土質材料としての泥質堆積岩の 力学特性に関する研究

昭和55年4月

新城俊也

土質材料としての泥質堆積岩の 力学特性に関する研究

昭和55年4月

新城俊也

¥- - -

¢

0 1-16 -

r 1. fr

第1章 緒	論	1
1.1 概	説	1
1.2 半	固結ないし弱固結状態にある泥質堆積岩の土質工学的問題点と研究の現状	2
1. 2. 1	泥質岩の定義	2
1. 2. 2	泥質岩の力学挙動に及ぼす地質履歴の影響	3
1. 2. 3	泥質岩の問題点と従来の研究	5
1.3 本	研究の目的と概要	9
参	考文献	11
第2章 泥	質堆積岩の一般的な力学的性質	14
2.1 概	説	14
2.2 泥	質岩の一般な物理的,力学的性質	15
2. 2. 1	物理的性質	15
2. 2. 2	化学的性質	19
2. 2. 3	力学的性質	19
(1)	圧密特性	19
(2)	~~軸圧縮強度	22
(3)	スレーキングと吸水膨張	23
(4)	水浸に伴う強度低下	26
(5)	練返しによる強度低下	28
(6)	せん断特性(UU試験)	30
(7)	変形係数	34
(8)	スレーキング特性	35
2. 2. 4	むすび	36
2.3 泥	質岩の工学的分類	37
2.4 N	直からみた島尻層泥岩の地盤特性	40
2.5 結	語	42
参	考文献	44

第3章	泥質堆積岩(島尻層泥岩)の強度特性	46
3. 1	概 説	46
3. 2	せん断挙動に及ぼす地質履歴の影響	46
3. 3	実験装置と実験方法の概要	48
3. 3. 1	実験装置	48
3. 3. 2	実験方法	50
3. 3. 3	バックプレッシャーubの選定	51
3. 3. 4	三軸試験における破壊後の断面とメンブレン補正	53
3. 4	泥質岩のせん断特性	54
3. 4. 1	序	54
3. 4. 2	試料と実験方法	54
3. 4. 3	. 実験結果と考察	56
(1) 応力とひずみの関係及び間隙水圧,体積変化とひずみの関係	56
(2) 強度と有効応力の関係	59
(3) 間隙水圧の挙動における特性	61
(4		63
(5) 圧密圧力と非排水強度の関係	65
(6) 地盤内初応力の推定	67
(7) 圧縮強度と変形係数の関係	69
3. 4. 4	むすび	70
3. 5	泥質岩地盤における基礎の支持力推定	71
3.6	強度異方性 ·····	74
3. 6. 1	序	74
3. 6. 2	間隙水圧の挙動からみたランダムな軸方向にある供試体のせん断特性	75
3. 6. 3	試料及び実験方法	78
3. 6. 4	実験結果と考察	79
(1) 応力~ひずみ関係および間隙水圧~ひずみ関係	79
(2) 強度異方性	81
(3) 間隙水圧の挙動の異方性	82
(4) 強度~有効応力関係 · · · · · · · · · · · · · · · · · ·	83
(5) 圧縮強度と変形係数の関係	85
3. 6. 5	むすび	8 6
3. 7	結 語	86

第4章 泥蟹	g堆積岩の異方弾性変形挙動
~ 4.1 概	説
4.2 異大	5弾性体の応力~ひずみ関係ならびに弾性的挙動の特性
4. 2. 1	異方弾性地盤の応力~ひずみ関係
4. 2. 2	軸対称三軸圧縮試験への適用
4. 2. 3	弾性変形挙動の特性
4. 2. 4	弱固結状態にある泥質岩の弾性変形特性
4.3 間隙	§水圧挙動からみた異方弾性挙動(非排水せん断試験における弾性挙動) 101
4. 3. 1	間隙圧係数
4. 3. 2	非排水圧縮によるヤング率
4. 3. 3	異方弾性パラメータの決定
4. 3. 4	他の有効応力径路表示について
4.4 排水	くせん断試験における弾性挙動
4. 4. 1	排水三軸圧縮試験によるヤング率
4. 4. 2	排水せん断試験における弾性定数
4. 4. 3	ひずみ径路
4. 4. 4	塑性降伏関数への適用
4.5 弾性	±沈下量推定への適用
4. 5. 1	半無限異方弾性地盤の弾性沈下
4. 5. 2	従来の多次元圧縮沈下と異方性の適用
4. 5. 3	異方弾性理論による厳密解と近似式による沈下量の比較
4.6 結	語
参考	5文献
第5章 乾透	晶作用による泥質岩の物性と強度の変化
5.1 概	説
5.2 強度	€低下の概念
5.3 実験	食方法
5.4 実験	食結果と考察
5. 4. 1	乾湿における乾燥度合が強度低下とコンシステンシーに及ぼす影響 127
5. 4. 2	乾湿繰返しによるコンシステンシー変化

