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Abstract

Phase separation of giant vesicles composed of neutral saturated lipid,
negatively charged unsaturated lipid, and cholesterol, is observed at differ-
ent calcium concentrations. Confocal microscopy provides the information
where the phase separation becomes distinct as the calcium concentration
is increased. The negatively charged lipid domains tend to bud toward the
interior of the vesicle. This budding is assumed to be due to an increase in
the osmotic pressure, in cooperation with the spontaneous curvature change
in the outer leaflet of the bilayer caused by the adsorption of calcium ions
and charge screening effect. We interpret the effect of small cations on the
phase separation based on the theoretical model with the Poisson-Boltzmann
equation.

1. Introduction

Lipid bilayers consisting of saturated lipids, unsaturated lipids, and choles-
terol (Chol) have attracted significant attention as a model biomembrane
system. Below the phase separation temperature, this model membrane ex-
hibits phase separation between the saturated lipid and Chol-rich region and
the unsaturated lipid-rich region. Domain formation accompanied by phase
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separation has been referred to as the “raft model” [1]. Since it is believed
that raft domains are related to various cell functions, for example, signal
transduction and cooperative membrane trafficking, it is important to de-
termine the mechanism of domain formation in relation to the biological
functions. Moreover, raft formation is not only important on a biocellular
level, but is also on a fundamental physical aspect providing a specific exam-
ple of two-dimensional phase separation. Many experimental and theoretical
studies have been carried out to explore various phenomena related to the
phase separation in this model membrane, such as the domain morphology,
the budding of domains, the growth dynamics of domains, or the periodic
structure. In particular, Langmuir-Blodgett films and giant lipid vesicles
have been actively used for such experiments, because domain formation in
a mesoscopic length scale can be directly observed using fluorescence mi-
croscopy [2, 3, 4, 5, 6]. Theoretical models have been proposed to explain
the experimental results [7].

Most of these studies have examined the temperature-dependent phase
separation in systems consisting of only electrically neutral phospholipids.
However, a few studies have reported the phase separation in ternary systems
including some charged phospholipids, although biomembranes have several
types of charged phospholipids, which have, for example, phosphatidylserine
(PS) or phosphatidylglycerol (PG) head groups. Moreover, highly expected
biological molecules that have electric charges (e.g. DNA, protein, or salt) ex-
hibit significant effect to the phase separation in charged membranes through
electrostatic interactions.

Previous experimental research has reported that the aggregation of charged
lipids in binary charged membranes is induced by the addition of some elec-
trolyte [8, 9, 10]. In these studies, the aggregation of negatively charged lipids
by the addition of electrolytes has been argued, when both of the lipids have
unsaturated hydrocarbon chains and exhibit a disordered phase. However,
mesoscopic phase separation between the ordered and disordered phases does
not occur in these binary systems; therefore, the relation between this aggre-
gation and the mesoscopic phase separation is not considered. On the other
hand, when the mixed lipids exhibit phase separation between the charged
disordered (ordered) and neutral ordered (disordered) phases, it is expected
that electrostatic Coulombic repulsion between charged lipid molecules is ex-
pected to compete against domain formation by phase separation. This com-
petition is not yet fully understood, and thus, a new physical phenomenon
may arise from the competition.



In this letter, we report on the phase behavior of ternary charged mem-
branes consisting of neutral saturated lipids (1,2-dipalmitoyl-sn-glycero-3-
phosphocholine; DPPC), negatively charged unsaturated lipids (1,2-dioleoyl-
sn-glycero-3-phospho-L-serine (sodium salt); DOPS), and cholesterol (Chol),
with and without electrolyte, observed using confocal laser scanning mi-
croscopy. A small cation species, i.e., calcium ions, is used as one of the
electrolytes. In addition, we present a theoretical model to explain the phase
behavior with and without the small cations.

