パイルド・ラフト基礎の常時及び地震時の挙動と

杭の最適配置設計に関する研究

2010 年

中西啓二

	頁
第1章 序論	1
1.1 まえがき	1
1.2 既往の研究	5
1.2.1 常時荷重時における地盤の剛性評価に関する研究	5
1.2.2 常時荷重を受けるパイルド・ラフト基礎に関する研究	7
1.2.3 地震荷重を受けるパイルド・ラフト基礎に関する研究	10
1.2.4 最適設計法に関する研究	12
1.2.5 既往の研究のまとめ	13
1.3 本論文の目的と構成	13
第2章 パイルド・ラフト基礎の常時荷重時における沈下解析法	15
2.1 直接基礎における地盤の剛性評価法	15
2.1.1 地盤の常時荷重時剛性評価法	15
2.1.2 3次元 FEM 解析法との比較	28
2.1.3 実建物の沈下計測による評価法の検証	77
2.2 パイルド・ラフト基礎の常時荷重時における沈下解析法	97
2.2.1 簡易沈下解析法の提案	97
2.2.2 実建物の沈下計測による提案解析法の精度検証	102
2.3 まとめ	115
第3章 常時荷重を受けるパイルド・ラフト基礎の杭の最適配置設計法	116
3.1 簡易沈下解析法を用いた杭の最適配置設計法	116
3.1.1 最適化問題の定式化	116
3.1.2 パイルド・ラフト基礎最適設計例題	121
3.1.3 パイルド・ラフト基礎の例題と 3 次元 FEM 解析法との比較	151
3.2 実建物によるシミュレーション解析と精度検証	161
3.2.1 軟弱地盤における杭長最適化	161
3.2.2 中間層支持による杭本数最適化	164
3.3 まとめ	169
第4章 パイルド・ラフト基礎の地震荷重に対する応力解析法	170
4.1 パイルド・ラフト基礎の地震荷重に対する応力解析法	170
4.2 3 次元 FEM 解析法との比較による地震荷重時の精度検証	175
4.3 まとめ	183
第5章 結論	184
5.1 研究成果のまとめ	184
5.2 今後の課題	184
参考文献	185
謝辞	190

第1章 序論

1.1 まえがき

パイルド・ラフト基礎は、図 1.1-1 に示すように、直接基礎と杭基礎を併用した基礎形式であり、直接基礎と杭基礎が複合して荷重を支持する基礎形式である。

パイルド・ラフト基礎の特徴は、鉛直荷重に対して直接基礎では支持力は十分であるが沈下あるいは不同沈下が問題となる場合に、沈下剛性の高い杭を併用することにより沈下あるいは不同 沈下を制御することが可能となる点にある。また、地震時水平力に対しては、図 1.1-2 に示すように基礎底面と地盤の間の摩擦抵抗と杭のせん断抵抗の両方で抵抗し、基礎直下においては杭と 地盤の水平方向変位差が小さく杭に作用する水平地盤反力も小さくなるため、杭で全水平力を負 担する杭基礎に比べて杭の応力が低減される。

以上のようにパイルド・ラフト基礎は,杭基礎に比べて基礎の物量を低減できる合理的な基礎 形式であり,近年適用例が増加し適用範囲が拡大されつつある。

パイルド・ラフト基礎の適用形態としては,①低層建物を対象とした軟弱地盤における沈下制 御 1-8,②高層建物において杭先端を中間支持層で支持させて沈下を制御する方法 9-13,③高層 棟と低層棟が一体となった建物で,荷重に応じて杭長さを変化させて不同沈下量を低減する方法 14-17),および④超高層建物の逆打ち工法で,基礎構築までの荷重を構真柱杭で支持させ,基礎構 築後は基礎と杭を一体としたパイルド・ラフト基礎として支持させる方法 18-21),などに分類され る。

パイルド・ラフト基礎の鉛直荷重時における沈下計算および地震時における水平方向荷重に対 する応力解析では、地盤の非線形特性を考慮して図 1.1-3 に示すようなラフトー杭ー地盤の相互 作用を評価する必要がある。このような評価法としては、図 1.1-4 に示す基礎・杭・地盤を全て 3次元 FEM でモデル化して解析する有限要素法 6.12,13,17,27)及び、図 1.1-5 または図 1.1-6 に示す ように基礎・杭は FEM でモデル化し、地盤ばね・杭ばねは地盤を半無限体と考えて、Steinbrenner や Mindlin の式などの弾性論を用いてモデル化するハイブリッド法 2.28-31)などがある。

全体系に対する有限要素法は地盤の非線形性及び相互作用を直接的に考慮できるが、地盤のモ デル化領域が大きくなり要素数が膨大になるため杭配置を検討するパラメトリックスタディには 適さない。一方、ハイブリッド法は、FEM としての要素数は少なく繰り返し検討する場合には適 しているが、地盤を半無限弾性体と仮定しているため、多層地盤に拡張して適用する近似的手法 は提案されているものの、剛性を層内で同一として扱うため、荷重の偏在に対する地盤内の3次 元的な剛性評価は難しい。

ハイブリッド法には2種類の方法があり,図1.1-5に示す方法²は,ラフトのみFEMでモデル 化し,杭およびラフトの鉛直方向ばねを地盤の非線形性を考慮した半無限弾性体の理論解から計 算するもので,収斂計算ではあるものの,FEM解析の自由度が小さく扱いやすい特徴がある。一 方,図1.1-6の方法³⁰は、ラフトと杭体をFEMでモデル化し、ラフトー杭ー地盤間の相互作用 ばねを、半無限弾性体に対する理論式から沈下影響係数として計算し、その逆行列を全体剛性マ トリクスに組み込む方法で、繰り返し計算が少ない反面、杭体の部材が多くなると自由度が非常 に大きくなり大規模なモデルには不向きな方法である。最適設計を実務に適用する場合には、短 時間で解が得られるスピード感も重要な要素であり、できるだけ解析モデルの自由度の少ないモ デル化が必要となる。

地盤の非線形性の考え方としては、地盤に生じるひずみに対してヤング係数を低減させる方法 が提案されている^{26,31)}。さらに、ラフトー杭ー地盤の相互作用を考慮する方法も各種提案されて いる^{25,28-30,32)}。また、ハイブリッド法でも、相互作用を部分的に考慮して実用性を重視した簡易 法も提案されている³³⁾。しかしながら、パイルド・ラフト基礎に対して、沈下の観測結果との比 較を通じてモデル化の妥当性を示した研究は限られている^{3,6,7,8,12,17,33)}。

上記3種類の手法には長所短所があるが,設計の実務においては,杭の長さや配置を決める基本設計段階では簡易法やハイブリッド法を採用し,杭配置決定後の確認段階には有限要素法を採用する方法などが合理的と考えられる。一方,実務設計における杭の種類・配置・長さなどの決定においては試行錯誤に依存するところが多く,簡易法を用いたとしても設計者に大きな負荷を与える要因となっている。

本論文では、パイルド・ラフト基礎について、実務設計における杭配置決定までの負荷を低減 することを目的として、簡易沈下解析法と杭の配置と長さを決定する最適設計の手法を組み合わ せた設計法を提案し、実建物に対する FEM 解析及び沈下計測結果との比較を通じてその有効性・ 適用性について検証する。

図 1.1-5 有限要素法と弾性論を組み合わせたハイブリッド法(1)²⁾

図 1.1-6 有限要素法と弾性論を組み合わせたハイブリッド法(2) 30)

1.2 既往の研究

パイルド・ラフト基礎では、地盤の非線形性を考慮した上でラフトー杭ー地盤の相互作用を評価する必要があるため、その解析法は非常に複雑であり、実建物の実測結果を用いた検証が非常に重要となってくる。これまで、直接基礎およびパイルド・ラフト基礎の沈下に関する実建物の実測例は多数発表されている。一方、水平力に対する実測例は、遠心振動台を用いた実験あるいは実地盤を用いた縮小モデルによる実験が発表されているが、現在に至るまで数が少ないのが現状である。

また、最適設計分野においては基礎に適用した例はほとんどないのが現状である 83,84)。

以下では、まず地盤の鉛直荷重時における非線形性の評価法について直接基礎の代表的な研究 を示し、次にパイルド・ラフト基礎の鉛直荷重時及び地震荷重時における相互作用の評価法につ いて代表的な研究を示す。そして最後に最適設計法に関する研究を示して本論文との関係につい て示す。

1.2.1 常時荷重時における地盤の剛性評価に関する研究

パイルド・ラフト基礎の沈下解析で重要なことはラフト(直接基礎)の沈下解析における地盤 の非線形性を考慮した変形係数(ヤング係数)の評価法である。

従来,地盤調査における変形係数の求め方としては,比較的低コストでできる孔内載荷試験や N値から推定する方法が一般的であったが,上部建物荷重に応じて生じる地盤のひずみに対応し たものになっていないため沈下量の計算精度は低かった。

一方,1980年代から地盤内の沈下量を計測できる層別沈下計が開発され,実建物の施工時の沈下量を計測することが可能になりその後多くの実測結果が蓄積され³⁴⁻³⁸,建物施工時の実測値に 対する逆解析によって地盤の剛性の変化を統一的に表現できるようになった。

代表的なものとして文献 26 では、地盤の初期剛性 Eoを地盤調査の PS 検層で得られるせん断 波速度 Vs を用いて算定し、掘削時の荷重の解放によって地盤にはリバウンド(上向きの変位)が 生じ、図 1.2.1-1 に示すようにせん断波速度 Vs が拘束圧に依存することを明らかにした。さらに 建物構築時には、図 1.2.1-2 に示すように地盤のヤング係数が鉛直方向ひずみ ε_v に依存すること を明らかにし、次式を用いて掘削~構築までの施工時のヤング係数を算定する方法を提案してい る。

①初期剛性

②掘削時の拘束圧を考慮したヤング係数低減率

$$\frac{E_0'}{E_0} = \left(\frac{\sigma_V}{\sigma_{V0}}\right)^{0.4} \tag{1.2.1-2}$$

③構築時の鉛直方向ひずみを考慮したヤング係数低減率

$$\frac{E}{E_0} = 0.01 \times \varepsilon_V^{-0.45} \qquad (1.2.1-3)$$

ここに、 ν :ポアソン比(砂:0.35,粘土:0.45,礫:0.3)、 γ :密度、g:重力加速度、Vs: せん断波速度、 σ_{v0} :掘削前の鉛直有効応力度、 σ_{v} :掘削後の鉛直有効応力度、 ε_{v} :構築時鉛直 方向ひずみを示す。なお、ポアソン比については逆解析時に仮定した数値を用いている。

図 1.2.1-2 構築時のヤング係数比と鉛直ひずみの関係 26)

一方,文献 38 では,地盤の剛性が拘束圧とひずみの両方に同時に依存することに着目し,超高 層建物の実測結果から,拘束圧とひずみを組み合わせた剛性評価法を提案している。この方法に よれば,拘束圧または鉛直方向ひずみのどちらかで評価する場合に比べてさらに精度のよい剛性 評価が可能としているが,まだ適用できる地盤の種類が少なく今後さらにデータの蓄積が必要で あると考えられる。

次に沈下計算法については、ラフトおよび地盤をすべて有限要素でモデル化する3次元 FEM 解析法とラフトのみを FEM でモデル化し、地盤については半無限弾性体の理論式から鉛直方向のばねを算定するハイブリッド法が提案されている。

3次元 FEM 解析では地盤の非線形特性をすべての地盤要素に適用して荷重増分法を用いる弾 塑性解析法¹⁷⁾と,地盤要素の非線形性に等価線形を用いる等価線形化法がある^{6,12)}。荷重増分法 では荷重ステップを細かく設定することにより精度の高い解析が可能である反面,解析時間が膨 大になる。

一方,等価線形化法は,解析自体は全荷重を作用させて弾性解析で行い,得られた地盤要素の ひずみを剛性低下曲線に適用して剛性を新しく作り直して再解析を行うという計算過程を変位が 収束するまで繰り返し計算を行うもので,解析の繰り返し回数が少なく解析時間が短縮できるメ リットがある。また,計算精度についても実測結果とよく一致するという報告がある 6,12,27)。 ハイブリッド法の場合は以下の2つの方法がある。

 ①ラフトの FEM 解析と、弾性論による地盤の沈下計算を繰り返し計算により収束させる方法 この方法は、ラフトを梁要素またはシェル要素で、弾性論から計算した鉛直ばねをウインクラーばねでモデル化して有限要素法で解析し、得られた沈下量と、半無限弾性体表面に荷重が作用したとして弾性論で計算して得られた沈下量が一致するまで繰り返し計算する方法である²⁰。この方法は、FEM 解析は汎用解析ツールを使えるため手軽に使えるメリットがある。
 ②ラフトの FEM モデルの剛性マトリクスに弾性論で計算した沈下ばねを組み込む方法

この方法は、ラフトを梁要素またはシェル要素でモデル化した上部架構の剛性マトリクスに、 弾性論から得られたラフト節点の沈下に関する剛性マトリクスを組み込むことにより、地盤変位 を考慮した上部架構全体の関係式を作成してそれを解くことにより沈下量を求める方法である³⁰。 この方法は、1回の計算で沈下量が得られる反面、剛性マトリクスを組み込む必要があるため独 自のプログラムを組む必要がある。

1.2.2 常時荷重を受けるパイルド・ラフト基礎に関する研究

常時荷重を受けるパイルド・ラフト基礎の沈下計算法については,簡易法から詳細法に至るま で種々の方法が提案されている。大きく分けるとラフトの沈下解析と同様に,3次元 FEM を用 いた詳細法と FEM と弾性論を組み合わせたハイブリッド法に分けられる。ここでは,等価線形 化法を用いた3次元 FEM 解析法と,ハイブリッド法について紹介する。

1) 3 次元 FEM 解析法

3次元 FEM 解析の特徴は、地盤をソリッド要素でモデル化するため、モデル化範囲を大きく とり、さらに要素毎に材料非線形を考慮することによって実状に合った挙動を再現できること、 および杭と地盤の接合について局所的な非線形性を有するばねでモデル化することにより、ラフ トー杭-地盤間の相互作用が自動的に満足されることである。その反面計算時間が膨大になる。

文献 6 では図 1.2.2-1 に示す 3 次元 FEM の弾性解析を用い,地盤の剛性評価には等価線形化の 手法を用いて解析時間を短縮した例が示されている。この方法では数回程度の繰り返し回数で収 束することができ,材料非線形を用いた荷重増分法による弾塑性解析に比べて解析時間を短縮し ている。また,解析精度については実測値との比較を行っており,良好な結果が得られている。

また,文献 12 及び 27 では,図 1.2.2-2 に示す 3 次元 FEM 解析を用いて,施工過程を再現する ために,予め設定した施工ステップにおける地盤剛性を,地盤の拘束圧および鉛直方向ひずみに 対する非線形性を考慮して半無限弾性体の理論解から求め,各ステップの増分荷重に対して接線 剛性を用いて解析し,結果を重ね合わせることによって各ステップにおける変位・応力を算定す る方法が示されている。この方法についても解析値と実測値がよく一致することが示されている。

このように、等価線形化手法を、実測に基づいた地盤の非線形特性を取り入れた3次元 FEM 弾 性解析に適用することにより、弾塑性解析より短時間で高精度な結果が得られる手法であるとい うことができる。

図1 解析モデル図

図 1.2.2-2 3 次元 FEM 解析例(等価線形化を用いた施工時解析)¹²⁾

2) ハイブリッド法

ハイブリッド法は,構造体のみを FEM でモデル化し,地盤については半無限体に弾性論を適 用してばね評価して両者を組み合わせて解析することにより計算時間を短縮することを目的とし て開発された方法である。

ハイブリッド法は大きく2つの方法に分けられる。1つの方法は,伴野・加倉井・山下ら1^{-4,25}, および秋野・佐原ら^{31,32)}の方法で,図1.2.2-3に示すように,上部架構をFEMでモデル化し,弾 性論で求めた地盤ばねを組み合わせて解析し,地盤ばねに生じる反力を用いてばねがある一定値 に収束するまで繰り返し計算を行う方法である。この方法の特徴は,FEM解析は汎用のソフトを 用いることができる点にある。杭の沈下ばね算定には荷重伝達法^{32,48)}などが用いられる。

図 1.2.2-3 ハイブリッド解析法 (その1) 2,3)

もうひとつの方法は, Randolph⁴⁵, 松尾・山肩²⁸, 真島・長尾^{29,46,47}, 土屋・永井³⁰らの方 法で,図 1.2.2-4 に示すように,ラフトおよび杭を FEM でモデル化し,ラフトーラフト間,ラフ トー杭間, 杭-杭間の相互作用を考慮した沈下影響係数を弾性論により計算し,その逆マトリク スから沈下剛性マトリクスを作成し,架構の剛性マトリクスに加えて解く方法である。この方法 の特徴は,繰り返し計算を必要としないことであるが,杭の要素数が多くなると自由度が大きく なり計算に時間がかかる。

松尾・山肩らのモデル²⁸⁾ 真島・長尾らのモデル²⁹⁾ 土屋・永井らのモデル³⁰⁾ 図 1.2.2-4 ハイブリッド解析法(その2)

ハイブリッド法では、ラフトの沈下計算には半無限弾性体の表面に作用する等分布荷重に対し て Steinbrenner の近似解,または Boussinesq の解を多層地盤に拡張する方法が用いられている。 また、杭からラフトまたは杭から杭への相互作用は Mindlin の第1 解を多層地盤に適用する方法 が用いられている。地盤のヤング係数については地表面に作用する平均荷重を用いて地盤内の各 層の圧縮ひずみを計算し、あらかじめ設定した剛性低下曲線を用いて剛性評価を行っている。

パイルド・ラフト基礎の実地盤を用いた模型実験が近年多く実施されてきており 50-54), 鉛直荷 重の大きさに対するラフトと杭の荷重分担率の変化,及び水平荷重時のラフトと杭の荷重分担, さらに大きな荷重に対する滑り出し荷重などが明らかになってきている。さらに,解析によるシ ミュレーションも行われており,非線形領域まで高精度に予測できる段階にきている。

1.2.3 地震荷重を受けるパイルド・ラフト基礎に関する研究

パイルド・ラフト基礎が地震荷重を受ける場合の研究は鉛直荷重時に比べて少し遅れて始まり, 松尾・山肩ら 55,56)は図 1.2.3・1 のように鉛直荷重のハイブリッド法を水平荷重に応用して, ラフ トと杭を FEM でモデル化し, ラフトー杭ー地盤間の相互作用ばねを弾性論から計算して鉛直荷 重時と同様に水平方向剛性マトリクスを作成し,架構の剛性マトリクスに組み合わせる方法を開 発した。

また, 土屋・永井ら ^{64,65}), 長尾・桑原ら ^{58,59)}および真野・中井ら ⁶¹⁻⁶³⁾は, 図 1.2.3-2~図 1.2.3-3 に示すように, 地盤を杭・ラフト近傍地盤と一般地盤を区別して非線形性を導入した非線形ハイ ブリッド解析法を開発し, ラフトの滑りや杭周面摩擦, 杭側面および杭先端の地盤ばねに非線形 性を取り入れている。

一方,長尾・桑原・土屋ら ^{59,60}は,図 1.2.3-4 に示すように,地盤をせん断土柱モデルとして 地盤を1本のせん断棒に置換し,その土柱とラフトおよび杭を接合することにより相互作用を考 慮できる簡易ハイブリッド解析法を開発した,この方法の特徴は,平面位置の違いによる杭応力 は表現できないが,モデル化が簡便であることである。この方法を用いて実地盤で実施した模型 実験と比較して,十分な再現性を確認している。

図 1.2.3-1 水平力を受けるハイブリッド解析法 56)

図 1.2.3-2 ハイブリッド解析法 65)

図 1.2.3-3 ハイブリッド解析法 62)

1.2.4 最適設計法に関する研究

これまでに構造物に対する多数の最適化手法が提案されており、コンピュータプログラムも開 発されている⁷⁴⁻⁷⁶。機械,造船,航空機,自動車,土木などの分野では,最適化手法が有効に利 用される場合もあり,安全性の向上,軽量化,コストの低減などの観点からその重要性が高まっ ている。建築構造設計の分野では,他の分野と異なり,一品生産としての意味合いが強く,最適 化手法を用いた設計法がそれほど活発に用いられてきたとはいえない。これまでに、部材断面の 設計に最適化手法を適用した研究や、部材寸法やトポロジーに関して最適化を行う研究もおこな われているが、建築構造物を対象として提案された既往の最適設計法が実務の構造設計において 一般的に広く用いられているとはいえない。

これまでに、組合せ最適化問題に対する様々な解法が提案されている 77-82).離散変数を直接 扱う手法として、厳正解を得ることのできる列挙法や、GA を用いた近似的手法などが提案され ている。分枝限定法や、離散最適解の上下界を利用して探索する組合せ数の低減に対して工夫が なされているが、問題のサイズの増加に伴って計算負荷が急激に増加するといった問題があり、 現実的な規模の問題に適用するのは困難である。また、連続変数最適化を利用して、連続変数最 適解近傍に限定して離散解を探索する手法も提案されている。連続変数最適解を基に離散断面を 選択する方法として、断面性能が全て連続変数最適解を上回り、断面積の増加が極力小さいもの を選ぶラウンドアップ法や、その改良法などが提案されているが、単純に断面を大きくするとい う離散断面の選択の仕方では、目的関数値の増加が問題となり、より複雑な制約条件の下では、 断面を大きくしても必ずしも条件を満足するとは限らないといった問題点がある。建築構造物の 実務設計で用いられる規模の問題に、現実的な時間内で実行可能な汎用的かつ効率的な手法が確 立しているとはいえない。

パイルド・ラフト基礎に関する最適設計については、ラフトの相対沈下量を最小にすることを 目的とし、逐次2次計画法を用いて、同一杭径、同一杭長さの杭の平面配置を最適化する方法⁸³⁾、 及び、杭の配置を複数の列またはロの字のグループ配置とし、各グループ間の杭長さの関係を関 数で表現し、杭全体の沈下剛性を最大にするための各グループ間の杭長さのパターンを最適化す る方法⁸⁴⁾などが開発されている。

本論文では、パイルド・ラフト基礎の最大沈下量を制約条件とし、杭物量の最小化を目的関数 として最適杭長さの配置を求める問題を扱い、その問題に対して逐次線形計画法を用いる⁷¹⁾。そ の際、制約条件や評価関数の設計変数に関する感度を求める必要があり、ここでは現実的な杭長 を見出すことを目的として、杭長1mごとの離散変数に対する感度を用いている。

1.2.5 既往の研究のまとめ

パイルド・ラフト基礎の鉛直荷重および水平荷重に対する解析法では、地盤の非線形性を適切 に取り入れながら、ラフトー杭-地盤間の相互作用を考慮することが重要となる。

常時荷重時における地盤の非線形性を考慮したヤング係数の決定法に関しては,既往の実建物 の施工時の実測結果から得られた拘束圧および鉛直ひずみに依存する剛性評価法は,ある既往の 実測された荷重レベルまでは再現性がよいことが確認されている。ただし,非常に大きな荷重に 関しては拘束圧とひずみによる剛性の変化を同時に考慮する必要があり,その方法の確立には今 後のデータの蓄積が期待される。

応力解析法に関しては、3次元 FEM 解析法はモデル化に手間がかかり解析時間が膨大になる が非線形性や相互作用は自動的に考慮され、かつ精度が良いことから、設計の最終段階における 確認作業に適しているといえる。

一方,設計の初期の段階で部材をいろいろ変えながらパラメータスタディを行う場合には解析 モデルを簡単に作成でき,短時間で計算できることが重要となる。そこで開発されたのが FEM 架構と弾性論を組み合わせたハイブリッド法である。ただし、半無限弾性体の理論式を深さ方向 の剛性の変化の大きい多層地盤に拡張して使用するため、地盤の剛性が急変する場合には注意が 必要である。

また,鉛直荷重と水平荷重が同時に作用した場合のハイブリッド法についてはまだ実績がなく, 地盤の剛性評価も含めて今後の課題と言える。

基礎部材に対する最適設計法に関しては,地盤の剛性評価が難しいことから現在までほとんど 実績がないのが実情である。建築構造物を合理的に設計するためには基礎部材を合理化すること は非常に重要で,今後期待される分野である。そのためには,比較的手間と解析時間が少ない解 析法が望まれる。

1.3 本論文の目的と構成

本論文の目的は、これまで最適化手法がほとんど導入されていない建築基礎構造の分野におい て、パイルド・ラフト基礎を対象として杭配置決定までの構造設計者・技術者の負荷を低減する ことを目的として、ハイブリッド法を用いた簡易沈下解析法と、杭の配置と長さを合理的に決定 する最適設計の手法を組み合わせた解析法を提案することにある。また、提案された手法の妥当 性を示すために、実建物に対する FEM 解析及び沈下計測結果との比較を行う。

第1章ではパイルド・ラフト基礎と最適設計の既往の研究内容を示し、本論文の位置づけを示している。

第2章では、パイルド・ラフト基礎の常時荷重時における沈下解析法について記述している。 地盤の剛性評価法については実建物の施工時沈下計測から提案された玉置・桂式を用いているが、 3次元 FEM 解析を前提とした解析法への取り入れ方に工夫を施している。

地盤剛性の評価法は等価線形化手法を用いているが,施工時解析のような施工過程を再現する 解析の場合には,各施工ステップにおける地盤剛性を複数の折れ線で近似し,各ステップの解析 には当該ステップの増分荷重と接線剛性を用いて行い,得られた変形・応力を全ステップにわた って重ね合わせることにより,各ステップにおける変形と応力を求める方法を提案し,実建物に 適用してその精度を検証している。

また,実務設計のように完成時のみの解析を行う場合には,地盤をソリッド要素で分割した3 次元 FEM 解析において地盤の要素毎に剛性低下曲線に収束計算法を適用して地盤剛性を3次元 的に評価する方法を提案し,実建物に適用してその精度を検証している。

さらに,パイルド・ラフト基礎では上記の地盤の剛性評価法に加えてラフトと杭の相互作用を考 慮した簡易沈下解析法を提案し,実建物に適用してその精度を検証している。

第3章では、常時荷重を受けるパイルド・ラフト基礎の杭の、最大沈下量、杭軸力および接地 圧の制約条件下での最適配置設計法について述べている。

第4章では,第3章で求められた最適配置杭を有するパイルド・ラフト基礎の地震荷重に対す る応力解析法について記述している。

第5章は結論である。

第2章 パイルド・ラフト基礎の常時荷重時における沈下解析法

2.1 直接基礎における地盤の剛性評価法

2.1.1 地盤の常時荷重時剛性評価法

直接基礎の沈下解析は有限要素法と弾性論を組み合わせたハイブリッド法により行う。直接基礎部 分を梁要素でモデル化し、地盤はウインクラーばねまたは相互作用を考慮したばねでモデル化する。

地盤のばね剛性の算定は、地盤を半無限弾性体と仮定した弾性論に基づいて行う。地盤を一様な半 無限弾性体と仮定して得られる解に Steinbrenner の近似解を多層地盤に適用し、さらに地盤に生じ る鉛直方向ひずみ増分による剛性低下を考慮して行う。

地盤ばねをウインクラーばねでモデル化する場合と,相互作用ばねでモデル化する場合の解析法と その特徴を以下に示す。

①ウインクラーばねを用いる場合

基礎構造を格子梁モデルでモデル化し、格子梁の交点に Steinbrenner の近似式により求めた鉛直 荷重と沈下の関係を表すウインクラーばねを設置したモデル化について,鉛直荷重に対するばね反力 と沈下量を計算し,反力から新たなばねを計算する繰り返し計算を行って沈下量が収束するまで収斂 計算を行う方法である。この方法は一般的な有限要素法を用いることができるためプログラムの作成 が簡便であるという特徴を有するが、繰り返し計算を行う必要があり多くの計算時間を必要とする。 ②相互作用ばねを用いる場合

①の手法では格子梁の交点に付くばねは,他の交点の荷重の影響を受けないウインクラーばねであ るが,他の交点の荷重の影響を受ける相互作用ばねとしたもので,繰り返し計算を必要とせず,1回 の計算で沈下量が求められる。相互作用ばねは Boussinesq の解を用いて求めることができる。この 方法は,地盤ばねを現す剛性マトリクスがフルマトリクスになるため一般的な有限要素法に若干の工 夫が必要になるが,繰り返し計算を必要としないという特徴がある。

なお,上記のいずれの方法においても,地盤の各層のヤング係数は作用する荷重によって生じる各 層の鉛直方向ひずみに応じた剛性評価を考慮して決定する必要がある。

以下に、地盤の初期ヤング係数を PS 検層によって得られたせん断波速度 Vs を用いて計算した場合の沈下計算の手順を示す。

(1) 初期ヤング係数

第i層の初期ヤング係数

ここに、 E_{0i} :基礎下第 i 層の初期ヤング係数(kN/m^2)