1

5. 4. 3	乾湿繰返しによる強度低下	133
(1)	スレーキング特性	133
(2)	乾湿繰返しによる強度低下	135

- 5.5
 結 語
 142

 参考文献
 143

第	6	章	島尻	層	泥岩	地帯	おこ	おける	る斜正	面安定		•••••	•••••	••••	•••••	•••••	•••••	•••••	•••••			144
	6.	1	概	, I	説	••••		•••••	•••••	•••••	•••	••••	•••••	•••••	•••••	•••••		•••••	•••••	 .	•••••	144
	6.	2	地す	~ベ	りの	形態	と分	斜面的	安定角	解析	•••	· · · • •	•••••		•••••	••••••		•••••	•••••		•••••••	144
		6. 2. 1		粘	土斜	面に	おり	ナる盾	崩壊	 地す 	べ	りの	D形創	1 ki (•••••		•••••	•••••			•••••	144
		6. 2. 2		斜	面安	定解	術の	の方法	ŧ·	•••••••	•••	••••	•••••	•••••	•••••			•••••	· · · • • • •		• • • • • • • • • • • •	146
	6.	3	島尻	【層	泥岩	の地	頃す	皆景			•••	••••		•••••	•••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • •	147
		6. 3. 1		島	尻層	の地	質	••••	•••••	•••••	•••	••••		•••••	•••••		•••••	•••••		•••••	•••••	147
		6. 3. 2		地	盤特	性	••••	•••••	•••••		••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	151
	6.	4	与册	3原	層泥	岩に	おり	ナる余	山田日	安定	•••	••••	· · · · · ·	• • • • •		•••••		••••••		•••••		152
		6. 4. 1		序		••••	• • • • •	•••••		•••••	•••	····	•••••	•••••		••••••		•••••	•••••	•••••		152
		6. 4. 2		未	風化	泥岩	層り	刃土の	のり貢	面にお	け	る侵	夏食と	崩塌	衷・		•••••	•••••	•••••	• • • • • •	• • • • • • • • • • • • •	152
		6. 4. 3		風	化泥	岩層	斜面	面のす	ナベリ	り・崩	壞	••		• • • • •					•••••	• • • • • •	• • • • • • • • • • • • •	153
		(1)		泥	流状	表層	す・	べり	••••	•••••	•••	••••	•••••	•••••	•••••		•••••	•••••	•••••			153
		(2)		地	すべ	り・	崩坑	っとう きょうしょう きょうしょう しょうしょう しょう	•••••	•••••	•••	••••	•••••	•••••	•••••		•••••	•••••	•••••	• • • • • •	•••••	154
		6. 4. 4		む	す	び	••••	•••••		•••••	••••	••••		• • • • •	•••••			•••••	•••••		•••••	156
1	6.	5	新里	粘	±の	力学	特性	生 …		•••••	••••	••••	•••••	•••••		•••••	•••••	•••••	•••••	• • • • • •	•••••••••	156
		6. 5. 1		序	•••	•••••	•••••	•••••	••••	•••••	••••	••••	•••••	•••••	•••••	·····	•••••	•••••	•••••	••••	•••••	156
		6. 5. 2		地	盤特	性と	物理	里的性	ŧ質	•••••	••••	••••	•••••	• • • • • •	••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • •	157
		(1)		地	盤特	性	••••	•••••	•••••	•••••	•••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	••••	•••••	157
		(2)		物	理的 ⁽	性質	•	•••••	•••••	•••••	••••	· · · • •		••••	•••••	•••••		•••••	•••••	• • • • • •	• • • • • • • • • • • • •	158
		6. 5. 3		力	学特'	性	···•	•••••	•••••		•••	••••		•••••	•••••	•••••	····•	•••••	•••••		••••	159
		(1)		圧	密特	性	••••	•••••	•••••	•••••	••••	•••••	•••••	••••	•••••	•••••	•••••		•••••		•••••	159
		(2)		せん	ん断	特性	•	•••••	•••••		•••	••••	•••••	••••	•••••	••••••	•••••	•••••	•••••	• • • • • •	• • • • • • • • • • • •	161
		(3)		斜	面安:	定解	≧析・	への強	ま度に	官数の	適	用	••••	•••••	•••••	•••••	•••••	•••••	•••••	••••		164
		6. 5. 4		む	する	U.		•••••	•••••	•••••	••••	••••	•••••	•••••	•••••		•••••	•••••	••••••	•••••	• • • • • • • • • • • •	165
I	6.	6	結	Ē	語	•••••	• • • • •	•••••	•••••	•••••	•••	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •		166

第7章 》	尼質 岩に由来	する土質材	料の締固め特性	••••	••••••••••••••••		168
7.1 椎	既説…		•••••••••••••••••••••••••••••••••••••••				168
7.2 🕷	帝固め特性に	及ぼす含水	比と締固め仕事員	量の影響・			169
7. 2. 1	試料及び	実験方法	•••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••	169
(1)	試 料		•••••••••••••••••••••••••••••••••••••••			••••••	169
(2)	実験方法		•••••••••••••••••••••••••••••••••••••••			•••••	170
7. 2. 2	実験結果	及び考察	••••••	••••••			171
(1)	締固め曲	線	•••••••••••••••••••••••••••••••••••••••		••••••	•••••	171
(2)	締固め仕	事量の増加	に伴う密度増加	••••••••••••		••••••	172
(3)	CBR特	性	••••••	•••••••		•••••	174
(4)	乾燥密度	と締固め含	水比図上での泥ネ	当土の性状	••••••	•••••	174
7.3 É	目然含水比状	態における	締固め特性 …				176
7. 3. 1	試料及び	実験方法	•••••••••••••••••	•••••••••••••••••••••••••••••••••••••••			176
7. 3. 2	実験結果	及び考察		••••••	•••••	••••••	177
(1)	締固め仕	事量の影響		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	177
(2)	粒度の影	響		••••••		•••••	178
(3)	CBR特	性			••••	••••••	178
(4)	締固め乾	燥密度と水	曼CBRの関係		•••••	•••••	180
7.4 続	告 語 …	••••••	••••••	••••••	•••••••	•••••	181
麦	\$考文献 …	•••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	183
第8章 将	뒘めた泥質	れき状土の・	せん断特性	••••••••••••••••			184
8.1 概	既 説…			•••••••••••••••••••••••••••••••••••••••		•••••	184
8.2 実	尾験方法 …	••••••		•••••••••••••••		••••••	185
8. 2. 1	試 料				•••••	••••••	185
8. 2. 2	実験方法			••••••••		•••••	185
(1)	一定拘束	圧力作用下 [.]	での非排水せんと	新試験	•••••	•••••	186

