

 There are two kinds of terminology in this chapter. One is used in robot programming. The other is 

developed by the authors, and used in the proposed method. Table 4.5 and Table 4.6 in the appendix 

respectively explain the two kinds of terminology. 

Table 4.5 Explanation for terminology used in robot programming. 

Terminology Explanation Location 

Mov Robot command. Using joint interpolation movement, moves from the 

current position to the destination position, e.g., Mov p1 means moving 

to point p1 with joint interpolation operation.

Section 3 

Section 

4.1~4.2 

Mvs Robot command. Using linear interpolation movement, moves from the 

current position to the destination position, e.g., Mvs p2 means moving 

to point p2 in straight line.

Section 3 

Section 

4.1~4.2 

Ovrd Robot command.  Specifies the speed of the robot movement as a 

value in the range from 1 to 100%, e.g., Ovrd 10 means specifying the 

robot speed as 10% of the maximum speed.

Section 3 

Section 

4.1~4.2 

Dly Robot command. Causes a wait, e.g., Dly 1 means delaying 1 second 

before executing the next command.

Section 3 

Section 

4.1~4.2 

HClose/ 

Hopen 

Robot command. Commands the robot tool to open or close, e.g., 

HClose 1 means closing the robot tool whose number is 1.

Section 3 

Section 

4.1~4.2 

M_Novrd It is a system status variable, which indicates the initial override value 

that is the general robot speed set in the automatic running mode. 

Section 3,4 

p1~p8 Point parameter. The target points defined in the robot movement path. Section 3 

Section 

4.1~4.2 

p2,-50 Point parameter. Approach point. ‘p2,-50’ means a point at the position 

retracted 50mm in the robot tool direction, as shown in Fig. 4.  

Section 3 

Section 

4.1~4.2 

Note: The explanation for the robot-programming terminology is obtained from the instruction manual of 

the robot controller, ‘MELFA Industrial Robots Instruction Manual CR1/CR2/CR4/CR7/ CR8/CR9 

Controller’. 

 57



Table 4.6 Explanation for terminology developed in the improved EBL method. 

Terminology Explanation Location 

Phome Safe point in the ‘pickup’ part. It is the start point used to avoid collision 

with obstructions. 

Table 1,3 

Ps Seizing point. The point at which the robot seizes the target workpiece. Table 1,3 

Ds Approach distance between the approach point and the seizing point. Table 1,3 

Ts Delay time after slowing down the speed in the ‘pickup’ part. Table 1,3 

Tc1 Delay time before closing the robot tool. Table 1,3 

Tc2 Delay time after closing the robot tool. Table 1,3 

Tr Delay time after recovering the normal speed. Table 1,3 

Pphome Safe point in the ‘place’ part. It is the start and end points of the ‘place’ 

part. 

Table 1~4 

Pp Placing point. The point at which the robot releases its tool to assemble 

the target workpiece. 

Table 2,4 

Dp1 The approach distance between the first approach point and the placing 

point. Usually, the first approach point is used to avoid collision with 

obstructions near the destination. 

Table 2,4 

Dp2 The approach distance between the second approach point and the 

placing point. Usually, the second approach point is used to align with 

the destination. 

Table 2,4 

Tsp Delay time after slowing down the speed in the ‘place’ part. Table 2,4 

To1 Delay time before opening the robot tool. Table 2,4 

To2 Delay time after opening the robot tool. Table 2,4 

H The height between the placing point and the top orifice of the 

destination hole. 

Table 2,4 

LD The distance between the destination of the workpiece and the 

obstruction on the left side of the destination. 

Indexing rule 

in Section 4.2
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Chapter 5 

Flexible Reuse of Hierarchical Knowledge Modules and 

Automatic Programming for Robots 

5.1 Introduction 

In this chapter, the method for flexibly reusing different levels of knowledge modules acquired in an 

assembly plan is presented. In addition, the KBS proposed in Chapter 3 is improved and transformed 

into a case-based system. In the case-based system, the past tasks and their corresponding acquired 

knowledge are saved as cases in a cases base. The case base and the domain theory of the KBS make 

up the knowledge base of the case-based system. The learning function developed in Chapter 3 and 

Chapter 4 is embedded in the retaining agent of the case-based system. The planning function 

introduced in the last 2 chapters is assigned to and improved by the retrieving and reusing agents of 

the case-based system. 

Section 5.2 introduces the structure of the case-based system and the case representation form. 

Section 5.3 presents how the retrieving and the reusing agents generate program for new tasks by 

flexibly reusing the knowledge modules in past cases. 

Section 5.4 gives the experiments and related analysis. 

Section 5.5 compares the proposed method with other off-line automatic programming methods. 

Section 5.6 gives the conclusion. 

5.2 The Case-based System for Flexibly Reusing Hierarchical 
Knowledge Modules 

5.2.1 The System Structure 

As Figure 5.1 shows, the case-based system is a support system for the host control system of a robot 

work cell (HCSRWC). Its input is an assembly task description. Here, an assembly task refers to the 

process (or the requirements) of assembling a single workpiece, including picking it up from its 

initial position and placing it at its destination. Its output is the successfully tested robot program for 

an input task. The HCSRWC collects the outputs for different tasks of assembling various 

workpieces and then integrates them with control programs of other facilities (i.e., sensors, 

conveyors, fixing devices, and so on) to formulate a comprehensive program for the robot work cell 

to assemble a product. 
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The core of the case-based system is its knowledge base, which is composed of the case base, the 

rules base, the workpiece database, and the robot tool database. The case base is the most important 

component, which is a reservoir of past robot-teaching experiences that can be updated as new 

experiences are retained as cases. The rules base contains domain knowledge on robotic 

manufacturing and other general rules (e.g., retrieving rules, case retaining evaluation rules, and so 

on) that are used in retrieving, reusing, revising, and retaining processes. The workpiece and robot 

tool databases provide data on workpieces and robot tools, respectively. In our case-based system, 

the four processes within the original CBR framework (i.e., retrieving, reusing, revising, and 

retaining) are considered the four agents. 

