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Abstract

We study the behavior of a hydrogen atom adsorbed on aluminum nanowire
based on density functional theory. In this study, we focus on the electronic
structure, potential energy surface (PES), and quantum mechanical effects on
hydrogen and deuterium atoms. The activation energy of the diffusion of a
hydrogen atom to the axis direction is derived as 0.19 eV from PES calculations.
The probability density, which is calculated by including quantum effects, is
localized on an aluminum top site in both cases of hydrogen and deuterium
atoms of the ground state. In addition, some excited states are distributed
between aluminum atoms on the surface of the nanowire. The energy difference
between the ground state and these excited states are below 0.1 eV, which is
much smaller than the activation energy of PES calculations. Thus using these
excited states, hydrogen and deuterium atoms may move to the axial direction
easily. We also discuss the electronic structure of the nanowire surface using
quantum energy density defined by one of the authors.

Keywords: quantum energy density, aluminum nanowire, behavior of a
hydrogen atom, zero-point vibrational energy

1. Introduction

Recently, the development of experimental methods allows us to fabricate
nanostructures experimentally. In these nanostructures, nanowire and nan-
otube, which have periodicity along one dimension, have remarkable characters
compared with bulk system. In particular, nanowires are fabricated for various
species of atoms, and hence it attracts much attention theoretically and indus-
trially [1–15]. Nanowire has high ratio of surface area to its mass and therefore it
is considered that nanowire structures are good candidates for hydrogen storage
material which is a key ingredient for hydrogen energy system. Among various
species of metal atoms, the aluminum atom exists abundantly on the earth and
is available easily. Hydrogen storage material should have higher weight percent
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storage ability so that hydrogen energy is comparable with fossil fuel. The alu-
minum atom has also smaller mass than those of most metal atoms. Therefore
aluminum nanowire is a promising material for hydrogen storage.

From this viewpoint, we study aluminum nanowire in this work following
previous works in our laboratory. Makita et al. showed stable geometries of
aluminum nanowires based on Au nanowire [5]. Kawakami et al. showed that
a hydrogen molecule is adsorbed on a pentagonal aluminum nanowire model as
two separate hydrogen atoms [8]. Nakano et al. suggested to wrap aluminum
species in carbon materials such as carbon nanotube to enhance the hydrogen
adsorption on their surfaces [11]. In addition, geometry and hydrogen adsorption
energy for AlB nanowire whose structure was based on aluminum nanowire was
reported [15]. The aluminum nanowire with pentagonal ring is studied in this
work following these works, since this structure is stable and has high ratio of
surface area to the density.

A hydrogen atom is stabilized by about -3.6 eV after the adsorption on
the nanowire [15]. Hence, it is not easy task to detach the adsorbed hydrogen
atom from the nanowire. The hydrogen atom has high barrier for the direction
perpendicular to the nanowire and the motion to the direction is not unlikely,
and nevertheless hydrogen atoms may move along the nanowire. Therefore, in
this work, we focus on the dynamics of hydrogen and deuterium atoms adsorbed
on the aluminum nanowire. We calculate potential energy surface (PES) of a
hydrogen atom adsorbed on the pentagonal aluminum nanowire. Using this
result, we discuss the behavior of a hydrogen atom on the nanowire. Particularly,
we compare the activation energies of the hydrogen move toward angular and
axial directions. In addition, we focus on quantum effects of a hydrogen atom.
We also study those of a deuterium atom for comparison. Since their masses
are small, quantum effects, such as large zero-point vibrational energy and non-
localization, are important for these atoms [13, 16, 17]. These phenomena affect
the adsorption and activation energy of hydrogen and deuterium atoms. We
calculate the wave functions of hydrogen and deuterium atoms with our PES.
We also perform quantum energy density analysis, which is proposed by one of
the authors, to discuss the surface of aluminum nanowire from a new physical
viewpoint [18].

2. Computational Details

Total energy and electronic structure calculations are carried out based on
density functional theory (DFT) with the projector augmented wave method
by the Vienna ab initio simulation package [19, 20]. Electron wave functions
are expanded by plane wave basis sets and the kinetic energy cut off is set to
250 eV. The exchange-correlation functional we used in this calculation is the
generalized gradient approximation of Perdew, Burke, and Ernzerhof [21]. All
calculations are carried out in the spin-polarized condition.

