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Abstract 

A short carbon fiber (CF)/agarose gel composite in which short CFs were radially 

embedded in the gel matrix was fabricated.  The composite was subjected to strong 

magnetic fields up to 8 T, to observe its deformation.  The composite deformed so that 

the carbon fibers were aligned parallel to the magnetic field.  The deformation was 

analyzed quantitatively in terms of the magnetic and elastic energies of the composite. 
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1. Introduction   

Diamagnetic materials are responsive to an external magnetic field though their 

response is weak.  Among them, carbon nanotubes (CNTs) and carbon fibers (CFs) 

have a large diamagnetic anisotropy owing to their graphene structures; the anisotropy 

causes a magnetic alignment.  This nature of the materials is utilized to fabricate 

composites in which short CNTs [1-4] or CFs [5-8] are aligned in such a manner as to 

maximally utilize their excellent mechanical, thermal, and electronic properties [9].  

Magnetic alignment is more easily achieved for a CF than for a CNT because the 

magnetic torque exerted is proportional to the particle size [10].   

Recently, materials responsive to magnetic fields such as magnetostirictive 

materials [11,12] and ferrogels [13,14] as actuators has drawn considerable attention.  

Magnetostrictive materials exhibit only a small change in shape; on the other hand, 

ferrogels exhibit a large change in elongation under a field gradient, but it might be 

difficult to control their shape.  In this study, we fabricate a novel class of CF-based 

magnetically responsive material that exhibits a large change in shape under a uniform 

magnetic field.  Owing to its large diamagnetic anisotropy, a CF generates a strong 

torque when placed in a magnetic field.  This torque is transformed to a gel matrix into 

which the CF is embedded.  In this study, we demonstrate that radially distributed short 

CFs embedded into a gel matrix can deform the gel when placed under a strong uniform 

magnetic field.  This technique is a step forward in achieving the fabrication of a 

composite that changes in shape under a magnetic field.   

 

2. Experimental 

Agarose sol was prepared by adding 0.3 g agarose powder and 0.3 g sodium 

dodecyl sulfate to 30 ml boiling water.  9 ml of the obtained sol was poured into a Petri 
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dish (diameter: 3.3 cm) that was maintained at C80 .  Then, 0.75 g of short CFs 

(K223HG, Mitsubishi Plastics, Inc. courtesy of Toyoda Gosei Co., Ltd.) was added and 

dispersed.  The nominal anisotropic magnetic susceptibility, determined using the 

method proposed previously [7,8], was 5

a 101.8  .  The Petri dish was placed 

over a spherical neodymium magnet (diameter: 2 cm, surface magnetic flux density: 

0.75 T) that produced a magnetic field with radial distribution.  The sol containing the 

CFs was allowed to cool down to room temperature to enable solidification.  A strip (4 

  32   1.2 mm) was cut off from the obtained CF/gel composite in which the CFs 

were aligned radially.  Fig. 1 shows a schematic of the preparation procedure of a 

sample strip.  The volume fraction of carbon fibers was found to be ca. 1.6 % by 

thermal gravimetric analysis.  The deformation of the sample strip was monitored 

using a charge coupled device (CCD) inserted into a vertical bore (diameter: 10 cm) of a 

cryogen-free superconducting magnet (Sumitomo Heavy Industry) that generates 

Fig. 1  Preparation of composite strip in which short CFs are radially aligned.  

(a) Agarose sol containing short CFs is subjected to a radial magnetic field 

produced by a spherical permanent magnet.  (b) A strip is cut off after gelation. 
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magnetic fields up to 8 T.  Young’s modulus of the sample strip was determined by 

measuring the bending deformation due to the gravity.  The sample was placed 

horizontally between two supports and a vertical displacement occurring at the center of 

the sample, caused by the own weight, was measured to evaluate the bending modulus.  

3. Results and discussion 

Let us consider a composite strip of width ,a  thickness ,b  and length ,L  in 

which carbon fibers are distributed as shown in Fig. 2a.  The distribution is assumed to 

be uniform in the a and b directions.  An arbitrary bending deformation of the strip 

under a magnetic field is shown in Fig. 2b.  The angle   is assumed to be unchanged 

by deformation.  The direction of the fiber axis ),( sun , magnetic field B  (assumed 

uniform), tangential vector )(su , and normal vector )(sk  are defined at the point s  

measured from the left end ( 2/2/ LsL  ).  By definition, 1 kun .  The 

total energy totE  of the strip is expressed as 

Fig. 2  Orientation distribution of CFs in gel strip (a) without and (b) with application 

of magnetic field.  Thick lines represent the average direction of the CFs represented 

by a unit vector )(sn  at a given location designated by curvilinear coordinate s .  

Unit vectors )(su  and )(sk  represent the tangential and normal directions of the 

strip at s , respectively.  The angle   is defined by the equation kn cos .   
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where ele  and mage  are the elastic and magnetic energies per unit length, respectively, 

and are expressed by 
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Here,   is the elastic modulus, 0  is the magnetic permeability of vacuum, 

  //a  is the anisotropic diamagnetic susceptibility of the CF ( //  and   are 

magnetic susceptibilities parallel and perpendicular to the fiber axis, respectively), and 

Fig.3  Photograph of cross sections of composite strip.  The angle   was 

determined to be a function of the contour length s .  Thick lines indicate 

the average direction of the CFs.  An enlarged view of the section numbered 

21 and the unit vectors n , k , and u  are shown.  Thickness: ca. 1.2 mm. 
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CFv  is the total volume of CFs in a unit volume of the gel.  The deformed shape is 

determined by minimizing totE  with respect to u  by using the variational method.   