 
Figure 5.1 The structure of the case-based system. 

The retrieving agent is in charge of selecting the appropriate case(s) for an input assembly task. 

The reusing agent uses the retrieved case(s) and data that are obtained from the assembly task 

description and workpiece and robot tool databases to generate a preliminary robot program. Here, if 

the retrieved case(s) is not adequate to satisfy all the requirements of the input assembly task, then 

the reusing agent reports the incomplete part to the worker. The worker teaches the robot the 

incomplete part. In this way, tasks that have been met in past cases are addressed by the reusing 

agent so that the worker just needs to teach the robot new tasks. Thus, the reusing agent helps reduce 
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robot-teaching time. 

The revising agent helps the worker revise the preliminary robot program. The worker tests the 

preliminary robot program in playback mode. If the worker is satisfied with the execution of the 

preliminary robot program, then he/she does not revise it. However, if an error occurs in the 

execution or the worker is not satisfied with the performance, then the worker revises the 

preliminary robot program. In this case, the revising agent provides error diagnosis and error 

recovery information to the worker. 

The retaining agent takes the assembly task description and the successfully tested robot program 

and generalizes knowledge on this basis. The learning result is the assembly task and its 

corresponding generalized robot program, which is saved in the case base. 

This chapter mainly presents how the retrieving and reusing agents automatically generate a 

preliminary robot program by using past robot-teaching cases. For this purpose, it is necessary to 

first describe the representation forms of the past cases. 

5.2.2 Case Representation 

As shown in Figure 5.2, in the case-based system, an assembly task is represented as a case with 

three components: 1.) the description of the assembly task; 2.) the assembly plan for the assembly 

task, i.e., a robot program schema; and 3.) notes about key points in operation. 

 

Figure 5.2 The case representation form. 

The assembly task description mainly contains the workpiece to be assembled, the robot tool 

used to assemble it, the assembly operation, the initial position of the workpiece, the assembly 

destination position, and the destination environment. Here, we assume that all the workpieces are in 

their standard initial states. This is because it is easy to set a workpiece into a standard initial state 
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from its random initial states with a robot and a vision sensor. The items in an assembly task 

description contain features of the assembly task. Thus, they are used to retrieve past cases for a new 

task. 

The assembly plan, i.e., the robot program schema, contains knowledge regarding the case. 

Because the task of assembling most workpieces can be segmented into ‘pickup’ and ‘place’ phases, 

most of the assembly plans in the case representations are also divided into the ‘pickup’ and ‘place’ 

parts. The ‘pickup’ and ‘place’ parts in each case have different preconditions to be reused. Thus, the 

‘pickup’ and ‘place’ parts can partly be reused for a new task. In addition, each of the ‘pickup’ and 

‘place’ parts in a case is composed of three parts, namely, the primitive robot command schema 

(PRCS), the command explanations (CE), and the point parameter explanations (PE). The PRCS is 

used for generating a robot program for a new task. The CE is a natural language translation of the 

PRCS, which is used to explain the operation of the PRCS to workers and also can be used to 

generate the robot program. The PE is used to calculate point parameters in the robot program. The 

preconditions for reusing the PRCS, the CE, and the PE present different constraints. As such, they 

can be reused separately for different new tasks. The constraints of reusing the PE are much stronger 

than those of reusing the PRCS and CE. How different parts of a case can be reused flexibly for 

different, new tasks is the core of this paper, which will be explained in detail in the next section. 

The notes in a case are used to emphasize to workers the key points that may lead to errors in the 

execution of the robot program. 

A case and its components are indexed by their respective IDs. 

5.3 Case Reuse in Automatic Programming 

In the case-based system, the retrieving agent and the reusing agent can automatically generate the 

preliminary robot program for a new assembly task in three steps. First, the retrieving agent analyses 

features of the input task description. Second, the retrieving agent selects the most similar case or 

parts of several cases by comparing features of past cases with the analyzed features of the new task 

and sends the relevant IDs to the reusing agent. Third, the reusing agent generates the robot program 

based on the selected case(s) and the data from the task description and the workpiece and tool 

databases. 

5.3.1 Feature Analysis of a New Assembly Task 

In this section, the assembly of a circuit breaker is used to illustrate the critical features in selecting a 

case and how the retrieving agent analyses features of the input task description. Figure 5.3 shows 

the circuit breaker and the workpieces used to assemble it. In Figure 5.3(b), the workpieces from up 

to down and from left to right are as follows: body, armature, cover, different types of bolts, 
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fin-blocks, l-junctions, square-junctions, z-junctions, flat-with-springs, switch-handle, and 

brown-squares. Figure 5 shows the sequence of the assembly tasks in assembling the circuit breaker. 

In Figure 5.4, the task of assembling a circuit breaker is hierarchically decomposed into several 

levels [29]. The underlined items are the basic-level tasks, i.e., the assembly tasks that are inputted 

into the proposed system. 

 
Figure 5.3 The circuit breaker and its workpieces 

(a) Circuit breaker. 