We show an aluminum nanowire model used in this study in fig. 1. The
radius of nanowire (R) and the distance between an aluminum pentagonal ring
and an aluminum atom on the axis (D) are derived as 2.47 Å and 1.23 Å,
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respectively, from the optimization calculation. The differences from those of
our previous papers are arisen from the difference of program code [1, 15]. The
boundary condition of this nanowire model is imposed as periodic one. In our
calculation, 15.0 Å × 15.0 Å × 8D Å super cell is taken for all electronic
structure calculations. This cell has a large enough vacuum region so that the
interaction with next cells is negligible. The number of aluminum atoms in the
unit cell is counted as twenty-four. A 1 × 1 × 4 k-point set is used to sample
the Brillouin zone. For the density of state (DOS) calculations, a 1 × 1 × 51
k-point set is adopted.

This model has pentagonal rings whose angles are different by π/5 from
each other. For the PES calculation, the position of the hydrogen atom is
parametrized in a cylindrical coordinate system taking the symmetry of the
nanowire model into account. We can reduce the number of points in the PES
calculation along axial and angular directions. The parameters of the hydrogen
coordinate are taken as shown in fig. 1, and their ranges are given as follows,

0 ≤ ρ ≤ RD, (1)

0 ≤ θ ≤ π

5
, (2)

0 ≤ z ≤ 1.23Å. (3)

Here a new radial constant RD is taken as RD = R + 2.50 = 4.97 Å. Once
energies are calculated only for this region, the PES for the required region can
be derived. The adsorption energy (∆E) is defined as follows,

∆E = ENW+H − ENW − EH2/2, (4)

where EX means the total energy of the system X. The definition of ∆E is cal-
culated for the hydrogen molecule instead of the hydrogen atom for comparison
with other works. At the dissociation limit, the adsorption energy in this system
is 2.24 eV. In the calculation of the PES, the deformation of the nanowire is not
taken into account, since the motivation of this work is the study of the dynam-
ics of hydrogen and deuterium atoms on the nanowire. The aluminum atom
is much heavier than the hydrogen atom. Hence, the motion of the aluminum
atom is negligible during the motion of the hydrogen atom. The calculation
mesh size of the radial direction is taken as 0.1 Å, that of the angular direction
is π/50, and that of the axial direction is 0.123 Å.

For the calculation of the wave function of hydrogen and deuterium atoms,
we solve the three dimensional Schrödinger equation. The PES calculated in
this work is used as the potential term of this calculation. Periodic boundary
conditions are imposed on axial and angular directions. For the radial direction,
the boundary condition is given as,

ΨH(RD, θ, z) = 0. (5)

We choose RD, instead of the infinity, as the boundary condition of the radial
direction for simplicity. This choice of the boundary condition is sufficient for

3



this work. The length of this unit cell in the axial direction is 4D, which is
half as long as that of the super cell used in electronic structure calculation.
The wave function is expanded by plane wave and Bessel function basis sets as
follows,

ΨH(ρ, θ, z) =
∑

l,m,n

Clmnψlmn(ρ, θ, z), (6)

ψlmn(ρ, θ, z) =
√

2
RDJm+1(xmn)

Jm

(
xmn

ρ

RD

)
× 1√

2π
exp (imθ)

× 1√
4D

exp
(
il2π

z

4D

)
, (7)

where Jm means the first kind Bessel function of order m and xmn is the nth
zero point of the Bessel function of order m. The expansion coefficient, Clmn, is
derived from the diagonalization of the Hamiltonian. Considering the symmetry
of this model,

ΨH(ρ, θ + π/5, z + 2D) = ΨH(ρ, θ, z). (8)

Accordingly, wave vectors of axis and radial directions can be given as,

m
π

5
+ l2π

2D

4D
= 2Nπ (l,m,N = 0,±1,±2.....). (9)

This equation is simplified to

m′ + l = 2N (m′ = 0,±1,±2.....), (10)
m = 5m′. (11)

In this calculation, the ranges of the parameters (n,m′, l) are applied as follows,

n = 1, ..., 10, (12)
m′ = 0,±1,±2,±3,±4, (13)

l = 0,±1, ...,±40. (14)

