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Chapter 1
Introduction

1.1 Background and purpose of study

Girder bridges such as plate and box girder bridges can be considered to be the
most common steel bridges. Since those girders have traditionally fundamental and
rational form, they will continue to be used in future as well. The typical construction
of those girders mainly consists of flanges, webs and stiffeners and the behavior of
these components and the general behavior have been intensively studied by many
researchers in the past in the wide areas including buildings and other engineering
fields.

The fall-off of box girders during construction stage due to insufficient
compressive strength of stiffened plates and lateral buckling of plate girders and due
to poor detailing of connections are typical examples of accidents of girder structures.
Furthermore, in the Great Hanshin-Awaji Earthquake, that occurred more than nine
years ago, cyclic web buckling due to shear in the cross beam of rigid frame piers
either combined or not with damages of piers or bearings or buckling of main girders
caused by the collapse of piers have been reported. With such damages in mind, the
studies on the design to improve the safety and rationality should be directly
incorporated into the improved structural design. Recently, with remarkable
improvements in the computer simulation as the background, the non-linear
material and large displacement analysis is frequently applied by means of finite
element methods and other powerful methods. Such verification is finally desirable;
nevertheless, simplified but practical analyses using proper modeling is yet deemed
necessary on the more natural and instinctive ground of structural mechanics. As a
matter of fact, experimental and inductive methods, or so-called semi-inverse method,
are also useful and essential as well as the analytical method.

The main purpose of this dissertation is to investigate the fundamental
property and characteristics on various points of girder structures toward their
rational design by means of experimental methods in combination with several
approximate analyses. Although the clarification on the buckling and load-carrying
capacity of girder structure is emphasized, the viewpoint of the deformability will
also be stressed for mitigation of seismic force on the girders. The latter viewpoint
may be thought very important from the standpoint of absorption of earthquake
energy, as it is evident from the damaged states on the Great Hanshin-Awaji
Earthquake.

1.2 Literature survey and specifications

The study on girder bridges that are most common steel bridges has been carried
out numerously.? Since main components of these girders consist of flanges, webs
and stiffeners and the loading pattern are compression, bending, shear and those
combinations, it is necessary to carry out the research from various viewpoints.
Concerning the type of loading, the examination on the behavior of girders subjected
to static and cyclic loadings is required. Furthermore, tapered members, namely the



girders with varying depth are often used.

In this article, literature survey and the application to specifications are
described. Especially, The Japanese Specifications for Highway Bridges? is mainly
mentioned.

An allowable compressive stress of girders due to bending moment has been
determined based on the lateral buckling strength of girders. Timoshenko and Gere
lead to a closed-form solution by elastic buckling analysis.? Nethercot¥ summarized
the results based on buckling analysis as the simple and direct design methods in
which various loading and support cases have been considered for the elastic lateral
buckling of beams. Buckling in the elastic range is in particular useful when the
strength of girders during the construction phase is considered. If the end moments
are unequal, the solution for the case under uniform moment must be modified.
Salvadori® proposed a modifier for the case that moment gradient affected on the
critical moment. This modifier is adopted in Reference 2) and the equivalent uniform
moment on a girder under unequal end moments has been defined. Woolcock and
Trahair?.10 investigated the problem on post-buckling strength.

In Japan the load-carrying capacity curves had been obtained by inelastic
buckling tests® have been used in Reference 2). Further, when a local buckling
strength falls below a lateral buckling strength, in order to consider the effect of the
local buckling on the load-carrying capacity the allowable stress for the local buckling
has been adopted as the allowable compressive stress due to bending moment. The
simultaneous buckling of flanges and web plate has not been considered. Elastic
buckling of plate girders under pure bending has been analyzed by Konishi et al.3? as
the simultaneous buckling between a web plate and vertical stiffeners. The
researches on the overall lateral buckling of girders are also presented. The study on
the lateral-torsional buckling strength of steel twin girder bridges under erection? is
reflected in Reference 8).

When long-span steel girder bridges are constructed, those web plates need
generally multiple longitudinal and transverse stiffeners. Richmond!? solved the
elastic buckling of rectangular plates orthogonally stiffened under bending and
combined bending and compression by using the orthotropic plate theory. Such
design procedure was proposed in several specifications, for example BS540012. The
Japanese Specifications for Highway Bridges does not explicitly contain any design
provision applicable to the multi-stiffened webs.? Therefore, the necessity for any
simple theory which can cover the prediction of the bending strength of plate girders
whose web has the multiple stiffeners is high. A plate girder with many longitudinal
stiffeners has been tested!®, and the experiments on the ultimate strength of the
plate girders and box girders with multi-stiffened webs have been carried out.14-16)

The web plate of plate girders subjected to shear force has been noticed for its
characteristic behavior. Wagner!? proposed a complete tension field to the panel
strength under shear. Basler is a pioneer in the study on the shear strength of plate
girders!®.19, There have been many experimental studies on the ultimate shear of
plate girders subjected to shear force.’ And then, various models to predict the shear
strength of plate girders have been also formulated.? Another analytical method is
the elasto-plastic finite displacement analysis using means such as the finite element



method. Marsh20, Nakazawa et al.21-22 and Lee et al.23 carried out the elasto-plastic
finite displacement analysis on the ultimate shear behavior of the plate girder panel
using the finite element method considering both material and geometric non-
linearity. Lee et al.3® also carried out the experiment in order to verify the theory.
The post-buckling strength of girder panels had been clarified from these analyses
and experimental results is not utilized sufficiently in The Japanese Specifications
for Highway Bridges.? In this Specification, considering the post-buckling strength of
web plate the safety factor for calculated buckling stress of web panel is reduced.

In the meantime, tapered girders are also usually used. In such type of girders,
the girder with varying web depth has been often constructed. The studies on the
load-carrying capacity of girders with variable web and tapered panels are
comparatively few. Falby2¥ has proposed a calculation method to predict shear
strength by means of plastic analysis in Basler’s style!?. Also, Mandal et al.25.26)
have given a predicting method extending the theory of Porter et al.2?. In Reference
2), plate girders with the web tapered in depth have not been described yet.

Most of the panels in plate girders are subjected to the combined loading of
varying bending moments in longitudinal direction and shear forces. Many studies on
a plate panel subjected simultaneously to bending moments and shear forces in its
plane have been carried out and the interaction curves have been proposed2®-29,
Since a girder panel has four edges, the effects of these frame members must be
considered. These analytical results are often expressed using interaction curvesV.
The investigations on the interaction of girder panels in inelastic range under
combined loading have been proposed3®-3D, In The Japanese Specifications for
Highway Bridges?), as an interaction curve, the formula of the circular type has been
adopted. In the meantime, although the works of general design procedures for the
ultimate strength of panels with variable depth under the combined action of
bending moments and shear forces are required such investigation is few.

The behavior of structures or structural members subjected to the cyclic load
under strict condition such as seismic load and traffic load has been much studied at
various fields in recent years. To begin with, there is the problem as a fatigue under
high cycle and low stress. As an example of such problem, the studies that regard
such problems as fatigue ones owing to web breathing under repetitive loading have
been made. For examples, these problems are discussed at Ref.5) which is a
publication by ECCS3%9 and have been adapted as a design standard in Eurocode
No.335. Okura has introduced the research results on such problems and discussed in
detail3®). In addition, there is the problem of structures with low cycle and high stress.
In such type of cyclic loadings, the research on the behavior of inelastic repetitive
buckling for plate girders and girder panels is also necessary. Up to now, for this
kind of subject Popov et al. have proceeded with a series of studies on the case in
which shear links are subjected to cyclic shear loads37-39, In these studies, the width-
to-thickness ratio of a web panel and the spacing of stiffeners are chosen as

parameters and many load-displacement hysteresis diagrams have been described.



As obtained results, a fact that shear links exhibit excellent energy absorption has
been shown and its availability has been discussed. Test girders are wide flange
beams of which the web has comparatively small width-to-thickness ratio. Although
limited to shear link beams under cyclic loading, many loading tests have been
conducted, and the behavior up to the ultimate state has been clarified considerably
in detail by Hjelmstad3” Also in Japan, for an example, Suzuki et al. has researched
inelastic behavior of beams under non-uniform moment49.

As recent applied research, there is the study by Takahashi et al.4?) Recently,
Lubell showed that steel plate shear walls exhibit many desirable structural
characteristics in the area of high seismic risk4? and similarly, the use of shear links
is proposed for the main tower of the new San Francisco-Oakland Bay self-anchored
suspension bridge for its ability of dissipating the hysteretic plastic strain energy by
making the links finally removable without causing difficulties from the rest of the

main members after its significant inelastic deformation4?.

1.3 Summary of study

The substance of this study is to mainly clarify the fundamental behavior of
girder structures by means of several approximate analyses and experimental
methods. The outline of each chapter except chapters 1 and 7 are summarized as
follows.

In Chapter 2, the flexural buckling, particularly the elastic lateral buckling of
the girder subjected to moment gradient is treated as the simultaneous buckling
between flanges and a web by using an orthotropic plate theory. The elastically
supported and elastically built-in edges are adopted as the boundary condition at
flanges. Numerical computations are carried out by using the finite difference
method and it is investigated how the rigidity of flanges and stiffeners affect the
buckling load. To verify the validity of this theory, loading tests are also carried out
using model girders. By applying this theory to the web panel of the girder with
unequal end moments, the magnitude of reduced bending moments and the position
where the moment is reduced can be obtained. That is useful for checking on the
buckling of the web panel with combined bending moment and shear forces.

In Chapter 3, girder bridges with large depth are analyzed by the approximate
method for the bending strength of the girder with multi-stiffened web plate by
means of the orthotropic theory. In the proposed method, the stress distribution at
the ultimate state is assumed and the simultaneous buckling of flanges and a web
plate is evaluated. For the case of inelastic buckling the reduced coefficients are
assumed. Besides, the formula on an equivalent rigidity is given in the case of the
web plate with unequally spaced stiffeners. The effect of the flexural rigidity of
flanges, the flexural and torsional rigidities of web plates, the aspect ratio of web
panels and the width-to-thickness ratio of web panels on the buckling loads are
investigated, respectively. The proposed method is verified by using the existing
result of the loading test under bending of the girder with horizontal and vertical



stiffeners.

In Chapter 4, the static strength on girder panels subjected to shearing forces is
examined. In the first half of this chapter, the girder with equal depth is chosen as
the subject of the study. Firstly, by testing small girder models the strength and
deformation behavior are investigated. In this description, the comparison between
proposed several methods of plastic analysis on the shearing strength of such girders
are provided. Subsequently, the strength and the deformation behavior on the shear
panel of girders are investigated in detail by means of elasto-plastic finite
deformation analyses using finite element method. In particular, it is taken into
account how the flange rigidity and the ductility influence the result. In this
analytical process and on the basis the experimental results the adequacy of a few
main methods by plastic analysis is examined. In the latter half of this chapter, the
load-carrying capacity of the girder with linearly varying depth under shear is
investigated. In the first place the plastic analysis for the girder with equal depth is
extended to that for the girder with trapezoidal panels. The shear buckling load of a
trapezoidal panel is obtained on basis of the calculated results by finite element
method. And the stress on tension strips is also obtained on basis of the stress
distribution suggested by Ostapenko. Then, by testing the model girder with the
varying depth, the characteristics of such girders is found and the validity of the
plastic analysis is verified. Finally, about the intermediate vertical stiffeners on this
trapezoidal girder, efforts are chiefly concentrated at the effects of the rigidity on
failure modes on the basis of the experimental examination and the theoretical
consideration by the modeling analysis.

In Chapter 5, the load-carrying capacity of the girder panel subjected to the
combined forces of bending and shear is investigated. For the girder with equal depth
the results of plastic analysis, elastic finite deformation analysis, elasto-plastic finite
deformation analysis, experiments and so on which have been proposed formerly by
many researchers are summarized and compared first. Then, the method to predict
by the plastic analysis the load-carrying capacity of the girder with the trapezoidal
panels of linearly varying depth is given. The method of plastic analysis on the shear
strength of the girder with linearly varying depth is expanded to the case of the
combined loads. Finally, by using the model girders with the varying cross section
the loading test is done and the validity is investigated by comparing these
experimental results with the results by the plastic analysis.

In Chapter 6, the strength and the deformation capacity of the girder panels
subjected to cyclic shear load are investigated. Namely, the alternating inelastic
shear buckling behavior of girder panels is clarified. This belongs to the subject of
high stress and remarkably low cycle fatigue. Firstly, the strength and deformability
for single panel of plate girders is investigated in detail. The analytical method is
based on the elasto-plastic finite displacement analysis using finite element method.
Subsequently, inelastic repetitive shear and flexural buckling of plate girders with
multi-panel is treated. The loading test by means of small-sized model girders, the
width-to-thickness ratio of the web, flange rigidity and loading pattern being
introduced as the main parameters is carried out and the influences on the collapse
modes, strength and deformation behaviors of these panels are examined. Then, the



elasto-plastic finite displacement analysis is carried out for such girders with multi-
panel. The validity of this analysis is verified by comparison with loading tests.
Finally, the energy absorbing capacity of such panels is discussed in view point of
plastic damper effect.

In Chapter 7, a steel beam that simulated the intermediate cross beam in the
bridge piers of two-story portal steel frame is analyzed. The strength and
deformability of this steel beam subjected to the monotonously increasing shear force
or alternatively repetitive shear force are clarified by the elasto-plastic finite
displacement analysis using the finite element method. Effect of energy dissipation
due to the shear buckling deformation in the relatively thin web plate near the center
of the crossbeam is investigated. Namely, the energy dissipation effect by the
deformation of the web panel is noticed in order to reduce the damage in the

earthquake of the bridge pier as much as possible.
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Chapter 2
Lateral-torsional buckling of girders

2.1 General description

As long as girders are properly braced, they can have satisfactory strength. But if the
bracing against lateral deflection and twisting is not set up enough, they may fail due to
lateral-torsional buckling in an early stage. Therefore, the lateral-torsional buckling is a
limit state in which structural members lose their usefulness in bending. The tendency to
this type of buckling is particularly remarkable during construction because of insufficient
braces.

The case in which a girder section is subjected to bending moment alone is real. On
the other hand since the case under combined bending moments and shear forces is usual,
the bending moment distribution in the longitudinal direction is necessarily non-uniform.

In such buckling curves, there are three ranges composed of elastic buckling, inelastic
buckling and plastic behavior. Among these, elastic buckling is especially of importance
during construction phase. On the other hand, the remaining ranges are important for
completed girder structures.

Extensive researches have been conducted in this field. Nethercot? summarized these
results as the simple and direct design methods in which various loading and support
cases have been considered for the elastic lateral buckling of beams. Vinnakota? has
considered the effects of initial geometric imperfections. Woolcock and Trahair3.4
investigated the problem on postbuckling strength.

The lateral stability must be influenced by the existence of a web. Therefore, in the
analysis on such problem the deformation of a web plate should be considered in order to
obtain the buckling strength exactly. In most research, the deformation of a web plate is
not considered usually.

Recently, the bridge with twin girders has been constructed in order to realize
rationalization and reduction of labor. In such structural type of bridge, it may especially
worry about the generation of lateral-torsional buckling. In addition, such type of girder
bridge with very thin web plate is especially noticed in Europe. Therefore, the
lateral-torsional buckling on such girders with large width-to-thickness ratio of web plate
will become an important interest. In the girder under construction, it is still more
important.

Overall lateral buckling of the bridge composed of twin girders has been also
studied4445, Recently, research on overall lateral buckling of rational 2-girder bridges
under erection is presented4®. Researches on such overall behavior are very much also
required.

In this chapter the elastic lateral buckling of girders with relatively thin web will
be investigated. Accordingly, this problem is closely related with the girder under
construction. For twin girder bridges above mentioned, such investigation is especially
effective.

The simultaneous buckling of the flange and web is analyzed by means of the theory
of orthotropic plate. The numerical computations are carried out by the finite difference
method. Loading tests are also carried out and theoretical and experimental results are



compared.

Furthermore, when a girder panel is subjected to unequal end moments a problem
how equivalent uniform moment is estimated arises. It becomes a matter of important
concern for checking on the buckling of a girder panel. Therefore this problem is brought
up for the last study of this chapter. The method that has been applied in the
lateral-torsional buckling analysis is also adopted to investigate this problem.

2.2 Elastic lateral-torsional buckling of girders under uniform moment

The research in this case has been dealt with intensively formerly. In this article, at
first a typical critical buckling moment of beams is given. Subsequently, an analytical
method in which the deformation of a web is included as a variable is introduced.

2.2.1 Simply supported beam
It is assumed that the ends of a beam are prevented from lateral deflection and
twisting. On the other hand, it is assumed that they are free to rotate laterally and the

end cross section is free to warp. The critical moment of a doubly symmetric beam for
which the simply supported condition can be satisfied has been obtained as follows?.

Max =|EN/E |, GI L+ W2 (21)

w .~ [Ec.
IV GJ

where | is span length, £ and G are the elastic and shear moduli, respectively. 7, / and

Cw» are the minor axis moment of inertia, the St-Venant torsion constant and warping
constant, respectively.

2.2.2 Various end support conditions
End-restrained conditions have a considerable influence on the elastic

lateral-torsional buckling strength. Some of these end support conditions are shown in
Fig.2. 1. Nethercot? has given the following equation that can be applied in these cases.

T 2
Mo =a JE1,GJ T /1+% (2.2)

where @ varies with loading and support conditions and the value of @ has been
presented for symmetrical I-beams loaded with equal end moments.
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Fig.2.1 Idealized end restraints!6).

In this figure, u andg denote the lateral displacement and the twisting of the beam,
respectively.

2.2.3 Elastic buckling of plate girders under pure bending

Elastic buckling of plate girders under pure bending has been analyzed by Konishi et
al.® as the simultaneous buckling between a web plate and vertical stiffeners. The
stiffened plate (Fig.2.2) is regarded as an orthotropic plate. The differential equation of
the deflection surface for the buckled orthotropic plate is

o'w o'w o'w ( yjazw
Dy + 2H +D =No|l-a=
o x* axz_ayz Vay4 0 b ) ox>

Mt}
Ir;p
:1.

Fig.2.2 Stiffened plate.
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where p and D, are the flexural rigidities of the stiffened web plate in the direction of

x and y, respectively, H =x,/DsxDy , No is the maximum axial force per unit length at

y=0 and a is the constant which can be settled by the position of the neutral axis. The
boundary condition at upper flange is assumed as laterally supported and built-in edge.
The effects of vertical stiffeners and the flexural and torsional rigidities of the upper
flange on the buckling loads have been investigated in detail.

2.3 Elastic lateral-torsional buckling of girders under unequal end moments

Most of the plate girder panels are usually subjected to combined loading of bending
moments and shear forces. In these cases due to the existence of shear forces the
distribution of bending moments in the longitudinal direction becomes necessarily
non-uniform. Consequently it is supposed to be actual and general that the subject on the
lateral-torsional buckling of plate girders should be also treated in consideration of this
effect.

2.3.1 Beams under unequal end moments

If the applied end moments are unequal, the moment gradient arises in the
longitudinal direction of beams. Salvadori” has presented that the influence of moment
gradient may be taken into account by a simple modifier to Eq.2.1.

Me =Cob Mocr

where Cp is the equivalent uniform moment factor.
This value can be estimated with good accuracy by use of the following formulas.

Cp=1.75+1.05« + 0.35* < 2.56

= <
%b 0.6+0.4x <0.4

wherek is the end moment ratio.
In Eq.(2.2), as a for buckling moments of the beam under unequal end moments the
following simple expression has been summarized by Nethercot?.

o =1.16+[0.6—x|-[x —0.6] (-0.8< k <1)

o =256 (x £-0.8)

In the above expression, terms in square brackets are used only when positive. These
results agree well with the original values obtained by Horne®.

2.3.2 Plate girders under unequal end moments
It is supposed that for the case when the web has relatively large width-to-thickness
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ratio, such as plate girders, the deformation of the web should be taken into consideration.
This fact has been left out of consideration in most studies on the lateral buckling. And
the restraint caused by the flanges must be also given thought. In this article the elastic
lateral buckling of plate girders loaded with unequal end moments is analyzed as the
simultaneous buckling between the flanges and the web.
(1) Stiffened web subjected to unequal end moments

The plate girder under the action of unequal end moments that has a symmetrical
section about both the major and minor axes is shown in Fig.3.1. The web plate has a
length a and a width b (aspect ratio @ =a/b). It is assumed that the shearing stresses which
are distributed parabolically along both ends of the web (x =0, a) and uniformly along the
joints between the web and the flange are in equilibrium with both end moments.
Considering that the uniformly distributed shearing force is in equilibrium with the axial
force at the top and bottom flanges, respectively, the value of T is determined:

7=(1- B)o, F /(ah)
By using the value ofr and taking the moments of all forces acting on the web, the
shearing stress 7 xy at any point in the web is obtained as follows:
2

P Y +[%j+F/(bh) la
b

o Flange

-0 -0
T

AThe D e 2 E o pao01 Tl

Flange
Fig.3.1 Plate girder under unequal end moments.

By assuming that the normal stresso x at any point in the web varies linearly in the
x-direction, O xbecomes:

ox=ooll=(1- ) (x/a)](1-2y/b)

where 8 = 0 1/0 o, F'=the cross-sectional area of the flange, A = the thickness of the web
plate.
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It is assumed that the web under these stresses is simply supported along the edges x
=0and x= a and elastically supported and elastically built-in along the edges y= 0 and
y = b. The web plate stiffened by the transverse stiffeners may be regarded as the
orthotropic plate and the simultaneous buckling between the web and the flange is
analyzed. The differential equation of the deflection surface for the buckled orthotropic
plate is

4 4 4 2 2
DX6W+2HG—WZ+DyaV:I:h O_X8W+2TW6W (3.1)
ox* ox’0y oy ox? oxoy

where Dy, and D, are the flexural rigidities of the stiffened web plate in the direction

of x and y, respectively, H =1, Dyx+ 2Dy, (D) =the torsional rigidity of the stiffened

plate), and it is assumed that the value of Poisson's ratio associated with the force in the

Jy-direction, y,, takes 0.3. When the numerical factor « is used, in which

H =k, DxDy, & can be determined theoretically. For simplification in the following

analysis the computation is carried out for the case in which x =0. The differential
equations of the deflection curve for the buckled flanges, if the warping rigidity of the
flanges may be neglected, become

otw W _ |, ow o°w o°w
+(5oF —tX)E= Fth—= =+ D, %5 + (4Dy + DY) L (3.2)
Bbax4 (O-O T )axz T 8X {Dyayg ( Dy D)aXZGy
3 3 2 2 2
oxoy F ox“oy oxoy oy Ox

where in these equations the upper sign is applied to the top flange and the lower sign to
the bottom flange, and Bb, Ch and fo are the flexual and torsional rigidities of the flange
and the polar moment of inertia respect to the center of gravity of the flange, respectively.
Eqgs. (3.2) and (3.3) represent the conditions of elastically supported and elastically
built-in edges, respectively.

The problem will be solved by converting the differential equations (3.1), (3.2) and
(3.3) into a set of the finite difference equations considering the simply supported
boundary condition along the edges x=0 and x=a. The result is represented in the
following matrix form:

[A]{w} =k, [B]{w} (3.4)

where k, is the buckling coefficient and represented as gob*h/(7°D,). For the positive

minimum given value obtained by solving Eq.(3.4), the buckling stress can be determined.
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(2) Critical loads

The computed results are as follows.

The relationship between the number of subdivisions in the finite difference
equations and the convergence of the solutions must be investigated in advance. An
example of this result is shown in Fig.3.2 where Nx and Ny are the number of
subdivisions in the direction of x and y, respectively. It seems to be quite all right in an
engineering problem to consider the solution for Nx=Ny=20 as the sufficiently accurate
value. Practically the value of k, in the case of Nx=Ny=20 almost agrees with the
estimated value obtained by means of Salvadori's'4¥ method.

Figures 3.3 and 3.4 show how &, varies with « for five values of B in the case of
Dy/Dx=50. In these figures each solid line shows the simultaneous buckling curve. On the
other hand the values calculated by using the lateral buckling theory of beams in Ref. 1
are shown by the broken lines. It is obvious that the difference between the two curves for
each value of B does not always show the same tendency and becomes larger as «
becomes smaller. In the following analysis the computed results for 3 =0 will be examined,
since the influence of the shearing force seems to be most remarkable.

441
N‘:25
440 :-'"'y'/“'——_f-' —
10 ;.——1-"'-'4
1‘3.9‘44‘) 13‘..--‘*"'_-__'
[
E
43.8 —
10
437 //"‘ Dy/D:=50 By/bDe=500 B=0
) FIbh=0.75 Cy/bDy=10  a/b=5
43.6 ‘ . |

14 16 18 20

Ny

Fig.3.2 Buckling coefficient vs. number of subdivisions in finite difference method.
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Fig.3.4 Comparison of simultaneous
buckling load with value obtained
by means of beam theory.

Fig.3.3 Comparison of simultaneous
buckling load with value obtained
by means of beam theory.
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Figure 3.5 shows the effect of the flexural rigidity of the flange on the critical load. It
is obvious that k, increases considerably according to the increase of Bp. But for the
comparatively small values of @ the horizontal deflection of the flange is small and &, is
significantly influenced by the torsional rigidity of the flange as shown later. Figure 3.6
shows the effect of the torsional rigidity of the flange on the critical load and it is noted
that &k, does not so much increase as Cp increases. From Figs. 3.5 and 3.6, it may be
considered that the effect of the flexural rigidity of the flange on the critical load is almost
dominant for the values of @ 22 and as & increases &k, decreases considerably on
account of the influence of horizontal deflection of the flange.

300

Dy/Dx=50 CofbDs=10
FIbh=0.75 B=0

250

Dy/D==50 Be/bDx=500
\ FIbh=0.75 B=0
200

2150 150 ANNY
E-3 o
100 100 \N 5o
20 §
50 50
% 3 4 5 % 3 4 5
a/b alb
Fig.3.5 Relationship between buckling Fig.3.6 Relationship between buckling

coefficient and flexural rigidity of flange.  coefficient and torsional rigidity of flange.

Figure 3.7 and Figs 3.8 to 3.10 show an example of the theoretical buckling mode in
the direction of x and y, respectively. It may be noted that in the case of a =2 the
buckling mode is complicated in form as well as the web deflects remarkably and the
bottom flange has a tendency to move. On the other hand in the case of a =4 the typical
lateral buckling mode is given.

(3) Rigidity of transverse stiffeners

In Art.(2) all of the computed results have been presented for the case in which
Dy/D=50. In Art(3), how the rigidity of the transverse stiffeners has influence on the
buckling strength will be examined.

Figure 3.11 shows how k,-values vary with Bw/bDx for the three different values of
D,/Dx. As it has been shown in Art.(2) &, increases rapidly as BwbDxincreases. It may be
also seen from Fig.3.11 that k&, -values are elevated comparatively well up to a
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value of D,/D:=200, but gradually for values of D,/Dx=200 and over. Figure 3.12 shows
how k,-values vary with Cw/bDx for the three different values of D)/Dy. As it has been
shown in (2) k,increases gradually according to the increase of Ci/bDx. It may be also seen
from Fig. 3.12 that when the values of Dy/Dx vary from 50 to 200 an increase in Dy/Dx
leads to a considerable increase in k,-value, but a further increase in [)/Dx does not so
much influence the critical load.

250 l l [
200 ...___._._._Q_._._ mlu‘:goﬂ /.-"""
200
150 5—07‘_'_'—'
£ / ‘ \

100
FIbh=0.75 alb=3.0
B,/bDx3500 8=0

50 =
0 |
0 100 200 300 400 500

Cy/bDx

Fig.3.12 Influence of torsional rigidity of flange and flexural rigidity of
transverse stiffener on critical load.

Figures 3.13 to 3.19 show how k&, -values vary with & for various values of Dy/Dxin seven
combinations of the width-to-thickness ratio of the web, b/A, the width-to-thickness ratio
of the flange, ¢/%, and the ratio of the cross-sectional area of flange to web, #/bA. In these
Figs. each broken line shows the value calculated by means of the theory of lateral
buckling of beams (Ref. 1). On referring to Figs. 3.13 to 3.15 the influence of alternating
the value of b/ for the case in which t ¢/£=10 and F/bh=0.75 may be seen. It is obvious
from these Figs. that when the values of @ are between 2 and 3 the difference between
the buckling loads obtained by means of the two theories is considerable even for the case
in which Dy/Dx=200. Figures 3.14, 3.16 and 3.17 show the effect of alternating the value
of ¢/t for the case in which b/A=250 and F/bA=0.75. It may be seen that the difference
between the two theories increases by degrees according to the increase of ¢/t. By referring
to Figs.3.14, 3.18 and 3.19 the influence of alternating the value of F/bA may be examined.
It may be seen that as F/bh increases the difference between the two theories increases
considerably. It may be obvious from Fig. 3.18 that when the values of a are between 2
and 4 the simultaneous buckling curve for the value of D/Dx=200 agrees well with the
broken line and in the region of 4 even the simultaneous buckling curve for the value of
Dy/Ds=30 almost agrees with the broken line.
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Fig.3.19 Effect of transverse stiffener.

It may be seen from Figs. 3.13 to 3.19 that the simultaneous buckling loads for D;/Dx
above a certain value almost or fairly well agree with the buckling loads obtained by using
the beam theory. So on referring to Figs. 3.11 and 3.12 we may regard the minimum value
of Dy/Dx in the limit when the simultaneous buckling loads approach the buckling loads
obtained by means of the beam theory as the necessary rigidity of the transverse
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stiffeners. Then as seem from Figs. 3.13 to 3.19 when the values of & are between 2 and
5 it may be quite all right to consider the value of D)/Dx=200 for comparatively small
values of @ and the value of D;/Dx=30 to 50 for comparatively large values of @ as the
necessary rigidity of the transverse stiffeners, respectively.

(4) Conclusions

The elastic lateral buckling of plate girders under the action of unequal end
moments has been analyzed by using the theory of orthotropic plates. As a result of the
computations the simultaneous buckling loads between the flange and the web are
obtained for various cases. The obtained critical loads are compared with those calculated
by means of the beam theory for various end moment ratios. And the effect of the flexural
and torsional rigidities of the flange and the flexural rigidity of the transverse stiffeners
on the critical loads has been examined.

As a result of these investigations, it follows:

1) It is obvious that for comparatively large values of @ the critical loads are influenced
considerably by the values of the flexural rigidity of the flange, while they are not so
much affected by the values of the torsional rigidity of the flange.

2) It has been shown that the increase in the critical load almost reaches the limit when
the rigidity of the transverse stiffeners approaches a certain value in the case of S =0,
and the necessary rigidity of the transverse stiffeners is presented.

3) It is evident that the lateral buckling loads should be determined by considering the
rigidities of the flange and the transverse stiffeners.

2.3.3 Elastic lateral buckling of plate girders of mono-symmetrical cross section

Although the elastic lateral buckling of I-beams and plate girders loaded with equal
or unequal end moments has been studied by many investigators?.9.10.16.17 | as was
stated previously, the deformation of the web has been left out of consideration in many
researches. When the web has relatively large width-to-thickness ratio, it is supposed that
the web deformation should be taken into consideration. The restraint caused by the
flanges must be also given thought. As the compression flange of the steel girder of
composite girders has the small cross section, the girder under construction is considered
to be in a dangerous state concerning the lateral buckling. The elastic buckling of
rectangular plates loaded with linearly distributed normal and parabolically distributed
shearing stresses has been investigated by Radulovic!®-20 | but it has been assumed that
all boundary edges are simply supported. In this article the elastic lateral buckling of
plate girders of mono-symmetrical cross section subjected to equal or unequal end
moments is analyzed as the simultaneous buckling between the flange and the web.

Computed buckling loads are compared with those calculated by means of the beam
theory?, and the effect of the flexural rigidity of the transverse stiffeners on the buckling
strength is studied. The effect of the flexural rigidity of the flange on the buckling
strength is examined. Further a few examples of theoretical buckling modes are shown.
Consequently the property of the elastic lateral buckling of plate girders is clarified.

(1) Stiffened web
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The plate girder under the action of unequal end moments that has a mono-symmetrical
cross section is shown in Fig. 3.20. The web plate has a length a width b (aspect ratio a
=a/b). It is assumed that the shearing stresses which are distributed parabolically along
both ends of the web (x=0, a) and uniformly along the joints between the web and the
flange are in equilibrium with both end moments.
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Fig.3.20 Stiffened web plate.

Considering that the uniformly distributed shearing force is in equilibrium with the axial
force at the top and bottom flanges, respectively, the value of 7 cand 7 ¢are determined:

7= [1- ) 0w F/(ah)
re= A= f) oo F,/(ah)

where f = O.u/ O'co’i =y, / Y. h = the thickness of the web plate, F. and F: are the

cross-sectional areas of the compression and the tension flanges, respectively. A is equal

to (0.5+Fw/bh)/ 0.5+ F/bh), provided that t/b and t«/b are considered to be zero from the

industrial point of view (¢ and ¢ are the thickness of the compression and tension flanges,

respectively.). By using the values of 7 . and 7 , and taking the moments of all forces

acting on the web, the shearing stress 7 ,w at any point in the web is obtained as follows:
2

1+ A Y +/{yj 1-12  F.

b

=(1- - | = - c c/
Txy ( ﬂ) 2 2+bh Ocol &

b
The above expression corresponds to the value of the shearing stress in the web calculated
by means of the elementary beam theory, when it can be regarded that ¢/b and £/b vanish.