(2)	非圧密非排水せん断試験(UU試験)	187
(3)	圧密非排水せん断試験(CU試験)	187

8. 3	実験	結果及	び考察	•••••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	188
8. 3.	. 1	締固め	た泥岩土	の強度と水	浸による強	歯度変化		•••••	•••••		•••••	188
	(1)	応力~	ひずみ関	係	•••••		•••••	•••••	•••••••	••••••	•••••	188
	(2)	強度特	性		•••••	•••••	•••••	•••••		•••••	•••••	191
	(3)	含水比	~乾燥密	度~強度関	係	••••••••••••	.	•••••	•••••	•••••		193
8. 3.	2	非圧密	非排水せ	ん断試験(UU試験)		•••••	•••••		•••••		194
8. 3.	3	圧密非	排水せん	断試験(C	U試験)・	•••••	•••••	•••••	•••••	•••••	••••••	196
8.4	結	語		••••••		•••••	•••••	•••••	• • • • • • • • • • • • •		•••••	203
	参考	文献		••••••	••••	•••••	•••••	•••••		•••••	•••••	204

第9章 結 論		06
---------	--	----

,

第1章緒 論

1.1 概 説

粘土粒子あるいはシルト粒子からなる細粒子で構成された堆積岩は土木工学上,対象とされる地 殻の大半を占めるといわれ,土質工学ならびに岩盤工学の研究分野における重要な地盤材料であ る。我が国におけるこの種の泥質岩は,主として第三紀から洪積世にかけて堆積した,海成,湖成 または河成の粘土層あるいはシルト層にあって,堆積後の地質履歴を受けて半固結あるいは弱固結 状態にあり,一般に泥岩,粘土岩,シルト岩あるいは硬質粘土として知られている。この堆積層は, 地域的に露出しているのみならず沖積層の基盤を構成している場合が多く,全国的に広く分布して いるものである。

従来よりこの地層は土木工事の対象として不安定なものが多く、切取り、トンネル開削などの工 事に際し崩壊を生ずる場合が多く、また周知のように地すべり多発地帯でもあるが、反面通常の構 造物の良好な支持層とされる場合も多い。他方、建設途上にある青凾トンネルや一部着工した本州 四国連絡橋の建設に見られるように、近年土木構造物は巨大化、重量化の傾向にある。また、大都 市への人口集中の激化に伴う都市の外方への発展につれ丘陵・山麓地帯での開発が進み、土地造成 に伴う大規模な切土・盛土工事が著しく増加しつつある。しかもこれらの建設工事は、第三紀層か ら洪積層までの半〜弱固結泥質岩地盤を対象とする場合が急増している。

このような背景のもとに、従来にもまして土質工学と岩盤工学の両面からこの種の泥質堆積岩に 関する研究が強く要請されているが、この分野の本格的な調査・研究が行なわれたのはここ10数年 来のことで歴史も浅く、設計・施工上様々な問題が指摘されているにもかかわらず、研究成果の集 積に乏しい。従って、実際問題に関連する工学上の特性の把握と設計・施工の指針となりうる基礎 的データの集積は急務である。

ところで, 泥質堆積岩は通常の土に比較して地質学的尺度の長い時間を経て岩石になる過程にあっ て, その性質は構成粒子の母岩の種類, 堆積過程の環境および堆積後の地質履歴に支配され, 地域 によって著しく異なる地盤材料である。すなわち, この種の堆積岩は土質材料と岩質材料の間にあっ て, 工学的には軟岩に分類されているが, その性質を支配する固結状態の程度は同一地質時代のも のでも地域ごとに異なり, 過圧密粘土に近いものから硬岩のように十分石化した状態まで多様な形 態にあり, それに対応して幅広い範囲にわたる力学的挙動を示す。この軟岩領域の力学的性質を明 らかにすることは, 土質力学の領域と岩盤力学の領域との間にあるギャップを段階的にでも埋め合 せ, 土, 軟岩, 硬岩を連続した一線上にある地盤材料として相互に関連づけて体系化するための重 要な研究課題といえる。しかし現時点においては, 固結度に応じて土質力学的手法あるいは岩盤力 学的手法を適応することによって個別にその力学的性質を明らかにしている状態で, 個々の泥質岩 の力学的性質や挙動を比較して一般的な性質を明らかにするために必要な試験法さえ模索中であり, 軟岩領域の多くの力学的性質を早急に解明することは至難のことに思える。とはいえ, 設計・施工 上の問題が指摘されている泥質岩に注目すると, それらは作用する外力または外的環境変化によって 容易に軟弱化あるいは土砂化する弱~半固結泥質岩が主体である。このような泥質岩に限定した場合, 多くは類似の性質をもち、すでに多くの研究成果の集積によって確立されている土質力学的研究手 法を援用すれば、その力学的性質の多くを解明でき、しかも土質材料との関連性も明確になると考 えられる。従って、特定の地域の泥質岩の力学的性質を詳細に調査・研究することは、多くの泥質 岩を対象とする一般的な設計・施工の指針となる有力な資料を提供できる一端を担い得るものであ る。

1.2 半固結ないし弱固結状態にある泥質堆積岩の土質工学的問題点と研究の現状

泥質堆積岩の工学的性質と力学挙動に関する研究は従来主に斜面安定に注目したものであるが、 最近の土木構造物の大規模・重量化に伴い支持層としての強度・変形問題や深い掘削の変形挙動に ついても注目されるようになっている。さらに今後、泥質岩地盤を対象とした土木構造物は多様化 するものと考えられる。従って、土木工事の目的によって多種多様の工学的性質と力学挙動に対応 することになり、そこから指摘される泥質岩における問題点も多岐にわたることとなり、予想され る問題を含めすべての問題を整理することは容易なことではない。そこで本節においては、工学的 性質から見た現時点での泥質岩の定義を示し、また泥質岩は自然の物産であることからその工学的 性質と力学挙動への地質履歴の影響は重要であり、これまで明らかにされた泥質岩の力学挙動に影 響をおよぼす地質履歴に関するモデルを概観する。さらに、地質履歴の影響を考慮しながら、一面 的ではあるが、研究の現状を支持層としての強度・変形に関する研究、斜面安定に関する研究、な らびに盛土材料への利用についての研究に大別して、それらの一部を概説して研究の対象となる泥 質岩の問題点を指摘する。