Thus the number of the basis functions is 3730. In addition, ψnml(ρ, θ, z) is an
orthogonal system,

⟨ψnml|ψn′m′l′⟩ = δnn′δmm′δll′ . (15)

The term of the kinetic energy can be calculated analytically,

⟨ψnml|K|ψnml⟩ =
~2

2mX

[(
xnm

RD

)2

+
(

l
2π

4D

)2
]

, (16)
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where mX means the mass of a hydrogen atom or a deuterium atom. The
integration of the potential energy term is carried out using Gauss-Legendre
method.

We analyze electronic states and properties using quantum energy density,
which is proposed by one of the authors [18]. One of the quantity of the quantum
energy density, the electronic kinetic energy density nT (r⃗), is defined as

nT (r⃗) =
1
2

∑
i

νi

{[
− ~2

2me
∆ψ∗

i (r⃗)
]

ψi(r⃗)

+ψ∗
i (r⃗)

[
− ~2

2me
∆ψi(r⃗)

]}
, (17)

where me is the mass of the electron, ψi(r⃗) is the ith natural orbital, and νi

is the occupation number of ψi(r⃗). The electronic kinetic energy of the system
is obtained by integration of kinetic energy density over the whole space. In
classical mechanics, only positive kinetic energy is allowed, and however negative
kinetic energy appears in quantum mechanics. This means that electrons can
exist also in regions with the negative kinetic energy density with quantum
effects. The surface of zero kinetic energy density can be interpreted as the
boundary of a molecule.

In the calculation of the kinetic energy density, we use two program codes
for each boundary condition, respectively. The electronic state is calculated by
fhi98md program package [22] for the periodic system and Gaussian 03 program
package [23] for the molecular system. The kinetic energy density is calculated
based on these electronic states by Periodic Regional DFT (PRDFT) program
package [24] for the periodic system and Molecular Regional DFT (MRDFT)
program package [25] for the molecular system. The calculation of the nanowire
model uses, of course, the periodic boundary condition. On the other hand,
the calculation of the molecular system is also performed for the cluster system,
Al13, which has the same structure of a part of the nanowire. This calculation
is for a comparison with the nanowire.

3. Result and Discussion

3.1. Electronic structure of aluminum nanowire model
Before the discussion of the migration of the hydrogen atom, we discuss

the electronic structure and charge transfer of the nanowire model without and
with the adsorbed hydrogen. In our previous paper, we have shown that electron
density is higher for aluminum atoms on the axis compared to those of rings [15].

In fig. 2, we show total DOS (TDOS) and partial DOS (PDOS) of aluminum
atoms of pentagonal rings and those on the axis for the aluminum nanowire
model without the adsorbed hydrogen. The Fermi level is taken to be 0.0 eV
shown as vertical dotted lines in figures. In both TDOS and PDOS, some peak
structures are seen, which may be characteristic for one dimensional metallic
nanowire. Comparing figs. 2(b) and (c), contributions from p and d orbitals are
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large for aluminum atoms on the axis in the low-energy region. This is because
electron density is distributed along the axial direction as shown in our previous
paper [15].

In fig. 3, we show TDOS of the nanowire model with the adsorbed hydrogen
and PDOS of the aluminum atom adsorbed by the hydrogen atom, those on the
axis, and those of the hydrogen atom. The Fermi level is taken to be 0.0 eV
shown as vertical dotted lines in figures. Compared with fig. 2, the shape of the
peak near the Fermi level in TDOS is modified significantly after the hydrogen
adsorption. This modification originates in the aluminum atom adsorbed by the
hydrogen atom as can be seen in the figure of its PDOS. The changes of TDOS
and PDOS in the low energy region are not significant. PDOS of the hydrogen
atom is distributed over wide range of the energy.

In order to study the electronic structure of these models, we study also the
amount of charge transfer. We calculate the number of valence electrons for
aluminum atoms on the ring and on the axis for the aluminum nanowire model
without the adsorbed hydrogen atom. To do so, we use the PDOS in this work.
These results are shown in table 1. Al(ring) means atoms on the pentagonal
rings and Al(axis) means atoms on the axis. As seen in this table, the charge is
transfered from pentagonal rings to the axis. In particular, electrons in p and d
orbitals increase, while there is little difference for those of s orbital.