By assuming that the normal stress o x at any point in the web varies linearly in the
x-direction, O xbecomes:

o= prte A - )

The normal stress o yat any point in the web is assumed to be zero.
It is assumed that the web under these stresses is simply supported along the edges
x=0 and x=a and elastically supported and elastically built-in along the edges y=0 and y=5.
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The web plate stiffened by the transverse stiffeners may be regarded as the orthotropic
plate and the simultaneous buckling between the web and the flange is analyzed. The
differential equation of the deflection surface for the buckled orthotropic plate is

4 2 2
w w W
SW g W 4, 2=, 8 0

“—+ (3.5)
o' ayayt oyt |Thoyt Toxay

Dy
where Dxand Dy are the flexural rigidities of the stiffened web plate in the direction of x
and y, respectively, H = yyDet 2 Dy (Dxy = the torsional rigidity of the stiffened plate),
and it is assumed that the value of Poisson's ratio in the y~direction, Vo, takes 0.3. When

the numerical factor « 1is used, in which H =« ,Dx D, - Kk can be determined

theoretically ) For simplification in the following analysis the computation is carried out

for the case in which x =0. The differential equations of the deflection curve for the
buckled flanges, if the warping rigidity of the flanges may be neglected, are obtained as
follows. For the compression flange the expression becomes:

4 2
Boc L 4 +((7c0Fc X) Z_Tch =D (4Dx
3
W W W
oW 1 hx)-2 h0

[

O

<

N
+

S

¥

(3.6)
where Bpe, Che and Lo are the flexural and torsional rigidities of the compression flange
and the polar moment of inertia respect to the center of gravity of the compression flange,
respectively. For the tension flange the expression becomes:

2 3 3
oW oW ow oW ) oW
Bot . 4 (O'tOFt_ hX) + h&:_ Dy 3+(4ny+D1 2

aX 5 ay 8X8y
3 2
8W oW
Cbta ay [UtOFt axzay_‘[t Xy lot
2
=7/ D W D 07
y y Vy xax

(3.7)
where By, Cpe and Iot are the flexural and torsional rigidities of the tension flange and the
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polar moment of inertia respect to the center of gravity of the tension flange, respectively.
Eqgs.3.6 and 3.7 represent the conditions of elastically supported and elastically built-in
edges.

The problem will be solved by converting the differential equations 3.5, 3.6 and 3.7
into a set of the finite difference equations considering the simply supported boundary
conditions along the edges x=0 and x=a. Thus the obtained positive minimum eigen value

represents the buckling coefficient which k, = acobzh/(ﬂz Dx) and the buckling stress

can be determined.

(2) Computed results

When the number of subdivisions in the finite difference equations is represented by
N, the following computed results are the solutions for A=10 in the direction of both x and
y, respectively.

Fig. 3.21 shows the effect of the flexural rigidity of the compression flange on the
critical load. It is obvious that &, increases considerably according to the increase of Bpe.
For the comparatively small values of & the deflection of the compression flange is small
and %, is influenced by the torsional rigidity of the flange as shown later in Figs. 3.22 to
3.24. Fig. 3.22 and Figs. 3.23 and 3.24 show examples of the theoretical buckling mode in
the direction of x and y in the case of £ =0. It may be noted that in the case of a =2 the
buckling mode is complicated in form as well as the web deflects remarkably. On the other
hand in the case of a =4 the typical lateral buckling mode is
given.
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Fig.3.21 Relationship between buckling coefficient and flexural rigidity
of compression flange.
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Fig.3.23 Theoretical buckling mode
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Figs. 3.25 to 3.30 show how the rigidity of the transverse stiffeners has influence on
the buckling strength. Figs. 3.25 to 3.27 show how k,-values vary with a for various
values of Dy/Dx in three combinations of the ratio of the cross-sectional area of
compression and tension flange to web in the case of =0 and Figs. 3.28 to 3.30 show the
same relation in the case of § =1. In these Figures, each broken line shows the value
calculated by means of the theory of lateral buckling of beams (Ref. 1). It may be seen that
the simultaneous buckling loads show lower values and the difference between the two
theories increases considerably according to the decrease of a . For comparatively large

Deflection, w/wmax.
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Fig.3.24 Theoretical buckling mode
(transverse direction).



values of a k, values approach more rapidly a certain value in the case of £ =1 than
B =0 as the value of Dy/Dx increases. From these Figures, the necessary rigidity of
transverse stiffeners can be roughly estimated.
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(3) Conclusions

The elastic lateral buckling of plate girders of mono-symmetrical cross section under
the action of unequal end moments has been analyzed by using the theory of orthotropic
plates. As a result of the computations the simultaneous buckling loads between the
flange and the web are obtained. The obtained critical loads are compared with those
calculated by means of the beam theory. And the effect of the flexural rigidity of the
compression flange and the flexural rigidity of the transverse stiffeners on the critical
loads has been examined.

As a result of these investigation it is obvious that for comparatively large values of
a the critical loads are influenced considerably by the values of the flexural rigidity of
the compression flange. Further it has been shown that the increase in the critical load
almost reaches the limit when the rigidity of the transverse stiffeners approaches a
certain value and the necessary rigidity of the transverse stiffeners is estimated. It is
evident that the lateral buckling loads should be determined by considering the rigidities
of the flange and the transverse stiffeners.

2.4 Lateral-torsional buckling tests of girders under unequal end moments

The ultimate strength of a plate girder subjected to bending moment primarily
depends on the strength of the compression flange. Basler2) has proposed three buckling
modes of compression flanges. Of these, lateral buckling has been studied both
theoretically and experimentally by many researchers!6).

In the case of girders under varying moment, the ultimate strength can be predicted
by using the equivalent constant bending moment??. There has, however, been little
experimental verification for this case. Fukumoto?® has tested the lateral-torsional
buckling of welded I-girders with a web plate of comparatively small depth-to-thickness
ratio.

In the preceding articles, the elastic lateral buckling of plate girders under varying
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moment in consideration of web plate deformation was examined theoretically. This
analysis is especially suitable for girders with web plates of large depth-to-thickness ratio.

In this article, two welded plate girders with web plate of relatively large
depth-to-thickness ratio are tested. They are designed so as to collapse within the elastic
range. Each girder is simply supported at both the ends subjected to a concentrated load
at the center. Namely the applied bending moment varies from a maximum value at the
center to zero at the bearing stiffeners.

The test results of the load carrying capacity are compared with the values predicted
by the previously given theory in which the effect of moment gradient is taken into
account. This theory gives the elastic buckling strength for coupled buckling of stiffened
web-plate and flanges.

(1) Description of tests
1) Test models

Two welded girder models, LP-1 and LP-2, made of SS400 steel were tested. As shown
in Fig. 4.1, the side of each of these lying on the right-hand side of the load is chosen as
the testing panel. The testing panel is composed of several single panels bounded by the
top and bottom flanges and the transverse stiffeners: Model LP-1 has five single panels
and Model LP-2 four. The dimensions of the testing panel on each girder are summarized
in Table 4.1.

Intermediate transverse stiffeners are attached on both sides of web plate in addition
to bearing stiffeners at the loading point and at the supports. The web plate and the top
and bottom flanges have each a cross-section constant throughout the whole length. Both
models were designed so as to collapse within the elastic range.

The loading point is indicated by the thick arrow in Fig.4.1. As the load is single and
concentrated, the testing panel is subjected to bending moment varying from maximum
value to zero.

LS. LS. LS.
3 "
==
d,
i,
1900 | « Testing panelz=5xa —»
LP-1
LS. LS. LS.
I it
d,
t
2260 ———— —~— Testing panel:z4xa
LP=-2

L.S.: Lateral support

Fig.4.1 Testing plate girder models.
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Table 4.1 Dimensions of testing plate girders

Model LP-1 LP-2
Flange b (mm) X # (mm) 80x9 80X 7.2
Web plate dw(mm) X ¢(mm) 782 % 3.2 800 % 3.2
Stiffener bs(mm) X #(mm) 19x4.5 15% 3.2
Single panel length a (mm) 520 640
Aspect ratio of single panel 0.665 0.80
Depth-to-thickness ratio of web plate 244 250

2) Material testing
Prior to testing the models, standard material testing according to JIS Z2241-1968
was conducted to obtain the yield stress of each component. The results are shown in
Table 4.2.

Table 4.2 Results of standard material testing
Model LP-1 LP-2

Flange Ovjs 323.6 3563.0

Yield stress

(MPa) Web plate Gy, 274.6 313.8

3) Test setup

Each model was simply supported with roller supports at both ends and tested under
a concentrated load on the top flange using an oil jack. It was ensured that the applied
load remains vertical, even when the models twisted and deflected laterally. To prevent
any horizontal movement of the model, rigid support frames bolted to the floor of
laboratory were provided at the locations shown in Fig. 4.1. Each frame was attached to
the model using a roller. The frames prevented rotation about longitudinal axis and
lateral displacement of the model, but permitted lateral bending. Fig.4.2 shows the lateral
supports at the loading point and at the bearing stiffeners. The frames also allowed the
flanges of the model to rotate independently in their own planes, so that the models are
free to warp.

4) Instrumentation

Dial gauges and electrical displacement transducers were used to measure the
deflection on each model. In order to measure the out-of-plane deflections of the web
plates relative to the boundaries of single panel, a frame clamped to the bearing stiffeners
was used. Dial gauges were mounted underneath the bottom flange to measure the
vertical girder deflections. The horizontal and vertical deflections and the angle of torsion
on the top flange were detected using cathetometers. Fig.4.3 shows the poles for these
measurents.

Electrical resistance strain gauges, of uniaxial and rosette types, were used to
measure the strains on web plate, and top and bottom flanges on each model. The strain
gauges were bonded on to both the surfaces of the model components, and thus it is
possible to separate the membrane and the plate-bending strains.
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5) Testing procedure
After each model was set up, the eccentricity of the loading was checked and the
initial out-of-plane deflection of web plate was also measured. The distribution of the
obtained initial deflection is shown in Fig. 4.4. The maximum initial deflection of the web
plate for Model LP-1 is 5 mm and for Model LP-2 3 mm. Each maximum imperfection is
relatively large owing to the use of so thin a plate.

Model LP-2 (mm}

Fig.4.4 Initial deflection of web plates.

The step-by-step loading procedure was used in each girder test. After attaining
maximum load, unloading was conducted.

(2) Results of loading tests and interpretation
1) Collapse mode
The collapse of the two models was due to lateral coupled buckling of their
compression flanges and stiffened webs. As an illustration, Model LP-2 after collapse is
shown in Figs. 4.5 and 4.6.

Fig.4.5 Collapsed girder. Fig.4.6 Buckled web plate.
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2) Load-deflection curves

Figures 4.7 and 4.8 show the horizontal deflection and angle of torsion on the top
flange and the vertical deflection of the girder for the loading sequences in the cases of
Models LP-1 and LP-2, respectively. In these figures the chain line shows the relationship
between load and girder deflection predicted by elastic beam theory. The observed
relationship remains linear up to the neighborhood of the collapse except in the early
stage of the loading. As seen from these figures, the horizontal deflection of the
compression flange increases rapidly as the girder approaches collapse point.
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L —0 A
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Fig.4.7 Load-deflection curves for Model LLP-1.
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Fig.4.8 Load-deflection curves for Model LP-2.
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3) Out-of-plane deflection of web panels

In Fig. 4.9, the deflection of various points on the web panel is shown for the three
different loading steps. It can be seen from Fig. 4.9 that the web plate of Model LP-1
buckled in a deformed shape of a half-wave, while the web plate of model LP-2 buckled
showing two half-waves. It is clear from comparison of Fig. 4.9 with Fig. 4.4 that the
initial deflection influenced the buckling shape of the web plate.

OP:102.0 kN OP= 70.6 kN
o 152.0 o 1049
a 1715 a 119.6

Fig.4.9 Deflection distribution of web plates.

4) Bending strain of girder
The observed distribution of girder-bending strain is shown in Fig. 4.10. The strain
distribution departs from linear distribution as the loading approaches the ultimate state.
It is obvious from the figure that a portion of the web plate loses its load carrying capacity
as the applied load increases.

_ . -6
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-600 =400 -200 0 -400 -200 0
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4] 200 400 600 Strain ()(10“6)

Strain(x107)

Fig.4.10 Distribution of strains due to girder bending.
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5) Ultimate strength

Table 4.3 shows the observed maximum load Pmax, the observed ultimate moment
Mmax, and the full plastic moment M, for each girder. In addition, the elastic coupled
buckling load predicted theoretically P.r is also indicated. As seen from a comparison of
the experimental result with calculated result, theoretical buckling loads are 13~15%
lower than experimental values for both models.

The strains on top flange due to lateral bending at the load step approaching ultimate
state are shown in Fig. 4.11. In each model the effective buckling length reduces which is
why the experimental buckling loads were made higher than the predicted values.

The ultimate strength obtained by test are plotted with several theoretical curves for
the buckling strength of I-beams in Fig. 4.12, where o rthe yield stress, o «the critical
stress, £=Young's modulus, d=the girder depth, L+~the effective length, r~=the radius of
gyration about strong axis, r,=the radius of gyration about weak axis, 8 =the end moment
ratio. The ultimate strength of the tested girder models is higher than the theoretical
curves for the case of B =0.
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Fig.4.11 Strains of top flanges due to lateral bending.

Table 4.3 Comparison between experimental and predicted results

Experimental Theory™
Pmax Vmax Mmax Mp Mmax/ Mp PuIt
Model (kN) (kN) (kN* m) (kN* m) (kN)
LP-1 1775 75.7 197.1 316.7 0.62 151.0
LP-2 118.7 55.9 143.2 323.6 0.44 103.7
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Fig.4.12 Experimental strength and theoretical curves.
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(3) Conclusions

Two model girders were tested to investigate the lateral buckling strength and
behavior of plate girders with transverse stiffeners under varying moment. They have the
web plate of large depth-to-thickness ratio.

Such matters as the effect of initial deflection on the web plate, the distribution of
strains due to girder bending, and the load-deflection relationship, were discussed.
Experimental buckling loads were compared with the elastic coupled buckling loads
predicted theoretically, with particular attention to out-of-plane deformation of web
panels. Further, the experimentally obtained ultimate strength was also compared with
the theoretically proposed lateral buckling curves for I-beams under varying moment.

The theoretical buckling loads agreed comparatively well with experimental values. It
is effective sufficiently to use the elastic coupled buckling strength of stiffened web-plate
and flanges for the prediction of the lateral-torsional buckling loads.

2.5 Equivalent uniform moment on a girder for unequal end moments

When a girder panel is subjected to the combined bending moments and shearing
forces, interaction curves are often used in order to estimate the ultimate strength1®. In
this case as the applied moment varies in the longitudinal direction of a girder, it becomes
a serious problem that as the value of the bending moment that is used for the interaction
curve what section is adequate. In regard to this problem, the position of the equivalent
uniform moment is formularized also according to the expression to convert into the
uniform compression2®. By the method of the elastic or elasto-plastic large displacement
analysis on the plate under varying moments, the studies to examine its ultimate
behavior are also carried out29.30, But it is considered that the position of the equivalent
uniform moment has not been yet suggested as a general formula.

In this article the method in order to obtain the position of the equivalent uniform
moment is presented for single vertically stiffened girder panel and in the elastic range.
By applying a parametric analysis, the influences of degree of the moment gradient, the
panel aspect ratio, the torsional rigidity of the panel edge and so on are examined. In
numerical calculation the finite difference method is used!.

The position of the equivalent uniform moment is expressed as the function of the
panel aspect ratio and the end moment ratio on the basis of the data analysis. Making use
of these results, the value of the equivalent uniform moment can be obtained easily.

(1) Analysis

A girder panel under unequal end moments is shown in Fig.5.1. When the panel
length and the panel depth are assumed to a and b, respectively, the panel aspect ratio
can be expressed a =a/b. In order to be in equilibrium with unequal end moments, it is
assumed that applied shearing stresses are parabolically distributed along x= 0 and
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Fig.5.1 Panel under unequal end moments.

X =a. From equilibrium of force, the shearing stress at any point in a panel, 7 x, is as

Z'xy:(l_ﬁ)O'O _(E:j +(%) la (5.1)

If the normal stresses at any point in a panel, o x, varies linearly in the direction of x, it is

follows.

as follows.
X 2
ox = 00 [1— (1- ﬁ)ﬂ ( - Fy] (5.2)

where [ =0, / 0, and Ais the thickness of the panel.

It is assumed that as the boundary conditions of the girder panel the edges x= 0 and
X =a are simply supported and along the edges y = 0 and y = b the deflections are zero
and also these edges are built-in. So as to extend this method for a vertically stiffened
girder panel, the panel may be regarded as an orthotropic plate, and then the differential
equation of the deflection surface for a buckled plate is as follows.
4W 4W 4W 2W 62W
0 0 oW _ 0
DXa 7 t2H —= ;T D, z=h o 2+27xy8x6y (5.3)
X 0 X 0 y 0 y X

When Dx, Dy and Dy denote the flexural rigidity in the direction of x, that in the direction
of y and the torsional rigidity, respectively in the above equation, H equals to

vy Dy T 2 Dy (Vy =Poisson’s ratio in connection with the applied force in the y direction)

and H can be expressed as « D.D, by means of a parameter £ .

The built-in conditions at upper and lower edges are expressed as follows.
when y=>0
3 2 2
o w o w o w

+ (5.4)
2 T D1 5 Xz

=~|D
baXZay yay

C
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when y=0

oW _ aZW+ o°w
Cbaxzﬁy Dyayz Dlaxz

(5.5)

where, Cbis the torsional rigidity.
By converting equations (5.3),(5.4) and (5.5) into a set of the finite difference
equations and so as to satisfy the simply supported conditions at X=0 and X=a and

the conditions, W=0,at y=0 and y=Db, the buckling coefficient |_(= ;, bzh/ 7’ D,)

can be obtained.

(2) Computed results and considerations

Single panel of vertically stiffened web is taken up in actual computations.
Accordingly, the value of « =1 is adopted.

In order to examine how solutions converge under the application of the finite
difference method, the case of the square plate subjected to pure bending and simply
supported at all edges is chosen. In Fig.5.2 the broken line shows the result obtained by
the energy methodd. As it is supposed that the convergence is practically good when the
number of subdivisions is 20 in the direction of x and y, the computations are carried out
using these subdivisions.

In Fig.5.3, the position in which the non-uniform moment is converted into the
equivalent bending moment is shown in broken line at the single panel under unequal end
moment. If the value of £ which indicates this position is once obtained, the equivalent
bending moment , Meq, can be estimated in the following expression.

Me=M,(1-E+E8 ) (5.6)
26
25) e
k=1
w24 8=0
y &=
23/';
225 E.:a 'll'l '|-Iﬁ 1':? 20
N

Fig.5.2 Buckling coefficient vs. number of subdivisions.
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Fig.5.3 Conversion into equivalent bending moment.

When the upper and lower edges are simply supported(d =Cs/ bDx= 0), how & varies
with the value of 8 (08 =1) is shown in Fig.5.4(a) and Fig.5.4(b). As a increases the
curved lines change to the convex pattern downward and the value of ¢ decreases by
degrees. In regard to the parameter B, since the shearing stress increases with the
decrease of £, the position of ¢ transfers to the edge in which the larger moment acts.
The similar relation for the case in which the upper and lower edges are fixed is shown in
Fig.5.5(a) and Fig.5.5(b). It is seen in these figures that ¢ shows smaller value than that
obtained for the simply supported edges on condition that @ and £ are the same value,
respectively.
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Fig. 5.4(a) Position of equivalent Fig. 5.4(b) Position of equivalent
bending moment. bending moment.
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In Fig.5.6, how ¢ varies with the value of 0 is shown on the case that a =1. If J 1is
smaller than 1, the value of ¢ changes with slight increases of 0 . But if 0 approaches
1, the value of ¢ almost agrees with that obtained for the fixed edges. It is supposed
that this is caused by the fact that the increase of the torsional rigidity Cp considerably
influences on the buckling load for each value of 8 because of the restraint effect.
However, it is considered that this influence becomes constant for & of the order of 1.
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Fig.5.6 Influence of torsional rigidity.

Figs.5.7(a) and 5.7(b) show the relation between a and ¢ for several values of 3.
The state that ¢ decreases with the reduction of 8 1is shown well in these figures.
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Fig. 5.7 (a) Position of equivalent Fig. 5.7(b) Position of equivalent
bending moment. bending moment.

From the above results, the position of the equivalent bending moment ¢ can be
expressed as the following form.

I . For simply supported upper and lower edges.

02<a <094
£ = 0.378+0.0609 +0.114/3 - 0.23,,” + 0.393¢3 + 0.00512 5
~0.271,° 04450 3" +0.495,° g
0.94<a <163
£ =0.0238+0.359¢ ~1.2578 — 0.151,," + 2.566 +1.297 g’
~113,° 42189 g +0.957, 3
163<a <20
£ = 0.0251+0.207c ~5.08 —0.0575,," + 5.371aff + 3.684 3
~1.427,° f~3.631a g +0974," 5

(5.7)
I .For fixed upper and lower edges.

0.2<a <0.66
£ = 0.387 - 0.124c +0.2223 — 0.394 47 +0.069a — 0.114 3
+0542,” f+0.0617a g* 0148, 5~
0.66<a <115
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£ =-0.041+ 0.407a — 0392/ — 0.209,,* + 2.22503 + 0.76
~1582,°f-2.203 g +1.529," 5
115< a <1.62
£ =-0.501+0.9320 ~ 3.3914 - 0.314,," + 5.44203 + 2.876 5
~2122,°f-4128x g +1601,° 5’
162<a <20
£ = -0.0548+ 0.274; — 4.463 —0.0778 " + 492403 + 252 3
139, f—2.485a g +0.721,° g

(5.8

Approximate curves obtained by applying Eqgs.(5.7) and (5.8) are indicated by solid
lines in Figs.5.8(a) and 5.8(b). As seen from these figures, it is supposed that these
approximate expressions are sufficiently useful so as to estimate the position of the
equivalent bending moment. By substituting the value of & into Eq.(5.6) the equivalent
bending moment Me,; can be easily obtained.
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Fig. 5.8 (a) Position of equivalent Fig. 5.8(b) Position of equivalent
bending moment. bending moment.

(3) Conclusions
As the result of the buckling analysis for the single girder panel under unequal end

moments, the position of the equivalent bending moment was obtained. In computation
the finite differences method was adopted. The conclusions are summarized as follows.

1) As panel aspect ratio @ grows large, the position of the equivalent bending moment
shifts to the edge in which larger moment acts.

2) With the increase of the torsional rigidity at the upper and lower edges the position of
the equivalent bending moment moves to the edge in which larger moment acts.

3) As end moment ratio decreases, the position of the equivalent bending moment
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approaches the edge in which larger moment acts. In this case the degree of fall differs
according to the panel aspect ratio.

4) The position of the equivalent bending moment was expressed as a function of the
panel aspect ratio and the end moment ratio. The good accuracy of this expression was
given.

2.6 Discussions

Elastic buckling is important for the beams with relatively slender web and the
analysis on this problem is actually useful for the beams under construction. Hancock has
considered the effect of web distorsion.3) He has indicated that a beam with web
width-to-thickness ratio of 68 has a flexural-torsional buckling load that is approximate
10% lower than the Timoshenko and Gere estimate, which assumes no distortion.
Recently, Hughes et al. have presented an energy method allowing for the effect of web
distortion on the lateral buckling of mono-symmetric beams subjected to a concentrated
vertical load.3”? They have pointed out that the disparity between the distortional and
classical critical load increases as web height to beam length ratio increases and the
classical method seriously overestimates the critical load for short beams. The accuracy of
this method is verified by results obtained from ABAQUS. Plum and Svensson have
presented a simple method to improve the lateral free and restrained buckling capacity of
double-symmetric I-beams.3® They presented a solution to the problem consisting of
warping-preventing devices in form U-sections connected to the web and flanges of the
I-section. Cheung has examined the elastic distortional buckling behavior of beams with
very slender webs through the findings of a parametric study on section geometries.42

In addition to linear buckling analysis, Woolcock and Trahair have considered the
post buckling of determinate and redundant I-beams.?4 They have pointed out that the
effect of nonlinear torsion does not change the critical load and the elastic post-buckling
behavior of redundant I-beams will rarely be important. Recently, Nakazawa et al. have
investigated analytically the post-buckling behavior of a simply supported panel subjected
to combined loading of bending and shear.2? They have given the suggestive results on
the panel stress distribution after buckling. Kounadis and Ioannidis have examined that
the elastic lateral postbuckling response of geometrically perfect beams, under
simultaneously uniform bending and axial compression in the vicinity of the critical
bifurcation state.39

The studies on inelastic lateral-torsional buckling have been mostly based upon the
tangent-modulus theory and it is supposed that the satisfactory results are obtained. The
effect of the residual stress on inelastic lateral-torsional buckling of beams was started by
Galambos’s research.3? The combined effects of residual stresses and geometrical
imperfections on inelastic lateral-torsional buckling of beams were initiated by Linder.3?
Tuda et al.39 and Nakazawa et al.36) have investigated the ultimate strength of a plate
girder panel under unequal end moments by using finite difference method and finite
element method, respectively. They proposed several interaction curves on the ultimate
strength of a girder panel.

The literature on the experimental researches are collected and reported.34.35 In Ref.
34) an empirical formula is proposed. In Ref. 35) a statistical consideration is given for the
tests of laterally unsupported welded beams. Kemp has analyzed the rotation capacities in
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many tests and given them as a function of the interactive local flanges and web buckling
and lateral-torsional buckling that can be represented by a simple set of equations.40
Recently, Trahair et al. have examined the inelastic combined bending and torsion of
I-section beams using the finite-element method.4? In that paper, the elastic-plastic
load-deformation relationships of beams under combined bending and torsion were
determined by taking into account the effects of large deformations, material inelasticity,
and initial conditions of residual stresses and geometric imperfections. They have pointed
out that a commonly quoted circular interaction equation for combined bending and
torsion does not always provide a true lower bound for I-section beams. Subsequently,
Trahair has given a consistent set of multiple curves for the design of steel beams against
lateral buckling.43

Hereafter, the method of limit state design will be introduced. Accordingly, it is
supposed that the subject of stress redistribution is one of the research needs for the
purpose of rational design. And the rotation capacity of girders must be also important
problem to be examined with much enthusiasm. In addition, the research on overall
lateral-torsional buckling of twin girders with very thin web plate will be needed.
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Chapter 3
Flexural buckling of multi-stiffened web plates

3.1 General description

In recent years, the construction of long-span steel bridges is remarkable. Two
types of girder-bridges can be economically used for the long-span bridges: the first
type is composed of main box-girders and orthotropic steel deck, and the second type
consists of two main I-girders and orthotropic steel deck. The box-girder bridges have
been built since about 1950, and the double I-girder bridges since about 1960. These
types of bridges become longer year-by-year. Consequently, the main girders are large
and deep, and then those web plates have multiple longitudinal and transverse
stiffeners. Because it is supposed that such multi-stiffened webs will be used in for the
future, the ultimate strength and behavior of such webs should be discussed.

Richmond? solved the elastic buckling of rectangular plates orthogonally stiffened
under bending and combined bending and compression by using the orthotropic plate
theory. Afterwards, this solution was also derived by Giencke.? A design procedure
based on these research works was built up and the alternative design procedure based
on the strength of plate panels bounded by the longitudinal and transverse stiffeners,
and the column strength of both those stiffeners was proposed in several specifications.
One of them is BS5400.9 However, The Japanese Specifications for Highway Bridges
does not explicitly contain any design provision applicable to the multi-stiffened webs.4

The failure tests on the box-girders with multi-stiffened webs have been reported
by Dowling®.® and Dibley?. In Japan, a plate girder with many longitudinal stiffeners
has been tested,® and the experiments on the ultimate strength of the plate girders
and box girders with multi-stiffened webs have been carried out.912)

The methods for theoretically predicting the strength of plate girders subjected to
bending has been much proposed.’® In these theories, only Rockey’s theory is
applicable to multi-stiffened webs.19 Other theories cannot be applied to the plate
girders with multi-stiffened web after expansion except Fujii’s theory.1® Therefore, a
theory easily employable in predicting the bending strength of plate girders whose web
has the multiple stiffeners is desirable.

3.2 Various rigidities of multi-stiffened web plates

When the orthotropic plate theory is applied to the plate girders with multiple
longitudinal and transverse stiffeners, the determination of equivalent rigidities is of
importance. The web of most plate girders has unequally spaced longitudinal and
equally spaced transverse stiffeners. However, it is seen that the work on the
equivalent rigidities of unequally spaced stiffeners is few.

In the case of the web plate with unequally spaced longitudinal stiffeners under
bending, Richmond? proposed that it can be transposed by an orthotropic plate with
constant rigidity which is equal to the rigidity at the center of compressive region. But
the determination of equivalent torsional rigidity was made no mention of. So, the
equivalent rigidity in Ref. 16) will be applied.

A web plate that has flexural rigidity D and thickness A is reinforced by s
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longitudinal stiffeners arranged unequally and rtransverse stiffeners arranged equally
as shown in Fig.2.1. The longitudinal and transverse stiffeners have the same cross
section, respectively. The flexural and torsional rigidity of a longitudinal stiffener are
Els and G respectively and those of a transverse stiffener are K and G,
respectively. It is assumed that an orthotropic plate has constant rigidity. The flexural
rigidity Drand Dyand effective torsional rigidity H can be determined by equalizing the
strain energy of the orthotropic plate with that of the stiffened plate.

The equivalent rigidities given by Ref.16) are shown as follows:

a) Flexural rigidity in the longitudinal direction

06:;52;:4(9””7% +0.52sin2z n, )2 75} (3.1)

D, = D{l+
where  y,=El_ /bD

b) Flexural rigidity in the transverse direction

D, =D[L+(r +Dy,] (3.2)

where  y, =El, /aD

c¢) Effective torsional rigidity

H=D|1+ ii(coyzni +1.04cos277n,)’ v, +r—_1z,//r (3.3)
2.08= 2

where y =GJ,/bD and yw, =GJ, /aD

Now, the buckling stresses of an orthotropic plate obtained by applying these
rigidities are compared with those obtained as a stiffened plate. The results will be

summarized by using buckling coefficient k(= o,0*h/z°D).

The examples chosen are the simply supported web plate with two or seven
longitudinal stiffeners. The position of stiffeners is decided as shown in Fig.2.2
according to Ref.4) and the cross sectional area of them is not considered. The number
of transverse stiffeners is zero or four.

bn,

ay Py

y=bn

Fig.2.1 Multi-stiffened plate girder under bending.
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Fig.2.2 Plate girders for example.

The computed results of the web plate that has longitudinal stiffeners only are
shown in Figs.2.3 and 2.4. The solid line indicates the result obtained as a stiffened
plate and the broken line indicates the result regarded as an orthotropic plate. In
Fig.2.3, a change that appears in solid line in the region of a/b=0.2 means the
occurrence of the local buckling at the panel between longitudinal stiffeners. This
change cannot be detected in the broken line. However, it is seen that good agreement
between two curves is obtained in the case that the stiffened plate buckles globally. In
the case of seven longitudinal stiffeners (Fig.2.4), it is supposed that the application of
the equivalent rigidity gives conservative buckling coefficients in a small range of
a/b, but the minimum value of buckling coefficients is properly estimated.

500
500
Stiffened plate |
40{}_' Orth - 400 | Stiffened plate
1 rthotropic plate 1\ — —— Qrthotropic plate
=2, r=0 '( =7, r=0
300 EL/bD=6 300}— |\ ELIbD=6
= Gl /D=0 . \ GJi/bD=0
- 200— 200—
100— 100}—
o | I | |
0 1 2 3 4 2 00 ! % ; J!, 5
u/b a/b
Fig.2.3 Buckling curves. Fig.2.4 Buckling curves.

The computed results of the web plates with both longitudinal and transverse
stiffeners are shown in Figs.2.5 to 2.7. Generally as shown in these figures, it is seen
that the buckling coefficients computed by the orthotropic plate theory agree
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comparatively well with those obtained as the stiffened plate. In Fig.2.5, when a / b is
larger than 0.9, local buckling occurs between transverse stiffeners. In Fig.2.6, the
torsional rigidity of the longitudinal and transverse stiffeners is taken into
consideration. But in the region of a« / b > 1 which the local buckling between
transverse stiffeners, the torsional rigidity cannot be reflected in the solution obtained
as the orthotropic plate. At the buckling curve using the orthotropic plate theory in
Fig.2.7, the mode of m=3 does not appear. This fact is based on the reason why the
solution using the orthotropic theory is smaller than that of the stiffened plate on the
local buckling between transverse stiffeners. In the case that because the rigidity of the
longitudinal stiffener is great the local buckling occurs between the transverse
stiffeners, the use of the equivalent rigidity gives conservative values. However, it is
presumed that in these cases owing to the occurrence of the inelastic buckling the error
will be small. Therefore, as long as the flexural rigidity and space of stiffeners based
upon Ref.4) are insured it is supposed that these equivalent rigidity will produce the
results within acceptable accuracy.

600 600
- stiffened plate
500 Stiffened plate 500 Stiffe P
——— Orthotropic plate ——— Orthotropic plate
400— 2 s 400— s=2. r=4
§=e,r= 3 = 1 =
=t - suen
= 300— GJi/bD=0, GJ/bD=0 < 300— it e bl :
200— 200r—
100(— 100{—
0 0
0 0
a/h alh
Fig.2.5 Buckling curves. Fig.2.6 Buckling curves.
4 000
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3 000— Orthotropic p
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= 2000}—
1000f—
0

alb

Fig.2.7 Buckling curves.

50



3.3 Approximate buckling analysis
An approximate calculation method for bending strength of multi-stiffened plate
girders is developed hereafter.1?

3.3.1 Elastic buckling stress of compression flange

It is assumed that a flange has rectangular cross section of width ¢ and thickness ¢.
If there is no vertical buckling of the compression flange and the lateral buckling can
be regarded as column buckling, the elastic buckling stress is as follows:

o, =n’El12(alc)?

where F'is elastic modulus.

Moreover, if the torsional buckling is considered to be the buckling of a plate with
three simply supported edges and one free edge under compression, the elastic
buckling stress is as follows:

. 7’E (tjz
Oy = kf AN R
31-v9)\c

where » is Poisson’s ratio. And the buckling coefficient kris given by the following
expression.1®

2
c 6(1-
( =[] . 8a-1)
2a V4
3.3.2 Elastic buckling stress of web plate

By considering a stiffened web as an orthotropic plate, the elastic buckling stress
of the web can be obtained as follows:

oo —k, T DDy

cr W bzh

The buckling coefficient kw is estimated by the simplification of Giencke’s approximate

solution.?