 ν_i :基礎下第 i 層ポアソン比

文献 26 により,実測結果を逆解析した際に設定したポアソン比を用い, 砂質土:0.35,砂礫:0.30,粘性土:0.45 とする。

 γ_i :基礎下第 i 層単位体積湿潤重量 (kN/m^3)

 V_{a} :基礎下第 i 層せん断波速度 (m/sec)

g:重力加速度(=9.8m/sec²)

(2) 掘削を考慮する場合の掘削後の地盤のヤング係数 基礎下第 i 層の掘削後ヤング係数

$$E_{1i} = \left(\frac{\sigma_{v0i} - \Delta \sigma_{vi}}{\sigma_{v0i}}\right)^{0.4} \cdot E_{0i}$$

ここに、 E_{1i} : 基礎下第 i 層の掘削後のヤング係数 (kN/m^2)
 E_{0i} : 基礎下第 i 層の初期ヤング係数 (kN/m^2)
 σ_{v0i} : 基礎中央部基礎下第 i 層の掘削前の有効応力 (kN/m^2)
 $\sigma_{v0i} = \sum_{j=1}^{i} \gamma_j \cdot \Delta H_j$

ここで、 γ_j : 地盤の単位体積湿潤重量 (kN/m^3)
地下水位以上: γ_j
地下水位以下: $\gamma_j - 10.0$
 ΔH_j : j 層の層厚(m)
 $\Delta \sigma_{vi}$: 掘削により減少する基礎中央部の有効応力 (kN/m^2)
 $\Delta \sigma_{vi} = \frac{2 \cdot w_e}{\sqrt{\frac{a \cdot b}{2} + \frac{a^2 + b^2 + 2}{2} + \sin^{-1} - \frac{a \cdot b}{2}}} \left\{ (kN/m^2) \right\}$

$$\Delta \sigma_{vi} = \frac{2 \cdot w_e}{\pi} \left\{ \frac{a \cdot b}{\sqrt{a^2 + b^2 + 1}} \frac{a^2 + b^2 + 2}{(a^2 + 1)(b^2 + 1)} + \sin^{-1} \frac{a \cdot b}{\sqrt{(a^2 + 1)(b^2 + 1)}} \right\} (kN/m^2)$$

ここに、 w_e : 掘削荷重(kN/m^2)

$$a = \frac{B/2}{Z_i}, b = \frac{L/2}{Z_i}, \quad \sin^{-1} \texttt{i} \forall \vec{\mathcal{T}} \vec{\mathcal{T}}$$

B:基礎幅(m)、L:基礎長さ(m)

z_i: 第i層の中心位置の掘削面からの深さ(m)(Zは深さ方向が正)

図 2.1.1-1 掘削時の地盤内応力の変化

(3)構築時の地盤のヤング係数

基礎を等分布荷重 w_{ave} の作用する B×L の矩形板と考え、その中心位置の沈下量を Steinbrenner の近似式により算定し、その過程で各地層の鉛直方向圧縮ひずみ ε_{vi} を計算し、その値から玉置・桂式 26)を用いて初期ヤング係数に対する低減係数を求める。なお、本計算は収斂計算となる。 ①沈下算定式

Steinbrenner の近似解を多層地盤に適用し、地盤に平均接地圧が等分布に作用するものとして、 長方形分割法により基礎の中央の沈下量を計算する。その際の地盤の剛性は上記の各式により求める。 i) 有限厚さの地盤表面に載る B×L の基礎の中央部の即時沈下量(図 2.1.1-2 参照)

ここに

$$I_{s} = (1 - v_{s}^{2})F_{1} + (1 - v_{s} - 2v_{s}^{2})F_{2} \qquad (2.1.1-6)$$

$$F_{1} = \frac{1}{\pi} \left[l \cdot \log_{e} \frac{(1 + \sqrt{l^{2} + 1})\sqrt{l^{2} + d^{2}}}{l(1 + \sqrt{l^{2} + d^{2} + 1})} + \log_{e} \frac{(l + \sqrt{l^{2} + 1})\sqrt{1 + d^{2}}}{l + \sqrt{l^{2} + d^{2} + 1}} \right] \qquad (2.1.1-7)$$

$$F_{2} = \frac{d}{2\pi} \tan^{-1} \frac{l}{d\sqrt{l^{2} + d^{2} + 1}} \qquad (2.1.1-8)$$

B:矩形面の幅(m)

l = (L/2)/(B/2)

H:地盤の深さ(m)

$$d = H / \left(\frac{B}{2} \right)$$

q:基礎に作用する荷重度(kN/m²)

 E_{s} : 地盤のヤング率(kN/m²)

 v_{s} : 地盤のポアソン比

図 2.1.1-2 1 層地盤の諸元

ii) 多層地盤の地盤表面に長方形等分布荷重が作用した場合の基礎の即時沈下量(図 2.1.1-3 参照) a)基礎中央部の沈下量

(2.1.1-5)式の1層地盤の沈下量を重ね合わせることにより多層地盤の基礎中央部の沈下量を計算する。

$$S_{E} = \left\{ \frac{I_{S}(H_{1}, v_{S1})}{E_{S1}} + \sum_{k=2}^{n} \frac{I_{S}(H_{k}, v_{Sk}) - I_{S}(H_{k-1}, v_{Sk})}{E_{Sk}} \right\} 4q \cdot \frac{B}{2} \quad \cdots \cdots \cdots (2.1.1-9)$$
ここに、
$$I_{S}(H_{k}, v_{Sk}) : \quad \mathbb{B} \mathbb{P} H_{k} \ , \ \mathcal{RT} \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{L} \mathfrak{L} v_{Sk} \mathcal{O} \mathfrak{h} \mathfrak{M} \mathfrak{M} \mathfrak{L} \mathfrak{T} \mathfrak{L} \mathfrak{T} \mathfrak{K} \mathfrak{M}$$

H_k: 地表面から k 層下端までの距離(m)

b)基礎隅角部の沈下量

基礎隅角部の沈下量は、上式の B/2,L/2 を B,L で置き換えて計算する。

図 2.1.1-3 多層地盤の諸元

②各層の鉛直ひずみ増分

$$\varepsilon_{vi} = \frac{\Delta S_i}{\Delta H_i} \qquad (2.1.1-10)$$

ここに、 ε_{vi} : i 層の鉛直方向ひずみ増分

ΔS_i:i層の鉛直変位(m)で基礎の中央部と隅部の平均値とする

$$\Delta S_i = \left(S_{i1} + S_{i2}\right)/2$$

 $S_{i1}: 基礎中央の沈下量<math>S_{i2}: 基礎隅部の沈下量\Delta H_i: i 層の層厚(m)$

③建物構築後の剛性低下式(図 2.1.1-4 参照)

④収斂計算によるヤング係数の計算

図 2.1.1-5 のフローに従って各層のヤング係数を求める。

図 2.1.1-5 収斂計算フロー

(4) ウインクラーばねの計算(図 2.1.1-6 参照)

①格子梁の交点位置における地盤ばねの初期値

基礎メッシュ全位置に荷重が作用した時の各メッシュ位置の地表面の沈下量を計算して地盤ばねの初期値を計算する。

ここに、k_{zi}: i 点の鉛直ばね定数(kN/m)

 $P_i: i 点に作用する下向き荷重(kN)$

 S_i : i 点の地表面沈下量(m) Boussinesq 解より求める。

②基礎モデルに上記地盤ばねを付けて応力解析を行い,各節点のばね反力 Pi を用いて再度 Boussinesq 解から地盤ばねを算定して応力解析を行い,得られた沈下量と前回の沈下量の差が小さ くなった段階で終了する。

図 2.1.1-6 地盤ばね算定フロー

③格子梁の交点に作用する荷重から沈下量を計算する方法(図 2.1.1-7 参照) 節点 i の地表面における沈下量

 s_{ii} :j点に荷重が作用したときのi点の地表面沈下量(m)で Boussinesq 解より求める

節点番号

地盤層番号及び節点番号

図 2.1.1-7 沈下計算における諸元

④Boussinesq の解より沈下量を求める方法

i)荷重作用点直下の変位量(i=jの時)

a)荷重作用点に下向き荷重 P が作用した時の荷重作用点直下の変位量(図 2.1.1-8 参照)

$$S_{z} = \frac{2a \cdot p_{0}(1-\nu^{2})}{E} \left\{ \sqrt{1+(z/a)^{2}} - (z/a) \right\} \left\{ 1 + \frac{z/a}{2(1-\nu)\sqrt{1+(z/a)^{2}}} \right\}$$
 $\cdot \cdot (2.1.1-14)$

ここに、 S_z :(x,y,z)における沈下量(m)

- a:荷重半径(m)
- p₀:等分布荷重(kN/m2)
- *E*:地盤のヤング係数(kN/m2)

v:地盤のポアソン比

z:地表面からの深さ(m)

図 2.1.1-8 荷重点直下の鉛直変位

b)有限厚さHの地盤の地表面における沈下量So(図2.1.1-9参照)

$$S_{0} = \frac{2a \cdot p_{0}(1-v^{2})}{E} \left[1 - \left\{ \sqrt{1 + (H/a)^{2}} - (H/a) \right\} \left\{ 1 + \frac{H/a}{2(1-v)\sqrt{1 + (H/a)^{2}}} \right\} \right] = \frac{2a \cdot p_{0}}{E} I_{s}$$

 $\cdot \cdot \cdot (2.1.1 - 15)$

ここに、 S_0 :地表面における沈下量(m)

a:荷重半径(m)

- p_0 :等分布荷重(kN/m2)
- *E*:地盤のヤング係数(kN/m2)
- v:地盤のポアソン比
- H:層厚(m)

図 2.1.1-9 1 層地盤の地表面鉛直変位

c)多層地盤の地表面における沈下量 So (図 2.1.1-10 参照)

$$S_{0} = 2a \cdot p_{0} \left\{ \frac{I_{s}(H_{1}, v_{1})}{E_{1}} + \sum_{k=2}^{n} \frac{I_{s}(H_{k}, v_{k}) - (H_{k-1}, v_{k})}{E_{k}} \right\}$$
 (2.1.1-16)

$$I_{s}(H_{i},v_{i}) = (1-v_{i}^{2}) \left[1 - \left\{ \sqrt{1 + (H_{i}/a)^{2}} - (H_{i}/a) \right\} \left\{ 1 + \frac{H_{i}/a}{2(1-v_{i})\sqrt{1 + (H_{i}/a)^{2}}} \right\} \right] \cdot \cdot \cdot (2.1.1-17)$$

ここに、 S_0 :任意点の地表面の沈下量(m)

- P:荷重(kN)
- a:荷重作用半径(m)
- p_0 : 分布荷重(kN/m2)
- E_k : k 層地盤のヤング係数(kN/m2)
- $v_k: k 層地盤のポアソン比$
- H_k : 地表面から k 層地盤下端までの距離(m)

図 2.1.1-10 多層地盤の地表面鉛直変位

ii)荷重作用点以外の点の変位量(*i* ≠ *j*の時)(図 2.1.1-11 参照)
 a)荷重作用点*i*(*x*₀, *y*₀, 0.0)に下向き荷重 Pi が作用した時の任意点(x, y, z)における沈下量 Sz は

$$S_{z} = \frac{P(1+\nu)}{2\pi \cdot E \cdot \sqrt{r^{2}+z^{2}}} \left\{ 2(1-\nu) + \frac{z^{2}}{r^{2}+z^{2}} \right\} \qquad (2.1.1-18)$$

ここに、
$$S_z$$
: (x,y,z)における沈下量(m)
 P : (x₀,y₀,0.0)位置の下向き作用荷重(kN)
 E : 地盤のヤング係数(kN/m2)
 v : 地盤のポアソン比
 z : 地表面からの深さ(m)
 $r = \sqrt{(x-x_0)^2 + (y-y_0)^2}$

Sz

r

b)有限厚さ H の地盤の地表面における沈下量 So(図 2.1.1-12 参照)

Ζ

図 2.1.1-12 1 層地盤の地表面鉛直変位

c)多層地盤の地表面における沈下量 So (図 2.1.1-13 参照)

$$S_{0} = P\left\{\frac{I_{s}(H_{1}, \nu_{1})}{E_{1}} + \sum_{k=2}^{n} \frac{I_{s}(H_{k}, \nu_{k}) - (H_{k-1}, \nu_{k})}{E_{k}}\right\}$$
 (2.1.1-21)

$$I_{s}(H_{i}, v_{i}) = \frac{1 + v_{i}}{\pi} \left\{ \frac{1 - v_{i}}{r} - \frac{1 - v_{i}}{\sqrt{r^{2} + H_{i}^{2}}} + \frac{H_{i}^{2}}{2\sqrt{r^{2} + H_{i}^{2}}} \left(r^{2} + H_{i}^{2}\right) \right\}$$
 (2.1.1-22)

ここに、 S_0 :任意点の地表面の沈下量(m)

P:荷重(kN)

a:荷重作用半径(m)

 p_0 :分布荷重(kN/m2)

 E_k : k 層地盤のヤング係数(kN/m2)

 $v_k: k 層地盤のポアソン比$

 H_k : 地表面から k 層地盤下端までの距離(m)

図 2.1.1-13 多層地盤の地表面鉛直変位

(5) 相互作用ばねの計算法

i) 沈下マトリックス $[S_0]$ の作成

$$\begin{bmatrix} S_0 \end{bmatrix} = \begin{bmatrix} S_{11} \cdots S_{i1} \cdots S_{n1} \\ \cdots \\ S_{1i} \cdots S_{ii} \cdots S_{ni} \\ \cdots \\ S_{1n} \cdots S_{in} \cdots S_{nn} \end{bmatrix} \qquad (2.1.1-23)$$

ここに, S_{ij}: 格子点jに単位荷重が作用したときの格子点iの地表面における沈下量

ii) 沈下ばねマトリックス (剛性マトリックス) $[S_0]^{-1}$ の作成

単位荷重に対する沈下マトリックス $[S_0]$ の逆マトリックス $[S_0]^{-1}$ を求める。このマトリックスはフルマトリックスとなる。

iii) FEM 解析モデルへの組み込み

上記方法で求めた沈下ばねマトリックス $\left[S_0
ight]^{-1}$ を、格子梁モデルに組み込む。

2.1.2 3次元 FEM 解析法との比較

ここでは,前節で提案したラフト基礎のウインクラーばねを用いた簡易解析法の精度を検証するため,3次元 FEM 解析法との比較を行う。

(1) 解析パラメータ

解析パラメータは、上部建物の荷重及び地盤条件を低層、中層、高層建物の3ケースを想定して設定し、さらに平面的な荷重分布形として、等分布、中央集中分布、側部集中分布の3ケースをとする。 また、地盤の剛性評価として、弾性の1層地盤(ただし層分割は40層とする)、弾性の多層地盤及び弾塑性の多層地盤の3ケースとする。表 2.1.2-1に解析パラメーター覧、図2.1.2-1、表 2.1.2-2 ~ 表 2.1.2-4 に地盤定数、図 2.1.2-2 に荷重分布を示す。

(2) 地盤剛性

地盤剛性に鉛直ひずみ増分による非線形性を考慮する場合は,前節の式(2.1.1-11)を適用し,3次元 FEM 解析では全ての地盤要素の要素中心における鉛直ひずみに適用し,簡易法では Steinbrenner の近似式により計算した鉛直ひずみに対して層毎に考慮するものとする。

地盤層数	弾性・弾塑性	建物規模	荷重分布	ケース名	
		低層	等分布	LE11	
			中央集中	LE12	
			側部集中	LE13	
		中層	等分布	ME11	
1層	弾性		中央集中	ME12	
			側部集中	ME13	
		高層	等分布	HE11	
			中央集中	HE12	
			側部集中	HE13	
			等分布	LEM1	
		低層	中央集中	LEM2	
			側部集中	LEM3	
	弾性	中層	等分布	MEM1	
			中央集中	MEM2	
			側部集中	MEM3	
		高層	等分布	HEM1	
多層			中央集中	HEM2	
			側部集中	HEM3	
		低層	等分布	LPM1	
			中央集中	LPM2	
			側部集中	LPM3	
	弹塑性	中層	等分布	MPM1	
			中央集中	MPM2	
			側部集中	MPM3	
		高層	等分布	HPM1	
			中央集中	HPM2	
			側部集中	HPM3	
ケース記号					
	H:高層、M:中層、L:低層				
	 Ⅰ. Ⅰ 眉、M. 多 1. 1. 4. 	/宣 由 中 3・ 個	 		

表 2.1.2-1 解析パラメーター覧表

図 2.1.2-1 地盤モデル

表 2.1.2-2 低層用地盤定数

基礎下 一m	層厚 h(m)	N値	1 軸圧縮強度 qu (kN/m2)	単位体積重量 γ (kN/m3)	せん断波速度 Vs(m/s)	ポアソン比 ν	初期ヤング係数 Eo(kN/m2)
1.0	1.0	2	6.0	17.5	150	0.45	1.16E+05
2.0	1.0	7	0.0	17.5	150	0.35	1.08E+05
3.0	1.0	3	0.0	17.5	120	0.35	6.94E+04
4.0	1.0	3	0.0	17.5	120	0.35	6.94E+04
5.0	1.0	3	0.0	17.5	120	0.35	6.94E+04
6.0	1.0	3	0.0	17.5	120	0.35	6.94E+04
7.0	1.0	1	41.0	17.0	120	0.45	7.24E+04
8.0	1.0	1	46.0	17.0	120	0.45	7.24E+04
9.0	1.0	1	52.0	17.0	120	0.45	7.24E+04
10.0	1.0	1	58.0	17.0	120	0.45	7.24E+04
11.0	1.0	1	64.0	17.0	120	0.45	7.24E+04
12.0	1.0	1	70.0	17.0	120	0.45	7.24E+04
13.0	1.0	1	75.0	16.5	120	0.45	7.03E+04
14.0	1.0	1	81.0	16.5	120	0.45	7.03E+04
15.0	1.0	1	87.0	16.5	120	0.45	7.03E+04
16.0	1.0	1	93.0	16.5	120	0.45	7.03E+04
17.0	1.0	1	99.0	16.5	120	0.45	7.03E+04
18.0	1.0	2	104.0	16.5	150	0.45	1.10E+05
19.0	1.0	2	110.0	16.5	150	0.45	1.10E+05
20.0	1.0	2	116.0	16.5	150	0.45	1.10E+05
21.0	1.0	2	122.0	16.5	150	0.45	1.10E+05
22.0	1.0	2	128.0	16.5	150	0.45	1.10E+05
23.0	1.0	2	133.0	16.5	160	0.45	1.25E+05
24.0	1.0	2	139.0	16.5	160	0.45	1.25E+05
25.0	1.0	2	145.0	16.5	160	0.45	1.25E+05
26.0	1.0	2	151.0	16.5	160	0.45	1.25E+05
27.0	1.0	4	157.0	16.5	190	0.45	1.76E+05
28.0	1.0	4	162.0	16.5	190	0.45	1.76E+05
29.0	1.0	4	168.0	16.5	190	0.45	1.76E+05
30.0	1.0	4	174.0	16.5	190	0.45	1.76E+05
31.0	1.0	4	180.0	16.5	190	0.45	1.76E+05
32.0	1.0	6	186.0	16.0	190	0.45	1.71E+05
33.0	1.0	6	191.0	16.0	190	0.45	1.71E+05
34.0	1.0	6	197.0	16.0	190	0.45	1.71E+05
35.0	1.0	6	203.0	16.0	190	0.45	1.71E+05
36.0	1.0	30	209.0	18.0	270	0.45	3.88E+05
37.0	1.0	30	215.0	18.0	270	0.45	3.88E+05
38.0	1.0	50	0.0	20.0	490	0.35	1.32E+06
39.0	1.0	50	0.0	20.0	490	0.35	1.32E+06
40.0	1.0	50	0.0	20.0	490	0.35	1.32E+06

基礎下-m	層厚 h(m)	N値	1 軸圧縮強度 qu (kN/m2)	単位体積重量 γ (kN/m3)	せん断波速度 Vs(m/s)	ポアソン 比 v	初期ヤング係数 Eo(kN/m2)
1.0	1.0	40	0.0	19.0	370	0.35	7.16E+05
2.0	1.0	40	0.0	19.0	370	0.35	7.16E+05
3.0	1.0	50	0.0	19.0	370	0.35	7.16E+05
4.0	1.0	60	0.0	19.0	370	0.35	7.16E+05
5.0	1.0	60	0.0	19.0	370	0.35	7.16E+05
6.0	1.0	60	0.0	19.0	370	0.35	7.16E+05
7.0	1.0	60	0.0	19.0	370	0.35	7.16E+05
8.0	1.0	10	370.0	17.0	270	0.45	3.66E+05
9.0	1.0	10	400.0	17.0	270	0.45	3.66E+05
10.0	1.0	15	350.0	17.0	270	0.45	3.66E+05
11.0	1.0	20	340.0	17.0	270	0.45	3.66E+05
12.0	1.0	30	330.0	17.0	270	0.45	3.66E+05
13.0	1.0	30	330.0	18.5	290	0.45	4.60E+05
14.0	1.0	45	330.0	18.5	290	0.45	4.60E+05
15.0	1.0	18	330.0	17.0	290	0.45	4.23E+05
16.0	1.0	20	330.0	17.0	330	0.45	5.47E+05
17.0	1.0	60	330.0	19.5	330	0.45	6.28E+05
18.0	1.0	60	330.0	19.5	330	0.45	6.28E+05
19.0	1.0	60	330.0	19.5	330	0.45	6.28E+05
20.0	1.0	60	0.0	20.0	460	0.3	1.12E+06
21.0	1.0	60	0.0	20.0	460	0.3	1.12E+06
22.0	1.0	60	0.0	19.5	460	0.35	1.14E+06
23.0	1.0	60	0.0	19.5	460	0.35	1.14E+06
24.0	1.0	60	0.0	19.5	460	0.35	1.14E+06
25.0	1.0	60	0.0	19.5	460	0.35	1.14E+06
26.0	1.0	60	0.0	20.0	460	0.35	1.17E+06
27.0	1.0	60	0.0	20.0	460	0.35	1.17E+06
28.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
29.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
30.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
31.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
32.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
33.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
34.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
35.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
36.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
37.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
38.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
39.0	1.0	60	0.0	20.0	630	0.35	2.19E+06
40.0	1.0	60	0.0	20.0	630	0.35	2.19E+06

表 2.1.2-3 中層用地盤定数

基礎下 -m	層厚 h(m)	N値	1 軸圧縮強度 qu (kN/m2)	単位体積重量 γ (kN/m3)	せん断波速度 Vs(m/s)	ポアソン 比 v	初期ヤング係数 Eo(kN/m2)
1.0	1.0	50	0.0	18.0	370	0.35	6.78E+05
2.0	1.0	50	0.0	18.0	370	0.35	6.78E+05
3.0	1.0	50	0.0	18.0	370	0.35	6.78E+05
4.0	1.0	50	0.0	18.0	370	0.35	6.78E+05
5.0	1.0	35	0.0	18.0	370	0.35	6.78E+05
6.0	1.0	15	200.0	17.0	270	0.45	3.66E+05
7.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
8.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
9.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
10.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
11.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
12.0	1.0	50	0.0	18.0	330	0.35	5.40E+05
13.0	1.0	50	0.0	18.0	310	0.35	4.76E+05
14.0	1.0	30	0.0	18.0	310	0.35	4.76E+05
15.0	1.0	25	0.0	18.0	310	0.35	4.76E+05
16.0	1.0	50	0.0	18.0	310	0.35	4.76E+05
17.0	1.0	20	600.0	18.0	310	0.45	5.12E+05
18.0	1.0	20	600.0	18.0	310	0.45	5.12E+05
19.0	1.0	20	600.0	19.0	310	0.45	5.40E+05
20.0	1.0	50	0.0	19.0	440	0.35	1.01E+06
21.0	1.0	50	0.0	19.0	440	0.35	1.01E+06
22.0	1.0	50	0.0	19.0	440	0.35	1.01E+06
23.0	1.0	50	0.0	19.0	440	0.35	1.01E+06
24.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
25.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
26.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
27.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
28.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
29.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
30.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
31.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
32.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
33.0	1.0	50	0.0	19.0	410	0.35	8.79E+05
34.0	1.0	50	0.0	20.0	410	0.35	9.26E+05
35.0	1.0	40	0.0	20.0	410	0.35	9.26E+05
36.0	1.0	40	0.0	20.0	410	0.35	9.26E+05
37.0	1.0	50	0.0	20.0	450	0.35	1.12E+06
38.0	1.0	50	0.0	20.0	450	0.35	1.12E+06
39.0	1.0	50	0.0	20.0	450	0.35	1.12E+06
40.0	1.0	50	0.0	20.0	450	0.35	1.12E+06

表 2.1.2-4 高層用地盤定数

図 2.1.2-2 荷重分布一覧

(3) 解析モデル

③ 次元 FEM モデル

図 2.1.2-3 に 3 次元 FEM モデルを示す。

解析モデルは,基礎を梁要素で格子状にモデル化し,地盤は各層厚を1.0mとしたソリッド要素 を用い他のモデルと整合性を図った。また,基礎と地盤の節点は剛な梁で接合した。地盤の平面的 な広がりは基礎幅の3倍とし影響が小さくなる範囲までモデル化した。

地盤の剛性評価は、初期ヤング係数を地盤の Vs から設定し、上部荷重を作用させて地盤の各要素の鉛直方向ひずみを計算して式(2.1.1-11)を用いて要素毎に剛性低下を評価して収束するまで繰返し計算を行った。境界条件は、最下部固定、側面はフリーとした。

図 2.1.2-3 3次元 FEM モデル

②簡易モデル

図 2.1.2-4 に簡易解析法モデルを示す。

解析モデルは、基礎を梁要素で格子状にモデル化し、格子の交点に各節点の支配面積に応じた鉛 直方向地盤ばねをウインクラーばね要素でモデル化する。

地盤ばねは、半無限体表面に鉛直荷重が作用したときの沈下量をBoussinesqの解を用いて計算し, 各節点の沈下量と荷重から鉛直方向ばねを算定する。その際,地盤の非線形性を考慮するために,地 盤のVsから初期ヤング係数を計算し,半無限体表面に平均荷重が等分布に作用した場合の沈下量を Steinbrennerの近似式を用いて計算し,沈下量から地盤の各層の鉛直方向ひずみを計算して式 (2.1.1-11)を用いて層毎に剛性低下を評価した。

図 2.1.2-4 簡易モデル

(4) 解析結果

図 2.1.2-5~図 2.1.2-31 に FEM モデル, 簡易モデルおよび相互作用モデルの沈下量分布および接 地圧分布の比較を示す。

図 2.1.2-32~図 2.1.2-40 に FEM モデル, 簡易モデルおよび相互作用モデルの沈下量比較, 図 2.1.2-41~図 2.1.2-49 に地盤の非線形性を考慮した FEM 解析における剛性低下率分布, 図 2.1.2-50 ~図 2.1.2-55 に地盤の非線形性を考慮した FEM モデルと簡易モデルにおける深さ方向の剛性低下率 分布及び剛性分布の比較を示す。

①沈下量分布

簡易モデルおよび相互作用モデルは FEM モデルに対して若干大きめの評価となっているが実用 上は問題ない範囲と考えられる。今回の解析における FEM モデルのメッシュ分割が簡易モデルに合 わせたため若干荒い分割となっていることが FEM 解析の沈下量が小さい原因と考えられる。

また,地盤の非線形性を考慮した場合は,中央部の沈下量が FEM モデルと簡易モデルで概ね一致 しているのに対して,端部の沈下量は簡易モデルの方が大きくなる傾向がある。これは,FEM 解析 の剛性低下分布が中央部に対して端部のほうが小さいのに対して,簡易モデルは層内では剛性が一定 と仮定していることの違いによるものと考えられる。これは,深さ方向の剛性低下分布が FEM モデ ルの平均剛性低下率(平面的な中央と端部の平均値)と簡易モデルの剛性低下率が概ね一致している ことからもわかる。

②接地圧分布

接地圧分布について, FEM モデルと簡易モデルでは概ね一致しているが,端部については簡易モデルの方が若干小さめになる傾向がある。

また相互作用ばねモデルは他のモデルに比べて外周部の接地圧が大きく,内部の接地圧が小さめの 結果となっている。

(5) まとめ

直接基礎の沈下解析法として3種類の方法を比較した。第1の方法は3次元FEM解析法である。 次に、FEM解析と弾性論を組み合わせたハイブリッド法として,繰り返し計算法による簡易法と相 互作用ばねを用いた方法の2つの方法について比較した。

