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Abstract

The "spin chirality" is an issue to attract many researchers in the recent solid
state physics because it causes many interesting physical phenomena, such as the
multiferroic effect and the spin Hall effect. In this thesis, several novel phenomena
induced by the spin chirality in metallic helical magnets are reported. This thesis
consists of the two parts as below.

(Part I) The novel chiral orders in the classical metallic helical magnet MnP are
reported. One is the canted antiferromagnetic structure in the intermediate temper-
ature range of 47 K < T < 282 K, the other is the tilted helical structure in the low
temperature range of T < 47 K. It is considered that these chiral orders were induced
by the Dzyaloshinsky-Moriya (DM) interaction. Moreover, I discovered a peculiar
peculiar temperature hysteresis in the canted antiferromagnetic state, namely, the
magnetization along the b-axis in the intermediate temperature range is distinctly
enhanced by cooling the sample to the tilted helical phase once. Similar tempera-
ture hysteresis behaviors were also observed in the temperature dependences of the
nuclear Bragg peaks obtained by the neutron scattering experiments. It suggests
that the temperature hysteresis is accompanied by a lattice distortion. Hence, I
speculate that the temperature hysteresis is caused by the inverse effect of the DM
interaction to stabilize the vector chirality in MnP. It can be the first observation of
the inverse effect of the DM interaction in the metallic system.

(Part II) Recently, the possibility of the novel spin dynamics driven by the
electric current was theoretically proposed by Wessely et al.. According to this
theory, a current through a bulk metal with a helical structure induces a spin trans-
fer torque, which gives rise to a rotation of the magnetic moments with keeping its
helical structure. In order to observe it experimentally, the AC susceptibility mea-
surements were performed with applying the electric current to the sample in the
rare-earth alloy Gd0.62Y0.38. An influence of the electric current on the AC suscep-
tibility was observed, however, it is difficult to distinguish the effect of the electric
current itself and that of the magnetic field accompanying the electric current. And
hence, we cannot conclude that the spin transfer torque effect induced by the elec-
tric current is realized in the Gd0.62Y0.38 alloy or not. On the other hand, through
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the investigation of the spin transfer torque effect, the strong non-linearity of the
AC susceptibility in vicinity of the helical temperature and a remarkable increase
of the imaginary part χ′′ of the AC susceptibility in the temperature range of the
helical phase was observed in Gd0.62Y0.38 even without the electric current. Such
behaviors were not found in similar rare-earth Ho and Ho0.60Y0.40. It indicates
that the weak magnetic anisotropy of Gd-moments is responsible for the strong
nonlinear susceptibility and the anomalous slow dynamics in the helical phase.
The anomalous slow dynamics can be caused by rotating spins with keeping their
relative angle, the helical spin arrangement. In other words, the spins themselves
can be rotated by the AC magnetic field, however, the vector chirality is preserved.
It suggests a spin-chirality decoupling in the helical phase of Gd0.62Y0.38.
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Part I

Peculiar temperature hysteresis
accompanied by emergent chiral

structures in MnP
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Chapter 1

Introduction

1.1 New phenomena accompanied by the spin chirality

The ’spin chirality’ has attracted many researchers as one of the central issues
of the solid state physics. The spin chirality is a geometric quantity defined with
plural spins and corresponds to the chirality of the optical isomers investigated
in the chemistry, being a reflection asymmetric quantity. Two types of the spin
chirality are defined, i.e. the vector chirality and the scalar chirality. The vector
chirality is defined with the two spins of Si and Sj as

χij = Si × Sj . (1.1)

The scalar chirality is defined with the three spins of Si,Sj and Sk as

χijk = Si · (Sj × Sk). (1.2)

The signs of both chirality are changed by the reflection symmetry operation. The
chirality is a quantity representing the handedness of the local structure, such as a
molecular and a spin structure. The plus chirality corresponds to the right-handed
structure and the minus chirality does the left-handed one. The vector chirality and
the scalar chirality manifest themselves in different ways in physical phenomena
are different a little because of the difference of their symmetries other than the
reflection symmetry. For example, the vector chirality is time-reversal symmetric,
however, the scalar chirality is antisymmetric.

The spin chirality was innovated into the solid state physics in order to describe
the ordered states in frustrated spin systems, such as a triangular antiferromagnet
[1, 2]. For example, an chiral ordered state of the vector chirality without any
static orders of spin was theoretically predicted in a triangular Heisenberg antifer-
romagnet [3]. A ferro-chiral order of the vector chirality is equivalent to the helical
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ordered state of spiral spin configuration with constant rotate angle. In this case,
The left- and the right-handed chirality are called as a left- and a right-handed he-
licity. An example of antiferro-chiral orders of the vector chirality is the canted
antiferromagnetic state in which the antiparallel-arranged spins are canted to the
perpendicular direction. Figure 1.2 shows the schematic illustrations of these chi-
ral orders.

In general, the spin chirality could not be directly observed and its role is hid-
den because the spin chirality does not couple directly with external fields such as
a magnetic field. Recently, couplings between the spin chirality and other phys-
ical quantities have been studied extensively, and several novel phenomena orig-
inating from these couplings have been observed. For example, the multiferroic
phenomena originating from the coupling between the spin chirality and the elec-
tric polarization in helical magnets and the chirality-driven anomalous Hall effect
originating from scattering of conduction electrons by the spin chirality have been
studied [4, 5, 6, 7, 8, 9, 10]. Esspecially, amazing responses to external fields have
been observed in the multiferroic material such as a magnetization reversal by ap-
plying the electric field and an electric polarization flop by applying the magnetic
field [7, 8, 11, 12].

In such phenomena, the Dzyaloshinsky-Moriya (DM) interaction originating
from the spin-orbit interaction plays significant roles [13, 14]. The DM interaction
is an antisymmetric interaction given by the form of

Dij · (Si × Sj). (1.3)

It can act only when the inversion symmetry at the center of sites of Si and Sj is
not preserved. The DM interaction can be rewritten by using the vector chirality
χij as

Dij · χij . (1.4)

Hence, The DM interaction can induce the vector chirality χij and stabilize the chi-
ral structures such as the helical structure and the canted antiferromagnetic struc-
ture. Here, we consider the case that the DM interaction and an antiferromagnetic
symmetric interaction J1 < 0 act between the nearest neighbor (N. N.) spins, Si

and S2. The size of the spins and the angle between the N. N. spins are denoted as
S = |S1| = |S2| and π − θ, respectively. The coupling energy coming from these
interactions is written as

E(θ) = −2|J1|S2 cos θ − DS2 sin θ. (1.5)

The condition of the canted angle θ is obtained to minimize the coupling energy
E(θ) as

tan θ =
D

2|J1|
. (1.6)
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Figure 1.1: Schematic illustrations of the left- and the right-handed chiralities in
following categories: (a) chiral molecules (optical isomers); (b) a local vector chi-
rality; (c) a local scalar chirality.

It implies that a canted spin configuration is stabilized with the angle determined
by the ratio of D to |J1|. If the antiparallel DM vector D and −D of the DM inter-
action between the N. N. spins are lined alternately, the canted antiferromagnetic
state should arise because spins are canted alternate directions from the antiferro-
magnetic configuration expected when D = 0 and give rise to the ferromagnetic
component of the ordered moment in perpendicular direction (see Fig.1.2 (b)). On
the other hand, if the parallel DM vector D are lined and the symmetric interaction
is ferromagnetic (J > 0), the helical structure with constant spin rotate angle is sta-
bilized(see Fig.1.2 (a)). The helical structure stabilized by the DM interaction have
a single right- or left-handed helicity in the whole body because the DM interac-
tion breaks the symmetry of the vector chirality. The helicity is determined by the
direction of the DM vector. For example, MnSi and Cr1/3NbS2 are well known he-
lical magnets with the helical structure of the single helicity[15, 16]. The helicities
in these materials were identified by the polarized neutron scattering experiments
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[17, 18]. In short , the DM interaction under the specific lattice symmetry distorts
the spin structure and stabilizes the chiral orders.
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D

D

 ferromagnetic component

Figure 1.2: (a) Schematic illustrations of the left- and the right-handed heli-
cal structures. They are the ferro-chiral ordered states of the vector chirality.(b)
Schematic illustrations of the canted antiferromagnetic structure. It is one of the
antiferro-chiral orders. The thick green arrows in (a) and (b) represent the DM
vector D stabilizing these chiral orders.

Recently, an inverse effect of the DM interaction, namely, the spin chirality
distorts the lattice via the DM interaction and causes the consequent ferroelectric
polarization, has been investigated in maultiferroic materials[9]. The electric po-
larization Pij induced by the inverse effect of the DM interaction is related to the
vector chirality χij by

Pij ∝ eij × (Si × Sj) = eij × χij (1.7)

where eij is the unit vector along the direction from the sites i to j [19]. Eq.1.7
means that the vector chirality can induce the electric polarization and vice versa.
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The multiferroic state where the ferro-chiral order and the ferroelectric order co-
exist is realized by this effect. The epoch-making experiment is the discovery of
the spin helicity reversal by applying the electric field[11]. TbMnO3 exhibits the
helical ordered state below Th = 27 K. The neutron scattering experiment clearly
shows that the helicity is controlled by applying the small electric field. Inversely,
the simultaneous ferroelectric polarization flop with the transform of the magnetic
structure induced by the magnetic field was observed in MnWO4[9]. In this case,
the ferroelectric polarization is flopped by the transformation of the vector chirality
by applying the magnetic field via the inverse effect of the DM interaction. Figure
1.3 shows the schematic image of this phenomena[20].

q

O
M M O

M MMM MM
O

(a)

(b)

Figure 1.3: Schematic views of the ferroelectric polarization flop by applying mag-
netic field. (a) The local relation between the configuration of the Mn- and O-
atoms and the directions of the Mn-spins. The direction of the local electric po-
larization is settled by the configuration of the O-atom. (b) Transformation of the
helical spin structure by applying the magnetic field. The helical plane is rotated
from the xy-plane to the xz-plane when the magnetic field is applied along the y-
direction. Consequently, the electric polarization P flops from the y-direction to
the Z-direction.

I discovered novel chiral structures originating from the DM interaction in clas-
sical metallic magnet MnP. In addition, I was observed a quite peculiar temperature
hysteresis phenomena in the chiral ordered phase. It can result from the distortion
of the lattice induced by the vector chirality, that is, the inverse effect of the DM
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interaction. In several magnets with the vector chirality, helical magnets, the in-
verse effect of the DM interactions was observed, however, the effect had not been
reported in metals yet. Our observation can be the first observation of the inverse
effect of the DM interaction in the metallic system. In sec. 1.2, the physical prop-
erties of MnP previously reported are described.

1.2 Crystal structure and magnetic properties of MnP

Manganese phosphide MnP is a well known metallic magnet which exhibits a
helical magnetic phase at low temperature and has been studied from 1960’s[21].
The crystal structure of MnP is an orthorhombic one as shown in Fig.1.4 and its
space group is Pbnm. The lattice parameters are a = 5.916 Å, b = 5.260 Å and c
= 3.173 Å. The c-axis is easy-magnetization direction. The b- and a-axis are the
intermediate- and hard-magnetization directions, respectively.

Mn atom  P atom  N. N. bond

a

c

b

Figure 1.4: The crystal structure of MnP.

The magnetic properties of MnP have been investigated by many researchers
and many intriguing phenomena, such as the complex magnetic phase diagram in
magnetic field [21, 22, 23, 24, 25, 26, 27], the magnetocaloric effect [28] and the
Lifshits critical behavior in magnetic field [29, 30, 27, 31, 32, 33, 34], were found.
In particular, the magnetic structures and the critical phenomena in the magnetic
field along each axis had been extensively investigated. In zero external field, the
ferromagnetic phase transition is undergone at TC = 292 K, where the spins are
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parallel to the c-axis [21, 22]. Below TN = 47 K, the magnetic structure transforms
into the helical structure with the magnetic propagation vector δ = (δ, 0, 0) with
δ ≅ 0.117, in which the spins lie in the bc-plane. Although the helical plane is per-
pendicular to the propagation vector, it is reported that the helical structure of MnP
is not a simple proper type one but a double-spiral-type one as shown in Fig.1.5
[22, 23, 26]. Figure.1.6 shows the schematic view of the magnetic structures in
zero magnetic field. Figure. 1.7, 1.8 and 1.9 show magnetic phase diagrams in the
magnetic field H along the c-, b- and a-axes, respectively. The size of magnetic
ordered moment was estimated by the magnetization measurements and the neu-
tron scattering experiments about 1.3µB /Mn-atom [21, 26]. The electronic specific
heat coefficient γ was reported as relatively large valuein d-metals, being 9.65 mJ
mol−1 K−2 [35].

It is a controversial issue whether MnP should be treated as a localized spin
system or an itinerant electron magnet. The size of the magnetic moment in the
ordered phases and the γ value are explained by numerical works with the assum-
ing the itinerant mixing band of Mn-3d and P-3p electrons[36, 37]. On the other
hand, most magnetic properties are explained by the s-d model with assuming the
localized Mn 3d moments. For example, the temperature dependence of the mag-
netization and spin-wave dispersion relation observed by the neutron scattering
experiments are well described by the Heisenberg Hamiltonian with assuming the
RKKY type long-range interaction[38, 39, 40]. Magnetic properties in a strong
itinerant magnet such as Fe are well descrived by the Heisenberg-type localized
spin model. MnP is considered to be in this category. In this thesis, therefore, I
discuss on the magnetic properties of MnP on a basis of the localized spin model.

As mentioned above, MnP exhibits the complicated H − T magnetic phase
diagram. The stabiliy of the various magnetic phases in zero and finite magnetic
fields are explained by the competition between the ferromagnetic and the antifer-
romagnetic interactions[41, 42, 34]. For example, the stability of the double helical
structure observed in zero magnetic field is explained theoretically by considering
from the N. N. interaction to the 7th N. N. interaction[41]. The nature of such
a helical phase is different from that of the helical phase induced by the DM in-
teraction. The helical phase of MnP, therefore, for instance both handed helicity
domains coexist, in contrast to that in MnSi. In polarized neutron experiments, the
reflections from the both handed helicity domains were observed actually[24].

Recently, a novel transition was observed at T ∗ = 282 K being about 10 K
lower than ferromagnetic transition temperature TC by Becerra in the AC suscep-
tibility measurement at very low field [43]. He suggested that the transition at T ∗

is a spin reorient transition; namely, the ferromagnetic ordered moment slightly
inclines toward the b-axis from the c-direction below T ∗, and that the angle of in-
clination become lower with decreasing temperature and the ferromagnetic ordered
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moment go back to the c-direction around TN. However, further investigations on
the novel phase had never reported, and the nature of the phase is still unclear.
Considering the crystal structure of MnP as shown in Fig.1.4, the DM interaction
can act between the N. N. Mn-spins because the inversion symmetry at the center
of the N.N. Mn-sites is lack. However, no influence of the DM interaction has not
ever been found.

The aims of this study are to illuminate the nature of the novel phase below T ∗

and to hunt for tracks of the DM interaction in MnP.