_9z? RR,
Y32 \1+(27/25)%R /R,

R, (0=1,2,3) in this expression can be given by extending Giencke’s formula? which is

applied to all simply supported edges to the case of the plate with one free edge and
three simply supported edges. Comparing with the results of the precise calculation,1?
Rnis obtained as follows:

a <2I3q:R =M a" ) +pn’k +agn*(a’)?

a’ >2/34/q:R, =9,/q/ 4+ pn’x +4,/qn* /9
where

p = 2.48-0.48/(1+ 0.019¢)

q=3.86-2.86/(1+ 0.0535(p)}
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¢ = (7b/a)*C, /bD,

Cr : the torsional rigidity of compression flange
The comparisons of the approximate solution with the exact solution are shown in
Figs.3.1 and 3.2 for the case of #=0 and 1. Though it is seen that the approximate
solution gives relatively conservative values in the case of 5< <50, it will be
satisfactory enough for design.

40 ] 50 |
x=0 +——— Exact solution =1 Exact solution
—=——=— Approximate — ——— Approximate
solution solution
30(— 40—

| | |
206 05 10 13 70

Fig.3.1 Buckling coefficient. Fig.3.2 Buckling coefficient.

3.3.3 Inelastic buckling stress of compression flange

In order to estimate inelastic buckling stresses, the reduction method of elastic
buckling stresses will be used.

For the lateral buckling of compression flange the following reduction curves? are
adopted at present.

1020, /0, =1
02<A:.0,/0,=1-0412(1-0.2)

where A=4o,/c,°
For the torsional buckling of compression flange the next curves are used.!®

A<045.0, /o, =1
0.45<A:0 | oy =1-0.53(1 - 0.45)*%

3.3.4 Inelastic buckling stress of stiffened web

Various reduction curves have been proposed. As it is supposed that the effect of
the residual stress at horizontal and vertical stiffeners on buckling stresses may be not
a little, the following equation which predict the lowest limit among the experimental
results for the plate girders with stiffened web is adopted.29

o, o, =11+ 1?)
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3.3.5 Strength of plate girders under bending

The smaller value between lateral buckling and torsional buckling stresses is
adopted as the buckling stress of a compression flange. If the buckling of the
compression flange antecedently occurs, it is considered to be a limit state. On the
other hand in the case that the buckling of the web precedes, it may be assumed that
only the flanges can support the increase in load after buckling without anymore
increase in web stress. If the flange is subjected to be constant stress, the strength
under bending can be calculated making use of the following expression on condition
that or and oaw are the inelastic buckling stresses of flange and web, respectively.

If et 0 avw, the ultimate moment M, results in the following expression:

where Ar 1is the cross sectional area of a compression flange.
The above expression can be rewritten by means of the yield moment My and the
yield stress oyr of a compression flange as follows:

M u  Oof 1- O gw / O ot

My oy | 1+6A,/bh

If o. <o

af < Ogws Mu can be estimated by the use of the following expression.

M,/ M, =0, oy

3.3.6 Stiffener rigidity

In the present method, buckling strength is calculated on basis of linear buckling
theory. It has been considered questionable from many experimental results whether
the required stiffener rigidity ratio » * according to linear buckling theory is valid.
Test results suggest that the stiffener rigidity ratio » have to take a value m several
times as much as 7 in order that the stiffeners are effective as rigid stiffeners.
Subsequently, the linear buckling theory can be applied by using the effective rigidity
v /m.

Now, m(=4) is used for both longitudinal and transverse stiffeners. In application
of Eqs.3.1t0 3.3, v+4, v/4, ¢s/4and ¢ ./4are used.

3.3.7 Comparison of experimental results with calculated results

The validity of the approximate calculation method to predict the bending strength
is examined. The experimental results Mumax /My* and the theoretical results AM./My
are shown in Table4.1. My" indicates the yield moment of compression flange in
consideration of horizontal stiffeners. A few theoretical values lower than the test
results are seen in this table. However on the whole, it is found that the theoretically
predicted results except for the above mentioned cases give not only safety evaluation
but also satisfactory accuracy.

53



Table 4.1 Comparison of test results with predicted values.

References Girde | No. of No. of @ Lateral Torsional Flexural ® ®
r longitudinal | transverse | M,./My | buckling buckling buckling My/My ~
diffener diffener sress of | stress of | dress  of @
compresson compresson siffened

flange (MPa) | flange (MPa) web (MPa)
21) C 1 2 0.841 215.3 294.2 2151 0.732 1.15
22) B-25-1 1 0 1.016 242.6 224.4 186.3 0.898 113
B-25-5 1 0 1.061 242.6 224.4 253.3 0.925 1.15
B-35-1 1 0 0.932 234.6 224.0 1275 0.835 1.16
B-35-1A 1 0 1.039 234.6 224.0 128.0 0.836 124
B-35-1E 1 0 0.905 234.6 224.0 128.4 0.836 1.08
B-35-5 1 0 0.975 234.6 224.0 202.4 0.904 1.08
23) B-3 1 0 1.097 494.4 475.9 355.6 0.910 121
B-4 1 0 1.007 488.6 474.9 305.8 0.876 1.15
B-5 *1 0 1.008 479.4 474.4 263.6 0.838 1.20
B-6 1 0 1.192 503.3 498.9 356.1 0.928 1.28
B-7 1 0 1.258 492.8 498.7 302.0 0.884 1.42
B-8 1 0 1.096 482.1 498.5 265.1 0.833 1.32
24) UA-1 1 1 0.822 297.7 344.0 182.8 0.764 1.08
UA-2 1 1 0.756 297.7 344.0 192.0 0.772 0.98
UB-1 1 2 0.694 284.4 344.0 180.0 0.682 1.02
uUB-2 1 2 0.739 284.4 344.0 191.0 0.744 | 0.99
25) BL-3 1 0 1.010 693.6 660.0 200.5 0.745 1.36
8) - 7 0 0.823 443.8 456.2 152.7 0.892 0.92

3.3.8 Conclusions

1) In order to replace a multi-stiffened web with an orthotropic plate having constant
rigidities, an expression for equivalent rigidities was proposed. After the
investigation on the validity, it became clear that the formula was sufficiently
available on condition that the stiffeners on the web had the flexural rigidity and
space defined by Ref.4).

2) An approximate calculation method to predict the bending strength of
multi-stiffened plate girders was presented making use of the linear buckling theory
and the reduction curve and assuming the stress distribution at ultimate state.

3) The comparison of the predicted values with the existing test results on bending
strength is in good agreement. Accordingly, it is considered that this estimation is
sufficiently available as an approximate calculation method.

3.4 Coupled inelastic flexural buckling of web plates and flange plates

In the former article, an approximate calculation method for predicting the
ultimate static strength of plate girders with multiple longitudinal and transverse
stiffeners under bending was introduced. Also the comparison with several test results
was done.

In this article, the inelastic buckling of plate girders whose web has multiple
longitudinal and transverse stiffeners is investigated under bending. Namely, the
multi-stiffened web plate is regarded as an orthotropic rectangular plate, and the load
of the coupled buckling between the flanges and the stiffened web plate is numerically
calculated as an estimation of the load carrying capacity of such plate girders by using
the finite difference method. It is examined how the support condition of the stiffened
web plate by compression flange, and the flexural and torsional rigidities, the aspect
ratio, and depth-to-thickness ratio of the web plates have the effect on the coupled
buckling load.
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3.4.1 Inelastic buckling of plate girders with orthotropic web plate under bending
A plate girder subjected to bending has the web plate of length a, depth 5,

and thickness A, and with multiple longitudinal and transverse stiffeners as shown in
Fig. 4.1. The stiffened web plate is regarded as an orthotropic rectangular plate of
flexural rigidities in the x- and y-directions Dx and Dy, rigidity with respect to the
transverse contraction [);, and torsional rigidity 2Dx. It is assumed that the
orthotropic plate is simply supported along both the edges x=0 and x=a, and that its
top and bottom edges (=0 and b) are elastically supported and elastically restrained by
the compressive and tensile flanges of flexural rigidity Bp, torsional rigidity Cb,
warping rigidity Cw, cross-sectional area F, and polar moment of inertia about the
centroid themself /o It is also assumed that each cross-section of the girder, originally
plane, remains plane, and that the strain of the flange is equal to the extreme fiber
strain of the web plate.

The differential equation of the deflection surface for the buckled orthotropic plate
with varying rigidities is 26)

4 4 4 3
D, oW 2D, +2D,)- O W p IW, 5D OW
OX Yhoxtoy? T oyt ox ox®
oD\ ¢° D _\ o°w D, &°
.[2D, D, %w_kaq+2 y avt+ , O°W
oy oy Joxtoy |\ ox ox Joxoy®? oy oy’
0°D, °D,\o*w ,0°D, o*w (8°Dy 0°D, \o*w
+ 2 + 2 2 + 4 + 2 + 2 2
oX oy® ) ox OX0y OXoy oy ox~ ) oy
—ho, OV (4.1)
OX

where o x1s the normal stress parallel to the x-axis.

-£o -€o
g 5 -X
= 7
y=b?;

€x=-(1-22)€ A

- a

y=b?

Fig.4.1 A multi-stiffened plate girder under bending.
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The differential equations of the deflection curve become

2 2 2 2
A g AW | dipy Mol | Ofp OW oW
dx dx dx = dx oy oy OX

2
+23(2ny 0 Wﬂ , (4.2)
OX OXoy v
d? d?p d do d?p oW oW
d—(C de_(Cd_ oyl =| B P |
y=0
(4.3)

for the top flange, and

2 2 2 2
G g AW | dipy M| _|0fp OW, oW
dx dx dx = dx oy oy OX

2
+2£(2ny 0 Wﬂ , (4.4)
OX oxoy yob
d? d?p d do d?p oW o*w
d—(C de_(Cd_ ol@deTge = D Pl |
y=b
(4.5)

for the bottom flange, where wo and @o are the horizontal deflection and the angle of
twist for the top flange, in compression, respectively; further ws and @» are the
horizontal deflection and the angle of twist for the bottom flange, in tension,
respectively.

In the inelastic range, the rigidities DX,Dy,DXy,Dl,Bb,Cb and C, should be

respectively. By introducing the reduced

w

read for DXI,DyI,DXy',Dll,Bb‘,Cb' and C,
coefficients

t,=D,/D,,r,=D,/D,,7, =D, ID,,7,=D, /D7y, =B, /B,,r, =C, /C,

and 7., =C, /C,, and assuming that the stress is constant along the xaxis, Eq. 4.1

becomes
4 4 4
d
Dz, ‘;—‘f’+ 2(D,z, + 2nyrw)%+ D,r, aay—‘iv+ Z(Dld_i/l
X X
2D dr,, | o°w 2D dr, 83w+ d’z, 62W+ d*z, 5w
Xy 2 y 3 1 2 2 y 2 2
dy )oxoy dy oy dy® ox dy® oy
2
_ haXZT\;v (4.6)
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The solutions that satisfy the boundary conditions along the simply supported
edges X=0 and X=a may be assumed as follows:

w=bY" f, () sin(mx/a), @7
m=1
W, =b> A sin(max/a), p, =b> A, sin(max/ ), (4.9
m=1 m=1
w, =b> A sin(max/a), ¢, =bY A, sin(max/a), (4.9
m=1 m=1

where 77=Y/b; and Am:to Amsare constants.

The continuous conditions at y=0 and y=b with respect to the horizontal deflection
and angle of twist give the following relations:

A = (Fr)eor Ave = (df i 1d77), o) A = (1) 00 A = (df 1 d) . (4.10)
Thus Eq. 4.6 becomes

4 d 3 d? 2
P D i B PRI P Y P Ll
dz di7 dp dr dn
d 2, _
P RSP L PR B [\ (4.12)
dn dn |dn dn

where Ki=¢,’Dv/D ; K=Dy/D ; Ky=20, Dw/D ; K=, D/D ; .=, Es, hbY/D;
@.=(mzb/a P Ox = o,/E¢y; Dis the flexural rigidity of the web plate; £'is Young's

modulus; and —¢&, is the strain of the compressive flange.

Consequently, substituting Equations 4.7-4.10 into Equations 4.2-4.5 yields

3 dr, d2
|:Ky’z’yd 2 + y y d Z _(ZKXyTXy+K1T1)i
dn dn dn dn
dr, —
—(Kld——sz'bb—MfO'x,um)f =0, (4.12)
n =0
3 —
KYTY d f3 - (NWTCW + Nbrcb + Nl leum)d_f_ Klrlf =0, (4.13)
d77 d77 n=0
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T + K
yydn3 yd?7 d7]2

3 d 2
{K df Ty d°f —(2nyrxy+K1T1);j—f
n

—(Kl‘:'j—;u Mbrbb+MfEx,um)f} =0, (4.14)
n=1
2 J—
{Kyry3—£+(NWrcw+ Nbrcb+N,O'x/1m)j—f—Klrlf} =0, (4.15)
n n -

where M, =¢_°B,/bD; M, =F/bh; N, =¢_C,/bD; N, =¢ °C,/b°D;and

N, =1,/b%h.

It is impossible to solve Eq.4.11 together with Eqs.4.12-4.15 for the inelastic
buckling, and thus the finite difference method is used. The web depth & is divided into

N, equal parts and the values of the function f _ at the pivotal points are indicated

by f.o, fogroey fiys where f o and f_ are the values at y=0 and y=»b, respectively.

By expressing Eq.4.11 together with Eqgs.4.12-4.15 in the finite difference form, the
following set of linear equations is obtained:

[Al{f ) = 1 [B]{F ) (4.16)

The least eigenvalue p, of Eq.4.16 gives the critical load.

3.4.2 Critical moment
1) Inelastic stress-strain relationship
Various stress-strain relationships have been presented by Bleich2?, Hsu-Bertels??,
Ramberg-Osgood2?, Bettern3®, and Richard-Blacklock3?). The following expression
proposed by Richard-Blacklock is adopted for both the tensile and compressive regions:

02E£/[1+|E5/0'Y|nJ1/” (4.17)

where o is the stress; ¢ is the strain; o yis the yield point stress; n is the nonlinear
parameter. This relationship does not include the effect of strain hardening and is
compared with Bleich's relationship in Fig. 4.2, where ¢ vis the yield strain; and o pis
the proportional limit stress. Because of a double symmetrical plate girder the strain in
each fiber is

e, =—(1-2n)e,, (4.18)
the non-dimensional stress in the fiber is given as follows:

ox =—(1- 277)/l1+|(1— 277)E80/0'Y|nJ1/”, (4.19)

where o, isreadfor o, or o, atthe web or flange, respectively.
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The ratio of the tangent modulus E, to Young's modulus %, 7 =E,/E, may be

determined from Eq.4.17; the ratios for the web, 7w, and the flange, 7 £ are

represented by
(n+1)/n

Tu :1/[1+|(1— 2n)Ee, /O'Yw|n] : (4.202)

(n+1)/n

T, :1/[1+|EgO/aYF|“] : (4.20Db)

0.4 / 3 T - -
0.2 — Richard and Blacklock

—————— Bleich

Fig.4.2 Stress-strain relationships.

2) Reduced coefficients of rigidities

The various reduced coefficients for the rigidities of isotropic plates in the inelastic
region have been proposed3?. If it is considered that only the stress in the xdirection is
applied to the orthotropic plate, the following Bleich's approximation for the isotropic
plate may be adapted:

T =Ty Ty =L T, =0Ty T = ATy Ty = T = T Ty =4/ T - (4.21)

4) Rigidities as orthotropic plates

The various methods for calculating the equivalent rigidity of the web plate with
multiple stiffeners as an orthotropic plate have been proposed in regard to the case of
equally spaced stiffeners. However, the web plates are usually reinforced by equally
spaced transverse stiffeners and unequally spaced longitudinal stiffeners. The
approximation at the former article is used too.

Critical Moment. - The critical moment M can be calculated by

M 6 F — 05— Ee
o = ——(ox) . — «(1—2n)d 9. (4.22)
M 1+6F/bh{ bh(a Vo =k ol=2) 77} O\

Y
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where My 1is the so-called flange yield moment given as

M, = o, (b?h/6) (1+6F /bh), (4.23)

In the preceding discussion, it was assumed that the neutral axis remains
unmoved. Nevertheless, the present theory can be expanded for the case that the
neutral axis is movable.

3.4.3 Numerical results and considerations

For the case of SM570 steel, taking o yw= o y# =460.9MPa and the nonlinear
parameter n=5, the numerical computations were carried out by using a mesh, ns=40.

The effects of the rigidities of the orthotropic plate Dy, Dy, and 2Dy, the aspect
ratio a/b and depth-to thickness ratio b/hof the web plate on the coupled buckling
moment are examined. If the cross section of the flanges is rectangular, width ¢ and
thickness ¢, there are two independent parameters: the width-to-thickness ratio of
flange C/tand the ratio between the cross-sectional areas of flange and web plate
F/bh.
1) Coupled buckling loads

The critical moments are plotted versus a/b in Fig. 4.3. It is obvious from this
figure that the critical moment is affected significantly by the value of a/b. The
buckling modes are shown in Fig. 4.4, from which it is found that the torsional buckling
of compressive flange and the bending buckling of web plate are coupled for the small
value of a/b, curve (D, while the lateral buckling of compressive flange is dominant
for the large value of a/b, curve ®.

11
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0.9 =P R Do S
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" 3 ‘\_ .
= NN N
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& AR e }
= \‘ \.\ \_‘:o
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= = NN N
D,/D=50 D, /D=50 CONRN
NN .
204y /D=0.7 NN
AR N
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Fig.4.3 Buckling moment curves.
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Fig.4.4 Buckling modes.

It is also seen from Fig. 4.3 that the critical moment decreases as the value of b/h
increases, and from the comparison of curve (O with curve @ in Fig. 4.4 it becomes
clear that the deformation of thin web plate grows.

The relation between the flange rigidity and the girder critical moment is shown
for the web plates of a/b=1 and 2 in Figs. 4.5 and 4.6, respectively. The theoretical
buckling modes for several cases are plotted in Fig. 4.7. It may be seen from Figs. 4.5
and 4.6 that the critical moment increases according to the increase of either Dx or Dy,
or both, and however if the values of Dy and Dy exceed each limiting value the critical
moment is almost constant.

These limiting values may be estimated from Fig. 4.5 as follows: in the case of the
flange with the smallest flexural rigidity, plotted by the dot-dash-line, the buckling load
does not remarkably increase as the increase of Dy if the value of Dx/ D lies between 150
to 200, and however the large rigidity of Dx makes the critical moment increase
gradually. It is obvious from comparison of curve O with curve @ in Fig. 4.7, that if
the longitudinal stiffeners have large rigidity, the deformation of the web plate is
restricted and the bending strength of girders can be almost determined by the lateral
buckling.

In the case of the flange with the intermediate flexural rigidity, plotted by the solid
line in Fig. 4.5, if the rigid transverse stiffeners of I),/D=500 are attached, the
longitudinal stiffeners with the comparatively small rigidity of Dy can be adopted,
while the limiting value of Dx increases considerably according to the decrease of
rigidity Dy. In the last case of the flange with the largest flexural rigidity, plotted by
the broken line, if the value of D,/D is over 500, the limiting value of Dy becomes very
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small. However, as the value of D, decreases, the limiting value of Dy increases rapidly,
and thus it seems that the suitable rigidity of transverse stiffeners must be chosen.

This fact is evident from the comparison between the two buckling modes @ and
@ in Fig. 4.7.

Consequently, it is found that the limiting values of Dx and Dy are influenced by
the web aspect ratio, a/b, the web depth- to-thickness ratio, b/A, and the flange flexural
rigidity, Bs, and then according as these values the suitable combination of Dx and Dy
must be chosen. For example, in the case that a/b=1

1.05 T 1.00 |
D, /D=500,100 o
b S bkt iniiniaiaty
1.00}1 E— B s
500
T 100
P 50 30
0.95 —— 0.90 S - S _—
3 - @y =460. 9 WPa ————c/z20 FIbhs2.0
‘21 E al/b=2 bih=500 c/t=20 Fibh=1.0
= s 20,,/0=0.7 ———clt=10 Fibhz05
0.90 —— o701 B ]
*v=460. 9 MPa
aib=1 blh=500
20,,/0=0.7
0-85r, J ————c/t=20 Fibh=2.0
J.* ——¢c/t=20 Fibh=1.0
‘f ‘ ——— ¢/tz10 Fibh=0.5
0805 100 200 300 200 500
0.0 0 100 200, 300 400 500
Fig.4.5 Effect of flexural rigidity of Fig.4.6 Effect of flexural rigidity of
stiffeners on buckling moment. stiffeners on buckling moment.

And b/A=500, there is the limiting value of Dy/D from 200 between 300 for Dx/D>50.
When the flexural rigidity of the flange is large, the considerable large value of Dy is
required in order to maximize the bending strength of the girder.

2) Torsional rigidity of stiffeners

The influence of the torsional rigidity of stiffeners 2Dx,/D on the buckling load was
numerically discussed: for example, in the case of @/b=0.4, the relation between 2Dy,/D
and M/My is shown in Fig. 4.8. In the case of Dy/D=30 and Dx/D=5, the critical
moment Me./My increases slightly, about 1.0 to 1.6%, according as the value of 2Dx/D
increases. Moreover, it is found that there is no difference between the theoretical
buckling modes for two cases of 2Dx/D=1.0 and 0.7. The buckling loads of the girder
with Dx/D=50 and D,/D=50 is hardly influenced by the torsional rigidity of stiffeners.

Therefore, it seems that the torsional rigidity of ordinarily used stiffeners can be
ignored.
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Fig.4.8 Effect of torsional rigidity of stiffeners on buckling moment.

3) Buckling loads of web plate alone

The bending strength of the stiffened web plates of box girders will be discussed
herein: the critical moment* of the web plate alone, of which the compressive edge is
simply supported or fixed and the tensile edge is simply supported, was calculated as
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shown in Figs. 4.9 to 4.11. From Fig. 4.9 it is seen that as the web depth-to-thickness
ratio b/h increases, the minimum critical moment decreases and the influence of the
restraining condition by the compressive flange becomes large.

Figure 4.10 shows the relation between the rigidities of longitudinal and
transverse stiffeners and the minimum critical moment of web plate alone. The critical
moment increases considerably according as the increase of the rigidity of stiffeners, in
particular, of the longitudinal stiffeners in the case of the fixed compressive edge.

Let us estimate the limiting value of Dx. In the case of the fixed compressive edge,
the limiting value of Dx/D seems to be 150 to 200. In the case of the simply supported
edge, the limiting value of Dx is affected by the value of Dy and becomes very large for
the small value of D.

Figure 4.11 shows how the minimum critical moment of stiffened plates varies
with the values of Dy and D,. As the plate becomes thin, the limiting value of Dy
increases considerably, and is not influenced by the ratio b/h for the large value of D.
Consequently, it is necessary to consider on the proper combination of Dy and Dy
according to the value of b/A.

[* In Eqgs.4.22 and 4.23, taking F=0]
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Fig.4.9 Buckling moment curves for stiffened web plates.
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Fig.4.11 Effect of width-to-thickness ratio of web plate on buckling moment.

3.4.4 Comparison of numerical results with test data
In order to evaluate the present theory, the failure test result for a girder model

whose web has the multiple longitudinal stiffeners® is referred to. As shown in Fig.
4.12, the model has the compressive flange reinforced by two corner plates and the web
plate stiffened by seven longitudinal stiffeners with L-section. This model collapsed at

the maximum moment 3,106 kN *m.
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The compressive flange with the corner plates is converted into a rectangular

flange with the same torsional and flexural rigidities. The stiffened web plate is
replaced by an orthotropic rectangular plate with the equivalent rigidities.
The theoretical critical moment is obtained as 3,550 kN-+m, which is about 14.3%
larger than the experimental one. The overestimation seems to be due to the disregard
for the yielding of the corner plates occurring at the moment of 2,402 kN+*m. The
theoretical buckling mode is shown in Fig. 4.13, and agrees well with the observed
mode in the test.
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2-P1 115x.N/ g’ ——
- flange
1
wn
—
[+ 9]
s
-
[<2]
~T
7-L 26x13x 2.3~
2 N- A= —
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P N
o™
2.3 . =
©
| ™)
-}
a=1035 o
~I
~ L Eflnttorn &
L 1 lange g 0.5 1.0
1-Pl 345x25 Web deflection , wiw, g,
Fig.4.12 Dimensions of a girder Fig.4.13 Theoretical buckling mode.

tested by Yuhki et al.

3.4.5 Conclusions

The bending strength of plate girders with web plate stiffened by multiple
stiffeners has been analyzed as the inelastic coupled buckling of the compressive flange
and web plate by using the orthotropic plate theory. The stiffened web plate was
regarded as an orthotropic plate and the buckling moment was obtained by means of
the finite difference method. The nonlinear stress-strain relationship by

Richard-Blacklock was adopted and the reduced coefficients for the rigidities in the

inelastic region by Bleich were adapted.

The influence of various parameters on the coupled buckling moment and the
buckling mode were discussed as follows:

1) Although the buckling load increases according as the flexural rigidities of the
longitudinal and transverse stiffeners increase, a limiting value of the rigidities can
be found.

2) The limiting rigidity depends on the flange flexural rigidity, the web aspect ratio,
and the web depth-to-thickness ratio.
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3)

The torsional rigidity of stiffeners has little effect on the buckling moment.
The bending strength of the stiffened web plates of box girders was also discussed.

The effect of the flexural rigidity of stiffeners and the depth-to-thickness ratio of web

plate on the buckling moment of stiffened web alone was examined.

The theoretical critical moment was compared with a failure test result on the

girder model with multiple longitudinal stiffeners, and a sufficient agreement between

both the values was observed.

3.5 Discussions

In order to realize long-span girder-bridges, web plates need multiple longitudinal

and transverse stiffeners. Such multi-stiffened webs were investigated in this chapter.

1)

2)

3)

1)

2)

The obtained results are as follows:

An expression for the equivalent rigidities to replace such multi-stiffened web with
an orthotropic plate was given. And the usefulness of it was verified.

An approximate calculation method to predict the bending strength of
multi-stiffened plate girders was presented. It was clarified that this estimation
was simple and useful method.

The bending strength of plate girders with multiple-stiffened web plates was
analyzed as the inelastic coupled buckling of the compressive flange and web plate
by using the orthotropic plate theory. The effect of various parameters on the
coupled buckling moment and the buckling mode were investigated.

The following subjects must be settled as future studies.

It is supposed that approximate prediction method on the bending strength of
multi-stiffened plate girders is plain and proper. But the applicability of this
method must be taken notice of. Consequently, it is considered that the further
comparison of the calculated results with the experimental results is required.

The reduced coefficients for the rigidities in the inelastic region by Bleich were

used for the calculation on the bending strength of plate girders. Hereafter, the

validity of these reduced coefficients should be confirmed by means of some way, for
example, finite element method.
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Chapter 4
Load-carrying capacity of girders in shear

4.1 General description

It has been proved that the load-carrying behavior of a plate girder in shear
consists of three components of response.? The load owing to the beam-action of the
girder can be evaluated from the shear buckling stress of the web panel. After the
shear buckling the behavior in the post-buckling range of the web panel is
characterized by the diagonal tension field action. The load-carrying capacity due to
the tension field in this stage may be remarkable in the case of the girders with a thin
web plate. Basler is a pioneer in the study on the shear strength of plate girdersd.13.
His ultimate shear model has involved the assumption that the flanges of most plate
girders may be unserviceable as an anchorage for the tension field because of poor
rigidity. After his formulation many tension field theories have been developed. Most of
them take account of the effect of the flexural rigidity of the flange. Namely, the tension
field in the plate girder with slender webs and transverse stiffeners is anchored by the
flanges and stiffeners. Accordingly, the tension field is influenced by the flexural
stiffness of the flanges. If the stiffness of the flanges is large, the yielded zone of the
web extends over the entire panel. A frame mechanism with plastic hinges is formed.
The additional shear loads are supported by this frame action.

The loading tests on the ultimate shear strength of plate girders have been
considerably conducted. And various ultimate strength models have been verified
experimentally. The comparisons of predicted shear strengths with the test results
have been much reported.

Some numerical analyses for the load-carrying behavior of plate girders in shear
by means of a finite element method have been conducted with the development of
digital computers.19-1® Especially, Nakazawa et al. have presented the results in detail
on the shear strength behavior of girder panels by elasto-plastic finite element
displacement analysis.1®:17 In such numerical analyses the modeling of a structural
subject is extremely important.

Plate girders are used not only in equal web depth but also in tapered web depth.
The works for the ultimate strength of the panels with variable depth are required.9
However, there are a few ultimate strength investigations on such girders. Falby and
Mandal et al. have examined the shear strength of the plate girders with tapered web
panel theoretically and experimentally®).7.19,

In this chapter, the load carrying capacity and behavior of girder panels subjected
in shear will be investigated experimentally and theoretically. The results obtained by
the modal analyses, elasto-plastic finite element displacement analyses and
experimental works will be given in respect to the girder with equal web depth.
Further, the results obtained by the modal analyses and tests will be presented as
regards the girder with linearly varying web depth.

4.2 Load-carrying capacity of girders with uniform depth in shear
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4.2.1 Experiments on girders in shear
(1) Introduction

There have been many experimental studies on the ultimate strength of plate
girders subjected to shear force.? Various models to predict the shear strength of plate
girders have been also formulated.? Although these methods can estimate the ultimate
shear strength of plate girders, the process of the post-buckling behavior cannot be
known. In order to utilize effectively the post-buckling strength in design, the
post-buckling behavior should be considered in detail. The post-buckling strength can
be realized by the tension field action and the frame mechanism. It is supposed that
the stiffness of these boundary members affects the post-buckling behavior. Therefore
the relationship between the post-buckling behavior of the flanges and the shear
strength should be sufficiently clarified.

In this article the post-buckling behavior of plate girders in shear are examined
experimentally. In particular the influences of the rigidity with these boundary
members on the post-buckling behavior is investigated. Furthermore, the
characteristics in several proposed collapse models to predict the ultimate shear
strength are discussed on basis of the experimental results.

(2) Description of tests
(2.1) Models

Four models (Models US-1, US-2, US-3 and US-4) were tested. All models were
made of SS400 steel.

The point of load application is indicated by a thick arrow in Fig.2.1. The shadowed
portion in Fig.2.1 is testing panel and the web panel on the other side was properly
stiffened to prevent it from failing earlier than the failure of the testing panel. The
cross section of the web and flanges was the same through the length of each girder.
The actual girder dimensions on the testing panel were measured. These
measurements are summarized in Table 2.1. All girders were designed to have equal
web aspect ratio. The thickness to depth ratio of the web panel for Models US-1 and
US-2 was designed to be identical and Models US-3 and US-4 similar. All models were
designed to have equal breadth of flanges. The flange thickness for Models US-1 and
US-3 was designed to be identical and Models US-2 and US-4 similar.

s
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Fig. 2.1 Girder model.
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Table 2.1 Measured dimensions of girders.

Model US-1 USs-2 US-3 US-4

Web length, a (mm) 627.6 649.0 393.8 393.6
Web depth, d (mm) 548.2 550.6 361.3 343.2
Web thickness, ¢ (mm) 1.55 1.51 2.18 2.19
d/t 354 365 166 157

Flange width, » (mm) 90.7 89.8 90.7 89.8
Flange thickness, ¢ (mm) 12.1 18.6 12.1 19.4

(2.2) Coupon tests
Coupon plates were cut from the same length of girder components to obtain
tensile test coupons. The results of the coupon tests are shown in Table 2.2.

Table 2.2 Yield stress obtained by coupon tests.
Model US-1 US-2 US-3 US-4
Flange 284.4 225.4 284.4 225.4

Yield stress, oy (MPa)

Web 290.3 290.3 278.9 278.9

(2.3) Test setup
Each girder was tested in the simply supported condition with roller supports at
the ends. A concentrated load was applied to the girder at mid-span using an oil jack of
the capacity of 294kN. To prevent any horizontal movement of the girders, the lateral
supports were provided at mid-span. These supports consisted of a roller attached to a
rigid frame bolted to the laboratory floor. Also the wings were attached to the bearing
stiffeners to prevent the distortion of the girder.

(2.4) Instrumentation

Dial gauges and electrical displacement transducers were used to observe the
deflection on each girder. To measure the out-of-plane deflection of the web plate
relative to the boundaries, a frame that was clamped to the bearing stiffeners was used.
Dial gauges were mounted underneath the tension flange to observe the vertical girder
deflection. The horizontal and vertical deflections of the top flange were observed by
cathetometers.

Electrical resistance strain gauges, with uni-axial and rosette types, were used on
each girder. Measurements of the strains were taken on both faces of the girder
components. Namely, by placing identical strain gauges opposite each other (at each
side of the web, flange and stiffener), it was possible to separate membrane and
bending strain.

(2.5) Testing procedure
After each model was set up, the eccentricity of the load application point was
adjusted and initial out-of-plane deflection of web plates were measured. The
maximum initial deflection on web for each model is shown in Table 2.3. The value of
the maximum initial deflection Model US-1 is large.
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Table 2.3 Maximum initial deflection of testing panel.
Model US-1 US-2 US-3 US-4
W0, max (mm) 6 3 3 2

The step-by-step loading procedure was used in each girder test. After the
attainment of ultimate load the removal of load was conducted.

(3) Experimental results and considerations
(3.1) Collapse mode at failure of girders
All models after test are shown in Fig.2.2. The development of the tension field in

the web panel and the formation of the plastic hinges in the compression and tension
flange were observed. The capacity of the oil jack, 294kN, was not sufficient for the
final failure of Model US-4.

US-1 US-2

US-3 US-4
Fig.2.2 Girders after tests.