1層地盤の弾性計算における沈下量の比較では、3次元FEM解析とハイブリッド法では概ね一致した。

多層地盤の弾性計算における沈下量の比較では、3次元FEM解析に対してハイブリッド法の2つ の方法ではいずれも若干大き目の結果となった。これはハイブリッド法の多層地盤の沈下量の近似計 算では、深さ方向に剛性が変化する場合の層間の変位の適合条件を考慮しないことが原因と考えられ る。

多層地盤の弾塑性計算における沈下量の比較では、3次元FEM解析に対してハイブリッド法では 基礎の中央部に対して外周部の沈下量が大きくなる傾向があった。これは地盤の剛性評価が、簡易法 については層内で一定とする評価に基づいていることに起因していると考えられる。

₽_²⁵³ -142 -128 -128 127 -142 -127 -127 -128 -127 -253 ĥ ۳ p ĥ ŝ Ϋ́ 7 ĥ 4 티 ŝ <u>6</u>ŝ 4 4 (mm) -142 -36 -31 -31 -36 -142 4 ŝ ĥ ŝ ŝ -31 -31 -31 ē (kN/m2) (kN/m2) -127 ĥ q φ φ 4 -127 ŝ φ φ ٩ ф -31 -28 2 -31 -29 -29 -29 29 Dmax= -3 Dmin= -7 Pmax= -253 Pmin= -27 相互作用ばね 9 φ q ŝ -2 -127 -29 -127 ۴ 5 φ φ ٩ -27 -27 -29 -31 -31 -28 -27 -28 -128 -128 -29 ŝ φ ę -31 -27 -27 201 -27 -27 -29 -31 ۳¢ ŝ 9 -------۹ ŝ -128 -28 -128 5 <u>6</u>--27 -27 -27 -78 31 ÷ -27 57 ۶¢ ŕ -128 ĥ φ q 5 5 9 φ ŝ -29 -27 -27 -31 ñ -27 20-27 -29 Kanni P M-Lay MP1 -127 9 ę -127 -29 φ ę ŝ -27 -31 ŝ ŝ -31 -28 -27 -27 29 ĥ ⁵⁸ Kanni E 1-Lay LE1 -127 ŝ -127 ŝ q φ 9 4 -30 -29 -28 -31 -29 -29 29 8 -31 -142 ŝ ŝ ŝ ŝ 4 4 -142 -31 -36 -36 -31 -31 -31 -31 <u>-</u>3 ē -142 -142 -127 -127 128 -128 128 -127 127 -253 -253 ŝ ŝ ĥ Ϋ́, μ -12 12 7 -59 -92 -92 92 -23 ې و ، ف 9⁶ 89 ĨĢ 4-(mm) -39 -42 -44 -44 -42 -39 ŝ ŝ ŝ ŝ 4 -40 -44 -40 -59 4 ŝ ĥ -29 (kN/m2) (kN/m2) -65 4 ŝ ۴ φ φ ę φ -2 -40 4 φ φ -40 -46 -45 -20 -46 -20 -45 46 92 4 --47 <u>9</u>ę 9 -1 ۴ 9 ę ŝ ŝ -45 -48 ŝ φ -42 -49 -42 47 -65 -49 -45 Dmax= Dmin= -92 -39 -72 22 -49 4 ዋ 44 22 ß Pmax= -Pmin= -Υ ĥ φ ę φ ۴ -72 12-29 6 簡易法 ŝ ŝ ۹ --------1 ę ۍ ۱ <u>د</u> -46 -48 -50 89 -51 44 44 -51 48 89 46 ٩ <u>°</u> -<u>1</u>2 ŝ ۹ ę ŝ ŝ -49 Ξ 4 9<u>2</u> 22 49 20 4 22 Kanni E 1–Lay LE1 <u>2</u> φ 9 5 9 9 ŝ -42 -45 -47 -48 -42 ĥ φ ŝ -49 -49 -47 45 -65 φ -92 Kanni E 1-Lay LE1 ŝ 4 4 ŝ 9 φ ę ۴ 4 -46 -45 22 -46 -20 45 6 92 46 ŝ ŝ ŝ ĥ ŝ ŝ 4 4 -39 -40 -42 -44 44-40 -39 -59 4 -29 4 -42 4 4⁶ 4 ۶ 6 -59 -65 -65 -68 72 -59 6 6 4 7 -72 -65 -65 ₽_74 ř -57 69 -70 -70 69 -57 °° 5 4 ñ ę Ϋ́ ۳Ģ 40 -40 4--33 -39 -41 -40 -41 -39 -33 4-4 4 εņ (mm) -56 -56 ۴ 4 4 4 ဗို ဗို (kN/m2) (kN/m2) -47 -20 -47 47 4 ŝ ŝ 4 Ϋ́ 5 39 -48 -20 -39 5 Ϋ́ 4 4 ŝ 4 4 3 狄元FEM 29 48 -49 47 ŝ 02-4 -47 F F. 1 -40 -70 ٣ ĥ ۴ 4 φ Dmax= Dmin= -98 -32 -75 -20 4 10 -51 -24 -51 -24 -51 -41 -75 ŝ ŝ ę Pmax= Pmin= 4 -48 -49 -50 -49 -40 ۍ ۱ ŝ <u>د</u> ŝ ŝ -70 4 48 -51 -51 70 Ϋ́ 4 ĥ ŝ 4 ŝ ŝ -75 0 51 24 5 12 -21 20 4 ۴, ŝ ŝ ٩°, Ϋ́, 4 Ϋ́ -70 -48 -49 -47 \$ 47 -21 -21 -48 40 ŝ -70 ę ŝ ŝ 4 ĥ ĥ 4 Ϋ́ 4 Elastic 1 Layer LE1 Elastic 1 Layers LE1 -47 -47 -47 ŝ 4 7 39 -20 -48 -20 39 -71 Ŷ ŝ ŝ Ϋ́ 1-40 -56 32 -40 -40 -39 -56 66 -41 -41 -32 4-4-4 ę ဗို ñ ę 4 4 4 4 -70 -70 -70 -6--56 5 ۶Ļ -75 ဗို Ϋ́, Ϋ́ ę Ϋ́, ٣ Ÿ Ϋ́ 7 -56 報告 (kN/m2) 沈下量 (1)

図 2.1.2-5 解析結果(1 層・弾性・低層・等分布,ケース LE11)

相互作用ばね	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
簡易法	3^{-3} 4 -4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 次元FEM	2 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量	被 (kN/m2)

相互作用试ね	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
簡易法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量	掖地圧(KN/m2)

	3 狄元FEM	簡易法	相互作用ばね
沈下量	-7 -8 -9 -10 -10 -10 -10 -10 -7 -8 -9 -10 -10 -10 -10 -10 -7 -8 -9 -10 -11 -11 -11 -11 -6 -10 -11 -11 -11 -11 -11 -11 -9 -10 -11 -12 -12 -12 -12 -12 -9 -10 -11 -12 -13 -13 -12 -11 -10 -9 -10 -11 -12 -13 -13 -12 -11 -10 -9 -10 -11 -12 -13 -13 -12 -11 -10 -9 -10 -11 -12 -13 -13 -12 -11 -10 -9 -10 -11 -12 -12 -12 -11 -10 -9 -9 -10 -11 -11 -11 -10 -10 -9 -9 -10 -10 -10 -10 -10 -10 -9 -9 -9 -9 -9 -10 -10 -10 -9 -9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
凝地 (kN/m2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-724 -724 -724 -643 -643 -643 -643 -724 -713 -724 -178 -154 -155 -153 -154 -153 -154 -724 -724 -178 -174 -164 -164 -164 -178 -724 -724 -178 -174 -140 -155 -164 -178 -724 -643 -164 -115 -140 -133 -114 -160 -155 -643 -644 -163 -140 -133 -134 -133 -134 -155 -643 -646 -155 -140 -135 -134 -133 -134 -155 -643 -646 -155 -140 -133 -134 -133 -134 -155 -643 -646 -154 -134 -133 -134 -133 -134 -156 -643 -646 -154 -134 -133 -134 -133 -134 -154 -154 -648 -164 -164 -133 -134 -133 -134 -154 -154 -648 -164 -164 -133 -134 -134 -154

図 2.1.2-8 解析結果(1層・弾性・中層・等分布,ケース ME11)

相互作用试ね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-008 -105 -460 -116 -111 <th< th=""></th<>
簡易法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 次元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-196 -196 -221 -223 -234 -239 -231 -232 -196 -311 -198 -110 -128 -114 -112 -192 -111 -102 -111 -202 -234 -128 -114 -171 -196 -171 -196 -171 -105 -214 -217 -202 -234 -161 -171 -196 -214 -217 -216 -196 -171 -202 -234 -161 -171 -196 -214 -217 -216 -196 -171 -234 -161 -171 -196 -214 -217 -216 -196 -211 -234 -151 -196 -214 -239 -240 -214 -190 -213 -241 -151 -196 -214 -239 -240 -214 -190 -211 -233 -141 -171 -196 -214 -214 -196 -111 -140 -233 -141 -171 -196 -214 -214 -196 -111 -100 -233 -121 -196 -111 -196 -111 -122 -211
	沈下量	裱地压 (kN/m2)

図 2.1.2-10 解析結果(1層・弾性・中層・側集中,ケース ME13)

相互作用试ね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
簡易法	-6 -6 -9 -10	$ \frac{1}{6^{-1}(27)^{-1}(19)} - \frac{6^{4}(2)}{-100} - \frac{6^{6}(6)}{-100} - \frac{6^{6}(6)}{-10$
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	沈下量	報

図 2.1.2-11 解析結果(1層・弾性・高層・等分布,ケース HE11)

相互作用试ね	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
簡易法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 狄元FEM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量→	(kN/m2)

	3 狄元FEM	簡易法	相互作用试ね
沈下量圖	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 -6 -7 -8 -8 -7 -6 -7 -8 -8 -9 -9 -9 -8 -6 -7 -8 -8 -9 -9 -9 -8 -6 -7 -8 -8 -9 -9 -9 -9 -6 -7 -8 -9 -9 -9 -9 -9 -6 -7 -8 -9 -9 -10 -10 -10 -6 -7 -8 -9 -10 -10 -10 -10 -6 -7 -8 -9 -9 -10 -10 -10 -6 -7 -8 -9 -9 -10 -10 -10 -6 -7 -8 -9 -9 -9 -9 -6 -7 -8 -9 -9 -10 -10 -10 -6 -7 -8 -9 -9 -9 -9 -6 -7 -8 -9 -9 -9 -9 -6 -7 -8 -9 -9 -9 -9 -6 -6 -9 -9 -9 -9 -9 <	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
凝地Ⅲ(kN/m2) (kN/m2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	−144 −64 −175 −788 −800 −511 −788 −900 −201 −217 −788 −900 −201 −217 −217 −217 −211 </td

図 2.1.2-13 解析結果(1層・弾性・高層・側集中,ケース HE13)

-P -10 -10 -10 ۴_с ۴_г ۳ ر **−**²⁹⁶ ñ -152 -139 -141 -141 -139 -137 -152 -137 -141 Ģ -12 Ŧ Ŧ -12 -12 Ŧ Ŧ 6-8-ရ -152 -137 -152 (um) -26 -26 -26 -26 -26 -26 -26 -26 -26 (kN/m2) (kN/m2) ، -12 -12 -11 Ŧ -13 -13 -13 -13 -13 -137 -27 -27 -29 -26 -26 -29 -27 -28 8 Dmax= -7 Dmin= -15 -10 ÷ -13 -14 -14 -13 Ē -10 -14 -14 -14 -141 -139 Pmax= -296 Pmin= -26 相互作用ばね -139 -27 -27 -26 -26 -26 -26 -26 -26 -26 -10 -12 -13 ÷. -12 ę -14 -15 -15 -14 -15 -141 -26 -28 -26 -26 -28 -27 -26 5 -26 -12 -13 -14 -15 -15 -12 -14 -13 -12 -10 9 -141 -141 -27 -27 -26 -26 -26 -26 -26 -26 -26 <u>-1</u> ° ¢ -12 -13 -14 -15 -15 -12 -14 13 -12 -141 -152 -137 -139 -141 -28 -26 -28 -27 28 5 -26 -26 28 Sogo E M-Lay LE1 Ŧ ÷ 13 -14 -14 -14 4-14 -14 -13 -10 -10 -139 -27 -26 -27 -26 -26 -26 -26 -26 -26 Sogo E 1-Lay LE1 °--12 -12 ÷ -13 -13 -13 -13 13 Ŧ n I -137 -26 -29 ⁵⁸ -27 -27 -29 -26 27 Ŧ Ŧ Ŧ 6-Ŧ -12 -12 -12 8--152 ę -26 -26 -26 -26 -26 -26 -26 -26 26 -10 우. -10 -10 -10 ŗ -296 ۳ -152 -137 -139 -137 -152 6 -296 -139 -141 -141 ٣ 141 ę ÷ ° T -10 무 -10 ۴ <u>г</u>р ñ G 99**-**0æ^{_74} Γœ 4 23 89 -64 99-6 4 ° P 8 ⁸ Ŧ -12 12 Ŧ -12 Ŧ Ŧ റ 6-۴ (Lung) -40 -43 -46 43 -64 -41 -45 -45 4 -41 -64 (kN/m2) (kN/m2) -13 -13 -13 -12 -13 Ŧ Ŧ 12 -13 ٩ -40 -40 41 -42 42 99-99 -47 -45 -47 41 Dmax= -7 Dmin= -15 -14 -10 -10 Ŧ 13 -14 -14 4 -14 -13 Ŧ -43 -42 -46 -48 -48 46 -42 -43 48 89 89 Pmax= -98 Pmin= -40 -15 -13 -12 73 -14 -15 -15 -14 -12 9--4 -45 -48 -52 48 47 -45 -74 簡易法 44 -53 -53 -12 -13 -14 -15 -15 -15 -14 -13 -12 -10 -10 -45 -52 8 -45 46 -73 -48 -52 -52 -46 -73 -12 ÷, -14 12 -15 -15 -14 7 -12 ę ÷ -45 4 -48 -52 -48 47 -45 4 -53 -23 Kanni E M-Lay LE1 -14 -14 -14 -14 -13 ÷ -13 -14 Ŧ -10 무 -42 -48 -42 43 -43 -46 -48 46 -68 48 -68 Kanni E M-Lay LE1 -13 -13 -13 -13 -12 Ŧ -12 -13 Ŧ -40 99-00 წ റ 4 41 -42 -47 47 -42 41 99--45 -12 -12 ÷ -12 Ŧ Ŧ Ŧ -41 -64 6 6--40 -43 -46 -43 -40 ۳ 41 -45 -45 -64 -10 -10 -10 9 -10 ۴ ٩, ñ ° 5 8<u>6</u> -64 99 -68 -74 -73 89 99 ŝ 74 -64 7 -109 † 6 -109 -91 9 ۴ 9-۴ ۴ -1 -2 9 -ę œ (mm) ĥ -39 40 -32 -36 -61 41 -41 -39 -36 -32 -61 (kN/m2) (kN/m2) --6 I Ϋ́ -<u>73</u> 8 42 -47 -47 -37 2 33 -46 45 - - - 4 -10 -10 -10 -10 -10 ۴ -q ę 3 狄元FEM q Dmax= -Dmin= --45 -48 -20 -76 -76 39 -20 -20 69 48 45 -109 -32 9--÷ -10 Ę Ę 7 ę ę φ 47 -50 -23 -23 89 -52 -20 -41 41 Pmax= Pmin= 9---10 Ŧ Ę Ŧ 2 q ę -46 -50 -52 40 -78 -78 4 -52 -52 6 46 9--Ę Ę -10 -Ŧ ٣ φ œ 8 47 -20 -23 -52 153 20 6 -41 9--10 9 -10 9ę ę φ -45 -48 -76 -20 -50 -20 -48 -39 39 -45 -76 Elastic M Layer LP1 Elastic M Layers LP1 ۳ ٩ ٩ -5 б Г Ŷ -45 -73 -73 -43 -47 -46 -47 -37 -37 -45 43 <u>د</u> 9 5 ĥ -37 -39 -32 -91 32 -40 -41 -41 -39 -37 -61 ŝ 7 q -106 -106 73 -76 -80 8 -78 -76 -73 -91 -61 橫N/m2) 沈下量(圖

相互作用试ね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
簡易法	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量圃	撤赵王/m2)

図 2.1.2-15 解析結果(多層・弾性・低層・中央集中,ケース LEM2)

図 2.1.2-16 解析結果(多層・弾性・低層・側集中,ケース LEM3)

	3 狄元FEM	簡易法	相互作用试ね
沈下量	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
接地压(KN/m2)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-524 -322 -349 -349 -342 -342 -323 -322 -323 -322 -323 -323 -322 -323 -332 -333 -324 -333 -324 -333 -324 -333 -324 -333 -326 -333 -326 -333 -326 -333 -326 -333 -326 -333 -326 -333 -326 -333 -326 -333 -324 -333 -332	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

図 2.1.2-17 解析結果(多層・弾性・中層・等分布,ケース MEM1)

	3 狄元FEM	簡易法	相互作用试ね
沈下量 (圖)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 -4 -5 <t< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></t<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
被赵氏/m2)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

図 2.1.2-18 解析結果(多層・弾性・中層・中央集中,ケース MEM2)

相互作用ばね	$ \begin{bmatrix} -4 & -5 & -5 & -5 & -6 & -7 & -7 & -7 & -7 & -7 & -7 & -7$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
簡易法	-4 -5 -5 -6 -7	275 -001 -716 -341
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	沈下量()	被 抵 (kN/m2)

図 2.1.2-19 解析結果(多層・弾性・中層・側集中,ケース MEM3)

相互作用试ね	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
簡易法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量圃	被赵氏(KN/m2)

図 2.1.2-20 解析結果(多層・弾性・高層・等分布,ケース HEM1)

	3 狄元FEM	簡易法	相互作用试ね
沈下量⑪	$ \begin{bmatrix} -4 & -4 & -5 & -5 & -6 & -6 & -5 & -5 & -6 & -4 & -5 & -5 & -4 & -4 & -4 & -4 & -4$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
凝地王(KN/m2)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 -136 -736 -161 -732 -736 -161 -732 -736 -161 -736 -164 -736 -164 -736 -736 -164 -736 -736 -164 -736 -7

図 2.1.2-21 解析結果(多層・弾性・高層・中央集中,ケース HEM2)

3 次元FEM	۲ ۴	簡易法 " 」 。 。 。 。 。 。 。 。 。 。	相互作用试ね
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7 -8 -9 -10 -11 -11 -11 -10 -9 -7 -8 -9 -9 -10 -11 -11 -11 -10 -9 -7 -8 -9 -10 -11 -11 -11 -11 -10 -9 -7 -8 -9 -10 -11 -11 -11 -11 -10 -9
5 -6 -7 -8 -9 -9 -9 -10 5 -6 -7 -8 -9 -9 -10 -10	8- 6- 01- 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8 -9 -10 -11 -12 -13 -13 -12 -12 -1 -6 -9 -10 -11 -12 -12 -13 -13 -12 -12 -11
-5 -6 -7 -8 -9 -9 -10 -10	8- 6- 6-	-8 -9 -10 -11 -12 -12 -12 -11 -11 -11	-7 -9 -10 -11 -12 -12 -12 -11 -11 -11
-4 -5 -6 -7 -8 -9 -9 -9 -9	8-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	-7 -8 -9 -10 -11 -11 -12 -12 -11 -11 -10 -10	-7 -8 -9 -10 -11 -11 -12 -12 -11 -11 -10
-4 -5 -6 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	-8 -8 -7 -7 -6	-7 -8 -9 -9 -10 -11 -11 -11 -10 -9 -9 -9 -9 -10 -10 -9 -9 -9 -9 -9 -10 -10 -10 -9 -9 -9 -9 -9 -10 -10 -10 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-7 -8 -9 -10 -11 -11 -11 -10
Elastic Many Layers Dmax= HP3	- 10 (mm)	KanniEM-LayHE3 Dmax≂ -6 (mm) Dmin≕ -13 (mm)	Sogo-E-M-Lay HE3 Dmax= -6 (mm) Dmin= -13 (mm)
600 - 378 - 454 - 535 - 666 - 702 - 701 - 666 - 702 - 701		$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000000000000000000000000000000000$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
300 -163 -190 -222 -254 -277 -291 -291	-285 -303 -752	-343 -238 -228 -251 -281 -304 -315 -313 -314 -383 -826	-847 -218 -171 -181 -185 -183 -198 -207 -209 -285 -1190
310 -162 -183 -213 -213 -265 -279		$\frac{1}{10}$	$\frac{1}{10}$ $\frac{-163}{10}$ $\frac{1}{10}$ $\frac{1}{1$
	-288 -314 -809	-278194185206232253283266340750	-710 -165 -137 -140 -144 -149 -154 -169 -218 -1010
48 - 180 - 202 - 234 - 266 - 289 - 305 -	a -301 -327 -843	15 ²⁸³ -200 8 ⁻¹⁸² -213 15 ²⁴² -263 15 ⁻²⁷⁴ 15 ²⁸¹ -366 15 ⁻⁷⁶⁴	$\frac{1}{100}$ -162 $\frac{1}{100}$ -138 $\frac{1}{100}$ -147 $\frac{1}{100}$ -159 $\frac{1}{100}$ -215 $\frac{1}{1000}$ -215 $\frac{1}{1000}$
152 - 182 - 204 - 236 - 268 - 291 - 307 - 307	-303 -331 -852	-285 -202 -194 -216 -245 -267 -278 -283 -362 -793	-710 -163 -136 -138 -142 -147 -153 -159 -168 -2151014
48 -180 -201 -233 -265 -289 -304 -304	g_ 300 -327 g_ 842	$\frac{1}{10}$ - 283 - 200 $\frac{1}{10}$ - 213 $\frac{1}{10}$ - 283 $\frac{1}{10}$ - 276 - 274 $\frac{1}{10}$ - 286 $\frac{1}{10}$ 784	$\frac{1}{10}$ $\frac{1}{100}$ $\frac{1}{$
31 -172 -193 -224 -254 -277 -292 -292	-287 -313 -807	-278 -194 -185 -206 -232 -253 -263 -266 -340 -750	-710 -165 -137 -140 -144 -149 -154 -161 -169 -218 -1010
$\frac{1}{100} = -161 = \frac{1}{100} = -213 = \frac{2}{100} = -243 = -264 = \frac{1}{100} = -278 = -278$		$\frac{1}{6}^{-285} = -194$ $\frac{1}{6}^{-185}$ -205 $\frac{1}{60}^{-231}$ -250 $\frac{1}{60}^{-262}$ -258 $\frac{1}{60}^{-262}$ -329 $\frac{1}{60}^{-732}$	$B_{717}^{-163} = -163 = \frac{1}{6} -143 = \frac{1}{6} -148 = -154 = \frac{1}{6} -159 = -155 = \frac{1}{6} -174 = -214 = \frac{1}{6} -1015 = -214 = -214 = \frac{1}{6} -1015 = -214 = -214 = -214 = \frac{1}{6} -1015 = -214$
38 -163 -189 -222 -253 -276 -290 -290	-284 -302 -748	<u>-343</u> -238 -226 -251 -281 -304 -315 -313 -314 -383 -826	-647 -218 -171 -181 -185 -193 -198 -207 -209 -285 -1190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		년-603450 <u>-</u> -495 <u>-</u> 456601 <u>6</u> -629629 <u>628761 </u> 1408	면 ⁻ 1600 <mark>-894 占</mark> -793 <u>-820 </u> -854 -886 1 -914 -938 百-966 -1160 달223
Elastic Many Layer Pmax= -14	478 (kN/m2) 81 (JM/m2)	Kanni E M-Lay HE3 Pmax= -1408 (kN/m2)	Sogo Elas M-Lay HE3 Pmax= -2232 (kN/m2)

図 2.1.2-22 解析結果(多層・弾性・高層・側集中,ケース HEM3)

	3 次元FEM	簡易法	相互作用ばね
犹下量	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
接 地 S M M M M S M M M M M M M M M M M M M	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-105 -105 <th< td=""></th<>

相互作用试ね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
簡易法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 次元FEM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量	被赵王(kN/m2)

. ۴ -470 ° F -470 -53 -178 -182 -186 -187 -186 -182 -178 192 -43 -48 -54 -53 -43 192 -21 -51 48 (mm) -49 -189 -189 -49 -54 -57 99 -90 -90 -21 -43 -43 -54 ₽. ₽ P -19 -19 6 -18 -18 Ę (kN/m2) (kN/m2) -172 -47 -63 -65 -53 4 -53 -58 -65 -99 63 -58 -172 -1--1--28 -27 -27 27 27 28 相互作用ばね Dmax= Dmin= -70 -69 -49 -174 -174 Pmax= -470 Pmin= -9 -49 -56 -62 -66 -69 -66 -62 -56 8 -26 -25 -26 -25 -26 28 28 ≌ -174 -20 -174 99 19 -57 -63 -67 -70 1--70 -67 -57 -26 63 8 -26 -26 -26 26 -26 9 -70 -69 -171 -171 -49 -56 -62 -67 -69 -67 -62 -56 -49 -25 -1-2 -26 -26 25 -26 28 28 99 -48 -166 ۴ 8 -54 -64 -67 -68 -67 -64 -90 -54 11 -25 -24 25 25 -24 -25 11 Sogo P M-Lay LPM3 -159 -62 -159 -45 -51 -56 99 -62 -63 99--56 -51 -45 3 -24 -23 -24 16 -24 -24 24 16 sogo P M-Lay LPM3 -151 ¥ 4 -46 Ξ 4 -21 -21 -21 54 5 -46 -151 5 3 23 15 24 24 2 24 -160 -160 -50 -50 -41 -36 -41 -45 -48 -20 -48 -45 -36 -15 -15 -15 -16 -12 -12 -15 -142 -146 -142 -382 --382 -155 -148 -149 -146 -155 ę, -35 148 ē -35 -41 -43 -43 -43 -41 -38 -<mark>1</mark>94 Ē 105 -**1**-01 102 102 105 ° P -55 -52 ř, -44 ٩ 4 -52 -27 -24 ⁴ -44 -61 -61 -57 -49 -53 -57 -66 -43 -49 -54 -60 ę -54 -43 (mm) 66--53 -47 -20 -54 -55 -54 -50 -47 (kN/m2) (kN/m2) -89 -47 -53 -47 -53 -28 62 -65 99 -65 -62 -28 -41 4 -47 -43 9 46 4 4 41 -32 Pmax= -184 Pmin= -33 -56 -66 -49 -49 -56 -91 -99 -69 -70 69 -61 -48 -43 -45 -48 -45 43 -48 -92 48 49 Dmax= Dmin= -97 -57 -57 9 -70 -1 -70 -67 Ÿ, -21 -51 -45 -47 -50 -47 42 -51 易法 -22 -67 -50 -70 -56 -62 -67 -69 69--67 -62 -56 -50 -50 -44 -46 -20 -49 -46 44 -50 -94 -49 簡 ₩ 8 48 -54 β. -64 -67 89--67 -64 9 -54 -87 46 41 43 -46 43 46 18 Kanni P M-Lay LPM3 -1--45 -51 -56 99 -62 63 62 -99 -56 -51 -45 11 4 -36 38 \$ 40 38 36 4 Kanni P M-Lay LPM3 4 -46 -70 4 -46 -21 -54 -56 -57 -56 -54 -21 -37 -33 -36 -37 22 34 -34 ŝ -48 -41 -1 -37 -41 -45 -48 -50 -21 -20 -45 -37 1--39 -34 -36 69 -38 -36 46--39 8 -104 -32 -104 -43 ş -35 -39 -41 -44 -43 -41 -39 -35 -61 -54 -56 -29 9 -59 -56 -54 -61 ° 4 ^{−32} -₽__40 ₽ ₽ -⁻³³ _____ 南-120 _____215 -P⁻²¹⁵ -37 -37 -27 -107 124 -123 127 -123 124 -107 -26 -41 -44 -43 -100 -48 -47 -100 -39 -44 -47 -39 (mm) 铃 -32 -32 -25 66-45 66--25 -41 -45 -47 4 (kN/m2) (kN/m2) -30 -109 -50 -29 -37 -44 -54 -23 -37 -50 -53 -44 -109 -39 -43 -45 -45 -46 45 -45 -39 -29 -53 -33 -112 -48 -57 -48 -41 -32 -40 -57 -58 -112 -215 -28 -53 Dmax= Dmin= -42 -45 -46 -44 4 4 -46 4 -42 -106 8 -34 -106 -43 -45 -43 Pmax=. Pmin=. -41 -49 -54 -58 -59 89 -55 -49 -42 -45 -45 44 -45 44 -45 3 次元FEM (-57 -53 -47 -47 -32 -40 -40 -32 Ē -53 -56 -58 Ę -42 -46 46 -43 -42 -44 44 -42 -44 44--49 -52 -53 -52 -49 -37 ŝ -107 -107 -29 -37 -44 -39 4 46 4 42 -39 42 4 46 -43 -25 -32 -38 -43 -47 -46 -38 -32 -25 -40 -46 -37 -38 -42 43 -42 -40 8°--36 -95 -95 Plastic M Layer LP35 <u>−</u>_0 -20 -26 -31 -35 86--39 -38 -35 -31 -26 Plastic M Layers LP35 -37 89 -37 33 -33 ŝ æ -E ē 27 45 -19 -14 -28 -19 -23 -27 -30 -29 -27 -24 -33 -30 -68 -14 -29 -28 -30 -33 -34 -34 -68 -34 -15 -19 -18 -15 -109 -109 -12 -18 -19 -20 -12 °, 2 -72 -74 -56 -65 -73 -68 -64 -57 橫N/m2) 沈下量圖