N. N. Mn-site

a

~0.1a ~0.4a

Figure 1.5: The schematic illustration of the double spiral type helical structure in
MnP[22].

c

TN = 47 K TC = 292 K
T* = 282 K

c

b

Helical phase Ferromagnetic phase Paramagnetic 

    phase 

Figure 1.6: The schematic view of the temperature dependence of the magnetic
strucutre in MnP.
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Hamiltonian with the competing interactions between

Heisenberg spins !axial next-nearest-neighbor Heisenberg
"ANNNH# model$ augmented with the magnetocrystalline
anisotropy terms depending on the symmetry of the crystal

lattice. The so-called Nagamiya’s theory of incommensurate

structures23,24 is basically an analytical method for obtaining

its ground state, i.e., the zero-temperature solution. Inomata

and Oguchi25 have adapted Nagamiya’s theory to the case of

orthorhombic anisotropy, and Hyamitzu and Nagamiya26

have made quantitative calculations specific to MnP in exter-

nal fields. The simple spin-wave theory of the origin of the

heli-ferro transition in MnP was given by Smit27 and the

occurrence of the Lifshitz point at its magnetic phase dia-

grams was discussed by Yokoi, Countinho-Filho, and

Salinas.28 Models and solutions obtained in these works

make the starting point for the present calculation.

The model Hamiltonian, the method of its solution, and

the choice of model parameters are described in Sec. II. The

classical spin Hamiltonian of the ANNNH type comprises a

minimal set of terms necessary to account for the observed

magnetic phases of MnP. One introduces the competing

nearest-neighbor and next-nearest-neighbor interactions (J1
and J2 , respectively# acting betweens layers of spins. The
magnetocrystalline anisotropy is described using a lowest-

order terms, with two anisotropy constants "K and Kz) re-

quired for the orthorhombic crystal symmetry. The number

of model parameters is really smaller because the results de-

pend, as usual for the ANNN-like models, on the competi-

tion ratio %!J2 /J1 , and only one of two anisotropy con-

stants is relevant as long as the magnetic field vector is

confined to the bc plane.

To obtain the ground state of the Hamiltonian we fol-

lowed approximate methods used in works of the Nagamiya

group.23–26 Energies of the trial spin structures were mini-

mized analytically with respect to the modulation ampli-

tudes. But in contrast to Hyamitzu and Nagamiya we per-

formed the numerical minimization of the energy with

respect to the wave vector q. This procedure allows one to

calculate the dependence q(H) in the modulated phases, and

provides a much better approximation for their equilibrium

energy. In addition to spin structures considered in the pre-

vious theoretical works23–28 we made calculations for the

elliptical cone structure, necessary to describe properly the

phase transition between cone and fan phases and account

for the existence of the critical end point.

The results of model calculations for three directions of

the magnetic field (H!b, H!c, and H!a) are presented and

FIG. 1. Magnetic phase diagrams of MnP for a magnetic field

parallel to three orthorhombic basic vectors: "a# H!c "easy axis#,
replotted data of Huber and Ridgley "Ref. 1#, "b# H!b "intermediate
axis#, after Shapira et al. "Ref. 11#, and "c# H!b "hard axis#, after
Shapira et al. "Ref. 8#.

FIG. 2. Traces of the magnetization vs applied field at 4.2 K for

fields applied parallel to the three principal crystallographic direc-

tions, after Ref. 8. For assigning different phases to the respective

segments of M (H) curves inspect Fig. 1.

3436 PRB 61ANDRZEJ ZIEBA, MONIKA SLOTA, AND MARIUSZ KUCHARCZYK

FERRO

Figure 1.7: H −T/ magnetic phase diagram in MnP with the magnetic field along
the c-axis. "PARA", "FERRO" and "HELI" represent the paramagnetic, the ferro-
magnetic and the helical phases, respectively [21].

Figure 1.8: H − T magnetic phase diagram in MnP with the magnetic field along
the b-axis. "FAN" and "SCR" represent the magnetic phase with the fan-like spin
arrangement and the helical phase, respectively [30].
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Figure 1.9: H − T magnetic phase diagram in MnP with the magnetic field along
the a-axis. "CONE" represents the magnetic phase where the spins incline toward
the a-direction with keeping the helical arrangement of their bc-plane component
[31].
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Chapter 2

Experimental procedures

2.1 Sample preparations

The single crystalline samples were grown by the temperature gradient furnace
technique as following Ref. [21]. Pure Mn pieces and pure P pieces were located
at the either sides of the evacuated quartz tube (see Fig. 2.1 (a)). The sequences of
the controlled temperatures at the Mn-side and P-side were shown in Fig. 2.1 (b).
As increasing temperature, phosphorus pieces evaporate and the phosphorus vapor
reacts with the manganese pieces to MnP. The single crystal is grown when the Mn-
side temperature is decreasing slowly. The vapor pressure of P is a problem because
it might break quartz tube at high temperature. In order to prevent it, the thick
quartz tube with the thickness of 2 mm was used and the P-side temperature keep
lower than 400 ◦C. The manganese pieces with the purity of 3N were purchased
from Nacalai tesque Co., Ltd. and the phosphorous pieces with purity of 6N were
purchased from Kojundo Chemical Laboratory Co., Ltd..

For evaluation of the sample, the X-ray powder diffraction (XRD) was per-
formed by using a commercial diffractmeter (Rigaku, Mini-Flex). The powder
samples were obtained by crushing pieces of the single crystal. No additional peaks
originating from 2nd phases of the XRD was observed in all samples used for the
experiments. A typical result of the XRD is shown in Fig.2.2. The ferromagnetic
transition temperature TC and the helical magnetic phase transition temperature
TN obtained from the magnetization measurements, mentioned later, were agree-
ment with those reported previously, which also warrants the sample quantity. In
addition, the residual resistivity ratio (RRR) is estimated at about 83 from resis-
tivity measurements. The high value of the RRR indicates a good quality of the
sample from the viewpoint of defects and impurities. The crystallographic axes
of the single crystals were determined by the X-ray back Laue method by using
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the apparatus (SHIMADZU, XD-3A) installed at Inui laboratory in Depertment of
Materials Science and Engineering at Kyoto university. The powder sample for the
neutron powder diffraction experiments was obtained by crushing the single crystal
as well as that for the XRD.

The list of the size and the shape of typical samples used for the experiments
is shown in Tab. 2.1. The single crystal samples were cut by using a commercial
speak cutter (Sankyo Engneering Co., Ltd., 5T-2C) at Inui laboratory. In order to
check the sample dependence of the properties, I performed the same measure-
ments for several samples in each experiment, and hardly found the sample depen-
dent behaviors. Hence, only experimental results by using the samples listed in
Tab. 2.1 are shown in this thesis.

P

low temp. high temp.

Mn

T
em

p
er

at
u

re

400

24 48 96 168

Mn side

Time (hour)

 P   side
1050

1170

(a)

(b)

Figure 2.1: (a) The schematic illustration of the position of the Mn and P in the
evacuated quartz tube. (b) The time-sequences of the temperatures at the Mn-side
and the P-side.
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Table 2.1: The sample list of MnP used for each experiment.

sample neme experiment a (mm) b (mm) c (mm) weight (mg)
#1 magnetization // a-axis 2.5 0.9 0.7 6.0
#2 magnetization // b-axis 0.7 2.5 1.0 7.0
#3 magnetization // c-axis 0.7 0.6 2.5 2.8
#4 magnetization // c-axis 0.5 2.6 2.6 15.1
#5 resistivity, specific heat capacity 2.36 0.80 0.49 5.1
#6 neutron (single) 6.1 3.6 9.6 762.6
#7 neutron (powder) - - - 3.6×103

 20  40  60  80  100

In
te

ns
ity

 (
a.

 u
.)

2Θ (degree)

MnP
Experimental Data

Calculation

Figure 2.2: The experimental (red line) and the calculation (greenline) of the X-ray
powder diffraction for MnP
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2.2 AC- and DC-magnetization measurements

AC- and DC- magnetization measurements were performed by using three
commercial SQUID-magnetometers (Quantum Design, MPMS-1T, 5T and 5.5T)
installed at Research Center for Low Temperature and Materials Sciences in Ky-
oto university. A SQUID magnetometry is one of the most effective and the most
sensitive apparatus for measuring magnetic properties. The term of SQUID is an
abbreviation for Superconducting QUantum Interference Device, which is a super-
conducting ring containing a thin part of the insulator, being the Josephson junc-
tion. When one put the SQUID into the magnetic field, the magnetic flux can come
into the superconducting ring through the insulator junction. The magnetic flux
in the superconducting ring is quantized to integral multiples of the magnetic flux
quantum Φ0 = hc/2e. Therefore, we can measure the magnetization with ultra
high resolution of Φ0 by using SQUID system.

The principle of the measurement by the SQUID magnetometer is schemati-
cally shown in Fig. 2.3 The DC-measurement is performed by the pick-up method.
The sample is magnetized in the DC magnetic field H generated by a supercon-
ducting magnet. When the sample is moving in the pick-up coil from the to bottom
to top, the variation of the flux, which is caused by the movement of the sam-
ple, generates the screening current in the pick-up coil. The screening current
is finally detected by the rf-SQUID through the signal coil. Figure 2.4 shows a
typical signal of the SQUID in the DC magnetization measurement. In the AC-
measurements, the AC magnetization M(t) was induced by applying the AC mag-
netic field h(t) = hAC cos(ωt) with frequency ω generated by the AC primary
coil. Because an induced magnetization of a sample by the AC field is time-
dependent, the screening current proportional to the time differential of the mag-
netization dM/dt is generated in the pick-up coil even when the sample is at rest,
The screening current is finally detected by the rf-SQUID as well as done in the
DC-measurements. The background signal obtained when the sample is taken out
from the pick-up coil completely is subtracted. Figure 2.4 shows a typical signal
of the AC-magnetization measurement against the phase of the AC magnetic field.

When the amplitude of the AC magnetic field is small enough, the AC magne-
tization M(t) is proportional to the AC magnetic field h(t). Because a response to
a time-dependent field can have some time-delay, the AC magnetic response M(t)
to h(t) is written as M(t) = M0 cos(ωt − φ) with a phase shift φ. The phase shift
of the AC magnetic response is obtained by considering a complex susceptibility
χ = χ′ − iχ′′ at the frequency of ω. By using the complex susceptibility, the AC
magnetic responses described with the real part M ′ and the imaginary part (delay
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component) M ′′ as

M(t) = M ′ cos(ωt) + M ′′ sin(ωt), (2.1)

where M ′ = χ′hAC and M ′′ = χ′′hAC. The real part of the AC susceptibility is
asymptotically identified with the DC susceptibility χ′ → χDC in the limit of ω →
0 . The imaginary part of the AC susceptibility χ′′ is called also the dissipation part
because of related to the energy dissipation, and is 0 at ω = 0.

In the conditions where the magnetization M(t) is not proportional to the mag-
netic field h(t), for instance in the high AC-field region and in the vicinity of the
magnetic phase transition, the higher order terms of h(t) such as h(t)n needs to be
considered. Considering the time reversal symmetry, the magnetization is written
as a function of the magnetic field h(t) as

M(t) = χ0h(t) + χ2h
3(t) + χ4h

5(t) + · · · , (2.2)

where χ0 is a linear susceptibility and χ2, χ4, · · · are nonlinear susceptibility. All
of χ0, χ2, χ4, · · · should be complex at a finite frequency. Then the AC magnetic
response M(t), which consists of the real and the imaginary components, M ′

2n(t)
and M ′′

2n(t), of various frequencies can be rewritten as

M(t) =
∞∑

n=0

[M ′
2n cos((2n + 1)ωt) + M ′′

2n sin((2n + 1)ωt)] (2.3)

where M0
′ = χ′

0hAC + 3
4χ′

2h
3
AC + · · · , M0

′′ = χ′′
0hAC + 3

4χ′′
2h

3
AC + · · · , M2

′ =
1
4χ′

2h
3
AC + 5

16χ′
4h

5
AC + · · · M2

′′ = 1
4χ′′

2h
3
AC + 5

16χ′′
4h

5
AC + · · · . And an induced

voltage in a secondary coil is given by

E ∝ dm(t)
dt

= ωhAC[−χt
0
′ sin(ωt) + χt

0
′′ cos(ωt)) − 3χt

2
′ sin(3ωt) + 3χt

2
′′ cos(3ωt) + · · · ]

(2.4)

where χt
0 = M0/hAC, χt

2 = M2/hAC, · · · . If hAC is small enough, we can consider
as χt

0 ∼ χ0, χt
2 ∼ χ2, · · · . Thus the higher order forms of M(t), the nonlinear

susceptibilities can be measured as the response with the frequency of 3ω, 5ω, · · ·
in the AC susceptibility measurements.

The nonlinear susceptibilities can be measured by other technique. If the DC
field H is applied, the DC magnetization M is written as

M = χ0H + χ2H
3 + χ4H

5 + · · · , (2.5)
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and the nonlinear susceptibilities are obtained directly by the DC magnetization
measurements. When the AC field is applied with the DC field, χ′ can be treated
as the differential magnetization and given by

χ′ ≅ dM

dH
= χ0 + 3χ2H

3 + χ4H
5 + · · · , (2.6)

in the condition of hAC << H and ω → 0. Hence, we can obtain the nonlinear
susceptibility χ2 from the slant of the observed χ′ vs H2 plots in the limit of
H2 → 0.

In this study, the AC- and the DC-magnetization measurements were performed
in the temperature range from 5 K to 350 K. The DC magnetic field range is 0 -
55 kOe. In this study, the detailed magnetization measurements in very low field,
therefore is necessary, residual field in the sample space need to be suppressed as
low as possible. To achieve it, I estimated the residual field in the sample space
from the magnetization measurements at paramagnetic temperature of 350 K by
regarding an applied field when a measured magnetization is zero as being resid-
ual field. The zero field environment of H < 0.3 Oe was made by compensating
the residual field by the superconducting magnet. The magnitude of the applied
field which is generated by the superconducting magnet is controlled with high
resolution of δH ≤ 0.1 Oe in the measurement system.

I performed the AC magnetization measurements in the AC field range of 0.1
Oe < hAC < 3.0 Oe and frequency range of 0.1 Hz < f < 1000 Hz.
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Figure 2.3: Schematic view of the SQUID magnetometer.
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Figure 2.4: Typical signals of the SQUID in the DC (left) and the AC (right) mag-
netization measurements.
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2.3 Resistivity measurement

The electric resistivity was measured by the four terminal method. The elec-
tric current of I = 10 mA is generated by using the commercial current source
(ADVANTEST, R6142) and the excited voltage is measured by using the com-
mercial nanovoltmeter (KEITHLEY, 2182A/J). The sample was cooled by the GM
refrigerator and measurements were performed every 30 seconds with sweeping
the temperature in the range from 9 K to 310 K. The sweep rate of the temperature
is 0.3 K/min. In order to make out whether the temperature hysteresis is or not,
the measurements in both the warm-up and the cool-down process were carried
out with the sweep rate of 0.1 K/min in the temperature range around the magnetic
transition temperatures of 40 K < T <60 K and 270 K < T < 310 K .

2.4 Specific heat measurement

The specific heat was measured by using the thermal relaxation-method ap-
paratus of PPMS (Quantum Design) installed at Kindo laboratory in Institute for
Solid State Physics (ISSP), University of Tokyo. The measurements were per-
formed in the temperature range from 5 K to 350 K in the warm-up process and the
cool-down process.

