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Abstract

This letter investigates the period-doubling cascades of canards, generated in the

extended Bonhoeffer-van der Pol oscillator. Canards appear by Andronov Hopf bi-

furcations (AHBs) and it is confirmed that these AHBs are always supercritical in

our system. The cascades of period-doubling bifurcation are followed by mixed-mode

oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is

clarified that the period-doubling bifurcations arise from a narrow parameter value

range at which the original canard in the non-extended equation is observed.
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1 Introduction

In a simple second-order differential equation such as the van der Pol oscillator,

in some cases, the amplitude of the limit cycle grows abnormally fast as a

control parameter is varied [1–5]. This phenomenon is called a canard [4],

because the oscillatory trajectory in phase space resembles a duck. It is also

called a lost solution [3], because this solution behaves as if the trajectory has

ceased to exist. Canards are observed in slow-fast systems that contain a small

parameter ε. It has been shown, using the techniques of non-standard analysis,

that the amplitude changes on the order of 1 when the control parameter is

varied on the order of exp(−1/ε) [4]. exp(−1/ε) is approximated by 4.5×10−5

if ε = 0.1 and by 3.7×10−44 if ε = 0.01. Thus, the amplitude of the limit cycle

is extremely sensitive to the control parameter ε. ε = 0.1–0.01 can be easily

implemented in laboratory experiments [6,7].

Mixed-mode oscillations (MMOs) have been an area of intense research in

recent years [9–15]. They consist of a sequence of alternating period-adding

phenomena and chaotically spiking canards [8]. They have been observed nu-

merically and experimentally in many systems, from chemical kinetics [9] to

electrical circuits [10–12]. However, there has been little discussion on bifur-

cation, which fills the gap between the canard in the original second-order

equation and the MMOs generated in an extended higher-dimensional equa-

tion. Moreover, the influence of variations in the system parameter ε on MMOs

has not been discussed in detail.
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Our objective in this letter is to obtain a two-parameter bifurcation diagram

of the period-doubling bifurcation of canards, which are the origin of MMOs,

as generated by the following extended Bonhoeffervan der Pol (BVP) equa-

tion [17,18]:





εẋ = x(1− x2) + y + z

ẏ = −x− k1y + B0

ż = k3(−x− k2z + B1),

(1)

where 0 < ε ¿ 1 is assumed. If k3 = 0, Eq. (1) is reduced to the BVP equation,

which can generate canards. Equation (1) is considered to be a naturally

extended third-order model of the BVP equation [16,17]. The extended BVP

equation is well known to exhibit chaos [16–18], but the relationship between

canards and chaos in this equation has not yet been discussed in detail.

For simplicity, the parameter restrictions k1 = k2 and B0 = B1 are assumed;

that is,





εẋ = x(1− x2) + y + z

ẏ = −x− k1y + B0

ż = k3(−x− k1z + B0).

(2)

Here, note that there is another way to reduce this to the BVP oscillator. If

k3 = 1, (x, y + z) is also equivalent to the BVP equation. We are interested

in what happens if the parameter k3 is varied slightly when k1 and B0 are set

such that canards are generated by this equation.
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Figures 1 (a), (b), and (c) show time evolutions obtained from numerical

simulation of Eq. (2). The time evolution in Fig. 1 (a) consists of one large

and four small excursions, Fig. 1 (b) consists of one large and three small

excursions, and so on. We consider that these phenomena can be called MMOs

on the basis of their wave forms.

Some excellent discussions on the MMO mechanism have been reported re-

cently [19–21]. Medvedev and Yoo showed that the generation of MMOs and

chaos is explained well if subcritical AndronovHopf bifurcations (AHBs) exist.

However, in our case, we have confirmed that the AHBs are always supercrit-

ical by calculating a one-parameter bifurcation diagram using the software

XPPAUT [22]. The mechanism of the MMOs and chaos observed in our sys-

tem could differ from that in Medvedev and Yoo’s scenario [19,20]. Moreover,

our system is not a three-time-scale system [21].

Drawing a bifurcation diagram reveals that period-doubling cascades of ca-

nards, which lead to MMOs, exist in a narrow parameter value region where

the original canard exists in the non-extended equation.