 

Figure 5.3 The circuit breaker and its workpieces 

(b) Workpieces. 

After the description of one assembly task is inputted, four main factors are considered by the 

retrieving agent, namely, the workpiece, the tool, the assembly operation, and the destination 
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environment. Features of the workpiece and the tool determine how to pick up the workpiece, while 

features of the assembly operation and the destination environment have impact on how to place the 

workpiece at the destination. Figure 5.5 shows the content of an assembly task description. In Figure 

5.5, the initial environment is not considered by the retrieving agent but is used by the reusing agent 

to calculate the seizing point coordinates. 

 

Figure 5.4 Task analysis of assembling a circuit breaker. 

 
Figure 5.5 Task description. 
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Figure 5.6 Classification of workpieces. 

With the IDs of the workpiece and the tool, the retrieving agent can retrieve related data on them, 

which are saved in the workpiece database and the tool database, respectively. The data on a 

workpiece include its ID, name, type, sub-type, size, weight, and so on. The retrieving agent mainly 

employs the type and size of the workpieces to calculate its similarity with the workpieces in past 

cases. Figure 5.6 shows the classification of the workpieces of the circuit breaker, which has two 

levels, namely, type and sub-type. Types are classified by the shape of the workpiece, which can be 

classified as block, bolt, hole-junctions, and so on. For example, in Figure 5.3(b), the body, cover, 

and fin-blocks belong to the same type, the block. Sub-types are classified by function of the 

workpiece. For example, ‘fin-block’ is a sub-type of a group of workpieces that refers to a kind of 

arc-extinguishing devices used in circuit breakers. Different types of circuit breakers have fin-blocks 

with different sizes, weights, and even internal structures. However, all of the fin-blocks have the 

same sub-type of ‘fin-block’ because they have very similar shapes and the same functions. 

The data on a tool refer to its ID, name, type, size, weight of load, and so on. Figure 5.7 shows 

the classification of the tools used in robotic manufacturing and the important data that should be 

considered. The types of tools are classified according to their functions. A tool in the ‘gripper’ 

category keeps its fingers open when it approaches the target workpiece and seizes the target 

workpiece by closing its fingers. A ‘plug’ is used to assemble a hole-junction, which keeps its fingers 

closed, inserts them into the hole, opens the fingers, and seizes the workpiece. A ‘vacuum’ is used to 
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absorb and twist workpieces; e.g., bolts are screwed by a vacuum. A ‘hook’ and ‘thruster’ are used to 

provide temporary support such as pulling, pushing, and so on. The retrieving agent compares the 

size of a tool with the size of the workpiece and data on the destination environment to select a tool. 

For example, when a ‘gripper’ is selected to assemble a block, the inside open width of the ‘gripper’ 

should be larger than the width of the workpiece to avoid a failure to pick up the block, and the outer 

open width of the ‘gripper’ should be smaller than the obstacle distance to prevent it from colliding 

with an obstacle near the destination. 

 
Figure 5.7 Classification of tools. 

Feature of assembly operation refers to its type. Nevins and Whitney [44] have proposed 12 

basic assembly operations. The commonly-used assembly operations  include ‘simple-loose-peg- 

hole-insertion,’ ‘simple-tight-peg-hole-insertion,’ ‘multiple-loose-pegs-holes-insertion,’ ‘multiple- 

tight-pegs-holes-insertion,’ ‘screw,’ ‘push,’ ‘pull,’ and so on. 

Features of the destination environment include the destination position, the destination 

description, and nearby obstacles. The destination description indicates the shape and the size of the 

target area; e.g., when a block is inserted into a hole, the destination description includes the shape 

and size of the orifice of the hole and its depth. The obstacles can be classified according to their 

relative positions to the destination, which include front-obstacle, back-obstacle, side-obstacle, 

above-obstacle, and so on. The distance between the obstacle and the destination should also be 

given in the task description. 

This section has introduced the features of the input task description that should be analyzed by 

 66



the retrieving agent. The next section presents how the retrieving agent selects cases for the new 

task. 

5.3.2 Case Selection 

The case base in the proposed system is a sorted base; i.e., past cases are classified by key features, 

such as workpiece type and sub-type, tool type, operation type, and destination environment, when 

they are saved in the case base. Therefore, after analyzing the features of the new task description, 

the retrieving agent selects a past case or parts of cases by comparing the features of the new task 

with the features used in classifying the case base to find whether there exists a case that satisfy 

certain requirements. Figure 5.8 shows the case selection method used by the retrieving agent. In 

Figure 5.8, the same destination environment implies that the destination descriptions and the 

obstacle data are the same. A similar destination environment refers to a situation in which only the 

relative positions to the destinations in the obstacle data are the same. The detailed case selection 

procedure is as follows. 

 

Figure 5.8 The case selection procedure. 
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Step 1: If all the four features, i.e., the workpiece sub-type, the tool type, the assembly operation, 

and the destination environment of a case are the same as those of the new input task, then the case 

is selected, and its ‘Case ID’ is sent to the reusing agent. This selected case can be reused in whole. 

Step 2: If there is no case in the case base that can satisfy the four requirements outlined in Step 

1, then the retrieving agent looks for cases that can be reused in part for the new input task. If the 

workpiece sub-type and tool subtype of an existing case are the same as those of the new input task, 

then the PRCS and PE of the ‘pickup’ part of this case can be reused for the new task, and a message 

‘Case ID’-‘Plan ID’-‘01’ of this case is sent to the reusing agent. In the case base, there may be 

several cases in which the workpiece sub-type and tool subtype are the same as those of the new task. 