2. Materials and methods

Giant vesicles composed of ternary phospholipids DPPC (1,2-dipalmitoyl-
sn-glycero-3-phosphocholine, Wako), DOPS (1,2-dioleoyl-sn-glycero-3-phospho-
L-serine (sodium salt), Avanti Polar Lipids) and Chol (Sigma-Aldrich) were
prepared. The chain melting temperatures of DPPC and DOPS are 41 and
—11°C, respectively. N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2 -dihexadecanoyl-
sn-glycero-3-phosphoethanolamine (NBD-PE, triethylammonium salt, Molec-
ular Probes) and rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine
(rhodamine DHPE, triethylammonium salt, Molecular Probes) were used as
fluorescent probes. When these lipids exhibited phase separation, NBD-
PE was localized in the liquid-ordered (L,) phase (DPPC and Chol rich)
and displayed green fluorescence at 536 nm. Rhodamine DHPE was local-
ized in the liquid-disordered (Lq) and negatively charged phase (DOPS rich)
and displayed red fluorescence at 581 nm. Giant vesicles were prepared by
the natural swelling method [11, 12] from dry lipid films according to the
following process. Firstly, 10 mM lipid and Chol were dissolved in chloro-
form/methanol (=2:1) so that the total volume became 10 pL, and 2 pL of
each of the 0.1 mM fluorescent probes dissolved in the same organic solvent
were added. The lipid solutions were dried in air and then placed under vac-
uum overnight to form completely dry thin lipid films. The films were then
hydrated with 100 pL ultrapure water (MilliQ, specific resistance > 18 M(2)
at 60 °C for over 4 h. The lipid solutions were mixed with calcium chloride
solutions so that the final calcium chloride concentrations were 0.05 and 0.1
mM, respectively. The final total lipid concentration was 0.9 mM. The mixed
solutions were observed using confocal laser scanning microscopes (Nikon A1,
Nikon and LSM 510, Carl Zeiss) at room temperature (~ 22 £+ 2 °C).



3. Experimental results

Figure 1 shows a typical image of a giant vesicle observed with the confo-
cal microscope and the phase diagram of the ternary system without addition
of calcium chloride. The red filled circles in the phase diagram denote the
two-phase region, while the red and black filled circles denote the bound-
ary state. Only a few phase separated vesicles are observed at the bound-
ary state. The black filled circles indicate the homogeneous phase, and the
cross marks denote the region where the formed vesicles are not stable. The
dashed ellipsoid indicates the approximate phase separation region in the
case of the neutral lipid system (DPPC/DOPC/Chol) [5]. Phase separation
hardly occurs in the charged membranes compared with the neutral mem-
branes, as shown in Fig. 1. In the homogeneous phase, the red and green
fluorescent probes are homogeneously dispersed, as shown in Fig. 1(a) for
DPPC/DOPS/Chol=4:4:2 (molar ratio). It is assumed that phase separa-
tion is depressed for the charged membrane, due to the large energy loss
caused by the high concentration of negatively charged lipids, even when
the temperature is below the phase separation temperature. On the other
hand, phase separation is sometimes observed in the DPPC and DOPS bi-
nary system without Chol (see the base of the phase diagram in Fig. 1, such
as for DPPC/DOPS/Chol=3:7:0). Such phase separation in a binary sys-
tem has been reported for several similar systems [13]. In general, solid-like
domains are formed in a binary system without Chol, and these domains
have anisotropic shapes [14]. An anisotropically shaped domain is shown in
Fig. 1(b). This domain is observed as a black area, because both fluorescent
probes are excluded from this highly-ordered solid domain. In addition, no
stable vesicles are formed for a low DOPS content. This is considered to
be caused by the weak Coulombic repulsion, which is insufficient to cause
peeling-off of the membrane from the dry lipid film to form vesicles during
the hydration process.

Images of the giant vesicles and the phase diagrams after the addition of
calcium chloride are shown in Fig. 2. Phase separation occurs due to the addi-
tion of calcium, especially around the composition DPPC/DOPS/Chol=4:4:2.
Moreover, the phase separation region becomes larger as the calcium concen-
tration is increased from 0.05 to 0.1 mM. It is known that calcium ions tend
to bind strongly to PS head groups [15]. Decreasing of Coulombic repulsion
between DOPS lipids by the bound calcium ions is considered to reduce the
energy loss due to aggregation of the DOPS lipids, and results in the for-



mation of stable phase separated domains. As the calcium concentration is
increased, this effect becomes significant. The phase separation region in the
case of higher calcium concentration is expected to come close to that for a
neutral lipid system, as shown by the dashed ellipsoid in Fig. 1. This ten-
dency is obvious for a calcium ion concentration in the order of 0.1 mM, while
the giant vesicles are ruptured for higher calcium chloride concentrations [15].