2.5 Neutron scattering experiment

2.5.1 Single crystal neutron scattering experiment by using the triple-
axis spectrometer

The neutron is the electrically neutral particle with a spin S = 1/2 and a mag-
netic moment µn = −1.9132µN (µN is the nuclear magneton). The neutron inter-
acts with nuclei via the strong nuclear force and with magnetic moments via the
electromagnetic force. By using the neutron with the wavelength of the same order
of the interatomic distance in the condensed matters, about a few Å, we can know
their crystal structure and their magnetic structure by analyzing the diffraction pat-
tern. In addition, the energy of the neutron with such a wavelength is between a
few meV and tens meV, which is the same order of the elementary excitation en-
ergy in the condensed matters, hence, we can also observe the dynamical structure
such as the phonon and the magnon by the inelastic neutron scattering experiments.
The neutron scattering experiments, therefore, the most poweful technique in the
condensed matter science.
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The neutron scattering experiments for the single crystal were performed by
the triple-axis spectrometer PONTA of the Institute for Solid State Physics (ISSP-
PONTA) and ISSP-HER installed at JRR-3M reactor in Japan Atomic Energy
Agency (JAEA).

Figure 2.5 shows the schematic view of the triple-axis spectrometer. The triple-
axis spectrometer is the most general instrument for the neutron scattering experi-
ments. In the triple-axis spectrometer, the stages of the monochromator, the sample
and the analyzer can rotate independently, and we can obtain the neutron scattering
function S(Q,ω) of the optional momentum transfer Q and the optional energy
transfer ω.

The incident white neutron beam from the nuclear reactor collimated by the
1st collimator is monochromatized by the Bragg diffraction of the monochromator
crystal. The wavelength of the monochromatized neutron λ is determined by the
Bragg condition

2d sin θM = nλ, (2.7)

where d is the reflection-plane spacing of the monochromator and 2θM is the
diffraction angle. The monochromatized neutron comes to the sample through the
2nd collimator. Scattering at any scattering vector in the 2-dimensional reciprocal
lattice space can be observed by adjusting the vertical rotation angle of the sample
stage ω and the scattering angle to the analyzer 2θ. The neutron beam scattered
from the sample is collimated by the 3rd collimator and its the energy distribution
is analyzed by the Bragg diffraction of the analyzer crystal. Finally the analyzed
neutron collimated by the 4th collimator is detected.

At the ISSP-PONTA and the ISSP-HER, the (002) plane of the pyrolytic graphite
(PG) is used for the monochromator and the analyzer. Only the elastic scattering
experiments (ki = kf ) were done with the condition of 2θM = 2θA in this study.
The ISSP-PONTA is installed in the reactor room. The ISSP-HER is the cold neu-
tron triple-axis spectrometers installed in the guide hall, where the monochromator
is placed in the neutron guide tube without the 1st collimator. The biggest dif-
ference between these spectrometers is the neutron wavelength (energy). In this
study, the wavelength of λ = 1.64 Å, 2.36 Å and 2.44 Å (Ei = 30.5 meV, 14.7
meV and 13.7 meV) were selected in the experiments at the ISSP-PONTA, whereas
that of λ = 4.04 Å and 4.33 Å (Ei = 5 meV and 4.36 meV) were selected in the
experiments at the ISSP-HER. The combinations of the collimators were open-
40’-80’-80’ in the experiments at the ISSP-PONTA and guide-open-80-80 in the
experiments at the ISSP-HER. When the PG is used for the monochromator, the
higher order reflection of the wavelength of λ/2, which is the (004) reflection, is
contaminated unavoidably. In order to eliminate it, the appropriate fillers for the
neutron wavelength should be used. The PG filter and the Be filter were used in
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the experiments at the ISSP-PONTA and at the ISSP-HER, respectively.
The sample was mounted with its c-axis verticaly in the Al holder so that the

(hk0) plane was the scattering plane. The GM refrigerator was used for cooling
the sample, and the experiments were performed in the temperature range of 9 K
≤ T ≤ 305 K.

2.5.2 Neutron powder diffraction experiment

The neutron powder diffraction experiments were performed by using the the
KINKEN powder diffractometer, HERMES, of Institute for Materials Research
(IMR) Tohoku university installed at the JRR-3M reactor in JAEA. Figure 2.6
shows the schematic view of the neutron powder diffractometer HERMES. The
neutron beam monochromized by the PG monochromator comes to the sample
through the guide tube. Since the 150 the 3He detectors are lined with 1 degree
intervals, we can perform the high efficient measurement in the wide angle range.
For example, we can obtain the data at every 0.1 degree in the range of 150 de-
gree only by the 10 times measurements with steps of 0.1 degree. The neutron
wavelength for powder diffraction experiments was 1.84843 Å.

The powder sample was put into a cylindrical Vanadium (V) can with the size
of 7 mm φ× 25 mm. V is a suitable material to the sample can for the neutron
powder diffraction experiments because its coherent scattering length is very small
which is bcoh = −0.3824 fm, and hence, unnecessary Bragg reflections hardly
arise. The GM refrigerator is used for cooling the sample, and the experiments
were performed in the temperature range of 10 K ≤ T ≤ 300 K.
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Figure 2.5: The schematic view of the triple-axis spectrometer. In the text, the
combination of the horizontal collimators is expressed with the notation of "1st-
2nd-3rd-4th".

22



Figure 2.6: The schematic view of the neutron powder diffractmator, HERMES.
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Chapter 3

Experimental results and
analyses

3.1 AC- and DC-magnetizations

3.1.1 Magnetization along the b-axis

Figure3.1 shows the temperature dependences of the real and the imaginary
parts of the AC susceptibility χ′ and χ′′ with the AC field applied along the b-
axis. The AC susceptibility was measured in the following three measurement-
processes:

(a) the cool-down process from 350 K;

(b) the warm-up process after cooling the sample to 100 K which is the temper-
ature above TN;

(c) the warm-up process after cooling the sample to 5 K which is the temperature
below TN.

The AC field with the amplitude of hAC = 0.5 Oe and the frequency of f = 10
Hz was applied in these measurements. In all processes, sharp increases of χ′ and
χ′′ are found around T ∗ = 282 K. Interestingly, the peaks at T ∗ in the process
(c) is much higher than those in the process (a) and (b). This process-dependent
behavior will be discussed later with including the detailed investigation of the
DC magnetization measurements. The divergent behaviors of χ′ and χ′′ in the
process (c) indicate a second order magnetic phase transition at T ∗. The peaks
of the AC susceptibilities at T ∗ are much sharper than those observed by Becerra
[43]. This discrepancy may come from the difference of the AC-field amplitude, he
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measured with the AC-field of hAC = 2 Oe. To verify it, we checked the AC-field
dependences of χ′ and χ′′ and found strong suppression of the peaks at T ∗.
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Figure 3.1: Temperature dependences of the AC susceptibilities of MnP in the var-
ious processes. The upper figure and the lower one show the real part and the
imaginary part of the AC susceptibility, respectivelly. The details of the measure-
ment processes (a)-(c) are described in the text.

26



The temperature dependences of the DC magnetization along the b-axis in sev-
eral measurement processes are shown in Fig. 1(b). The measurements were per-
formed in different four T -processes after applying a field of 3 Oe at the paramag-
netic temperature 350 K:

(A) the cool-down process from 350 K;

(B) the warm-up process after cooling the sample down to 55 K which is the
temperature above TN;

(C) the warm-up processes after cooling the sample down to 5 K which is the
temperature below TN

(D) the warm-up processes after cooling the sample down to 35 K which is the
temperature below TN

A sharp increase of the magnetization at T ∗ was observed in any processes, how-
ever, the magnetization in the temperature range of TN < T < T ∗ remarkably de-
pends on the processes. The magnetizations in the processes (A) and (B) and those
in (C) and (D) are almost same, respectively. On the other hand, the magnitudes of
the magnetization in the latter processes, in which the sample has been once cooled
below TN, are about three times larger than those in the former processes, in which
the sample has not been cooled below TN. These results indicate a quite peculiar
temperature hysteresis, namely, the magnetization in the state for TN < T < T ∗,
intermediate-temperature phase, strongly depends on whether the sample has un-
dergone to the helical phase below TN once or not. This process-dependent be-
havior of the magnetization was found only in the intermediate-temperature phase.
The magnetizations in the four processes almost collapse in the low temperature
helical phase (T < TN) and in the paramagnetic phase (T > TC). In the high
temperature phase for T ∗ < T < TC though the very small differences are found
as shown in the inset of Fig.3.3, which will be fully described below.

The observed temperature-dependent behaviors of the magnetization naturally
arise the following question; what temperature do we need to warm up the sample
to, for restoring the sample to the state before cooling it down to the helical phase?
In order to investigate it, I performed the following measurements. The sample was
cooled down to 5 K once and warm up to the returning point (R.P.). After this pro-
cedure, the sample was cooled down to 250 K and the magnetization was measured
in the warm-up process. If the state of the sample is restored at the R.P., we find the
small magnetization corresponding to those in the process (A) and (B). Otherwise,
the large magnetization corresponding to those in the process (C) and (D) is found.
The selected R.P. were 270 K, 287 K, 300 K, 320 K, 330 K and 350 K. The results
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of this measurements were shown in Fig. 3.3. In the figure, we also show the re-
sult in the simple warm-up process from 5K. The magnetizations measured in the
processes of the 270 K and 287 K are still enhanced, however, the magnetization is
restored to the small one when the R.P. is higher than 300 K which is above TC. In
short, the enhanced magnetization along the b-axis is restored at TC. As shown in
the inset of Fig. 3.3, the very small difference of the magnetization is also observed
in T ∗ < T < TC. Indeed the process-dependece of the magnetization along the
b-axis remarkably appears below T ∗, but it fundamentally appears below TC.
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Figure 3.2: Temperature dependences of the DC magnetization of MnP in the var-
ious processes. The details of the measurement process (A)-(D) are described in
the text.

Figure 3.4 shows the magnetization curves against the magnetic field along the
b-axis at T = 100 K. In the figure, the data in three different processes to approach
the measurement temperature are shown. The three processes are follows:

(A’) the sample was cooled from 350 K directly in zero field;

(C’) the sample was warmed from 5 K after cooled to 5 K once in zero field;
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Figure 3.3: Temperature dependences of the DC magnetization along the b-axis of
MnP from 5 K and from 250 K after the sample warming up to various returning
point (R.P.). The detailed of the measurement process are described in the text

(A”) the sample was cooled from 350 K directly in a field of 10 kOe.

The measurements were performed with changing the field in the following se-
quence: 0 Oe → 30 Oe → -30 Oe → 30 Oe. Ferromagnetic hysteresis loops were
observed in all the processes. It indicates that the intermediate-temperature phase
is a ferromagnetic one with the very small ferromagnetic moment along the b-axis.
The spontaneous magnetization M

//b
s and the coercive field Hc exhibit process-

dependences. M
//b
s in the processes (A’) and (B’) are about 2 ×10−4µB/Mn-atom

and 1 ×10−3µB/Mn-atom respectively, which indicates that the spontaneous mag-
netization is enhanced five times when the sample has undergone the helical phase
before reaching to the measurement temperature. This process-dependent behav-
ior of M

//b
s is the same one as that observed in the temperature-dependence of the

magnetization shown in Fig. 3.2. It should be noted that the magnetization curves
in the processes (A’) and (A”) nicely collapse on one curve. It clearly indicates that
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the magnetic field of 10 kOe, being much higher than the coercive field of about
5 Oe, can not affect the magnetization curve. These magnetization measurements
indicate that two magnetic states exist in the intermediate-temperature phase: One
is the large magnetization (LM) state and the other is the small magnetization (SM)
state. The LM state is realized only by cooling the sample to the low temperature
helical phase, not by applying magnetic field. Hence, the LM state does not origi-
nate from alignments of the ferromagnetic domains or the ferromagnetic clusters.

In order to determine which state, the LM state and the SM state, is the thermal
equilibrium state in the intermediate-temperature phase, I measured time develop-
ments of the magnetizations in the LM and the SM states. Figure3.5(a) shows time
dependences of the magnetizations at H = 30 Oe in the processes (A’) and (C’).
It should be also noted that the magnetizations in both processes exhibit no time
dependences up to 6 hours. I also performed the same measurement at T = 250 K,
where a thermal relaxation should be more rapid, however, no time dependences
were observed up to 16 hours as shown in Fig. 3.5 (b). Therefore, one cannot deter-
mine which state is the thermal equilibrium state. No time dependence at T = 250
K indicates a high energy barrier between the two states.

Figure 3.6 shows the magnetization curves against the magnetic field along the
b-axis at various temperatures. It is shown the results measured in the LM state
which were performed after cooling the sample to 5 K once. The ferromagnetic
hysteresis and spontaneous magnetization are not found above T ∗. I performed
the same measurements also in the SM state which were done directly cooling
to the measurement temperatures. The temperature dependences of the estimated
spontaneous magnetization M

//b
s and coercive field Hc in the LM and SM states

were shown in Fig. 3.7 and 3.8, respectively. Both M
//b
s and Hc in the LM state are

larger than those in the SM state in the intermediate-temperature region. First, we
shall describe the manners of the temperature dependences of M

//b
s and Hc in the

LM state. M
//b
s , which is disappeared below TN, sharply increases at T = TN, and

then gradually increases up to the maximum value around 150 K with increasing
M

//b
s vanishes at T = T ∗ not at T = TC. Hc is also very sharply increase at

T = TN and monotonically decreases up to T ∗. In the SM state, the manner of
M

//b
s is similar, in spite of the large difference of its magnitude. Hc in the SM

state is not so different from that in the LM state above 150 K. The increase of Hc
below 150 K is modester in the SM state than that in the LM state.
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3.1.2 Magnetization along the a-axis

Figure.3.9 shows the temperature-dependences of the DC magnetization along
the a-axis in the very low field of the 3 Oe. The data measured in the same two pro-
cesses (B) and (C) shown in Fig. 3.2 are shown; the former is the warm-up process
from the temperature above TN, and the latter is the warm-up process from the tem-
perature below TN. Clear process-dependent behaviors was observed in the mag-
netizations along the a-axes below TC as well as done in the magnetization along
the b-axis below T ∗. The magnetizations along the a-axis are suppressed when
the sample has been cooled to the helical phase temperature once, which is oppo-
site behavior to that along the b-axis. It should be noted the process-dependence
is observed even along the a-axis. It is surprising because it has been believed
that MnP has no a-compoent of the ordered moment below TC, and hence, it is
expected no process-dependence along the a-axis. In addition, the magnetization
along the a-axis shows a cusp anomaly at TC, which is clearly different behavior
from that of ferromagnetic one along the c-axis as shown in later and is an antiferro-
magnetic one. These results strongly suggest an existence of an antiferromagnetic
a-component of the ordered moment below TC.

In order to investigate what temperature the sample need to be warmed up to,
for restoring the magnetization along the a-axis, I performed the measurements in
the same process in Fig. 3.3. The returning temperature is selected as R.P. = 270,
300, 320, 330, 340 and 350 K. Figure 3.10 shows the results of the measurements.
The R.P. dependence of the magnetization along the a-axis is rather continuous,
in contrast with that along the b-axis, however, discontinuous change seems to be
found between R.P. = 320K and 330 K. And also, the small process-dependence
of magnetization is observed up to around 310 K being higher than TC. Indeed,
the process-dependece of the magnetization along the a-axis remarkably appears
below TC, but it fundamentally appears below 320 K.