In this case, the first-met case is selected by the retrieving agent. In the following steps, the same 

‘first-met first selected’ strategy is used. 

Step 3: If there is no case that can satisfy the two requirements outlined in Step 2, then the 

retrieving agent relaxes its requirements. If the workpiece type and tool sub-type of a case are the 

same as those of the new task, then the PRCS of the ‘pickup’ part of this case can be reused for the 

new task, and a message ‘Case ID’-‘Plan ID’-‘01’-‘PRCS’ of this case is sent to the reusing agent. 

Step 4: If there is no case that can satisfy the two requirements outlined in Step 3, then there is no 

case in the case base that can be reused for the ‘pickup’ part of the new task, and a message 

‘01’-‘null’ is sent to the reusing agent. In this case, the retrieving agent tries to find a case that can be 

reused for the ‘place’ part of the new task. 

Step 5: If the assembly operation of a case is the same as that of the new task, and their 

destination environments are similar, then the CE of the ‘place’ part of the case can be reused for the 

new task, and a message ‘Case ID’-‘Plan ID’-‘02’-‘CE’ is sent to the reusing agent. Here, two 

destination environments are similar if the number of obstacles near the destinations and the relative 

positions between the obstacles and the destinations are the same. 

Step 6: If there is no case that can satisfy the two requirements outlined in Step 5, then there is no 

case in the case base that can be reused for the ‘place’ part of the new task, and a message ‘02’-‘null’ 

is sent to the reusing agent. 

The above presents how the retrieving agent retrieves cases from the case base. Generally, the 

features of the workpiece and tool determine whether the ‘pickup’ part of a case can be reused, and 

the features of the assembly operation and destination environment influence whether the ‘place’ part 

of a case can be reused. 

5.3.3 Case Reuse for Automatically Generating Robot Programs 

By using the message sent from the retrieving agent, the reusing agent recalls the corresponding case 

or parts of cases to generate a program for the new task. Figure 5.9 shows how the reusing agent 

deals with this message. Note that there are seven possible cases of this message. 
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Case 1: The message is ‘Case ID.’ Then the reusing agent can use the PRCS in the retrieved 

assembly plan to generate commands of the robot program for the new task and use the PE in the 

retrieved assembly plan and the initial position coordinate and the destination position coordinate in 

the task description of the new task to generate point parameters of its robot program. In this way, 

the entire preliminary robot program is generated by the reusing agent. 

Case 2: The message is ‘Case ID1’-‘Plan ID1’-‘01’ and ‘Case ID2’-‘Plan ID2’-‘02’-‘CE.’ Then 

the reusing agent can use the PRCS and PE in the ‘pickup’ part of ‘Case ID1’ to generate robot 

commands and point parameters for the ‘pickup’ part of the new task, respectively. It also can 

generate robot commands for the ‘place’ part of the new task by reusing the CE of ‘Case ID2.’ The 

reusing agent presents the generated part of the robot program to the worker through the 

human-system interface of the system and tells the worker that the point parameters for the ‘place’ 

part of the new task should be taught by the worker. Then, the worker uploads the 

partially-completed preliminary robot program to the robot controller and teaches the uncompleted 

part, i.e., the point parameters for the ‘place’ part of the new task, with the teaching pendant. 

Case 3: The message is ‘Case ID1’-‘Plan ID1’- ‘01’ and ‘02’-‘null.’ The reusing agent can use 

the PRCS and PE in the ‘pickup’ part of ‘Case ID1’ to generate robot commands and point 

parameters for the ‘pickup’ part of the new task, respectively. In addition, it asks the worker to teach 

the ‘place’ part of the new task. 

Case 4: The message is ‘Case ID1’-‘Plan ID1’- ‘01’-‘PRCS’ and ‘Case  ID2’-‘Plan 

ID2’-‘02’-‘CE.’ Then the reusing agent can use the PRCS in the ‘pickup’ part of ‘Case ID1’ and the 

CE in the ‘place’ part of ‘Case ID2’ to generate robot commands for the new task. It also asks the 

worker to teach the point parameters for both the ‘pickup’ and ‘place’ parts of the new task. 

Case 5: The message is ‘Case ID1’-‘Plan ID1’- ‘01’–‘PRCS’ and ‘02’-‘null.’ The reusing agent 

can use the PRCS in the ‘pickup’ part of ‘Case ID1’ to generate robot commands for the ‘pickup’ 

part of the new task. It also asks the worker to teach the incomplete parts, i.e., the point parameters 

for the ‘pickup’ part, and the robot commands and the point parameters for the ‘place’ part of the 

new task. 

Case 6: The message is ‘01’-‘null’ and ‘Case ID2’- ‘Plan ID2’-‘02’-‘CE.’ Then the reusing agent 

can use the CE in the ‘place’ part of ‘Case ID2’ to generate robot commands for the ‘place’ part of 

the new task. It also asks the worker to teach the uncompleted parts, i.e., the robot commands and 

the point parameters for the ‘pickup’ part, and the point parameters for the ‘place’ part of the new 

task. 

Case 7: The message is ‘01’-‘null’ and ‘02’-‘null.’ Then the reusing agent asks the worker to 

teach all four parts, i.e., the robot commands and the point parameters for the ‘pickup’ part, and the 

robot commands and the point parameters for the ‘place’ part of the new task. 