図 2.1.2-25 解析結果(多層・弾塑性・低層・側集中,ケース LPM3)

相互作用试ね	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
簡易法	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total -396 -311 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -371 -396 -396 -319 -718 -396 -319 -366 -396 -316 -396 -366 -396 -366 -396 -366 -396 -366 -396 -366 -396 -366 -396 -371 -366 -396 -371 -366 -396 -371 -366 -396 -371 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -366 -386 -386 -386 -386 -386 -386 -386 -386 -386 -386 -386 -386 -386 -386 <t< td=""></t<>
3 狄元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	沈下量	版 KN/m2)

図 2.1.2-26 解析結果(多層・弾塑性・中層・等分布,ケース MPM1)

相互作用试ね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
($\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-357 -235 -216 -216 -216 -216 -216 -216 -210 -220 -220 -221 <th< td=""></th<>
3 狄元FEM	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	沈下量(画)	被郑氏 (kN/m2)

相互作用试ね	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-106 -704 -603 -917 -611 -615 -665 -703 -653 -165 -682 -216 -134 -123 -137 -1137 -1157 -150 -565 -682 -216 -134 -123 -137 -157 -582 -666 -687 -116 -45 -37 -49 -57 -22 -42 -563 -544 -116 -45 -37 -49 -57 -22 -42 -53 -546 -118 -51 -47 -52 -71 -56 -53 -60 -146 706 -549 -121 -55 -53 -60 -55 -142 -705 -540 -118 -51 -47 -52 -71 -56 -53 -60 -145 -706 -540 -118 -51 -41 -52 -71 -65 -53 -60 -145 -706 -540 -118 -51 -41 -52 -52 -142 -706 -561 -118 -51 -130 -52 -53 -142 -706 -541 -118 -51 -51 -
簡易法	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 狄元FEM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341 -24 -296 -331 -365 -412 -426 -411 -118 -117 -118 -138 -431 -431 -332 -431 -431 -431 -431 -431 -431 -332 -431 -431 -431 -431 -431 -332 -431 -431 -332 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -431 -
	沈下量(画)	被揭田(KN/m2)

図 2.1.2-28 解析結果(多層・弾塑性・中層・側集中,ケース MPM3)

相互作用试ね	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
簡易法	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2738 -1177 -603 -916 -902 -904 -916 -916 -1177 -503 -1177 -503 -514 -223 -318 -318 -318 -314 -503 -1177 -1177 -503 -514 -223 -318 -318 -318 -513 -503 -1177 -616 -233 -213 616 -179 -178 -179 -186 -213 -323 -916 -616 -213 -223 -213 616 -179 -178 -170 -186 -213 -324 608 -916 -233 -213 6106 -179 -170 -178 -170 -916 -213 -904 -916 -233 -213 6106 -179 -170 -178 -203 -916 -916 -203 -179 6172 -170 -178 -201 -318 -904 -916 -223 -213 6106 -170 -178 -179 -203 -916 -916 -223 -213 6106 -213 6208 -213 6208 -117 -916 -318 -900 -179 -179
3 次元FEM	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5/007 -154 -150 -163 -101 <t< td=""></t<>
	沈下量	被赵氏/m2)

図 2.1.2-29 解析結果(多層・弾塑性・高層・等分布,ケース HPM1)

相互作用试ね	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	² 2116 -1023 64 -610 606 -610 64 -610 64 -610 64 -610 64 -1029 2116 -1029 -230 -139 -142 -143 -145 -143 -142 -139 -230 -1029 600 -143 6-91 -91 -143 -145 -143 -142 -130 -1029 600 -143 6-91 -91 -91 -91 -91 -91 -91 -91 -91 -91
簡易法	-26 -26 -29 -29 -29 -29 -29 -29 -29 -29 -21 -21 -21 -21 -26 -27 -29 -30 -31 -31 -31 -31 -31 -21 -29 -26 -20 -30 -31 -31 -31 -31 -31 -31 -29 -26 -30 -32 -32 -32 -32 -32 -32 -32 -32 -29 -31 -32 -34 -33 -32 -32 -34 -33 -29 -31 -32 -34 -35 -35 -34 -33 -32 -29 -31 -32 -34 -35 -34 -33 -31 -29 -29 -31 -32 -34 -35 -34 -32 -31 -29 -29 -31 -35 -36 -34 -34 -33 -31 -29 -29 -31 -32 -33 -32 -33 -31 -29 -29 -30 -33 -34 -34 -34 -39 -29 -29 -30 -32 -31	1384 -708 540 -500 -644 -644 -600 -540 -708 -7134 -708 -221 -223 -223 -223 -223 -224 -236 -708 -600 -221 -211 -277 -228 -214 -206 -708 -600 -221 -166 -158 -166 -161 -166 -211 -500 -500 -221 -166 -158 -166 -158 -166 -221 -500 -494 -228 -166 -166 -161 -159 -166 -223 -604 -494 -229 -166 -166 -161 -159 -166 -223 -604 -494 -228 -166 -161 -161 -169 -168 -169 -494 -228 -166 -161 -161 -169 -168 -600 -221 -166 -161 -161 -169 -223 -600 -221 -166 -161 -161 -169 -168 -600 -221 -160 -161 -161 -169 -168 -600 -221 -160 -168
3 狄元FEM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1349 -562 -562 -563 -563 -566
	沈下量	裱地压 (KN/m2)

相互作用ばね	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
簡易法	-28 -31 -36 -38 -39 -40 -41 -42 -30 -33 -35 -38 -40 -41 -42 -42 -30 -33 -35 -38 -40 -41 -42 -42 -31 -36 -36 -41 -42 -42 -42 -42 -31 -36 -37 -40 -46 -46 -46 -32 -33 -31 -40 -45 -46 -46 -32 -38 -41 -46 -46 -46 -46 -32 -38 -41 -43 -46 -46 -46 -32 -33 -41 -43 -46 -46 -46 -32 -33 -41 -43 -46 -46 -46 -32 -33 -41 -43 -46 -46 -46 -32 -33 -31 -41 -43 -43 -43 -32 -33 -31 -41 -41 -44 -44 -33 -33 -36 -46 -46 -46 -34 -41 -42 -42 -42 -3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 狄元FEM	-12 -16 -20 -23 -27 -30 -35 -36 -36 -13 -17 -21 -24 -28 -31 -35 -36 -37 -14 -18 -22 -26 -30 -33 -36 -37 -38 -38 -14 -19 -22 -26 -30 -33 -36 -39 -36 -15 -19 -22 -26 -30 -33 -36 -36 -40 -15 -19 -23 -27 -30 -33 -36 -38 -40 -15 -19 -23 -27 -31 -36 -38 -40 -41 -15 -19 -23 -27 -31 -36 -38 -40 -41 -16 -19 -23 -27 -31 -36 -38 -40 -41 -16 -19 -23 -21 -31 -36 -38 -40 -41 -16 -19 -23 -21 -31 -36 -36 -36 -36 -16 -19 -22 -26 -32 -36 -36 -40 -16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	沈下量→	接地王 (kN/m2)

図 2.1.2-31 解析結果(多層・弾塑性・高層・側集中,ケース HPM3)

0

図 2.1.2-33 沈下量比較(1 層弾性地盤-中層建物)

図 2.1.2-35 沈下量比較(多層弾性地盤-低層建物)

図 2.1.2-37 沈下量比較(多層弾性地盤-高層建物)

図 2.1.2-39 沈下量比較(多層非線形地盤-中層建物)

図 2.1.2-40 沈下量比較(多層非線形地盤-高層建物)

図 2.1.2-41 FEM 解析における剛性残存率(低層・等分布, LPM1)

図 2.1.2-43 FEM 解析における剛性残存率(低層・側集中, LPM3)

図 2.1.2-44 FEM 解析における剛性残存率(中層・等分布, MPM1)

図 2.1.2-45 FEM 解析における剛性残存率(中層・中央集中, MPM2)

図 2.1.2-46 FEM 解析における剛性残存率(中層・側集中, MPM3)

図 2.1.2-47 FEM 解析における剛性残存率(高層・等分布, HPM1)

図 2.1.2-48 FEM 解析における剛性残存率(高層・中央集中, HPM2)

図 2.1.2-49 FEM 解析における剛性残存率(高層・側集中, HPM3)

-74-

2.1.3 実建物の沈下計測による評価法の検証

ここでは、2.1.1節で示した常時荷重時の地盤の剛性評価法の妥当性について、実建物の沈下計 測とシミュレーション解析の結果を比較することにより検証する。

(1) Sビル²⁷⁾

本建物の特徴は、逆打ち工法で施工されており、建物荷重の支持方法が、地上28 階までの荷重 は杭で支持され、その後竣工までの荷重は杭と直接基礎の併用基礎(パイルド・ラフト基礎)で 支持されていることである。従って、沈下解析を精度よく行うには、施工過程を反映した解析モ デルと地盤剛性の評価が重要となる。そこで予測解析には地盤を立体要素でモデル化した3次元 FEM 解析を用いている。

①建物概要

東京都内に直接基礎により建設された超高層事務所ビルで建物概要は以下の通りである。 建物断面図・基準階平面図を図 2.1.3-1 に,1 階平面図を図 2.1.3-2 に示す。

- ・階 数 : 地上 40 階, 地下 4 階
- ・建物高さ : GL+195.0m
- ・基礎底深さ:GL-28.3m
- ・構造種別 :地下部 鉄筋コンクリート造(一部 SRC 造, S 造),耐震壁付ラーメン構造 地上部 鉄骨造,バンドルチューブ構造
- ・基礎構造 :直接基礎,べた基礎
- ・長期荷重 :高層棟 350kN/m²,低層棟 190kN/m²

図 2.1.3-1 建物断面図·基準階平面図

図 2.1.3-2 建物断面図·基準階平面図

②地盤概要

本敷地の地盤は図 2.1.3・3 に示すように,GL-16m までは N 値が 10 以下の沖積層,それ以深 は概ね洪積層で,GL-20m までは東京砂層及び東京礫層,それ以深は N 値 60 以上の江戸川砂層 となっており,高層棟は GL-28m の洪積江戸川砂層を支持地盤としている。また地下水位は GL -11m であった。

·			1	1					
深度(m)	柱状図	地質名	土質名	N値 10 20 30 40 50 6	0	湿潤密度 γ(t/m₃)	S波速度 Vs(m/s)	ポアソン比 v	ヤング率 E (kN/m2)
水位	//^///////////////////////////////////	表 層	腐植土層			1.50	100	0.49	45
10		沖積層	粘性土層	and a		1.60	200	0.49	191
Ξ		東京礫層	砂礫	Paad		1.90	510	0.47	1451
20 — 30 — 40 —		江戸川層	砂質土層		基礎	1.80	410	0.47	890
50 <u>-</u> 60 <u>-</u>		江戸川層	砂質土層			1.90	380	0.47	807
70 <u> </u> 80 <u> </u>		江戸川層	砂礫混じり 砂層			1.90	440	0.47	1079
90		上総層	粘性土層 砂質土層			1.85	540	0.45	1569
100		上総層	粘性土層 砂質土層			1.90	470	0.46	1226

図 2.1.3-3 地質柱状図

③施工概要

本工事では、施工期間の短縮、掘削工事の安全性及び即時沈下を低減し、躯体及び地下鉄等の 周辺環境への影響を最小限にするため、仮設山留壁に剛性の高い RC 地中連続壁を用いた逆打ち 工法を採用した。地中連続壁は壁厚 1.0m で GL-50m~GL-78m の不透水層まで施工した。ま た、構真柱杭は場所打ちコンクリート杭で、軸径を 2200 ¢ ~3000 ¢, 拡底径で 3400 ¢ ~3800 ¢ とし、杭の周面摩擦を確保するため杭長さを基礎底から 17m~20m と長くした。図 2.1.3・4 に杭 配置図、図 2.1.3・5 に地下躯体の断面図を示す。また図 2.1.3・6 に工事工程及び予測解析で設定し た解析ステップを示す。

図 2.1.3-4 杭配置図

図 2.1.3-5 地下部断面図

図 2.1.3-6 工事工程・予測解析ステップ

④予測解析

予測解析は地盤の沈下量及び地下躯体の部材応力を精度よく予測するため、地下躯体及び地盤 をモデル化した3次元立体 FEM 解析を用いたステップ解析を採用した。解析手順は工程表に従 い、掘削と構築の各施工ステップ毎に実施工に対応したモデルを作成し、各ステップに作用する 増分荷重に対して弾性解析を行いそれらの結果を重ね合わせることにより各ステップにおける部 材応力と変位を求めた。地盤剛性は掘削に伴う拘束圧低下による剛性低下を式(2.1.1-2)を用いて 計算し、さらに建物構築による鉛直ひずみ増分による剛性低下を式(2.1.1-11)を用いて各ステップ 毎に設定した。

図 2.1.3-7 に地下躯体,杭,地盤の接合方法,図 2.1.3-8 に解析モデル図,図 2.1.3-9 に地盤の 剛性,図 2.1.3-10 に各解析ステップにおける解析モデルと荷重を示す。

モデル化範囲は沈下の大きい高層棟に着目し建物の対称性を考慮して高層棟の1/2の範囲と し、建物は地盤の不同沈下の影響の大きい地下躯体についてのみモデル化し、地盤は平面方向及 び深さ方向とも基礎幅の2倍の範囲とした。モデル化対象部材は柱・梁・杭を梁要素で、スラブ・ 耐震壁・基礎版・地中連続壁をシェル要素でモデル化し、柱は施工段階により鉄骨柱から SRC 柱 に剛性を変化させた。地盤はソリッド要素でモデル化し、剛性は図2.1.3-8に示すように基礎直下、 基礎外周及びその外側の3つの領域に分割し剛性評価を変えた。また、基礎版以浅の掘削される 地盤は掘削荷重としてのみ考慮した。地中連続壁と地盤は完全付着とした。杭と地盤については、 完全付着にすると躯体の不同沈下を過少評価するためここでは杭頭以外で完全付着とした。また、 基礎版構築後は杭頭と地盤は一体化させた。

解析モデルの境界条件は、外周部を鉛直方向ローラー支持とし、対象境界は鉛直方向ローラーで回転拘束とした。応力解析は MSC/NASTRAN を用いた弾性解析とした。

図 2.1.3-8 地下部断面図

GL0.0m		∇1FL		初期剛性	ステップ 0.5~1.0	ステップ 1.5~2.0	ステップ 2.5~3.0	ステップ 3.5~4.0	ステップ 5.0	ステップ 6.0
CI -75	7.5	∇B1Fl		45	****					
GL = 12.0	4.5	∇B2Fl		45	25 (0.56)					
	7.0	∇B3FI		191	136 (0./1)	69 (0,36)				
<u>GL-19.0</u>		∇B4FI	基礎	1451	1147 (0.79)	865 (0.60)	620 (0:43)			
GL-43.0	24.0		杭	890	790 (0.89)	709 (0.80)	630 (0.71)	429 (0.48)	315 (0.35)	200 (0.22)
GL-60.6	17.6	連壁		807	764 (0.95)	730 (0.90)	692 (0.86)	586 (0.73)	540 (0.67)	343 (0.43)
GI -75 6	15.0			1079	1049 (0.97)	1020 (0.95)	991 (0.92)	902 (0.86)	902 (0.84)	752 (0.70)
<u>GL-84.6</u>	9.0			1569	1530 (0.98)	1510 (0.96)	1471 (0.94)	1383 (0.88)	1383 (0.88)	1383 (0.88)
115 <u>GL-200.0</u>	.4 🔾	\$		1226	1216 (0.99)	1216 (0.99)	1206 (0.99)	1187 (0.97)	1187 (0.97)	1187 (0.97)

建物直下の地盤の割線剛性 *E(MPa)*

注)()内は初期剛性に対する比

図 2.1.3-9 各ステップにおける地盤の剛性

注)荷重の()内数値は当該ステップまでの累積荷重を示す。荷重値の符号は鉛直下向きを正とする。

図 2.1.3-10 各解析ステップにおける地下躯体モデル及び荷重

⑤解析結果と実測値の比較

図 2.1.3-11 に地下水の間隙水圧計と地盤の層別沈下計の配置図を、図 2.1.3-12 に設置深さを示 す。他にも構真柱の軸力,高層棟と低層棟の境界部の梁・耐震壁のひずみなどを計測したがここ では省略する。

計測はリアルタイム計測システムを導入し、4回/日の頻度で計測することにより、施工の安 全性、構真柱や梁、耐震壁などの健全性を確認しつつ、予測解析と比較することにより仮定条件 の妥当性を検証し、次のステップの予測を行い施工計画に反映した。以下に沈下に関する実測値 と予測解析結果の比較を示す。

i) 層別沈下

図 2.1.3-13 に地下水位の経時変化を示す。掘削に伴って地下水位が低下し、ステップ 5.0 以降で揚水を止めた後地下水位は元のレベルまで回復している。

図2.1.3-14に高層棟下部の層別沈下量(SA1)及び図2.1.3-15には層間変位量の経時変化を示す。 これより、ステップ1.0,2.0,3.0の地下階床スラブ施工時に若干は沈下するものの、ステップ3.5 の基礎底までの掘削段階ではリバウンドが主で、最大リバウンド量は18mmとなっており、予測 解析の21mmより若干小さめの値になっている。その後の基礎版施工以後は沈下に転じ、地下水 位を下げていたディープウェルを閉鎖するステップ5.0以降まで最大8mmの沈下が生じている。 浮力が作用してからは沈下は増加せず横ばい状態となっている。

ii) 杭の軸力

図 2.1.3-16 に杭軸力の経時変化を示す。基礎版を施工するステップ 4.0 までは杭のみで荷重を 支持しており、ステップ 4.0 以降は基礎版と杭の両方で荷重を支持する機構になるためステップ 4.0~5.0 までは軸力増分が減少する。ステップ 5.0 までは予測解析と実測はよく一致している。 また、ステップ 5.0 以降に浮力が作用するため杭軸力の実測値は圧縮軸力が減少している。これ は浮力が作用した場合、杭の深い部分の摩擦抵抗で杭がアンカーとなり引張り軸力が作用するた めである。この現象は予測解析でも確認されており最終軸力は予測結果と実測値はおおむね一致 している。

⑥まとめ

本建物の沈下解析を実施した 1996 年頃の計算機の環境では、ホストコンピューターを使って も本例題のような大規模な 3 次元 FEM 解析は相当な計算時間を要する時代であった。本例題の 弾性計算で 1 ケースの CPU タイムが 1 時間,実行時間が 8 時間であった。したがって、本解析 例のような自由度の大きいモデルを弾塑性で解析することは不可能であったため、施工過程をい くつかのステップに分割し、あらかじめ地盤の剛性を計算しておき解析自体は弾性で行い重ね合 わせることで各ステップの変形と応力を評価するステップ解析法を開発した。

本解析例と実測値の比較から、今回のように基礎下の地盤がN値60以上の洪積砂地盤においては2.1.1節で設定した地盤の剛性評価は掘削時及び構築時とも妥当であったと考えられる。

図 2.1.3-16 杭軸力の経時変化(V5, GL-33.4m)

(2) Tビル⁸⁵⁾

本建物の特徴は、基礎直下が地盤改良体であり、さらにその下の支持地盤が洪積砂層と洪積粘 土層の互層になっていることである。その他に、基礎底レベルに段差があるため地盤改良体によ って支持地盤まで荷重を伝達する必要があること、及び免震建物であるため不同沈下を小さく抑 える必要があることなどが挙げられる。施工法は一般的な順打ち工法であるため、S ビルのよう な施工時解析は必要なく、地盤の剛性をウィンクラーばねでモデル化した解析法を採用した。 ①建物概要

東京都内に直接基礎により建設された大学校舎で建物概要は以下の通りである。 建物断面図を図 2.1.3-17 に示す。

- ・階 数 : 地上 10 階, 地下 1 階
- ・建物高さ : GL+40m
- ・基礎底深さ:GL-4.7m~GL-10.2m
- ・構造種別 :鉄筋コンクリート造 (一部 SRC 造, S 造),耐震壁付ラーメン構造, 地下1階柱頭免震構造
- ・基礎構造 : 直接基礎, べた基礎(基礎底~GL-11.5m まで地盤改良)
- ・長期荷重 : 基礎下レベルで 200kN/m²

②地盤条件及び荷重条件

図 2.1.3-18 に地盤の柱状図を示す。表 2.1.3-1 に地盤改良の仕様を,図 2.1.3-19 に改良範囲を 示す。建物の部位により基礎底の深さが異なるため、地盤の種別により地盤改良の仕様を変えて いる。地盤改良は、Vs=400m/sec となるように、セメント系固化材と原位置の土を攪拌混合する 方法で行い、支持地盤の長期許容地耐力は 300kN/m²とした。

図 2.1.3-18 地盤柱状図及び層別沈下計位置

位置	改良深さ	改良対象土	固化材添加量	設計基準強度	せん断波速度	
			(kg/m^3)	$Fc(kN/m^2)$	Vs(m/s)	
	$CI = 9.7 \circ CI = 11.5$	粘性土	150	000	400	
Û	GL-0. // GL-11. 5	砂質土	150	900		
		ローム				
2 3	GL−4.9~GL−11.5	粘性土	300	900	400	
		砂質土				

表 2.1.3-1 地盤改良の仕様

注) 改良体の長期許容支持力度 qa=1/3・Fc=300 kN/m²

地盤改良位置図

図 2.1.3-19 地盤改良範囲

③沈下解析

建物の施工法は,基礎底レベルまで掘削後に地盤改良を行い,建物を構築する順打ち工法を採 用した。従って,沈下解析では,地盤の初期ヤング係数 Eo を PS 検層によるせん断波速度 Vs を 用いて算定し,掘削による有効応力の減少による剛性低下を考慮し構築前の地盤のヤング係数 E を求めた後に,さらに建物構築時の鉛直方向ひずみ増分による剛性低下を考慮して E'を求めた。 それをもとに Steinbrenner の近似式を用いて沈下量を計算し,荷重と沈下量の関係から地盤ばね を求め,基礎の FEM 解析モデルにウィンクラーばね要素でモデル化して解析を行った。表 2.1.3-2 に掘削後の地盤剛性算定結果及び表 2.1.3-3 に建物構築時の地盤剛性算定結果を示す。 i) 長期荷重時の鉛直地盤バネ

a)掘削前の地盤の初期ヤング係数

b)掘削後のヤング係数

$$\frac{E}{E_0} = \left(\frac{\sigma_V}{\sigma_{V0}}\right)^{0.4} \dots (2.1.3-2)$$
ここに、E : 掘削後のヤング係数(kN/m²)
Eo : 掘削前のヤング係数(kN/m²)
 $\sigma v : 掘削後の有効応力(kN/m2) (Boussinesq の式より算定, 2.1.1-4 式)$
 $\sigma vo : 掘削前の有効応力(kN/m2) (Boussinesq の式より算定, 2.1.1-4 式)$

c)建物構築後のヤング係数

d)長期荷重時鉛直バネ

- c)で得られた荷重-沈下関係から、基礎の中央部および端部の沈下量を用いて鉛直バネ を算定し、両者の間は直線補間する。
- 中央部

kv=w/ δ =200.0/0.02=10000kN/m/m²

・端部

kv=w/ δ =200.0/0.01=20000kN/m/m²

地層 No	深さ	層厚	層中央 深さ	単位体積 重量	水中単位 体積重量	掘削前 有効応力	掘削時 鉛直応力	掘削後 有効応力	ヤング係数 低下率	初期ヤング 係数	掘削後 ヤング係数
	GL-m	(m)	(m)	(kN/m3)	(kN/m3)	σνο	Δσν	σν		Eo	Е
						(kN/m2)	(kN/m2)	(kN/m2)		(kN/m2)	(kN/m2)
1	5.8	5.8	2.9	13.8	13.8	40.1					
2	8.6	2.8	7.2	15.6	15.6	102.0					
3	10.5	1.9	9.6	16.1	16.1	139.1					
4	12.8	2.3	11.7	18.9	8.9	164.7	-154.4	10.3	0.33	6.39E+05	2.11E+05
5	18.8	6.0	15.8	19.6	9.6	203.8	-154.0	49.8	0.57	9.53E+05	5.43E+05
6	23.9	5.1	21.4	15.7	5.7	247.1	-151.0	96.2	0.69	2.67E+05	1.83E+05
7	26.4	2.5	25.2	18.1	8.1	271.8	-146.7	125.1	0.73	7.22E+05	5.29E+05
8	29.6	3.2	28.0	19.1	9.1	296.6	-142.4	154.2	0.77	1.11E+06	8.58E+05
9	33.8	4.2	31.7	16.4	6.4	324.6	-135.5	189.1	0.81	6.52E+05	5.25E+05
10	41.9	8.1	37.9	18.2	8.2	371.4	-122.2	249.1	0.85	9.73E+05	8.29E+05
注) 扌	屈削荷重	は154k	N/m2								

表 2.1.3-2 掘削後の地盤剛性算定結果

表 2.1.3-3 建物構築時の地盤剛性算定結果

地層 No	深さ GL-m	層厚 h(m)	層中央 深さ (基礎下-m)	ポアソン 比	掘削後 ヤンク [*] 係数 E (kN/m2)	基礎中央 層圧縮量 Se	鉛直ひずみ ε v (So/h)	剛性低下 率	構築後ヤング 係数 E'
1	12.8	1.3	0.7	0.45	2. 09E+05	3.29E-04	(3e/II) 1.01E-04	0.63	1. 31E+05
2	18.8	6.0	4.3	0.30	5.37E+05	2.81E-03	1.87E-04	0.48	2.56E+05
3	23.9	5.1	9.9	0.45	1.84E+05	9.15E-03	7.16E-04	0.26	4.80E+04
4	26.4	2.5	13.7	0.35	5.24E+05	1.46E-03	2.34E-04	0.43	2.25E+05
5	29.6	3.2	16.5	0.30	8.49E+05	9.60E-04	1.20E-04	0.58	4.94E+05
6	33.8	4.2	20.2	0.45	5.19E+05	2.05E-03	1.95E-04	0.47	2.42E+05
7	41.9	8.1	26.4	0.35	8.19E+05	2.31E-03	1.14E-04	0.59	4.87E+05
8	45.0	3.1	32.0	0.35	1.01E+06	5.61E-04	7.23E-05	0.73	7.37E+05
9	50.0	5.0	36.0	0.35	1.01E+06	8.29E-04	6.63E-05	0.76	7.67E+05
10	55.0	5.0	41.0	0.35	1.01E+06	7.29E-04	5.83E-05	0.80	8.12E+05

注)構築荷重は200kN/m2

中央部地表面沈下量= 0.021 (m)

隅角部地表面沈下量= 0.005 (m)

- ii) 応力解析モデル
 - ・解析プログラムは「MSC/NASTRAN」を用いた弾性解析とした。
 - ・モデル化は、基礎スラブおよび地下外壁を面外・面内剛性を有するシェル要素、耐震壁を面 内剛性を有するシェル要素、柱・梁を梁要素、基礎下には地盤の鉛直バネ及び水平バネをバ ネ要素でモデル化した。図 2.1.3-20 に解析モデル図を示す。
 長期荷重は平均 186kN/m²である。

図 2.1.3-20 解析モデル図

④解析結果

解析結果のうち,図 2.1.3-21 に長期荷重時の沈下量分布,図 2.1.3-22 に接地圧分布を示す。 沈下量は中央部で 19mm,外周部で 11mm 程度,接地圧は中央部で 220kN/m²,外周部で 180kN/m となっている。