1.2.1 泥質岩の定義

泥岩は砕せつ性堆積岩の一種で、細粒の粘土およびシルトなどが固結してできたものであり、粒 径によって粘土岩およびシルト岩に分類される。泥岩がさらに固まり、層理面に平行なこまかい葉 理を有し、薄くはげやすい性質を持つに至ったものが頁岩である。この定義は我が国の土質工学関 (茶書書) によるものであるが、外国では粘土岩、シルト岩などすべての泥質堆積岩に対し頁岩(shale)と いう用語を使用する場合が多く、工学的意味での記述用語は標準化されるに至っていない。20 の泥質岩は第三紀の中新世〜鮮新世、また一部第四紀の洪積世に堆積して、多くは固結ないし軟岩 化しているものが多いが、London clay、Lias clay などで知られているように、古第三紀や中生代 の古い地層にも硬い粘土がある。このように泥質岩は著しく過圧密された粘土と見なせるものから +分固結した頁岩にまたがっているため、固結の程度が工学上重要であるとして、Mead は、この 固結度合に応じて頁岩を、(1)わずかなセメンテーションを持つよく締固まった頁岩と、(2)著しいセ メンテーション作用を受けて固結した頁岩に分類し、それを区別するにはスレーキング試験が有効 であることを示唆した。それ以後、泥質岩の工学的分類ではスレーキングを伴う泥質岩に対し「粘 土質頁岩(clay shale)」という用語が使用されている。

この「粘土質頁岩」の定義については第7回国際土質基礎工学会議の特別部会(No 10. 「粘土質 3) 頁岩の工学的性質と挙動」)で論議されている。その際の討議者らによる定義を列挙すると, (1) イライトやモンモリロナイトに富み,著しく過圧密された未こう結基岩で,風化によって容易に 粘土に変化する。 ② 過圧密度合の大きいことが共通した特徴で、こう結作用を受けていない粘土は過圧密粘土、わずかにこう結作用を受けた状態のものが粘土質頁岩、こう結作用を強く受けたものが頁岩である。
 ③ 著しく過圧密された粘土で、こう結作用をわずかに受けている。しかも拘束圧力除去の際自由水が供給されると、粘土に変化する。

④ 頁岩本来の石化作用を受けたものでなければならないが、過圧密粘土と考えるべきである。しか も化学的風化の最終産物でなく、吸水膨張と並行して現在化学的風化過程にある地盤材料と見なす べきである。

⑤ 土質力学と岩盤力学の境界領域にある未熟成頁岩であるとして、断層、節理、弱面などの地質構造をもつが、基本的にはある程度の剝離性と成層をなす堆積物で、土質力学的概念としては硬い粘土として挙動する著しく超過圧密された(very heavilly overconsolidated)ものである。

⑥ 粘土質頁岩の定義に共通していることは著しい過圧密の特性だけである。セメンテーションの度合は、それ自体を決定する簡単な試験が存在しないので、定義に利用することは困難である。

以上のことから,工学上問題となる粘土質頁岩は著しく過圧密され,続成作用としてのセメンテー ションを受けて弱~半間結状態にあるが,この結合力は不安定で風化作用によって容易に粘土化す る地盤材料,と定義できる。

このような泥質岩を,室内における物理,力学試験結果と原位置地盤で工学上問題となる現象を 関連づけて²⁾,一方耐水性の見地から吸水による強度低下,スレーキング量およびそれらの速さにも 4) とづいて,工学的立場から分類する方法が提案されている。

1.2.2 泥質岩の力学挙動におよぼす地質履歴の影響

5) 泥質岩の力学挙動は地質履歴に影響される。Bjerrumは,白亜紀あるいは第三紀の海成堆積層であ

る過圧密されたプラスチックな粘土および粘土質 頁岩を対象に,その力学挙動に及ぼす地質履歴 の影響をモデル化するとともに,このような地 層における斜面の進行性破壊と関連させて,風 化の影響について次のように説明している。

堆積開始から現在深い掘削やトンネル開削時 に見られる新鮮な粘土質頁岩に至るまでの過程 について,地質履歴の力学挙動に及ぼす影響を 図-1.1(a),(b)でモデル化して示した。図(a)は 有効上載圧力と含水比の関係を示したもので, 図中の曲線AA1は堆積過程を示し,粘土層は上 載荷重の増加に伴って圧密され,A1点で最大圧 密圧力に達する。その後同じ圧密圧力のもとで, 多くの粘土は二次圧密を伴ってB点で平衡する まで含水比を減ずる。短期間に上載荷重が除去 されると,粘土は大きな膨張を生じ,含水比を 増し,図中の曲線BCで平衡する通常の過圧密

図 - 1.1 泥質岩の地質履歴 (Bjerrumによる)

粘土となる。しかし、実際には地質学的尺度の長時間にわたって数百mから数千mもの層厚に相当 する上載荷重を受けていることから、この間に上載圧力、時間およびその他の要因の影響を受けて、 +粒子に物理的ならびに化学的な変質作用が生ずる。この過程は続成作用といわれ,粒子間の接触 面での過大な応力によって分子結合を生成する結晶作用と、間隙水に溶解している鉱物成分が間隙 内に沈殿して粒子を相互に結合させるこう結作用とが含まれる。両作用によって生じた結合力を続 成作用による結合力と呼ぶことにすると、この結合力の強さは圧密圧力、粘土鉱物、間隙流体、温 度などに支配され、粘土ごとに異なるが、強度とぜい性をもたらし、さらに結合力が強力になると、 軟岩化した粘土質頁岩は変形に対しても抵抗性を増し,図中の点Bよりも大きな付加応力を作用さ せても変形はわずかで、含水比と圧密圧力の関係は処女圧密曲線と交差し、圧密降伏を生ずるには 先行土かぶり圧力より大きな圧力を必要とする。従って、圧密試験では先行圧密圧力を決定できな いことになる。一方,侵食を受けて上載荷重が除去されると,結合力の作用によって膨張が拘束さ れるから、応力除去に伴う回復ひずみは通常の過圧密粘土に比べて著しく小さなものとなる。しか し、除荷度合が大きい地表面近くにおいては結合力のいくらかが破壊されて、含水比は増加するが、 現実の泥質岩では含水比が未だ平衡に達していないほど緩慢で,結合力の破壊は時間依存性である。 図中の曲線BDは除荷過程での平衡含水比と有効上載圧力の関係を示したものである。図(b)は図(a) と対応させて地盤内での鉛直有効応力と水平有効応力の関係を示したものである。この図での曲線 ABは堆積過程での両者の応力関係を図(a)のAA1Bに対応させるものである。水平地盤では上載荷 重が除去されると、鉛直方向への自由な膨張ひずみのため鉛直方向の応力は解放されるが、水平方向 への膨張ひずみは拘束されるため、水平方向応力の解放はわずかである。しかも、通常の過圧密粘 土では回復ひずみが大きく、一方粘土質頁岩では結合力が回復ひずみを拘束するため、水平方向の 応力は粘土質頁岩よりも過圧密粘土において大きく発生することになる。除荷に伴う鉛直応力と水 平応力の関係は過圧密粘土に対し図中の曲線BCで、また粘土質頁岩に対しては曲線BDで示され る。地表面近くになると水平と鉛直の応力差が著しく大きくなり、せん断破壊が生ずる。