For the phase-separated vesicles formed by the addition of calcium ions,
not only lateral phase separation, as in Fig. 2(a), which is usually the case
for phase separation of neutral phospholipids, but also specific phase sep-
aration behavior is often observed, where the DOPS-rich region enter the
inner volume of the vesicle, as shown in Fig. 2(b). It is considered that
phase-separated DOPS domains bud toward the interior of the vesicle. Such
budding vesicles have been observed much more often than laterally sepa-
rated vesicles in our measurements. Even in the neutral lipid system, similar
internal budding occurs by control of the volume or surface area of the vesi-
cle by the addition of sugar or a surfactant [16, 17, 18, 19]. Two important
effects are assumed from the selective budding of DOPS rich domains toward
the vesicle interiors: the acquisition of a necessary excess area for vesicle de-
formation due to the osmotic pressure, and the change in the spontaneous
curvature of the DOPS domains in an outer leaflet of the bilayer due to the
adsorption of calcium ions on the DOPS lipids. Firstly, a salt concentra-
tion difference is generated across the membrane by the addition of calcium
chloride. Therefore, the membrane can obtain the excess area required for
deformation, because the water goes out of the vesicle due to the osmotic
pressure. Subsequently, the binding of calcium ions on DOPS lipids together
with the increase in the screening effect reduces the area occupied by PS head
groups, and the spontaneous curvature of the DOPS domains in the outer
leaflets with adsorbed calcium ions decreases (here we define positive curva-
ture as the membrane curving towards the outside of the vesicle). Therefore,
the DOPS rich domains bud toward the interior of a vesicle.

In our experiments, the competitive behavior between Coulombic repul-
sion and phase separation is revealed. Under calcium-free conditions, the
Coulombic repulsion between DOPS molecules dominates the phase behavior
and mesoscopic phase separation is inhibited. As the calcium concentration
is increased, the Coulombic repulsion becomes weak and comparable to the
attractive potential that causes the mesoscopic phase separation as the re-
sult of cooperative effect of direct binding to PS head group and increase
on the screening. Finally, the charged membrane exhibits mesoscopic phase



separation when the attractive potential becomes predominant.

4. Model

Based on the experimental results, the expansion of the phase separation
region in the phase diagram by the addition of small cations is explained
using a mean-field phenomenological model. The theoretical model by May
et al. suggested that phase separation in mixed membranes consisting of
charged and neutral lipids is induced by the adsorption of a macro-ion, such
as a charged protein [20, 21, 22]. We discuss the effect of small cations such
as calcium ions to the charged membrane by applying this model to our
experimental system.

For simplicity, we make several assumptions. The bulk salt is dealt with
as a symmetrical monovalent salt (e.g. NaCl). Calcium chloride is used as
the salt in this work, and this is not a symmetrical monovalent salt. However,
there are no essential differences between the monovalent and divalent salts
with respect to qualitative calculations, and this difference is adjusted by
the Debye screening length, which is a controllable parameter in the model.
In addition, a flat isolated membrane composed of two species of lipids is
assumed. Although the membrane consists of three components in the ex-
periment, it is reasonable to regard it as a simple binary mixture, because
Chol is localized in the DPPC-rich domain [23]. In addition, the diameter
of a giant vesicle is in the order of pum, while the thickness of the bilayer is
approximately 5 nm; therefore, the membrane can be considered to be almost
flat.

The mole fraction of negatively charged lipid is denoted by ¢ and the free
energy is given by

F=lpné+(1—¢)In(l = ¢)+xo(1 = ¢)] + fale). (1)

All electrostatic interactions in the system are included in the last term f,
while the other terms indicate the free energy of a bare neutral membrane. x
is a repulsive interaction parameter between the charged and neutral lipids
that enhances lipid-lipid demixing, and this parameter is related to the tem-
perature T as y ~ 1/T. When there are no electrostatic interactions in the
system (fq = 0), i.e., the membranes are composed of only neutral lipids,
then the binodal line in the (¢, x) plane is described by the dot-dashed line
in Fig. 3, where the critical point denoted by the filled black circle is located



at (¢,x) = (0.5,2). The entropic term in this free energy assumes that the
lipid molecules are freely dispersed in the membrane, and this corresponds to
the liquid phase. Therefore, this formulation does not indicate the behavior
of the solid phase which appears in the absence of cholesterol.