2 Circuit setup

To discuss the relationship between the canard in a two-dimensional circuit

and MMOs in a higher-dimensional circuit, we analyze the extended BVP

oscillator, which is illustrated in Fig. 2. In the figure, N.C. is a nonlinear

conductance. A small capacitance is chosen. We consider the case in which

the v− i characteristics of the conductance are represented by the third-order
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polynomial function as follows:

in(v) = −g1v + g3v
3, (3)

where in(v) is the current through the conductance, and v is the voltage. Here,

v, i1, and i2 are the state variables. Then, from Kirchhoff’s laws, the governing

equation of the circuit is expressed by the third-order autonomous differential

equation as follows:





C
dv

dt
= i1 + i2 − in(v)

L1
di1
dt

= −v − r1i1 + E1

L2
di2
dt

= −v − r2i2 + E2,

(4)

where r1 and r2 are resistances. By changing each variable and constant as

follows:

v =

√
g1

g3

x, i1 = g1

√
g1

g3

y, i3 = g1

√
g1

g3

z,

E1 =

√
g1

g3

B1, E2 =

√
g1

g3

B2, ε =
C

L1g2
1

, t = L1g1τ,

k1 = g1r1, k2 = g1r2, k3 =
L1

L2

, ‘ • ’ =
d

dτ
,

(5)

Eq. (1), which is a normalized version of Eq. (4), is obtained. k3 is the ra-

tio of the inductors. Equation (4) is well known to be capable of generating

chaos [16]. An example of a chaotic attractor is shown in Fig. 3.
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3 Bifurcation structure of the extended BVP oscillator

To discuss the relationship between the canard observed in the BVP oscillator

and the MMOs generated in the extended BVP oscillator, this study analyzes

Eq. (2), assuming

0 < k3 < 1. (6)

At k1 = 0.35 and k3 = 1, a canard is observed around B0 ' 0.486, as shown

in Fig. 4. The following discussion considers ε = 0.09–0.1. The canard phe-

nomenon is enhanced at smaller ε. However, exp(−1/ε)|ε=0.01 ' 10−44. Since

the solution for ε is stressed, it is desirable to choose ε = 0.09–0.1 in the

numerical calculations.

Figure 5 presents a bifurcation diagram for ε = 0.1. AHBs occur at B0 = ±0.5.

The AHBs are explicitly calculated manually. The AHB which occurs when

B0 = 0.5 is illustrated in Fig. 5. Period-doubling bifurcations are generated

when k3 is decreased. These period-doubling bifurcation curves are obtained

by the shooting algorithm proposed in [23]. In the figure, I1 is the first period-

doubling bifurcation curve, and I2 is the second. In the upper region of I1, a

periodic orbit with period 1 is generated and in the region between I1 and I2, a

periodic orbit with period 2 is generated. The accumulation of period-doubling

bifurcations is well known as the typical route to chaos.

A previous paper about the mechanism that generates MMOs and chaos [20]

asserts that the MMO mechanism is easily explained if subcritical AHBs exist.

However, in our case, numerical results using the XPPAUT software indicate

that the two AHBs are always supercritical. The one-parameter bifurcation
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diagram obtained by XPPAUT is presented in Fig. 6 (a). The magnified di-

agram in Fig. 6 (b) shows that the AHB is supercritical at B0 = 0.5. This

result and the above mentioned discussion indicate that MMOs and chaos can

occur in a system that does not include subcritical AHBs.

Figure 7 presents a magnified version of Fig. 5. The bifurcation curves I1,

I2, I4, I8, and I16 are drawn in the figure. The largest Liapunov exponent

is calculated using the method in [24]; a positive largest Liapunov exponent

indicates chaos. Regions where chaos is observed are shaded in the figure. This

figure clearly shows that the canards are very sensitive to changes in k3 and

B0. Note that the period-doubling bifurcation curves have a steep point in the

parameter range at which the original canard is observed (B0 ' 0.49).

Figures 8 (a) and (b) present a one-parameter bifurcation diagram and the

corresponding Liapunov exponents, respectively. A magnified version of the

one-parameter bifurcation diagram that shows period-doubling accumulation

is presented in Fig. 8 (a2). Here, B0 is fixed at 0.49, and k3 is chosen as a bi-

furcation parameter. The largest Liapunov exponent and the second Liapunov

exponent are estimated by the method in [24]. Since the system is autonomous,

one of the three Liapunov exponents is always zero. These changes in expo-

nent clearly explain the appearance of period-doubling bifurcation, which is

the route to chaos. From a broad view of Fig. 8 (a1), the attractor with period

2 is followed by the attractor with period 3, which is followed by the attractor

with period 4. These period-adding transitions are the MMOs (Fig. 1).

Here, we focus on the period-doubling bifurcations. Examples of attractors

projected to the (x, y + z) plane are presented in Fig. 9. In this figure, (a),

(b), (c), and (d) correspond to periodic attractors with periods 1, 2, 4, and 8,
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respectively. Figure 10 (a) shows a chaotic attractor consisting of canards with

small-, medium-, and large-amplitude oscillations. Unimodality is observed in

the works of Medvedev and Yoo [19,20]. We constructed the first return map

for a chaotic attractor in a similar manner. Unimodality is also confirmed as

shown in Fig. 10 (b).