Next, we consider the charge transfer caused by the hydrogen adsorption.
In this calculation, we consider that the hydrogen atom is adsorbed on the
top site of the aluminum nanowire, which is the most stable site as shown in
the next subsection. The results of the charge transfer is shown in table 2.
In this table, Al(ring)1 represents the aluminum atom on which the hydrogen
is adsorbed, Al(ring)2 represents aluminum atoms on pentagonal rings except
for Al(ring)1, and Al(axis) represents those on the axis. Since the distances
from the hydrogen atom to the aluminum atoms are different for each atom in
Al(ring)2 and Al(axis), only the range of values is dictated in table 2. After the
hydrogen adsorption, the number density of electrons on Al(ring)1 increases as
seen by comparing with table 1. This increase is compensated by the decrease
of that on the hydrogen atom. Significant changes for Al atoms on the axis
are not seen. Focusing on each orbital in Al(ring)1, the number densities of
electrons on p and d orbital increase and that on s orbital decreases. In other
words, electrons are transfered to orbitals which have directionality.

In the following, we discuss the migration of the adsorbed hydrogen atom.
The hydrogen atom is slightly charged, and hence, we can roughly estimate
how large electric field drives the hydrogen atom, once we know the potential
barrier. However, this is not so straightforward, since the potential barrier will
be modified by electric fields. We do not discuss further this point.

3.2. Potential energy surface and diffusion path of a hydrogen atom
Results of PES calculations are shown in fig. 4 for z = 0D, 4D/5, and

1D surfaces, which are characteristic ones. The position of the most stable
point is (ρ, θ, z) = (4.07 Å, 0, 0D) and its adsorption energy is calculated as
0.12 eV. This means that the depth of this PES in the radial direction is large

6



and the hydrogen desorption is not easy. As seen in fig. 4, the gradient of
the PES along the radial direction is much larger than that along the angular
and axial directions. This means that we can parametrize adsorption points by
θ and z. The difference of the adsorption energy from the most stable point
(θ, z) = (0, 0D) is shown as a function of θ and z in fig. 5(a). The value of ρ
is taken so that the adsorption energy is minimum, which is shown in fig. 5(b).
It can be seen that the range of ρ is almost limited within 1 Å. The adsorption
energy has a strong correlation with the value of ρ. The most stable point on
z = 1D surface is given for (ρ, θ, z) = (3.47 Å, π/10, 1D). The most stable point
as a function of z is shifted from θ = 0 to θ = π/10 around z = 4D/5. This is
due to the difference of the angle between pentagonal rings.

We consider two paths of the hydrogen diffusion, axial and angular direc-
tions, as shown in fig. 6. Path A is the move toward the axial direction and
path B shows that toward the angular direction. For path A, we consider the
shift of θ together, since the most stable point for z = 1D is given by θ = π/10.
The energy curves along path A and B are shown as a function of z and θ, re-
spectively, which are normalized by D and θ0 = π/5. In the case of path A, the
activation energy is the highest at z = 4D/5 whose energy is 0.19 eV. Then the
hydrogen atom is in a metastable state at (ρ, θ, z) = (3.47 Å, π/10, 1D). In this
position, the distances from the hydrogen atom to the two nearest aluminum
atoms on the different pentagonal rings are the same. On the other hands, the
peak of energy of path B is given at θ = 4θ0/5, and the activation energy is
0.57 eV. As in the case of path A, the hydrogen atom is in a metastable state
at (ρ, θ, z) = (3.07 Å, π/5, 0D), and the distances from the hydrogen atom to
the two nearest aluminum atoms on the same pentagonal ring are the same.
From these results, the hydrogen atom can move to the axial direction more
easily. The distance from one aluminum atom on a pentagonal ring to another
atom on the same pentagonal ring is equal to that on the next different pentag-
onal rings (2.90 Å). However the activation energies for the hydrogen diffusion
along the path A and B are quite different. One difference is the distance from
the initial position. To compare the distances, we consider simply the cylinder
of the radius 4.07 Å, the distance from one adsorption point to another point
on the same pentagonal ring is 5.11 Å. On the other hands, the distance from
one adsorption point to the next different pentagonal rings is 3.58 Å. Thus the
length of path A is shorter than that of the other.