The above has presented how the reusing agent deals with the message sent by the retrieving 
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agent as well as how it reuses the PRCS, CE, and PE of a previous case in whole or in part to 

generate the preliminary robot program for a new task. The PRCS can be used to directly generate 

robot commands for the new task. The CE is transformed into robot commands by a set of language 

processing rules in the rules base. This set of rules can be defined by referring to the manual of the 

robot controller [45]. The PE is a set of rules that are used to calculate point coordinates for the new 

task. By substituting an initial point coordinate and a destination point coordinate in the task 

description and data on the target workpiece and the tool used for variables in the PE, the 

coordinates for the seizing point, placing point, and approach points can be calculated. The PRCS, 

CE, and PE in the assembly plan of a case are learned by the improved EBL method developed in 

Chapter 3 and 4, which is embedded by the retaining agent. 

 
Figure 5.9 The case reusing procedure. 
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When there is no appropriate case available for a new task, the reusing agent cannot generate the 

robot program or can only generate part of the robot program. In this case, the reusing agent outputs 

the completed part of the program to the worker, reports which part has not been completed, and 

asks the worker to teach the incomplete part through the human-system interface. Then the worker 

uploads the generated preliminary robot program to the robot controller, teaches the incomplete part, 

and tests the robot program. 

5.4 Experiments 

In this section, two experiments are provided to illustrate how the retrieving agent and reusing agent 

automatically generate the preliminary robot program for a new task. The experiments were not 

conducted with simulation software but rather were carried out with the real robot work cell [30]. 

This is because the proposed system is developed to collaborate with workers in real-world robot 

teaching. 

5.4.1 Reuse of a Single Case 

The first experiment is the assembly of fin-blocks. In Figure 4.2, the left photo shows the fin-block, 

and the right photo shows the destination environment. In a circuit breaker, three fin-blocks are 

assembled. The assembly of the first fin-block was taught by workers and saved as a case in the case 

base. 

Because the input task description of the second fin-block is the same as that of the first one 

except for the initial position and destination position, the proposed system uses the case of 

assembling the first fin-block in whole and automatically generates the program. However, an error 

occurs in the step-running test. The tool collides with the assembled first fin-block when it 

approaches the destination to place the second one. This is because during the assembly of the first 

fin-block, there was no obstacle near the destination. To make a stable insertion, the tool placed the 

first fin-block at a low position, which was about 6 mm above the orifice of the target hole. However, 

when assembling the second fin-bock, the assembled first fin-block becomes a side-obstacle, which 

has a height of about 20 mm above the orifice of the hole. Moreover, the distance between the 

assembled fin-block and the destination is 18 mm, which is less than half of the tool's outer open 

width, which is 22.5 mm. Consequently, a collision error occurs. To resolve this error, the worker 

raises the placing point of the second fin-block to a height of about 30 mm above the orifice of the 

target hole. The error recovery is learned and saved as a new case into the case base such that the 

task description of the second fin-block is revised by adding the obstacle data. Then, when 

assembling the third fin-block, the input task description includes the obstacle data. The case of the 

second fin-block is selected to generate the program, which can be executed successfully during 
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step-running. 

The experiment reveals that case selection is determined by the input task description. Mistakes 

in the task description, e.g., oversight of an obstacle, lead to the misuse of past cases. Therefore, the 

use of sensors or other methods to obtain an adequate task description should be researched in 

future. 

5.4.2 Partial Reuse of Parts of Several Cases 

The second experiment is to assemble the l-junction. In Figure 5.3(b), ‘z-junction,’ ‘square-junction,’ 

and ‘l-junction’ are sub-types of workpieces. They are of the ‘hole-junction’ type because they all 

have large holes in them. Figure 5.10 provides the assembly sequence of the hole-junctions and the 

armature, which is 1.) z- junction, 2.) square-junction, 3.) armature, and 4.) l-junction. Figure 5.11 

shows the tool used to assemble the hole-junctions, which belongs the ‘plug’ type and has three 

fingers. 

By the time the new task of assembling the first l-junction is inputted into the case-based system, 

the cases of assembling the z-junction and square-junction have already been saved in the case base. 

As the task description of assembling the first l-junction is inputted, the retrieving agent analyses its 

features and saves them as facts in a temporary file. The analyzed feature facts are 

workpiece_type(hole-junction), workpiece_sub-type(l-junction), tool_type(plug), operation(tight- 

peg-hole-insertion), operation(push), and obstacle(above,_,_). Then the retrieving agent matches the 

analyzed features against the features of the cases in the case base to look for a case that can be 

reused. No case can be found. Afterwards, the retrieving agent tries to find whether parts of several 

cases can be reused. 

 

Figure 5.10 The assembly sequence of hole-junctions. 
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For the case ‘assemble z-junction,’ its features (i.e., workpiece_type(hole-junction) and 

tool_type(plug)) partly satisfy the features of ‘assemble l-junction’ (i.e., they have the same 

workpiece type and same tool sub-type). Therefore, the PRCS for the ‘pickup’ part of case ‘assemble 

z-junction’ can be reused for the new task. In fact, case ‘assemble square-junction’ also has features 

workpiece_type(hole-junction) and tool_type(plug). Because the retrieving agent first identifies case 

‘assemble z-junction,’ it selects this case according to the first-met-first-selected rule. 