Next, we show the two-parameter bifurcation diagram in the case of ε =

0.09 (Fig. 11). In the figure, I1 and I2 are the period-doubling bifurcation

curves, which are steeper than those for ε = 0.1. This tendency is more promi-

nent as far as our numerical results are concerned; we are interested in this

tendency. However, we could not draw I4 because of insufficient computational

precision. We could not draw even I1 in the case of ε = 0.085.

4 Concluding remarks

In this letter, we analyzed the extended BVP oscillator, which generates a

period-doubling bifurcation route to chaos and obtained two-parameter bi-

furcation diagrams. It was confirmed that AHBs in our system were always

supercritical and the period-doubling bifurcation curves have a steep point in

the parameter value range at which the original canard was observed. In the

future, it could be interesting to analyze this model with higher precision and

to observe this phenomenon in laboratory experiments.
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Fig. 1. Time series of MMOs with B0 = 0.49, k1 = 0.35, and ε = 0.1 in Eq. (2):

(a) MMO with one large and four small excursions at k3 = 0.29; (b) MMO with

one large and three small excursions at k3 = 0.36; (c) MMO with one large and two

small excursions at k3 = 0.45.
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Fig. 2. Circuit diagram.
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Fig. 3. Chaotic attractor observed in Eq. (1) with B0 = 0.11547, B1 = 0.74767,

ε = 0.13333, k1 = 0.5, k2 = 0.5, and k3 = 0.25.
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Fig. 4. Canards observed in the BVP equation: (a) Small-amplitude canard with

B0 = 0.488, k1 = 0.35, k3 = 1.0, and ε = 0.1 in Eq. (2); (b) Canard with B0 = 0.486,

k1 = 0.35, k3 = 1.0, and ε = 0.1 in Eq. (2).
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Fig. 6. One-parameter bifurcation diagram with ε = 0.1, k1 = 0.35, and k3 = 1.0:

(a) Global picture of supercritical AHB; (b) Magnified picture around the super-

critical AHB on the right.

16



 B

 k
3

0 B

 k
3

0

 0.489  0.4895  0.49  0.4905  0.491

 I
8

 I
2

 I
1

 I
4

 I
16

 0.46

 0.51

 0.56

 0.61

 0.66

 0.71

Fig. 7. Magnified picture of bifurcation diagram of Fig. 5 with ε = 0.1 and k1 = 0.35.

17



 k

 x

3

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.35  0.45  0.55  0.65  0.75

 k

 x

3

 0.3

 0.35

 0.4

 0.45

 0.5

 0.54  0.55  0.56  0.57

(a1) (a2)

 k

 L
ia

p
u

n
o
v
 e

x
p

o
n

e
n

ts

3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.35  0.45  0.55  0.65  0.75

 k

 L
ia

p
u

n
o
v
 e

x
p

o
n

e
n

ts

3

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.54  0.55  0.56  0.57

(b1) (b2)
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Fig. 9. Period-doubling cascades of canard with B0 = 0.49 and k1 = 0.35 in Eq. (2):

(a) Periodic attractor of period 1 with k3 = 0.7; (b) Periodic attractor of period

2 with k3 = 0.65; (c) Periodic attractor of period 4 with k3 = 0.55; (d) Periodic

attractor of period 8 with k3 = 0.548.

19



 x

 y
+

z

-0.8

-0.4

 0

 0.4

 0.8

-1 -0.5  0  0.5  1  1.5

 τ
 
x

-1

-0.5

 0

 0.5

 1

 1.5

 0  20  40  60  80  100

(c)

 x

 y
+

z

-0.8

-0.4

 0

 0.4

 0.8

-1 -0.5  0  0.5  1  1.5

 τ

 
x

-1

-0.5

 0

 0.5

 1

 1.5

 0  20  40  60  80  100

(d)

Fig. 9: Period-doubling cascades of canard with B0 = 0.49 and k1 = 0.35 in

Eq. (2): (a) Periodic attractor of period 1 with k3 = 0.7; (b) Periodic attractor

of period 2 with k3 = 0.65; (c) Periodic attractor of period 4 with k3 = 0.55;

(d) Periodic attractor of period 8 with k3 = 0.548.
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Fig. 10. (a) Chaotic attractor and (b) first return map with B0 = 0.4903 and

k1 = 0.35, and k3 = 0.5619.
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