(3.2) Out-of-plane deflections of web panels

The relative deflections of the web panels were measured at several points on each
girder. The observed and theoretical buckling loads under shear are shown in Table 2.4.
For the case in which the longitudinal edges of the web panel are fixed and the
transverse edges of it are simply supported, the theoretical values agree well with the
experimental results. The contour lines of the residual deflection in the web panel are
illustrated in Fig.2.3. The inclination of the tension band in the web panel may be
estimated from these figures.
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Table 2.4 Shear buckling loads (kN).

Model US-1 US-2 US-3 US-4
Experiment 22.6 27.5 125.5 126.5
Theory S.S. 20.6 19.6 93.2 96.1
Fixed 29.4 27.5 127.5 128.5

S.S. :All edges are simply supported.
Fixed : Two edges are fixed.

Model US-1 Model US-2

Model US-3 Model US-4
Fig.2.3 Residual web deflection (mm).

(3.3) Girder deflection
The central deflections of every girder are plotted with respect to applied loads in
Fig.2.4. The load-central deflection relationship is linear up to about 80% of the
collapse load for Models US-1 and US-3. In the case of Models US-2 and US-4, the
load-central deflection relationship becomes nonlinear earlier and the deflection
increases gradually for a while as the load increases. As the failure draws near the

deflection shows a rapid rate of increase.
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Fig.2.4 Central deflection.

(3.4) Vertical displacement of top flange

The relationship of load against vertical displacement of the top flange is shown in
Fig.2.5. These observations were obtained by reading the movements of the marks on
the top flange using cathetometers. The influence of web buckling on the vertical
deflection of the flange may be observed in these figures for Models US-3 and US-4. It
is found that from the comparison of the load-central deflection curve in Fig.2.4 with
the load-vertical deflection curve of the flange in Fig.2.5 a similar tendency is shown
for each girder. Therefore it is supposed that the dent of the top flange affects definitely
on the girder behavior.

300

2 4 6 8
Deflection (mm)

Fig.2.5 Vertical displacement of top flange.
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(3.5) Strains of top flange

The bending strains and the longitudinal strains of the top flange have been
plotted against various loads to form Figs.2.6 and 2.7, respectively. It should be noted
that from the comparison of Fig.2.5 with Fig.2.6 when the maximum bending strain
exceeds the yield strain of the flange material the dent of the top flange begins. Also it
is found that from the comparison of Fig.2.5 with Fig.2.7 when the maximum
longitudinal strain approaches the yield strain of the flange material the top flange is
rapidly bended inward and the plastic hinge is formed. The collapse load is soon
reached. But the longitudinal strains except for ones near the position of the plastic
hinge have relatively small values and are almost uniformly distributed even when the
collapse load is reached.
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Fig.2.7 Longitudinal strains of top flange.
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(3.6) Strains across tension band
The variation of the tensile strains acting at right angles across the diagonal AB of
the web panel measured by the rosette gauges are shown against several applied loads
in Fig.2.8. From this figure, the width of the tension band can be approximately
estimated. It can be seen that from comparison Fig.2.5 with Fig.2.8 the maximum
tensile strain almost reaches 10,000 micro strains when the dent of the top flange
begins.
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Fig.2.8 Strains across tension band.

(3.7) Distribution of principal stress
The distribution of the principal stresses of the web panel is shown in Fig.2.9 for
each girder, where the numerical value is expressed as elastic body. It can be seen that
the diagonal tension field develops with increasing load.
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(3.8) Ultimate strength
The maximum shear loads, Pur, observed are shown in Table 2.5. Also in this table
the value of Vu/V) for each girder is given, where Vuris one half of Pur and V) is the
full plastic shear force. As seen from this table and Fig.2.4, it is supposed that the
increase of the flange stiffness raises certainly the ultimate shear strength due to the
frame action.
Table 2.5 Ultimate strength by tests.

Model US-1 US-2 US-3 US-4
Pue (kN) 186.3 257.9 229.5 above 294.2
Vit / Vi 0.654 0.926 0.905 above 1.22

(4) Comparison of test results with estimated values
(4.1) Static limit state

It is extremely important how the static limit state is determined in the design of plate
girders. The flanges must support a lateral loading from the tension field as it develops.
According to the considerations in previous chapter, as soon as the maximum bending
strain of the top flange exceeds the yield strain the dent of the top flange begins and
the load-girder deflection relationship becomes nonlinear. At the same time the yielded
zone spreads in the web extensively. If in the design of plate girders the yielding of web
plate is permitted the arrival at the yield strain of the bending strain in the top flange
may be considered as a static limit state.

(4.2) Prediction of shear strength

Many methods are presented which are capable of predicting the collapse load of
plate girders in shear.? In this chapter three typical methods proposed by Baslerd,
Rockey et al.¥ and Ostapenko et al.19 are dealt with.

Gaylord discovered the mistake in Basler’s formula and the correct formula was
given later.? Basler’s formula is surely mistaken and Basler assumed that the
post-buckling strength was supported by only the web plate. Hasegawa et al. pointed
out that the contribution to the post-buckling strength by the flanges was also
contained in Basler’s formula.® Therefore it is considered that the formula can take
flange rigidity into consideration. It is supposed that in Basler’s solution the
equilibrium condition is applied before the deformation of the flanges becomes
remarkable.

Rockey et al. assumed the formation of the plastic hinges in the flanges. Therefore
it is supposed that in their solution the collapse model is formulated after the local
deformation of the flanges becomes pronounced. A remarkable feature of Ostapenko's
formula lies in its assumption on the diagonal tension band. The frame action
contribution to the ultimate strength is also taken into consideration in this formula.

It must be considered that there are some differences among these theories in the
estimation of the inelastic shear buckling stress. The comparison of the shear buckling
stresses between Basler's and Rockey's methods is shown in Fig.2.10. As seen from Fig.
2.10, the values of the shear buckling stress in the inelastic range estimated by
Basler's formula are higher than that by Rockey's formula. Ostapenko et al. assume
that the web is fixed at the flanges and simply supported at the transverse stiffeners.
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Table 2.6 gives comparisons of predicted shear loads with results of this test. The
theoretical values estimated by Rockey's and Ostapenko's methods agree well with the
experimental values for Models US-1 and US-3. It is supposed that Basler's formula
gives the conservative results due to the collapse model as mentioned above for Models
US-1 and US-3. For Models US-2 and US-4 having thick flanges, these formulas tend
to considerably underestimate the shear strength. Besides it is insufficient that
Rockey's formula cannot obtain the solution for Model US-4.

As stated above, a static limit state may be considered. It can be seen that on
referring Fig.2.5 the shear strengths estimated by Basler's formula agree
approximately with the shear forces that initiate at first the dent of the top flange.
Therefore Basler's formula may be able to determine the static limit state as defined
above.

Table 2.6 Comparison of experimental results with predicted ultimate loads (kN).

Models US-1 US-2 US-3 US-4
Experiment 186.3 257.9 229.5 Above 294.2
Basler® 176.5 168.7 203.0 195.1
Theory Porter-Rockey-Evans® 180.4 201.0 227.5 —
Ostapenko-Chern!® 178.5 181.4 223.6 237.3
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Fig.2.10 Buckling stress in inelastic range.

(4.3) Design of flanges

In order to examine the effect of flange rigidity upon the ultimate shear strength,
the relationship between the ultimate shear stress at failure and the Z/a%¢is given in
Fig.2.11, where Fthe flexural rigidity of the flange and the ultimate shear strength of
Model US-4 is approximately regarded as 147 kN. The broken line in Fig.2.11 shows
the experimental curves obtained from the tests carried out by Rockey et al. As the
yielded region of the web spreads, the ultimate shear stress of the girders increases.
But then the deformation of the flanges and the web becomes remarkable. Accordingly
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although the large flange rigidity contributes to the increase of the ultimate shear
strength of the girder, considering the limit state on the deformation as stated above it

is supposed that the excessive increase of the flange rigidity is useless. However it is

necessary that the flanges act sufficiently as the anchors of the tension field.
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Fig.2.11 Variation of ultimate shear stress with flange stiffness.

(5) Conclusions

Four models were tested to examine the ultimate strength and behavior of plate

girders in shear. Subsequently the test results were compared with the ultimate shear

strength estimated by several formulas.

1)
2)

3)

4)

5)

Obtained results are as follows.

The flanges having the proper rigidity act as the anchors of the tension field.

When the maximum bending strain of the top flange exceeds the yield strain of the
material the dent of the top flange begins and the load-girder deflection curve
becomes nonlinear rapidly. Therefore it may be considered as a static limit state if
the yielding of the web is permitted.

In the case of large flange rigidity the shear load increases relatively from the
initiation of the dent of the flange to the failure of the girder. But the deformations
of the flanges and web become considerable.

The shear strength predicted by Basler's formula gives the conservative value. But
it is supposed that Basler's formula gives the value that corresponds to the static
limit state as stated above.

Basler's formula comparatively underestimates the ultimate shear strength in the
case of the girder with large flange rigidity. Also Rockey's and Ostapenko's formulas
underestimate it and in some cases the solution cannot be obtained on Rockey's
formula.
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4.2.2 Elasto-plastic finite displacement analysis

(1) Introduction

The research on the static load-carrying capacity of the girder panel subjected to
shear force has been carried out by various approaches.? The theoretical research can
be divided into two methods. First, it is a method for predicting the load carrying
capacity using plastic analysis model based on the assumption of the ultimate state.
Another method is the elasto-plastic finite displacement analysis using means such as
the finite element method by the development of digital computers. The material and
geometric non-linearity must be considered, if a girder panel composed of thin plates is
calculated by this method. This analysis is very complicated. As a leading research,
that by Sawada et al.1¥ is mentioned. Afterwards, Marsh20, Nakazawa et al.16.17 and
Lee et al.2D carried out the elasto-plastic finite displacement analysis on the ultimate
shear behavior of the plate girder panel using the finite element method considering
both non-linearity, and the model for predicting the load carrying capacity was
presented. From the analytical result, Nakazawa et al.16/17 indicated that the flange
did not bent and the plastic hinge did not occur in the ultimate state. This result is
different from the existing experimental result and the assumption in modeling based
on it. In addition, they asserted that the tension field is supported by gusset plate
action due to the high biaxial stress state in the panel corner and it is formed without
the anchor action by flange and stiffener. Recently, Lee et al.2V indicated that the effect
by bending owing to out-of-plane deformation on the yield condition was not considered,
from the analytical result by Nastran programme. In addition, it is assumed that the
shear strength is obtained as a sum of the buckling strength and the post-buckling
strength, and he pointed out that there was almost no influence on the post-buckling
strength due to flange rigidity and only buckling strength was different. And he tested
for the verification of the theory.

In this article, the elasto-plastic finite element displacement analysis is carried out
on a girder panel with equal depth under shear. As an analytical result, the ultimate
shear strength and the behavior to the ultimate state of a girder panel are examined in
detail.

(2) Analytical method (FEM)

In the analysis, the elasto-plastic finite element analysis that Komatsu et al.22
developed was expanded so that it may be able to be applied to the girder panel. A
triangular finite element with 5 degrees of freedom on one node was used.

(2.1) Assumption on material

It is assumed that materials are as follows:

1) They are isotropic and homogeneous.

2) The yield condition by von Mises is followed.

3) The plastic flow rule by Prandtl-Reuss is followed.

4) The strain hardening is not considered.

(2.2) Assumption on displacement
Assumptions on the displacement are as follows:
1) The line element that is perpendicular to the neutral surface of a plate before
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deformation is also similar after deformation.
2) In the beginning of each increment, the initial deflection composed of plane
triangular element is given as initial shape.

(3) Analytical model

From a plate girder with vertical stiffeners, one panel surrounded by stiffeners and
flanges is taken up. This panel is modeled for the analysis. As a result of examining
beforehand convergence of a solution, eight divisions were adopted for a square panel
in both directions. For a rectangular panel, number of subdivisions is made to increase
in proportion to the aspect ratio. On the flange, the division in the longitudinal
direction was made to be as well as the web, and the number of subdivisions in the
direction of the width was taken as two. As the number of subdivisions in the direction
of the thickness, eight divisions were adopted.

As an initial deflection of the web, sine half wave was assumed in both directions
of length and width, and the maximum value was supposed to have 10% of the
thickness. The residual stress is not considered. On the effect which initial deflection
and residual stress give at shear strength, the experimental study by Fujino2d is
reported. That result shows that there is no effect as a difference.

The boundary condition was assumed as following. Though a separated panel must
agree with the behavior of an actual girder as much as possible, it is difficult to realize
this in the single panel only. Therefore, two kinds of modeling shown in Fig.2.12 were
carried out. On the out-of-plane boundary condition, the simple support along all edges
was assumed in both models. The in-plane boundary condition was assumed as
following. As shown in Fig.2.12 (a), the displacement in the longitudinal direction is

v v
Flange Flang
I R <] D— e ===
Z
> K [
o3 /cn 7] w3
[ < [
A
______________________ |>‘.—_—_“_'________________
Flange Flange
v v

(a) IR (h) I1F

Fig.2.12 Analytical models.

restricted at the right and left edges of Model 1. This model will be called IR since then.
In such model, it is supposed that the behavior is similar to that in the panel held
between the adjacent panels. However, it is estimated that the longitudinal tension
works owing to the restraint in the right end. In the case of this model, it seems to be
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possible that the right and left edges work as anchors for the tension field. In the
meantime, the in-plane displacement on the right edge for Model 2 is free as shown in
Fig.2.12 (b). In this case, additional bending moments will occur in the left edge. This
model will be called IF. The loading is given by the increment of displacement along the
right and left edges as shown in Fig.2.12. Young's modulus Z, Poisson's ratio v and
yield point stress oy are taken as 206G Pa, 0.3, 235MPa, respectively. Shear yield

point stress ¢y is made to be o / \/§ . The following is chosen as parameters on the

analysis: panel aspect ratio «, panel width-to-thickness ratio 4 and flange rigidity.
Values of @ are 1.0 or 1.6, and values of 4 are 100,150 or 200. On the flange rigidity,
six types were set, and the above parameters were combined.

(4) Analytical results

The value of each parameter for two kinds of aspect ratio (#=1.0 and 1.6) is shown
in Table 2.7, where tw, b, t5 C, t and Cs show web thickness, web height, flange
thickness, flange width, stiffener thickness and stiffener width, respectively. Values of
width-to-thickness ratio in the web plate are as follows as shown by this table: 150 in
case of 1,4 and 6, 100 in case of 2 and 5, 200 in case of 3.

Though the analytical results on Model 1 are mainly shown, those on Model 2 are
also included for the comparison. Model 1 has the problem described before. However,
the results on Model 1 are primarily given as it is supposed that this model shows well
the behavior in the middle panel under shear force.

Table 2.7 Dimensions of models.

Case 1 2 3 4 5 6
tw (mm) 5.0 7.5 3.75 5.0 7.5 5.0
b/ tw 150 100 200 150 100 150
tr(mm) 20 20 20 10 10 5
C (cm) 30 30 30 30 30 15
£s (mm) 25 25 25 13 13 7
Cs (cm) 25 25 25 25 25 20

(4.1) In-plane displacement behavior

The relationship between shearing stress z and vertical displacement v is shown
by Fig.2.13 on the case in which it is a=1 for different boundary conditions. The type
of this model is IR. In the case of 4#=100, the load carrying capacity at the condition of
fixed support is larger a little than that at simple support. However, it is proven that
there is similarly very much no difference between the load carrying capacity owing to
the difference between both boundary conditions for each case of /4. Also, in each case
the linear relationship is kept, until the ultimate state is approached. And the good
deformability is obtained. From these figures, the difference between the load carrying
capacity for different flange rigidity hardly is seen when /4 has the same value. There
is a difference a little between the deformations for the case of small rigidity.
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Fig.2.13 Vertical displacement vs. Shear stress.

The relationship between shearing stress and vertical displacement is shown in
Fig.2.14 for the case of simply supported top and bottom edges when «=1.6. In the
case of 4#=100, there is hardly a difference between the behavior in both figures.
However, the load carrying capacity for Model IF is low a little in the case of /4#=200 or
150 and low flange rigidity. Also, in the displacement there is a little difference. This
seems to be a reason for describing in latter section.
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Fig.2.14 Vertical displacement vs. Shear stress.

The deformed shape of the outer frame in the maximum load is shown in Fig.2.15
for the case that «=1.6, model type is IR, top and bottom edges are simply supported
and the case number is 6. Though the flange thickness is relatively thin with 5mm, the
deformation of the top and bottom edges is not conspicuous. As a deformation behavior
of the panel, the shape of the parallelogram has been kept after the deformation as a
whole.
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Fig.2.15 In-plane deformation of web panel.

(4.2)  Out-of-plane deflection behavior

The relationship between shearing stress and out-of-plane deflection is given by
Fig.2.16 for the case of the model type IR and «=1, where wy, wand (w+wo) are initial
deflection, additional deflection and totally out-of-plane deflection, respectively. When
£#=100, it is seen that the generation of tension field is not recognized and the ultimate
state begins immediately after shear buckling as shown in this figure. However, it is
proven that the load carrying capacity is greatly raised by the work of tension field
after the occurrence of shear buckling, when 4#=150 and 200. In addition, it is noticed
that there is very much no difference between the ultimate shear strength, though
there is large difference between the shear buckling stress, by comparing the curve of
B.C.=1 with that of B.C.=1I. It seems that this is because the development of the
tension field after shear buckling differs. On the effect caused by the difference
between the flange rigidity, there is very much no difference for the behavior, when the
web panel has same width-to-thickness ratio.
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Fig.2.16 Out-of-plane deflection vs. Shear stress.
The effect in which the difference between IR and IF gives for the case of 2=1.6

and the simply supported top and bottom edges is compared in Fig.2.17. On each
corresponding case, there is very much no difference between the results of IF and
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those of IR. The deflection for the case of model type IF is larger than that for the case
of IR at the same shearing stress, as the degree of the restraint differs. In the case of
model type IF, the effect due to flange rigidity is seen when 4=150. It is considered

that this is caused by the bending effect.
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Fig.2.17 Out-of plane deflection vs. Shear stress.

Examples of out-of-plane deformation behavior of the web plate panel in the case of
a=1 are shown in Figs.2.18 to 2.20. Each first figure (a) shows the deformation
immediately after shear buckling occurs, and each second figure (b) shows the
deformation immediately before the ultimate strength is reached. In each case of 1 and
3, it is proven that the deflection band due to the progress of the tension field occurs. In
the case of 2 in which web plate width-to-thickness ratio is 100, the band caused by the
tension field is not viewed, though the value of the deflection increases. In addition,
there is no very difference between the shape of (a) and (b), and the shape after

buckling has been kept.

Fig.2.18 Out-of deformation of web panel (IR, B.C.=1, «=1, Case 1).
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Fig.2.20 Out-of deformation of web panel (IR, B.C.=1, «=1, Case 3).

Out-of-plane deflection behavior of the panel in the case of @=1.6 is shown by
Fig.2.21, similarly. The waveform immediately after the generation of shear buckling
generation is shown in (a). As shown in (b), due to the increase in panel aspect ratio, it
is seen that the deflection surface that shows the tension field becomes higher and
narrower in the width than that for the case of (a). From this result, it seems that the
lowering of the load carrying capacity is caused by the generation of large bending
moment in the panel.

Fig.2.21 Out-of deformation of web panel (IR, B.C.=1, «=1.6, Case 3).
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(4.3)  Proportion of tension field

In many modal analyses, the shear strength is assumed calculating by the sum
between the strength by the beam action and the strength by the tension field action.
Now, the ratio of the beam action and the tension field action is examined based on the
assumption of the superscription. The strength by frame action is not included. The
proportion in which the beam action and the tension field action calculated from
Figs.2.16 and 2.17 occupy in the strength is arranged in Tables 2.8 and 2.9. Though the
shear buckling stress must be calculated in order to obtain the value by the beam
action, it is hard to be required for the initial deflection. Then, the buckling stress is
estimated using the inflection point that appeared in the figure first, and it is used as
the value supported by the beam action. The value by the tension field action is
calculated by deducting the value by the beam action from the value by the ultimate
strength. On the case of @=1, Table 2.8 examines the effect of the boundary condition
on the top and bottom edge on that ratio. On the case in which «@=1.6 and the top
and bottom edges are simply supported, Table 2.9 examines the effect of the difference
of the modeling on the ratio.

Table 2.8 Ratio of beam action and tension field action.
(a) «=1.0,B.C=1,IR

Case Beam action Tension field action

(%) (%)
1 46.0 54.0
2 99.0 1.0
3 29.0 71.0
4 47.0 53.0
5 99.0 1.0
6 48.5 51.5

() «=1.0,B.C.=II, IR

Case Beam action Tension field action

(%) (%)
1 74.0 26.0
2 96.0 4.0
3 44.0 56.0
4 74.0 26.0
5 96.0 4.0
6 75.0 25.0

Table 2.9 Ratio of beam action and tension field action.
(a) e=1.6,B.C=1,IR

Case Beam action Tension field action

(%) (%)
1 47.0 53.0
2 98.5 1.5
3 29.0 71.0
4 47.0 53.0
5 98.5 1.5
6 50.0 50.0
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b) «=1.6,B.C.=1,IF

Case Beam action Tension field action

(%) (%)
1 50.0 50.0
2 98.0 2.0
3 29.0 71.0
4 51.5 48.5
5 98.0 2.0
6 57.5 42.5

It is proven that the ratio in Table 2.8 considerably differs by the
width-to-thickness ratio of the web plate panel. When the width-to-thickness ratio is
100, the ultimate strength depends on buckling strength without the development of
the tension field, as it was mentioned earlier. In the case of 4#=150, from Table 2.8(a),
the proportion is almost half-and-half, even if there is a little difference for the ratio of
both actions by the difference between the flange rigidity. In the case of fixed top and
bottom edges on Table 2.8(b), the proportion by the beam action exceeds 70%. Also, in
the case of 4#=200, though the proportion in Table 2.8(b) which the beam action
occupies is bigger than that in Table 2.8(a), it is not as the case which is £=150.

Also, in the case of 4#=200, though it is bigger of Case IF than Case IR for the
proportion based on the beam action, it is not as the case of #=150. It seems that this
reason is because shear buckling is generated in the elastic range in the case of 4#=200.
Like this, the ratio that both actions occupy in the shear strength is different by the
boundary condition of the top and bottom edges. However, it is noticed that the value of
the ultimate strength is not very much affected, as it was mentioned earlier. By
elasto-plastic finite displacement analysis using finite element method, Lee et al.2V
examined the relation of both actions for the case of the panel with comparatively large
width-to-thickness ratio. They concluded that the strength after the buckling was
almost 40% of the difference between plastic shear strength and shear buckling
strength except for the small number of exception. New buckling coefficient for the
support condition between the middle of simple support and fixed support is used
taking the ratio of web plate thickness and flange thickness as the parameter, when
the buckling strength is obtained. The post buckling strength is estimated considerably
low, when this method is applied to the calculation for the square panel of the 3rd case
in the present analysis. As the result, the ultimate strength by the method of Lee et
al.2V on the 3rd case is merely almost 80% of the value by present method. Though this
is a safe side, it seems to too have underestimated the post-buckling strength.
Further, though they explain that the post-buckling strength is not affected by the
flange rigidity, it is different from the result obtained by this analysis.

In Table 2.9, the effect of the difference between Case IR and Case IF on the ratio
of both actions in the case of @=1.6 is examined. From this table, it is seen that the
difference of the modeling does not influence the ratio of both actions very much. It is
one method to obtain the strength as a sum of beam action and tension field action,
when the shear strength is estimated. However, the estimated value is influenced by
the boundary condition of the top and bottom edge, when the shear buckling strength is
obtained by this prediction method.
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(4.4) The distribution of the principal stress

The distribution of the principal stress in a panel at the load that is approximate
to the ultimate state is shown by Fig.2.22. In this figure, the length of the arrow shows
the magnitude of the stress, and corresponding to the arrow that is directed outward or
inward, tension and compression of the stress are expressed, respectively. As the angle
¢ which shows the principal stress direction, the angle ¢ which principal stress o :
makes with the horizontal axis is used. In case 2 whichis /4#=100, it is seen that ¢ 1s
approximated to 45 degrees of the diagonal line direction and the magnitude of both
principal stresses are also equal except for a part of turbulence in the corner estimated
with the result of the error in the calculation, In the whole panel, it seems to be almost
similar to the pure shear.

In case 1 which is 4#=150, ¢ is smaller generally a little than 45 degrees. Then,
the magnitude of o : begins to be more distinguished than that of o2 in diagonal
tension band in the panel central. The width of the tension band widens in the case of
£#=200, and the magnitude of ¢ ;is very superior to that of o 2

X ><X x\ S X\
X
X
X
R NIIX
@=1.0,B.C=1,1IR, casel,stepl4 @=1.0,B.C=1 IR, case2, stepl0

X
x

LIRS S 4
SO RN | X

@=1.0,B.C=1 IR, cased, step26

Fig.2.22 Principal stress distribution.

92



(4.5) Direction of principal stress

On each case of Fig.2.22, the angle ¢ /(= ¢) of the principal stress ¢ ;in the center
point of the panel is plotted with respect to the increase of the load, as shown in
Fig.2.23(a). Where, S is shear force, and S, is the plastic shear force. On the case in
which the boundary condition except for B.C.=1II is same, the relation equal to
Fig.2.23(a) is also shown by Fig.2.23(b). With the increase of the load, the angle
gradually decreases as seen from Fig.2.23(a). The effect on #; by the difference
between web plate width-to-thickness ratio 4 is clearly observed, when the angle is
compared for the load near the ultimate state in each case. It is supposed, when
Fig.2.23(b) is compared with Fig.2.23(a), so that there may be no the great difference
on the angle at the load which is approximate to the ultimate state between both,
though the route is different a little.
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Fig.2.23 Direction of principal stress.

(4.6) The ratio between principal stresses

Fig.2.24 shows how the ratio of principal stress o: and oz in the panel center
point changes with the increase of the load. Fig.2.24(a) and Fig.2.24(b) are respectively
corresponding to the case that B.C.=1 and B.C.=Il. From the comparison of both
figures, it is proven that both ratios in the same value of S/S, are different and the
value of S/Sp in which the ratio begins to increase from 1.0 considerably differs. It
seems that this reason is because the load for the beginning of the post-buckling
strength differs, as the deflection is suppressed owing to the fixed top and bottom edges
in the case that B.C.=1II. It should be noticed that the effect by the flange rigidity on
the ratio is very small in both cases that B.C.=1 and II almost either, if the value of
/4 1s identical.
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shown by Fig.2.25 for each case 1 to 3. In the case of 2, the difference is almost constant
over the whole panel, though the turbulence caused by the numerical error is seen in
the corner points. However, the value of the difference at each point in the panel varies
considerably in the case of 3. In the case of 1, there is in the middle condition between
two cases. The relationship on the difference between principal stresses and the
distance from the lower end on the cross sections @ and 3 which Fig.2.26 shows is
illustrated in Fig.2.27. Abscissa d is the distance from the lower end. From this figure,
it is proven that the variation of the difference on the distance in the case 3 is
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Fig.2.24 Ratio between both principal stresses.

Difference in principal stresses
The distribution on the difference between o ;and o 2in the web center plane is

remarkable and that also changes near the edge in the case 1.

Case 1

Fig.2.25 Distribution on difference of principal stress.




Fig.2.26 Location of section.
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(4.8)  Formula for estimation of ¢ and (o ;-0 2

From the result obtained until now, it is known that the influence of the flange
rigidity on the load carrying behavior is not big. Therefore, panel aspect ratio and
panel width-to-thickness ratio are chosen as parameters, and how the angle of
principal stress direction and the difference of principal stresses are expressed by the
value of o« and /4 1is investigated. These are necessary, when the prediction
expression of the load carrying capacity is constructed. For the induction of the
equation, the least squares method was applied. As a result of the regression analysis,
the following approximation was obtained. Where, the parameters are applicable in the
following range.

0.6<a<1.6and100< S <200
¢ = 40.1825+10.4125¢« + 0.08084 — 0.1443c3

+7.33200 —3..2470x10°* 52 —0.1042% 8 2.1)
+3.5580x10 *af? + 2.4995x10 * o * B*

(o,—-0,) 0, =1.0107 - 0.0264c

+2.3750x107° B + 4.370x10 * a8

—0.0027 x a® —9.3401x10°° 2 (2.2)

+1.723x10*a* B —1.660x 10" % o 3°
~1.5052x10%a? B2
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For 3 kinds of values of /4, the relationship between ¢ and « in Eq.2.1 has been

illustrated graphically in Fig.2.28. Though ¢ is decreased with the increase in the
value of «, the degree of the decrease is related to the value of /4 and the degree of

the decrease is bigger, as /4 is bigger. From this figure, it is proven that the difference

between the curves by the value of /4 increases, when « exceeds 0.5.

The relationship between (0 ;-0 29/ o0y and « in Eq.2.2is shown by Fig.2.29 for 3

kinds of /. In the case of 4#=200, the difference between principal stresses decreases
with the increase of «. In addition, it is proven that the value of the difference

between principal stresses in this case is small without relating to the value of « in

comparison with other cases.
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(4.9) Conclusions

1)

2)

3)

4)

5)

6)

Obtained results are as follows:

The girder panel shows the in-plane deformability that is stable to the ultimate
strength.

Though the proportion for the ultimate strength of the strength supported by the
tension field action is different according to the panel width-to-thickness ratio, the
effect by the flange rigidity is not very much related.

The boundary condition of the top and bottom edges has influence on the proportion
of the strength supported by the tension field action in the ultimate strength. In the
case of the simple support, the ratio for the tension field action relatively increases,
as the buckling strength is estimated making use of low buckling coefficient.
However, the value of the ultimate strength is not affected very much by the
boundary condition, and almost resembled value is shown.

It becomes a cause of the strength degradation that the bending moment owing to
large out-of-plane deformation arises in the panel with large width-to-thickness
ratio.

Corresponding to the value of the panel width-to-thickness ratio, the principal
stress distribution is considerably different. With the increase of the panel
width-to-thickness ratio, the angle where the principal stress direction associates
with the horizontal axis decreases.

The ratio between both principal stresses increases, when the panel
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width-to-thickness ratio is large.

7) With the increase in the panel width-to-thickness ratio, it is noticed that the
difference of both principal stresses decreases.

8) The difference between both principal stresses in the height direction of the panel
increases, as the panel width-to-thickness ratio increases.

9) Using the numerical calculation results, the regression analysis equation for
obtaining the principal stress direction and the difference between the both
principal stresses that took the aspect ratio and the width-to-thickness ratio as the
parameters was proposed.

10) It is seen on the appearance that the load carrying capacity under shear can be
estimated as a sum of the strength supported by the beam action and tension field
action, as a panel takes the behavior shown in Figs.2.16 and 2.17.

4.3 Load-carrying capacity of girders with linearly varying depth in shear

4.3.1 Analytical methods
(1) Introduction

Plate girders with webs tapered in depth are used widely in bridges. But there is
little ultimate shear strength investigation on such girders. Falby!? has proposed a
calculation method to predict shear strength by means of plastic analysis in Basler’s
style®. Also, Mandal et al.®.? have given a predicting method extending the theory of
Porter et al.®. So far, it has been assumed in many modal analyses that the shear
strength on webs after shear buckling can be obtained as the sum of the shear buckling
strength of webs and the strength caused by the vertical components of a diagonal
tension field?. Then, this assumption will be used too fundamentally.

The shear buckling load on a trapezoidal web panel are calculated on the condition
that flange edges are simply supported or fixed and other two edges are simply
supported making use of a finite element method. Then, the calculated results are
compared with the case of rectangular web panels. It is supposed that the stress
distribution on the diagonal tension field that develops in the trapezoidal panel can be
determined based upon Ostapenko’s modell®, Then, by applying equilibrium conditions
to the panel the shear strength owing to the tension field and the axial forces on
flanges can be estimated. In regard to the girder reinforced by transverse stiffeners, it
is assumed that diagonal tension fields develop independently in adjacent two panels.
And the axial stiffener force can be estimated according to the equilibrium condition.

(2) Buckling loads of trapezoidal web plates

In order to calculate shear buckling loads of web panels, a trapezoidal plate
subjected to the force along each edge in a state of plane stresses shown in Fig.3.1 is
chosen. In this figure, @, d» and /4 denote web length, mean panel depth and the angle
of a inclined flange, respectively. It is assumed that the plate is simply supported along
Y=0 and a, and simply supported or fixed along other edges in regard to out-of-plane
deflection. Really, it is suggested that the boundary condition in which two edges are
simply supported and other edges are fixed is proper for shear buckling analysis in
rectangular plates!V. Stress analysis will be carried out by using the FEM with
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constant strain triangles. In buckling analysis the FEM with triangular elements in
which the deflections at three apexes and the rotation along three sides constitute the
degree of freedom will be used!?. And an extrapolation method will be adapted to
obtain converged values?d. Three kinds of 4 (5°,10°and15°) are selected. Buckling
coefficients, k., can be obtained from the mean value of shearing stresses on the panel
and the mean width-to-thickness ratio. The relation between k. and the mean aspect

ratio, a(=ald ), is shown in Fig.3.2. It is seen from this figure that k. varies with

the value of /4 and the boundary conditions.
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Fig.3.1 Trapezoidal panel. Fig.3.2 Buckling load curves.
(3) Model of diagonal tension field

As it is supposed that the tension field develops slightly in the upper part of a
trapezoidal panel, the assumption on the tension field distribution by Oatapenkol® is
adapted to the rectangular part of the panel illustrated in Fig.3.3. Namely, so far as the
distribution of the tension field the model in which an inclined flange holds the position
AA may be assumed. As shown in Fig.3.3, the web panel is cut along a section t—t
close the intermediate stiffener in the panel nearest to supports that the collapse is
expected. By applying the equilibrium condition to this free body panel, the action of
shear forces can be obtained as follows:

Fig.3.3 Equilibrium conditions applied to web panel.
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P ot
—= L inp/2+d i
2 dhcosﬁ—esnﬂ[s(ssmﬂ +d, cosfsing) (4.1)

+ pasing{(s+asing/2)sin g +d, cospsing}]
where o ¢ dn, ¢, e, o and s are the tension field stress, the web thickness, the
maximum panel depth, the inclination angle of tension field, the length from section ¢-¢

to the loading point, the coefficient of equivalent tension field stresses and the width of
tension field, respectively. When the minimum panel depth is represented by d

S=d, cosg—asing.