Figure 3.11 shows the field-dependences of the magnetization along the a-axis
at 100 K. The magnetization were measured in the same two processes (A’) and
(C’) as shown in Fig. 3.4, the former is the measurement after cooling the sample
directly to the measurement temperature and the latter is one after the sample has
been cooled to the helical phase below TN once. Figure 3.11(a) and (b) shows the
magnetization measured with changing the field in the following sequence: 0 Oe
→ 30 Oe → -30 Oe → 30 Oe and 0 Oe → 55 kOe, respectively. The process-
dependent behavior as found in the M - T measurements was not found in the M
- H measurements along the a-axis. Except for a bend found at about 50 kOe,
which is the magnetic transition field to the fan structure phase, the magnetization
changes linearly, and no anomaly is found below 50 kOe.

In addition, I measured the difference between the zero field cooled (ZFC) and
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Figure 3.9: Temperature dependence of the magnetization along the a-axis mea-
sured in the warm-up process from 100 K (process (B)) and 5 K (process (C)).

field cooled (FC) susceptibility along the a-axis. Fig.3.12 shows the temperature
dependences of the susceptibility χ = M/H along the a-axis. The measurements
were performed in the following five warm-up processes:

(i) ZFC measurement performed from 100 K

(ii) FC measurement performed from 100 K (corresponding to the process(B) in
Fig.3.9)

(iii) ZFC measurement performed from 5 K

(iv) FC measurement performed from 5 K (corresponding to the process(C) in
Fig.3.9)

(v) measurement performed from 100 K after cooling the sample to 5 K and
warming it up to 100 K in zero magnetic field.
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Figure 3.10: Temperature dependences of the DC magnetization along the a-axis
of MnP measured from 5 K and from 250 K after the sample warming up to various
returning point (R.P.).

Comparing the behavior in the process (i) with process (ii), we found a distinct
separation of the ZFC and FC susceptibility below TC. On the other hand, the
separation found between in the process (iii) and (iv) is much smaller than that be-
tween in the process (i) and (ii). The separation of the ZFC and FC susceptibility
is observed in spin glasses[44]. It may suggest that the a-component of spins is
frozen randomly like a spin glass. However, the time dependence of the magneti-
zation is contrast to that in the general spin glass as mentioned below. Figure 3.13
shows the time developments of the susceptibility χ = M/H along the a-axis at
H = 3 Oe and T = 100 K in the process (i), (ii) and (iv). The susceptibilities
exhibit no time dependences up to 16 hours in every process. No time dependence
of the magnetization in the FC processes (ii) and (iv) is the same result observed
in the magnetization along the b-axis shown in Fig. 3.5. it should be noted that the
ZFC susceptibility in the process (i) also exhibits no time dependence. In general
spin glasses, a relaxation behavior is observed, namely, ZFC susceptibility grad-
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Figure 3.11: Magnetization vs magnetic field plot along the a-axis measured in the
two different processes at 100 K. The details of the measurement process (A’) and
(C’) are described in the text.

ually increase to the the equilibrium value [45]. No time dependence of the ZFC
susceptibility suggests that the a-component of spins does not form a simple glassy
state. It should be also noted that the susceptibility in the process (v) almost col-
lapses with that in the process (iii), not with that in the process (i). It also indicate
that the state in the intermediate temperature range is controlled by whether the
sample has undergone the helical phase once or not.
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3.1.3 Magnetization along the c-axis

The temperature-dependences of the magnetization along the c-axis are shown
in Fig.3.14. The data measured in the same two processes (B) and (C) in Fig. 3.2
are shown, the former is the warm-up process from the temperature higher than TN,
and the latter is the warm-up process from the temperature below TN. The process-
dependent behavior was also observed in the magnetization along the c-axis. The
magnetization along the c-axis is suppressed when the sample has been cooled to
the helical phase temperature below TN. It is the same behavior as that along the
a-axis.
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Figure 3.14: Temperature dependences of the magnetization along the c-axis mea-
sured from 60 K (process (B)) and 5 K(process (C)).

Figure 3.15 shows the field-dependences of the magnetization along the c-axis
at 100 K. Figure 3.15 (a) and (b) shows the magnetization curve measured with
changing the field in the following sequences: 0 Oe → 30 Oe → -30 Oe → 30
Oe and 0 Oe → 10 kOe → -10 kOe → 10 kOe, respectively. A ferromagnetic
magnetization curve is observed and the saturation moment is about 1.2µB/Mn-
atom as shown in Fig.3.15(b). The coercivity is, however, very weak and coercive
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field is 0 Oe within a margin of errors, indicating the ferromagnetism of the c-
component magnetization is very soft. The magnetization changes linearly in the
range of −30 Oe < H < 30 Oe (see 3.15(a)) in the both (A’) and (C’) processes,
and the slant of the magnetization curve in the process (C’) is little smaller than that
in the process (A’). It is the same tendency of the process-dependence found in the
M − T measurement in Fig. 3.2. The slant of the magnetization curve in the low
field region, however, is fully agreement with the estimated value when assuming
the internal magnetic flux is zero, that is, the demagnetization field determined by
the shape of the sample is equal to the applied field. It means that the magnetization
along the c-axis in low field is dominated by the extrinsic factor such as the shape
of the sample, and hence, the small difference of the magnetization along the c-axis
found in the low field region can be hardly discussed.
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3.1.4 Magnetization in the powder sample

The temperature-dependences of the magnetization for the powder sample is
shown in Fig.3.16. The data measured in the same two processes (B) and (C) in Fig.
3.2 are also shown; the former is the warm-up process from the temperature higher
than TN, and the latter is the warm-up process from the temperature below TN.
The small increase of the magnetization at T ∗ responsible for the ferromagnetic
b-component was also observed in the powder sample. In addition, the process-
dependent behavior was also observed. The magnetization of the powder sample
was suppressed when the sample has been cooled to the helical phase temperature
once, because the magnetization of the powder sample is dominated mostly by the
easy-axis magnetization along the c-axis.
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3.1.5 Interpretation of the results

In the magnetization measurements, I found the following remarkable facts:

• The weak ferromagnetic behavior of the b-component with the spontaneous
magnetization of ∼ 10−3µB/Mn-atom was observed in the intermediate-
temperature range of TN < T < TC.

• The peculiar temperature hysteresis, namely, the spontaneous magnetization
in the weak ferromagnetic state is remarkably enhanced when the sample has
cooled to the helical phase below TN was discovered.

Here I discuss the nature of the weak ferromagnetism with considering the
following:

• Antiferromagnetic behaviors of the magnetization along the a-axis.

• Possible existence of the DM interaction between the N. N. pairs of Mn-pair.

The DM vector between the N. N. Mn-pair D should be parallel to the c-axis
because the c-plane, including the pair of N. N. Mn-pairs is the mirror plane in the
crystal structure of MnP (see Fig.1.4) In this case, the energy of the DM interaction
between the N. N. pair of Mn-spins, S1, S2, is given by

D · (Si × Sj) = D(Sa
1Sb

2 − Sb
1S

a
2 ).

It naturally induces a cant of Mn-spins and weak ferromagnetic component along
the b-axis in the antiferromagnetic configuration of the a-component. Hence, I pro-
pose that the canted antiferromagnetism is the nature of the intermediate-temperature
phase in TN < T < T ∗

The temperature hysteresis phenomenon in the canted antiferromagnetic state
caused by the sample undergoing to the helical phase is a quite peculiar. The
main issue in the rest of the part I in this thesis is to illuminate the nature of this
temperature hysteresis phenomenon. The change of the spontaneous magnetization
caused by the temperature hysteresis is very small, being ∼ 10−3µB. The small
change of the magnetization, however, cannot be induced by applying the field
up to 10 kOe. What in the helical phase induces the LM state? Moreover, the
SM state which realizes when the sample is directly cooled from high temperature
is completely separated by a very high energy barrier from the LM state which
realizes when the sample is warmed up from the helical phase. What separates
the two states? To answer these questions, I tried to observe anomalies at T ∗ and
process-dependent behaviors in other physical properties.
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3.2 Resistivity

The electrical resistivity measurements of MnP has been previously performed
by several groups[46, 47, 48, 49, 50, 51]. Detailed experiments, however, have
been done only in order to investigate the Fermi liquid behavior in the low temper-
ature region. The main purpose of the measurement is to find some anomalies due
to the phase transition at T ∗ and the hysteresis phenomena in the canted antiferro-
magnetic phase.

Figure 3.17 shows the temperature dependences of the electrical resistivity ρ
measured in the the cool-down process from the paramagnetic temperature of 310
K and in the warm-up process from the helical phase temperature of 9.3 K. The de-
tails in the high temperature region including T ∗ and TC and in the low temperature
region around TN are shown in Fig.3.18 and 3.19, respectively. The electric current
was induced along the a-axis. In contrast with the case of the magnetization, the
difference of the resistivity in the warm-up process and in the cool-down process
is not found in the whole temperature region, except for the thermal hysteresis be-
havior accompanied by the first order phase transition at TN. A bend type anomaly
is observed at TC, whereas, no anomaly is found at T ∗ in the electrical resistivity.

As shown in Fig. 3.19, hump-type anomalies at 47.3 K and 47.6 K are found in
the cool-down process and in the warm-up process, respectively, which are due to
the first order phase transition between the canted antiferromagnetic phase and the
helical phase. The thermal hysteresis originating from this first order phase tran-
sition was observed between 46.9 K and 49.5 K. The thermal hysteresis behavior
around TN was also observed by Takase, et al. [49], however, the region is different
from that in our experiments. Takase et al. reported that the temperature found the
hump-type anomaly indicating TN increases up to about 51 K with decreasing the
crystal defects of the sample. And also, a hysteresis region in the vicinity of a first
order phase transition temperature is generally very sensitive to the sample quality.
Hence, we conclude that the discrepancy between the result by Takase et al. and
ours is due to small difference of the sample qualities. The thermal hysteresis be-
havior accompanied by the first order phase transition TN was found in the narrow
temperature range of ∆T ∼ 2 K. The temperature hysteresis phenomena, which
observed in the whole range of TN < T < TC in magnetization measurements, is
entirely different from such the thermal hysteresis.
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Figure 3.17: Temperature dependence of the resistivity in MnP
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3.3 Specific heat

The specific heat measurements has been also previously performed only in the
low temperature region [35]. Figure 3.20 shows the temperature dependences of
the specific heat C measured in the the cool-down process from the paramagnetic
temperature of 310 K and in the warm-up process from 5 K to 350 K. The details
in the high temperature region including T ∗ and TC and in the low temperature
region around TN are shown in Fig.3.21 and 3.22, respectively. The difference of
the specific heat between in the warm-up process and in the cool-down process
is not found in the whole temperature region, except thermal hysteresis behavior
accompanied by the first order phase transition at TN. A divergent behavior was
observed at TC, however, no anomaly was found at T ∗ in the specific heat (see Fig.
3.21). A jump of the specific heat with the small thermal hysteresis was observed
at TN (see Fig. 3.22).
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Figure 3.20: Temperature dependence of the specific heat in MnP
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3.4 Neutron scattering

3.4.1 Novel magnetic reflection at (δ, 1, 0) below TN

As mentioned in Sec. 2.5, the neutron scattering experiments is a powerful
technique to investigate magnetic properties of condensed matters, and hence, it is
very interesting to examine the nature of the temperature hysteresis phenomena ob-
served in the magnetization by the neutron scattering experiments. And also, some
influence of the DM interaction appears in MnP, the magnetic structure should be
modulated. For these purpose, I performed the neutron scattering experiments. The
basis of analyses for the data of the neutron scattering experiment is described in
Appendix A.

Figure.3.23 shows the diffraction patterns of the neutron power diffraction ex-
periments performed with changing the temperature in the following sequence: 100
K → 10 K → 100 K → 200 K → 300 K → 200 K. Any difference of the diffraction
patterns in the cool-down process and in the warm-up process is not found at 100
K and 200 K, being in the intermediate-temperature phase. Although the change
of the peak positions,which indicates the change of the lattice constants, were ob-
served with decreasing the temperature, any additional peak was not observed in
the intermediate-temperature phase. We can see the asymmetrical intensities of the
magnetic reflection at both sides of the nuclear Bragg reflection k = K±δ at 10 K.
It was explained with assuming the double spiral type helical structure by Forsyth
[23] (see Appendix A). No additional peaks except for the magnetic reflections
reported previously are found. After all, any new information about the magnetic
structure in MnP in both the intermediate-temperature phase and the helical phase
was obtained by the neutron powder diffraction experiments.

For more detailed investigation, the neutron scattering experiments by using
the single crystals were performed with the triple-axis spectrometer. The positions
of the nuclear reflections and the magnetic reflections in the reciprocal lattice space
expected by assuming the conventional helical structure are shown in Fig. 3.24. In
such the detailed investigation, I discovered a novel magnetic reflection at (δ, 1, 0)
below TN. The magnetic reflection at (δ, 1, 0) and (−δ, 1, 0) are shown in Fig.3.25.
Considering the crystal structure of MnP, the nuclear reflections with the condition
of (h, k) =(0,odd) and (odd,0) are forbidden (see Appendix A and Fig.3.24). The
(0,1,0) and (1,0,0) reflections were not actually observed in our experiments (see
Fig. 3.26). In general, the satellite peaks also does not appear at the side of such
a forbidden nuclear reflection. The magnetic reflection at (δ, 1, 0), however, was
distinctly observed. The intensity of (δ, 1, 0) reflection is about 500 times smaller
than that of (2 + δ, 0, 0). Indeed the (δ, 1, 0)-reflection could appear if the helical
structure is the conventional double spiral type one with the finite relative phase
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between the N. N. Mn-spins. However, the calculated intensity based on the double
spiral structure discussed in [23] is about 105 times smaller than that of the (2 +
δ, 0, 0). This large discrepancy clearly indicates that the magnetic structure of MnP
in the low temperature should be modulated from the previously reported one.

Here, I discuss on the possible modulation of the magnetic structure below TN
in MnP. First, I assume the modulation with the propagation vector (δ, 1, 0) simply.
If this modulation is, the reflections at (1 ± δ, 0, 0) = (1,∓1, 0) ± (δ, 1, 0) should
appear, however, the (1±δ, 0, 0) reflections were not observed as shown in Fig.3.26.
And hence, the (δ,1,0)-modulation of the a-component of the ordered moment is
concluded. The modulation of the a-component as illustrated in Fig. 3.27 can
give rise to the (δ, 1, 0) reflection. The a-component is modulated with the wave
number δ along the a-direction and is in an antiparallel configuration between the
N. N. Mn-spins where the distance is b/2. With superposing this modulation of the
a-component on the conventional helical structure with the helical plane parallel to
the bc-plane, the magnetic structure as shown in Fig.3.27 (b) is obtained. In this
structure, the helical planes tilted to the a-direction with the angles of +θ and −θ
alternately along the b-direction. The schematic view of the same structure from
different view angle is shown in Fig. 3.28.