The expression for f, is given under the framework of the Poisson-Boltzmann
theory [24]

fal@) =26 [ 2L+ np-+ )| ¢

where ¢> = p> + 1 and p = pop. po = 2mlglp/a is constant, where a is
the cross-sectional area of the lipid. For simplicity, we assume that the
two types of lipids have the same cross-sectional area a. Ilg is the Bjerrum
length, and Ip is the Debye screening length. The surface charge density o,
which is used as one of the boundary conditions in the calculation of f,
is expressed by 0 = —e¢/a, where e is the elementary charge. The phase
diagram in the (¢, x) plane is obtained as shown in Fig. 3. In this calculation,

I = 7TA, and a = 65 A? are fixed. The two binodal lines are indicated
by solid and dashed lines, which correspond to different Debye lengths of
Ib = 50 and 5 A, respectively. The solid line corresponds to the case of the
negatively charged membrane before addition of the salt (Ip = 50A). On
the other hand, the reduction of the Debye screening length (Ip = 5 A) due
to addition of the salt results in the binodal line indicated by the dashed
line. The phase diagram shows that the phase separation region for the
case of the charged membrane without the salt becomes narrower than that
for the neutral membrane. Addition of the salt to the charged membrane
causes the two-phase region to enlarge and approach that of the neutral
membrane. Since the experiments were performed at constant temperature,
the phase separation behavior must be considered at a constant y in the
phase diagram. When Yy is fixed to approximately 3.7 (see Fig. 3), the charged
membrane without salt (solid line) exhibits a homogeneous phase. On the
other hand, phase separation occurs in the charged membrane after addition
of the salt (dashed line). Moreover, the phase separation region of the neutral
membrane (dot-dashed line) is larger than that of the charged membrane
with the salt (dashed line). Therefore, even if the temperature is constant,
phase separation is induced by decreasing the Debye length. These results
are qualitatively consistent with our experimental results, where the phase
separation behavior depends on the concentration of added salt.

The theoretical model suggests that the phase behavior in charged mem-



branes is dominated by the Debye screening length. In order to simplify the
calculations, monovalent cations are assumed as the added salt instead of
the divalent cations used in the experiment. However, the difference between
monovalent and divalent cations corresponds approximately to the difference
in the Debye length; a longer Debye length corresponds to the condition with
monovalent cations, while a shorter Debye length is equivalent to that with
divalent cations at the same concentration. The results of our model sug-
gest that a minute amount of trivalent cations could effectively induce phase
separation, which corresponds to the condition of a very short Debye length.
Further studies to examine such expectations would be of value; however, a
large amount of monovalent cations are required for phase separation, under
which conditions the giant vesicles are destabilized due to high osmolarity.

5. Discussion

Recently, Vequi-Suplicy et al. showed similar results in the system com-
posed of DOPG, eSM, and Chol [25]. They mentioned that the phase sepa-
ration temperature was increased by addition of calcium ion. This result is
consistent with ours, which shows that the region of phase separation in the
phase diagram expands at higher calcium concentration. Thus, this behavior
is not a specific phenomenon in our system but is more universal in ternary
charged membranes.

Electron spin resonance (ESR) or deuterium nuclear magnetic resonance
(NMR) spectroscopic measurements performed in previous studies indicate
that the PS lipid has a phase transition from the disordered phase to the
ordered phase by adsorption of calcium ions [8, 26]. This phase transition
induces phase separation of the ordered-phase PS and disordered-phase PC
lipids [8]. In contrast, this transition prevents phase separation in our system,
because DOPS tends to mix with DPPS if DOPS forms an ordered phase.
Our experimental results suggest that electrostatic interaction is stronger
than the specific properties of calcium for phase separation behavior. More-
over, calcium ions reduce the absolute value of the surface charge density due
to the strong binding on the head group of PS lipids [27]. In a realistic case,
the binding effect should be considered in the theoretical model, although
our model using the framework of Poisson-Boltzmann does not include this
effect, i.e. we control the phase behavior only by changing the Debye length
and assume that the surface charge density 0 = —e¢/a is constant. However,
the decrease in the surface charge density have qualitatively the same effect



as the decrease in the Debye length, since both effects reduce the surface
potential ¥ = —2arcsinh(py¢).