At the estimation of o 4 if both cases of the approximate yield condition by Basler®
and the exact yield condition by von Mises are adopted, ¢ can be determined on
condition that P/2 takes the maximum value as follows:

a) In the case of approximate yield condition

2d,d, cos - 2(1- p)ad, sin g

tan 2¢ =—— . _ (4.2)
d“sing-a“(1- p)sin g+ 2(1- p)ad, cos g
b) In the case of exact yield condition
{(1- p)ad,cos B +d,*sin 12— a’(1— p)sin B/ 2}tan 24 =
d,d,cosB —(1- p)ad,sin f-3(r lo,)[s(ssin 12+ s

d,cosfsing + pasing{(s+asing/2)sin  +
d,cospsingll/ {1+ (r,/ o,)? {[L5sin 2¢] - 3|

where o vand r . are the yield stress and the shear buckling stress, respectively.
(4) Force acting on intermediate stiffener
As seen in Fig.3.4, it is assumed that each tension field is formed independently on
the adjacent panels subjected to shearing forces. By applying the equilibrium condition
to the panel after cutting, the acting force on the intermediate stiffener Fs can be
obtained as follows:

F,=[o,t,sNn(4, + B) - o,t,sin(g, + )
+2p,0,ta,sing,sin(g, + B)|/cos B

(4.4)

where the subscripts 1 and 2 correspond to the panels I and II,respectively.
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Fig.3.4 Equilibrium conditions applied adjacent web panels.

An example of the relation between the maximum value of /; and /4 obtained by
using Eq.(4.4) is shown in Fig.3.5. As /4 increases the maximum value of F: shows
approximately a linear increase. Also in this figure, the maximum force acting on the
intermediate stiffener obtained by Basler’s expression is given in a broken line. On this
occasion, the trapezoidal web panel is converted into the rectangular panel with mean
panel depth.
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Fig.3.5 Relation between maximum stiffener force and f.

(5) Conclusions
The expression to predict the load carrying capacity of tapered girders was
proposed by calculating shear buckling load curves of trapezoidal panels and assuming
a model of tension fields. And the estimation of the force applied on intermediate
stiffeners was done.
Obtained results on the theoretical study are as follows.
1) Shear buckling loads of trapezoidal web panels are fairly affected by the inclination
angle of flanges.
2) The expression using the approximate yield condition is considerably simple because
of no iteration.
3) The relation between the inclination angle of flanges and the maximum stiffener
force was considered.
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4.3.2 Experiments on girders with linearly varying depth in shear
(1) Introduction

There is little ultimate shear strength investigation of girders with webs tapered
in depth even on experimental works. Davis and Mandal have presented the test
results for tapered plate girders in shear®.?. But the flanges in these girders were
formed from hollow sections and the girders had not intermediate transverse stiffeners.

In this article, the ultimate shear strength and the behavior for tapered girders
will be discussed. Eight model girders with straight varying depth are tested under
shearing force and four of them have intermediate transverse stiffeners. The flanges in
these girders are formed from rectangular solid sections dissimilar to the test by
Mandal et al. The effects of the failure of web plates, flanges and stiffeners upon the
ultimate strength and the collapse behavior are examined experimentally, and the
properties of tapered plate girders are investigated in detail.

(2) Description of tests
(2.1) Models

Eight models of tapered plate girders were tested. Four models (Models TS-1, TS-2,
TS-3 and TS-4) with no intermediate transverse stiffeners are called as the series I
and other four girders (Models TS-T-1, TS-T-2, TS-T-3 and TS-T-4) with them as the
seriesIl. A parallel flange girder (Model US-1) was also tested with the purpose of
comparison.

As shown in Fig.3.6, the shadowed portion is the testing panel and the arrow
indicates the point of load application. Intermediate transverse and bearing stiffeners
at the point load application and at ends were used in pairs. The web plate opposite to
the testing panel relative to the girder center was suitably reinforced by stiffeners to
ensure that it should not fail before the testing panel.
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Fig.3.6 Tapered girders.
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Fig.3.6 Tapered girders (Continued).

The cross section of the web and flange was the same throughout the length of the
girder. The web and flange plate with 1.6mm and 12mm thickness in the plan,
respectively were chosen. Models TS-1 and TS-2 were designed so as to have the same
maximum web depth and Models TS-1 and TS-3 the same minimum web depth. Each
inclination angle of the compression flange for Models TS-3 and TS-4 is identical. In
the seriesIl, each girder was designed to be identical except for the dimensions of the
intermediate stiffeners. The actual girder dimensions on the testing panel were
measured. These measurements are summarized in Table 3.1. The flexural rigidity of
the intermediate stiffener on Model TS-T-2 is nearly equal to that of Model TS-T-3. The
stiffener rigidities of Models TS-T-1 and TS-T-4 are about 13 and 2 times as large as
that of Model TS-T-2, respectively.

All models were made of SS400 steel. Coupon plates were cut from the same length
of girder components to obtain tensile test coupons. The results of the coupon tests are
given in Table 3.2.
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Table 3.1 Measured dimensions of girders.

Series 1 Series II
Model TS-1 TS-2 TS-3 TS-4 | TS'T1 | TS-T-2 | TS-T-3 | TS-T-4 | US-1
Web length @ (mm) 654 652 640 579 559 560 561 560 647
Min. web depth 2, (mm) 549 449 549 491 505 505 503 504 548
Max. web depth Di  (mm) 649 646 719 633 700 698 697 699 548
Web thickness ¢ (mm) 1.57 1.59 1.50 1.51 1.62 1.58 1.70 1.69 1.55
Flange width » (mm) 89.1 89.3 90.8 89.4 160 160 162 160 90.7
Flange thickness ¢ (mm) 11.8 11.9 12.1 12.1 11.3 11.3 11.6 11.6 12.1
Panel length / D; 1.16 1.42 1.13 1.14 1.09 1.09 1.10 1.09 1.14
D /¢t 350 283 366 325 313 320 297 298 354
¢ (degree) 8.7 17.1 14.7 14.7 10.1 10.1 10.1 10.1 0
bs (mm) - - - - 32.8 13.5 17.8 21.0
t; (mm) - - 2.97 3.01 1.65 1.68

4 Inclination angle of flange  bs Width of intermediate stiffener
ts: Thickness of intermediate stiffener

Table 3.2 Coupon test results.

Series 1 Series II
Model TS-1 TS-2 TS-3 TS-4 | TS'T1 | TS-T-2 | TS-T-3 | TS-T-4 | US-1
Yield stress Flange 282.2 | 2822 | 284.4 | 2844 | 216.1 | 216.1 | 286.3 | 286.3 | 284.4
oy Web 286.9 | 3233 | 290.3 | 290.3 | 280.8 | 280.8 | 2814 | 2814 | 290.3
(MPa) Stiffener - - - - 371.6 371.6 318.7 318.7 -
Young’s Flange - - 2.05 2.05 1.95 1.952. 2.03 2.03 2.05
modulus £ Web - - 1.99 1.99 2.12 2.12 2.13 2.13 1.99
X105 (MPa) Stiffener - - - - 2.10 2.10 2.06 2.06 -
Poisson’s ratio | Web - - 0.275 | 0.275 | 0.269 | 0.269 | 0/326 | 0.326 | 0.275
Vv

(2.2) Test setup
Each girder was tested in the simply supported condition with roller supports at
the ends and a concentrated load was applied to the girder at mid-span using an oil
jack of the capacity of 294 kN. To prevent any horizontal movement of the girders, the
lateral supports were provided at mid-span. These supports consisted of a roller
attached to a rigid frame bolted to the laboratory floor.
(2.3) Instrumentation
Dial gauges and electrical displacement transducers were used to observe the
deflection on each girder. To measure the out-of plane deflections of the web plate
relative to the boundaries, a frame that was clamped to the bearing stiffeners was used.
Dial gauges were mounted underneath the tension flange to observe the vertical girder
deflections. The horizontal and vertical deflections of the inclined (compression) flange
were observed by cathetometers.

Electrical resistance strain gauges, with uni-axial and rosette types, were used on
each girder. Measurements of the strains were taken on both faces of the girder
components. Namely, by placing identical strain gauges opposite each other (at each
side of the web, flange and stiffeners), it was possible to separate membrane and
bending strain.

(2.4) Testing procedure
Before testing, the initial deflections of web plates were measured. As an example,
the distribution of initial deflection of the web for model TS-2 is shown in Fig.3.7. The
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maximum initial deflections of the webs for each model were obtained as shown in
Table 3.3. As seen in this table, the value of each maximum initial deflection is
relatively large owing to the use of thin plate.

The step-by-step loading procedure was used in each girder test. After the
attainment of ultimate load, the removal of load was conducted.

Table 3.3 Maximum initial deflection of testing panel.

Series 1 Series II
Model TS-1 | TS-2 | TS-3 | TS-4 | TS-T-1 | TS-T-2 | TS-T-3 | TS-T-4 | US-1
wo, max (mm) 4 4 6 6 4 5 6 4 6

Model TS-2 (mm)

Fig.3.7 Initial deflection of web panel.

(3) Experimental results and considerations
(3.1) Collapse mode of failure of girders
All tapered girders failed with the development of the tension field in the web
panel and the formation of the plastic hinges in the compression and tension flanges.
As examples, Models TS-1 and TS-T'1 collapsed are shown in Fig.3.8 and Fig.3.9,
respectively. The plastic hinges formed are clearly visible in these photographs.

Fig.3.8 Collapsed girder (TS-1). Fig.3.9 Collapsed girder (TS-T-1).
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(3.2) Out-of plane deflections of web panels
The relative deflections of the web panels were measured at several points on each
girder. The relative deflections have been plotted against the applied load to form
Figs.3.10 and 3.11. In Fig.3.12 the deflections of various points of the web panel are
shown at the five different loads. As seen from Figs.3.10 and 3.11, it is difficult to
estimate the shear buckling load of the web panel due to the initial web imperfections.
It can be seen from Fig.3.12 that the tension field develops with the increase of load on

the panel.
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Fig.3.10 Relative web deflection. Fig.3.11 Relative web deflection.
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Fig.3.12 Deflected web profile.
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The contour lines of the residual deflection are illustrated in Figs.3.13 and 3.14.
Also the result of Model US-1 is shown in Fig.3.13. Each model of the series I girders
showed the similar distribution of residual deflections. It is found from Fig.3.13 that
the inclination of the tension band, which may be estimated from the residual
deflection, is similar in both models. But in the seriesIl girders, the distribution of
residual deflections were affected considerably by the rigidity of the intermediate
transverse stiffeners. As the rigidity of the intermediate transverse stiffeners decreases
(see Table 3.1), the diagonal tension fields extend over the adjacent panel to the testing
one. Namely, it is evident that two adjacent web panels tend to function as a single web
panel. The intermediate transverse stiffener on Model TS-T-1 deflected hardly in the
lateral direction.

_ )
Mode! TS-1 (mm Model US-1  (mm)

Fig.3.13 Residual web deflection.

(mm) £-T-2T leboM

1snsttite savevannaT2.T

Fig.3.14 Residual web deflection.
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(3.3) Girder deflection

The central deflections of every model are plotted with respect to applied loads in
Figs.3.15 and 3.16. Each load-central deflection relationship is linear up to, at least,
approximately 85% of the collapse load except for TS-2. In the case of Model TS-2, the
load-central deflection relationship becomes nonlinear at approximately 80% of the
collapse load. When the load-central deflection relationship becomes nonlinear at first,
the value of the ratio of the central deflection to the overall span is in the range
1/700-1/1000 except for Model TS-4. On Model TS-4 the ratio is about 1/450. The
deflection shows a rapid rate of increase as the load approaches that of the failure.

Series I

il | | 7
% 5 10 15 2 25 0 5 R R TR

Deflection (mm) Deflection {mm)
Fig.3.15 Central deflection. Fig.3.16 Central deflection.

(3.4) Vertical displacement of inclined flange
A plot of load against vertical displacement of the inclined flange similar to that
shown in Fig.3.17 was obtained. These observations were obtained by reading the
movements of the marks on the inclined flange using cathtometers. It can be seen that
in the case of Fig.3.17 the curve is linear up to approximately 90% of the collapse load.

250

200———

100———————4

50—

Deflection(mm)

Fig.3.17 Vertical displacement of inclined flange.
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(3.5) Strain of flange

For Girder TS-1, the longitudinal strains of the compression flange have been
plotted against various loads to form Fig.3.18. In this figure, it should be noted that the
strains near the position of the plastic hinge increase rapidly with the approach to the
collapse load and subsequently are beyond the yield strain of the material at about 90%
of the collapse load. But the strains that were caused on other positions have relatively
small values and are almost uniformly distributed even when the collapse load is
reached.

-2000—

Microstrain
é '
I

Fig.3.18 Longitudinal strains of inclined flange.

In Fig.3.19, the variations of the surface strains on the inclined flange are shown
against several applied loads. From this figure, it is seen that the strains near the
center of the flange develop gradually owing to the tensile stresses of the web with
increasing load.

Wep|

0 1000 2000 3000 4000 5000
Compressive strain (x1078)
Model TS-T-2

o9 7 [ el e
] ! - e
IR
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b :
0 1000 2000 3000 4000 5000
Compressive strain (x107)
Model T5-T-1

Fig.3.19 Distribution of strains on inclined flange surface.
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(3.6) Strains across tension band

The variations of the diagonal tensile strains acting at right angles across the
diagonal AB of web panel measured by the rosette gauges are shown against several
applied loads in Fig.3.20 for Girder TS-4. Also the result of Model US-1 is indicated in
the same figure. From this figure, the width and inclination of the tension band can be
estimated. It can be seen that the strains at the points across the tension band have
mostly exceeded yield point. Further, it is of interest to note that the distribution of the
strains across the tension band has been unsymmetrical about the center of the
diagonal and the extent of the development has been remarkable in the tensile zone.
While, such distribution on Model US-1 is more symmetrical than that of Model T'S-4.

Strains (x10°)
S

Strains (x10%)
3 @

[3,]

Model TS-4

Fig.3.20 Strains across tension band.

(3.7) Distribution of principal stress
As an example, the distribution of the elastic principal stresses is shown in
Fig.3.21. From this figure, it can be seen that the diagonal tension field develops widely
and rapidly with increasing load. Besides it should be noted that these membrane
stresses have been undeveloped in the upper triangular part and around the part. This
fact is similar for other models and compatible with the foregoing assumption at 4.3.1

(3.
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Fig.3.21 Principal stress distribution in web.

(3.8) Equivalent stress

For Model TS-4, the equivalent stresses in the middle plane of the web panel are
plotted against the load in Fig.3.22. It will be seen that the equivalent stresses at the
ends of the tension band grow gradually up to the neighborhood of the collapse load.
But the values are large near the center of the panel on account of the unrestricted
condition by boundaries. Namely, as the web deformation in the vicinity of the tension
band is large the large membrane stresses grow owing to the deformation.

It is founded from this figure, Fig.3.17 and Fig.3.18 that after the web part just
under the inclined flange yields the flange begins to dent considerably. Therefore, it is
presumed that the large deformation of the flange occurs in the rather final stage of
loading. Furthermore, it may be supposed that from this figure, Fig.3.15 and Fig.3.16
even if the rigidities are reduced by the spread of yielded areas on webs owing to the
large web deformation, the behavior on deformation of girders has not been seriously
influenced.
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Fig.3.22 Equivalent stress in web.

(3.9) Strains of intermediate stiffener

Fig.3.23 shows how the axial strains varied along the length of the intermediate
transverse stiffeners against various applied loads. Fig3.24 gives the positions of the
strain gauges on the intermediate stiffeners. It seems that Fig.3.22 shows the similar
distribution pattern. It is seen that in every models the distribution of the axial strains
along the length of the stiffener is unsymmetrical. But for Model T'S-T-1 the values of
compressive strains are smaller than those for other models when failure occurs.

Fig.3.25 shows how the strains due to lateral bending grew along the length of the
intermediate stiffeners against various applied loads. From these figures, it can be
noticed that the strains on Model TS-T-1 for which the rigidity of the intermediate
stiffeners is large (see Table 3.1) have been comparatively small. It is evident that the
intermediate stiffener of Model TS-T-1 was effectively subdividing the web into two
panels. While on other three models in the seriesIl the out-of plane deflection which
extended over the adjacent panels was developed.
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Fig.3.23 Longitudinal strains in transverse stiffener. Fig.3.24 Location of

strain gauges.
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Fig.3.25 Strains in transverse stiffener due to lateral bending.

(3.10) Ultimate strength

Table 3.4 shows the maximum shear loads, P, , observed. Also in this table the

ult »

ratios Vi IV, Vi IV, and VIV, are given, where V,;, is one half of P, and

ult p,m?’ ult

V_  is the full plastic shear force which is obtained by assuming the girder depth to be

p.m

the mean depth of the trapezoidal testing panel. Similarly, vat and prh are the full

plastic shear force in the case for which the minimum depth and the maximum depth
of the testing panel are taken as the girder depth, respectively.

On comparing the values of V. / prt for Models US-1, TS-1 and TS-3, when the

ult

panel length and the minimum girder depth of a tapered panel are constant the
collapse load will increase with the increase of the maximum girder depth. But by
making a comparison between Models TS-1 and TS-2 that have the same panel length
and the same maximum girder depth, it is assumed that there may be a certain
inclination angle of the flange that allows the collapse load to become a maximum.

Though Models TS-1 and TS-4 have the same maximum girder depth and the same
ratio of the panel length to the minimum girder depth and the inclination angle of the
flange for Model TS-4 is greater than that for Model TS-1, Model TS-4 gives the
collapse load greater than that of Model TS-1.
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Table 3.4 Collapse loads.

Series 1 Series 1T
Model TS-1 | TS-2 | TS-3 | TS-4 | TS-T1|TS-T2 | TS-T3 | TS-T4 | US-1
P (kN) 201.5 | 220.6 | 243.2 | 237.9 | 230.4 | 236.8 | 235.8 | 254.5 | 186.3
Vaue / Vom 0.647 | 0.680 | 0.763 | 0.836 | 0.794 | 0.835 | 0.776 | 0.839 | 0.654
Ve / Vi 0.706 | 0.829 | 0.882 | 0.957 | 0.871 | 0.915 | 0.851 | 0.921 | 0.654
Vaue / Von 0.598 | 0.577 | 0.673 | 0.743 | 0.730 | 0.768 | 0.714 | 0.771 | 0.654

It is supposed that these results are due to the action of the vertical component of
the axial force in the inclined flange.

With regard to the results of the seriesll, the collapse load of Model TS-T-1 is
smaller than that of Models TS-T-2 and TS-T-4 in spite of the high rigidity of the
intermediate transverse stiffener. To investigate the cause, the relationship between
the load and the diagonal strains at the middle plane of the web panel is shown in
Fig.3.26 on Models TS-T-1 and TS-T-2.

00._0,,4}—0""
0‘_,_:_0_‘_‘?'__?;_._.0-

250

Model T5-T-1

———— Model T5-T-2

Strains (x107)

Fig.3.26 Diagonal strain in web.

The variations of the bending strains along the inclined flange for Models TS-T-1
and TS-T-2 are also shown in Fig.3.27 against various loads. From Fig.3.26, it is seen
that the tensile strains of the web panel for Model TS-T-1 have been developed
remarkably and rapidly. Therefore as shown in Fig.3.27, it is considered that because
the inclined flange had been deformed abruptly the maximum load was reached. As the
intermediate stiffener with the small rigidity develops large deformation and strains,
the use of that is undesirable.
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Fig.3.27 Bending strain in inclined flange.

(3.11) Comparison of experimental results with theories
(1) Ultimate strength

In most modal analyses, the assumption that the ultimate shear strength, Vs,
may be expressed as the sum of the shear buckling stress, Ve, and the shear strength
due to tension fields, V: or with addition to the strength, V% caused by frame actions
has been used. Here, it is assumed that the ultimate shearing force is expressed by the
following form: Vu=Ve+V: It is considered that the equilibrium is kept in immediately
before the final frame action.

It has been often said that the boundary condition for fixed upper and lower edges
and simply supported other edges is really suitable in order to obtain shear buckling
stresses of rectangular web plates. Also, it is assumed that this condition holds good for
trapezoidal web plates.

By using Fig.3.2 the shear buckling strength for trapezoidal web plates can be
calculated. From these results and the results obtained by applying Eq.(4.2) or Eq.(4.3)
to Eq.(4.1), the ultimate loads can be estimated. Then, the computed results for the
loading tests on the tapered plate girders are given in Table 3.5. In these calculations
the value of 0 1is assumed to be 0.5. In this table, the predicted values by means of the
calculation methods proposed by Davis et al.6)? and Falby? are similarly presented.
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Table 3.5 Comparison of tests with various theories (kN).

Girder | TS | TS2 | TS-3 | T5-4 | 10A | 20A | 60A | 70A | Theory | Standard
Theor — | Deviation
Y EXP. mean
Present Approx, 197.2 | 222.3 | 223.8 | 197.8 125.2 174.2 164.8 | 254.2 0.98 0.11
Exact 201.1 | 227.3 | 227.2 | 201.7 129.5 | 179.9 | 171.0 | 266.9 1.01 0.12
Davis-Mandal 225.5 | 248.1 | 231.4 | 214.8 127.0 | 154.0 | 175.0 | 233.0 1.00 0.09
Falby 105.1 89.2 102.0 94.0 37.1 38.8 51.8 71.6 0.36 0.09
Experiment 201.5 | 220.6 | 243.2 | 237.9 125.0 | 144.0 | 189.9 | 252.0 - -

The present values predicted by applying the approximate yield condition, Eq.(4.2),
agree well comparatively with the test results. Likewise, the present values predicted
by applying the exact yield condition, Eq.(4.3), and the values given by using the
expression of Davis et al.0.? agree well relatively with the experimental results. The
method by means of the approximate yield condition without iterations is exceedingly
simple. The values obtained by the application of Falby’s method!? are far apart from
the experimental results.

(2) Required area for intermediate stiffener

Many suggestions have been proposed with respect to the required rigidity and
area of intermediate stiffeners®. The force acting on intermediate stiffeners of tapered
plate girders may be obtained by applying Eq.(4.4). In Table 4.6, the ratios of the areas
of intermediate stiffeners obtained from the measured dimensions in the test seriesIl,
As, to the required areas of intermediate stiffeners estimated on basis of this equation,
Asreq, are shown. It seems that these results coincide enough with the above-mentioned
collapse modes. The above values for Asreq almost agree with the results obtained by
applying Cooper’s expression presented for uniform depth girders?® to the tapered
girders of which trapezoidal web plates are converted into the rectangular web plates
with the mean depth.

Table 3.6 Area of transverse stiffener.

Girder TS-T1 | TST2 | TS T3 | TS'T4
As/Asreq 0.79 0.34 0.20 0.24
y = EI/DmD 321 27 26 44
o= As/Dmt 0.200 0.085 0.056 0.070

D = (Dp + D, )/2 D = Et3/12(1-v?)

I moment of inertia of area for stiffener

(3) Conclusions

The loading test results on the tapered girders with linearly varying depth loaded
in shear were presented. Eight models were tested. Four models of them have
intermediate transverse stiffeners. The present experimental works has clarified the
failure mechanism of the tapered girders.

The results obtained by tests are as follows.
1) The development of the diagonal tension field is insufficient in the triangular part of
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the trapezoidal panel.
2) In the case of the tapered girders with intermediate stiffener, the deflected surface of
the web panel depends on the rigidity of intermediate stiffener.
3) Though the small rigidity of intermediate stiffener does not result in the girder
collapse, the large deformation of web is undesirable.
The validity of the expression to predict the load carrying capacity was examined
by comparing some experimental results with the predicted collapse loads.
4) The expression using the approximate yield condition predicts fairly well the
ultimate strength.
A formula to estimate the force applied on intermediate stiffeners was introduced.
5) The investigation on the required area of intermediate stiffeners was tried by using
above results.

4.3.3 Rigidity of intermediate vertical stiffener

(1) Introduction

There is little in the study of plate girders with webs tapered in depth. The test
results on the ultimate shear strength of tapered plate girders with straight varying
depth having intermediate vertical stiffeners and some theoretical considerations are
presented. After the first testing panels that had been once tested in Article 4.3.2 were
stiffened, the other side panels were used as the second testing panels in these
experiments. The variation of the axial force along intermediate stiffeners is
theoretically estimated and it is compared with the axial strain obtained by the test.
On the basis of these results, how the properties of intermediate stiffeners effect on the
ultimate strength and the failure mode of girders are discussed.

(2) Description of tests
(2.1) Models

Four models were tested. The models that had been used in the study at Article
4.3.2. were once applied. The theoretical collapse load of the first testing panels in the
previous experiment is lower than that of the second testing panels in this experiment.
The collapsed panels were reinforced by welding angles over top and bottom flanges.
Typical stiffened panels are shown in Fig.3.28.

Each girder is designed to be identical in size except for intermediate stiffeners.
The outlines of these dimensions are shown in Fig.3.29. Intermediate transverse
stiffeners are used in pairs. The actual dimensions of intermediate stiffeners are shown
in Table 3.7. The symbol “S” which is contained in some girder numbers is used to
denote the present testing panels.
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Fig.3.28 Girder before test.
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Fig.3.29 Outlines of test girders.

Table 3.7 Measured dimensions of intermediate stiffeners.

Model | TS-T-1(S) | TS-T-2(S) | TS-T-3(S) | TS-T-4(S) | TS-T1 | TS-T-2 | TS-T3 | TS-T4
|  (mm) 598 599 599 598 602 602 602 602
b (mm) 41.0 40.4 40.5 40.2 32.8 13.5 17.8 21.0
ts (mm) 4.3 4.2 3.1 3.1 2.97 3.01 1.65 1.68

Is Length of intermediate stiffener bs Width of intermediate stiffener
ts Thickness of intermediate stiffener

(2.2) Coupon tests
All models were made of SS41 steel. The results of the coupon tests are shown in
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Table. 3.8.
Table 3.8 Coupon test results.
Model TS-T-1(S) | TS-T-2(S) | TS-T-3(S) | TS-T-4(S) | TS-T-1 | TS-T-2 | TS-T-3 | TS-T-4
Yield stress | F 216.1 216.1 286.3 286.3 216.1 | 216.1 | 286.3 | 286.3
oy (MPa) W 280.8 280.8 281.4 281.4 280.8 | 280.8 | 281.4 | 281.4
S 253.6 253.6 318.7 318.7 3716 | 3716 | 281.4 | 2814
Young’s F 1.95 1.95 2.13 2.13 1.96 1.96 2.13 2.13
Modulus E W 2.12 2.12 2.13 2.13 2.12 2.12 2.13 2.13
X10° (MPa) S 2.15 2.15 2.06 2.06 2.10 2.10 2.13 2.13
Poisson’s ratio v | W 0.269 0.269 0.326 0.326 0.269 | 0.269 | 0.326 | 0.326
F Flange W:Web S Stiffener




(2.3) Initial deflections
The initial deflections of the flanges and the web over the present testing panels
were not small owing to the effects of the previous load application. But the
deformation of intermediate stiffeners on the present testing panels was very small.

(3) Experimental results and considerations
(3.1) Failure mode
The collapsed panels after the tests are shown in Fig.3.30. It is found that the
outside panel (Panel 1) of each girder developed sufficient shear mechanism. The
inside panel (Panelll) of each girder was subjected to the combination of bending
moment and shearing force. Then, it is seen that the development of the tension field
was not enough in PanelII.

(3.2) Girder deflection
The central deflections are plotted with respect to applied loads in Fig.3.31. Each
curve is linear up to about 90% of the collapse load. When the load-central deflection
relationship begins to be nonlinear, the ratio of the central deflection to the overall
span is in the region of 1/500~1/700. Subsequently the deflection shows a gradual rate
of increase for a while. However, it increases rapidly as the failure approaches.
(3.3) Vertical displacement of inclined flange
The relationship of load against vertical displacement of the inclined flange is
shown in Fig.3.32. It is seen that from the comparison of Fig.3.31 with Fig.3.32 the
load-central deflection curve closely corresponds to the load-vertical displacement curve
of the top flange. Namely, it is supposed that the dent of the top flange has a serious
effect on the failure of the girder.
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Fig.3.31 Central deflection. Fig.3.32 Vertical displacement of inclined flange.

(3.4) Strains of intermediate stiffener

Fig.3.33 shows how the axial strain varies along the length of the intermediate
transverse stiffener against various applied loads. Fig.3.34 gives the positions of the
strain gauges on the intermediate stiffener. Each girder shows the similar distribution
of strains and the maximum compressive strain 500~600 micro-strain in the order of
magnitude. Though these distributions are similar to the distribution for Model TS-T-1
in form, the magnitude of the maximum strain in Fig.3.33 is considerably smaller than
that for Model TS-T-1 owing to the difference in size of those stiffeners. In Fig.3.35, the
variation of the bending strain along the intermediate stiffener at various loads is
shown. The maximum value of the strains for each girder is under 20% in comparison
with that for Model TS-T-1. Therefore, it is evident that the function of each
intermediate stiffener was satisfactorily effective at the failure of the girder and the
panels buckled individually.

TF. [ TF.
P !
|
l &
orl | | S N N N B
0 1 3 6 0 1 2 3 4 5 T
Strain (x107%) T5-T-1(5) Strain (x107%) TS-T-2(S)
T.F. T.F.
D\‘-‘
BF. BF.
0 5 [ 0 ] B
Strain (x107%) T5-T-3(S) Strain (x107*) T5-T-4(S)
T.F.:Top flange BF:Bottom flange
Fig.3.33 Axial strain along vertical stiffener. Fig.3.34 Position of

strain gauges.
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Fig.3.35 Bending strain along vertical stiffener.

(3.5) Ultimate strength

The collapse loads, Pur, observed are shown in Table 3.9. In this table, the results
obtained by the previous experiment are also shown. In each girder, the value for the
present testing panel is slightly exceeding that for the first testing panel. It seems that
the reason is due to the restriction of deformation by the stiffened panels. It is
supposed that the reason why the collapse load for Models TS-T-3(S) and TS-T-4(S) are
higher than that for Models TS-T-1(S) and TS-T-2(S), respectively, is reduced to the
difference in the yielding stress of flanges. Since every intermediate stiffener was
effective when the failure of the girder took place, it can be considered that there is no
effect of the difference in size of intermediate stiffeners on the ultimate strength of the
present test.

Table 3.9 Collapsed loads.
Model | TS-T-1(S) | TS-T-2(S) | TS-T-3(S) | TS-T4(S) | TS-T-1 | TS-T-2 | TS-T-3 | TS-T-4
Pur (kN) 245 248 269 282 230 237 236 255

(4) Loads on intermediate stiffener
A method predicting the collapse load of tapered plate girders in shear has been
proposed at 4.3.1. Further, in the article the axial force acting on the intermediate
stiffener has been given by Eq.(4.4). This method can be extended as shown hereunder.
(4.1) As shown in Fig.3.4, it is assumed that two adjacent panels loaded in shear
develop independent membrane stress fields. When failure occurs earlier in Panel I,
the inclination of the diagonal tension field for Panel I, & can be determined. The
axial force acting on the intermediate stiffener at any section, Fsn, can be obtained by
considering the equilibrium of the force acting on the free body as follows:
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Fon =tanp (o, ts,c080,+2p, 0, ta, NG, COSP, —0, S COSP, ) + A + Ay

(4.5)
in which A, and A4, are the vertical components of the forces acting along the
boundaries of Panel I andlIl, respectively, and the loads applied by buckling stress
fields to the intermediate stiffener are neglected for simplification. Then the variation
of the axial force along the intermediate stiffener on the testing panel is obtained as
shown in Fig.3.36 if the nominal dimensions of the girder are employed in the
calculation. The ratio of the maximum value of Fs,to Fsis about 1.2.

T.F. T T

BF

0 2 4 6

Fsn (KN)
TFE:Top flange
BF : Bottom flange

Fig.3.36 Predicted axial load carried by vertical stiffener.

(4.2) Comparison of calculated values with experimental results
It is seen that the curve at the maximum load in Fig.3.4 and the curve in Fig.3.36
resemble closely in form. It is assumed that the required area of intermediate stiffeners.
Asreq, can be estimated from the maximum value of Fs,n. The ratio of the effective
cross-sectional area of the intermediate stiffener, As) between Asreq’is shown in Table
3.10.

Table 3.10 Required cross-sectional area of intermediate stiffener.

Model TS-T-1(S) | TS-T-2(S) | TS-T-3(S) | TS-T-4(S) | TS-T1 | TS-T-2 | TS-T-3 | TS-T-4
As/A . 1.04 1.00 1.05 1.04 1.04 0.61 0.43 0.46
S,req
y=Eglg/dyD | 934 895 642 623 321 27 26 44
6 =Ag/dpt 0.362 0.355 0.264 0.260 0.200 | 0.085 | 0.058 | 0.070
Collapse mode S S S S S W W W

As: Effective cross-sectional area of intermediate stiffener.
As: Cross-sectional area of intermediate stiffener.
Es Young’s modulus of intermediate stiffener.
FEw: Young’s modulus of web plate.
Is: Moment of inertia of area for intermediate stiffener.

D = Eyt3/12(1-v2)

S Stiffener effective
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As ‘must contain an effective part of the web plate. A width of 40t12 is assumed to act
with the stiffener in the calculation of this table. In this table, the results applied to the
previous testing panels are also shown. It has been assumed in the theoretical analysis
that the individual shear mechanism is formed in the adjacent panels. In the
experiment, Panel I developed independently and sufficiently the tension field in
comparison with Panel I subjected to the combination of bending moment and
shearing force. Then, it should be noted that As‘/ Asreq’ is closely related to the
collapse mode as shown in Table 3.10. Therefore, it is considered that the required area
of intermediate stiffeners must be incorporated in design. Since in tapered plate
girders the vertical component of the inclined flange force acts on the intermediate
stiffener, it is still more necessary. It is obtained that Asr,> may be an approach to the
design of intermediate stiffeners, nevertheless the width of he web plate acting with
the stiffener is obscure.