For the case ‘assemble square-junction,’ its feature (i.e., operation(tight-peg-hole-insertion), 

operation(push), and obstacle(above,_,_)) partially satisfy the features of ‘assemble l-junction’ (i.e., 

they have the same operation and similar destination environment). So, the CE for the ‘place’ part of 

case ‘assemble square-junction’ can be reused for the new task. Because the operation for both the 

square-junction and the l-junction is ‘tight-peg-hole- insertion,’ a ‘push’ operation is necessary to 

insert them into the tight destination holes. In ‘assemble l-junction,’ the above obstacle is the 

with-bar of the armature, as shown in Figure 5.10. The above obstacle in ‘assemble square-junction’ 

is the black-overhang as shown in Figure 5.12. The above obstacle is such that there should be an 

intermediate point (i.e., an intermediate motion action) to bypass the above obstacle before 

approaching the destination. 

 

Figure 5.11 The tool 'plug'. 

 73



 

Figure 5.12 The above-obstacle black-overhang. 

After receiving the message from the retrieving agent, the reusing agent transforms the PRCS in 

‘assemble z-junction’ and the CE in ‘assemble square-junction’ into robot commands (i.e., a 

preliminary program) for ‘assemble l-junction,’ outputs the robot commands to workers, and reports 

that the point parameters in the robot program has to be taught by the workers. 

This experiment illustrates the following two points. First, a past case not only can be reused in 

whole but also can be reused in part. Parts of several cases can be reused to synthesize the 

preliminary program for a new task. Second, in a given case, the robot command module (i.e., the 

PRCS and the CE) has a broader reusing boundary than the point parameter module (i.e., the PE). 

Thus, the preliminary robot program generated by the proposed system is not always a complete one. 

In this case, the preliminary program should be completed by human teaching; e.g., in this 

experiment, human workers must teach the point parameters in the generated program. 

5.5 Discussion 

In this section, the proposed method is compared with other off-line automatic programming 

methods to show its novelty and its potential applicability to other related systems. 

Many off-line automatic programming methods have been developed based on simulation 

environments by using CAD data to generate motion paths for robots. Hiraoka et al. [46] developed 

a model-based off-line programming system in which robot program for assembly operations could 

be generated by utilizing the information of an environment model and its high-level description. 

Czarnecki [47] designed a programming system for a dual robot manufacturing cell to perform the 

stripping operation in garment manufacturing. In Czarnecki’s system, the task description obtained 

from CAD data was converted into an executable program. Mitsi et al. [48] constructed an off-line 

programming system for welding operations, which included the graphical simulation of the robot 
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and its workcell, a kinematic model of the robot, motion-planning and creation of the NC code for 

the manufacturing process. Webb et al. [49, 50] created a system capable of assembling fuselage 

components using standard industrial robots and relatively low-cost metrology systems. In their 

system, the acquired data could be processed through a mathematical algorithm that calculates the 

relative component positions required for optimal assembly. The data could also be used to check 

gross distortion of components and to reject those outside the specification limits. Reinhart and 

Tekouo [51] proposed a system for automated programming of robot-mounted optical scanning 

devices and algorithms to automatically extract measurement features and generate collision-free 

robot scanning paths from CAD models. 

Similar to related methods, in this study, the proposed method also uses data on workpieces and 

tools as well as environment data obtained from sensors to calculate the point parameters using the 

PE. The PE includes the rules or algorithms used to calculate coordinates of seizing points, placing 

points, approaching points, and so on, which are acquired through knowledge-based deductive 

learning of past robot teaching programs. On the other hand, the originality of the proposed method 

is as follows. 

1. The proposed method is not to design rules or algorithms to plan robot motion path (i.e., point 

parameters), as is the case with previous, related methods. Rather, it is developed to generate robot 

programs that emphasize both robot commands and point parameters. In the author’s view, point 

parameters are important in that they affect the accuracy of the robot motion trajectory. That is why 

so many methods are developed to generate optimal and accurate robot motion paths. However, this 

is not enough for robot programming because robot commands in a robot program are not just used 

to move a robot from one point to another. More importantly, robot commands determine the 

stability of the real-world execution of a robot program by setting speed changes, delays, the number 

of intermediate points, and communication signals with other robots or auxiliary devices. With this 

in mind, the author proposes to include both the robot command schema (i.e., the PRCS and CE) and 

the point parameter calculation rules (i.e., the PE) of a given case and generate programs for the new 

task by reusing past learned cases. 

2. The main concept behind the proposed method is modular programming. Humans implement 

their own knowledge when they teach robots manufacturing operations. Such knowledge can be 

learned and generalized as knowledge modules (KMs) and then can be saved in a knowledge base 

and reused for similar manufacturing tasks. In this research, the core problems involve how to 

acquire the KMs, how to represent the KMs and define the granularity of them, and how to retrieve 

and reorganize the KMs for new tasks. In Chapter 3 and 4, the acquisition method of the KMs was 

introduced. In this study, the author proposes to represent the KMs hierarchically in terms of cases, 

such as the PRCS, CE, and PE (i.e., the hierarchical granularity of KMs). This granularity definition 

enables the KMs to be reused flexibly with relatively low retrieving cost. Retrieving and reusing KM 
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methods have also been presented in this chapter. However, the proposed system has only recently 

been developed, and so the case base is still small. Therefore, the current proposed retrieving method 

will improve as the case base expands in the future. 

5.6 Conclusion 

This chapter presents the method for flexibly reusing different levels of knowledge modules saved in 

the past cases. In addition, the KBS proposed in Chapter 3 is improved and transformed into a 

case-based system. In the case-based system, the acquired knowledge is saved as cases in a cases 

base. The improved EBL method developed in Chapter 3 and Chapter 4 is embedded in the retaining 

agent of the case-based system. 
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Chapter 6 

Discussion 

6.1 Integration of EBL and CBR for Reducing Utility Cost 

In this study, the EBL method is used in acquiring knowledge modules and the CBR method is used 

in flexibly reusing the acquired knowledge modules. In this section, the merit of integrating EBL 

with CBR is presented. 