The existence of a nanometer-size domain was reported by atomic force
microscopy (AFM) in a membrane composed of DPPC and DOPS with cal-
cium chloride [28]. It is probable that the homogeneous phases in our ex-
periment have nanometer-size domains, because confocal microscopy cannot
observe such domains. In order to confirm the existence of these nanometer-
size domains, careful experiments by means of AFM or small-angle neutron
scattering (SANS) are necessary in future.

We consider the change in the spontaneous curvature of the outer leaflet
of the bilayer as one of the reasons for the budding of DOPS domains. The
calcium cations bound to the charged head groups not only decrease the
Coulombic repulsion but also undergo the entropy gain caused by water
molecules released from the hydration shell of the calcium cations and dehy-
dration of the lipid membrane [15]. Thus, the decrease of the spontaneous
curvature by the binding of calcium cations is reasonable. On the other
hand, the internal budding phenomenon has not reported in similar mix-
tures consisted of DOPC/DOPS with peptides or DOPG/eSM/Chol with
calcium chloride. [10, 25]. Therefore, our results suggest that the budding
phenomenon is dominated by the change in the spontaneous curvature in-
duced by the strong calcium binding to the PS headgroup and screening
effect. Additionally, the line energy of the domain boundary is important
to understand the budding behavior [7]. In contrast to previous studies,
large line energy is evidenced in our experiment, which is ascribed to the
difference in the ordering between the hydrocarbon chains of each separated
phases. Furthermore, we have encountered some difficulties in corroborating
the budding process by confocal microscopy; the buds are too small to ob-
serve in detail and keep continuous focusing due to fluctuations and water
flow.

6. Conclusion

Mesoscopic phase separation of giant unilamellar vesicles composed of
DPPC, DOPS, and Chol has been examined in the present study. The phase
separation region in the phase diagram is enlarged as the calcium chloride
concentration is increased. This phase separation is caused by the decrease
in the Coulombic repulsion by the addition of calcium ion, which can be
interpreted as the cooperative effect of direct calcium binding and increase



in the screening effect. The DOPS domains are found to bud toward the
interior of a vesicle; it is attributed to the increase in the osmotic pressure
and the change in the spontaneous curvature of the outer leaflet of the bi-
layer induced by the addition of calcium chloride. Thus, we consider that the
phase separation and the budding phenomenon arise from the cation binding
to charged head groups and the screening effect in a simultaneous manner.
We have formulated the observed phase separation in the framework of the
Poisson-Boltzmann theory by taking into account the increase in the screen-
ing effect by cationic species. As one of the future experimental targets, one
needs to evaluate the effect of direct binding of small cations by comparison
of the effect of Ca and Mg ions as well as monovalent cations.
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[CaCl. 0 mM] (a)

@ : homogeneous phase
@ : two-phase region

@ : boundary state

® : vesicles do not form stably

Fig 1: Ternary phase diagram of DPPC/DOPS/Chol at room temperature and cor-
responding giant vesicles observed by confocal microscopy at compositions of (a)
DPPC/DOPS/Chol=4:4:2 (cross-sectional image) and (b) DPPC/DOPS/Chol=3:7:0
(plan view image). The dashed ellipsoid in the phase diagram indicates the approximate
phase separation region in the case of a neutral lipid system that includes DOPC instead
of DOPS [5]. The red regions in the confocal micrograph are the DOPS rich domains, the
green regions are DPPC and Chol rich domains, and the homogeneous phase is indicated
as yellow. Scale bars: 10 pm.
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[CaCl: 0.05 mM] [CaCl, 0.1 mM]
Chol Chol

@ : homogeneous phase
@ : two-phase region
@ : boundary state

® : vesicles do not form stably

Fig 2: Phase diagrams of DPPC/DOPS/Chol after the addition of calcium chloride so-
lution (left: 0.05 mM, right: 0.1 mM) at room temperature. The cross-sectional confo-
cal micrographs in (a) and (b) have the same composition (DPPC/DOPS/Chol=4:4:2 at
CaCly=0.1 mM). Scale bars: 10 pm.
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Fig 3: Phase diagram calculated as a function of the negatively charged lipid mole fraction
¢ and the interaction strength y. The solid and dashed lines are the binodal lines for long
and short Debye lengths, respectively. The dot-dashed line denotes the binodal line of a
neutral membrane. The filled circles indicate the critical points.
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