The difference between two paths can also be seen in the viewpoint of the
kinetic energy density. The kinetic energy density calculation is carried out
for the aluminum nanowire without the hydrogen atom. Figures 7(a) and (b)
show the value of ρ and the potential energy, where the kinetic energy density
is zero, as a function of θ and z. Compared to fig. 5, the surface of the zero
kinetic energy density and that of the minimum potential energy surface have
the pattern similar to each other. In both isosurfaces of ρ, there is a deeper
dent for the radial direction between aluminum atoms on the same pentagonal
ring than that on different pentagonal rings. The values of the adsorption
energy are almost the same as those for PES, since ρ is also almost the same.
The zero kinetic energy density surface is originally proposed as a surface of
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a molecule [18]. This implies that the minimum potential energy surface is
quite similar to the nanowire surface. Hence the hydrogen diffusion path may
be roughly identified with the shortest path on this surface. This character of
the zero kinetic energy density surface can also be seen in Al13 cluster model
which has two pentagonal rings and three Al atoms on the axis. This surface
is obtained by a molecular system calculation [23, 25]. Hence this character is
due to two pentagonal rings structure and not peculiar to a nanowire model.

3.3. Wave function of hydrogen and deuterium atoms
In fig. 8, we show the probability densities of the hydrogen atom from the

ground state to the ninth excited state. The isosurfaces are depicted for the
value, 0.01[1/Å

3
], and ϵ is the energy eigenvalue. In the ground state, the

probability density is localized around the top site of an aluminum atom. This
position corresponds to that of the minimum of the PES. The energy eigen-
value of the ground state is 0.34 eV, so that the zero-point vibrational energy
is estimated as 0.22 eV. Patterns of probability densities in excited states are
divided into two kinds. In one of patterns, the probability densities are dis-
tributed around the top site of an aluminum atom (z ∼ 0 and θ ∼ 0). In the
other pattern, the probability densities are seen around the intermediate point
of the axial migration path, i.e. between aluminum pentagonal rings, (z ∼ D
and θ ∼ 10/π). Note that the migration path to the axial direction is accom-
panied by the angular rotational shift of π/5. The latter group consists of, the
sixth, seventh, and eighth excited states. The density is high enough at the
intermediate point of the migration path of the axial direction, where the po-
tential energy surface has high value as seen in fig. 6. Their energy eigenvalues
are 0.42 eV (sixth) and 0.43 eV(seventh and eighth), respectively. (The seventh
and the eighth excited states are not degenerate, though they can be seen so
within this accuracy.) The energy difference between the sixth excited state
and the ground state is 0.08 eV. This energy difference is much smaller than the
activation energy of the PES calculation, 0.19 eV. As a result, the diffusion of
the hydrogen atom to the axial direction through excited states in the quantum
picture requires smaller energy compared to the estimate by the classical pic-
ture. In addition, the diffusion to the angular direction is seen to be not favored
even in the quantum picture.

In fig. 9, we also show the probability densities of a deuterium atom. The
value of isosurfaces is the same as fig. 8. The energy eigenvalue of the ground
state is 0.31 eV, which is less than that for the hydrogen atom by 0.03 eV. The
difference originates in the difference of the mass between the hydrogen and
deuterium atoms and results in the decrease of the zero-point vibrational energy.
In the ground state, the distribution of the probability density is almost the same
as in the case of the hydrogen atom, while the order of the distribution pattern
is replaced in some excited states. Specifically, the pattern of sixth excited state
in the hydrogen atom appears in the eighth excited state. These states are the
lowest among states that the probability densities are seen between aluminum
pentagonal rings. The energy difference between the ground state and this
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excited state is 0.09 eV. The discrepancy from that of the hydrogen atom is not
so large. Therefore, deuterium atoms also travel to the axial direction through
excited states.