CBR is a problem solving paradigm that in many respects is fundamentally different from other 

major AI approaches. Instead of relying solely on general knowledge of a problem domain, or 

making associations along generalized relationships between problem descriptors and conclusions, 

CBR is able to utilize the specific knowledge of previously experienced, concrete problem situations 

(cases). A new problem is solved by finding a similar past case, and reusing it in the new problem 

situation. A second important difference is that CBR also is an approach to incremental, sustained 

learning, since a new experience is retained each time a problem has been solved, making it 

immediately available for future problems [54]. 

The problem in applications of CBR is its utility problem, that is, the cost of retrieving the most 

appropriate case from the case library for a new given problem and the cost of adapting (i.e., reusing 

and revising) the retrieved case for solving the new given problem. Mantaras, et al. [57] regard the 

utility problem as a natural trade-off between the benefits of speed-up knowledge and the cost of its 

application. In their view, the utility problem in CBR systems is caused by the conflict between: 1. 

the average savings in adoption effort due to the availability of a particular case, which tends to 

increase efficiency as the case base grows, and 2. the average retrieval time associated with a given 

case base size, which tends to decrease efficiency.  Moreover, as new cases are added retrieval costs 

become progressively greater but adaption savings progressively less. Therefore, most researchers 

on CBR focus on developing new retrieval and adaption methods.  There are also researchers who 

have discovered the importance of maintaining the case library to solve the utility problem of CBR 

[60, 61]. 

However, in the author's opinion, learning (i.e., retaining) is very important for CBR with regard 

to solving its utility problem. This is because the retrieval and adaption costs are not solely depend 

on the amount of cases, but also rest with the representation forms and contents of the cases. In CBR, 

learning decides the representation forms of cases and the contents that can be learned from cases. 

Therefore, the basic proposed idea is to save retrieval and adaption costs by making more efforts on 

post-processing of cases. The aim of emphasizing learning is to post–process cases to make them 

easier to be retrieved and to be adapted for new problems. The method used to learn cases is EBL. 
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The idea of EBL is much like that of CBR. Both of them are to acquire knowledge from a single 

problem-solving example and to reuse the acquired knowledge to solve new problems. The 

difference between the two is that EBL uses a domain theory to explain why the example is a 

positive example of the goal concept and generalizes the explanation to form an operational 

knowledge that can be generally reused for a type of new problems, while CBR doesn’t analyze the 

example, but just directly saves the example as a case into the case library. Therefore, CBR and EBL 

can be integrated with each other.  Armengol, et al. [62, 63] have applied EBL in retrieving 

appropriate cases in CBR. 

In this study, EBL is integrated with CBR to construct the case-based system that is applied in 

the robotic manufacturing.  The proposed system works as a co-worker of human workers to assist 

them in their task of teaching robots. The main functions of the proposed system are: 1. 

automatically generating robot programs for new assembly tasks by reusing past learned 

experiences; 2. providing suggestions and hints for human workers when human workers revise the 

robot programs or teach robot new assembly skills; 3. acquiring knowledge from revising and 

teaching demonstrations of human workers.  The most distinctive feature of the proposed system is 

that it uses CBR to help human workers in teaching robots new assembly tasks by reusing past 

experiences and applies EBL to learn assembly knowledge by observing robot teaching 

demonstrations of human workers. The EBL learning process can be regarded as a post-processing 

process of cases before retaining them in the case base. The post-processing process is generalizing 

the acquired knowledge as a hierarchy of knowledge modules. Its aim is to reduce the retrieving and 

adapting cost of cases. 

6.2 Integration of Manufacturing and Designing for Reducing Lead 
Time 

A problem in current industry is that isolation of designing and manufacturing makes it difficult to 

achieve essential rapid-response manufacturing. There also exists such a fact that: the problems that 

are difficult to be solved by tuning robots in the manufacturing phase can be easily solved by making 

some changes on the design of a product. Thus, it is important to make designers of products know 

and consider the problems that have happened in the manufacturing phase during they design the 

products. Because the case-based system proposed in this study saves the tasks and their 

corresponding knowledge modules, it has the potential to become the connecting bridge between the 

manufacturers and the designers. 

The proposed system can help share knowledge between product designers and manufacturing 

workers. The purpose is that once the designers finish the design of a product and provide its related 

information such as the assembly sequence and data of the workpieces, the proposed system can 

automatically generate the program for the robot work cell to assemble the product. In this way, the 
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time to market and the manufacturing cost can be dramatically reduced. 

Figure 6.1 shows the architecture of a transformation of the proposed system. The transformation 

makes the designers can interact with the proposed system, and thus connects designing with 

manufacturing. It is composed of the learner, the planner, and the knowledge base. The designers of 

products interact with the knowledge-based system through a human-system interface to know the 

related assembly environment and the problems occurred in the robotic assembly implementation. 

On the other hand, the designers provide their design results for the knowledge-based system 

through the interface. 

 

Figure 6.1 The Architecture of the transformed system. 

The learner acquires assembly knowledge by analyzing and generalizing an assembly task and its 

corresponding robot program. The learning result is saved as a case in the case. The learner can learn 

from both successful and failed examples. The cases learned from successful examples can be reused 

for making programs for new similar assembly tasks. The cases learned from failed examples can be 

reused in error recovery in the implementation process of the robot work cell. Moreover, the failed 

cases learned from the robotic assembly implementation of a product will be fed back to the 

designers. This helps the designers improve their design with considering the assembly problems. 