鉛直変位図(正値:上向き,負値:下向き,単位:mm)

図 2.1.3-21 沈下量分布図(単位:mm,〇印は沈下計測位置)

図 2.1.3-22 接地圧分布図(単位: kN/m²)

⑤沈下計測結果

掘削工事前に基礎底以深に層別沈下計を1箇所設置し,掘削開始〜建物完成時までの地盤の鉛直方向変位を自動計測した。図 2.1.3-23 に計測装置の平面配置図,図 2.1.3-18 に層別沈下計の設置深度を示す。層別沈下計測は,地盤の種別毎(砂,粘土)の層間変位を計測できるような設置深さとした。

図 2.1.3-23 計測装置の平面配置図

i) 層別沈下計測結果

図 2.1.3-24 に層別沈下量の累積値の経時変化を、図 2.1.3-25 に層間変位の経時変化を示す。

掘削時には上方へ11mmのリバウンドを生じ、その後建物構築により11.5mm沈下していること がわかる。図 2.1.3-21 の沈下解析結果と比較すると、計測位置での解析値は 12mm となっており、 計測結果の 11.5mm とよく対応していることがわかる。また、図 2.1.3-25 の層間変位の経時変化か ら,GL-18m~GL-28mの粘土層の圧縮量が大きいことがわかる。

ii) 地盤の剛性評価

表 2.1.3-4 に層別沈下計測結果を用いて、地下躯体施工時の基礎下の trg 層, To-c 層及び Ka-1 層 のヤング係数の実測値と構築時の鉛直ひずみ増分 ε v に伴う剛性低下式(2.1.1-11)を用いて計算した ヤング係数の予測値の比較を示す。

この結果より,実測値の方が若干剛性が大きいが,予測値はおおむね実測値と一致していると考え られる。

					17	実測値(地下躯体w=80kN/m2)			計算値		
地層	層中心 GL-m	層中心 基礎下-m	h	掘削後E	δν	ϵ v= δ v/h	Δσν	$E' = \Delta \sigma v / \varepsilon v$	$E/E' = 0.01 \epsilon v^{-0.45}$	E'c	実測値/計算値
			(m)	(kN/m2)	(m)		(kN/m2)	(kN/m2)		(kN/m2)	E'/Ec'
trg	16	6	6	5.40E+05	1.30E-03	2.17E-04	79	3.65E+05	4.46E-01	2.41E+05	1.52
To-c	22	12	4	1.80E+05	3.50E-03	8.75E-04	77	8.80E+04	2.38E-01	4.28E+04	2.06
Ka-1	32	22	4	5.30E+05	1.00E-03	2.50E-04	69	2.76E+05	4.18E-01	2.21E+05	1.25

表 2.1.3-4 地盤剛性の実測値と予測値の比較(地下躯体施工時)

(3) まとめ

2.1.1 節で示した直接基礎に適用する地盤の剛性評価法について,実建物における実測値と,地盤 をソリッド要素でモデル化した3次元FEM解析及び,地盤をウィンクラーばねでモデル化したFEM 解析の比較から,本論文で採用した剛性評価法²⁶⁰が安全側でありほぼ妥当な結果を与えることが確 認された。

2.2 パイルド・ラフト基礎の常時荷重時における沈下解析法

パイルド・ラフト基礎の常時荷重時における沈下解析には、ラフトー杭-地盤の相互作用を評価す る必要がある。

ここでは、2.1節のラフトの沈下解析法を拡張し、ラフトの鉛直ばねと杭の鉛直ばねを弾性論から 導き、基礎梁を格子梁でモデル化した FEM 解析に組み込んだハイブリッド法を提案する。ただし、 ここでは、杭間距離が十分離れている場合を対象とし、杭-杭間の相互作用は考慮しないものとする。

また地盤の剛性評価は, FEM 解析から得られるラフトの負担する荷重に対して Steinbrenner の 近似式により求めた地盤の各層の鉛直ひずみ増分に伴う剛性低下を考慮することにより決定する。

この方法の特徴は、ラフトばねと杭ばねをウィンクラーばねで表現することにより FEM の自由度 が小さくなり、感度解析など多数回の FEM 解析を行う場合には解析時間が短縮されることである。

2.2.1 簡易沈下解析法の提案

パイルド・ラフト基礎は、杭の摩擦力による抵抗と、ラフト(直接基礎)の地盤による抵抗の2つ の沈下抵抗の組み合わせにより支持されるため、両者の相互作用を考慮した沈下解析法が必要となる。 この相互作用には、ラフトから杭、杭からラフト、杭から杭、の3つの要素がある。これらの作用を 全てばね要素として、基礎構造の有限要素法に組み合わせると全体剛性マトリックスはフルマトリッ クスとなり複雑なプログラムとなる。

一方, 基礎構造の有限要素法にラフトの地盤ばねと杭と地盤間の摩擦ばねをともにウインクラーば ねとすることにより,一般的な FEM 解析ツールが利用できる。この場合,上記の全ての相互作用は 考慮できないが,条件によっては全ての相互作用を考慮した場合と同程度の精度を得られる場合もあ る。

ここで提案するのは、図 2.2.1-1 に示すような基礎を格子梁にモデル化し、ラフトには地盤の沈下 剛性をモデル化した地盤ばね,杭については杭と地盤の相対沈下量に基づく沈下抵抗ばねをウィンク ラーばねでモデル化する方法である。地盤ばねと杭ばねは弾性論に基づき求めるが、その際に地盤の 鉛直ひずみに応じた剛性低下を考慮する。

図 2.2.1-2 に地盤ばねと杭ばねの考え方,図 2.2.1-3 にフロー図を示す。

ラフトの地盤ばねは、地盤の PS 検層で得られた初期ヤング係数 Eo に対して、まず平均荷重 w_{av} に 対する地盤の各層のヤング係数 E'を Steinbrenner の近似式と別途定めた地盤の鉛直ひずみに応じた 剛性低下関係を用いて収斂計算により求め、次に基礎の節点に作用する荷重 Pi に対して Boussinesq の解を用いてラフトの各節点の沈下量 δ i を計算し、荷重と沈下量の関係からラフトの地盤ばね kr を計算する。

次に、杭に設定した仮想の節点位置におけるラフトの沈下計算から求めた地盤の沈下量 δ_j と杭節 点の沈下量の差分の相対沈下量 $\Delta \delta$ から杭に作用する摩擦力及び先端反力を求めて、それを杭全長に わたって積分して求めた杭反力 Rp と杭頭の沈下量 δp から杭ばね kp を求める。この際、杭の弾性 縮みを考慮する。

上記で求めたラフトばねと杭ばねを基礎の格子梁モデルに適用して応力解析を行い、ラフトばねの 反力を用いて再度ラフトばねを計算して上記計算を繰り返し、ラフト全節点における沈下量が収束す るまで繰り返し計算を行う。

図 2.2.1-2 地盤ばね・杭ばねの考え方

図 2.2.1-3 簡易法フロー図

(1) 杭の摩擦ばね

ここに, k_f :摩擦ばね (kN/m/m²)

- δ :杭節点と周辺地盤との変位差(m)
- δ_{u} :地盤によって決まる限界変位

砂質土・砂礫:2.0cm,粘性土:1.0cm

f:摩擦力(kN/m²)

 f_u :地盤によって決まる極限摩擦力(kN/m²)

図 2.2.1-4 摩擦力一変位関係

摩擦力 施工法	$f_u(kN/m^2)$					
	砂質土・砂礫地盤	粘性土				
打込み杭	2.0N, 但しN≤50	$0.8C_u$, $C_u \le 100$				
場所打ち RC 杭	3.3N, 但しN≤50	$1.0C_u$, $C_u \le 100$				
埋込み杭	2.5 <i>N</i> ,但し <i>N</i> ≤50	$0.8C_u, C_u \le 125$				

表 2.2.1-1 杭の施工法による極限摩擦力

注) $c_u = \frac{q_u}{2}$

(2) 杭の先端ばね

杭の荷重-沈下関係における長期許容支持力度時の割線剛性とする。

先端ばね
$$K_b = \frac{1/3(R_p/A_p)_u}{S_p}A_p$$
 (kN/m)(2.2.1-3)

杭先端の荷重-沈下関係

ここに, S_p :先端沈下量(m) d_b :杭の先端直径(m) R_p :杭先端荷重(kN) A_p :杭先端面積(m²)

 $\left(R_{p}/A_{p}\right)_{u}$:極限先端支持力度(kN/m²)

図 2.2.1-5 杭先端における荷重度-沈下関係

摩擦力 施工法	$p_u(kN/m^2)$					
	砂質土・砂礫地盤	粘性土				
打込み杭	$300\overline{N}$	$6C_u$				
	上限值 $p_u \leq 18000 kN / m^2$					
場所打ち RC 杭	$100\overline{N}$	$6C_u$				
	上限值 $p_u \leq r_u$	$7500 kN / m^2$				
埋込み杭	$200\overline{N}$	$6C_u$				
	上限值 $p_u \leq 12000 kN / m^2$					

表 2.2.1-2 杭の施工法による極限先端支持力度

注) $c_u = \frac{q_u}{2}$, \overline{N} : 杭先端から下に 1d, 上に 4d 間の平均N値(d: 杭径)

式(2.2-3)で $\frac{R_p/A_p}{\left(R_p/A_p\right)_u} = \frac{1}{3}$ として沈下量を求めると長期許容支持力度における杭先端ばねは以

下のとおりとなる。

2.2.2 実建物の沈下計測による提案解析法の精度検証

(1) O ビル(軟弱地盤に建つ低層建物)⁶⁾

①建物概要

軟弱地盤に建つ RC 造壁式3階建てのパイルド・ラフト基礎の実施例について解析結果と実測 値の比較を示す。本建物は、支持杭基礎を有する既存建物に隣接して増築された建物で、既存建 物とは構造的に分離されている。設計では、既存建物との相対沈下量を抑えることができ、かつ 基礎の物量を低減できるパイルド・ラフト基礎を採用した。設計目標沈下量は2.0cm以下である。

図 2.2.2-1 に建物平面図, 軸組図, 杭配置図, 層別沈下計測及び接地圧計測位置を示し, 図 2.2.2-2 に地盤概要および層別沈下計測レベルを示す。基礎スラブは t=600mm, 外周壁は t=180mm, 杭 は PHC 埋込み杭(600 ¢, L=26m), 平均接地圧は 74kN/m² であるが, 建物の X1~X2 通り間で 70kN/m², X3~X4 通り間で 77kN/m² と荷重に偏りがある。

図 2.2.2-1 建物平面図, 杭配置図, 層別沈下計測及び接地圧計測位置

図 2.2.2-2 地盤概要および層別沈下計測レベル

②3 次元 FEM 解析モデル

図 2.2.2-3 に 3 次元 FEM 解析モデルを示す。モデル化では地盤をソリッド要素, 杭・柱・梁を 梁要素, 耐震壁, 基礎版をシェル要素でモデル化し, 杭と地盤の節点間には摩擦ばね要素を配置 する。建物は弾性とし, 地盤の剛性評価は, PS 検層で得られたせん断波速度 Vs から初期ヤング 係数を求めて, 建物構築による地盤の鉛直方向ひずみ増分による剛性低下を考慮する。応力解析 は MSC/NASTRAN による弾性解析とし, 以下の手順により解析を行う。

i) 地盤の初期剛性 Eo を地盤のせん断波速度 Vs を用いて式(2.1.1-1)により設定する。

ii) 全体モデルに建物荷重を作用させて応力解析を行い、地盤のひずみ増分による剛性低下を考慮した収斂計算を行う。地盤の剛性低下は、各ソリッド要素に生じたせん断ひずみに対して、あらかじめ設定した E/Eo-ε 関係から剛性低下λを計算して地盤のヤング係数 E'=λ・Eoを計算し、解析モデルの地盤定数を入れ替えて再度応力解析を行い収斂するまで繰り返す。

③簡易モデル

図 2.2.2・4 に簡易モデルを示す。モデル化は、ラフトを格子状の梁要素でモデル化し、上部耐震 壁は等価な剛性を有する梁要素でモデル化する。ラフトの地盤ばね及び杭ばねはウインクラーば ねでモデル化し、剛性は前節の方法により求める。

全体パース

杭と地盤のモデル化

図 2.2.2-4 簡易モデル概要(数値は荷重:kN)
④解析結果と実測結果の比較

図 2.2.2-5 に 3 次元 FEM 解析と簡易モデル解析のラフト位置の沈下量分布を示し,図 2.2.2-6 に層別沈下計の計測結果と 3 次元 FEM 解析結果の深さ方向沈下量分布を示す。

これらの結果から、実測結果 16mm に対して 3 次元 FEM 及び簡易解析法は実測値と概ね一致している。

図 2.2.2-5 沈下量分布図(単位:mm)

図 2.2.2-6 層別沈下計位置の沈下量の深さ方向分布の比較

⑤杭の軸力及びラフトの接地圧分布

図 2.2.2-7 に杭頭軸力及びラフトの接地圧について、3 次元 FEM 解析, 簡易モデル解析及び実 測値の比較を示す。

全般的に解析値はおおむね一致している。実測値については Y1 通り側が大きくなる傾向がある。それ以外は解析値よりは若干大きいが概ね一致している。

図 2.2.2-7 杭の軸力及びラフトの接地圧分布の比較

(2) Sビル(中間支持層で支持される超高層建物)¹²⁾①建物概要

図 2.2.2-8 に地下1階伏図および杭配置図を示し、図 2.2.2-9 に建物断面と地盤概要を示す。 建物は埼玉県に立地する法科大学院と事務所の高層棟(S造,地上19階)と,多目的ホール・美 術館の低層棟(RC 造、地上3階)の2棟によって構成されている。地上部はエキスパンション ジョイントで構造的に分離され、1階床~地下部分(SRC造、地下1階)は構造的に一体化され ている。建物の平均荷重度は、高層棟で 183kN/m²、低層棟で 96 kN/m²、平均荷重は 134kN/m² である。地盤は GL-5m~GL-12m で N 値 20 前後の砂層,その下部 GL-12m~GL-21m は 粘土と砂の互層となっており、その下部 GL-39m までは N 値 5 程度のシルト、それ以深はN 値 50 以上の砂礫層となっている。基礎は GL-8m の砂地盤を支持層とした直接基礎に沈下抑制を 目的として節杭(軸径 800 ø, 節部径 1000 ø)を GL-18m のN値 50 以上の砂層に支持させる パイルド・ラフト基礎とし、砂層の中間支持層の下部にシルト層を有する地盤で、直接基礎では 沈下量が過大になり高層棟と低層棟の境界部の応力が過大になるため、高層棟下部に摩擦杭を配 置して沈下を抑制し、不同沈下を防止している。地下水位はGL-2m である。中間層で支持され た超高層建物は比較的沈下量が大きくなるため、正確に沈下挙動を予測し、施工中から完成時に 至るまで構造体の健全性を確保する必要がある。また、GL-16m、GL-30mの粘性土層に生じ る有効応力 287kN/m², 379kN/m²に対し、圧密降伏応力はそれぞれ 802kN/m², 460kN/m²であ り、圧密による沈下は想定されない。

図 2.2.2-8 Sビルの地下1階伏図, 杭配置図および計測配置図

図 2.2.2-9 Sビルの断面図および地盤柱状図

②施工概要

本工事では順打ち工法を採用し、SMW+地盤アンカーによる山留め壁を用いたオープンカット 工法により GL-8.4m まで掘削し、地下構築時には、基礎版及び1 階床を切梁に利用しながらア ンカーを除去する工法とした。地下水位低下工法としてはディープウェルにより GL-10m まで 水位を下げ、上部荷重が浮力を超える地上5 階床打設後に揚水を停止した。また、境界部の基礎 梁(D=3200)のコンストラクションジョイントは、耐圧版(t=700)を一体打ちとし、耐圧版上部の 基礎梁は1 階床構築後に打設した。

③予測解析

予測解析は、施工時の状況を忠実に評価するため、地下躯体・杭・SMW・地盤を3次元 FEM でモデル化し、施工ステップに対応した地盤剛性と荷重に対して NASTRAN による弾性解析を行 い、各ステップの結果を重ね合わせるステップ解析法を用いた。地盤剛性は下式により Vs に基づ き設定した初期剛性を、掘削時の拘束圧低下に伴う剛性低下と構築時の鉛直ひずみ増加に伴う剛 性低下を考慮し、各ステップにおける割線剛性を設定した。解析には各ステップにおける接線剛 性と増分荷重を用いた。図 2.2.2-10 に解析モデル、表 2.2.2-1 に解析ステップと荷重、表 2.2.2-2 に地盤剛性、図 2.2.2-11 に予測沈下量を示す。

i) 掘削前の初期ヤング係数	$: E_0 = 2(1+\nu) \gamma V_S^2/g \cdots \cdots \cdots \cdots \cdots (2.2.2-1)$
ii) 掘削後のヤング係数	$: E = (\sigma_{V} \sigma_{VO})^{0.4} \cdot E_0 \cdot \cdot$
iii)構築後のヤング係数	$: E' = 0.01 \times \varepsilon_{V} \cdot 0.45 \cdot E \cdot $
ここに, Vs:S波速度, ν:ポアソンb	L, g:重力加速度, γ:単位体積重量, σ vo, σ v: Boussinesq

の式より求めた掘削前後の地盤の有効応力, ϵ_v : Steinbrenner の即時沈下式より算定した鉛直 ひずみ。

SMW は地盤と完全付着とし、杭側面には下式に示す摩擦ばねを介して地盤要素と接合した。

杭周面の摩擦ばね定数: $K=f_u/\delta$ 砂地盤では fu=2.5N(kN/m²), δ =2.0cm,粘性土では fu=0.8cu(kN/m²),cu=qu/2, δ =1.0cm, fu:極限 摩擦力,N:地盤のN値,qu:1軸圧縮強度。

							()	kN/m^2)
へ ステップ	、 ステップ ⁰	ステッフ°1	ステッフ [°] 2	ステップ [°] 3	ステッフ [°] 4	ステッフ [°] 5	ステップ6	ステップ 7
荷重	掘削	基礎構築	B1F~ 1F床構築	5F 構築 浮力	10F構築	15F構築	RF構築	使用時
高層棟	-136	37	20 (57)	31 (88)	23 (111)	23 (134)	21 (155)	28 (1 83)
低層棟	-136	19	20 (39)	43 (82)				14 (96)
全体						-63(浮力)		

表 2.2.2-1 各ステップにおける荷重

()内は累積荷重

							各ステップ	プ時の割線岡	l性(MPa)	()内は剛性	生低下率
	地層	Vs (m(see)	初期剛性	掘削後	1	2	3	4	5	6	7
GL-8.4m		(111/ 560)	(MPa)	(MPa)	基礎構築	B1F構築	5F構築	10F構築	15F構築	RF構築	使用時
GL-13.4	砂	260	345	176(0.51)	176(0.51)	176(0.51)	176(0.51)	176(0.51)	175(0.47)	163(0.40)	142(0.35)
GL -15.4	粘性土	170	161	101(0.63)	1010.63)	73(0.45)	45(0.28)	41 (0.25)	38(0.23)	35(0.22)	31 (0.20)
GL-18.4	砂	270	372	280(0.75)	280(0.75)	280(0.75)	225(0.60)	205(0.55)	188(0.50)	176(0.47)	154(0.35)
GL-21.4	砂	260	321	262(0.81)	262(0.81)	262(0.81)	171(0.53)	155(0.48)	143(0.45)	133(0.41)	117(0.31)
GL-27.0	粘性土	250	290	231(0.79)	231(0.79)	198(0.68)	123(0.42)	112(0.39)	103(0.35)	96 (0.33)	84 (0.27)
GL-38.0	粘性土	200	170	147(0.87)	134(0.79)	85 (0.50)	53(0.31)	48(0.28)	44(0.26)	41(0.24)	36(0.20)
GL-42.5	礫	420	985	972(0.99)	972(0.99)	972(0.99)	972(0.99)	972(0.99)	972(0.99)	972(0.99)	972(0.99)

④解析結果

図 2.2.2-11 にステップ7 におけるラフトの沈下量分布を示す。

図 2.2.2-11 解析結果 (ステップ7の沈下量)

⑤計測計画

図 2.2.2-8,図 2.2.2-9 に計測機器配置を示す。高層棟・低層棟中央部には直列多段式層別沈下計 (4深度)及び差動トランス式土圧計を1箇所ずつ設置した。また観測孔内 GL-9m レベルに差動 トランス式間隙水圧計を設置した。高層棟と低層棟境界部の基礎梁の上下主筋位置に差動トラン ス式鉄筋計を設置し主筋位置のひずみを計測した。計測は施工期間中は8回/日の自動計測,竣工 後は数回/年の手動計測とし、竣工後2年間継続している(2003年9月~2007年3月)。また光学 レベル計により施工中の地下1階の床レベルを2回/月の頻度で計測した。

⑥計測結果及び予測解析結果との比較

(a) 地下水位

図 2.2.2-12 に地下水位の経時変化を示す。掘削前に基礎下 GL-10m まで水位を低下させ、構築荷 重が浮力を超えた時点(ステップ3)で水位を回復させた。その後は若干の季節変動はあるもの の設計水位 GL-2m で安定している。

(b) 接地圧の経時変化

図 2.2.2-13 に高層棟及び低層棟下部の接地圧の経時変化を示す。高層棟では浮力の作用するス テップ3までは実測値は予測値より大きく直接基礎の性状を示しているが、浮力作用後は予測値 とよく一致している。低層棟では浮力作力作用時に急激に増加しているが、これは土圧計と地盤 の接触不良によるものと考えられる。浮力作用後は予測値とよく一致している。図中の予測値は FEM 解析のソリッド要素のσzを示す。FEM 解析での高層棟直下の荷重負担率は、浮力を考慮しな い場合で杭:ラフト=47:53、浮力を考慮した場合で杭:ラフト=29:71 であり、設計時のそれ ぞれの比率、杭:ラフト=46:54、及び杭:ラフト=35:65 と概ね一致した。

(c) 層別沈下

図 2.2.2-14~図 2.2.2-15 に高層棟および低層棟直下の層別沈下の経時変化を示す。実測値の 建物直下における掘削によるリバウンド量は高層棟で 17mm,低層棟で 16mm である。竣工時の沈 下量は高層棟で-2mm,低層棟で 5mm である。リバウンド時から竣工時までの基礎の沈下量は高層 棟で 19mm,低層棟で 11mm となっている。なお、竣工時の予測値は積載荷重を考慮しているので 実際より過大に評価していると考えられる。低層棟のステップ3以降の2深度(GL-9m,GL-16m) のデータがないのは壁内に埋め込んだケーブルが断線したためである。なお GL-9m の施工中の数 値は床レベル計測値を用いた。実測値と予測値は高層棟・低層棟とも浮力が作用するまでは4深 度ともよい一致を示している。浮力作用直後は予測値の方が浮き上がり量を過大に評価している ものの,躯体完成時には高層棟ではよい一致を示し,低層棟では予測値は浮力による浮き上がり を過大に評価している。また竣工後2年間の経時変化からは、水位変動以外の沈下量の増加もな く安定している。図 2.2.2-19 に高層棟の各ステップにおける層別沈下の深さ方向分布を示す。こ れより実測値と予測値の分布はよい一致を示していると言える。

(d) 地下1階床レベル

図 2.2.2-16 に高層棟中央の地下1階床レベルの経時変化,図 2.2.2-17 に躯体完成時の地下1階 床レベルの分布を示す。建物の沈下量は17mmで,層別沈下の掘削時〜躯体完成時ステップ6の変 化量と一致している。また高層棟〜低層棟間の分布では,実測値に対して本解析値は若干過少評 価ではあるが傾向は概ね一致している。境界部の傾斜角は実測値,予測値とも1/850〜1/1600 と なっている。

(e) 基礎梁の鉄筋ひずみ

図 2.2.2-18 に高層棟と低層棟の境界部の基礎梁(図 2.2.2-9 の B2)の上下主筋位置における鉄筋 計のひずみから求めた曲げひずみの経時変化を示す。浮力の作用するステップ3で若干減少する ものの,ステップ5 (15 階施工時)までは実測値と予測値は一致して増加する。その後は荷重の 増加にもかかわらず曲げひずみの実測値はほとんど増加してない。この原因の1つとしてコンク リートのクリープによるひずみ低減効果が考えられる。

図 2.2.2-19 層別沈下の深さ方向分布 (SA1)

(f)簡易解析法による沈下解析

図 2.2.2-20 に簡易解析用モデル及び荷重値を示す。簡易解析法と 3 次元 FEM 解析及び実測値 で比較するのは建物竣工時とし,実測値ではステップ 7 とする。したがって荷重は上部建物の荷 重と地下水による浮力を考慮したものとする。

解析モデルは基礎梁及び地下壁は等価剛性を有する梁要素でモデル化した。また、ラフトの鉛 直方向地盤ばねの算定は、前節の方法によったが、高層棟と低層棟の荷重差が大きいため、地盤 のヤング係数の算定は高層棟下部と低層棟下部の領域毎に行った。杭の鉛直ばね算定には、群杭 効果として基礎指針に示されている Whitaker の群杭効率 η を考慮した。

図 2.2.2-21 に簡易モデルで解析した結果の沈下量分布を示す。実測値と比較すると、高層棟中 央で実測値 17mm に対して解析値 15.1mm,低層棟端部で実測値 7mm に対して解析値 4.5mm とおおむね一致している。

図 2.2.2-20 簡易解析モデル及び荷重(ステップ7,単位:kN)

図 2.2.2-21 簡易モデル沈下量分布(単位:mm)

(3) まとめ

軟弱地盤に建つ低層建物および中間支持層に建つ超高層建物にパイルド・ラフト基礎を適用した事例について実測値と簡易解析法及び3次元 FEM 解析の結果を比較した。

その結果,両事例とも簡易解析法と実測値は概ね一致しており,提案した簡易解析法が実務上 十分な精度を有することが確認された。

2.3 まとめ

本節では、ラフト基礎の沈下解析に用いる FEM と弾性論を組み合わせたハイブリッド法の定 式化と、それをパイルド・ラフト基礎に拡張した簡易解析法の定式化を示した。さらに、実建物 の沈下計測結果と比較してその方法の精度を検証し、実務に適用するのに十分な精度を有するこ とを確認した。

第3章 常時荷重を受けるパイルド・ラフト基礎の杭の最適配置設計法

3.1 簡易沈下解析法を用いた杭の最適配置設計法

3.1.1 最適化問題の定式化

目標沈下量の条件を満足する杭配置を決める最適化問題は,文献 67,69 及び 71 を参考に以下 に示す逐次線形計画法により定式化する。

目標関数は杭の物量を最小にすることとし,設計変数は,たとえば同一径の杭を使用する場合 で1柱1杭の配置であれば杭の長さとなり,中間支持層に支持させる場合で同一杭長さで1柱に 対して複数杭を用いる場合は杭本数が設計変数となる。

ここでは、1柱1杭で同一杭径を用いて杭長さを最適化する場合について定式化する。

制約条件は鉛直荷重作用時の最大沈下量が目標沈下量以下であること,杭の軸力が許容軸力以 下であること,およびラフトの接地圧が許容支持耐力以下であることとする。

目的関数は杭の総長さとしこれを最小化する。

(1) 最適杭長さを求める最適化問題

制約条件

$$W(L_1, L_2, \dots, L_m) = \rho A \sum_{i=1}^m L_i$$
 (3.1.1-4)

が最小となるような**L** = (L_1, L_2, \dots, L_n) を求めよ。

- ここで、L:杭の最適長さの集合
 - $\delta_i : i 点の沈下量$
 - δ_a :許容沈下量
 - *f_i*:*i* 杭の軸力
 - *f_a*:杭の許容軸力
 - σ_i :*i*点の接地圧
 - σ_a:地盤の許容支持力度
 - *L_i* :*i* 杭の長さ
 - *n* :節点数
 - *m* : 杭本数
 - ρ : 杭の密度
 - A : 杭の断面積

この問題の最適解を求めるために次に示すような数理計画法を適用する。

(2) 逐次線形計画法

まず近似解(単に制約条件を満足する設計)が得られているとして、これをL⁰と表す。設計L⁰ とその近傍の設計L との差を ΔL で表す。設計L⁰における沈下量を δ_i^o (L⁰) で表し、それに対する 杭軸力を f_i^o (L⁰), ラフト接地圧を σ_i^o (L⁰) と表す。また、設計L のそれらの状態量を δ_i (L), f_i (L), σ_i (L) とする。 ΔL を十分小さくとることにすると、 δ_i (L), f_i (L), σ_i (L) をL⁰のまわりの テーラー展開で表し、 ΔL の 1 次の項までで表現することができる。すなわち、 ΔL の 2 次の項 が 1 次の項に比べて十分小さいような ΔL を考える。 L⁰ よりも小さい物量を与える設計L を見出 す問題は、以下に示す ΔL に関する線形計画問題に帰せられ、このような問題の解を逐次求めるこ とによりもとの問題の解を得る。