(5) Conclusions
In order to investigate the ultimate strength and the behavior of the tapered plate
girders with varying depth loaded in shear, four model girders having intermediate
transverse stiffeners were tested. The strains on the intermediate stiffener were
measured and the variation of the axial force along it was theoretically estimated.
Obtained results are as follows.
1) The dent of the top flange has a serious effect on the failure of the girder.
2) The property of the intermediate stiffener influences the formation of shear
mechanism definitely.
3) The magnitude of the ultimate strength of tapered plate girders in shear is not much
reduced owing to the slightly insufficient rigidity of intermediate stiffeners.
4) Tt is considered that the variation of the predicted axial force along the intermediate
stiffener is proper comparing the strains obtained by the tests.
5) There was a suggestion on the required cross-sectional area of intermediate
stiffeners. It corresponds quite to the collapse mode of the panels.

4.4 Discussions

The researches on the static load carrying capacity of the steel plate girders under
shear have been much carried out experimentally and theoretically. However, it seems
to be necessary to carry out the research like the following hereafter.

Longitudinally stiffened web panel should be researched by the elasto-plastic finite
displacement analysis using means such as the finite element method. Then, simple
and accurate design methods, for example any plastic analysis, for such stiffened panel
need to be developed.

On the ultimate strength of girders with varying depth in shear, the study of the
inelastic behavior for such tapered panel is required. The research on such problem
seems to be almost lacking. On the required stiffness of intermediate stiffeners, further
examination is necessary.

In the future, further discussions will be necessary concerning not only viewpoint
of the strength but also the serviceability. Besides, it is supposed to be necessary that
proper girders are used in proportion to various purposes.
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Chapter 5
Load-carrying capacity of girders under combined bending and shears

5.1 General description

Many studies on a plate panel subjected simultaneously to bending moments and
shear forces in its plane have been carried out and the interaction curves have been
proposed.V4 The boundary conditions of all four edges simply supported have been
applied in these analyses. For a plate simply supported on four edges, under bending,
compression and shear, an approximate evaluation of the critical combined load has
been obtained?. Most of the panels in plate girders are subjected to the combined
loading of varying bending moments in longitudinal direction and uniform shearing
stress. Accordingly, a plate panel under the combined action of unequal end moments
and shear forces must be chosen as the study model. In the part 2.5 of this thesis, the
elastic buckling of a rectangular plate panel under unequal end moments and shear
forces was treated and the interaction expressions was presented.

A panel of plate girders has four edges. Therefore, the effects of these frame
members, flanges and stiffeners, should be considered in an analysis. In the article 2.3
of this thesis, the elastic buckling of plate girders loaded with the unequal end
moments through some panels was investigated.

The studies on the post-buckling strength of plate panels under the combined
action of bending moments and shear forces are relatively fewer.6.?” The investigations
on the interaction of girder panels in inelastic range under combined loading have been
proposed.®19 These theories have been based on the assumption of the analytical
modeling.

The plate girders with tapered web in depth have been often used. However, the
investigation on the buckling strength of such tapered web panels under the combined
action of bending moments and shear forces is few. The works of general design
procedures for the ultimate strength of panels with variable depth are required.1V

In this chapter, the interaction for buckling strength of plate panels under the
combined action of bending moments and shear forces will be presented. To begin with,
the existing studies on the interaction for buckling strength of rectangular plate panels
will be introduced. Subsequently, the theoretical and experimental investigations on
the buckling strength of tapered panels under the combined action of bending moments
and shear forces will be given.

5.2 Girders with uniform depth under combined bending and shear

A web panel of plate girders is surrounded by frame members, flanges and
stiffeners. The bending capacity of plate girders depends principally on the ultimate
strength of the flanges. Supposing that these flanges are excluded from the
contribution for the shear capacity of the web, the shear force is independent of the
moment in the panel if the bending moment is less than Myz, which is the moment that
produces yield in the flanges. If the contribution caused by flanges to shear strength is
taken into consideration, the shear force depends on the moment due to the influence of
the flange axial force on the flange plastic moment. If M, indicates the ultimate
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bending moment, for values of the bending moments Myr < M < My, the shear force V
must be less than Vi, which represents the ultimate shear force.

Basler suggests that the shear force in a girder may be supported only by the web.
Accordingly, his proposal on the interaction diagram between bending moment and
shear force is shown in Fig.2.1.9 The vertically straight line applies to the girder with
thin webs in which M exceeds the yield moment My
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Fig.2.1 Shear-moment interaction diagrams.

When the flange rigidity is taken into account in the shear capacity, the reduction
in the shear capacity due to coexisting bending moment becomes a problem. Rockey’s
model'® assumes the inclusion of the following factors: (1) the reduction in the buckling
stress of the web due to the presence of a bending stress or a direct stress, (2) the
influence of the in-plane bending stresses upon the value of the diagonal tensile
membrane stress which is developed in the diagonal strip, (3) the reduction in the
magnitude of the plastic modulus of the flanges due to the presence of the axial
compressive and tensile stresses. For the case of the combined action of shear forces
and bending moments, the buckling stress reduction can be calculated from the
interaction curve in the shape of an arc.

Rockey et al. have proposed the interaction diagram between the shear and
bending as shown in Fig.2.212, In this figure, C represents the position at which the
mode of failure changes from the shear mechanism mode to the flange failure mode.
The shear at S’is equal to the pure shear at S and the bending moment Ms’is assumed
to be the maximum bending moment in the end panel of a simply supported girder.
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Fig.2.2 Shear-moment interaction diagrams.

Chern and Ostapenko? suppose that the failure of a girder panel subjected to the
combined action of shear and bending moment may be due to the failure of the web,
buckling of the compression flange or yielding of the tension flange. The proposed
interaction curve is shown in Fig.2.3. At point @):, the panel is under pure shear. ¢z is
the point in which the stress in the compression flange due to the ultimate shear
strength under combined loads is equal to the buckling stress of the compression flange.
In the region under the control of web failure, the buckling stress of a panel subjected
to combined shear and bending is calculated by the interaction equation that is
represented elliptically in shape. At points ¢sand )5, the panel is under pure bending.
At point @)y, the stress in the tension flange due to the ultimate web shear strength
under combined loads is equal to the tension flange yield stress.

Frame Action

TLTRRREKE
250K
90002
Qs 009 5
M M
My 1.0 0 L0 My

Fig.2.3 Shear-moment interaction diagrams.
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5.8 Girders with linearly varying depth under combined bending and shear
5.3.1 Analytical methods

(1) Introduction

A large number of studies on the ultimate strength of plate girders under
combined loads have been done.D4 The design methods of the girders with parallel
flanges have been considerably established. On the one hand, the girders with varying
depth are also often used. Two types are available for varying web depth: 1) the
application of a curved line, 2) the application of a straight line. However, the
researches on the strength of such girders with varying depth under the combined
action of bending and shear are few. The girder panel under such state applies to the
panel near the intermediate supports of continuous girders. The design method on the
strength of these panels with varying depth is undoubtedly necessary.1?

In this article, for the case in which a trapezoidal panel of plate girders with
linearly varying web depth is subjected to the combined action of bending moments and
shear forces, the elastic buckling loads are calculated by using a finite element method,
and an interaction equation for the combined loading is obtained. In order for the
interaction equation to be easily used, the buckling loads of the trapezoidal panels may
be estimated by the conversion from the buckling coefficients of rectangular plates.
Furthermore, a method to predict the ultimate strength is also proposed. In this case
for which a simple modal analysis is introduced, it is assumed that the ultimate
strength can be obtained as the sum of the buckling strength under the combined loads
and the strength supported by the tension field. Also, it is assumed in this analysis
that the local and lateral buckling of flanges do not occur until the ultimate strength is
attained. It will be found that this simple estimation can predict relatively well the
ultimate strength of the girder panel. Therefore, it may be found that this estimation
method is useful for the design of the plate girder with non-uniform sections.

(2) Analysis on strength of panel under combined load
(2.1) Interaction curves

In order to predict the ultimate strength of the panel, the estimation by means of
a modal analysis is adopted because of its simplicity. At first, the buckling strength of
the trapezoidal panel under the combined action of bending moments and shear forces
is calculated. From the numerically computed results by a finite element method, the
interaction curves under the combined load can be obtained.

So as to estimate the elastic buckling loads of the trapezoidal web panel under the
combined action of bending and shear, a trapezoidal panel in the condition of plane
stress is assumed as shown in Fig.3.1. As the boundary condition of lateral deflections,
it is assumed that the plate is simply supported at Y =0 and Y =a, and simply
supported or fixed at other two edges. Stress analysis is carried out by using a finite
element method with constant strain triangles. In buckling analysis a finite element
method with triangular elements in which the deflections at three apexes and the
rotations along three sides constitute the degree of freedom is used.'® The calculations
about three kinds of 4(5°,10°and15°) are executed. An extrapolation method is adapted
to predict the converged values from numerically computed results.!¥ By considering
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the equilibrium among forces acting on the panel shown in Fig.3.1, the relationship
among these forces can be obtained. By calculating mean shearing stress, ¢ *, among
all elements in consideration of the area of each element and assuming that the
bending moment in the panel varies linearly, the edge fiber stress at the middle of the

panel length, o, ={c,(d,/d_)*+c,(d, /d )?}/2, is taken as the representative

value of normal stresses, ¢ * By using ¢ ¥ o * and the average value of panel
depth-to-thickness ratio, dw/t , k,” and k,” which are buckling coefficients can be
estimated, on condition that #1is the thickness of the web panel.

X
—2/2 +4-a]2 —=

WA*’“_/_%QT

Fig.3.1 Trapezoidal panel.

In order to obtain the interaction curve on the buckling under the combined action
of bending and shear, the flexural buckling coefficient, k,, of the trapezoidal panel in
which only normal stress is in equilibrium is calculated by means of the stress, o, at
the middle of the panel. As a result of numerical computations the buckling curves
were obtained as shown in Fig.3.2. Namely, it is suitable to understand that the shear
forces shown in Fig.3.1 appear if the equilibrium in Fig.3.2 breaks. Besides, the
in-plane displacement is restricted in the direction of x and y at the middle point of the
left side and in the direction of x at the middle point of the right side. Generally, it is
the purpose of this analysis to get at the behavior in average of the panel. In Fig.3.2,

a denotes the mean aspect ratio of the panel. It is seen that as /4 increases buckling

coefficients decrease.
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Fig.3.2 Buckling load curves.
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The shear buckling curves that are necessary to obtain the interaction curves
under the combined loads are shown in Fig.3.3 too. The shearing stress that
corresponds to the buckling coefficient under shear, k&, is represented by .

22

l

Fixed
\\e7 reciangular .
_____ Simply supported

Fig.3.3 Buckling load curves.

From the computed results, the interactive buckling curves under combined loads
of the panel in the case that £#=10° are shown in Fig.3.4. In these figures, « denotes
the ratio of the moment acting on the left side, M}, with that acting on the right side,

M; , and it can be expressed as k=M /M. =(o,/0c,)-(d, /d )?. It is evident from

these figures that slight differences in the shape of the curves depend on the value of

K 1in every case of a. The curves corresponding to x =0.9 are held in the inner

position. Even if the value of a changes from 0.6 to 1.2, the curve corresponding to

each x shows a similar tendency. Comparing the interaction curves corresponding to

simply supported and fixed conditions for a=1 in order to examine the difference

between the boundary conditions, it is seen that they have a similar tendency.
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Fig.3.4 Interaction curves.
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Fig.3.4 Interaction curves (Continued).

An interaction curve for the trapezoidal panel is assumed to be the following form:
(6" 1o)' + (" I7)! =1. Each dotted line corresponds to the case in which j takes the

value of 1.6 in the above equation. Each curve is located almost within the curve in
which & equals to 0.9. Though it is also fairly conservative compared with the case in
which x takes small values, owing to the convenience of design this curve is adopted
as the interaction curve. Namely, the interaction equation becomes as follows:

((7* /0')1'6 + (r* /r)l'6 =1 (5.1)

In order to facilitate the calculation of the buckling load under the combined action,
the coordinate, & , where the buckling load of trapezoidal panels is equivalent to that of

rectangular panels is estimated as conversion positions and is related to « as shown

in Fig.3.5.
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Fig.3.5 Conversion into rectangular panel.

Furthermore, the regression equations about these curves are shown as follows:
Simply supported:

B =5%:&=-0409+1.19% (a < 0.95)
£=3816-4982+18%  (a>095)
B =10°: £ = 0.226 + 0.206c (a < 0.95)
£=0905-07%5q +03¢°  (a>0.95)

B =15": & = 0.225+ 0.068«

(5.2)
Fixed:
B=5:¢=436-832a+420 (@ <1.2)
£=032-01482 +0105¢° (a >1.1)
B=10°:£=176-31a+157a  (a<l.l)
£=-096+174a-06a  (a>11)
B=15":¢=080-1310+07222 (a<L1l)
£=-0.49+0.98% — 0309 (a>1.1)
(5.3)

From the regression analysis of the shear buckling curves shown in Fig.3.3, the
following expressions can be obtained.
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Simply supported:
f=5" :k =712-534/q+6.60/c"

f=10°:k =6.84-330/q+4.78/c" (5.4)

p=15":k =6.78-4.09/a+521/a"
Fixed:
f=5" :k =8.86-154/q+384a"

f=10° Kk =7.58+0.083/c+2.85/c" (5.5)

=15k =7.38-1.28/a+356/a

Determining the position, £, by means of Eq.(5.2) or (5.3) and estimating the
aspect ratio of the corresponding rectangular plate, the value of o can be obtained.
By determining the value of 7 from Eq.(5.4) or (5.5) and substituting these values
into Eq.(5.1), the buckling loads of trapezoidal panels under the combined action of
bending moments and shear forces can be easily obtained. The intermediate values of
/4 can be approximated with linear interpolation.

(2.2) Ultimate strength

The ultimate strength of girder panels after buckling is estimated by applying the
method of a plastic analysis. It is assumed that the strength can be obtained as the
sum of the buckling strength of webs under the combined loads and the strength
supported by the tension field. However, the effect of frame action on the panel
strength is excluded in this case. The assumption on the diagonal tension field of the
trapezoidal panel is used in the analogous form to the model for parallel flange girders
proposed by Ostapenko.? Since the upper part of the trapezoidal panel is small and the
tension field develops slightly from the test results at 4.3.2, the distribution of the
tension field may be assumed as shown in Fig.3.6. Besides, the distribution of normal
stresses is also simplified as seen in Fig.3.6. If the equilibrium condition is applied to
the collapsed panel that is cut off at the section near an intermediate stiffener, the
shear force supported by the tension field can be obtained as follows:

o0,
- E
R
Th
P"%J
s
I} P
p " -
: - e 4 &

Fig.3.6 Applied forces on web panel.
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where ¢, a, dn, 4,4, e and o are the web thickness, the panel length, the highest
panel depth, the inclination of the tension field, the inclination of the flange, the length
from the cut section to the point of load application and the coefficient of equivalent
tension field stresses, respectively. Furthermore, s is the width of the tension field and
if d; denotes the lowest panel depth, s = dicos ¢ - a sin 4. The value of ¢ can be
decided so as to obtain the maximum shear force. o which denotes the tension field
stress becomes as follows:

o, = —[% +g(%0052¢+fh sin 2¢ﬂ+«/A— B

A=36 [P0 cos2g+r, sin2g |+o2

8 4

3(o? 9( o ’
B:Z(%+T§J+Z(Th8in2¢_rh 0082¢j (57)

where oy indicates the yield point stress of web plates.

The buckling load of the trapezoidal panel under the combined action of bending
moments and shear forces is calculated by means of the method described at 4.3.1. The
boundary condition at the upper and lower edges of the panel is assumed to be fixed
considering the matching with the experimental results.

5.3.2 Experiments on girders with linearly varying depth under bending and shear

(1) Introduction

Loading tests of plate girder models with linearly varying depth are carried out.
Four models are tested under bending and shear. Although the size at the tapered
panels of each model is similar, the ratio of bending moments with shear forces acting
on a testing panel is different. Test results are described about the ultimate strength
of the girders and the collapse behavior on the components of a testing panel in full,
and the correlation is investigated. Because three girders were collapsed due to flange
failure after the buckling of a trapezoidal panel, they lost the load carrying capacity.
One girder was collapsed due to the lateral-torsional buckling of an inclined flange
after web buckling.

The ultimate strength obtained from the test results is compared with the
predicted values by the above-mentioned method on basis of a simple failure model.
As this simple method predicts relatively well the ultimate strength of girder panels
under the combined loads, its availability will be confirmed.

134



(2) Description of tests
(2.1) Models
Four model girders with tapered webs were tested. The outline plan of Models
CL-S-2 and CL-S-4 is shown in Fig.3.7. The dimension of Models CL-S-1 and CL-S-3 is
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Fig.3.7 Tapered girders (Models 2 and 4).

obtained by eliminating, symmetrically, a trapezoidal panel and a rectangular panel of
which the length is 120mm from Models CL-S-2 and CL-S-4, respectively. A
concentrated load was applied to each girder at mid-span. Intermediate transverse and
bearing stiffeners were used in pairs. Each testing panel was designed so that its
dimension was identical. However, the span was designed so that the ratio of bending
moments with shear forces acting on the testing panel was different. Mpn/dn@m and «
are shown in Table3.1, where dm, Mm and @ denotes the depth, the moment and the
shear force at the middle of the testing panel, respectively. These testing panels were
designed so that the width-to-thickness ratio took about 150 and the aspect ratio was
about 1.0 in the case of using the mean panel depth. The actual girder dimensions on
the testing panel were measured. These measurements are summarized in Table 3.2.

Table 3.1 Ratio of moment to shearing force.

Models CL-S5-1 CL-S-2 CL-S-3 CL-5-4
M/ @ 1.12 1.50 1.87 2.24
K 0.38 0.50 0.58 0.63
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Table 3.2 Measured dimensions.

Models CL-S-1 CL-S-2 CL-S-3 CL-S-4
Panel length o (mm) 320.4 321.5 319.8 325.3

Web thickness ¢ (cm) 2.12 2.08 2.10 2.21

Min. panel depth d/(mm) 298.0 298.0 295.9 297.0

Max. panel depth dj (mm) 348.0 346.5 347.9 347.0
Flange thickness #(mm) 8.67 8.99 8.88 8.96
Flange width » (mm) 90.05 94.25 90.01 89.93

a/d), a/dp 1.075,0.921 | 1.079,0.928 | 1.081,0.919 | 1.095,0.937
dit, du/t 140.6,164.2 | 143.3,166.6 | 140.7,165.4 | 134.3,156.9
£ (degree) 8.9 8.6 9.2 8.7

ts(mm) 3.08 3.09 3.17 2.61
bs(mm) 30.99 31.93 31.85 31.58

bss Width of intermediate stiffener
ts Thickness of intermediate stiffener

£+ Inclination angle of flange

All models were made of SS400 steel. The results of the coupon tests are given
in Table 3.3. From this table it is seen that each model has a comparatively similar
yield point stress.

Table 3.3 Coupon test results.

Models CL-S-1 CL-S-2 CL-S-3 CL-S5-4
Yield point stress oy Web 282.4 271.6 282.4 274.1
(MPa) Flange 288.3 255.9 288.3 279.9
Stiffener 287.3 235.3 287.3 236.8
Young’s modulus # Web 1.91 1.97 1.91 2.03
X105 (MPa) Flange 1.69 2.30 1.69 2.11
Stiffener 2.03 2.11 2.03 2.10
Poisson’s ratio » Web 0.277 0.270 0.277 0.284

(2.2) Testing procedure

Before testing, initial deflections of web plates were measured. The initial
deflection of each model was smaller than the following values:

1.8mm for Model CL-S-1, 0.9mm for Model CL-S-2, 1.5mm for CL-S-3 and 1.5mm for
Model CL-S-4.

Each girder was tested in the simply supported condition with roller supports. A
concentrated load was applied to a sole plate at the mid-span of the girder. The
step-by-step loading procedure was used and after the attainment of the ultimate load,
the removal of the load was conducted. Electrical displacement transducers were used
to observe out-of-plane deflections of the web plate relative to the boundaries and
vertical girder deflections. Electrical resistance strain gauges of the uni-axial type were
used for flanges and stiffeners, and those of the rosette type were used for web plates.
Measurements of the strains were taken on both faces of the girder components.

(2.3) Experimental results and considerations

All girders after tests are illustrated in Fig.3.8. In the case of three girders except
for Model CL-S-4, it is observed that the tension field developed in the testing panel,
though some differences in the results appeared. Models CL-S-1 and CL-S-2 collapsed
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after the dent of the inclined flange had occurred, however in the case of Model CL-S-3
such deformation was not so large. Model CL-S-4 collapsed owing to the
flexural-torsional buckling of the inclined flange.

Fig.3.8 Collapsed girders.

The central deflections of each model girder are shown with respect to applied
loads in Fig.3.9. Each load-central deflection relationship is linear up to about 70~
80 % of the collapse load. After this stage, the deflection in Models CL-S-3 and CL-S-4
shows a rapid rate of increase. And in the case of the remaining two girders, although
the increase after the break of the linear relation is not so much, the deflection shows a
rapid rate of increase immediately before the collapse load.

Load, P C kN 2

o ! | . . |

Peflection, v (mm)

Fig.3.9 Central deflection.
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The relative deflections of the web panels are plotted against the applied load to
form Fig.3.10 as an example. Though it is difficult to estimate buckling loads of the
web panel due to the small value of deflections and the initial web imperfections, the
experimental buckling loads of the trapezoidal panel under the combined bending and
shear were presumed with reference to such changes in deflections.
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Fig.3.10 Relative web deflection.
The relationship between the bending strains of web panel in the horizontal

direction and applied loads is exemplified for each girder in Fig.3.11. Similar
relationship with respect to the vertical direction is illustrated in Fig.3.12.
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Fig.3.11 Bending strains of web panel Fig.3.12 Bending strains of web panel
in horizontal direction. in vertical direction.

The experimental buckling loads of the web plate can be estimated from inflection
points using such relation at several measured points and the results of the relative
web deflections as before. It is seen from Figs.3.11 and 3.12 that there are first
inflection point corresponding to the web buckling and second inflection point at about
196 kN. After this point, the value of strains increases rapidly and the collapse of the
girder breaks out. It is considered that as a result of the successive deformation
between the flange and web and the arrival at the ultimate state of the flange, the
girder reaches the final failure stage.
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For each girder, the longitudinal strains of the inclined flange have been plotted
against several loads to form Fig.3.13. These values represent the average values of the
strains that were measured on the inside and outside of the flange plate. From these
figures, it is obvious that the strains in Models CL-S-1, CL-S-2 and CL-S-3 are kept at
relatively uniform distribution up to the load near the ultimate one. However, owing to
the influence of the diagonal tension field the variation of this distribution begins and
the value of the strains around the center of the panel becomes to be remarkably large
compared with other region getting close to the collapse state. It is considered that the
reason is caused by the dent of the inclined flange in this region. When Mode CL-S-4
collapsed, the strain distribution was different compared with other girders and the
value of the strains in the neighborhood of the end of the panel was considerably large.
This fact coincides with the collapse mode in which local buckling occurred.

The vertical component of the axial force acting on the inclined flange can carry
shear forces. Consequently, since the shear force acting on the web decreases in
comparison with that of parallel flange girders, this becomes an advantage to the
carrying load. On the other hand, it is considered that the application of such vertical
force gives a strict condition to the inclined flange.
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Fig.3.13 Longitudinal strains on inclined flange.

The distribution of the diagonal tensile strains acting at right angles across the
diagonal line AA’ drawn by a broken line is shown against several applied loads in
Fig.3.14 for each girder. In this figure, the broken line A4 has been translated on the
abscissa. It is seen that the diagonal tension field has grown quickly at an ultimate

139



stage approaching the collapse load in Models CL-S-1, CL-S-2 and CL-S-3. On the other
hand, from this figure the development of the tension field in Model CL-S-4 cannot be

found.
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Fig.3.14 Diagonal strains on web panel.

As examples, the distribution of principal strains of the testing panel in Models
CL-S-2 and CL-S-4 is shown in Fig.3.15 for the case close to the collapse load. It is
evident from this figure that principal tensile strains corresponding to the tension field
develop over a comparatively wide range in Model CL-S-2. It was also observed in the
case of CL-S-3 that principal tensile strains were highly developed in a relatively
narrow range near the diagonal line. These three girders including Model CL-S-1
showed a similar distribution form, although the degree of development somewhat
differed. In Model CL-S-4, because principal compression strains were outstanding at
the upper part near to the higher edge of the panel, it is considered that this gave rise
to local deformation of the flange. Model CL-S-4 is different from other three models in
the collapse mode.
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Fig.3.15 Principal strain distribution on web panel.

The buckling loads of the trapezoidal panel, P:ex, and the collapse loads, Pex, are
shown in Table 3.4. In this table, Mex, Qex, Mrv, Mp and € denote the maximum
bending moment by the experiment, the maximum shear force by the experiment, the
yield moment of compression flanges, the full plastic moment and the full plastic shear
force (supported by web), respectively. These have been estimated as the values at the
middle of the testing panel. @ex contains the shear force that is supported by the
inclined flange. The vertical component of the axial force at the case that the inclined
flange stress arrives at the yield point stress is estimated and the sum of this value
and @) is expressed by @) again. If Qex is divided by &), those values are 0.689, 0.784,
0.747 and 0.748 in numerical order of the model girders, respectively.

Table 3.4 Results of web buckling and ultimate strength.

Models Pcr,ex Pex Mex Qex Mey Mp Qp Mex/Mey Mex/Mp Qex/Qp
&N) | &kN) | (&N - | kN) | (&N - [ (&N - | (kN)
m) m) m)

CL-S5-1 | 128.5 | 201.0 | 36.48 | 101.0 | 73.74 | 89.82 | 111.7 | 0.494 0.406 | 0.904

CL-5-2 | 103.0 | 214.8 | 51.78 | 107.9 | 71.00 | 86.10 | 105.1 | 0.730 0.602 | 1.03

CL-5-3 | 106.9 | 219.2 | 65.99 | 109.8 | 75.21 | 91.10 | 110.2 | 0.878 0.725 | 0.994

CL-5-4 | 90.2 |219.7 | 79.33 | 109.8 | 73.55 | 89.92 | 112.7 | 1.08 0.883 | 0.975

The interaction on the ultimate strength under the combined bending and shear
obtained by the tests is shown in Fig.3.16. The symbols in this figure, 1~4, indicate the
numbers of four models and the symbols “low, middle and high” are used to represent
the minimum depth, the mean depth and the maximum depth as the panel depth,
respectively. The value, @ex, includes the shear force loaded by the inclined flange. As
these obtained results, it is seen that even if the ratio of bending moments increases,
the shear strength does not so much decrease in this range.
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Fig.3.16 Test results.

(2.4) Comparison of test results with calculated results

The predicted value for the ultimate strength can be calculated by the sum of the
shear buckling force P, the value obtained from Eq.5.6 and the vertical component of
the axial force acting on the inclined flange. The axial force acting on the inclined
flange may be estimated according to the stress immediately before the formation of
the tension field at the trapezoidal panel, that is, the value when the buckling of the
panel occurs, which is conservative. And the value of p is assumed to be 0.5. The
comparison of the predicted value, Pus, with the collapsed load observed in the
experiment, Pex, 1s shown in Table 3.5.

Table 3.5 Comparison of tests with theory.

Models CL-S-1 CL-S-2 CL-S-3 CL-S-4
Present theory, P (kN) 204.0 200.0 219.7 —
Experimental value, Pex (kN) | 201.0 214.8 219.2 219.7
Pin/Pex 1.01 0.93 1.00 —

Moreover, the value of three components in P described above is as follows for
each girder:

Model CL-§-1: P, =102.0kN, P =87.3kN, P, =15.7kN

Model CL-S-2: P, =97.1kN, P =84.3kN, P, =19.6kN

Model CL-S-3: P, =94.1kN, P, =10L0kN, P, = 25.5kN

Since Model CL-S-4 collapsed in the manner that was different from the supposition for
the theoretical calculation, it is omitted from the subject of comparison. Although test
girders are only four, it is supposed from this table that this method can fairly well
predict the ultimate strength using comparatively simple calculation.
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5.4 Discussions

The ultimate strength of plate girders with uniform web depth under the combined
action of bending and shear was reviewed on a basis of existing works at first. The
results obtained by Basler, Ostapenko and Rockey were introduced mainly.
Subsequently, the girder with tapered webs was investigated. For the case in which the
instability of flanges does not occur, a simple expression was introduced to predict the
ultimate strength on the trapezoidal panel of plate girders with linearly varying web
depth under the combined action of bending and shear and the test results were
presented. At last, the theoretical and experimental results were compared.

In order to predict the ultimate strength, the estimation by means of a modal
analysis was adopted. It was assumed that the ultimate strength of the panel consisted
of the sum of the buckling strength under the combined bending and shear, the
strength supported by the tension field and the vertical component of the force acting
on the inclined flange. Furthermore, the analysis was carried out on the assumption
that the panel has relatively large width-to-thickness ratio.

(1) Buckling curves for the trapezoidal panel subjected to bending moments vary
fairly depending on the angle of inclination of the flange.

(2) The interaction curve on buckling for the trapezoidal panel under the combined
bending and shear can be approximated conservatively and fairly well with Eq.5.1.

(3) Buckling loads estimated for the panel with fixed upper and lower edges with
respect to the boundary conditions are close to obtained experimental results.

(4) Regarding the model of the tension field distribution, that of the case in which only
shear force acted was extended.

The loading test was carried out preparing four girder models in such a way that
the mean aspect ratio was about 1 and the mean width-to-thickness ratio
approximately 150 at the middle of the trapezoidal panel. Three girders collapsed at
the state in which shear forces were dominant and the flexural-torsional buckling of
the flange occurred at the remaining girder. The collapsed behavior obtained from the
test results is chiefly as follows:

(5) The tension field is formed in the state close to the collapse. And the final stage is
caused by the dent of the inclined flange.

(6) Even if the ratio of bending moments increases, the strength does not decrease
rapidly within the range of this experiment.

The predicted values of the ultimate strength were compared with the

experimental results.

(7) It was found that the theory could simply and fairly well predict the ultimate
strength. However, the elasto-plastic finite displacement analysis may have to be
applied for the general application and for the verification of the obtained results.
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Chapter 6
Strength and deformability of girders under repetitive shear

6.1 General description

The behavior of girder structures under the cyclic loading even at low stress such
as traffic loads is especially important as a fatigue problem. On the other hand, there is
the problem of the cyclic loading for low cycle but high stress. In such type of the cyclic
loading, the study on the inelastic behavior for girders and girder panels under shear
or combined loads is also necessary. As a typical example, the case of strong earthquake
load affects is mentioned. Furthermore, the cyclic behavior of end panel in the girder
bridge constructed over a valley subjected to the strong wind from the downward can
cause a serious problem.

Popov et al. have proceeded with a series of studies on the case in which shear
links are subjected to cyclic shear loads.V? In these studies, the width- to-thickness
ratio of a web panel and the spacing of stiffeners are chosen as parameters and many
load-displacement hysteretic diagrams have been described. From these results, shear
links have been found to exhibit excellent energy absorption has been shown and its
effectiveness has been discussed. Test girders are wide flange beams of which the web
has comparatively small width-to-thickness ratio. Many loading tests have been
conducted and the behavior up to the ultimate state has been clarified considerably in
detail by Hjelmstad.) Also in Japan, for an example, Suzuki et al. has studied
inelastic behavior of beams under non-uniform moment.3

In the Great Hanshin-Awaji earthquake of 1995, the phenomena of repetitive
inelastic buckling were observed in many steel girders including horizontal girders of
portal steel piers on elevated highways. The author has been interested in steel girders’
ability of dissipating the hysteretic plastic strain energy due to such repetitive buckling
of steel girders for earthquake-resistance design.

Utilizing the excellent energy absorption performance of the shear panel, the use
as a damper system is being developed. Takahashi et al9.® developed a hysteretic
damper using eccentric brace system. The application of such panel has been
examined!9-12) to the cross beam for steel bridge piers of two-story portal frame with
box sections.

In this chapter, to begin with, the inelastic buckling behavior of the single panel
under shearing force is examined analytically. The inelastic repetitive shear and
flexural buckling of plate girders with multi-panel have been investigated
experimentally and theoretically where the strength and ductility of steel girder panels
are examined in detail.

6.2 Strength and ductility for single panel of plate girders under cyclic shear loading
6.2.1 Introduction
The investigations on the load-carrying capacity of plate girders under static shear
loading were mentioned in Chapter 4. However, their ductility has not been mentioned.
As one approach for preventing the whole collapse of the structure, the excellent
deformability must be ensured. The studies on the deformability for the bridge pier and

145



columns with large resisting force have been widely carried out by today.69.15 The use
of members with large resisting force 1is advantageous concerning the
earthquake-resistance design, because large energy absorption can be attained even if
the plastic deformation is small. However, when considerably big seismic force is
applied, there is the possibility that causes the damage leading to the whole collapse of
the structure.

On the other hand, there is an approach that prevents the whole collapse of the
structure by concentrating the damage in the position where the shear force
dominantly works.19-12) Namely, the whole collapse is expected to be prevented through
the dissipation of the energy by the large deformation of the position which concentrate
the damage. In the field of the architecture, the damper element of the shear resisting
type has been developed.#-® The deformability of structures is evaluated by the
hysteretic behavior in the post-buckling range. Therefore, the behavior after shear
buckling must be clarified in order to effectively utilize the deformability of members or
plate elements.

The studies on the applicability of the finite element method to the elasto-plastic
finite displacement analysis are also carried out.'® The computation is carried out for
the frame structure under cyclic loadings.

The coupled behavior between whole deformation and local deformation of the
steel girders is important. However, at first, the ultimate strength and hysteretic
behavior of the single girder panel subjected to the repetitive shear force are clarified
numerically.