The planner is in charge of automatic programming. After the designers finish the design of a 

product, they input the assembly sequence of the product and the relevant requirements into the 

planner. By retrieving and reusing past similar successful cases from the case base, the planner first 

makes a robot program for each of the assembly tasks. Then it synthesizes the robot programs to 

generate the preliminary program for the robot work cell. Workers in the robot work cell test the 
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preliminary program, and revise it if they are not satisfied with some parts of it to make the final 

program for the robot work cell. The revising demonstrations will be learned by the learner. Thus, 

the ability of the planner can be updated and improved as the learner acquires more and more robotic 

assembly knowledge. In this way, the planner helps shorten the time of robot-teaching, and thus 

assists a smooth transition from design to assembly. 

The knowledge bas has been introduced in Chapter 5. 

The designers design the products with considering the manufacturing factors in the procedure as 

that shown in Figure 6.2. 

 

Figure 6.2 The design procedure with considering manufacturing factors. 

First, the designers analyze the needs of the market and the requirements of customers, and 

design the necessary functions and outer appearance of the product. Then, the designers devise the 

internal structure and workpieces of the product to realize the necessary functions. In this way, the 

prototype is created. 

Next, the designers revise the initial prototype by referring to robotic assembly factors through 

the proposed system to make the product easy to be assembled by robots. Here, the designers should 

keep two criteria in mind: 1. Minimize the number of workpieces and 2. Provide sufficient geometric 

and joint data of workpieces. The designers must understand that it is robots not human that will 
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assemble their product. Thus, the designers plan the assembly operation of the workpieces by 

consulting the case base of the proposed system and select the proper tool used to assemble each 

workpiece from available tools in the tool database. 

While planning the assembly operation for a workpiece, the designers should retrieve all the 

previous cases of workpieces that are similar to the workpiece, and pay attention to the failed cases 

in particular. If only failed cases are retrieved for a workpiece, the designers should consider whether 

the failure is caused by defective product design or whether the failure can be avoided by revising 

the design of the product. 

 
Figure 6.3 Example: delete washer [64]. 

 

Figure 6.4 Stuck vs. slide. 

For example, washer-falling errors often occur during a robot screw a pin with a washer. Thus, 

the designers will delete unnecessary washers from their product, as Figure 6.3 shows. Another 

example is shown in Figure 6.4. When a robot inserts a peg into a hole, the peg may be stuck at the 

sharp orifice of the hole. For this failure, the designers will design round cornered orifice for the hole. 

In this way, the peg can slide smoothly into the hole when it is pressured by a robot. As the examples 

given above, the designers re-design the prototype by referring to the proposed system until there is 

no assembly problem in the assembly operation design. 

Finally, the designers finish the design of a product. In the following, they should define the 

origin point and the coordinate system for the product. Together with this, the designers input the 

geometric data and other data of the workpieces into the workpiece database. Then, the designers 

should decide the assembly sequence of the workpiece and input it into the planner of the proposed 

system. In this way, the planner will be able to generate the program for assembling the product with 

sensors in the robot work cell. 
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Chapter 7 

Conclusion 

Robot cell production is the development trend of the next generation manufacturing systems. 

Although robots has been deployed in more and more industrial sectors, there still exists a critical 

problem in robotic manufacturing that the task of teaching robots is excessively time-consuming, 

which keeps many industrial sectors, especially small and medium size enterprises away from 

robotic automation. Moreover, this problem has become the bottleneck of improve the flexibility and 

reconfigurability of robotic manufacturing systems and other automation systems to achieve 

rapid-response manufacturing. In this study, this problem is regarded as the difficulty of transferring 

knowledge from human to robot and from skilled workers to novice workers. Therefore, this study 

proposes a method knowledge acquisition, sharing and reusing in robotic manufacturing. 

The originality of this study is that it proposes the concept of hierarchical knowledge 

modularization to realize interactive knowledge acquisition and reuse for industrial robot teaching. 

Herein, ‘interactive’ means that not only robots are able to learn from human workers, 
but also it is possible for human workers to learn from robots through their 
implementing the robot-teaching tasks. This research has become especially important 
in the recent years, during which more and more experienced workers were going to 
retire from their jobs and it takes a long time to train new workers. Hierarchical 

knowledge modularization means that the developed system acquires and represents the knowledge 

implemented in a task in terms of a hierarchical set (i.e., different levels) of modules, organizes these 

knowledge modules as a generalized plan for the object task, and saves the plan and the task 

description as case in the knowledge base of the system. In this way, the system can flexibly retrieve 

a case or modules of several cases and reuse it or them for a new task. In other words, the system can 

re-organize different levels of knowledge modules in different cases to generate the solution for a 

new task. 

In this study, an improved EBL method has been developed and hierarchical used in acquiring 

knowledge from robot programs. This improved EBL method has two learning modes. The first 

learning mode can generalize knowledge from successful training examples. The second learning 

mode is able to learn knowledge from error recovery training examples. The retrieving and reusing 

method for the knowledge modules has also been developed based on CBR. However, the 

knowledge base of the current system is still small. As more and more knowledge are acquired, a 

more sophisticated retrieving method has to be developed in the future research. In addition, a 

graphical human-system interaction interface has also to be developed in the future research to assist 
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workers in error recovery for manufacturing tasks and in revising knowledge modules in the 

knowledge base. 
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