The orientation distribution of CFs observed by a microscope is shown in Fig. 

3.  Here, the strip is divided into 29 sections, and the average direction of the CFs in 

each section is indicated.  The orientation angle   defined previously is 

aproximately expressed as 

Kss /)(  ,  (4) 

where K  is a constant. 

Fig. 4 shows the experimental result of the gel deformation observed with a 

CCD camera.  We find that the deformation is approximately described by a part of a 

circle.  Under this approximation, the elastic energy is expressed by 
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Here, we use the relation 22 /1)/( Rdsd u , where R  is the radius of the circle.  The 

magnetic energy is expressed by 
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Substituting Eqs. (5) and (6) into Eq. (1) and integrating the resultant equation over s , 

we obtain totE  as a function of R .  The relation between the radius R  and the 

applied magnetic field B  is determined using 0/tot dRdE  as follows: 
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In Fig. 5, the curvature Rr /1  is plotted as a function of B  for several 

values of q .  The experimental data shown in this figure fits closely to the theoretical 

curve with m.T27.0 2q   In the present study, m,032.0L  

,m0012.0b 0098.0K  m/rad, ,016.0CF v  5

a 101.8  , and 7

0 104    

H/m; using these values, the elastic modulus   is estimated to be 25 kPa.   

 

 

 

 

 

 

 

 

 

Fig. 4  Deformation of composite strip under various magnetic field strengths 

observed by CCD camera.  Arrow indicates the direction of magnetic field.   
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The experimentally determined bending modulus may be compared with the 

theoretically estimated elastic modulus because the both moduli are related to the 

bending deformation.  The experimentally determined modulus varied between 40 and 

100 kPa depending on the distance between two supports over which the sample was 

placed to measure the displacement by own weight: A unique value of the bending 

modulus was not determined.   

The theoretically evaluated value of   is smaller than the range of the 

experimental values.  The reason for this discrepancy is not clear at present.  It may 

be attributed to the approximation employed in the theoretical analysis or to 

experimental errors in the values of CFv , a , and especially of  .   

 It is reported that agarose undergoes magnetic alignment during gelation 

[15,16].  The origin of the alignment is attributed to a small crystallite that forms a 

crosslinking point of the gel.  We do not know to what degree the agarose crystallites 

are aligned in the present composite.  However, we expect that the degree of alignment 

of a crystallite is very low compared to that of a short CF because the magnetic 

anisotropy of a crystallite is smaller than a CF and also the size of a crystallite is much 

more smaller than a CF.  Therefore, we can expect that the total magnetic anisotropy of 

the sample composite is mainly due to the CFs. 

 

4. Conclusions 

A CF/gel composite that responds to a magnetic field is fabricated.  A large 

Fig. 5  Curvature ( Rr /1 ) of deformed composite strip plotted as a 

function of applied field strength B .  The numbers indicate the q  values 

defined using Eq.8.  Circles indicate the experimental data. 
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bending deformation is achieved under homogeneous magnetic fields up to 8 T.  The 

bending behavior of the composite is successfully analyzed by using a simplified model 

of deformation.  The actuating power of the composite fabricated in this study is 

considerably smaller than that of the magnetic gel because the composite is entirely 

made of diamagnetic materials.  However, the shape of the composite can be easily 

controlled.  As an example, if a helical distribution of CFs is employed, a twist 

deformation may also be achieved.     
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Appendix.  Derivation of Equation (2) 

Consider a small portion of a sample at point s  (width a, thickness b, length ds) 

supported at both ends and applied a force P at the center to cause a displacement x.  

The force P is related to the displacement x as follows [17]:   
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where   is the elastic modulus.  Then, the elastic energy stored when this portion is 

deformed by d is expressed by  

3

23

0
el

2

ds

dab
PdxdE

d 
  .     (A2) 

If we assume that the deformed shape is a part of a circle, the value d is related to the 

radius of curvature R at point s  as follows: 
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where it is assumed that 1/ Rd .  Inserting Eq. (A3) into Eq.(A2), we obtain  
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where the relation   22
/1/ Rdsd u  is used with u  the tangential vector at point s  

defined in the text.  Then, the total elastic energy is expressed by  
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Comparing Eq.(A5) with Eq.(1), we obtain Eq.(2). 
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Figure Captions 

Fig. 1  Preparation of composite strip in which short CFs are radially aligned.  (a) 

Agarose sol containing short CFs is subjected to a radial magnetic field produced by a 

spherical permanent magnet.  (b) A strip is cut off after gelation. 

Fig. 2  Orientation distribution of CFs in gel strip (a) without and (b) with application 

of magnetic field.  Thick lines represent the average direction of the CFs represented 

by a unit vector )(sn  at a given location designated by curvilinear coordinate s .  

Unit vectors )(su  and )(sk  represent the tangential and normal directions of the strip 

at s , respectively.  The angle   is defined the equation kn cos .   

Fig.3  Photograph of cross sections of composite strip.  The angle   was 

determined to be a function of the contour length s .  An enlarged view of the section 

numbered 21 and the unit vectors n , k , and u  are shown.  Thickness: ca. 1.2 mm. 

Fig. 4  Deformation of composite strip under various magnetic field strengths observed 

by CCD camera.  Arrow indicates the direction of magnetic field.   

Fig. 5  Curvature ( Rr /1 ) of deformed composite strip plotted as a function of 

applied field strength B .  The numbers indicate the q  values defined using Eq.8.  

Circles indicate the experimental data. 

 