上記の最適化問題に逐次線形計画法を適用する手順を以下に示す。 制約条件だけを満たす杭の長さが得られているとし、これを以下のようにあらわす。

$$f_i(\mathbf{L}) = f_i(\mathbf{L}^0) + \sum_{j=1}^m \left(\frac{\partial f_i(\mathbf{L})}{\partial L_j} \Big|_{L=L^0} \times \Delta L_j \right) \le f_a \qquad (i = 1 \sim m) \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (3.1.1-8)$$

$$\sigma_{i}(\mathbf{L}) = \sigma_{i}(\mathbf{L}^{0}) + \sum_{j=1}^{m} \left(\frac{\partial \sigma_{i}(\mathbf{L})}{\partial L_{j}} \Big|_{L=L^{0}} \times \Delta L_{j} \right) \leq \sigma_{a} \qquad (i = 1 \sim n) \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (3.1.1-9)$$

また、変動量 ΔL は次の制約条件を満足するものとする。

以上の制約条件のもとで目的関数

$$W(L_1, L_2, \cdots, L_m) = W^0(L_1^0, L_2^0, \cdots, L_m^0) + \rho \cdot A_{i=1}^m \Delta L_i \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (3.1.1-12)$$

を最小にする $\Delta L = (\Delta L_1, \Delta L_2, \dots, \Delta L_m)$ を求める問題となる。

このとき ΔL_i は、上式の杭総物量がより小さくなるような長さの変動量でなくてはならない。また、 $L_i^L \ge L_i^U$ は杭長さの下限値と上限値であり設計者が指定するものとする。さらに、 ε_i は ΔL の許容変動限界(ムーブリミット)を規定する。

この問題の解 ΔL が求められると、 $L^{0} + \Delta L = L$ を新しい近似解 L^{0} として再び上記問題を構成する。この逐次線形問題を解いて $\Delta L \leq \varepsilon \approx 0$ と見なすことができるまで繰り返してもとの問題の解を求める。

ここで、式(3.1.1-7)~(3.1.1.-9)の感度係数は以下のように計算する。

i 点の沈下量δi に対するj 番目の設計変数 Lj の感度は

i 杭の軸力 fi に対する j 番目の設計変数 Lj の感度は

$$\frac{\partial f_i(L)}{\partial L_j} = \frac{f_i(L_1, \dots L_j + \Delta L_j, \dots, L_m) - f_i(L_1, \dots L_j, \dots, L_m)}{\Delta L_j} \cdot \dots \cdot \dots \cdot \dots \cdot (3.1.1 \cdot 14)$$

i 点の接地圧σi に対するj番目の設計変数Ljの感度は

ここで,上式の右辺第一項は杭長さをある微小長さだけ短縮して再解析することにより得ること ができる。

(3) シンプレックス法

上記の線形計画問題をシンプレックス法を用いて解く。シンプレックス法を定式化すると以下 のようになる。

制約条件

$$\begin{array}{c} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \leq b_{2} \\ \dots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \leq b_{m} \\ x_{1}, x_{2}, \dots \\ x_{n}, x_{2}, \dots \\ x_{n} \geq 0 \end{array} \right\}$$

のもとで,目的関数

を最小にする (x_1, x_2, \dots, x_n) を求める。

ここでスラック変数 $x_{n+1}, x_{n+2}, \dots, x_{n+m}$ を導入して,式(3.1.1-16)を次式のように等式に直す。

$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1}$	$= b_1 $								
$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + x_{n+2}$	$= b_2$								
	>	<u>.</u>	••	••	••	••	•	• (3.1.1-18	3)
$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n$	$+x_{n+m}=b_m$								
$x_1, x_2, \dots, x_n \ge 0, x_{n+1}, x_{n+2}, \dots, x_{n+m}$	≥0	•••	••	••	••	•••	•	• (3.1.1-19))
$Z - c_1 x_1 - c_2 x_2 - \dots - c_n x_n = 0$		•••	••	••	••	••	•	• (3.1.1-20))

ここで,式(3.1.1-18)は変数が *m*+*n* 個で,方程式が *m* 個の連立 1 次方程式をなしている。ここで *n* 個の変数を独立変数といい,*m* 個の変数を従属変数(基底変数)という。

式(3.1.1-18),式(3.1.1-19)の係数を表 3.1.1-1 のようにシンプレックス・タブローとして書き, この表から出発して目的関数 Z の値が最大となるように基底変数の入替えを行う。

基底変数	定数項	x_1 x_2 \cdots x_n x_{n+1} x_{n+2} \cdots x_{n+m}
x_{n+1}	b_1	$a_{11} a_{12} \cdots a_{1n} = 1 = 0 \cdots 0$
x_{n+2}	b_2	$a_{11} a_{12} \cdots a_{1n} = 0 = 1 \cdots 0$
÷	÷	
÷	÷	
X_{n+m}	b_m	$a_{m1} a_{m2} \cdots a_{mn} = 0 = 0 \cdots 1$
Ζ	0	$r_1 r_2 \cdots r_n 0 \cdots 0$

表 3.1.1-1 シンプレックス・タブロー(rj=cjとした)

シンプレックス法を式(3.1.1-7)に適用すると次式のように表わされる。

のもとで, 杭長の変動量の合計

(4) 簡易沈下法を用いた杭の最適長さ決定の手順

最適化の手順を以下に示す。図 3.1.1-1 に最適化のフローチャートを示す。

- i) 杭の初期長さを、目標沈下量以下となるように十分長く設定する。
- ii) i)の条件のもとで,簡易沈下解析法により求めた地盤剛性と地盤の変位分布から,ラフトばね と杭ばねを求め格子梁モデルを作成する。
- iii) 杭の長さをΔLだけ短縮して感度解析を行い、シンプレックス法を用いて杭の最適長さを決定 する。ただし、感度解析時には杭の短縮量が小さく地盤剛性への影響が小さいと考えられる ため、地盤の剛性は前ステップの値を用いることにより計算時間を短縮する。
- iv) 杭ばねを変更して FEM 解析を行い、 ΔL が十分小さくなるまで計算を繰り返す。

図 3.1.1-1 最適化フロー

3.1.2 パイルド・ラフト基礎最適設計例題

本節では、パイルド・ラフト基礎の沈下量を設計目標値に収めることを目的として、2.1.2 節で検 討した直接基礎の例題に対して 3.1.1 節で提案した杭の最適配置設計法を適用し、その適用性につい て検討する。ただし、ここでは沈下量制約条件のみを考える。

最適配置設計にあたっては、1柱1杭を前提として、各柱位置毎に最適化する個別最適化と、荷重 分布に応じてあらかじめグルーピングしたグループ毎に最適化した場合について設計し、両者の傾向 を比較する。なお、ここでは全て杭径を同じとして長さのみの最適化とする。

(1)設計条件

地盤条件は以下に示す3ケースで,荷重分布は表 3.1.2-1 に示すように,等分布,中央集中分布, 片側集中分布の3ケースとする。また,設計目標最大沈下量はすべてのケースで共通とし 2.0cm と する。

①地盤条件

i) 沖積軟弱地盤(許容接地圧 70kN/m²)

ii) 中間に粘土層を挟む中程度の地盤(許容接地圧 300kN/m²)

iii) 超高層用地盤(許容接地圧 500kN/m²)

②杭の条件

杭の最適化は、同一杭径を用いて、1柱1杭として杭長さを最適化する。また、使用する杭は、低 層建物及び中層建物については PHC 杭の埋め込み杭で径は 1200 φ とし、高層建物では RC 場所打 ち杭で杭径を 2000 φ とする。

地盤	最適化手法	建物規模	荷重分布	ケース名
			等分布	LSM1
		低層	中央集中	LSM2
			側部集中	LSM3
			等分布	MSM1
	個別最適化	中層	中央集中	MSM2
			側部集中	MSM3
			等分布	HSM1
		高層	中央集中	HSM2
夕屈 · 畄 胡 州			側部集中	HSM3
多盾。冲坐江			等分布	LGM1
		低層	中央集中	LGM2
			側部集中	LGM3
			等分布	MGM1
	グループ最適化	中層	中央集中	MGM2
			側部集中	MGM3
			等分布	HGM1
		高層	中央集中	HGM2
			側部集中	HGM3

表 3.1.2-1 解析パラメーター覧表

ケース記号

H:高層、M:中層、L:低層

S:個別最適化、G:グループ最適化

M:多層

1:等分布、2:中央、3:側部

図 3.1.2-1 地盤モデル

図 3.1.2-2 杭のグルーピング

図 3.1.2-3 荷重分布一覧

(2) 解析結果

図 3.1.2-4~図 3.1.2-12 に解析結果を示し,表 3.1.2-2~表 3.1.2-4 に最適化のグルーピングによる 比較を示す。また,表 3.1.2-5 にグループ最適化における初期ステップと最終ステップにおける感度 係数の比較を示し,表 3.1.2-6 及び図 3.1.2-13~図 3.1.2-15 に杭の位置による沈下量の比較を示し, 表 3.1.2-7 及び図 3.1.2-16~図 3.1.2-18 に最適解と中心杭を最長とした場合の沈下量の比較を示す。

以下に考察を示す。

- ① 低層地盤
 - ・等分布荷重の場合は外周部が15m~20m,内側については28m~30mとなっており,個別最適 化とグループ最適化の結果はほとんど同じである。また杭総長さも個別最適化が842mで,グ ループ最適化が840mとほとんど変わらない結果となっている。
 - ・中央集中荷重の場合は、外周部が12m~20mm、中間部が29m~30m、中心部が21m~22mとなっており、中間部より中心部の方が短くなっている。また、個別最適化とグループ最適化の結果はほとんど同じである。杭総長さは個別最適化が761m、グループ最適化が692mとグループ最適化のほうが短くなっている。これは、個別の場合の外周杭で隅角部の1つ内側の杭が21mと長くなっていることによる。
 - ・側部集中荷重の場合は、個別最適化とグループ最適化で配置傾向が異なり、個別の場合は外周部 で5m~25mとばらつきが大きく、グループの場合の外周部は19m~23mとばらつきは小さい。 また内側と中心部については23m~30mの範囲で、個別とグループの違いは小さい。
 - ・外周部が短くなる理由は、荷重が小さく内部に比べて沈下量が小さいことによると考えられる。
- ② 中層地盤
 - ・等分布荷重と中央集中荷重の場合は外周部と中心部が 4m~13m と短く,中間部が 20m~29m と長くなっており,また個別最適化とグループ最適化の違いは小さい。ただし,中央部集中荷重 の場合の方が外周部・中心部と中間部の長さの差が大きい。
 - ・側部集中荷重の場合は,外周部が8m~15mで中央部が22m~27mで荷重分布に対応した配置 になっている。また個別最適化とグループ最適化の違いは小さい。
- ③ 高層地盤
 - ・等分布荷重の場合,グループ最適化では外周部と中心部が短く,中間部が長い傾向があるが,個 別最適化では多少その傾向はあるものの,配置のばらつきが大きい。
 - ・中央集中荷重では、グループ最適化では外周部、中間部、中心部の順に杭長が長くなっており、 個別最適化では多少その傾向が見られるもののばらつきが大きい。
 - ・側部集中荷重では、グループ最適化では外周部、内部の順に杭長が長くなっており、個別最適化 ではばらつきが大きい。
 - ・高層用地盤では、個別最適化とグループ最適化の配置の違いが大きく、個別最適化の場合は荷重 分布に対応した規則性のある配置とはなっていない。実務において採用するには他の制約を導入 するなどの方策が必要と思われる。
- ④ 最適解で中心部の杭長さが中間部の杭より短くなる原因についての考察
 - ・低層地盤及び中層地盤で等分布荷重及び中央集中荷重で中心部の杭長さが中間部より短くなる現象が見られる。直感的には中心部に長い杭を配置した方が沈下抑制効果が大きいと予想されるが、表3.1.2-5の沈下に対する杭長短縮の感度をみると、最適化の初期段階では中心部の方が感度が

大きいが最適化の最終ステップになると中間部の杭の方が感度が大きくなる。一方,高層地盤の場合 は最終ステップにおける感度は中心部の方が大きくなっており,最適化の結果と一致している。

さらに、表 3.1.2-6 及び図 3.1.2-13~図 3.1.2-15 には、杭を中心部のみ、中間部のみ及び外周部の みに配置した場合の沈下解析を実施したところ、低層、中層及び高層地盤のいずれの場合も中間部に 杭を配置した方が沈下量が小さくなっており、最適化の結果と一致している。加えて、表 3.1.2-7 及 び図 3.1.2-16~図 3.1.2-18 には、最適解の杭配置と総杭長さが同じとなるように中心部の杭を中間 部より長くした場合の沈下解析結果を示している。この結果からは、低層及び中層地盤では中心部杭 杭を長くした方が中間部の杭を長くした場合より沈下量が大きくなり、中間部の沈下抑制効果が中心 部より大きいことがわかる。ただし、高層地盤ではこの差はほとんどなく、最適解が中心部の杭長さ が中間部より長くなったことと一致している。

以上のように、本検討で採用した低層地盤と中層地盤では中間部の杭が長くなる結果となり、高層 地盤では中心部の杭が長くなったことから、杭長さについては地盤条件に左右されるものと考えられ る。

図 3.1.2-4 解析結果(低層・等分布,ケース LSM1, LGM1)(円の径は杭長を示す)

図 3.1.2-5 解析結果(低層・中央集中,ケース LSM2,LGM2)

	個別最適化	グループ最適化			
最適杭長さ (m) 杭頭軸力 (kN)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312 1136 1199 1312 1179 769 9 m 23 m 23 m 23 m 23 m 23 m 23 m 9 m 23 m 23 m 23 m 23 m 23 m 23 m 9 m 23 m 23 m 23 m 23 m 23 m 23 m 9 m 23 m 28 n 23 m 23 m 23 m 9 m 23 m 28 n 23 m 23 m 9 m 23 m 28 n 23 m 28 n 23 m 9 m 2135 194 28 n 28 n 23 m 9 m 2135 194 28 n 28 n 23 m 9 m 2135 194 28 n 28 n 23 m 9 m 2135 194 28 n 28 n 23 m 9 m 2135 194 28 n 28 n 23 m 9 m 26 m 23 m 28 n 23 m 23 m 9 m 26 m 23 m 23 m 23 m 23 m 9 m 26 m 23 m			
ラフト 接地 圧 (KN/m2)	-33 -29 -28 -30 -32 -31 -30 -31 -33 -38 -27 -25 -24 -25 -26 -26 -26 -26 -26 -26 -28 -34 -25 -23 -22 -22 -23 -24 -24 -24 -23 -23 -26 -32 -26 -23 -22 -22 -24 -24 -24 -23 -22 -24 -30 -29 -24 -22 -23 -24 -24 -24 -23 -22 -24 -28 -30 -24 -22 -23 -24 -24 -24 -23 -22 -24 -28 -30 -24 -22 -23 -24 -24 -23 -22 -24 -28 -29 -24 -22 -23 -24 -24 -23 -23 -23 -24 -28 -29 -24 -22 -23 -24 -24 -24 -25 -26 -30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
沈 下量 分 布 (mm)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

図 3.1.2-6 解析結果(低層・側集中,ケース LSM3,LGM3)

	個別最適化	グループ最適化			
		@ ⁶⁷⁵ @ ⁸³⁶ @ ⁸⁴⁹ @ ⁸⁴⁹ @ ⁸³⁶ @ ⁶⁷⁵ 9 m 9 m 9 m 9 m			
最適	2323 5339 5384 5357 5379 946 74 m 22 m 22 m 22 m 22 m 22 m 946	€ ⁸³⁶ 9 m 22 m 22 m 22 m 9 m			
杭 長 (m)	5 351 7 3 m 7 3 m	849 5343 2377 3377 5343 849 9 m 20 m 3 m 73 m 20 m 9 m			
杭頭	9 194 5 335 1 988 3 385 5 375 1 5 m 2 0 m 1 2 m 3 m 2 0 m	849 5 m 2 m 2 m 3 m 2 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m 3			
===力 (kN)	3 m 22 m 22 m 22 m 23 m 311 21 m 22 m 22 m 23 m 311	836 5257 5343 5343 5357 836 9 m 2d m 2d m 9 m			
	MSM1 Lmax= 21 m Pmax= 5651 (kN/m2)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	L= 414 m Lmin= 2 m Pmin= 9 (kN/m2)	L= 472 m Lmin= 9 m Pmin= 675 (kN/m2)			
	-320 -278 -285 -248 -245 -242 -240 -239 -245 -263 $-304-274$ -236 -216 -205 -201 -199 -199 -201 -209 -229 -267	-281 -239 -216 -204 -198 -196 -198 -204 -216 -239 -281			
7	-243 -203 -182 -172 -168 -166 -168 -172 -182 -203 -243				
フト	-241 -199 -177 -167 -164 -163 -165 -168 -178 -200 -243	-237 -198 -177 -105 -163 -162 -163 -106 -177 -198 -240			
接地		-240 -198 -177 -166 -163 -162 -163 -166 -177 -198 -240			
圧 (kN/m2)	<u>-241 -201 -180 -171 -167 -166 -168 -172 -182 -203</u> -243	-246 -204 -181 -171 -166 -165 -166 -171 -181 -204 -246			
	-267 -229 -210 -201 -199 -199 -200 -204 -213 -233 -271	-281 -239 -216 -204 -198 -196 -198 -204 -216 -239 -281			
	-307 -267 -248 -241 -241 -242 -243 -245 -253 -272 -312				
	MSM1 Pmax= -320 (kN/m2) Pmin= -162 (kN/m2)	MGM1 Pmax= -322 (kN/m2) Pmin= -161 (kN/m2)			
		-18 -18 -19 -19 -19 -19 -19 -19 -19 -19 -18 -18			
	<u>-18 -18 -19 -19 -19 -19 -18 -18 -17</u> -17	<u>-18 -18 -18 -19 -19 -19 -19 -19 -19 -18 -18</u> -18			
济					
下量	1 - 19 $- 19$ $- 19$ $- 19$ $- 20$ $- 20$ $- 20$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 19$ $- 10$	-19 -19			
分布					
(mm)		09 − − 09 − − 0 − − − − − − − − − − − − 			
		-19 -18 -18 -19 -19 -19 -19 -19 -19 -18 -18 -19			
	-17 -18 -18 -18 -19 -19 -19 -19 -18 -18 -18	-18 -18 -19 -19 -19 -19 -19 -18 -18 -18			
	<u>-17 -17 -18 -19 -19 -20 -20 -19 -18 -18 -18</u> -17	<u> -18 -18 -19 -19 -19 -19 -19 -19 -19 -18 -18</u> -18			
	MSM1 Dmax= -20 (mm) Dmin= -17 (mm)	MGM1 Dmax= -20 (mm) Dmin= -18 (mm)			

図 3.1.2-7 解析結果(中層・等分布,ケース MSM1,MGM1)

図 3.1.2-8 解析結果(中層・中央集中,ケース MSM2, MGM2)

図 3.1.2-9 解析結果(中層・側集中,ケース MSM3, MGM3)

図 3.1.2-10 解析結果(高層・等分布,ケース HSM1,HGM1)

図 3.1.2-11 解析結果(高層・中央集中,ケース HSM2,HGM2)

図 3.1.2-12 解析結果(高層・側集中,ケース HSM3,HGM3)

荷重	分布形	項目		個別最適化	グループ最適化	個別/グループ
		杭全長(m)		842	840	1.00
		訪問な(m)	最大	30	28	1.07
		北天さ(三)	最小	15	20	0.75
		杭軸力	最大	3056	2886	1.06
	等分布	(kN)	最小	450	805	0.56
		ラフト接地圧	最大	45	35	1.29
		(kN/m2)	最小	24	24	1.00
		沈下量	最大	20	20	1.00
		(mm)	最小	16	13	1.23
		杭全長(m)	761	692	1.10
	中央集中	枯 長 く (m)	最大	30	29	1.03
			最小	12	13	0.92
		杭軸力	最大	2625	2647	0.99
低層		(kN)	最小	147	271	0.54
		ラフト接地圧	最大	34	43	0.79
		(kN/m2)	最小	21	22	0.95
		沈下量	最大	20	20	1.00
		(mm)	最小	10	15	0.67
		杭全長(m)	744	862	0.86
		枯長さ(m)	最大	30	28	1.07
			最小	3	19	0.16
		杭軸力	最大	3054	2861	1.07
	側集中	(kN)	最小	2	344	0.01
		ラフト接地圧	最大	44	31	1.42
		(kN/m2)	最小	22	18	1.22
		沈下量	最大	20	20	1.00
		(mm)	最小	11	6	1.83

表 3.1.2-2 低層建物解析結果比較一覧表

表 3.1.2-3 中層建物解析結果比較一覧表

荷重	分布形	項目		個別最適化	グループ最適化	個別/グループ
		杭全長(m)	414	472	0.88
		枯長 キ (m)	最大	21	20	1.05
			最小	2	9	0.22
		杭軸力	最大	5651	5343	1.06
	等分布	(kN)	最小	9	675	0.01
		ラフト接地圧	最大	320	322	0.99
		(kN/m2)	最小	162	161	1.01
		沈下量	最大	20	20	1.00
		(mm)	最小	17	18	0.94
		杭全長(m)	450	472	0.95
	中央集中	枯長さ(m)	最大	29	29	1.00
			最小	9	4	2.25
		杭軸力	最大	7066	7671	0.92
中層「		(kN)	最小	497	56	8.88
		ラフト接地圧	最大	237	251	0.94
		(kN/m2)	最小	155	153	1.01
		沈下量	最大	20	20	1.00
		(mm)	最小	11	11	1.00
		杭全長(m)	416	504	0.83
		枯長さ(m)	最大	28	25	1.12
		THE COUNT	最小	1	8	0.13
		杭軸力	最大	9527	7908	1.20
	側集中	(kN)	最小	10	494	0.02
		ラフト接地圧	最大	335	282	1.19
		(kN/m2)	最小	160	163	0.98
		沈下量	最大	20	19	1.05
		(mm)	最小	16	14	1.14

荷重	分布形	項目		個別最適化	グループ最適化	個別/グループ
		杭全長(m)	633	656	0.96
		枯長さ(m)	最大	28	27	1.04
			最小	8	13	0.62
		杭軸力	最大	15231	14825	1.03
	等分布	(kN)	最小	944	2822	0.33
		ラフト接地圧	最大	352	341	1.03
		(kN/m2)	最小	157	155	1.01
		沈下量	最大	20	20	1.00
		(mm)	最小	18	19	0.95
	中央集中	杭全長(m)	483	544	0.89
		枯長さ(m)	最大	30	27	1.11
			最小	5	11	0.45
		杭軸力	最大	16629	14029	1.19
高層		(kN)	最小	203	1721	0.12
		ラフト接地圧	最大	336	312	1.08
		(kN/m2)	最小	163	162	1.01
		沈下量	最大	20	20	1.00
		(mm)	最小	15	17	0.88
		杭全長(m)	584	662	0.88
		枯長さ(m)	最大	30	27	1.11
		THE C (III)	最小	1	11	0.09
		杭軸力	最大	16416	15428	1.06
	側集中	(kN)	最小	3326	1326	2.51
		ラフト接地圧	最大	332	358	0.93
		(kN/m2)	最小	158	154	1.03
		沈下量	最大	20	21	0.95
		(mm)	最小	16	13	1.23

表 3.1.2-4 高層建物解析結果比較一覧表

表 3.1.2-5 グループ最適化における感度の例

地盤	荷重分布	解析ステップ	感度		
			外周部	中間部	中心部
低層	等分布	1	2.05E-04	1.59E-04	1.79E-04
		最終	6.48E-04	3.32E-04	2.86E-04
	中央集中	1	1.71E-04	1.86E-04	2.37E-04
		最終	3.93E-04	3.07E-04	2.92E-04
中層	等分布	1	1.02E-04	6.26E-05	7.13E-05
		最終	2.47E-04	1.76E-04	1.37E-04
	中央集中	1	6.88E-05	6.25E-05	8.28E-05
		最終	6.30E-05	1.15E-04	1.09E-04
高層	等分布	1	7.41E-05	3.90E-05	3.82E-05
		最終	1.08E-04	9.11E-05	1.21E-04
	中央集中	1	5.32E-05	3.31E-05	3.53E-05
		最終	1.67E-04	2.03E-04	7.03E-05

注)感度は $\frac{\partial \delta_i(L)}{\partial L_i}$ を示す(杭長を 1m 短縮した場合の沈下量の増分)。

表 3.1.2-6 杭配置による沈卜量比較検討用モラ	アル
------------------------------	----

表 3.1.2-7 最適解との比較検討用モデル

図 3.1.2-18 高層モデルの沈下量比較

(3) ムーブリミットの変化による最適結果への影響

各地盤モデルの等分布荷重ケースについて,ステップ毎に杭の長さを短縮する上限値(ムーブリミット)を6種類変化させて,収束するまでのステップ数,杭配置,杭総長さおよび沈下量について比較した。

設計目標沈下量はすべて 2.0cm とした。

ムーブリミットは、下記のように6ケースとした。

①最大1m, ②最大2m, ③最大3m, ④最大4m, ⑤最大5m, ⑥最大沈下量が目標値の80%まで5m, 85%まで4m, 90%まで3m, 95%まで2m, 95%以上で1m。

図 3.1.2-19~図 3.1.2-24 に各ケースにおける最適結果までの杭の総長さの変化を示す。

図 3.1.2-25~図 3.1.2-30 に各ケースにおける最適結果における杭長さと杭軸力分布を示す。

i) 低層モデル

低層モデルの杭総長さについては、個別最適化・グループ最適化に関わらず概ね 750m~850m の 範囲になっている。また、杭長分布についてもケースによる差が小さい結果となっている。

解析ステップ数については個別最適化では5ステップ~19ステップに対して、グループ最適化では5ステップ~15ステップと少なくなっている。

ii) 中層モデル

中層モデルの杭総長さについては、個別最適化で 300m~420m、グループ最適化で 350m~550m と、個別最適化の方が全体的に短くなっている。また、杭長分布については、個別最適化では平面配 置にかなりのばらつきを生じ、グループ最適化では位置によるばらつきが大きい。結果としては、グ ループ最適化でムーブリミットを 5m~1m の範囲で変化させたケースが最も良い結果となっている。

解析ステップ数については個別最適化では 20 ステップ~130 ステップに対して,グループ最適化では 8 ステップ~58 ステップとグループ最適化の方がかなり少なくなっている。

iii) 高層モデル

高層モデルの杭総長さについては、個別最適化で 600m~730m, グループ最適化で 550m~700m と、グループ最適化の方が全体的に短くなっている。また、杭長分布については、個別最適化および グループ最適化ともばらつきは小さい。

解析ステップ数については個別最適化では 35 ステップ~115 ステップに対して,グループ最適化では 10 ステップ~27 ステップとグループ最適化の方がかなり少なくなっている。

(4) 考察

・地盤の違いにより、杭配置のばらつきや解析ステップ数に違いが生じている。

- ・個別最適化に対してグループ最適化は解析ステップ数が少なくなりまた解が安定しているという 特徴がある。
- ・ステップ数が少なくかつ精度のよいケースとしては、ステップ数に応じてムーブリミットを変化 させる方法である。
- ・今回の解析に要した計算時間は、ステップ数の多いケースでも、一般的なデスクトップパソコンでも1分~10分程度であり大きな負荷ではないが、ムーブリミットを変化させることで計算効率が飛躍的に向上する。

図 3.1.2-19 低層モデル個別最適化における杭長さの収束状況

図 3.1.2-20 低層モデルグループ最適化における杭長さの収束状況

図 3.1.2-21 中層モデル個別最適化における杭長さの収束状況

図 3.1.2-22 中層モデルグループ最適化における杭長さの収束状況

図 3.1.2-23 高層モデル個別最適化における杭長さの収束状況

図 3.1.2-24 高層モデルグループ最適化における杭長さの収束状況

図 3.1.2-25 低層モデル個別最適化結果(上:軸力 kN,下:杭長 m)

図 3.1.2-26 低層モデルグループ最適化結果(上:軸力 kN,下:杭長 m)

図 3.1.2-27 中層モデル個別最適化結果(上:軸力 kN,下:杭長 m)

図 3.1.2-28 中層モデルグループ最適化結果(上:軸力 kN,下:杭長 m)

図 3.1.2-29 高層モデル個別最適化結果(上:軸力 kN,下:杭長 m)