さらに、気候要因だけでなく、それに関係しない物理的変化をもたらす要因も含めた物理的風化 作用の影響を考慮している。この風化作用の機能は、結合力を破壊することにより粘土質頁岩の骨 格構造を撹乱することにある。すなわち、地質履歴によって形成された骨格構造を維持している結 合力が物理的風化作用のもので徐々に破壊されると、拘束されていた回復ひずみは徐々に解放され その解放される速さに応じて粘土質頁岩は膨張を生じ、含水比増加と強度低下がもたらされる。そ のとき水平方向の変位は拘束さるので、水平方向応力が発生することになる。この風化の影響は深 さによって異なり、結合力の破壊程度に応じて風化領域を形成する。表層部は、凍結融解、温度変 化、乾湿繰返しなどの気候条件による物理的風化作用を受けて、結合力が完全に破壊された領域 となり、化学的風化作用もかなり進行している。この下層は、凍結融解、ならびに地下水面の季節 的変動による周期的な間隙水圧の変化、すなわち周期的な有効応力の変動が結合力を破壊する領域 で、一般にクラックが発達している。このクラックは自由水を循環させ、クラック面からスレーキ ングを増長させる。従って、クラックによって分離されたブロックは含水比大で、軟化している。 この領域までは主に気候条件による物理的風化作用を受けるが、さらにその下に地表面近くに作用 する風化要因の影響を受けず、緩慢な速度で膨張を生ずる領域が存在する。堆積層には種々の粘土 鉱物が含まれているので,粘土鉱物の種類によって局所局所で粘土鉱物の膨潤量が異なるため,不 均一な膨張ひずみが生ずる。従って,この領域においてはこの不均一なひずみが隣接する部分の体 積を乱し,次々と結合力を破壊する。この領域の厚さは,水平地盤ではわずかであるが,斜面の下 部では内部の水平応力が増大し,それに伴って領域も拡大して進行性破壊の原因になるとしている。

以上は斜面における進行性破壊機構を説明するために用意された地質履歴の影響であるが,進行 性破壊機構はさておき,図-1.1から泥質岩の主な特性として次のことが推察される。

降伏荷重以下の領域では通常の過圧密粘土に比較して強度は大で、かつ変形は小である。

② 地盤内応力状態から静止土圧係数はKo>1の状態にあり,異方性の傾向が強い。

③応力解放に伴い吸水膨張を生じ、強度が低下する。

④ 乾湿作用を受けるとスレーキング現象によって粘土化する。

⑤ 含まれる粘土鉱物の種類によって不均一な膨潤を生じ、せん断破壊の原因となる。

⑥ 結合力は不安定で,風化作用で容易に破壊される。従って,人為的撹乱でも容易に軟弱化する。

これらの特性と先の粘土質頁岩の定義に示した特性を考慮すると,共通して強調できることは, 結合力の不安定であり,この結合力破壊の要因は,大別すると,外的応力レベルの大きさ,物理的 風化作用,人為的撹乱などである。

1.2.3 泥質岩の問題点と従来の研究

土質材料からなる地盤では乱さない試料は地盤と共通の力学的性質をもつと考えられ、一方堅固 な岩石から成る岩盤では節理、断層などの地質分離面が岩盤の力学挙動を支配するとされ、岩盤と 岩石試料との性質は非常に異なったものと考えられている。ところで、軟岩の場合はどうかという と、各地の軟岩を対象として行われた岩石と岩盤の比較研究により、岩石そのものの力学特性が岩 盤の力学挙動に大きく反映することが明らかにされてきており、特に泥質岩では岩石の室内実験結 果と実際の地盤の挙動との相関はかなり高いと考えられる。従って、乱さない泥質岩を用いた室内 実験による研究の必要性は、地盤特性を把握する観点からかなり高いものである。その際、硬岩に 比較して泥質岩は著しく多孔質であることから、飽和状態であればその力学挙動はTerzaghiの有効 応力概念で記述できることが明らかにされている^{7,8)}。

さて,近年土木構造物の多様化に伴い,同一地層に限定した場合でも目的に応じて種々の工学的 性質を把握することが要求される。これらの目的を先に述べた泥質岩の結合力破壊要因と対応させ て大別すると,外的応力レベルの大きさは支持力問題と,物理的風化作用は軟弱化や斜面安定問題 と,また人為的撹乱は盛土材料の可否と関係づけられる。もちろん,これらは相互に関連し合うも のであるが,便宜的にこの3つに分けて泥質岩に関する従来の研究を概観する。

支持力問題との関連

従来,半固結状態にある泥質岩地盤は通常の構造物に対し良好な支持地盤とする場合が多かった が,構造物の巨大化に伴い泥質岩の強度・変形に関する研究の重要性が注目されている。従って, 強度・変形特性の把握が研究の主目的となる。