6.2.2 Method of numerical computations
(1) Analytical model and initial imperfection

A panel of bi-axial and symmetrical plate girder as shown in Fig.2.1 is analyzed.
Where, a, br tr, bw and tw, refer to the panel length, flange width, flange thickness,
web depth and web thickness, respectively. The elasto-plastic finite displacement
behavior is clarified analytically on the case in which the shear force ¢ works gradually
or repetitively in right and left edge of this panel.

Fig.2.1 Steel girder in shear.
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The initial deflection of web panel will be assumed as following (Fig.2.2(a)),

Wo = Cyy 20_gin T g 1Y 6.1)
250 a b,
where, Cw» is a magnification for the limiting value of manufacturing error determined
in Japanese specifications!®, and m and n are numbers of a half wave of the initial
deflection in the direction of x and y, respectively. By assuming that the flange and
web plate keep the vertical in the juncture, the initial deflection of the flange will be
shown as following.
Vo =FC,, ~Z zgn M (6.2)
250 a
As a residual stress by welding, that of self balancing shown in Fig.2.2(b) is
assumed. In this figure, o and o show the tensile and compressive residual

stress, respectively.

(a) Initial deflection (b) Residual stress
Fig.2.2 Initial imperfections.
The vertical displacement o which corresponds to the shearing strain y» in

Fig.2.1 is applied in order to cause shear forces in the panel. In this case, yielding
shear force is expressed as

Q, =7,b,t, (6.3)
and the shear displacement in proportion to ¢y is made to be
al
v = Q. (6.4)
Gb,t,,

in which vy isthe shear yield point stress and G is the modulus of rigidity.
As loading pattern, the following two methods are adopted:

@ An incremental loading method: this is the method in which the displacement
always increases.

@ A repetitive loading method: this is the method in which the maximum amplitude
increases every cycle.
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These loading patterns are illustrated in Fig.2.3
o, o
at A
|/ /@
L \/ \/cyciesr

o
WK = o - M

Fig.2.3 Loading sequence.

(2) Boundary condition

As a support condition in the boundary of the panel, the following assumptions are
set:

1) The deformation between analyzed panel and adjacent panels continues. Therefore,
the rigidity of vertical stiffeners is high and the straight line is always kept.

2) As to out-of-plane deformation, the web plate is simply supported on the vertical
stiffeners.

The displacement in the direction of x, y, z axes, respectively, is called u, v, w and
the rotation angle about z axis is called #. The equivalent vertical displacement in
shear force is made to be §. At top and bottom flanges and web plate in x=0 edge,
the boundary conditions are assumed as follows:

u=v=w=0 (6.5)

In x=a edge, the boundary condition at top and bottom flanges is assumed as

follows:
w=0 (6.6)
Similarly, at web plate it is assumed as follows:

w=0,=0, v=5 6.7)

Actually, the boundary surface of web plate is assumed to be the rigid body region at
x=a edge in order to realize assumption 1).
(3) Numerical computation

General-purpose finite element analysis program "Marc-K6" was used in order to
carry out the elasto-plastic finite displacement analysis on the panel. In this case, the
finite element method formulated by up-dated Lagrangian technique for 4-node thick
shell element was used. In addition, Newton-Raphson method and arc length
incremental method were chosen in the solution method of nonlinear algebraic
equation. The equivalent stress formula of von-Mises in the decision of the yield and
the plastic flow rule of Prandtle-Reuss for the flow rule were used. And for the
hardening rule, the following was used: Isotropic hardening rule and mixing hardening
rule which used the kinematic hardening law jointly.

The convergence of nonlinear solution was judged in the following equation,

R, (& (6.8)
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in which R is the residual un-equilibrium force, and & is set at 104 in the allowable
error for the convergence decision.

6.2.3 Results of the numerical analysis and considerations

The material property of steel plate is assumed being bi-linear type such as shown
in Fig.2.4. It is assumed that yield point stress o y= 365MPa(t <16mm), o y=
355MPa(t >16mm)elastic modulus E = 206GPa, strain hardening coefficient E=£/ 100
and Poisson's ratio v =0.3, respectively.

£V

Fig.2.4 Stress-strain curve.

As to flange and web plate, the effect of divided element number on the
convergence of solution was examined. The result showed that the solution with the
good accuracy was obtained in respect of both plates, if in the x direction made each 14
divisions, in the y direction 6 and 14 divisions, respectively and each 9 divisions in the
z direction.

(1) Comparison between present solution and past experimental value

In comparison with the solution by present finite element method and existing
experimental value, the validity of the solution is verified. On the initial imperfection
of the girder, measured values were adopted. And, the average of measured values on
the residual stress, namely tensile residual stress o/ o y= 1.0, compressive residual
stress o/ ov=-0.12, was assumed.

In comparison with test results and these analytical value of the ultimate strength
on steel girders subjected to shear force, Fig.2.5 is obtained. In this figure, the ordinate
and abscissa are respectively experimental value (§/ @y)exp and analytical value (Q/
QY )ana for shear force made dimensionless in yield shear force @y. The analytical
values are almost being obtained at the accuracy within +10% of the experimental
values, as it is clear from this figure. According to present method, it seems to be able
to estimate the appropriate solution.
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Fig.2.5 Comparison between present theory and experiments.

(2) Panel subjected to be monotonic loading

The ultimate shear strength and the deterioration characteristic of the panel
under monotonic loading are investigated. In a web plate, the initial deflection of sine
half wave with the 1/500 maximum value of web depth was assumed.

1) Aspect ratio of web panel

The relationships between shear force and shear displacement as aspect ratio a/bw
of web plate changes is shown in Fig.2.6. Aspect ratio a/b» =0.5,1.0,2.0 is respectively
correspondent to width-to-thickness ratio parameter R»=0.82,1.35,1.64. In this figure,
the ordinate and abscissa are expressed by the use of dimensionless shear force @/Qy
and shear displacement J/J vy, respectively. Circles in this figure show the ultimate
shear strength.

It is clear from this figure that the panel has the high shear strength, as aspect
ratio of the panel decreases. In either case, the shear strength does not lower very
much, after it reaches the maximum load. And the characteristic difference of the
degradation is not remarkable.

1.2 r ;
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Fig.2.6 Influence of aspect ratio of web panel.

150



2) Width-to-thickness ratio

The relationships between shear force and shear displacement as web
width-to-thickness ratio bw/tw changes with 91,123,200 has been given in Fig.2.7.
Width-to-thickness ratio bw/%w=91,123,200 1is respectively correspondent to
Ry=1.00,1.35,2.20. It is clear from this figure that the ultimate shear strength
increases, as width-to-thickness ratio of web plate is smaller. In either case, it tends to
converge /@)y to the value of 0.7~0.8, after the shear force reaches the maximum
load.

From this fact, the lowering of the strength is little with the increase of the
width-to-thickness ratio of web plate, and it is not almost seen at bw/tw=200. Therefore,
there is no inferiority on the deformability, when the width-to-thickness ratio of web
plate is large even in.
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Fig.2.7 Influence of width-to-thickness ratio of web panel.

3) Ultimate shear strength of girder panel

From the results of Fig.2.6 and Fig.2.7, Fig.2.8 showing the relationship between
the ultimate strength /@)y and width-to-thickness ratio parameter Rw of web plate is
given. In the same figure, the results of load carrying capacity tests under shear of
steel girder4.17-19 and ultimate shear strength curve by Basler. Except for the test
results by Rockey-Skaloud, there are present solution and test results for the good
relation, as it is clear from this figure. Though at test girders that they used the shape
of the web plate was identical, the flange is different at each girder. The dispersion of
the strength in the test results by Rockey-Skaloud observed in Fig.2.8 seems to be
caused by using R» that cannot consider the effect of the restraint of the flange for the
parameter. Therefore, it is necessary to use width-to-thickness ratio parameter that
can consider the restraint of the flange in order to evaluate the ultimate strength of
steel girder at the good accuracy.
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Fig.2.8 Ultimate shear strength of steel girders.

(3) Girder panel under cyclic shear load
1) Aspect ratio of web panel

The relationship between shear force and shear displacement of the steel girder
which Fig.2.9 shows is obtained, when aspect ratio a/bw of the web panel is 0.5, 1.0, 2.0.
For the comparison, the relation between shear force and shear displacement in the
case of the monotonic loading is also shown in the same figure, where bw/b=3.5,
b/2t=10, bw/tw=123.

As it is clear from this figure, at either aspect ratio, the maximum shear force in
the every cycle tends to lower according to the increase of repetition number in
comparison with the case of the monotonic loading. Because the diagonal tension field
is formed after buckling, the remarkable strength degradation is not generated like the
case of compression and bending and the hysteresis loop has comparatively been
stabilized. In these hysteresis loops, features by the difference between aspect ratio
have appeared well. That is to say, the load is temporarily decreasing sharply at the
process in which the sign of shear force changes in the long panel. The snap-through
phenomenon in which the buckling mode changes suddenly has appeared. However, the
hysteresis loop approaches load-displacement curve in the case of the monotonic
loading, when the pattern of buckling mode is determined and the tension field is
formed again, and it shifts to the stable behavior.
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Fig.2.9 Hysteretic loop of relation between shear force and displacement.

The relationship between accumulation quantity of the energy and the number of
cycle is shown in Fig.2.10. In this figure, the ordinate is the accumulation energy made
dimensionless by @y J v; and the abscissa shows the cycle number. The absorbed energy
was obtained from the area of the region surrounded by the hysteretic loop at each
cycle in the relationship between shear force-shear-displacement. The accumulated
energy decreases, as aspect ratio a/bw increases. It is seen that the degradation of the
strength is little, even if the repetitive load is applied. Therefore, it seems to be useful
for reduction of the weight and restoration in the early stage after earthquake disaster,
if the member of whom energy dissipation is remarkable is used as subsidiary member.

153



-5
o

)
© 30
5 amb,=05
- e
B2 Vv
©
2
E10}
[+]
2

0

0 1 2 3 4 5
Cycle No.

Fig.2.10 Accumulated energy.

2) Width-to-thickness ratio of web panel

The relation between the shear force and shear displacement of the girder panel is
shown as Fig.2.11, when the width-to-thickness ratio bw/tw of the web plate is changed
with 91, 123, 200. For the comparison, the relation between shear force and shear
displacement in the case of the monotonic loading is shown by broken line. In this
figure, each parameter is as follows: bw/ br= 3.5, a/ bw= 1.0, br/ 2¢r=10. As shown from
this figure, the tension field formed before gradually disappears when the unloading
begins by inverting shear force. As the result, the strength also lowers. Afterwards, the
strength would rise again with the formation of the tension field to the reverse
diagonal line direction. This phenomenon is remarkable as a web plate in which
width-to-thickness ratio is large.

The relationship between the accumulation energy and the loading cycle is
obtained as shown in Fig.2.12. In this figure, the ordinate is the accumulated energy
made dimensionless by @voJy and the abscissa has shown the loading cycles. As
before, when the member with the hysteretic behavior of the energy dissipation type
can be built in the frame structure, the damage of the frame may be concentrated at
this part. That is to say, it seems to be possible that a whole collapse of the structure is
avoided, when the remarkable plastic deformation disperses the energy.
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3) Development of diagonal tension field
In the process in which the sign of the vertical displacement along the edge of the
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girder panel changes, the snap-through buckling may occur. In the hysteretic behavior
as shown in Fig.2.11, by noticing the case of Fig.2.11(c) with the lowering of which the
strength is remarkable, when the load is inverted, deflection distribution of the web
panel is examined. In this case, each parameter is as follows: a/ bw = 1.0, b/ 2tr=10, bw
[ tw =200, and bw/ br=3.5. For several loading stages, out-of-plane deflection of the web
panel is obtained as shown in Fig.2.13. The value in these figures is denoted by the
out-of-plane deflection w/tw made dimensionless using the web thickness tw.

'aa b

m 58,7400 @ 85,7142 ®) 56,70.71 @ 65/6,50.24
0/0,=0.70 0/0,=-0.30 0/0,=-0.24 0/0,=-0.26

® 56,7006 ©55,=-0.61 M 55,139 ®) §5,=-4.00
0/10,=-0.19 010,=-0.22 0/0,=-0.42 0/0,=0.70

Fig.2.13 Distribution of out-of-plane deformation on web panel.

As it is clear from this figure, in loading stages (1) and (2), the typical tension field
seems to tend to gradually disappear with the unloading of the load. In the loading
stages from (3) to (6), the tension field formed before then diffuses in the whole web
panel, and simultaneously it would be newly formed along the other diagonal line
direction.

The shear force is maintained in the low level in these stages. Afterwards, in the
loading stages (7) and (8), the newly formed tension field is more clarified, and the
shear strength rises due to this development. From these figures, the tension field
seems to have smoothly been formed.

6.2.4 Conclusions

The ultimate strength and deformability were clarified on the girder panel
gradually or repetitively subjected to the shear force by using elasto-plastic finite
deflection analysis. A analyzed panel was assumed to be supported by sufficiently rigid
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vertical stiffeners. The summary of the obtained results is as follows:

1) In the case in which the vertical stiffener has wide interval or the web plate is thin,
the shear strength after the maximum load hardly fall unlike the case in which
bending or compression acts.

2) The drop of the strength is caused by unloading after the inversion of the load,
when the cyclic loading acts. But, the strength rises again. This phenomenon
remarkably appears as a case that the vertical stiffener has wide interval and that
the web plate is thin.

3) From the relationship between the accumulated energy and loading cycle, it is
evident that such girder panel is excellent in the energy absorption performance.

4) If such hysteretic behavior is realized in framed structure, by the concentration of
the plastic deformation in the girder panel with thin web plate, it is supposed to be
possible to avoid a collapse of the whole frame.

6.3 Inelastic repetitive shear and flexural buckling of plate girders with multi-panel
6.3.1 Introduction

Many classical studies have been carried out experimentally and theoretically on
isolated steel plate girder panels subjected to shear or the combined shear and
bending. These studies include those by Galambos2?, Basler14-20, Ostapenko2?.23 and
Porter24. Theoretical methods based on the collapse mechanism are meant for efficient
determination of the load-carrying capacity but not for analyzing the deformation
process up to the ultimate strength. On the other hand, there exist such theoretical
methods for the description of the load-carrying process up to the ultimate strength.
Studies based on the latter methods have increased with the development of
computers for example, such as by Marsh25, Kuranishi?® and Lee2?. These analytical
methods are quite limited to considering isolated panels but those considering also
adjacent plate girders panels subjected to repetitive loading, in particular, are rather
few.

For a single panel, the evaluation of strength and deformability of the steel girder
under repetitive shear was carried out by Takeda.2® On the other hand, although
limited to shear link beams under cyclic loading, many loading tests have been
conducted, and the behavior up to the ultimate state has been clarified considerably in
detail by Hjelmstad!. Recently, Lubell showed that steel plate shear walls exhibit many
desirable structural characteristics in the area of high seismic risk2? and similarly, the
use of shear links is proposed for the main tower of the new San Francisco-Oakland
Bay self-anchored suspension bridge for its ability of dissipating the hysteretic plastic
strain energy by making the links finally removable without causing difficulties from
the rest of the main members after its significant inelastic deformation30,

This article is focused on the theoretical and experimental study on the strength
and ductility of steel plate girder panels under the repetitive inelastic buckling
subjected to shear or the combined shear and bending. Eight model girders were tested
in consideration of the combinations of two independent loading patterns, the flange
thicknesses and the depth-to-thickness ratios of the web plate. In the finite element
analyses using shell elements considering the material and geometrical
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non-linearities in the repetitive inelastic buckling behavior of plate girders, only a half
of the girder was analyzed considering the symmetry Good correlations were found
between the results of tests and numerical computations.

6.3.2 Description of Tests
(1) Models

Fig.3.1 shows the dimensions and the tested models with one-point loadings at the
span center as indicated by white and black arrows. The cross section of the web plate
remains the same throughout the length of the girders. The actual girder dimensions
such as the panel length, a; panel depth, b web thickness, # flange thickness, # flange

width, ¢ of the testing panels, respectively were measured and the results are
summarized in Table 3.1.
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Fig.3.1. Experimental model girders.

All models are made of SS400 steel in accordance with the Japanese Industrial
standard, JIS. The results of the yielding stresses obtained from the coupon tests are
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shown 1n Table 3.2.

Table 3.1. Measured dimensions of models.

CYP-S3 [ CYP-S4 | CYP-S5 | CYP-S6 | CYP-S7 | CYP-S8 | CYP-S9 |CYP-S10
Panel length, a (mm) 241 310 235 310 236 313 237 314
Panel depth, b (mm) 244 318 244 319 245 320 245 319
Web thickness, t (mm) 1.63 1.58 1.62 152 154 161 1.64 159
Flange thickness, 16.1 16.1 89 89 87 89 16.0 16.1
t (mm)

Flange width, c (mm) 160.3 120.6 159.9 120.8 160.5 121.3 155.9 1215

b/t 150 201 150 210 158 199 150 200
Loading sequence A A A A B B B B

Table 3.2. Yield point stress (MPa).
CYP-S3 | CYP-S4 | CYP-S5 | CYP-S6 | CYP-S7 | CYP-S8 | CYP-S9 | CYP-S10
Flange | 296.2 296.2 275.6 2785 275.6 291.3 271.6 286.8
Web 248.1 248.1 368.7 390.3 368.7 211.8 271.6 286.8

(2) Loading

The loading jig was manufactured in order to apply the alternating load, and the
loading apparatus shown in Fig.3.2 was used. A servo-controlled hydraulic testing
machine was used for the test. A concentrated point load was applied to the girder at
mid-span so that the shear force acts predominantly on the testing panel and the
girders were simply supported by using roller bearings under the displacement control.
Two loading patterns: Type A and Type B are adopted. Type A corresponds to the case
in which the amplitude of the displacement is increased linearly with respect to time at
every cycle; while Type B corresponds to the case in which the amplitude of the
displacement is kept constant but increased at every 3 cycles. The loading sequence in
the test is schematically shown in Fig.3.3. The value of the maximum displacement dp
at the first cycle was determined so that the predicted edge fiber stress at the mid-span
reaches the yielding stress. On the other hand, the incremental value of Ad was
determined a little higher than the corresponding value of dp considering the
displacement capacity of the testing machine and the possible number of cycles to be
4.0mm for Models CYP-S-3, 5, 7, 9; but to be 5.0mm for Models CYP-S-4, 6, 8, 10. The
loading type for each girder is described also in Table 1.
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Fig.3.3. Loading sequence.

6.3.3 Computer Analysis
(1) Analytical model

In the analytical method, elasto-plastic finite displacement analysis was carried
out using a general-purpose finite element analysis code ABAQUS. The analytical
models and the meshes are shown in Fig.3.4. Obviously, not only the tested panel but
also the other panels as shown in Fig.1 are divided into meshes, but only one half of the
girder is considered assuming the symmetry with respect to the z-axis at the mid-span.
Each of the adopted elements is a shell element with 4 nodes considering finite
membrane strain. The number of partition is 16 for the web plate of the testing panel
in the longitudinal and vertical directions. Also, there are 16 partitions in the
longitudinal direction of the flange plate and 8 partitions in the direction perpendicular
to the flange. The other part was also divided so that the local buckling mode could be
evaluated with sufficient accuracy. The number of layers in the thickness direction of
the shell is taken to be 5.
(2) Boundary conditions

The boundary conditions are as shown in Fig.3.5. A small rigid body shell element
is attached to the elastic element where the concentrated load is applied to satisfy the
Kirchhoff’'s hypothesis that points on a plane remain plane after the deformation. As
for the stress-strain relationship of steel, a nonlinear isotropic/kinematical hardening
material model was used.
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Analytical Model(CYP-S-3,5,7,9) Analytical Model(CYP-S-4,6,8,10)
Fig.3.4 Analytical model.
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Fig.3.5. Boundary conditions.

6.3.4. Collapse Mode of Panels and Equivalent Stress Distribution

Figs. 3.6 and 3.7 show the failure or the residual deformations of girders after
collapse and the distributions of von Mises equivalent stress together with the collapse
modes predicted from the computer analysis, respectively.

The flange deformation of Models CYP-S-3 and CYP-S-4 which have thicker
flanges and subjected to loading pattern A but have different web depth-to-thickness
ratios, b/t, is found to be relatively small. The out-of-plane deflection of the web,
however, was large. In Model CY-P-S-3, there was a small initial crack in the vicinity
where the tension fields crossed and at a corner of the testing panel, and no
conspicuous fracture is observed in Model CYP-S-4. From the comparison of collapse
modes, the analytical and experimental results are found to have good correlations.

Models CYP-S-5 and CYP-S-6 have a thinner flange subjected to the loading
sequence A. A significantly large vertical dent of flange was observed for Model
CYP-S-6 with a larger depth-to-thickness ratio of web plate, b/, than that of Model
CYP-S-5. Each of the web plates of the girders underwent significantly large
out-of-plane deflections. Although cracks were observed in these specimens, these
cracks did not greatly develop in the range of experimental repetitions. From the
comparison of the test and computational results, the dent of flange at Model CYP-S-6
seems to be simulated very well. This dent makes the flange suddenly unable to carry
flange forces and thus bringing about the abrupt reduction of the load-carrying
capacity.

Next, the failure modes of Models CYP-S-7 and CYP-S-8 under the loading
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sequence B are discussed. The crack in the web plate is apparently more significant
than Model CYP-S-5 that is virtually the same as Model CYP-S-7, but the difference
being only the matter of the loading sequence. For Model CYP-S-8 with a larger
depth-to-thickness ratio, the web plate crack and the dent of the flange were severer.
The computed result on the collapse mode for Model CYP-S-8 shows a very good
correlation of large out-of-plane deformation of the web plate and the dent of the
flange.

Both Models CYP-S-9 and CYP-S-10 showed large out-of-plane deformation in the
web plate, and especially the generation of the crack is significant in Model CYP-S-10.
Since a crack was generated at the joint of bearing stiffener and flange in Model
CYP-S-10, the test had to be terminated immediately. The local deformation of the
flange is not so large on each girder because of thicker flange. As a whole, the degree of
the damage of Model CYP-S-9 with a smaller depth-to-thickness ratio is found smaller
than that of Model CYP-S-10 with a larger depth-to-thickness ratio. The detailed
description of the process of the crack initiation of web plate of Model CYP-S-9 is as
follows: At eighth cycle, a small crack appeared near the corner in the supported edge
of the panel. Afterwards, it began to generate the crack near the corner in the loaded
edge of the panel. With the progress in the cycle, these cracks gradually developed.
From the analytical results of the equivalent stress of von Mises for Models CYP-S-9
and CYP-S-10 in Fig.6, the deformation of the flange is small on both girders. The
correlation of the results between the analysis and test is found to be very good for
Model CYP-S-9.

Fig.3.6. Testing panels after test.
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Fig.3.6. Testing panels after test (Continued).
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Fig.3.7. Von Mises equivalent stress.
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+3.97E+01

Fig.3.7. Von Mises equivalent stress (Continued).

6.3.5. Comparison of Load-Displacement Envelope between Test and Analysis

The results of the analysis on the load-displacement envelope, the axial and the
bending strain of the flange are compared with the experimental results.
(1) Load-displacement hysteretic loop

The hysteretic load-displacement diagrams from the tests are illustrated in Fig.3.8
for Models CYP-S-5, CYP-S-6, CYP-S-7 and CYP-S-8. For Model CYP-S-5, although the
load drops temporarily owing to shear buckling of a web plate, the original loop is
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restored afterwards and the tension field is formed alternatively with the change of the
load direction. Consequently, within the number of repetitions the girder demonstrates
a stable behavior. As the web plate of Model CYP-S-6 under the same loading type as
that of Model CYP-S-5 has a larger depth-to-thickness ratio, the load-carrying capacity
drops abruptly after the progress of several cycles. This might have a close relation
with the occurrence of the vertical dent of the flanges. For Model CYP-S-7 of which the
loading type is B and the dimensions remain the same as those of Model CYP-S-5, the
cracks on the web grow under the increase of repeated numbers of cycles. This lead to
the loss of the shear carrying capacity by the tension field and ultimately the abrupt
deterioration of the load-carrying capacity occurs. For Model CYP-S-8 of which the
loading type is B and the depth-to-thickness ratio of the web plate is 200, the vertical
dent of flanges occurs as in the case of Model CYP-S-6 and the crack of the web plate
becomes significantly large. The deterioration of the load-carrying capacity is observed
at an early stage of loading. In Models CYP-S-9 and CYP-S-10, since the crack in the
web plate develops with the increase of the cycle, the hysteretic behavior that showed
rapid deterioration was observed as in the case of Model CYP-S-7 in the Load Sequence
B. In contrast, Models CYP-S-3 and CYP-S-4 which basically had the same cross
sections as those of Models CYP-S-9 and CYP-S-10, respectively, displayed more stable
hysteretic behavior in the Load Sequence A.
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Fig.3.8. Hysteretic loop from test.
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Similarly, the computed load-displacement hysteretic loops of Models CYP-S-5,
CYP-S-6 and CYP-S-8 are shown in Fig.3.9. The shape of the curve of Model CYP-S-5
looks similar to those found experimentally. For Models CYP-S-6 and CYP-S-8, the
deterioration of the load-carrying capacity after several cycles is not so
apparent in the hysteretic loops because the progress of the web plate cracks is not
considered in the analysis. From the comparison of experimental and analytical
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|
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[ | ]
-100 W)
-200 200 2z 4 /v
-300 -200
40 30 20 0 0 10 20 30 40 50 40 30 20 10 0 10 20 30 40 50 50 -40 30 20 -0 0 10 20 30 40 50

Deflection (mm) Deflection (mm) Deflection (mm)
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T~
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Load (kN)

CYP-S-5 CYP-S-6 CYP-S-8
Fig.3.9. Computed hysteretic loop.

results, though there is a little difference of the load-carrying capacity, a good
correlation can be seen between the test results and the analytical results.
(2) Axial strain of flange

Fig.3.10 shows the relationships between axial strains of Model CYP-S-8 at the
flange center and the number of cycles from the test. A similar analytical result is
shown in Fig.3.11. The experimental results may be seen to agree fairly well with the
analytical results. From these figures, the dent of the flange is generated after the 3rd
or the 4th loading cycle is over. This behavior is different from a stable one in a
previous stage, and may reflect the decrement of the load-carrying capacity.

- Bottom Flange | ]
—— Upper Flange

(x10~4

Axial Strain (x10~4)

Axial Strain

Cycle No. Cycle No.

Fig.3.10. Experimental axial strain of flange. Fig.3.11. Analytical axial strain of flange.
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(3) Load-displacement envelope

The envelope curves of Models CYP-S-3, CYP-S-4, CYP-S-5 and CYP-S-6 are
shown in Figs.3.12 to 3.15, respectively. In each figure, the results from the tests and
analysis are compared. From Figs.3.12 and 3.14, provided that the depth-to-thickness
ratio of a girder web is a value of about 150, the load-carrying capacity and the
deformability are in good condition because they are not so much influenced by the
flange rigidity. The depth-to-thickness ratio of the web plate in the case of Figs.3.13
and 3.15 is larger than that in the case of Figs.3.12 and 3.14. Model CYP-S-4 with a
larger flange rigidity shows a more stable behavior. On the other hand, the
load-carrying capacity of Model CYP-S-6 with a smaller flange rigidity drops abruptly
because of the occurrence of the dent at the flange. From the comparison of the
results of the tests and analysis, it is found that a good agreement is obtained for
Models CYP-S-3 and CYP-S-4, though the calculated values are a little higher. In the
meantime, the difference of the curves from the analysis and the test is not small in
Models CYP-S-5 and CYP-S-6. In the tensile test for these girders the yielding stress
could have been possibly misread and thus overestimated as could be imagined by
Table 3.2.

The envelope curve obtained from the test for Models CYP-S-7, CYP-S-8,
CYP-S-9 and CYP-S-10 is shown respectively in Figs.3.16 to 3.19. The differences in
the results may be due to the different loading processes. It is obvious that in Model
CYP-S-7 as compared with Model CYP-S-5, since the out-of-plane deformation of the
web plate is remarkable on account of the increase of repeated numbers with cracks
developed notably. As a result of the decrease in the tension field action, only the
edge frame of the web panel becomes effective for carrying load and the load-carrying
capacity decreases at an early stage as shown in Fig.3.16. The load for each cycle
makes little difference until the attainment of the maximum load. After which the
strength deteriorates at every cycle for the repetition of the same amplitude. For
Model CYP-S-8 having a depth-to-thickness ratio of 200 for the web plate, it is seen
from Fig.3.17 that because the web plate was cracked and the flanges sank, the
deterioration of this model was accelerated in comparison with Model CYP-S-6. As
compared with Model CYP-S-6 of which the loading type is A, the deterioration of the
deformability is noted. This tendency is evident in Model CYP-S-7, too. For Model
CYP-S-10 having a large depth-to-thickness ratio of the web plate, it is seen that the
non-linearity appeared at an early stage from Fig.18. It is noted from Figs.3.18 and
3.19 that as for deformability, both girders show a comparatively good tendency until
the last stage.
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6.3.6. Other Observations from Experimental Results

Except for the experimental results reported until now, the following results were
obtained.

(1) Distribution of principal strains

Let ustake Mode CYP-S-6, for example, to see the distribution of principal strains.
The principal strain distribution of the web panel is shown in Fig.3.20 when the
maximum load is reached at each half cycle. It is evident that the tension field develops
aternately and stably at the 3% cycle. As aresult of the effect caused by the flange dent,
the flange ceases to work as an anchor of the tension field. This fact is shown by the
figuresin the 7" cycle, and the direction of principal strains greatly varies. Judging from
the change of this direction, it can be predicted that the deterioration of the shear
strength is caused. In Model CY P-S-5, as shown from the principal strain distribution at

the 8" cycle in Fig.3.21, the direction of the tension field in its previous stage is
maintained.

9 3 cycle I sl ] L

— |
(] 24x10° CYP-5-6 40 aigt CYP-5-6

Fig.3.20. Distribution of principal strains: CYP-S-6.
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Fig.3.21. Distribution of principal strains: CYP-S-5.

(2) Load-Diagonal strain relationship

The variation in each every cycle of the strain at the panel diagonal direction is
shown in Fig.3.22. It is proven that the strain in the direction that tensile stresses
applied first has been almost tension strain throughout the whole cycle. In the case of
Model CYP-S-6, the value of the strain suddenly drops after several cycle progress, and
it increases afterwards. It seems that this fact is the effect by the dent of the flange. On
the other hand, in the direction which compression stresses applied first the region of
the compressive strains is also observed in the early cycles, though large tensile strains

appeared finally by the repetitive generation of the tension field.
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(3) Relation between deflection and cycles

Fig.3.23 shows plots of the relation monitored by the actuator between the
repetition number and the maximum deflection in each cycle of test for Model
CYP-S-10. It is noted that although the linearity is disturbed at the 6tk cycle which
the dent of flanges are observed, this disturbance is improved and the good
deformability is maintained until the last cycle at which a flange is broken. Similarly,
the comparatively good deformability was also obtained for other models.
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(4) Absorbed energy
The absorbed energy is shown to increase with the number of the loading cycle

in Figs.3.24 and 3.25 for Models CYP-S-9 and CYP-S-10, respectively. Although the
absorbed energy increases smoothly up to the development of web crack, then it
decreases. However, in Model CYP-S-9 of which the flanges are in good condition, the
absorbed energy increases again. It is seen from these figures that although the
absorbed energy noticeably increases from the first to, the second and the third
loading, it stays or drops significantly due to the growth of the deformation caused
by the increase of loading cycles.
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Fig.3,24. Absorbed energy: CYP-S-9. Fig.3.25. Absorbed energy: CYP-S-10.

6.3.7. Conclusions
Particular emphasis is placed on the repetitive buckling behavior of steel plated

girders under the inelastic shear or the combined shear and bending. Model girders

were tested and the computer analysis was also carried out by finite element method.

From the comparison between the experimental and analytical results, good

correlations were found to exist in the repetitive inelastic behavior of girders. The

following concluding remarks may be made:

1) On account of repetitive inelastic buckling under severely repeated shear force,
remarkable out-of-plane deformation results in and the tension field is formed
alternately in general. The strength is reduced owing to the crack in the web
plate and the dent of the flange into the web plate in the case, where the web has
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a large width-to-thickness ratio.

2) The deformability of the panel remains good until the maximum load is reached.
Even if the dent occurs after that, the reduction of the deformability is only
temporary and the recovery of the deformability is achieved.

3) In the case of loading Type A, and the depth-to-thickness ratio of a web plate is
less than 150, stable behavior is expected. However, when the ratio exceeds 200
and the flange rigidity is not large, the strength is considerably reduced due to
the vertical dent of the flange and the crack growth in the web plate.

4) In the case of loading Type B, as the web crack develops (due to large cycles of
loading), the reduction of the strength may become significant even if the girder
could be stable in Type A.

5) The direction of the principal strain in the web plate changes, when the dent of
the flange occurs, even if the web crack is small. Consequently, the deterioration
of the shear strength is brought about.

6) Absorbed energy increases smoothly until the development of the web crack. If
flanges are in good condition, the cumulative energy grows well.

7) Since the out-of-plane deformation takes place in several panels as well as in the
testing panel under the repeated load, it is not reasonable to assume the
deformation only in the tested single panel.

8) In the buildings, steel shear panels have been already used as active hysteretic
damper links. It is expected that the shear link can also be introduced into the
steel bridge in order to be utilized as a hysteretic damper against earthquake
loads. As it i1s mentioned above, the shear panel shows a stable elasto-plastic
behavior generally, and the excellent deformability and energy dissipation
capacity can be expected. By utilizing these characteristics, if the panel is
effectively built as a link, the damage can be concentrated to these self-sacrificing
shear panel members only so that the damage of primary members can be well
protected from the action of the excessive earthquake load.

9) In this article, the panel with comparatively large value of the depth-to-thickness
ratio was treated and the collapse over several panels was examined. The
obtained results may give a basic and important insight to the introduction of this
system to steel bridges in view of good displacement ductility capacity and stable
hysteretic behavior with desirable energy dissipation characteristics in areas of
high seismic risk utilizing shear links such as in the case of new San
Francisco-Oakland Bay Bridge.