4. Summary

We have studied the behavior of a hydrogen atom on aluminum nanowire
based on density functional theory. First we have calculated the potential energy
surface. The most stable position of the adsorbed hydrogen atom is the top site
of an aluminum atom, and the adsorption energy is 0.12 eV. The activation
energy of the hydrogen diffusion to the axis direction is 0.19 eV, while that
to the angular direction is 0.57 eV. Thus the hydrogen can travel to the axial
direction more easily. We have also studied quantum effects of the adsorbed
hydrogen and deuterium atoms. The probability density of the hydrogen atom
in the ground state is localized at the top site of an aluminum atom. In some
excited state, the probability density is distributed between pentagonal rings.
The energy difference from the ground state is 0.08 eV, which is much smaller
than the activation energy in the PES calculation. On the other hand, in the
case of the deuterium atom, the energy eigenvalues are lowered slightly. The
energy difference between the ground state and the excited state distributed
between pentagonal rings increases slightly and is calculated as 0.09 eV. These
results imply that the diffusion of the hydrogen and deuterium atoms to the
axial direction through excited states in the quantum picture requires smaller
energy compared to the estimate by the classical picture.
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Table 1: Number of valence electrons calculated from PDOS. Al(ring) and Al(axis) mean an
aluminum atom on a pentagonal ring and on the axis, respectively.

Atom s-orbital p-orbital d-orbital total
Al(ring) 1.245 1.285 0.289 2.820
Al(axis) 1.228 2.014 0.659 3.902

Table 2: Number of valence electrons calculated from PDOS. Al(ring)1 is the aluminum atom
on which the hydrogen is adsorbed and Al(ring)2 is aluminum atoms on pentagonal rings
except for Al(ring)1. For Al(ring)2 and Al(axis), only the range of values is given.

Atom s-orbital p-orbital d-orbital total
Al(ring)1 1.156 1.616 0.409 3.181
Al(ring)2 1.241-1.254 1.260-1.301 0.281-0.291 2.813-2.834
Al(axis) 1.225-1.230 1.987-2.030 0.650-0.678 3.895-3.905
H 0.620 0.010 0.001 0.630
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Fig. 1: Calculation model of aluminum nanowire. This model has pentagonal rings whose
angles are different by π/5 from each other. R is the radius of the pentagonal ring, D is the
half-distance between aluminum atoms on the axis, and 8D is the unit cell length. ρ, θ, and
z are used for a cylindrical coordinate system in PES calculations.
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Fig. 2: TDOS and PDOS of the nanowire model, (a) TDOS of this model, (b) PDOS of atoms
on the pentagonal ring, and (c) PDOS of atoms on the axis, respectively. The Fermi level is
taken to be 0.0 eV shown as vertical dotted lines.
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Fig. 3: TDOS and PDOS of the nanowire model, (a) TDOS of this model, (b) PDOS of the
aluminum atom on which the hydrogen is adsorbed, (c) PDOS of aluminum atoms on the
axis, and (d) PDOS of the hydrogen atom, respectively. The Fermi level is taken to be 0.0 eV
shown as vertical dotted lines.
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15



Path A

A1 A2 A3

(a)

π/10(0.5θ0)
3.47(R+1.00)[Å]

3.77(R+1.30)[Å]4.07(R+1.60)[Å]

0.98(0.8D)[Å] 1.23(1D)[Å]

Path B

B1 B2 B3

(b)

8π/50(0.8θ0) π/5(1.0θ0)3.07(R+0.60)[Å]
3.17(R+0.60)[Å]

4.07(R+1.60)[Å]

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.0  0.2  0.4  0.6  0.8  1.0

Δ
E

[e
V

]

z/D,θ/θ0

0.19eV
0.17eV

0.57eV

0.50eV

 path A
 path B

A1,B1

B2 B3

A2 A3

(c)
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Fig. 7: (a) The value of ρ where the kinetic energy density is zero, as a function of θ and z.
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is zero, as a function of θ and z for the Al13 cluster model.
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Fig. 8: The distribution of the probability densities of the hydrogen atom from the ground

state to the ninth excited state. The isosurfaces are depicted for the value, 0.01[1/Å
3
], and ϵ

is the energy eigenvalue.
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Fig. 9: The distribution of the probability densities of the deuterium atom from the ground

state to the ninth excited state. The isosurfaces are depicted for the value, 0.01[1/Å
3
], and ϵ

is the energy eigenvalue.
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