Next, I discuss on the newly proposed magnetic structure below TN from the
viewpoint of the crystal symmetry. As mentioned in Sec. 1.2, the inversion sym-
metry at the center between the N.N. Mn-sites is broken and the DM interaction
can work between the N.N. Mn-spins. If we consider the DM interaction between
the N. N. Mn-spins, the magnetic structure above mentioned can be realized natu-
rally. As mentioned in subsection 3.1.5, the DM interaction with the DM vector D
is parallel to the c-axis in MnP, and the energy of the DM interaction between the
N. N. Mn-spins, S1, S2, is given by

D · (Si × Sj) = D(Sa
1Sb

2 − Sb
1S

a
2 ). (3.1)

This energy tilts the spin-components in the ab-plane with a degree of θ = tan−1(D/J),
where J is the symmetric interaction between the N.N. Mn-spins. Because the ab-
component of the N.N. Mn-spins in the fundamental structure, the helical structure,
are parallel to the b-axis and are parallel each other, their tilted angles are opposite
each other, as being θ and −θ, respectively (see Fig. 3.29). And also, the DM
vector directed alternately lines along the b-direction. Consequently, the magnetic
structure with the helical planes tilted to the a-direction with the angles of θ and
−θ alternately as shown in Fig.3.28 is also expected with considering the crystal
symmetry. Therefore, I propose the tilted helical structure as shown in Fig. 3.28 as
the true magnetic structure below TN.
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3.4.2 Analysis for the tilted helical structure below TN

Here, the analysis of the magnetic reflection intensities with assuming the tilted
helical structure as shown in Fig. 3.28 is mentioned. In this analysis, I adopted the
Forsyth’s model of the double helical structure [23] as the fundamental structure
(see Appendix A). I redefine the spin vector at the Mn-site denoted by the spacial
position r and the sublattice position in the unit cell ν, ηνr, defined by the eq. A.2
in the Appendix A as

ηνr = qc cos(δ · r + γν) + {q̂bq
′
b cos φν + q̂aq

′
b sinφν} sin(δ · r + γν). (3.2)

where φν is the tilted angle of the spins on the νth Mn-site in the unit cell by
the DM interaction and q′b is the magnitude of the b-component of the ordered
moment without consideration of the tilt by the DM interaction. The calculation
can be operated by the same way as described in the Appendix A, and the Fourier
component of ηνr Qν is given by

Qν(k) =
∫

r
ηνr exp(−ikr)dτ

=
1
2
qc

∫
r
exp[i{(−k + δ) · r + γν}] + exp[{i(−k − δ) · r − γν}

+
1
2
q̂bq

′
b cos φν

∫
r
exp[i{(−k + δ) · r + γν}] − exp[{i(−k − δ) · r − γν}]dτ

+
1
2
q̂aq

′
b sinφν

∫
r
exp[i{(−k + δ) · r + γν}] − exp[{i(−k − δ) · r − γν}]dτ

(3.3)

It is a similar form to eq. A.7. The first term in each integrals is zero unless δ = k
and the second one is zero unless δ = −k. If the number of unit cells is very
large, finally, the magnetic scatterings only appear at k = K ± δ where K is
the reciprocal lattice vector. The satellite peaks will be observed at K ± δ, and
P (K ± δ) can be expressed as

P (K + δ) ∝
∑

ν

fν(K + λ)
1
2
[qc exp{i(K · rν − γν)} − q̂bq

′
b cos φν exp{i(K · r − γν)}

−q̂aq
′
b sinφν exp{i(K · r − γν)}]

(3.4)

P (K − δ) ∝
∑

ν

fν(K − λ)
1
2
[qc exp{i(K · rν + γν)} + q̂bq

′
b cos φν exp{i(K · r + γν)}

+q̂aq
′
b sinφν exp{i(K · r + γν)}]

(3.5)
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fν(k) is the magnetic form factor of Mn-atom at the ν-site. Substituting the posi-
tions of the Mn site (ν = 1, 2, 3, 4) assigned as eq. A.10, and replace any fν(k)
with fMn(k) by assuming the form factor does not depend on the direction of the
spin, the a-component of P (K − δ) in eq. 3.5 can be expressed as

P (K − δ)a

CfMn(K − δ)

=
1
2

[
cos X cos Y {sinφ1e

iγ1 + sinφ2e
iγ2 + sin φ3e

iγ3 + sin φ4e
iγ4}

− sinX sinY {sinφ1e
iγ1 − sinφ2e

iγ2 + sinφ3e
iγ3 − sin φ4e

iγ4}
+ i sin X cos Y {sin φ1e

iγ1 − sinφ2e
iγ2 − sinφ3e

iγ3 + sinφ4e
iγ4}

+i cos X sinY {sin φ1e
iγ1 + sin φ2e

iγ2 − sinφ3e
iγ3 − sinφ4e

iγ4}
]
(3.6)

where

X = 2π

[
hx1 +

1
4
(h + k)

]
Y = 2π

[
ky1 −

1
4
(h + k − l)

]
Here, I adopts the relative phases condition of γν as γ1 = γ4, γ2 = γ3, which was
lead by the Forsyth. As described in subsection 3.4.1, the tilted angles of the N.N.
Mn-spins are opposite each other, and hence, the condition of φν as φ1 = −φ2 and
φ3 = −φ4 is adopted. Consequently, there are tow possible combinations of φν as
follows: (a) φ1 = −φ2 = −φ3 = φ4 = φ ; (b) φ1 = −φ2 = φ3 = −φ4 = φ. In
the case of the combination (a), the (δ,1,0)-reflection almost disappears, and hence,
I ruled out this possibility. In the case of the combination (b), the first line and the
third line of the eq. 3.6 are zero, and

P (K − δ)a

CfMn(K − δ)
= sin X sinY sinφ(eiγ1 + eiγ2)

+ i cos X sinY sinφ(eiγ1 − eiγ2).
(3.7)

When h = 0 and k =odd, the second line is zero, and

P (K − δ)a

CfMn(K − δ)
= 2 sin X sinY sin φ cos(

γ1 − γ2

2
)ei

γ1+γ2
2 . (3.8)

The a-component of the P (K + δ) is the same form as that of P (K − δ). Thus
the magnetic reflection at the (±δ, 1, 0) is not extinct in the tilted helical structure.
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In our calculation, the relative phase difference γ1 − γ2 = 16.1◦, which was lead
by Forsyth, was substituted. The magnetic form factor reported for the Mn-3d
electron in the α−Mn was adopted as fMn [52]. The b-component without the tilt
q′b = 1.29µB, which is the estimated value of the ordered moment o the helical
structures [21, 26], was chosen. From the ratio of the intensities of the (δ,1,0)- and
of the (2 + δ,0,0)-reflections, being 1:500, the tilted angle φ is estimated as,

φ ; 6.2◦.

This small tilted angle is adequate because the DM interaction is generally much
smaller than the symmetric interaction. And also, the magnitude of the a-component
of the ordered moment qa is

qa = q′b sin φ ; 0.14µB.

In addition, the magnitude of the b-component of the ordered moment qb = q′b cos φ
is 1.28 µB. The values of qb and q′b are quite similar, and hence, intensities of other
magnetic reflections observed previously can be reproduced on a basis of the newly
proposed tilted helical structure as well as the fundamental double helical structure
proposed previously.
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Figure 3.23: In the upper figure, the diffraction patterns of the neutron powder
diffraction experiment in MnP performed in the cool-down process and in the
warm-up process are shown. The middle figure shows the calculation pattern of
MnP at 300 K. The lower figure is the details in the small angle region.
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Figure 3.24: The positions in the reciprocal lattice space of the observable nu-
clear reflections (black closed circles), the magnetic reflection (blue open circles)
expected by assuming the previously reported magnetic structure and newly dis-
covered magnetic reflection at (±δ, 1, 0) (red cross) below TN.
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Figure 3.25: The profiles of the magnetic reflections at (δ, 1, 0) and (-δ, 1, 0).
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Figure 3.26: The profiles of the (1,0,0), (0,1,0), (1 ± δ, 0, 0) and (2 ± δ, 0, 0)-
reflections.
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an a-component of a spin

b

Figure 3.27: (a) The schematic illustration of the (δ, 1, 0) magnetic modulation.
(b) The schematic illustration of the tilted helical structure. The blue arrows in the
figures represent the a-components of spins.

58



Figure 3.28: The schematic illustration of the tilted helical structure from the dif-
ferent view angle from that in Fig. 3.27 (b)

D

a

b

S1

S2
b

b

-θ

θ

Figure 3.29: Schematic view of the tilt of the ab-component of the N.N. Mn-spins
by the DM interaction.
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3.4.3 Peculiar temperature hysteresis observed in nuclear reflections

The temperature hysteresis phenomena observed in the magnetization mea-
surements may caused by some lattice distortions. Hence, I investigated the tem-
perature dependences of the nuclear reflections at (1,1,0), (2,0,0) and (0,2,0) with
changing the temperature in the following sequence: 305 K → 100 K → 9.6K →
100 K → 200 K → 305 K. Figure 3.30 shows the profiles of the nuclear reflections
at the lowest temperature of 9.6 K. The intensity ratio of the nuclear reflection at
(1,1,0), (2,0,0) and (0,2,0) and these calculation values are shown in Table 3.1. The

Table 3.1: Nuclear reflection intensity ratio. The normalized values of the calcula-
tion Icalc. and observation Iobs. are displayed.

h k l Iobs. (ratio) Icalc.(ratio)
1 1 0 1.00 1.00
2 0 0 1.41 3.26
0 2 0 1.80 4.02

relative change of the observed intensity is smaller than the calculated one. This
discrepancy may be caused by a secondary extinction effect.The temperature de-
pendence of the integrated intensity ratio of the (1,1,0) reflection,which was mea-
sured in most detail, is shown in Fig. 3.31. The arrows represent the shift of the
measurement temperature. The intensity measured in the warm-up process after
the sample has been cooled to the helical phase below TN distinctly larger than that
in the cool-down process at 100 K. The behavior is very similar to the temperature
hysteresis observed in the magnetizations. The same behaviors were also observed
in the (2,0,0) and (0,2,0) reflections. For the sake of comparison, the same plot of
the (1,1,0) reflection intensity measured in the neutron powder diffraction exper-
iments are shown in Fig. 3.32. No difference of the intensities in the cool-down
process and in the warm-up process was observed. In the temperature range of
TN ≤ T ≤ TC, the reflections at the reciprocal lattice vectors consist of the nuclear
contribution and the magnetic contribution because MnP has the ferromagnetic or-
dered moment. Hence, the hysteresis behavior above mentioned can originate from
the magnetic contribution as well as the nuclear one. The difference of the nuclear
reflection intensities in both processes measured with the single crystal sample is
about 5 % at 100 K . On the other hand, the difference of the magnetizations is
very small value of about 10−3µB/Mn-atom. Therefore, the nuclear contribution
is responsible for the hysteresis behavior of the reflections at the reciprocal lattice
vector. In the magnetization measurements, the temperature hysteresis phenomena
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was observed in both the single crystal and the powder sample, and hence, even
for the powder sample, the effect causing the hysteresis behaviors should emerges
after cooling the sample below TN. However, the hysteresis behavior in the nuclear
reflections was observed only in the single crystal. A possible explanation of this
inconsistency is that a reduction of the secondary extinction effect is the reason of
the hysteresis behavior observed in the single crystal. The behavior of the (1,1,0)
reflection intensity measured for the single crystal in the warm-up process is al-
most same as that measured for the powder sample. It suggests that the secondary
extinction effect is suppressed when the sample has cooled to the helical phase
once because some lattice distortion may be caused in the helical phase and the
distortion remains still when the sample warmed up to higher temperature then TN
again. In the powder sample, there is no secondary extinction effect at first, and
hence, no hysteresis was observed.
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Figure 3.30: Profiles of the observed nuclear reflections at (2,0,0), (0,2,0) and
(1,1,0).
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tion intensity measured for the single crystal of MnP.
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Chapter 4

Discussion

4.1 Possibility of the inverse effect of the DM interaction

The magnetic reflection of (δ, 1, 0) newly observed in the neutron scattering
experiments indicates the tilted helical structure stabilized by the DM interaction
below TN. It is the first observation of the effect of the DM interaction in MnP.
The fact of that the DM interaction affects the low temperature magnetic struc-
ture strongly suggests that it should act also in the intermediate-temperature range.
It supports my speculation about the intermediate-temperature phase described in
subsection 3.1.5, namely, the weak ferromagnetism of the b-componet is a canted
antiferromagnetism caused by the DM interaction. The cant angle θ is determined
by the ratio of the DM interaction and the symmetric interaction θ ∝ tan−1(D/J)
in the canted structures. The cant angle θ should be the same as the tilt angle in
the tilted helical stricture, the antiferromagnetic a-component in the intermediate-
temperature phase is estimated at about 0.01µB/Mn-atom for producing the canted
ferromagnetic component along the b-axis of 1 × 10−3µB/Mn-atom.

The peculiar temperature hysteresis phenomena, namely, some physical prop-
erties depend on whether cooling the sample to the helical phase or not once, sug-
gests a strong relation between the intermediate temperature state and the low tem-
perature state. Here, I discuss on the origin of the peculiar temperature hysteresis.
With consideration of the experimental results and the interpretation of them, de-
scribed in Chapter 3, I speculate the change of the magnetic state with changing
the temperature in the cool-down process and in the warm-up process.

1. The antiferromagnetic a-component of the ordered moment emerges at TC,
which is expected from the anomaly of the magnetization along the a-axis,
as well as the ferromagnetic c-component does. The ordered moment is
thought to be stabilized only by the symmetric interactions, in terms of the
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crystal symmetry of MnP. In this state, however, the difference of the mag-
netizations along the a-axis in the ZFC and FC conditions are found, which
suggest that the a-component of the ordered state is not simply a uniform
antiferromagnetic one, and is very small.

2. When the sample is cooled to the temperature lower than T ∗, the canted
antiferromagnetic state is stabilized by the DM interaction as the antiferro-
magnetic a-components are canted to the b-direction. In other words, the
vector chirality parallel to the c-axis χij = (0, 0, χc

ij) is induced by the DM
vector parallel to the c-axis Dij = (0, 0, Dij) due to the energy of the DM
interaction rewritten as EDM = Dij(Sa

i Sb
j − Sb

i S
a
j ) = Dijχ

c
ij . The canted

antiferromagnetic state is nothing but the antiferro-vector-chiral state.

3. When the sample is cooled to the temperature lower than TN, the tilted helical
state is realized, where the helical modulation of spins nearly lying in the
bc-plane is stabilized by the competition of the symmetric interactions, and
the helical planes are tilted to the a-direction with the angle of θ and −θ
alternately by the DM interaction (see Figs. 3.27(b) and 3.28). In this phase,
a much larger local vector chirality χc is induced by the DM interaction than
that in the intermediate-temperature region because of the large b-component
of the ordered moment, being Sb ∼ 1.3µB. When the energy-gain of the
DM interaction EDM = Dχc is larger than the loss of the elastic energy, the
lattice is distorted to enhance the amplitude of the DM vector. It is just the
inverse effect of the DM interaction observed in the multiferroic materials [7,
8, 11, 12]. This speculation is supported by the observation of the reduction
of the secondary extinction effect in the neutron scattering experiment for
the single crystal sample. If the domain formation accompanies the lattice
distortion, the secondary extinction effect should be suppressed.