6.4 Discussions

The inelastic behavior of plate girders under cyclic loadings was discussed in
this chapter. The ultimate strength and hysteretic behavior of the single girder panel
subjected to the repetitive shear force are investigated numerically in 6.2. Article 6.3
is focused on the theoretical and experimental study on the strength and ductility of
multi-panel under the repetitive inelastic buckling subjected to shear or the
combined shear and bending. From the above results, it was proven that the
examination over adjacently several panels is more desirable in order to take the
interaction of panels into consideration.

The shear panel subjected to cyclic loadings shows not only relatively stable
behavior and sufficient deformability, but also the energy dissipation capacity is
found to be excellent. By utilizing such characteristics of the shear panel, the use as
a damper system is noticed at present. This damper has been used in the buildings
practically, and then the utilization should be also greatly promoted also in bridge
structures. The use to new San Francisco-Oakland Bay Bridge is an example of the
practical application.

Two-story portal frame is the type frequently used for the viaduct in the urban
line. The application of the shear panel to the middle box-beam in two-story steel

173



portal frames is being investigated as a realistic application. The use of the low yield
ratio steel may be recommended because of its excellent energy dissipation capacity.
In addition, the panel may be desirably made demountable. By this damper, it is
expected that the great damages of the important parts such as bases and corners of
piers can be avoided or reduced.
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Chapter 7
Strength and deformability of steel box beams in repetitive shear

7.1 General description

In 1995, the Great Hanshin-Awaji earthquake arose. In this earthquake, the out-of
plane deflection due to the shear buckling was also recognized at the web plate in the
intermediate cross beam of two-story portal steel piers as well as the web plate in the
steel girder under alternatively repetitive shear forces. Examples of the observed beam
are shown in Fig.119. From such fact, it seems to be considerably important to clarify
the effect of the deformability of the member element subjected to be the primary action
of the shear force on the strength and deformation of the whole structure. From the
analysis of the damages in steel bridge piers for the above stated earthquake, the
various improvements for the earthquake proof structural design of the bridge pier have
been proposed. For examples, they are as follows:

O Improvement in the strength of steel bridge piers:

@ Reinforcement for the corner connection of bridge piers:

@ Filling of concrete into the cross section of bridge piers:

@ Base-isolation for the elevated highways:

In the method of (D, it is considered that the increase of the energy absorption capacity
owing to the raising on strength and rotation capacity as a result of using the thickened
member brings about the improvement in the earthquake proofing.

On the other hand, a part in the member cross-section is intentionally weakened in
order to damage earlier than other parts, and then the energy dissipation in its part is
attempted. As the result, it is considered that the improvement in the earthquake
proofing can be expected?9. In this case, by utilizing the buckling in the early stage at
the web plate near the center of the cross beam and afterwards diagonal tension field
action the deformability is increased, and then it is intended that the whole collapse of
the bridge pier can be prevented. For appropriate design in this purpose, it is required
to sufficiently investigate the fundamental characteristics such as the strength and
deformability on steel plates and member cross-sections subjected to repetitive shear
forces.

The research on load carrying capacity of steel beams under shear has been much
carried out theoretically and experimentally®-®. However, there are no many on the
research on the deformability. The research on the shear strength and deformability for
the central region of the intermediate beam in bridge piers of two-story portal steel
frame has not been almost carried out? and there is only the research on the steel girder
with single panel or several panels.

In this chapter, the intermediate beam in the bridge piers of two-story portal steel
frame is noticed and for this modeled cross beam under repetitive shear forces, the
elasto-plastic finite displacement analysis is carried out using the finite element
method. Effect of energy dissipation due to the shear buckling deformation in the
relatively thin web plate near the center of the crossbeam is clarified.

7.2. Analysis for steel beam in repetitive shear
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7.2.1 Elasto-plastic finite displacement analysis

(1) Modeling of steel beam

Fig.1 Shear buckling at box-beam in the Great Hanshin-Awaji earthquake

Analytical model is a box-section
beam modeling an intermediately
layered beam in the steel bridge pier of
two-story portal frame as shown in
Fig.2. This beam has length |, and it
is divided by n diaphragms in interval
a. The box-section is not stiffened, and
the width and thickness of the flange
and the width and thickness of the web
are br tr, bw and tw, respectively.

Cross sectional parameters of the
steel beam prepared for this analysis
are as follows:!

Slenderness ratio parameter Zof a
steel beam is ;
.1 |o

A== 1-—2=03
rz\VE

Fig.2 General view of steel box-beam
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Width-to-thickness ratio parameter Erof the un-stiffened flange;

b _ 4,2
R =t |Z V) 471525 @)
t VE 7K, o

Aspect ratio @ and width-to-thickness ratio parameter Rw of the un-stiffened web

plate;
a=10 (3)
4,2
=2 | M - 0.3~05 )
tw \/§E 7 kcr,shear

where L and r are the effective buckling length(=1.2) and the radius of gyration of the
steel beam, respectively. kescomp is the elastic buckling coefficient(=4.0) of the simply
supported compressive flange and ke skear 1s the elastic shear buckling coefficient of the
simply supported web plate expressed as the following!?;

<1 k. —40.53
o

a>1 : kcr,m=5.34+4—'? (5)
a

It is assumed that the steel beam is manufactured by the steel plate of Type SM490Y
and the multi-linear type was adopted for the stress-strain relationship. The yield point
stress is as follows:

o7=365Mpa ( t=16mm)

0y=355Mpa (16mm < = 40mm)

0y=335Mpa (40mm < = 75mm)

0y=325Mpa (75mm < ?)
Young’s modulus £ and Poisson’s ratio » equal to 206Gpa and 0.3, respectively.

(2) Application of elasto-plastic finite displacement analysis

The elasto-plastic finite displacement analysis was carried out using a
general-purpose finite element analysis code MARC 2001. In this case, the finite
element method by up-dated Lagrangian technique was used. In addition, the
equivalent stress formula by von Mises in the decision of the yield and the plastic flow
rule of Prandtle-Reuss for the flow rule were used. Newton-Raphson method and arc
length incremental method were chosen in the solution method of nonlinear algebraic
equation. And for the hardening rule, the following was used: Isotropic hardening rule
and mixing hardening rule which used the kinematic hardening law jointly.

The convergence of nonlinear solution was judged in the following equation,

Bmax < ¢

In which R is the residual un-equilibrium force, and ¢is set at 103 in the allowable
error for the convergence decision.
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(3) Analytical model for steel beam v
in bridge piers

In this research, the web plate X - -
near the center at the cross beam z A :
modeling the intermediately layered ! S— = P

! v2 ! A — L2

beam in the bridge piers of two-story
portal steel frame under repetitive Fig.3 Coupled element model
shear forces is noticed and the

characteristics on its strength and hysteretic behavior is clarified analytically. Because
it focuses on the central region of 3 panels divided by the diaphragm of 4 sheets as
shown in Fig.3, for this region plate elements were used. Beam-column elements were
used for both ends (=/-32), and the coupled model as shown in Fig.3 was adopted.
Considering the symmetry of the section, the half of the panels on the direction of zwas

analyzed.

(4) Divisions in finite element method
4-node quadrilateral thick-shell
element with 6 degrees of freedoms per
node and beam-column element with 3
degrees of freedoms per node were
applied for the plate region and for the
bar region, respectively. The outline of
the divisions is shown in Fig.4. The plate

thickness of a central web panel within

these three panels is more thinly set Fig.4 Divisions in three panels
further than that of other panels, and

the energy dissipation effect caused by the out-of-plane deformation in the early stage is
examined. The central panel of which the shear deformation seems to be remarkable is
divided into the axial direction of member using twelve elements in order to examine
the aspect of the deformation as detailed as possible. The adjacent panels are divided
into six elements. Since the cross section of the beam is assumed to be square, both the
flange and web plate is divided into the perpendicular direction using twelve elements.

(5) Loading sequence and boundary conditions
As loading pattern, the following two methods are adopted as shown in Fig.5:
5/5y
(D An incremental loading method: this is the method in 3 @
which the shear load always increases. 2 - ®
@ A repetitive loading method: this is the method in ! /
which the maximum amplitude increases every cycle. 0

. . . . . -1t cycles
The equivalent vertical displacement is given so that the

shear force may be made to apply in the steel beam. In 3

this case, the vertical displacement is given so that the
both ends of the beam-column element may not rotate. Fig.5 Loading type
Namely, the displacement uz in the direction x axis, the
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displacement v in the direction y axis and the rotation angle ¢about z axis were
restricted in the left end of the coupled model as following:

The equivalent vertical displacement J for shear force is given along the direction of
y axis:

v=4, (7)
and the following condition is added.

$p=0 (8)

The vertical displacement oJis given referring to the shear yield displacement o
corresponding to the shear yield load @).. @yand J, are expressed as following:

Q, =2r,b,t, (9)
al
S, = & (10)
2Gb, t,,

where G'is the elastic shear modulus.

(6) Coupling method between elements and symmetrical conditions
Conditions for continuity in the joint of the coupled model between beam-column
element and plate element are as follows:

(D Each cross section of the beam-column element and the plate element retains the
perpendicularity to the member axis in the joint, therefore the continuity of the
displacement between elements is guaranteed.

@ Since the rigidity of the diaphragm between adjacent elements is very high, it
restricts the out-of-plane deformation of the flange and web plate.

@ The flange and web plate in the region using plate elements are simply supported
on the diaphragm.

The above conditions are shown at the form of the equation in the following.

w=¢6 =6, =0:on the flange in the joint. (11

w=0, =6, =0:on the web plate in the joint. (12)

In these equations, wis the displacement in the perpendicular direction to the member
axis and 0x, 0y and 0. are the rotation angles about x, y and z axes in the plate
elements, respectively.

Furthermore, from the symmetry of the cross section, the following symmetrical
condition along the centerline of the flange next is considered.

w=6,=6,=0 (13)

(7) Initial imperfections
As an initial imperfection, the deflection was considered. The global buckling mode
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was introduced into the beam-column
element and the coupled buckling mode
between the global buckling and local
buckling was introduced into the plate
element as shown in Fig.6.

At beam-column element:

| nr
vo=v, ° 1000 cos I

At the flange of the plate element:

X (14)

nrz

I
f c
V, =y+V, ~ ——C0S——X
o = Yo 000 |
b, . n n
+v, " ——sin—~" xcos—2-z (15)
150 a b,
(15) Fig.6 Initial imperfection mode
At the web plate:
v," =y+v, ° | T (16)
° °™ 1000 |
w w b . N nm
W, =z-W, = —=Sin < % cos—. y (17)
150 a

w

In these equations, Vomax®, Vomax!and womax” are magnifiers for the limiting values of
manufacturing error allowed in the Japanese specifications!?. n.is half wave number in
the axial direction of the initial deflection over the member. nx, ny and n, are half wave
number of the initial deflection for the plate element in the direction of x, y and z,
respectively. On the double sign, the upper sign and the lower sign are applied to the
upper flange and the bottom flange, respectively.

7.2.2 Numerical results and considerations
The steel beam under the incremental shear force or repetitive shear load is
analyzed, and the strength and deformability of the steel beam are examined.

(1) Comparison between present solution and existing experimental results

The validity on the analytical model and assumed conditions is examined before the
extensive numerical calculation. Present solution is compared with the experimental
result by Scheer-Pasternak-RugalV. The relationship between shear force and vertical
displacement in increment loading is shown in Fig.7. In this figure, the ordinate is the
shear force /@), that is made dimensionless by the shear yield force @)y, and the
abscissa is the vertical displacement ¢/Jy that is made dimensionless by the shear
yield displacement J,. The cross-sectional shape ratio bw/bs the ratio between flange
thickness and web plate thickness tw/f; the width-to-thickness ratio parameter of flange
plate Rr the aspect ratio of web plate a/bw, the width-to-thickness ratio of web plate
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bw/tw and the width-to-thickness
parameter FR» are 0.35, 0.094,
0.26, 1.0, 149 and 2.13,
respectively.

As seen from this figure,
both curves agree well until the
arrival at the yield displacement.
Afterwards, the difference
occurred in both curves. The
maximum load obtained by the
present method shows a little
higher value than the
experimental value. It seems
that this arose due to initial
imperfections, mechanical
property of steel members and the

10 r
08 r (.
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Fig.7 Comparison of present method with

test result

difference between the analytical and experimental conditions.

(2) Strength and deformability of beam under incremental loading
The strength and deformability of girder in the monotonous loading are examined.

1) Influence of web width-to-thickness ratio on strength and deformability of girder
When the width-to-thickness ratio parameter of the flange Rris 0.7, 1.5 or 2.5, the

relationship between the shear
force and vertical displacement

Table 1 Parameter of steel beam

of beam is shown in Fig.8 as
the width-to-thickness ratio
parameter of web plate

variously changes. In these
figures, the slenderness ratio
parameter of the beam 1, the

cross-sectional shape ratio bw/bs
and the aspect ratio of web
plate a/bware 0.3, 1.0 and 1.0,

respectively. The other
parameters are shown in Table
1.

Flange Web plate
Center panel Adjacent panel
Rr | R.w|biltw| R.w | bultw | titw
0.4 | 37
Fig.8(a) | 0.7 05 | 46 | 0.3 28 | 0.86
0.6 | 55
0.7 | 64
Fig.8b) | 1.5 09 | 8 | 0.6 43 | 0.81
1.1 | 101
1.5 | 138
Fig.8(c) | 2.5 1.9 | 175 | 1.0 92 | 0.80
2.5 | 230
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As it is clear from these figures,
the maximum load lowers with the
increase of the width-to-thickness
ratio parameter of web plate Rw and
the degradation of the strength also
occurs, after the maximum load is
reached. However, the strength
extremely does not lower owing to
the tension field action after the
buckling unlike the case of the thin
plate under compressive force or
bending moment.

Generally the wuse of the
thickened members 1is effective,
when the excellent earthquake

proofing is expected in them. Though
it is effective to make members thick
for the rise in the strength, it
becomes meanwhile difficult to be
deformed. This is classified into an
of

improvement in which the rise of the

idea earthquake-proof
strength precedes. In the meantime,

there is an 1idea in which to
excessively require the strength of
the member is avoided and the
energy absorption capacity due to
possible  allowable  deformation
should be expected. This is an idea of
the
taken seriously in the deformability.
The improvement of the earthquake
the latter method
actually, if the shear

deformation due to the repetitive

earthquake-proof guarantee

proofing by
becomes

loading in the beam that is not
directly related to the strength in the
earthquake proceeds and it 1is
possible to dissipate the seismic
energy by the shear deformation of

thin plate.

Q/Q

Q/Q

Q/Q

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

10

(c) R=2.5

Fig.8 Shear force and displacement

The effect of web plate thickness at the center of the beam on the strength and
deformability of the steel beam is seen in Fig.8. With the research by Kasai et al.9, the
following results have been obtained when 7% is over 1.5: O The action of the flange

as an anchor of the tension field becomes more powerful. @ The rise of the shear
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strength due to the strain hardening is generated after the yield. Here, the

width-to-thickness ratio of the center flange panel was made to be larger value than it of

the adjacent panels in order to utilize the deformability of the web plate without

excessively expecting the increasing strength after the shear buckling of web plate.

2) Relationship between cross-sectional parameter at the center of beam and strength
and deformability

In the case of steel box girder bridges, the role of the flange as an anchor of the
diagonal tension field after the shear buckling of the stiffened web plate is less than
that of the steel I girder because of ) a comparatively thin stiffened structure @ wide
width between web plates. Here, the strength and deformability of the steel beam were
examined changing variously the width-to-thickness ratio of web plate on each case that
flange plate is thick or thin.

There is the investigation by Kasai et al.9 on the actual steel portal piers for the
elevated bridge in the urban area. According to this result, the plate thickness ratio t#tw
between flange and web plate in steel beam is almost from 1.0 to 1.5. Here, for the case
that the value of ##twis 1.0, 1.5 or 3.0 and the width-to-thickness ratio parameter of the
flange Rris 0.7, 1.5 or 2.5 the steel beam under incremental loading was analyzed. The
relationship between the shear force and the vertical displacement is shown in Fig.9. In
this analysis, the slenderness ratio parameter of the steel beam ., the cross-sectional
shape parameter bw/bs, the aspect ratio of the web plate a/bw, the width-to-thickness
ratio of the web plate bw/tw and the width-to-thickness ratio parameter Ry are 0.3, 1.0,
1.0, 92 and 1.0, respectively.

There is the rise of the shear
strength after the maximum load, 1o :Ff ICa: .
when the flange is comparatively A

thick, as it is clear from this figure. L ~o e

In the box-sectional member which is

simulated to be located in the center < 05
of a beam, Watanabe et al.12 clarified < i
that the strength rises on account of | ——-- 225
the strain hardening, if the beam I
with the thick flange is subjected to 0.0 P T SR S

the shearing strain equal to that of 0 2 4 6 8

the thin flange. In the researches by 8/3,

Takahasi et al.13.19  the case in Fig.9 Effect of flange thickness

which the shear strength reaches

about 2.5 times of the shear yielding force on account of the strain hardening has been
shown, when the width-to-thickness ratio is small.

In the meantime, the degradation in the shear strength after the arrival at the
maximum load is remarkable, when the flange is a comparative thin. The phenomenon
of the strength degradation is more remarkable for the web plate with the large
width-to-thickness ratio.

From the above-mentioned facts, it is proven that the effect of the ratio of flange
thickness to web plate thickness on the shear strength and the energy absorption is also
remarkable in the case of the box section. Therefore, it is effective to make flanges thick
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for absorbing much energy. For the
case that the thickness of the flanges
and that of the web plate in the beam
center are equalized, the relationship
between shear force and vertical
displacement with the change of the
thickness has been obtained in Fig.10,
where the slenderness ratio parameter
of the beam 4=0.3, the ratio of the
cross-sectional shape ratio bw/br=1.0,
the aspect ratio of the web plate
a/bw=1.0 and the width-to-thickness
ratio parameter of the web plate £, »=
0.6, 1.1, 2.5.

As shown in this figure, the
lowering of the strength after the
reach to the maximum load is
distinctly observed, if the thickness of
the flange is simultaneously thinned
with the web plate thickness. In this
case, the rise in the strength owing to
the strain hardening is not observed.
When the plate thickness is thin, the
further degradation of the shear
strength happens near ¢ /J , =10.
This cause seems to be because the
deformation that the flange is drawn
in the web plate occurs with the
growth of the buckling deformation in
the web plate.

(3) Strength and deformability of
steel beam under repetitive shear

The strength and deformability of
the steel beam that is subjected to the
repetitive shear are examined.

The relationship between the
shear force and vertical displacement
as the width-to-thickness ratio of the
web plate at the center of the beam
changes 1s shown in Fig.11, when the
width-to-thickness ratio parameter of
the flange Rris 0.7. The similar figures
for R~=1.5 and 2.5 are shown in Fig.12
and 13,respectively. In these figures,
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Fig.10 Effect of thin plate
12
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Fig.11 Repetitive loading (R ~0.7)
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A4=0.3, bw/b=1.0 and a/bw=1.0. For the comparison, the results under the monotonous
loading are also shown.

As seen from these figures, the shear force drops in comparison with that of the
monotonous loading regardless the width-to-thickness ratio parameter of the flange
plate according to the increase of the cyclic numbers and the displacement. However,
the hysteretic loops show the comparatively stable loop without sudden strength
degradation like the case of compression and bending, since after the shear buckling the
diagonal tension field is formed. And, the shear strength tends to decrease as well as the
case of the monotonous loading with the lowering of cross-sectional rigidity.
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Fig.12 Repetitive loading (R=1.5) Fig.13 Repetitive loading (R=2.5)
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The shape of the hysteretic loop is considerably different according to the
width-to-thickness ratio of the web plate. That is to say, the strength is decreasing

temporarily and considerably owing to the disappearance of the diagonal tension field,

when the sign of the shear force changes. However, the stable loop is obtained according

to the recovery of the strength, when the diagonal tension field is formed again. In the

steel beam with the large width-to-thickness ratio of the web plate and the low rigidity,

this phenomenon remarkably appears.

Considering the characteristic of
the above-mentioned hysteretic loop,
the idea of the energy dissipation is
produced by utilizing the preceding
generation of shear buckling in the
web plate of the steel beam. As the
results, a structural system that
guarantees earthquake proofing
seems to become possible by not the
strength but the deformation.

The deformation on the web
plate panels for the every iterative
stage of the repetition is shown in
Fig.14. Fig.14 is the deformation
diagram in the condition of Fig.13
(BR=2.5 and R . +=1.9), and each
figure is correspondent to the loading
stage that Oseal in Fig.13 shows.
The intensity at the figure shows the
magnitude of the out-of-plane
deformation. Namely, in the web
plate, the deformation to the here
side is defined as positive, and it is
drawn in the thick color, as this is
bigger.

As it is clear from these figures,
in the initial loading stage the
adjacent panels to the center panel
has also been deformed. However,
the deformation on the thinner web
plate panel at the beam center
becomes remarkable with the
increase of the repetitive loading,
and the difference between the
deformations at the adjacent panels
gradually increases. The
deformation of the center panel

D (8/571.0, /@=0.59) ®(6/57-10.0, @ @=-0.51)

@ (8/571.0, @/@=0.58) ® (6/57-6.0, @/@=0.36)

@ (8/67%0, §/@=0.32) @ (6/57-3.0, ¢/9=0.33)

@ (5/578.0, 0/@=0.57) ®(8/57%0, §/@=0.31)

Fig.14 Deformation of web panels

becomes more remarkable in the load stage @. In the load stages ® and @), the
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reversal for the direction of the diagonal tension field due to the out-of-plane
deformation is generated. In the load stage ®, the diagonal tensions occur in the
direction of both crossing diagonal lines. Such damage pattern is very much similar to
the damage mode on the center web plate at the horizontally layered intermediate beam
of two-story portal steel piers in the Great Hanshin-Awaji earthquake as shown in Fig.1.
Therefore, it is strongly supposed that the intermediate beam was subjected to the
alternatively repetitive shear force examined in this paper.

7.3 Evaluation of earthquake proofing of steel beam

(1) Quantification of dissipation energy |
In the hysteretic loop which shows the
relationship between the shear force and $20 1
vertical displacement of the steel beam
under alternatively repetitive shear forces, 100 r

the area of the part surrounded by the loop

curve shows the absorbed energy of the steel
beam. In other words, it can be also Cycles
interpreted as the dissipation energy by the
deformation of the steel beam. Here, the @ £A0.7
energy of the steel beam is investigated from
the latter viewpoint. 300
Fig.15 shows the relationship between
the dissipation energy of the steel beam and
cycle numbers of the load. In this figure, the
ordinate shows the accumulated dissipation 100
energy divided by ¢ 0. The dissipation

energy decreases with the lowering of the 0
cross-sectional rigidity, as it is clear from 0 2 4 6 8 10
Fig.15. However, the dissipation energy Cveles
hardly changes, even if the cross-sectional (b) R=1.5
rigidity i1s fixedly kept and the
width-to-thickness ratio of the web panel of s00 |
the beam center is increased. Therefore, it is

supposed that the evaluation based on the

dissipation energy is appropriate. However,
as the width-to-thickness ratio of the web oo |
plate is larger peculiar snap through

buckling in the shear panel and afterwards

the increase of the strength remarkably 0 ) 4 6 8 10
appear. Cycles
The out-of-plane deformation of the web (©) R=2.5

plate at the beam center becomes
remarkable, as the difference between the Fig.15 Accumulated dissipation
width-to-thickness ratio of the web panel at energy
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the beam center and that of the adjacent panel increases. As the width-to-thickness
ratio of the web plate at the beam center increases, the smooth energy dissipation by
the out-of-plane deformation of the web plate becomes difficult because both ends of this
panel at the beam center yields at early stage. Therefore, it is necessary that the
difference with the width-to-thickness ratio of the adjacent panel would not remarkably
differ without extreme increase of the width-to-thickness ratio so that the energy may
smoothly dissipate.

In this study, the energy dissipation on single steel beam was investigated.
Therefore, the examination on the effect of the energy dissipation for the whole steel
portal pier is needed. It should be examined from the viewpoint of the coupled behavior
among the intermediate beam, the corner connection and the column and the
deformability evaluation for the whole frame structure.

(2) Deformability evaluation for steel beam by ductility factor
There is a ductility factor in the standard for evaluating the deformability of steel
beam. Here, it is assumed that the ductility factor is defined as the ratio between the
displacement o5 as the strength of the beam decreases to 95% after the arrival at the
maximum load @max and the yield displacement J . It is shown as following:

é‘95
== (16)
My 5,

In order to consider the effect due to the cyclic loading, J9¢5 was obtained from the
envelope curve of the hysteretic loop showing the relationship between the shear force
and vertical displacement in the steel beam under the repetitive shear.

The relationship between the
width-to-thickness ratio parameter of 20

u
: Present analysis

[ ]
the web panel at the beam center and A A :Kasai etal.”
o

: Two-story frame

ductility factor is shown in Fig.16. In 15 - Estimation by (14)

this figure, the following are also
shown: Analytical result for the single 10
panel  between  diaphragms  of
un-stiffened box section beam by Kasai 5

et al® and analytical result for the

whole structure of two-story portal o Lo vy
steel frame piers by Araki et al1®, 0.0 10 20 R
As it is clear from this figure, in Fig.16 Relationship between width-to-thickness

the region where K. w is smaller than ratio parameter and ductility factor

0.8, the present analysis (@seal) is

lower a little than the analytical result (Aseal) for the single panel by Kasai et al.
However, the relation between the width-to-thickness ratio of the web plate and
ductility factor shows the almost similar tendency in both solutions. In the region where
the width-to-thickness ratio parameter is smaller than 1.0, the ductility factor rapidly
decreases with the increase in width-to-thickness ratio of the web plate. In the
meantime, the ductility factor becomes almost constant when the width-to-thickness

ratio parameter exceeds 1.0. The cross section with the thick plate will be excellent in
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the deformability of the steel beam, as long as the ductility factor is used for evaluation.
In the whole analysis on two-story portal steel frame pier, the ductility factor as the
width-to-thickness ratio parameter of the center web panel in the intermediate beam
variously changes has been obtained as O seal in this figure!®. In this case, the
ductility factor is almost constant without being related to the width-to-thickness ratio
parameter of the center web panel in the intermediate beam. This fact means the
following: Since the strength and deformability of the two-story portal steel frame pier
are related to the proportion of the whole frame, the partial correction for the cross
section in the intermediate beam does not almost influence on the ductility factor.
Namely, it seems to be possible that the center web panel at the intermediate beam has
the function for the dissipation of the energy with the development of the deformation
without the deterioration of the whole frame.

By analyzing the relationship between the ductility factor and width-to-thickness
ratio parameter of the web panel shown in this figure, the limiting value of the
deformation corresponding to the lower limit of the ductility factor can be decided. That
is to say, the limiting value of the deformation in which the ductility factor becomes
constant without relating to £, wis about 4~5 § y in the case of monotonous loading and
about 3.5 0 y in the case of repetitive loading. On the other hand, the limiting value of
the deformation in the research by Kasai et al.? is about 4 times of shear yielding strain
¥ yin the case of the repetitive loading. The value obtained in this study is lower than
the value obtained by them. This reason seems to be because the considerably thin plate
for web plate was used.

By estimating the limiting value of the deformation as 3.5y in the case of the
repetitive loading, the relation between the width-to-thickness ratio parameter of the
center web panel in the intermediate beam and the limiting value of the shear
displacement will be approximated in the following equation.

5, 0685

5 RNV3.5

y

+35 (17)

7.4 Discussions

In this chapter, a steel beam that simulated the intermediate beam in the bridge
piers of two-story portal steel frame was analyzed. The strength and deformability of
this steel beam subjected to the monotonously increasing shear force or alternatively
repetitive shear force were clarified by the elasto-plastic finite displacement analysis
using the finite element method. The results obtained by the numerical analysis will be
summarized as following:
1) As the width-to-thickness ratio of the web plate is larger, the effect of the reversal in
the buckling mode that is peculiar in the shear panel under alternatively repetitive
shear force remarkably appeared in hysteretic loop between shear force and vertical
displacement. The shear strength that remarkably lowered owing to the reversal of the
buckling mode rises again by the formation of the new diagonal tension field. Therefore,
a stable hysteretic behavior is generally obtained.
2) The energy absorption capacity is better, as the width-to-thickness ratio of the web
plate is smaller.
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3) If a thin plate is used in the center web panel of the beam, the rigidity of the cross
section lowers and the deformation is concentrated in this part. Therefore, the effect of
the energy dissipation is obtained. This phenomenon is more remarkable, as the plate
thickness of the web plate is less.

4) Because the flange works as an anchor of the diagonal tension field, its plate
thickness greatly affects the degradation of the web plate after the maximum load.

5) The prediction expression for the limiting value of the shear displacement was
presented.

In this research, when the cross beam established in the steel portal frame pier is
subjected to repetitive shear force, the effect of the rigidity of the web panel in the beam
center on the shear strength and deformability was examined. That is to say, the energy
dissipation effect by the deformation of the web panel was noticed in order to reduce the
damage in the earthquake of the bridge pier as much as possible.

Here, the strength and deformability of single steel beam were clarified. The
strength and deformability for the steel bridge piers of two-story portal frame type
under the repetitive shear force have been investigated for the whole structure!®. In the
future, the results of both researches are developed and the effect of the behavior of the
steel beam on the corner connection and the basal part of bridge pier should be
examined in detail. In addition, the effect on the steel type of the web plate should be
also clarified. In this research, the analysis for the un-stiffened box-beam was carried
out. Therefore, the investigation for the stiffened box-beam will be also necessary.
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Chapter 8

Concluding remarks

The summary on the results obtained in this study and the problems in the future
on this study are described in the following.

In Chapter 2, the elastic lateral buckling of plate girders with relatively thin web
was investigated as the simultaneous buckling between the flanges and web by means
of the theory of orthotropic plate. The numerical computations were carried out by the
finite difference method. Loading tests were also carried out for the verification of the
theory. The end moment ratios, the flexural and torsional rigidities of the flange and the
flexural rigidity of the transverse stiffeners on the critical loads have been clarified. And
the mono-symmetric girder was also treated. Furthermore, the method in order to
obtain the position of the equivalent uniform moment was presented for the case of the
girder panel subjected to unequal end moments. The position of the equivalent uniform
moment was expressed as the function of the panel aspect ratio and the end moment
ratio. In this study, the deformation of the web plate was considered in the analysis.
Such problems are especially important for the girder under construction. Therefore, as
future study, initial imperfections and residual stresses must be accurately considered.
Furthermore, the overall lateral buckling of the bridge composed of several girders
should be also solved with sufficient accuracy.

In Chapter 3, an approximate calculation method to predict the bending strength of
multi-stiffened plate girders and the inelastic coupled buckling of the compressive
flange and web plate by using the orthotropic plate theory were presented. It was
clarified that these estimations were simple and useful method.

The following subject must be settled as a future study. The validity of the reduced
coefficients for the rigidities in the inelastic region should be confirmed by means of
some way, for example, finite element method.

In Chapter 4, the static load carrying capacity and behavior of girder panels
subjected in shear were investigated experimentally and theoretically. The results
obtained by the modal analysis, elasto-plastic finite displacement analysis and
experimental works were presented for the girder with equal web depth. Furthermore,
the results obtained by the modal analyses and tests were given for the girder with
linearly varying web depth. As a result, the effect of panel aspect ratio, panel
width-to-thickness ratio, flange stiffness and intermediate vertical stiffener rigidity on

the ultimate shear strength and the ultimate behavior was clarified. And an
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approximate prediction expression on ultimate shear strength for the girder with
linearly varying web depth was given.

In the following study, longitudinally stiffened web panel should be researched by
the elasto-plastic finite displacement analysis. Then, simple and accurate design
methods for such stiffened panel must be developed. Furthermore, the accurate
research on the inelastic behavior for tapered panel with varying depth in shear is
required analytically. The research on such problem seems to be almost lacking. On the
required stiffness of intermediate stiffeners, further examination is necessary.

In Chapter 5, a simple expression to predict the ultimate strength on the
trapezoidal panel of plate girders with linearly varying web depth under the combined
action of bending and shear was presented. Furthermore, the loading tests were carried
out in order to compare the theoretical results. A modal analysis was adopted in the
theoretical estimation.

In the following study, an elasto-plastic finite displacement analysis must be tried
for general application and the verification on the obtained results is needed.

In Chapter 6, to begin with the ultimate strength and hysteretic behavior of the
single girder panel subjected to the repetitive shear force are investigated numerically.
Next, the theoretical and experimental studies on the strength and ductility of
multi-panel under the repetitive inelastic buckling subjected to shear or the combined
shear and bending were examined. The influence of panel aspect ratio, panel
width-to-thickness ratio, flange rigidity and the loading pattern on the hysteretic
behavior was clarified. As the result, it was proven that the shear panel subjected to
cyclic loadings shows the excellent energy dissipation capacity.

In Chapter 7, a steel beam that simulated the intermediate cross beam in the
bridge piers of two-story portal steel frame was analyzed. The strength and
deformability of this steel beam subjected to the monotonously increasing shear force or
alternatively repetitive shear force were clarified by the elasto-plastic finite
displacement analysis using the finite element method. Namely, the strength and
deformability of single steel beam were investigated in the use of coupled elements.
Effect of energy dissipation due to the shear buckling deformation in the relatively thin
web plate near the center of the crossbeam was clarified. Namely, the energy dissipation
effect by the deformation of the web panel was examined in order to reduce the damage
in the earthquake of the bridge pier as much as possible.

In future study, the following examination subjects seem to have been left. To begin
with, the behavior in using the low yield ratio steel for the shear panel should be

examined in detail. Next, the utilization of the demountable shear panel as a damper
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system in steel bridge structures should be investigated. By the use of this realistic
damper system, in huge earthquake it is expected that considerably great destruction

can be prevented.
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