図 3.1.2-30 高層モデルグループ最適化結果(上:軸力 kN,下:杭長 m)

(5)まとめ

上部荷重の大きさについて3ケース,荷重の分布形について3種類,および地盤について3種類の ケースについて,杭の長さを各杭個別に最適化する場合と,荷重分布に応じてグルーピングした場合 について最適解を計算した。

その結果,配置については概ね荷重分布に応じた結果となった。一方,杭総長さについては,個別 最適化のほうが短くなる場合と,グループ最適化のほうが短くなる場合が現れた。

ただし,個別最適化とグループ最適化の違いは少なく,設計としてはグループ最適化のほうが受け 入れられやすい結果であったと言える。

解析時のムーブリミットについては,計算効率と精度確保の点から,ステップ数に応じて変化させ る方法が適していることが確認された。 3.1.3 パイルド・ラフト基礎の例題と3次元 FEM 解析法との比較

本節では, 3.1.2 節で実施した杭の最適配置設計結果について, 3 次元 FEM 解析によりその解析 精度を検証する。

解析対象としては、低層地盤、中層地盤及び高層地盤の等分布荷重のケースとする。

(1) 解析モデル

3 次元 FEM モデルは、図 3.1.3-1 に示すように、2.1.2 節で用いたラフト+地盤モデルに杭要素と 杭と地盤をつなぐ摩擦ばね及び杭先端ばねを追加したものである。

地盤条件,ラフト及び杭,及び荷重条件は3.1.2節と同じとし,解析ケースは等分布荷重時のみとする。

また,地盤の剛性評価は地盤の各要素毎に鉛直方向ひずみ増分に対して式(2.1.1-11)を用いて剛性 低下を考慮する。

図 3.1.3-1 3次元 FEM 解析モデル

(2) 沈下量の比較

図 3.1.3-2 に各ケースの沈下量の分布を比較する。

簡易法と3次元 FEM 解析結果の比較から,中層建物の場合は中央部最大沈下量は両方のケースと も 20mm と一致している。ただし外周の沈下量は, 簡易法の方が大きい傾向がある。これは地盤の 剛性評価が, 簡易法の場合は層毎であるのに対して3次元 FEM の場合は3次元的に剛性を変化させ ていることによるものと考えられる。

低層建物と高層建物の場合は、中央最大沈下量が簡易法では 20mm であるのに対して 3 次元 FEM 解析では 28mm と大きい結果となっている。この原因として、図 3.1.3-12 の地盤の剛性低下の深さ 方向の比較をみると、中層建物の場合は深さ全体においておおむね一致しているのに対して、低層と 高層の場合は、杭先端以深において 3 次元 FEM 解析の方が剛性低下率が大きくなっていることによ るものと考えられる。

	簡易法による最適設計結果	3次元FEM解析結果			
	-13 -15 -17 -18 -18 -18 -18 -18 -18 -17 -15 -13				
		<u>-19</u> -21 -24 -25 -27 -27 -27 -25 -24 -21 -19			
低		\mathbf{P}^{-20} -22 \mathbf{P}^{-25} -26 \mathbf{P}^{-28} -28 \mathbf{P}^{-28} -26 \mathbf{P}^{-24} -22 \mathbf{P}^{-20}			
唐 建 物	-18 -18 -19 -19 -20 -20 -20 -19 -19 -18 -18	<u>-20</u> <u>-22</u> <u>-25</u> <u>-27</u> <u>-28</u> <u>-28</u> <u>-28</u> <u>-27</u> <u>-25</u> <u>-22</u> <u>-20</u>			
		p -20 -22 p -24 -26 p -27 -28 p -27 -26 p -24 -22 p -20			
	-18 -18 -18 -19 -19 -19 -19 -19 -18 -18 -18	-18 -21 -23 -25 -26 -26 -26 -25 -23 -21 -18			
	-15 -16 -17 -18 -18 -18 -18 -18 -18 -17 -16 -15	-14 -16 -19 -20 -21 -22 -21 -20 -19 -16 -14			
	IGM1 Dmax= −20 (mm)	LGM1 LGM1			
	Dmin= -13 (mm)	Dmax= -11 (mm) Dmin= -28 (mm)			
		$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	<u>-18 -18 -18 -19 -19 -19 -19 -19 -19 -18 -18</u> -18	-9 -11 -13 -14 -15 -15 -15 -14 -13 -11 -9			
	-19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-12 -14 -16 -17 -19 -19 -19 -17 -16 -14 -12			
中		B -12 -14 B -17 -18 B -20 -20 -20 -18 B -17 -14 B -12			
·層	-19 -19 -19 -19 -20 -20 -20 -19 -19 -19 -19	-12 -15 -17 -19 -20 -20 -20 -19 -17 -15 -12			
建物					
	-19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-11 -13 -15 -17 -18 -18 -18 -17 -15 -13 -11			
	-18 -18 -19 -19 -19 -19 -19 -19 -18 -18 -18	-8 -10 -12 -13 -14 -14 -14 -13 -12 -10 -8			
	MGM1 Dmax= -20 (mm)	MGM1 MGM1			
	Dmin= -18 (mm)	Dmax= -6 (mm) Dmin= -20 (mm)			
	<u>-19 -19 -19 -20 -20 -20 -20 -20 -19 -19</u> -19	-22 -23 -24 -25 -26 -26 -26 -25 -24 -23 -22			
		\mathbf{P}^{-23} -24 -25 -26 -27 -27 -27 -26 -25 -24 -23			
	-20 -20 -19 -19 -19 -19 -19 -19 -19 -20 -20	-24 -25 -26 -27 -27 -28 -27 -27 -26 -25 -24			
高		B -24 -25 -26 -27 -28 -28 -28 -27 -26 -25 -24			
層	-20 -20 -19 -19 -19 -20 -19 -19 -19 -20 -20	-24 -25 -26 -27 -28 -28 -28 -27 -26 -25 -24			
<i>逢</i> 物					
	-20 -20 -19 -19 -19 -19 -19 -19 -19 -20 -20	-23 -24 -25 -26 -26 -27 -26 -26 -25 -24 -23			
	-19 -19 -19 -20 -20 -20 -20 -20 -20 -19 -19 -19	-20 -21 -23 -23 -24 -24 -24 -24 -24 -23 -21 -20			
	-19 -19 -20 -20 -20 -20 -20 -20 -20 -20 -20 -19 -19	-18 -20 -21 -22 -23 -23 -23 -22 -21 -20 -18			
	ப்பான்கு பிருநிலைகள் HGM1 Dmax= -20 (mm) Dmin= -19 (mm)	HGMI HGMI Dmax= -18 (mm) Dmin= -28 (mm)			

図 3.1.3-2 沈下量分布の比較(単位:mm)

(3) 地盤の剛性低下の比較

図 3.1.3-3~図 3.1.3-11 に 3 次元 FEM 解析における各ケースの杭断面の地盤の剛性低下率(残存率)を示す。

これらの結果より、いずれのケースもラフト直下の地盤の剛性低下率に対して杭先端近傍の地盤の 剛性低下率の方が大きい傾向がある。

また図 3.1.3-12 には簡易モデルの剛性低下率及びヤング係数,及び3次元 FEM モデルの中央部と 外周部の剛性低下率及びヤング係数の平均値の深さ方向の比較を示す。

これより,高層モデルの深い部分のヤング係数において,3次元 FEM の方が簡易モデルより低下 していることがわかる。

(4) 杭頭軸力の比較

図 3.1.3-13 には簡易解析法と3 次元 FEM 解析法の杭頭軸力の比較を示す。

これより,低層建物および中層建物では外周部の杭軸力で10%程度 FEM 解析の方が大きくなって いるが,中央部の軸力はよく一致している。これは地盤の深さ方向の剛性に違いが少ないことによる ものと考えられる。

一方,高層建物の場合は,外周部の杭軸力は FEM 解析の方が 20%ほど大きいのに対して,中央部 の杭軸力は FEM 解析の方が 10%~30%程度小さくなっている。これは FEM モデルの方が,杭先端 近傍の地盤の深い部分の剛性低下が大きいためと考えられる。

図 3.1.3-3 剛性低下率(低層モデル,ケース LGM1, Y=3.0m)

図 3.1.3-4 剛性低下率(低層モデル,ケース LGM1, Y=9.0m)

図 3.1.3-5 剛性低下率(低層モデル,ケース LGM1, Y=15.0m)

図 3.1.3-6 剛性低下率(中層モデル,ケース MGM1, Y=3.0m)

図 3.1.3-7 剛性低下率(中層モデル,ケース MGM1, Y=9.0m)

図 3.1.3-8 剛性低下率(中層モデル,ケース MGM1, Y=15.0m)

図 3.1.3-9 剛性低下率(高層モデル,ケース HGM1, Y=3.0m)

図 3.1.3-10 剛性低下率(高層モデル,ケース HGM1, Y=9.0m)

図 3.1.3-11 剛性低下率(高層モデル,ケース HGM1, Y=15.0m)

(a)ケース LGM1

[1(b)ケース MGM1図 3.1.3-12剛性低下率及びヤング係数の比較

(c)ケース HGM1

図 3.1.3-13 杭頭軸力の比較(単位:kN)

(5)まとめ

3種類の荷重および地盤の組み合わせについて,杭の最適配置設計の結果を3次元 FEM 解析で検証した。

その結果,中層建物の場合には,沈下量,杭軸力および地盤の剛性低下についてよく対応した結果 が得られた。一方,低層建物および高層建物については、3次元 FEM 解析の方が沈下量は20%~ 40%程度大きくなった。また,地盤の剛性低下については低層建物と高層建物は深い位置において3 次元 FEM 解析の方が剛性の低下が大きく,沈下量が大きくなった要因となっている。これは3次元 FEM 解析の場合は杭先端付近から荷重が伝達されたことによって深い位置の地盤の剛性低下となっ て表れているのに対して,簡易解析法ではラフトの荷重による剛性低下しか考慮しないため,深い位 置の剛性低下が反映されていないことによるものと考えられる。

以上のように,杭から地盤に伝達される荷重による地盤の剛性評価を精度よく行うことが重要であ ることが確認された。

3.2 実建物によるシミュレーション解析と精度検証

本節では、パイルド・ラフト基礎として設計された建物に本最適設計手法を適用して設計の実務に対して本設計法がどの程度有用でかつ合理化が図れるのかを検証する。

3.2.1 軟弱地盤における杭長最適化

(1) 解析モデル

ここでは本最適設計手法を 2.2 節で紹介した軟弱地盤に建つ RC3 階建てのパイルド・ラフト基礎の実施例に適用してその効果を検証する。

図 3.2.1-1 に建物平面図・杭配置図、図 3.2.1-2 に地盤概要を示す。基礎スラブは t=600mm、 外周壁は t=180mm,杭は PHC 埋込み杭(600 ϕ 、L=26m)、平均接地圧は 74kN/m² である。解析 モデルは基礎スラブ及び壁を等価剛性を有する梁でモデル化し、荷重は節点荷重として作用させ る。

図 3.2.1-1 建物概要

深度 (m)	土層 区分	G.L(m)	土質名	N值 103050	Vs(m/s) 200 400	$qu_{100}(kN/m^2)$
	F	1.40	埋め土			
		2.70	細砂			
5-	Yu	6.55	シルト質 ・ 細砂			•
10		12.30	砂質 粘土 			•
15				PHC杭		•
20	ΥI	18.50	シルト質・			•
		23.20		•		•
25		27.00		GL-26.0		•
30		32.00	砂質粘土			•
35	Ы	36.60	粘土	\geq		•
=	btg	38.80	粘土質細砂	n n		
40 —		40.00	砂礫			

図 3.2.1-2 地盤概要

最適設計では実建物と比較するため目標沈下量を15mmとし、杭の初期値は600¢、初期解として L=40m の杭を全節点に配置して①個別最適化した場合と、上部構造及び荷重分布を考慮して②列毎最適化した場合、及び③エリア毎のグループ最適化をした場合の特性を比較する。

(2) 解析結果

最適配置設計結果を表 3.2.1-1 に示す。

個別最適化では,杭の総長さは最も短くなったが,配置がランダムとなっており現実的ではない。

また短辺方向の列毎に同一長さとした最適化,建物の荷重分布が左半分が右半分より軽量であ ることを考慮したエリア毎の最適化,さらには実建屋と同じ位置に配置した場合については,杭 の総長さは概ねよく似た傾向があり,荷重分布に一致した杭長さになっている。実建屋では長さ 26mの杭を14か所配置しており,杭の総長さは364mである。検討ケースの中ではエリア最適 化が最も現実的で合理的な配置を示しているといえる。

なお、実建物の配置は、設計時に3次元 FEM 解析を繰り返し行い、最大沈下量を2.0cm 以下、 不同沈下をできるだけ発生させない条件のもとに、左半分にはL=24m、右半分にはL=26m とい う配置が最適であったが、最終的には施工性を考慮してすべてL=26m とした。

表 3.2.1-1 解析結果一覧表

3.2.2 中間層支持による杭本数最適化

(1) 解析モデル

ここでは 2.2 節で示した中間支持層で支持した超高層建物に本最適設計法を適用してその適用 性を検証する。

図 3.2.2-1 及び図 3.2.2-2 に建物概要と地盤概要を示す。杭は PHC 節杭(軸径 800 φ, 節部径 1000 φ)の埋め込み杭である。中間支持層に杭先端を支持させているため、杭径・杭長を一定とし、柱下部の杭本数を最適化することとする。なお、実建物の杭総本数は 10m×95 本である。

図 3.2.2-2 建物平面図

最適化は高層棟下部の柱位置に対して個別最適化した場合と、荷重分布を考慮してグループ最 適化した場合とし、設計目標最大沈下量は 30mm とする。また、群杭効果として基礎指針に示さ れている Whitaker の群杭効率 η を考慮し、地盤のヤング係数の算定は高層棟下部と低層棟下部 の領域毎に行った。

(2) 解析結果

図 3.2.2-3 に荷重分布を示し、図 3.2.2-4 に初期杭本数を示す。

図 3.2.2-5 及び図 3.2.2-6 に個別最適化の結果を,図 3.2.2-7 及び図 3.2.2-8 にグループ最適化の結果を示す。

個別最適化の方が総杭本数は少なくなっているが、実務で配置する場合はグループ最適化の方 が多少本数が多くても望ましい配置といえる。

図 3.2.2-3 荷重分布 (kN)

図 3.2.2-4 杭の初期本数(各 6 本)

Pmax= 8597 (kN) Pmin= 1444 (kN)

杭本数72本

図 3.2.2-5 個別最適化による最適杭本数(上段:軸力(kN),下段:本数)

Dmax= -30 (mm) Dmin= -13 (mm)

図 3.2.2-6 個別最適化による沈下量分布(単位:mm)

杭本数84本

図 3.2.2-7 グループ最適化による最適杭本数(上段:軸力(kN),下段:本数)

図 3.2.2-9 実建物の杭本数および簡易沈下法による杭軸力(上段:軸力(kN),下段:本数)

図 3.2.2-10 実建物の簡易沈下法による沈下量分布(単位:mm)

(3) まとめ

低層建物の場合は、個別最適化の結果は実務設計にはそのまま適用できない配置となっている。 また、グループ最適化では、列毎のグルーピングより領域毎のグルーピングの方が実務設計とし ては受け入れられやすい配置となり、実建物と同じ領域毎のグルーピングの場合が杭総長さが最 も短い結果となっている。

中間支持高層建物の場合は、個別最適化とグループ最適化の違いはあまり存在しないが、グル ープ最適化の方が実務設計において受け入れられやすい配置となっている。

また,扱っている実建物は高層建物のため,地震時の転倒モーメントによる増分軸力を考慮し て外周部に多く杭を配置させているが,本設計法でも地震時の荷重に対する考慮が必要であると 考えられる。

3.3 まとめ

本節では,前節で提案した簡易解析法を用いて,常時荷重に対するパイルド・ラフト基礎の杭 の最適配置設計法を提案した。提案手法の特徴は,少ない計算時間で精度のよい結果が得られる 点にあり,実務に適した方法といえる。

実務に適用する際の留意点としては,効率化と高精度を同時に達成するためには1回の杭の短 縮長さの上限値であるムーブリミットをステップに応じて変化させることが挙げられる。また, 最終設計結果に近い解を得るためには,荷重分布を考慮した杭長さのグルーピングが重要である ことが確認された。

第4章 パイルド・ラフト基礎の地震荷重に対する応力解析法

3章では、常時荷重を受けるパイルド・ラフト基礎における杭の最適配置設計について述べた。 本章では、そのようにして設計されたパイルド・ラフト基礎の地震時における挙動の解析法について述べる。

4.1 パイルド・ラフト基礎の地震荷重に対する応力解析法

図 4.1-1 に水平荷重時の抵抗機構の模式図を,図 4.1-2 に解析モデル図を示す。

(1) モデル化の概要

ラフトに作用する上部構造からの水平力は、ラフトと地盤間の摩擦により地盤にせん断力が伝 達されると同時に、ラフトと剛接合された杭の側面水平地盤反力により負担される。

一般的な杭基礎では、ラフトと地盤は離間しているため、杭頭に水平力が作用したときに発生 する水平変位に対して杭側面の地盤反力により抵抗するため、杭を梁要素でモデル化し、杭側面 に地盤の水平方向抵抗を表わすウィンクラーばねを接続する弾性支承梁モデルが用いられる。

一方,パイルド・ラフト基礎では,ラフトの水平変位に対して,地盤と杭が同時に水平方向に変 形することにより発生する相互作用を考慮する必要がある。

図 4.1-2 に示した解析モデルは、ラフトを格子梁でモデル化し、ラフトからの水平力に対して 抵抗する地盤の土柱せん断ばねを地盤の層に応じてモデル化し、杭の節点と土柱せん断ばねの節 点を水平方向軸ばねで接合することにより、ラフトー杭ー地盤間の相互作用を考慮できる。

また、上部構造からの転倒モーメントが作用する場合には、ラフト下部に地盤の鉛直ばね、杭 側面には摩擦ばねおよび杭先端には先端地盤ばねを設けることにより水平力+転倒モーメントに 対する解析モデルとなる。

(2) モデル化の手順

図 4.1-3 に解析フローを示す。手順を以下に示す。

FEM モデルの構築

ラフトと杭は弾性剛性を有する梁要素でモデル化し、ラフトの鉛直地盤ばねはラフトの各節点 に設置し、杭の側面摩擦ばねおよび先端ばねは杭節点に設置する。地盤の水平せん断抵抗を表わ す土柱せん断ばねは基礎の中心位置に配置し、杭節点と同一位置に地盤節点を設ける。土柱せん 断ばねの頂点はラフトの各節点と摩擦ばねで接続し、各層の節点と杭節点とは杭側面ばねで接続 する。

②地盤の土柱せん断ばね

地盤の土柱せん断ばねは、半無限弾性体の表面に水平点荷重が作用した時の地中の任意点の水 平変形を求める Cerruti の式を積分することにより、矩形ラフトに一様分布水平荷重が作用した 時の地盤の水平変形を算定し、これを多層地盤に拡張することにより各層のせん断ばねを算定す る。その際には、各層の地盤のせん断ひずみに応じて地盤のせん断剛性の非線形性を考慮する。 ③ ラフトと土柱せん断ばねをつなぐ水平地盤ばね

ラフトの水平ばねは、ラフト底面の摩擦係数をμ=0.5 と仮定し、常時荷重時のラフトの負担荷 重に摩擦係数を乗じた値を最大摩擦力とした完全弾塑性ばねとする。

④杭の側面水平地盤ばね

杭側面ばねは,杭が水平力を受けたときに生じる側面地盤へのめり込みを表す局部的なもので,

基礎指針に示される杭基礎の水平地盤反力係数を用いる。その際用いる地盤のヤング係数は②で 得られた各層のヤング係数とする。杭側面地盤ばねは,ラフトに水平せん断力が作用したときの 杭節点位置の地盤の水平変位及び他の杭の水平反力によって生じる水平変位を考慮した相互作用 ばねである。

⑤ ラフトの鉛直ばねおよび杭側面鉛直ばねは鉛直荷重時と同様の方法による。

図 4.1-1 水平荷重時の抵抗機構

図 4.1-2 地震時荷重に対するパイルド・ラフト基礎のモデル化

図 4.1-3 解析フローチャート

(3) 土柱せん断ばねの算定法

ラフトを剛体とし、半無限弾性体の表面に水平点荷重が作用した時の地中の水平変位を計算す る Cerruti の式を積分し、さらに多層地盤に拡張することにより、矩形ラフトに一様な水平分布 荷重が作用した時のラフト中心とラフト端部の各層の水平変位を計算する。それらを平均して地 盤の各層の水平変形とし、それと作用荷重から各層のせん断ばねを算定する。その際、地盤の各 層のせん断弾性係数は、Vs から求めた初期せん断弾性係数に対して、各層のせん断変形角に応じ た剛性低下を考慮した収斂計算により算定する。

i)半無限弾性体の表面に水平点荷重が作用した時の地中の水平変位(Cerrutiの式:図4.1-4)

$$u = \frac{q}{4\pi GR} \left[1 + \frac{x^2}{R^2} + (1 - 2\nu) \left\{ \frac{R}{R + z} - \frac{x^2}{(R + z)^2} \right\} \right]$$
 (4.1-1)

ここに、u:中心軸上の深さz(m)位置における水平変形

- *R*:荷重作用点と変位計算点間の距離 $R = \sqrt{r^2 + z^2}, r = \sqrt{x^2 + y^2}$
- v:地盤のポアソン比
- G: 地盤のせん断剛性

ii) 半無限弾性体の表面に矩形一様分布水平荷重が作用した時の中心軸上の水平変位

$$\delta_{c} = \int_{-b}^{b} \int_{-a}^{a} \frac{\Delta Q}{4\pi G R} \left[1 + \frac{x^{2}}{R^{2}} + (1 - 2\nu) \left\{ \frac{R}{R + z} - \frac{x^{2}}{(R + z)^{2}} \right\} \right] dx dy \qquad (4.1-2)$$

ここに, a,b: 矩形ラフトの辺長の 1/2

iii) 半無限弾性体の表面に矩形一様分布水平荷重が作用した時の端部の水平変位

$$\delta_{e} = \int_{-b}^{b} \int_{0}^{2a} \frac{\Delta Q}{4\pi G R} \left[1 + \frac{x^{2}}{R^{2}} + (1 - 2\nu) \left\{ \frac{R}{R + z} - \frac{x^{2}}{(R + z)^{2}} \right\} \right] dxdy \qquad (4.1-3)$$

- iv) 多層地盤における水平変位(基礎中央と端部の平均水平変位)
 - ・各層の上下面間相対変位
 - $\Delta \delta_i = \delta \left(H_{i-1}, v_i \right) \delta \left(H_i, v_i \right) \quad (i = 2 \sim n)$
 - ・第i層のせん断変形角

$$\gamma_i = \frac{\Delta \delta_i}{\Delta H_i}$$

iV) 第i層地盤のせん断剛性低下率

ここでは代表的な土の非線形モデルとして,次式に示す Hardin-Drnevich (HD) モデル⁸⁴⁾を適用 する。

$$\frac{G_i}{G_{0i}} = \frac{1}{1 + \frac{\gamma_i}{\gamma_{0.5}}}$$
(4.1-4)

ここに, G_i:第 i 層の変形後のせん断弾性係数

- G_{0i}:第i層の変形前のせん断弾性係数
- *γ*_i:第i層のせん断変形角
- γ₀:基準せん断ひずみ (G/Go=0.5 におけるせん断ひずみ)

砂地盤 : 0.0010 粘土地盤: 0.0018

図 4.1-4 Cerrutiの式

(4) 杭の側面水平地盤ばねの算定法

日本建築学会の建築基礎構造設計指針²²⁾の杭の水平地盤反力係数*k*_kを用い,以下のように算定 する。

$$\begin{array}{l} 0.0 \le \overline{y} \le 0.1 : k_{h} = 3.16 \cdot k_{h_{0}} \\ 0.1 < \overline{y} : k_{h} = k_{h_{0}} \cdot \overline{y}^{-\frac{1}{2}} \end{array}$$

ここに、 y : 無次元化水平変異(水平変位量を cm 単位で表したうえでの無次元量)

k_{h0}:基準水平地盤反力係数(水平変位量 y が 1cm 時の水平地盤反力係数)(kN/m³)

$$k_{h0} = \xi \cdot E_0 \cdot \overline{B}^{\frac{-2}{4}} \qquad (4.1-6)$$

ξ:群杭影響係数(単杭で1.0)

$$\frac{R}{B} \le 6.0$$
の場合
 $\xi = 0.15 \cdot \frac{R}{B} + 0.10$
$$\frac{R}{B} > 6.0$$
の場合
 $\xi = 1.0$

R:杭中心間距離(m)

B:杭径(m)

 E_{0} : 地盤のヤング係数(kN/m²)

 \overline{B} :無次元化杭径(杭径を cm で表した無次元数値)

4.2 3次元 FEM 解析法との比較による地震荷重時の精度検証

前節に示したパイルド・ラフト基礎の水平荷重時解析法の精度を検証するため、3次元 FEM 解析と比較する。解析条件は、地盤については2.1.2節で用いたラフト解析と同じとし、杭については3.1.2節で実施したパイルド・ラフト基礎の最適設計結果を用いる。

(1)解析条件

・地震荷重はラフト解析で仮定した鉛直荷重Wにベースシャ係数C_B=0.2を乗じる。

・ラフト底面の摩擦係数はµ=0.5 とし,各ケースのラフト負担荷重 Wr に摩擦係数を乗じた値を 最大摩擦力とする。

・比較用の3次元 FEM 解析では、地盤をソリッド要素でモデル化し、水平荷重解析によって得られる各要素のせん断ひずみに対して簡易モデルと同じ剛性低下率を考慮した収斂計算を行う。 また、ラフトの節点と地盤の節点は3方向について剛ばねで結合し、杭は梁要素でモデル化し、 杭節点と地盤要素の節点は簡易モデルと同じ側面水平ばね、鉛直方向摩擦ばねおよび杭の先端地 盤ばねで結合する。

		低層モデル	中層モデル	高層モデル
	鉛直荷重 W(kN)	90000	270000	450000
鉛直時	ラフト負担荷重 Wr(kN)	26300 (29. 2%)	111000 (41. 1%)	194000 (43. 1%)
	杭負担荷重 Wp(kN)	63700 (70.8%)	159000 (58. 9%)	251000 (56. 9%)
地電吐	水平荷重Q(kN)	18000	54000	90000
地辰时	最大摩擦力 F(kN)	13150	55500	97000

表 4.2-1 解析条件

(2) 解析モデル

図 4.2-1 にラフト+杭の梁要素の解析モデルを示し、表 4.2-2 に解析モデル一覧を示す。

図 4.2-1 ラフト+杭解析モデルパース

表 4. 2-2 解析モデル一覧
(3) 解析結果

地盤の剛性低下率の比較

図 4.2-2 に FEM モデルと簡易モデルの水平荷重時剛性低下率分布を示す。また,図 4.2-3~図 4.2-5 に 3 次元 FEM モデルにおける中央断面の剛性低下率分布コンター図を示す。