4. When the sample is warmed up to the intermediate temperature again, the
state possess the larger ferromagnetic b-component of the ordered moment,
that is the larger ferromagnetic vector chirality along the c-axis, than those
in the cool-down process from the paramagnetic temperature induced by the
enhanced DM vector. The enhancement of the DM vector is induced by
the lattice distortion in the low temperature helical phase and remains even
in the intermediate ferromagnetic vector-chirality phase because the lattice
distortion still remains. It is supported experimentally by the observation of
the reduction of the secondary extinction effect even above TN.

5. When the sample is warmed up to the paramagnetic temperature, the lat-
tice distortion fades away. From the detailed magnetization measurement to

66



study the hysteresis behavior, I can conclude that the lattice distortion com-
pletely disappears above 330 K. The observation of the reduction of the sec-
ondary extinction effect in the neutron scattering experiments for the single
crystal sample supports this conclusion.

The above story on the mechanism of the peculiar temperature hysteresis phe-
nomena can be consistently explained the experimental results observed in both the
magnetization measurements and the neutron scattering experiments. The notewor-
thy matters are that the lattice distortion is induced by the inverse effect of the DM
interaction in the helical phase, and that the distortion remains up to ∼ 330 K.
It can be the firstly observation of the inverse effect of the DM interaction in the
metallic system.

4.2 Long-period kink structure model

Most of any experimental results can be explained by another model. It should
be called as the long-priod kink structure model. In this model, I assumed the long-
period structure, not the simple ferromagnetic state, below T ∗, where the Mn-spins
ferromagnetically align with forming the periodic alignment of long ferromagnetic
domains as shown in Fig. 4.1. In the domain wall which is the kink of the struc-
ture, the directions of the spins change continuously. Considering the magnetic
anisotropy in MnP, the spins should rotate nearby in the bc-plane in the magnetic
domain wall and its rotating angle is ±(2n + 1)π (n:integer). Recently, the similar
structure stabilized by the DM interaction, the chiral kink crystal (chiral soliton
lattice), was observed in the chiral magnets, e.g. CuB2O4 [53, 54, 55]. However,
the driving force to stabilize the long-period structure in MnP is not clarified at
all. With consideration of the crystal symmetry, the DM interaction is ruled out as
a candidate of the driving force. It is a fatal weak point of the long-period kink
model, however, this model is also attractive because this model can explain most
of the experimental result elegantly.

The long-period kink structure as shown in Fig.4.1 is nearby the ferromagnetic
structure , however, it is essentially an antiferromagnetic long-range order. The
ultra-soft ferromagnetic behavior observed in the magnetization curve along the c-
axis, namely, the spontaneous magnetization and the coercivity are not found, can
be explained by this model because the magnetic state below T ∗ is not a ferromag-
netic state but the antiferromagnetic state.

The weak ferromagnetic behavior of the magnetization along the b-axis can be
interpreted as follows. In the long-period structure below T ∗, the domain wall can
be regarded as a small ferromagnetic domain for the b-direction and is responsible
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a

b

Figure 4.1: The schematic illustration of the long-period kink structure

for the weak ferromagnetic behavior. In the initial state, the domains whose mo-
ments are toward the +b-direction and the -b-direction are equally exists. When
the applying the magnetic field, the domain-moment toward the opposite direction
are flopped and the direction of the domain-moment is equal to the direction of
the magnetic field. In this process, the energy-gain by the domain-moment-flops
is very small because of its small moment, and hence, some field, coercivity, is
needed to overcome the gap energy due to the magnetic anisotropy. As a result, the
hysteresis loop can be observed in the M − H curve along the b-axis.

In the domain for the b-direction, the antiferromagnetic a-component is also
induced by the DM interaction. The most striking feature discovered in this story,
the peculiar temperature hysteresis, can be explained by this model as follows.
The magnetization along the b-axis in the long-period kink structure is determined
by the number of the domain wall, in other words, by the period of the structure.
Hence, the magnetization along the b-axis is enhanced if the period of the domain
becomes comparatively shorter. It can be realized after undergoing the helical
structure. Here, I assume that the local magnetic structure in the domain wall of the
long-period kink structure is the same as the magnetic structure in the helical phase.
In other words, the helical structure at low temperature is the structure where the
domain wall completely spread out all over the sample. When warming-up the
sample from the helical phase to the long-period kink structure phase again, more
domain walls are pinned and the period becomes shorter than that of the state in the
cool-down process from the paramagnetic temperature. The lattice in the domain
wall may be distorted, and hence, the reduction of the secondary extinction effect
is also explained by increasing of the number of the domain wall.

As mentioned above, we can interpret the temperature hysteresis phenomena
by the different two models. One is "the inverse effect of the DM interaction" and

68



the other is "the long-period kink structure model". Both models can not be denied
completely at present. I shall compare the two models.

1. At first, I discuss on the driving force of the magnetic phase transition at
T ∗. In the former model, the phase transition between the para-chiral state
and the antiferro-chiral state occurs at T ∗. and the DM interaction is the
driving force of the phase transition. It is unclear why the spins are not
canted in T ∗ < T < TC, in spite of the existence of the antiferromagnetic
a-component of the ordered moment. It may come from the competition
and the symmetric interactions. On the other hand, in the latter model, the
driving force of the the long-period kink structure is completely unknown.

2. In these models, the relationship of the a-component and the b-component of
the ordered moment in the intermediate temperature phase is opposite. In the
former model, the antiferromagnetic a-component arises primarily, and it is
canted to the b-direction by the DM interaction. Hence, the a-component is
the primary one. In the latter model, the b-component primarily arises in the
domain wall, and it is canted to the a-direction and -a-direction alternately
by the DM interaction. Hence, the b-component is the primary one.

It is a great advantage for the model of the inverse effect of the DM interaction
that the driving force of the phase transition at T ∗ is clearly known. The hystere-
sis behavior of the magnetization along the b-axis is completely restored at TC,
whereas, that along the a-axis remains above TC. It implies that the a-component
of the ordered moment is primary one. This result also give an advantage to the
model of the inverse effect of the DM interaction. Therefore, I propose that the
origin of the peculiar temperature hysteresis phenomena is the inverse effect of the
DM interaction.
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Chapter 5

Conclusion

I discovered the following two novel chiral structures stabilized by the DM
interaction in MnP.

1. The tilted helical structure below TN, where the helical planes are tilted to
the a-direction from the bc-plane with angles of θ and −θ alternately by the
DM interaction. This structure is a modulated ferro-chiral structure, where
the total vector-chirality is nearly along the a-axis and the small modulation
of the c-component is induced by the DM interaction.

2. The canted antiferromagnetic state in the TN < T < T ∗, where the antifer-
romagnetic ordered moment along the a-axis is canted to the b-direction by
the DM interaction and the weak ferromagnetic moment along the b-axis of
about 10−3µB/Mn-atom appears. This structure is nothing but a antiferro-
chiral structure, where the vector-chirality is along the c-axis.

Moreover, I discovered the peculiar temperature hysteresis phenomena as below.

• The spontaneous magnetization of the canted antiferromagnetic state is re-
markably enhanced when the sample has cooled to the helical phase temper-
ature once.

• The nuclear reflections, in the neutron scattering experiments for the sin-
gle crystal, also enhanced when the sample has cooled to the helical phase
temperature once.

I propose that the temperature hysteresis phenomena is caused by the lattice
distortion induced by the inverse effect of the DM interaction, namely, the vec-
tor chirality in the helical phase distorts the lattice via the inverse effect of DM
interaction and the distortion remains even when the sample is warmed up to the
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intermediate temperature again. It can be the first observation of the inverse effect
of the DM interaction in the metallic system.
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Part II

Slow dynamics in helical magnet
Gd1−xYx alloy
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Chapter 6

Introduction

6.1 Electric current driven magnetization dynamics in he-
lical magnets

The chirality driven Hall effect, which was also mentioned in the Sec. 1.1, is a
effect that the chiral order affects a force to conduction electrons and consequently
bends the orbits of the conduction electrons via the Berry phase. As a reaction of
the force, the spin transfer torque which is the effect that the spin-polarized con-
duction electron (the spin current) exerts a torque to the local spins of the chiral
structure was proposed theoretically[56]. After that, the vigorous studies for ma-
nipulating the magnetization using the spin transfer torque have been performed.
The spin current is a current of the angular momentum, cf. electric current is a cur-
rent of the charge. The spin current can transfer the angular momentum to the local
spin, and result in the torque arising. This spin transfer mechanism is expected for
the operating principle of the next generation magnetic devices. The radically new
storage memory device, the magnetic race-trac, using spin current has been al-
ready proposed by IBM[57]. One of the representative phenomena caused by the
spin transfer torque is the electric current driven domain wall motion. The pos-
sibility of the charge current driven domain wall motion was firstly proposed by
Berger in about 1980[58, 59, 60]. Figure 6.1 shows the schematic image of the
electric current driven domain wall motion in a ferromagnetic material. The area
where the magnetic moments gradually change its direction in Fig. 6.1(a) repre-
sents the domain wall. When electric current is generated in this metal, the spins of
the conduction electrons are polarized toward same direction as local spins, hence,
the spin directions of the conduction electrons change gradually in the wall (see
Fig. 6.1(b)). The difference of the moments of the conduction electrons transforms
to the local moments, that is, the local moments in the domain wall rotate. Finally,
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the domain wall moves to the opposite direction to the electric current(see Fig.
6.1(c)). In recent years, this phenomena was experimentally observed by inducing
the pulse current to the ferromagnetic nano wire[61, 62]. In these experiments, the
very high current density of approximately 108 A/cm2 was needed for the domain
wall motion, it is the issue for the application. It has been theoretically derived
that the threshold current density for the domain wall motion is proportional to the
magnetic anisotropy[63]. Since the magnetic anisotropy can be controlled by the
sample shape, the studies for reducing the threshold current in terms of that[64].

Domain wall

Domain wall

Electric current

(a)

(b)

(c)

Domain wall

Figure 6.1: Schematic image of the electric current driven domain wall motion in
a ferromagnetic metal.

The most of the phenomena caused by the spin transfer torque including the
current driven domain wall motion is the microscopic one. Recently, the phenom-
ena in bulk metals, however, was theoretically shown by Wessely et al[65]. From
their theory, the electric current through a bulk metal with a helical structure in-
duces a spin transfer torque, which gives rise to a rotation of the spins with keeping
the helix. The schematic image of the phenomena is shown in Fig. 6.2. In order to
quantify this effect, they calculated the spin transfer torque for the rare earth helical
magnets. The calculations are based on calculations of the spin flux using the spin
current density tensor Q given by

Qnk(r) = TrRe{ψ†
nk(r) ⊗ v̂ψnk(r)}. (6.1)

(6.2)

S : spin operator
v̂ : velocity operator
n : band
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c

Figure 6.2: Schematic image of the electric current driven spin dynamics in helical
magnetic metal.

k : wave vector
The torque extended by an electric state with band index n and wave vector k on
the angular momentum within a volume V encolesed by the surface S is given by
its spin flux into V, ∫

s
Qnk · dS = −∂Jnk

∂t
. (6.3)

They calculated the torque current tensor C for the rare earth helical magnet Er,
which has a conical spin structure below 20 K. Although the formalism is valid
for conical structure, in this paper they focussed on the planar spin spirals. All
the material specific quantities of Er used in the calculation of the tensor C were
calculated from first principle density functional theory. The calculation was made
using the noncollinear Full-potential-augmented plane wave(APW) + local orbitals
method. As a result of their calculation, they concluded that the torque induced by
a current along the spiral axis causes the helix to translate along the spiral axis,
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which is equivalent to a rigid rotation of the helix with the rotation frequency

|f | = (1/2πJ~)
√

(C23j3)2 − (6K6
6 ). (6.4)

Where J is total angular momentum (J = 15/2 for Er), C23is a finite component of
the torque current tensor contributing the spin rotation, K6

6 is hexagonal magnetic
anisotropy, j3 is a current density along the helical axis. The eq. 6.4 implies that
the helical rotation frequency will scale linearly with the current density along
the helical axis for current densities significantly larger than the critical current,
j3c = 6K6

6/C23. If current of j3 = 107A/cm2 flows along the helical axis of bulk
Er, the rotation with the frequency of 0.07 GHz is expected from their calculations.

Since the critical current density, j3c = 6K6
6/C23, is depends on the magnetic

anisotropy, the rotation can be induced by smaller current density in the materials
with smaller magnetic anisotropy. A favorable candidate material for the obser-
vation is the Gd1−xYx alloy. The Gd1−xYx alloys exhibit a proper type helical
structure in x > 0.30. It has a very small in-plane anisotropy because Gd+3-ion
has no orbital angular moment(L = 0). The observation of the electric current
driven spin dynamics by very smaller current can be expected in Gd1−xYx. In or-
der to observe this phenomena, I performed the AC susceptibility measurements
along the in-plane direction with applying electric current parallel to the helical
axis in Gd1−xYx. When the frequency of the applied AC magnetic field is equal to
the rotation frequency, a dissipative behavior, increase of the imaginary part of the
AC susceptibility χ′′ , would be observed.

6.2 Crystal structure and magnetic properties of Gd1−xYx

alloy

The crystal structure of the Gd1−xYx alloys is hexagonal closed-pack one and
its space group is P63/mmc, where the lattice parameters are independent from Y
concentration x and a = 3.54 Å, c = 5.76 Å[66]. The magnetic ion Gd+3 has
the magnetic moment of S = 7/2 and L = 0. Gd is a well known ferromagnetic
material and the curie temperature is TC = 292 K, though it has been discussed
recently whether the Gd is really ferromagnetic or not[67, 68].

The Gd1−xYx alloys exhibit various magnetic ordered states [69]. The mag-
netic phase diagram of the Gd1−xYx alloy series In the x range of 0.20 < x < 0.40
is shown as shown in Fig.6.3. In this diagram, it is shown following three magnetic
ordered phase: (ferro-I) the ferromagnetic phase where the spins parallel to the c-
axis; (ferro-II) the canted ferromagnetic phase where the spins are canted from c-
axis with the cant angle dependent on the temperature; (basal plane helix) the sim-
ple proper type helical phase where the spins are confined to the hexagonal basal
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plane. Gd1−xYx has been well studied for the possibility the two multi-critical
points in Fig. 6.3 would be Lifshitz points [70, 71, 72, 73, 74]. The stability of
the helical structure is explained by the nesting of the Fermi surface in Gd1−xYx

alloys [75], and the both handed helicity domains are exists. The x-dependence
and the T -dependence of the turn angle were investigated [76, 69]. In the case
of the Gd0.62Y0.38, which is used in this study, the turn angle gradually decrease
with cooling the sample from the helical magnetic transition of TN ∼ 200 K to the
ferromagnetic temperature of TC ∼ 100 K which is the second order transition to
the ferro-II phase.

6.3 Purpose of this study

The main purpose of this study is to observe the current induced spin dynamics in
bulk single crystal of the Gd1−xYx.10046 R J Melville ef a1 

m -  

m -  

m -  

(0 -  

Figure 1. Magnetic phase diagram of the Gd-Y 

alloy series. 
045 U) 36 sl B 20 

SY <. Cd 

We have attempted to elucidate the nature of the helical-ferro I1 transition in Gd- 
Y by (1) closely examining the behaviour of the magnetic moments as this aansition is 
crossed in Gd,Y, and (2) looking for evidence of threefold symmetly as suggested 
by Barbara and Mukamel [4]. Indeed as well as explaining some of the general 
features of the Gd-Y system, evidence of threefold symmetry would have important 
implications for other rare-earth systems. 