周知のように支持力問題では,破壊に関する検討と変形に関する検討が行われている。著しく過 圧密された粘土や泥質岩の応力~ひずみ関係は,初期のひずみにおける直線関係から次第に離れ, ひずみ硬化によって最大強度に達し,それ以降ひずみの増大とともに応力は減少して最終的に応力 がほぼ一定となる残留強度に至る,典型的なひずみ硬化 – 軟化型であることが多くの地域の供試体 について明らかにされている。この強度・変形特性には弾性変形,塑性変形,破壊強度,残留強度 等に関する問題が含まれ,しかもこの応力~ひずみ関係は拘束圧力,ひずみ速度,異方性,粒子間 結合力,その他に影響される。

強く結合力を受けた軟岩でも、その応力~ひずみ関係は、拘束圧力が増大するとともに、ひずみ 酸化-軟化型からひずみ硬化-塑性変形型に変化する。また、通常の土に作用させる応力よりも大 きな拘束圧力にわたる実験結果によると、最大強度時の破壊包絡線は非線形関係に、一方残留強度 時の包絡線は線形関係にあることが認められている。。

持続荷重下で変形が徐々に進行するクリープ現象は多くの地盤材料に認められるが、泥質岩においても持続荷重による変形の増大と、その持続時間の増加による強度低下が著しいことが知られている⁹。地盤材料はせん断に伴いダイレイタンシーを示すのが特徴である。ひび割れ硬質粘土では正のダイレイタンシーに伴ってせん断領域の含水比が増加することが強度低下の原因であるとし¹⁰,一方硬岩の場合,Bieniawski¹⁰の破壊機構で知られるinitiation of unstable deformationに相当する応力レベルがクリープ破壊荷重に等しく、この応力レベルは、岩石の体積が圧縮傾向から膨張傾向に移行する点、また間隙水圧が増加から減少傾向に移行する点であることが三軸圧縮試験で確められている¹²。軟岩の場合でも、この変形に関する特異点の応力レベルが長期強度を支配するとし、さらにクリープ破壊応力と残留強度時の応力状態との関係が注目されてい³³。

泥質岩は,堆積過程で上載荷重の影響を受けて粒子配向が生じ,成層を形成する場合が多く,強度・変形は異方性の傾向にある。著しく過圧密された粘土や泥質岩では,その地盤内応力は静止土 圧係数 $K_0 > 1$ なる状態にあって,地盤に鉛直な方向の供試体よりも水平な方向の供試体の非排水 強度が大きいことが知られている。このような地盤での静止土圧に関する詳細な研究^{1,14)}によると, 地表面に近づくにつれて静止土圧係数 K_0 の値は増大して受動土圧係数の値に接近するとともに,地表 面近くの水平方向応力は最大受動土圧の状態になるとしている。また,この K_0 の値は掘削に伴う 地盤の変形挙動に対し重要であるとして,等方線形弾性理論を適用した有限要素解析で掘削による 斜面のせん断応力・変形分布に及ぼす K_0 の影響が調べられている。このに、 $K_0 > 1$ なる状態にある 地盤の水平応力を原位置で測定する機器の開発も進められている。

吉中らは^{17,18,19}, London clayのような著しく過圧密された粘土から粒子間結合力を強く受けた泥質 岩までの力学挙動を比較し,その圧縮(圧密)特性から密度に規制される泥質岩と,粒子間結合力の影響 の強い泥質岩に区分している。それぞれの特性として,密度に規制される泥質岩では,圧縮性は通 常の粘土の圧縮性に類似し,応力~ひずみ関係は高い拘束圧力領域にわたってひずみ硬化-軟化型 で,高密度化に伴い強度は増大すること,一方結合力の強い泥質岩では,圧縮性は降伏応力以下で 小さく,それ以上では著しく大きくなり,応力~ひずみ関係はひずみ硬化-軟化型からひずみ硬化 -塑性変形型に移行し,骨格構造の破壊により除荷後の強度は著しく減少することを挙げている。

以上のように,泥質岩の強度・変形特性は複雑で,支持力問題に限定した場合でも破壊と変形の 双方の検討を必要とするにもかかわらず,設計に最小限必要な強度定数 c, øや弾性体と仮定した ときの沈下推定に必要な弾性パラメータさえどの値を用いるべきか明確にされていないように思わ れる。そのためには,破壊と変形の双方を統合して検討するための軟岩の破壊まで含めた力学挙動 を記述できる構成関係を求める必要がある。これまで概観したように、軟岩の力学挙動を現象論的 に見ると、定性的には何ら土質材料の力学挙動と変らず、それらの差異は外作用力としての応力レ ベルの大小であるという立場から、軟岩をひずみ硬化-軟化の弾塑性体でかつダイレイタンシー挙 動と時間依存性を有する材料と考え、実験結果にもとづく力学挙動を記述でき、しかも軟岩を対象 とする構造物の強度・変形問題に適用できる、より一般性をもつ構成式の確立を目的とした一連の 研究が行われている。この研究において、設計上の実際問題として、弾性定数の決定法、あるいは クリープ破壊の応力状態の下限がほぼ残留強度線に近い実験事実から、長期安定解析には残留強度 に対する強度定数を用いるべきことについて示唆している²¹⁾しかし、これらの構成関係は等方性材料を対 象としたもので、異方性を考慮するに至ってない。異方性を考慮した構成関係は弾性領域に限定さ れ、地盤を直交異方弾性体と見なしてその変形挙動を記述する異方弾性パラメータを三軸圧縮試験 で決定する方法²²⁾あるいは構造物と地盤の相互作用としての半無限異方弾性地盤の弾性沈下に及ぼ す弾性パラメータの影響に関する研究³³⁾がある。

ii) 軟弱化と斜面安定

支持層としての泥質岩の力学挙動が近年注目されるようになったのに対し,泥質岩層の自然斜面 および掘削に伴う切取斜面では多くの崩壊・すべりが生じ,従来から多くの研究が行われている。 この崩壊・すべりの現象は,泥質岩が外力付与や外的環境変化の影響を受けて,その結合力が破壊 されたため,強度を著しく減じ軟弱化したことによるものと考えられている。軟弱化の要因として 地殻変動による破砕帯などの地質構造上の欠陥,風化作用,応力解放に伴う吸水膨張などが考えら れるが,ここでは泥質岩の吸水膨張あるいはスレーキングによる軟弱化の機構,続いて泥質岩の範 ちゅうに入るが,従来から土質力学の分野の研究対象とされている硬質ひび割れ粘土を例として, 軟弱化と関連ある斜面の進行性破壊機構と長期安定について概観する。