基礎底-10m 程度までの浅い部分では FEM モデルと簡易モデルの剛性に違いがある。

GL											*******					
	0. 98	1.00	0.85	0.83	0.89	0.89	0.90	0.91	0.91	0.90	0.89	0.89	0.83	0.85	1.00	0. 98
5.000 5.000	0.98	0.93	0.89	0.92	0.88	0.91	0.91	0.91	0.91	0.91	0.91	0.88	0.92	0.89	0.93	0. 98
	0.90	0.81	0.76	0.80	0.76	0.74	0.76	0.75	0.75	0.76	0.74	0.76	0.80	0.76	0.81	0.90
	0.88	0.81	0.79	0.82	0.79	0.75	0.75	0.75	0.75	0.75	0.75	0.79	0. 82	0.79	0.81	0. 88
	0.86	0.80	0.80	0.82	0. 79	0.76	0.75	0.75	0.75	0.75	0.76	0.79	0. 82	0.80	0.80	0.86
	0.85	0.81	0.80	0.81	0.80	0.76	0.75	0.75	0.75	0.75	0.76	0.80	0. 81	0.80	0.81	0.85
	0.83	0.80	0.80	0.80	0. 79	0.75	0.74	0. 73	0.73	0. 74	0.75	0. 79	0. 80	0.80	0.80	0. 83
	0.90	0.88	0.88	0.88	0.88	0.86	0.86	0.85	0.85	0.86	0.86	0.88	0. 88	0.88	0.88	0.90
	0.89	0.88	0.88	0.89	0.88	0.87	0.86	0.86	0.86	0.86	0.87	0.88	0.89	0.88	0.88	0.89
10	0.89	0.88	0.89	0.89	0.88	0.87	0.86	0.86	0.86	0.86	0.87	0.88	0.89	0.89	0.88	0.89
5.000	0.89	0.88	0.89	0.89	0.89	0.87	0.87	0.86	0.86	0.87	0.87	0.89	0.89	0.89	0.88	0.89
	0.89	0.89	0.89	0.89	0.89	0.88	0.87	0.87	0.87	0.87	0.88	0.89	0.89	0.89	0.89	0.89
	0.89	0.89	0.89	0.90	0.89	0.88	0.88	0.87	0.87	0. 88	0.88	0.89	0.90	0.89	0.89	0.89
	0, 89	0.89	0, 89	0.90	0.90	0.89	0.88	0.88	0.88	0.88	0, 89	0, 90	0, 90	0.89	0.89	0.89
15 000 5	0.89	0.89	0.89	0.90	0.90	0.89	0.89	0.88	0.88	0.89	0.89	0.90	0. 90	0.89	0.89	0.89
	0.89	0.89	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.89	0.89	0.90	0.90	0.90	0.89	0.89
	0.89	0.89	0.90	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.90	0.90	0.90	0.90	0.89	0.89
	0. 92	0.93	0.93	0.93	0.93	0.93	0.93	0. 92	0.92	0.93	0.93	0.93	0. 93	0.93	0.93	0. 92
	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0. 93	0.93	0. 93	0. 93	0.93	0.93	0. 93
20	0. 93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0. 93	0.93	0.93	0. 93	0.93	0.93	0. 93
	0. 93	0.93	0.93	0.94	0.94	0.93	0.93	0.93	0.93	0. 93	0.93	0.94	0.94	0.93	0.93	0. 93
g	0. 93	0. 93	0.93	0.94	0.94	0.93	0.93	0. 93	0.93	0. 93	0.93	0.94	0. 94	0.93	0.93	0. 93
4	0. 93	0. 93	0.93	0.94	0.94	0.94	0.94	0.93	0.93	0.94	0.94	0.94	0.94	0.93	0.93	0. 93
	0. 93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.93	0. 93
25	0. 93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0. 94	0.94	0.94	0.94	0.93	0.93	0. 93
5.000	0. 93	0.93	0.93	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.93	0.93	0. 93
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
30	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	0. 98	0. 98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0. 98
	0. 98	0. 98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0. 98
	0. 99	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.99	0. 99
	0. 99	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.99	0.99
	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.99	0.99	0.99

図 4.2-3 低層モデル地盤の剛性低下率分布

図 4.2-4 中層モデル地盤の剛性低下率分布

図 4.2-5 高層モデル地盤の剛性低下率分布

②杭の水平変位の比較

図 4.2-6 に杭の水平変位の比較を示す。

各モデルとも簡易モデルのほうが変形が若干大きいが,杭全長にわたって FEM モデルと簡易モデルの 変位分布は概ね一致している。

図 4.2-6 杭の水平変位

③杭の曲げモーメントの比較

図 4.2・4 に杭の曲げモーメント分布を示す。低層モデルと高層モデルでは簡易モデルのほうが若干曲げモーメントが大きいが、杭全長にわたって FEM モデルと簡易モデルは概ね一致している。

図 4.2-7 杭の曲げモーメント

④杭の応力検討

図 4.2-8 に低層および中層モデルで仮定した PHC 埋め込み杭の短期許容耐力と, 簡易モデル解析 で得られた杭頭応力の比較を示す。

また図 4.2-9 には高層モデルで仮定した RC 場所打ち杭の短期許容耐力と, 簡易モデル解析で得られた杭頭応力の比較を示す。

この結果より、いずれのケースも杭応力は許容耐力以内に収まっている。

図 4.2-8 PHC 杭(C 種 1200 φ)の応力と耐力の比較

図 4.2-9 RC 場所打ち杭(2000 ø, 28-D35, SD390, Fc30)の応力と耐力の比較

⑤水平力の分担率

表 4.2-3 に FEM モデルと簡易モデルのラフトと杭の水平力の分担率の比較を示す。

ラフト負担力と最大摩擦力の比較では、低層モデルのみ若干ラフト負担力が最大摩擦力を超えてい るが、中層、高層モデルでは最大摩擦力のほうが大きく、ラフトは滑らない。

また, ラフトと杭の負担率については, 簡易モデルのほうが FEM モデルに比べてラフト負担力が 大きい傾向がある。

表 4.2-3 水平力の分担

(単位:kN)

解析	モデル	水平荷重	最大摩擦力	ラフト負担力	杭負担力		
低層	FEM	19000	19150	11900(66.1%)	6140(33.9%)		
	簡易	18000	19190	13390(74.4%)	4610(25.6%)		
中層	FEM	F 4000	EEEOO	42700(79.1%)	11300(20.9%)		
	簡易	34000	0000	48540(90.0%)	5460(10.0%)		
高層	FEM	00000	07000	58700(65.2%)	31300(34.8%)		
	簡易	90000	97000	68680(76.3%)	21320(23.7%)		

4.3 まとめ

本節では、パイルド・ラフトの地震時水平荷重に対する解析法について示した。

パイルド・ラフト基礎で常時荷重のラフト負担率の大きい場合には,地震時水平荷重は直接基礎と 同様に地盤に直接伝達されるため,地震時で杭が決まるケースは少ない。従って,本論文では杭配置 は常時荷重で決定し,決定された杭配置に対して地震荷重時応力解析を実施して杭応力を検証する方 法を採用している。

パイルド・ラフト基礎の地震時水平荷重に対するモデル化では、ラフトー杭ー地盤の相互作用について、地盤をせん断土柱モデルとして扱うことにより、解析モデルも比較的容易に作成可能であり、 かつ地盤の剛性低下を適切に考慮できることを確認した。 第5章 結論

5.1 研究成果のまとめ

本論文では、これまで最適化手法がほとんど導入されていない建築基礎構造の分野において、 パイルド・ラフト基礎を対象として杭配置決定までの構造設計者・技術者の負荷を低減すること を目的として、ハイブリッド応力解析法を用いた簡易沈下解析法と、杭の配置と長さを合理的に 決定する最適設計の手法を組み合わせた解析法を提案した。また、提案された手法の妥当性を示 すために、実建物に対する FEM 解析及び沈下計測結果との比較を行い、その精度および妥当性 を明らかにした。得られた主な成果は以下の通りである。

- (1)パイルド・ラフト基礎に対して、地盤の応力-ひずみ関係における非線形特性を考慮して ラフトー杭-地盤の相互作用を組み込んだ沈下解析法を展開した。この方法の特徴は、ラフ トの鉛直地盤ばね及び杭の鉛直ばねにウインクラーばねを用いることにより、FEM 解析の 自由度を小さくできかつ解析精度を確保できる点にあり、特に感度解析でFEM 解析を多数 回繰り返す場合に計算時間を大きく短縮できることにある。
- (2)上記沈下解析法を用いて,沈下量がある制限値以下で杭のコストを最小にする杭の配置と 長さを決定する最適設計手法を提案した。具体的には,杭長に関する大ステップ数値感度解 析と逐次線形計画法を有効に組み合わせた新しい方法を考案し、杭の最適な配置と長さを決 定する方法を提案した。この大ステップ数値感度解析は,杭の実施工の観点からも的を得た 実用的な解析法であるといえる。
- (3)パイルド・ラフト基礎の地震荷重に対するハイブリッド応力解析法は、第2章で示した鉛 直方向荷重に対するハイブリッド応力解析法に、土柱せん断ばねと水平方向せん断力に抵抗 するラフトの水平ばね、及び杭側面の水平ばねを追加することにより構築できる。
- (4) 実建物に対する FEM 解析及び沈下計測結果との比較を通じて、本提案沈下解析法は十分 な精度を有することを明らかにした。また,最適設計されたパイルド・ラフト基礎について もその有効性が明らかとなり,十分な精度を有することを明らかにした。

5.2 今後の課題

本論文で示した簡易沈下解析法は,実務における負荷を極力低減することを目的として展開し ている。従って,ハイブリッド応力解析法においてすべての相互作用を考慮したわけではなく, 杭-杭間の相互作用が大きくない場合を想定して定式化している。また,今後需要が増すと予想 される杭の軸力負担の大きい場合や,地震時の軸力変動の大きい超高層建物への適用,さらには, 常時荷重時と地震時の両方に同時に適用できる地盤の剛性評価法などが今後の課題として挙げら れる。

参考文献

- 1)豊島憲一,山下清,加倉井正昭:パイルド・ラフト基礎の沈下と荷重分担の一計算法(その1), 第 30 回地盤工学研究発表会,pp. 1401-1404, 1995.7
- 2) 山田毅,山下清,加倉井正昭:パイルド・ラフト基礎の沈下と荷重分担の一計算法(その2),
 第 33 回地盤工学研究発表会,pp. 1397-1392, 1998.7
- 3) 山田毅,山下清,加倉井正昭:パイルド・ラフト基礎の沈下と荷重分担の一計算法(その3),
 第 34 回地盤工学研究発表会, pp. 1491-1492, 1999.7
- 4) 山田毅,山下清,加倉井正昭:パイルド・ラフト基礎の沈下と荷重分担の一計算法(その4),
 第 35 回地盤工学研究発表会,pp. 1853-1854, 2000.6
- 5) 玉置克之,桂豊,中西啓二,浅香美治,内山伸,東大介:パイルドラフト基礎で支持された
 RC3階建物の沈下挙動分析(その1~その2),日本建築学会大会講演梗概集,pp.497-500, 2001.9
- 6) 中西啓二,玉置克之,桂豊,浅香美治,内山伸,東大介:パイルドラフト 基礎で支持された RC3階建物の沈下挙動分析(その3),日本建築学会大会講演梗概集,pp.659-660,2002.8
- 7) 松尾雅夫,小椋仁志,田中佑二郎:パイルド・ラフト基礎に節杭を適用した建物の挙動(その 1~その2),日本建築学会大会講演梗概集,pp.685-688,2005.9
- 8) 山田毅,山下清,中山信雄,宮下昭広:耐液状化地盤改良を併用したパイルド・ラフト基礎の 沈下挙動,日本建築学会大会講演梗概集,pp.691-692,2005.9
- 9)小林治男,金谷憲司,藤田芳治,長尾俊昌:パイルド・ラフト基礎で支持された高層建物の沈 下観測(その1~その2),日本建築学会大会講演梗概集,pp. 647-650, 2004.8
- 10) 三橋建, 早野裕次郎, 阪上浩二:パイルド・ラフトと直接基礎を併用した高層建物(その1), 日本建築学会大会講演梗概集, pp. 693-694, 2005.9
- 11) 秋野矩之, 早野裕次郎, 阪上浩二, 三橋建:パイルド・ラフトと直接基礎を併用した高層建物 (その2), 日本建築学会大会講演梗概集, pp. 695-696, 2005.9
- 12) 中西啓二, 早野裕次郎, 阪上浩二, 三橋建:パイルド・ラフトと直接基礎を併用した高層建物 (その3), 日本建築学会大会講演梗概集, pp. 697-698, 2005.9
- 13) 中西啓二,三橋建:中間層にパイルド・ラフト基礎で支持された超高層建物の施工時沈下挙 動観測,基礎工,pp. 52-55, 2007.9
- 14) 佐原守,秋野矩之,富永晃司:杭長の異なる摩擦杭基礎に支持された建築物の沈下性状について,日本建築学会構造系論文集,No.544, pp.77-84, 2001.6
- 15) 佐原守,西山高士,鈴木直子,小寺友博,茶谷文雄,石井雄輔:杭長を変えたパイルド・ラフト基礎による大型倉庫の圧密不同沈下抑制例(その1~その2),第40回地盤工学研究発表会,pp.1417-1420,2005.7
- 16) 鈴木直子, 佐原守, 小寺友博, 石井雄輔: 杭長を変えたパイルド・ラフト基礎による大型倉 庫の圧密不同沈下抑制例(その3), 第42回地盤工学研究発表会, pp. 1341-1342, 2007.7

- 17) 鈴木直子, 関崇夫, 佐俣紀一郎, 田中耕太郎: 超高層建物を支持する表層改良と杭長の異な る摩擦杭を併用したパイルド・ラフト基礎, 日本建築学会大会講演梗概集, pp. 689-690, 2007.8
- 18) 阪上浩二,早野裕次郎,片岡達也:併用基礎で支持された高層建物の施工過程を考慮した沈 下挙動(その1~その2),日本建築学会大会講演梗概集,pp.661-664,2004.8
- 19) 柴田崇史,山下清,濱田純次,室屋哲也:逆打ちで構築したパイルド・ラフト基礎を採用した超高層建物の沈下挙動,日本建築学会大会講演梗概集,pp. 699-700,2005.9
- 20) 畑戸龍夫,根津定満,太田俊也,鈴木直子,後閑章吉,柏俣明子:逆打ち杭を本設利用した パイルド・ラフト基礎に支持させた超高層集合住宅(その1~その2),日本建築学会大会講 演梗概集,pp.537-540,2006.9
- 21) 中丸浩一,根津定満,太田俊也,佐原守,鈴木直子:逆打ち杭を本設利用したパイルド・ラフト基礎に支持させた超高層集合住宅(その3),日本建築学会大会講演梗概 集,pp.541-542,2009.8
- 22) 建築基礎構造設計指針,日本建築学会,2001.
- 23) 大崎順彦:建築基礎構造,技報堂, 1991.
- 24) 木村孟:土の応力伝播,鹿島出版会,1978.
- 25) 伴野松次郎,加倉井正昭,山下清,佐藤光宏:杭基礎の沈下評価法に関する研究,竹中技術 研究報告,pp. 21-34,第34号,1985.11
- 26) 玉置克之,桂豊,岸田了:掘削および構築時の支持地盤のヤング係数の変化,日本建築学会
 構造系論文報告集,No.446, pp.73-80, 1993.4
- 27)加藤博巳,桂豊,磯田和彦,中西啓二,加藤晋平,吉原正:都心に建つ超高層建物の逆打ち
 工事における沈下解析と計測(その1~その5),日本建築学会大会講演梗概
 集,pp.739-748,1999.9
- 28) 松雄雅夫,山肩邦男:地盤の変形を考慮した杭基礎建築物の鉛直荷重時実用解法,日本建築 学会構造系論文集,No.477, pp.67-76, 1995.11
- 29) 長尾俊昌, 篠崎洋三, 渡邊徹, 桑原文夫:パイルド・ラフト基礎の沈下挙動に関する研究, 日本建築学会大会講演梗概集, pp. 809-810, 1998.9
- 30) 土屋勉, 永井宏: 鉛直荷重を受けるパイルドラフトの応力・変形に関する解析的研究, 構造 工学論文集, pp. 375-380, Vol. 47B, 2001. 3
- 31)秋野矩之:地盤の剛性評価と建物の沈下予測 建築物の即時沈下予測方法(その1),日本建築学会構造系論文報告集,No.412, pp.109-119, 1990.6
- 32) 佐原守,秋野矩之,富永晃司:荷重伝達法に基づくパイルド・ラフト基礎の即時沈下に関する一解法,日本建築学会構造系論文集,No.561, pp.111-118, 2002.11
- 33) 土屋勉,池田隼人,永井宏:パイルド・ラフトの沈下挙動に関する実用計算法(その1~その2),日本建築学会大会講演梗概集,pp. 639-642, 2005.9
- 34) 安達守弘, 笹尾光, 持田悟: TK ビルの建設に伴う支持地盤の挙動, 第15回土質工学研究発

表会, pp. 881-884, 1980

- 35) 榎並昭, 原弘道, 町田重美, 飯森輝好, 金谷祐二, 秋野矩之:池袋ターミナルホテルビルの 沈下予測と実測(その1)~(その2), 日本建築学会大会講演梗概集, pp. 1063-1066, 1985. 10
- 36) 玉置克之,佐藤正義,桂豊,真野英之:施工時の支持地盤の変形性状,日本建築学会大会講 演梗概集,pp.1463-1464,1989.10
- 37) 玉置克之,桂豊,岸田了:施工時の鉛直変位測定に基づく支持地盤のヤング係数,清水建設 研究報告第55号,pp.11-20,1992.4
- 38) 堀田洋之: 拘束圧とひずみへの依存性を同時に考慮した施工時の実測に基づく地盤の応力-ひずみ関係の評価,日本建築学会構造系論文集 第608号, pp. 61-68, 2006. 10
- 39) 松尾雅夫,山肩邦男:地盤の変形を考慮した鉛直荷重時立体架構の実用解法:日本建築学会 構造系論文集 第455号, pp. 83-92, 1994.1
- 40) Terzaghi K. : Thoretical Soil Mechanics, Wiley, pp.423~425, 1943.
- 41) 山肩邦男,伊藤淳志,山田毅,田中健:場所打ちコンクリート杭の極限先端荷重および先端 荷重~先端沈下量特性に関する統計的研究,日本建築学会構造系論文報告集 第 423 号, pp. 137-146, 1991.5
- 42) 桑原文夫,本村修: 杭の沈下解析に用いる地盤のせん断弾性係数の評価,第24回土質工学研 究発表会, pp. 1305-1308, 1989. 6
- 43) 桑原文夫:鉛直荷重を受ける群杭間の沈下影響係数の評価,第 25 回土質工学研究発表 会,pp.1355-1356,1990.6
- 44) 秋野矩之:杭基礎の弾塑性沈下解析 建築物の即時沈下予測方法(その2),日本建築学会構
 造系論文報告集,No.442,pp.79-89,1992.12
- 45) M. F. Randolph : Design methods for pile groups and piled rafts, XIII CIMSTF,New Delhi.inde,pp.61-82,1994
- 46) 真島正人, 榎並昭, 長尾俊昌, 若命善雄: 摩擦杭で支持された高層建物の沈下挙動 第1報 ー観測結果とその考察, 日本建築学会構造系論文集, No. 467, pp. 83-92, 1995.1
- 47) 真島正人, 榎並昭, 長尾俊昌, 若命善雄: 摩擦杭で支持された高層建物の沈下挙動 第2報 - 地盤と基礎の沈下解析, 日本建築学会構造系論文集, No. 474, pp. 97-105, 1995.8
- 48) 伊藤淳志,山肩邦男:差分方程式に基づく単杭の鉛直荷重-沈下量関係の理論解析法および その砂地盤への適用,日本建築学会構造系論文集,No.505, pp.77-84, 1998.3
- 49) 伊藤栄治, 辻英一, 森田秀喜, 松尾雅夫, 小野俊博:パイルド・ラフト基礎の実用沈下計算 モデルの提案, 日本建築学会大会講演梗概集, pp. 467-468, 2003.9
- 50) 渡邊徹,長尾俊昌,真島正人:沈下低減杭を併用した直接基礎の鉛直載荷実験(その1)実験概要,(その2)実験結果とそのシミュレーション解析,日本建築学会大会講演梗概 集,pp.657-660,2005.9

- 51) 萩原幸男,秦雅史,藤嶋泰輔,伊藤仁,佐藤武,他:パイルド・ラフト基礎の原位置鉛直・ 水平載荷試験(その1)~(その5),日本建築学会大会講演梗概集,pp.661-670,2005.9
- 52) 森利弘, 三輪紅介, 浅井陽一, 小川敦, 平出務, 冨永晃司:パイルド・ラフト基礎の鉛直・ 水平載荷試験(その1)~(その4), 日本建築学会大会講演梗概集, pp. 673-662, 2007.8
- 53) 浅井陽一,三輪紅介,森利弘,小川敦,平出務,冨永晃司:パイルド・ラフト基礎の鉛直・ 水平載荷試験(その5)~(その7),日本建築学会大会講演梗概集,pp. 655-660, 2008.9
- 54) 森利弘,石川雅博,浅井陽一,小川敦,平出務,冨永晃司:パイルド・ラフト基礎の鉛直・ 水平載荷試験(その8),日本建築学会大会講演梗概集,pp. 549-550, 2009.8
- 55) 松尾雅夫,山肩邦男:地盤の変形を考慮した杭基礎建物の水平荷重時応力解法について,日本建築学会大会講演梗概集,pp.1065-1066,1995.8
- 56) 松尾雅夫, 辻英一, 小野俊博, 細野久幸: 杭頭ローラー接合を用いたパイルド・ラフト基礎 建物の水平荷重に対する検討, 日本建築学会大会講演梗概集, pp. 423-424, 2001.9
- 57) J. C. Small and H. H. Zhang : Behavior of piled raft foundations under lateral and verticalloading, The International Journal of Geomechanics, Volume 2, Number 1,pp.29-45, 2002
- 58) 長尾俊昌, 桑原文夫, 小林治男, 渡邊徹:小型基礎の原位置実験より得られたパイルド・ラフト基礎の水平挙動, 日本建築学会構造系論文集, No. 559, pp. 121-127, 2002.9
- 59) 長尾俊昌, 桑原文夫, 小林治男, 渡邊徹:水平力を受けるパイルド・ラフト基礎の挙動解析, 日本建築学会構造系論文集, No. 577, pp. 63-68, 2004.3
- 60) 長尾俊昌, 土屋勉:水平力を受けるパイルド・ラフト基礎挙動の簡易算定法, 日本建築学会 大会講演梗概集, pp. 547-548, 2009. 8
- 61) 真野英之,中井正一:水平力を受けるパイルドラフト基礎の杭応力の簡易算定法,構造工学 論文集 46B, pp. 43-50, 2000.3
- 62) 真野英之,中井正一:地盤の非線形性を考慮した水平力を受けるパイルドラフト基礎の杭応 力の簡易算定法,構造工学論文集 47B, pp. 427-434, 2001.3
- 63) 真野英之,中井正一:地震時地盤変形によりパイルドラフト基礎の杭に生じる応力,構造工 学論文集 48B, pp. 351-356, 2002.3
- 64) 土屋勉, 永井宏, 池田篤則: 地震力を受けるパイルドラフトの挙動に関する解析的研究, 構造工学論文集 48B, pp. 343-350, 2002.3
- 65) 永井宏, 土屋勉:水平力を受けるパイルド・ラフトの非線形解析モデルおよび原位置水平載 荷実験への適用例,日本建築学会構造系論文集,第589号, pp.113-119,2005.3
- 66) 真野英之, 土屋勉, 金子治, 長尾俊昌, 西山高士, 濱田純次, 矢島淳二:水平力を受けるパ イルド・ラフト基礎の設計法,日本建築学会技術報告集,第15巻 第31号, pp. 707-712, 2009. 10
- 67) 中村恒善,建築骨組の最適設計,丸善,1980.
- 68) 土木学会,構造システムの最適化 -理論と応用-,構造工学シリ-ズ1,1988.
- 69) 日本建築学会,最近の建築構造解析理論の基礎と応用,応用力学シリーズ 11,

pp. 113-144, 2004.

- 70) 山川宏, 最適化デザイン, 培風館, 1996.
- 71) 中西啓二,竹脇出:簡易沈下解析法を用いたパイルド・ラフト基礎の杭の最適配置設計,日本建築学会大会講演梗概集, pp. 549-550, 2006.9
- 72) 石村英之,藤井大地,藤谷義信:RC骨組構造の最適設計,日本建築学会大会講演梗概 集,pp.495-496,1995.8
- 73)藤谷義信,藤井大地,春日康博,尾中敦義,平田裕一,荒井宏,塩崎洋一,山本憲司:鉄筋 コンクリート建物の最適設計プログラムの開発,日本建築学会技術報告集,第5号,pp.63-68, 1997.12
- 74) R.L.Fox: Optimization methods for engineering design, Addison-Wesley Publishing Company, 1971.
- 75) G.N.Vanderplaats: *Numerical optimization techniques for engineering design with applications*, McGraw-Hill, 1984.
- 76) J.S.Arora: Optimization of structural and mechanical systems, World Scientific Publishing Co., 2007.
- 77) A.R.Toakley: Optimum design using available sections, *Journal of the Structural Division*, Vol.94, pp. 1219 1241, 1968.
- 78) K.F.Reinchmidt: Discrete structural optimization, Journal of the Structural Division, pp.133-156, 1971
- 79) K.H.Hager, R.Balling: New approach for discrete structural optimization, *Journal of Structural Engineering*, Vol.114, No.5, pp.1120-1134, 1988.
- 80) M.W.Huang, J.S.Arora: Optimal design with discrete variables: some numerical experiments, *International Journal for Numerical Methods in Engineering*, Vol.40, pp.165-188, 1997.
- C.Camp, S.Pezeshk, G.Cao: Optimized Design of Two-dimensional structures using a genetic algorithm, *Journal of Structural Engineering*, pp.551-559, 1998.
- 82) G.Guerlement, R.Targowski, W.Gutkowski, J.Zawidzka, J.Zawidzki: Discrete Minimum Weight Design of Steel Strictures Using EC3 Code, *Struct. Multidisc. Optim.*, 22, pp.322-327, 2001.
- 83) Kyung Nam Kim, Su-Hyung Lee, Ki-Seok Kim, Choong-Ki Chung, Myoung Mo Kim, Hae Sung Lee: Optimal pile arrangement for minimizing differential settlements in piled raft foundations, *Computers and Geotechnics* 28(2001),235-253
- 84) Y.F.Leung, A.Klar, K. Soga, Theoretical Stydy on Pile Length Optimization of Pile Groups and Piled Rafts, *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol.136, No.2, pp319-330, 2010.
- 85) Hardin,B.O. and Drnevich,V.P. : Shear Modulus and Damping in Soils : Design Equations and Curves, Proc. ASCE, SM7, pp.667-692, 1972
- 86) 林政輝,中西啓二,西谷隆:免震建物の合理的な基礎設計の例,建築技術,第726号,pp.180-181, 2010.7

謝辞

本論文は,筆者が平成17年に京都大学大学院工学研究科都市環境工学専攻の博士後期課程に 編入し,京都大学教授竹脇出先生の終始暖かい励ましと懇切丁寧なご指導のもとにまとめたもの です。ここに謹んで厚く御礼申し上げます。

筆者がパイルド・ラフト基礎の最適設計を研究するきっかけとなったのは、平成12年に清水 建設株式会社設計本部在籍中に、同社の技術研究所内の音響実験棟をパイルド・ラフト基礎で設 計した時の経験からでした。

それは、本論文の第2章及び第3章で実測例及び最適設計例として取り上げているRC3階建 ての建物です。この小規模な建物の14本の杭の長さと配置を決定するために、筆者がすでに地 盤の非線形剛性評価法を開発して3次元 FEM に適用していたことから, その手法に杭を追加して 3次元 FEM で解析することを考え、さまざまな配置案から最終的な杭配置と長さを決定するため に約2週間を費やすことになりました。通常この規模の建物の基礎設計に与えられる時間は1日 程度ですが、パイルド・ラフト基礎の場合は何度も杭のモデルを変えては解析することの繰り返 しで非常に手間がかかるものでした。さらにたとえ設計目標沈下量を満足してもその解が本当に 最適解なのか確認する方法がありませんでした。この苦い経験から、その当時将来の合理的な基 礎構造として有望視されていたパイルド・ラフト基礎の設計で、設計者の手間を低減でき、得ら れた結果が最適解であると保証される最適設計の手法が必須であると考えて研究をスタートさせ ました。最初は基礎のすべての節点に杭を配置して個別に最適化するコンピューター任せの方法 を適用しましたが,得られた結果は配置と長さに規則性がなく,いくら最適解と言われても直感 的に受け入れられない配置でした。その後は荷重分布に応じたグルーピングをすることによって それほど物量を増やすことなく、設計者に受け入れられる解を出すことができるようになり、や はり設計実務では配置の方向性くらいは設計者が示すことが結果的には時間と労力の節約になる ことを学びました。

本研究にあたりまして清水建設設計部時代に多数の超高層建物の沈下解析でご指導いただきま した清水建設技術研究所の玉置克之前所長補佐,桂豊副所長,磯田和彦主任研究員並びに地盤基 礎グループの真野英之グループ長,堀田洋之主任研究員及び地盤改良技術でご指導いただきまし た浅香美治副主任研究員に深く感謝申し上げます。

また,清水建設設計本部の割田正雄本部長には快く社会人博士課程への編入を認めていただき ました。ここに心から感謝申し上げます。

論文審査を通じまして,ご指導いただきました京都大学上谷宏二教授,田村修次准教授に深甚 の謝意を表します。

本研究は清水建設(株)入社以来,原子力設計部,設計本部及び技術研究所において構造設計 及び現場の施工時構造支援業務を通じて筆者が学ばせていただいた数多くの経験を通じて完成さ せたものであります。重ねて関係各位に感謝の意を表します。

平成22年10月 中西啓二