2. Experimental details 

Magnetic structure determinations were carried out on Gd,,Y,, using the D9 four- 
circle diifractometer at ILL, Grenoble, France. Due to the inherently high absorption 
of thermal neutrons by natural Gd, the experiment was performed at a wavelength 
of 0.48 A (a compromise between high absorption at long wavelength and low flux at 
short wavelength). ?he sample was mounted with its a'-c* plane in the horizontal 
diifractometer plane to maximise the instrumental resolution along the C* direction 
about h01 type reflections. For the hexagonal close-packed Gd-Y structure, the 
ferromagnetic components of the spontaneous magnetization could be determined 
from the magnetic contributions to the 100 and 002 reflections and equivalents, since 
these in general contain contributions from both the c axis and basal components 
of the magnetization [5]. At each temperature, scans were also performed along 
various directions in reciprocal space to check for the appearance of antiferromagnetic 
satellite reflections. For a simple helix with the moments conlined to the basal plane 
and q paralled to the c axis, a single pair of satellite reflections should be observed 

Figure 6.3: Magnetic phase diagram of the Gd1−xYx alloy series.
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x=0.320

x=0.311

x=0.304

x=0.300

Figure 6.4: Temperature dependence of the helical turn angle θ in the Gd0.62Y0.38

of x = 0.320, 0.311, 0.304, 0.300.
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Chapter 7

Experimental procedures

7.1 Sample preparations

For the present study, I have provide the single crystalline sample of the Gd0.62Y0.38

and poly crystalline samples of the Ho and Ho0.60Y0.40. The elements of nominal
amounts for the given x were melt together in an argon arc furnace. The element
materials Gd, Ho, and Y were purchased from Nippon Yttrium Co.,Ltd, and these
purity are 3N. The single crystal was grown by using the Czochralski’s pulling
method with a tetra-arc furnace. The single crystal wrapped in a Ta film was sealed
in the quartz tube, under high vacuum, and annealed in a electric furnace for seven
days at 973 K and then quenched in cold water. The crystallographic axes were
determined by X-ray back Laue methodd using the apparatus installed at Inui lab-
oratory in depertment of Materials science and Engineering faculty of Engineering
Kyoto university.

The magnetic phase temperatures TN and TC estimated by the anomaly of the
AC-susceptibility measurements were TN = 198 K and TC = 155 K, respectively.
They are appropriate to that of the Y concentration x being approximately 0.34
in the previous reports as shown in Fig.6.3. The concentration gradient of the
Y concentration in the sample is inevitable in growing a crystal of solid solution
by the pulling method. However, It would not be a problem for our measure-
ments because the quantitative magnetic property does not change in this x-range
of 0.34 < x < 0.38. The shaping of the samples were done by using the spark
cutting machine installed at Inui laboratory in depertment of Materials science and
Engineering faculty of Engineering Kyoto university. The sizes of the samples are
listed in Tab. 7.1
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Table 7.1: The sample list of Gd0.62Y0.38, Ho and Ho0.60Y0.40

sample neme experiment a∗ (mm) a∗ (mm) c∗ (mm)
GdY-1 AC- and DC-susceptibility // a∗ 0.88 0.30 1.88
GdY-2 AC-susceptibility // c∗ 0.38 0.20 1.88

sample neme experiment w (mm) d (mm) t (mm)
Ho AC-susceptibility 0.5 0.5 9.0

HoY AC-susceptibility 0.5 0.5 9.0

7.2 AC- and DC-magnetization measurements

AC- and DC- magnetization measurements were performed by using three
units of the SQUID-magnetometer (MPMS, Quantum Design) installed at Re-
search center for low temperature and materials sciences Kyoto university. The
details were mentioned in Sec.2.2.

7.3 AC-susceptiblity measurement with applying electric
current

In order to measure the AC-susceptibility with applying electric current in
SQUID-magnetometer MPMS, I made my own sample stick as shown in Fig.7.1.
Four Cu lead lines of 0.3 mmφ go through in the sample rod. Two lines of those
were used for inducing the current in the sample. The others were used for gen-
erating short-circuit current of the same magnitude and opposite direction to the
current in the sample so that the magnetic flux produced by current in the closed
circuits were canceled out.

Gd1−xYx alloys are liable to be oxidized, therefore, the contact resistance
would be too large (> 2Ω) if the Ag-paste extensively used for resistivity mea-
surements is done. The heat generated by current is a problem. Accordingly, The
Al-wire bonding was operated for connecting the sample by using a ultrasound
wire bonder machine(Ultrasonic Engineering Co.,Ltd., USW). The thickness of
the Al-wire is 25µmφ and as many wire as possible, 8 ∼ 10 wires / side, was
bonded. The electric current was generated by the current source (Yokogawa elec-
tric corporation, PA1811) in the range of 0 A ≤ I ≤ 1.0 A.
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Figure 7.1: The schematic view of my own sample stick for AC-susceptibility
measurements with applying electric current in the sample
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Chapter 8

Experimental results and
discussions

8.1 Bulk effect of spin transfer torque in Gd1−xYx alloy

8.1.1 AC-susceptibility

Figure Fig. 8.1 shows the temperature (T ) dependence of the real and the
imaginary parts of the AC susceptibility , χ′ and χ′′, in the Gd0.62Y0.38 alloy with
applying the AC field along the a∗- and c∗-directions, being in- and perpendicular
to the helical plane. The cusps of the χ′ at TN = 198 K were observed, and the χ′

is once decrease and increase again ferromagnetically with decreasing temperature
below TN. The AC-field hAC is 3 Oe and the frequency of 10Hz. In the helical
plane, the sharp peak of the χ′′, which indicate the critical slowing down at the
ferromagnetic phase transition temperature, was observed. Accordingly, it can be
determined the ferromagnetic phase transition temperature TC is 155 K. On the
other hand, the peak of the χ′′ perpendicular to the helical plane was much smaller.
The χ′ along each axis crossed each other just at TC, which is the reasonable behav-
ior because the susceptibility along the easy magnetization plane become smaller
than that along the hard axis in the antiferromagnetic state. The behavior of the
χ′′ at TN and in the T - range of the helical magnetic phase should be noted. In
the helical plane, the remarkable increase of the χ′′ was observed in the T - range
of the helical magnetic phase and it became very sharp at TN. On the other hand,
the increase of the χ′′ perpendicular to the helical plane was much weaker. These
behavior is discussed later in this thesis.
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Figure 8.1: The temperature dependence of the real and the imaginary parts of the
AC-susceptibility, χ′ and χ′′, in the Gd0.62Y0.38 alloy with applying the AC field
along the a∗- and c∗-directions, being in- and perpendicular to the helical plane.
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8.1.2 AC-susceptibiity with applying electric current

In order to observe the electric current driven spin dynamics, the AC-susceptibility
measurements along the a∗-direction, being in-helical plane, with applying electric
current I along the c∗-direction, being parallel to the helical axis, were performed
in Gd0.62Y0.38 alloy. When the electric current is applied, the magnetic flux arrises
in the closed circuit. The dummy current Id with opposite direction was induced
beside the sample so that the magnetic fluxes arose from I and Id were canceled
out each other (see inset of Fig.7.1).

At first, the I-dependence of the AC-susceptibility measurements along the
were performed at the helical magnetic phase temperatures of 160 K and 185 K.
In this measurements, AC-field is 3 Oe and the frequency of 1Hz, and no dummy
current was induced. The results are shown in Fig. 8.2.
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Figure 8.2: The electric current dependence of the real part of the AC-susceptibility
χ′ at 160 K and 185 K.

The χ′ decreases at 160 K and increases at 185 K with increasing the electric
current I . These behavior It is guessed that these behaviors of the χ′ were caused
by the Joule heating in the sample because the tendency of the T -dependence of the
χ′ as shown in Fig.8.1 is consistent to that of the I-dependences of the χ′. Thus,
it was found that the measurements at the fixed temperature is difficult because of
the temperature increase in the sample.

Figure 8.3 shows the temperature dependences of the AC-susceptibility along
the a∗-direction measured with applying the electric current along the c∗direction
(I//Id//c∗). The measurements were performed in the following electric current
condition: I = Id = 0 A (no current); only the dummy current of Id = −0.5 A
and Id = −1.0 A; opposite currents of I = −Id = 0.5 A and I = −Id = 1.0
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A. In this measurements, AC-field is 3 Oe and the frequency of 10Hz. Corrected
temperatures, however, are shown in Fig.8.3 because increasing of the sample tem-
perature caused by the Joule heating were observed. The temperature corrections
were done on the basis of the assumption that the temperature change is a constant,
depending only on the current, in the whole T -range. The shown temperatures
have been shifted from the temperature controlled by MPMS system so that the
real parts χ′ of the each measurement become equal to that measured with zero
current above 210 K. The shifted temperatures ∆T of each measurement condition
are listed in Tab. 8.1. 5Since the real parts χ′ are well collapsed not only above

Table 8.1: The temperature shift caused by the Joule heating

I (A) Id (A) ∆T (K)
0 -0.5 0.2
0 -1.0 0.4

0.5 -0.5 2.3
1.0 -1.0 9.1

210 K but also below TC in Fig.8.3, we can see that the above assumption is an
acceptable one. The suppression of the χ′ was observed around the T -range of the
helical magnetic phase with increasing electric current I , and it was remarkable
particularly around TN. On the other hand, the suppression of the χ′ was not ob-
served when inducing only dummy current Id. It is indicate that the reduction of
the χ′ is caused by the electric current induced in the sample. The suppression of
the chi′′ was also observed. The chi′′ is slightly suppressed even with increasing
the Id and remarkably done with increasing the I . Although these behaviors of the
AC-susceptibility are caused by the electric current, It is needed to confirm caused
by whether the spin transfer torque effect of the electric current or not. In order
to confirm it, I performed the same AC-susceptibility measurements with applying
the electric current perpendicular to the helical axis. In this condition, the spin
dynamics would not be induced.
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Figure 8.4 shows the temperature dependences of the AC-susceptibility along
the a∗-direction measured with applying the electric current along the a∗direction
(I//Id//a∗), being in the helical axis. The measurements were performed in the
electric current condition of I = Id = 0 A (no current), and opposite currents of
I = −Id = 0.5 A and I = −Id = 1.0 A. The temperature shifts ∆T were 1.9 K
and 7.3 K when the electric currents are 0.5 A and 1.0 A, respectively. The back
ground of the χ′′ caused by the Eddy current effect was observed and represented
to the dashed line in the figure. The suppression of the χ′ was observed even when
the electric current along the parallel to the helical axis is applied. In this case,
it was observed only around TN, which is different from the case of (I//Id//c∗).
The suppression of the χ′′ was also observed.

8.1.3 Discussion

Although the change of the AC-susceptibility caused by applying the electric
current was observed, it was found when the applied current is both parallel and
perpendicular to the helical axis. Therefore, the change can be caused by the dif-
ferent origin from the electric current driven spin dynamics. A candidate origin is
a magnetic field accompanying the electric current. The magnetic moments in the
surface of the sample can feel the magnetic field. I roughly estimated the magnetic
field accompanying the electric current in the surface. When a electric current of
1 A passes through the center of the sample, a produced magnetic field at the the
nearest point from the center with the distance of r = 0.15 mm is given by the
ampere’s low

H =
I

2πr
; 1061 [A/m] ; 13[Oe].

In order to illuminate the influence of the DC-field(H) on the AC-susceptibility
in the Gd0.62Y0.38 alloy, the AC-susceptibility measurements with applying the
DC-field H was performed. Figure 8.5 shows the temperature dependences of
the AC-susceptibility along the a∗-direction measured with applying the DC-field,
H = 0, 10, 20, 100 Oe. The χ′ and χ′′ were strongly suppressed by the small DC-
field, H ≤ 100 Oe, in the T -range of about 120 K < T < 220 K. The behaviors
of the χ′ and χ′′ measured with applying the DC-field of 10 Oe are similar to that
measured with applying the electric current. At last, the suppressions of the χ′ and
χ′′ by applying the electric current as shown in Fig.8.2 can be effects of the spin
transfer torque, however, the effect of the magnetic field accompanying the electric
current can not be eliminated.
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direction measured with applying the various DC-field.
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8.2 Slow dynamics in helical phase in Gd1−x-Yx alloy

8.2.1 AC-susceptibility

The behavior of the χ′ observed around TN in Fig.8.5 suggests the strong non-
linearity of the AC-magnetization for the magnetic field. It is well known that such
a strong nonlinearity at the phase transition temperature is observed in the spin
glasses, however, the observation of that at the helical magnetic phase transition
temperature is nontrivial and interesting. Moreover, the increase of the χ′′ in the
T -rage of the helical phase and the suppression of that by applying the magnetic
field is also nontrivial and interesting. Here, I investigate the nonlinearity of the
AC-magnetization and the origin of the increase of the χ′′.

Figure 8.6 shows the temperature dependences of the AC-susceptibility along
the c∗-direction, being perpendicular to the helical plane, measured with applying
the DC-field, H = 0, 10, 20 and 100 Oe. The nonlinearity of the AC-magnetization
and increase of the χ′′ in the T -range of the helical phase were also observed in
perpendicular to the helical plane, however, it was weaker than those in the helical
plane.

Next, for the quantitation of the nonlinearity, the nonlinear susceptibility χ2

was estimated from the data shown in Fig.8.5 and 8.6. If the hAC is regarded as
being very smaller than H , the χ′ can be treated as the differential magnetization
and given by

χ′ ≅ dM

dH

∣∣∣∣
H=HDC

= χ0 + 3χ2H
2 + 5χ4H

4 + · · · , (8.1)

and then the nonlinear susceptibility χ2 was estimated from the slant of the χ′ vs
H2 plots in the limit of H2 → 0. In this time, the demagnetization correction
was operated by using the coefficient N ; 0.61, which was calculated from the
shape of the sample. The temperature dependences of the χ2 along the a∗- and the
c∗-directions are shown in Fig.8.7. In the helical plane, a negative divergent peak
of the χ2 was observed at TN. On the other hand, the peak of the χ2 perpendicular
to the helical plane was observed, however, it was much weaker.
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Figure 8.6: The temperature dependence of the AC-susceptibility along the c∗-
direction measured with applying the various DC-field.
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8.2.2 DC-susceptibility

The DC-magnetization measurements were performed with applying the the
various DC-field H . The effected magnetic field Heff was estimated by subtract-
ing the demagnetization field Hd from the applied field H . Figure 8.8 shows the
temperature dependences of the effective DC-susceptibility, χ = M/Heff , along
the a∗-direction with the several effective field Heff . The strong nonlinearity of
the DC-magnetization for the Heff was also observed in the low field range of
Heff < 400 Oe. The arrows in the figure represents the maximums of the χ, which
is regarded as the transition temperature TN(H). The decrease of the TN(H) was
found with increasing the magnetic field above 600 Oe, which was not found below
400 Oe.
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Figure 8.8: The temperature dependence of the DC-susceptibility, χ = M/Heff ,
along the a∗-direction with the various effective field Heff .
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8.2.3 Comparison study in reference samples Ho and Ho1−x-Yx alloy

The same AC-susceptibility measurements were performed in similar rare-
earth helical magnets Ho and Ho0.60Y0.40 alloy as that in the in Gd0.62Y0.38 al-
loy. The magnetic structure of the Ho is also a proper type helical structure and
TN = 133 K , therefore, the Ho can be a good reference material. The divergent
behavior of the χ2 and the increase of the χ′′ observed in the Gd0.62Y0.38 alloy
can be caused by the randomness of the Gd atoms because these behavior are also
observed in the spin glasses arising from a randomness of magnetic elements. The
randomness are caused by the dilution effect of Y atoms, which is considered as a
non-magnetic element. Accordingly, the measurements were performed also in the
diluted system Ho1−xYx. The transition temperature TN decrease with increasing
the Y concentration x[77], and TN = 92 K st x = 0.40.