① 吸水膨張による軟弱化

粘土鉱物を含む岩石は多かれ少なかれ吸水して膨張する性質がある。膨張には粘土鉱物自体の層 格子間に吸水してふくれる膨潤と他の原因による膨張があるが、両者は重なり合って生ずる場合が 少なくない。膨潤する粘土鉱物としてモンモリロナイトや膨潤性クロライトが知られている。この ような全体としての膨張が著しいと、内部応力により泥質岩は崩壊する。

村山ら、は、応力解放に伴う泥岩の吸水膨張による崩壊は堆積過程で形成された異方性に起因する 異方性膨張によって生ずるせん断ひずみがせん断応力を発生させること、不均一性による内部の部 分的な吸水膨張量の違いがせん断応力を発生させることを実験的に確めている。一方、多量の膨潤 性粘土鉱物を含む泥質岩でも、それが地表面近くにあって飽和状態にあれば、採取して水中に放置 してもほとんど膨張して破壊することはない。仲野²⁵によると、膨張発生には乾燥や温度低下などに よる岩石中に含まれる水の化学的ポテンシャルの低下および土木工事に伴う外的応力付与による骨 格構造の乱れを必要とし、それらの作用によって続成過程で間隙水と粘土粒子の相互作用により形 成された粘土粒子表面の不活性膜が破壊されることにもとづいて崩壊するとしている。

このように,結合力の不安定さが泥質岩の工学的特質であり,特に乾湿の繰返しによるスレーキ ング現象を伴う軟弱化は切取斜面の保護あるいは盛土材料への利用上考慮されるべき特性である。

② 硬質ひび割れ粘土斜面における進行性破壊と長期安定

Terzaghi は、斜面安定の検討に際し、自然粘土を(a)分離面のない軟粘土 (soft, intact clay), (b)分 離面のない硬質粘土 (stiff, intact clay), (c)硬質ひび割れ粘土(stiff, fissured clay)の3つに区分し、 (c)の硬質ひび割れ粘土ではピーク強度よりもかなり小さい強度で破壊が起こることに注目し、その理由と して切取による応力解放のためにひび割れやクラック面が開き、その面に沿って軟弱化が徐々に周辺の粘土 に拡がるためと述べ、進行性破壊を示唆した。過圧密粘土の排水せん断では、ピーク強度を過ぎても膨張 が生じて含水比が増すため、強度は変形とともに減少して残留値に達することに注目して、Skempton²⁷は自 然斜面の長期安定問題を調べ、風化の著しいひび割れ粘土斜面の破壊時につり合う強度は ピーク強度よ りも残留強度に近いと述べ、この原因はすべり面の形成に先立ちひび割れ部分への応力集中にもとづく 進行性破壊にあることを示唆した。一方、Bjerrum⁵⁰はひび割れの存在とは別に進行性破壊の機構を 図 - 1.1 で示したように、除荷過程で土塊中に拘束されていたひずみエネルギーが風化による結合 力破壊に伴って放出されると、側方への応力が増大し、切取斜面のり先付近での応力集中および潜 在すべり面での局部せん断破壊を生じて徐々にすべり面を形成すると説明し、進行性破壊の速度は 風化速度に影響されるとしている。

Skempton²⁷⁾の示唆以来多くの斜面破壊についての事例研究により,自然斜面のすべりおよび過去 にすべりを経験した切取斜面の安定解析に残留強度の妥当性が認められ,また実際的な目的のため に一面せん断試験²⁷⁾三軸圧縮試験²⁹⁾リングせん断試験³⁰⁾による確かな残留強度を求める研究が行わ れている。

他方,過去にすべりを一度も経験していない切取斜面では、施工後数十年という長期間を経て初 めてすべりが生ずる(first-time slide)遅れ破壊現象(delayed failure)は、ひび割れ部分での応力集 中により完全に軟弱化したとき発生するもので、そのときの強度は残留強度よりも大きく、練返し て正規圧密した粘土のピーク強度に近い値であるとした³¹⁾。Vangham 5³²は、London clay層に間隙水 圧計を埋設して間隙水圧を実測したところ、掘削切取後9年経過していたにもかかわらず、斜面内 間隙水圧は負圧状態にあることから、遅れ破壊の原因はこの間隙水圧平衡の著しい遅れによるもの とした。この事実に注目してSkempton³³⁾は、経時的な軟化現象に代るものとして有効応力による論 議を行い、風化 London clay 斜面での遅れ破壊について次の結論に達した。① London clay 斜面の first-time slideに関するせん断強度定数は c'=1 KN/m³, $\phi'=20^{\circ}$ で、大きな寸法の供試体について 測定したピーク強度よりかなり小さい。従って、進行性破壊も一部含まれている。また、この値は 完全に練返して正規圧密した強度に等しく、しかも節理やひび割れ面の強度の下限にほぼ等しい。 ② 残留強度 (cr'=0, $\phi_r'=13^{\circ}$)はこの値よりさらに小さく、1-2mの変位を伴ったすべり発生後に発揮 される強度に対応している。③ London clay 斜面のfirst-time slide は切取り掘削後、非常に長年月 経過した時点で起こるのが特徴で、この遅れの根本的原因は間隙水圧の平衡速度が非常に遅い点に あり、一般には掘削後 40 ~ 50 年経過して平衡値に達する。

上述のような斜面安定の研究は我が国ではほとんど見あたらない。我が国における第三紀層の地 すべり対策工では,不撹乱試料を用いたせん断試験のピーク強度による安定計算では安全率が過大 な値になるとして,すべり断面から逆算した強度定数 *c*, *o* を用いて安定解析を行っている。安全 率を高める対策工を目的とした設計手段としてはそれでよいが,それ以前に,冒頭で述べた Terzaghiの粘土の区別に従って、室内実験結果がそのまま使えるものと、使えないものとに区別して安定問題を検討する必要がある。