Figure 8.9 shows the temperature dependences of the real part of the AC-
suscepticility χ′ in the Ho and the Ho0.60Y0.40 measured with applying the DC-
field of 0 Oe and 100 Oe. No difference of the χ′ around the TN was observed
between in zero DC-field and in the DC-field of 100 Oe, and nonlinearity was not
observed in both the Ho and the Ho0.60Y0.40 alloy.
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Figure 8.9: The temperature dependences of the real part of the AC-suscepticility
χ′ in the Ho (left) and the Ho0.60Y0.40 (right) measured with applying the DC-field
of 0 Oe and 100 Oe.

Figure 8.10 shows the temperature dependences of the imaginary part of the
AC-suscepticility χ′′ in the Ho and the Ho0.60Y0.40 measured with applying the
DC-field of 0 Oe and 100 Oe. The behaviors of χ′′ around TN were flat and no
anomaly was observed in both materials.
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Figure 8.10: The temperature dependences of the imaginary part of the AC-
suscepticility χ′′ in the Ho (left) and the Ho0.60Y0.40 (right) measured with applying
the DC-field of 0 Oe and 100 Oe.
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8.2.4 Discussion

From the AC- and the DC-magnetization measurements for the Gd0.62Y0.38

alloy,

• the remarkable increase of the χ′′ in the T -range of the helical phase

• the nonlinearity of the magnetization at TN

were observed in the helical plane. On the other hand, these behaviors along the
helical axis were very weaker. They are nontrivial behaviors. In previous study, the
nonlinearity behavior of the AC-susceptibility has been observed at TN also in sim-
ilar dilute system Gd1−xLax alloys [78]. The temperature dependences of the AC-
susceptibility of the polycrystalline Gd0.73La0.27 measured with applying the vari-
ous DC-fields are shown in Fig.8.11. The very sharp peak of the AC-susceptibility
was found at H = −0.5 Oe, which was applied for cancel out the residual magnetic
field in the apparatus. The peak decreases with increasing DC-field H . It is known
that the similar behaviors of the AC-susceptibility are observed in the diluted spin
glass materials, e.g. Au1−xFex alloys, nevertheless, they were not observed in the
diluted Ho0.60Y0.40. Therefore, the anomalous behaviors of AC-susceptibility are
not likely caused by the randomness. Above results suggest that the anomalous
behaviors, the nonlinearity of the magnetization and the increase of the χ′′, are
originated from the weak magnetic anisotropy of Gd3+-ion, which has no orbital
angular moment (L = 0). In particular, the in-plane anisotropy is vanishingly weak
in the Gd1−xYx alloys.

The remarkable increase of the χ′′ suggests the slow dynamics of the spins,
which is probably a collective spin dynamics. Here, I speculate that the spin rota-
tion dynamics in the helical plane with keeping the helix is spontaneously occurs
even without electric current in the helical phase of the Gd1−xYx alloys. Such
rotation dynamics can be realize as one of the low energy excitation mode. In
this speculation, the behaviors of the χ′′ in the T -range of the helical phase can be
explained as below. If a rotation mode of the frequency same as that of applied AC-
field hAC, the dissipation component of the AC-susceptibility χ′′ increases because
of a resonance absorption. The divergent increase of the χ′′ at TN can be accompa-
nied by increase of the spin fluctuation. When the DC-feild H is applied along in
the helical plane, the rotation of spins are suppressed by induced anisotropy, and
the χ′′ decreases. Although the weak increase of the χ′′ was observed along the
c∗-direction, it can be caused by another excitation states, which is oscillation like
as the tilting the helical plane. This rotation dynamics is, in other words, a state
that the spins rotate and are not ordered but the chiralities are ordered as the helical
structure, which is the ferro-chiral ordered state. In short, it can be a kind of the
spin-chirality decoupling state which is expected in the frustrate spin systems[3].
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Next, I discuss the origin of the nonlinearity of the magnetization. Figure 8.12
shows the H−T phase diagram expected from the results of the DC-magnetization
measurements in the Gd0.62Y0.38 alloy. As shown in Fig.6.4, the turn angle of
the helical structure in zero magnetic field has been investigated by the previous
neutron scattering experiments in the Gd1−xYx alloys. In zero magnetic field,
magnetic wave number vector q continuously changes to q = 0 at the ferro-helical
transition temperature TC, and it discontinuously changes from q ̸= 0 to q = 0
at helical-para transition temperature TN. In finite magnetic field, the transition
temperature TC(H), where the q continuously changes to q ̸= 0, and the TN(H),
where the q discontinuously changes from to q ̸= 0 to q ̸= 0 are contact with each
other at some point ("?" in the figure) in the H−T phase diagram. The contact point
would be a special and a multi-critical point such as the Lifshitz point. If TN(0)
is such a special point, the magnetization process can be a non-analytic at TN(0)
and χ2 can be a divergent. In recent study, it is indicated that the ferro-helical
magnetic phase transition at TC(0) can be a 2.5-order magnetic phase transition
[74], therefore, the profound consideration will be needed to understanding these
magnetic phase transitions. It is a interesting theme to investigate the magnetic
phase transitions TC(H) and TN(H) and to complete the H − T phase diagram,
and the neutron scattering experiments in the magnetic field is expected in the
future.
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Low field magnetic studies of some Gd1−xLax alloys 825

shaped sample axis are shown in figure 2, for different appliedDCmagnetic fields, as indicated.

This alloy has the same crystalline structure as the pure Gd so one expects a magnetic response

similar to that of the pure metal, except for the dilution of the magnetic species. At zero

applied DC bias field, the χAC curve shows a very sharp peak at TC = 225 K which is related

to a magnetic order–disorder transition. Also, an intense but broad maximum is shown at

Tm = 15 K, which may be related to a spin reorientation effect, resulting from the same

type of magnetic response process as discussed above for pure Gd. The similarity between

the χAC versus T curves of Gd0.85La0.15 and pure Gd and the temperature behaviour of the

electrical resistivity, to be discussed below, strongly suggest that the magnetic moments are

ferromagnetically ordered just below TC . The paramagnetic Curie–Weiss temperature (θp),

obtained from the reciprocal χAC data, above 230 K, is 92 K. This indicates predominant

ferromagnetic interactions among the magnetic moments. The sharp transition at TC , in the

present case, may indicate a more rigid magnetization easy axis, along the crystallographic

c-axis, when compared to that of pure Gd (see inset in figure 1(b)). Figure 2 also shows the

effect on the χAC temperature dependence when a bias DC magnetic field is applied. Field

values above 140 Oe completely suppress the χAC peak at TC . The spin reorientation effect,

indicated for the Gd metal and the Gd0.85La0.15 alloy by the χAC maximum at 200 K and 15 K,

respectively, seems to be an effect associated only with the ferromagnetic alloys, since no

indication for spin reorientation has been observed in the other Gd–La cases, as will be shown

below.

The alloysGd0.73La0.27 andGd0.75La0.25, bothwith Sm-type crystal structure, show similar

χAC versus T curves. These curves reveal distinct character when compared with the Gdmetal

and the Gd0.85La0.15 alloy, as can be noted in figures 3(a) and 3(b) for Gd0.73La0.27. A very

sharp peak is observed at TN = 135 K which is related to a magnetic order–disorder transition.

This peak height is very sensitive to any external DC magnetic fields, as shown in figure 3(b)

for some field values. It should be emphasized that the susceptibility value at TC increased

by 50% when a small DC field (smaller than 0.5 Oe) was applied along the sample axis (see

(a) (b)

Figure 3. AC magnetic susceptibility of Gd0.73La0.27 alloy: (a) at zero applied DC field and

(b) different applied DC magnetic fields as indicated.

Figure 8.11: The temperature dependence of the AC-susceptibility of the polycrys-
talline Gd0.73La0.27 measured with applying the various DC-fields.
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Figure 8.12: The H −T phase diagram of the Gd0.62Y0.38 alloy expected from the
results of the DC-magnetization measurements.
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Chapter 9

Conclusion

In order to observe the current-driven spin dynamics predicted theoretically
in a bulk helical magnet, the AC susceptibility measurements along the in-plane
direction with applying electric current parallel to the helical axis in the rare-earth
helical magnet Gd0.62Y0.38 alloy were performed. Although the suppression of
the real and the imaginary parts of the AC-susceptibility, χ′ and χ′′, caused by
applying the electric current were observed, I could not distinguish the effect of
the electric current itself and the effect of the magnetic field accompanying the
electric current, because the AC susceptibility of the alloy is also easily suppressed
by the DC magnetic field of 10 Oe.

From the AC- and the DC-magnetization measurements for the Gd0.62Y0.38

alloy,

1. the remarkable increase of the χ′′ in the T -range of the helical phase

2. the strong nonlinearity of the magnetization at TN

were observed only along the in-plane direction. The remarkable increase of the
χ′′ indicates an existence of the slow dynamics in the helical phase in the Gd1−xYx

alloys. We speculate that the slow dynamics originates from the dynamics of spins
with keeping the helical spin arrangement. In other words, the spins themselves can
be rotated by the AC magnetic field, however, the vector chirality is preserved. It
suggests a spin-chirality decoupling in the helical phase of Gd0.62Y0.38. The strong
nonlinearity of the magnetization at TN can be related to the multicritical behavior,
which is expected from the H − T phase diagram where the paramagnetic-helical
phase transition line TN(H) may merge with the ferromagnetic-helical phase tran-
sition line TC(H).
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Appendix A

Analysis for the conventional
double helical structure

The following is the integrated intensity of a reciprocal lattice point (hkl) in
elastic neutron scattering experiments.

I = A · N · S(k) · E(k) · L(k) · |F (k)|2 (A.1)

A : universal constant common to a certain experiment
N : number of unit cells
S(k) : absorption factor
E(k) : secondary extinction factor
L(k) : Lorentz factor
F (k) : structure factor

Forsyth performed the neutron scattering experiments for the single crystal of
MnP, and analyzed its intensities of the magnetic reflections[23]. Finally he con-
cluded the helical structure of MnP is a double spiral type with the difference of
the relative phase between the N. N. Mn-spins and all the spins lie in the bc plane.
Here, his analysis is mentioned.

He defined a continuous function ηνr which gives the magnitude and direction
of the spin on the νth atom in the unit cell. For a structure containing a spiral with
propagation vector δ

ηνr = qc cos(δ · r + γν) + qb sin(δ · r + γν) (A.2)

where qc, qb are the c- and b-components of the spin and γν is the relative phase.
Since only the perpendicular components of the magnetic moment to the scattering
vector contribute to the magnetic scattering, the magnetic structure factor FM(k)
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is given by
|FM|2 = |P (e)|2 − |P (e) · ê| (A.3)

where ê is a unit vector in the direction of e, the neutron scattering vector, and

P (e) =
∑
nν

fν(e)Snν exp(ie · rnν) (A.4)

where fν(e) is the form factor for the νth magnetic atom, rnν is the vector from
the origin to the νth atom of the n th unit cell, and Snν fives the magnitude and
direction of its spin. Writing

Snν = δ(r − rnν)ηnνdτ (A.5)

and defining Qν(k) such that

ηnν =
∑

k

Qν(k) exp(ik · r) (A.6)

then by the Fourier transform relation and substituting from eq. A.2

Qν(k) =
∫

r
ηr exp(−ikr)dτ

=
1
2
qc

∫
r
exp[i{(−k + δ) · r + γν}] + exp[{i(−k − δ) · r − γν}]dτ

+
1
2
qb

∫
r
exp[i{(−k + δ) · r + γν}] − exp[{i(−k − δ) · r − γν}]dτ

(A.7)

The first term of each integrals is zero unless δ = k and the second is zero unless
δ = −k. From eq. A.4, A.5, A.6 and A.7

P (e) =
∑
nνk

fν(e)Q(k) exp{i(k + e) · rnν}

and since rnν can be written as Rn + rν this becomes

P (e) =
∑
νk

fν(e)Q(k) exp{i(k + e) · rν}
∑

n

exp{i(k + e) · Rn}

Now
∑

n exp{i(k +e) ·Rn} is an interference function and, if the number of unit
cells is large, is essentially zero unless k + e is equal to a reciprocal lattice vector
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K. After all, there will be no magnetic scattering except when e = K + δ or
K − δ. The satellite peaks will be observed at K ± δ.

P (K + δ) ∝
∑

ν

fν(K + λ)
1
2
[qc exp{i(K · rν − γν)} − qb exp{i(K · r − γν)}]

(A.8)

P (K − δ) ∝
∑

ν

fν(K − λ)
1
2
[qc exp{i(K · rν + γν)} + qb exp{i(K · r + γν)}]

(A.9)

The lattice parameter are given below[79].

a = 5.918, b = 5.258, c = 3.172

The atomic positions are

4Mn in 4(c)(x, y, 1/4) with x1 = 0.1965
y1 = 0.049

4P in 4(c)(x, y, 1/4) with x2 = 0.5686
y2 = 0.1878

The position of the ν = 1 ∼ 4th Mn atoms are assigned as follows.

r1 = (x1, y1, 1/4)
r2 = (−x1 − 1/2, y1 − 1/2, 1/4)
r3 = (−x1,−y1,−1/4)
r4 = (x1 + 1/2,−y1 + 1/2,−1/4) (A.10)

Assuming the γ1 = γ4 and γ2 = γ3, which are given by the Forsyth’ analysis, the
c-component of the P (K − δ) in eq.A.9 can be expressed as

P (K − δ)c

CfMn(K − δ)
= 2 exp

(
γ1 + γ2

2

)
cos

(
X −

(
γ2 − γ1

2

))
cos(Y ) (A.11)

where

X = 2π

(
hx1 +

1
4
(h + k)

)
Y = 2π

(
ky1 −

1
4
(h + k − l)

)
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C is a constant which is indipendent of K. The b-component of P (K − δ) is
similar and the components of P (K + δ) are the same except X − (γ2 − γ1)/2
are replaced by X + (γ2 − γ1)/2. Even the non-polarized neutron scattering, the
intensity of the magnetic reflections of K + δ and K − δ are asymmetric in MnP.
Forsyth explained its asymmetry by assuming the double helical structure with the
relative phase difference of γ1 − γ2 = 15.8◦.

The structure factor for the nuclear scattering is given by

F (K) = bMn cos X cos Y + bP cos X ′ cos X ′. (A.12)

where X ′, Y ′ are the same as X,Y except the x1, y1 are replaced by x2, y2. There-
fore, the extinction rules are

h = 0 and k = odd (A.13)

h = odd and k = 0. (A.14)
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