Ⅲ)盛土材料としての泥質岩

泥質岩の結合は、これまで述べてきたように、外力としての応力変化はもちろんのこと、吸水膨張あるいは乾湿によるスレーキングに見られるように水の作用に対して著しく不安定である。従って、掘削直後の比較的強度の大きな泥質岩片を用いて盛土した場合は、透水性が大きいので吸水膨張による強度低下を生じたり、あるいはスレーキングによる細粒化を伴ったのり面の変形と破壊、盛土の圧縮沈下あるいは鉄道における噴泥現象など、盛土材料として多くの不都合が指摘されている¹⁾。

泥質岩を盛土材料として利用する立場での系統立てた研究は少なく,主にアースダムや道路の盛 土に一部の材料として使用したときの施工,設計上における対処策の報告が主であるように思われ る¹⁾。吸水膨張による強度低下,乾湿によるスレーキング機構についての従来の研究はすでに略述し たが,これは盛土材料としての泥質岩片の力学挙動を知る上で重要である。材料選定の基準を確立 するため泥質岩のスレーキング試験が Morgenstern⁶⁾、奥園³⁴⁾によって行われているが,スレーキン グに及ぼす拘束圧力や吸水速さの影響,またこの影響と強度の関係は明らかでない。特に,盛土の 圧縮沈下やせん断特性は泥質岩片の経時挙動,すなわち軟弱化に支配されるといわれているが,泥 質岩片は転圧時にかなり破砕されるという現場報告がある。しかし,破砕程度と盛土後の力学挙動 の関係,またこの力学挙動に及ぼす乾湿の影響も明らかにされていない。

この種の泥質岩を使用した道路あるいは土地造成のための高盛土が増加する傾向にあることから も,締固めた泥質岩の力学挙動に関する研究が必要である。

1.3 本研究の目的と概要

従来の研究を概観すると, 泥質岩が工学上問題となるのは結合力の不安定さに原因しているとい える。しかも, 力学挙動を支配するのは固結度の差異であり, それは地質履歴の影響を受けた地域 性の強いものであって, この結合力は実験室で人工的に再現できるものではない。従って, 地域ご との泥質岩の力学挙動を集積することによって広範囲にわたる異なる固結度の泥質岩を一線上にな らべ, その力学挙動を説明できる特性を把握し, それにもとづいて泥質岩を対象とする土木構造物 の設計・施工の指針を確立することが可能となる。

そのために、本論文では、泥質岩のなかでも工学的意味での「岩」に対し、弱固結状態にある泥 質岩として沖縄本島中南部地域の基礎地盤を構成している第三紀島尻層泥岩を試料に選び、工学上 問題となる地質履歴による泥質岩の結合力を破壊する多くの要因から、外的応力レベルの大きさ、 風化作用の一つである乾湿作用、ならびに掘削・転圧などの人為的撹乱を取上げることにする。そ して、それぞれを実際問題としての支持力・沈下問題、軟弱化と斜面安定上の問題、ならびに盛土 材料としての可否の問題に関係づけて、それらの要因作用下での弱固結状態にある泥質岩の力学挙 動を実験的に究明し、力学挙動に関する基礎的データの集積を目的とするとともに、得られた成果 を考察することにより、泥質岩を対象とする土木構造物の設計・施工の指針となる情報を提供しよ うとするものである。 本論文の内容を概説すれば次のとおりである。

第2章においては,泥質堆積岩の一般的な物理的・力学的性質を把握する。そのために,本研究 の実験試料である島尻層泥岩について断片的に行った実験結果を主体として一般的性質を示し,こ れを既存の泥質岩の工学的分類法に適用して他の泥質岩との比較,およびその位置づけをする。そ の過程で実験上の問題点と土質力学的手法の適用可否についていくらか検討している。

第3章においては、未風化島尻層泥岩に対して拘束圧力60kg/cd までの三軸圧縮試験結果を示し、 主に強度特性について考察と検討を加える。最初に、三軸圧縮試験装置の説明と実験手法上の問題 について検討を行う。次に、地盤に対し鉛直方向にある供試体の圧密非排水および排水せん断結果 にもとづいて、破壊時の体積変化の特性と間隙水圧の特性から強度と有効応力の関係を検討、考察 し、また、最大強度後の残留応力状態についても検討している。さらに、圧密圧力と非排水強度の 関係および地盤内初応力の推定を試みている。続いて、平板載荷試験と杭載荷試験結果を支持力公 式による計算値と比較することにより、せん断試験結果にもとづく強度定数の適用について若干の 考察を加えている。最後に、地盤に対し種々の軸方向をもつ供試体について圧密非排水せん断試験 を行い、強度異方性、間隙水圧の挙動の異方性ならびに強度と有効応力の関係について検討を加え ている。

第4章においては,泥質岩の変形特性として異方弾性挙動を前章の実験結果から考察している。 最初に,軟岩および硬質粘土の弾性挙動に関する従来の主な研究を述べ,これにもとづいて軸対称 三軸圧縮試験結果に線形異方弾性理論を適用して弾性挙動限界について検討する。次に,異方弾性 体に拡張したSkemptonの間隙圧係数Aを誘導して,鉛直および水平供試体の間隙水圧の異方性に 考察を加え,その間隙水圧特性と鉛直供試体の排水せん断による体積変化特性とから直交異方弾性体 としての弾性パラメータの決定法を示している。最後に,実験供試体に対して求めた弾性定数を用 いて,半無限異方弾性地盤の弾性沈下について簡単に考察している。

第5章においては、風化作用の要因である乾湿作用に注目し、それによる泥質岩の軟弱化過程を コンシステンシー変化、強度低下の面から室内実験にもとづいて現象論的に追求している。最初に、 乾湿1サイクルでの乾燥度合の差異による強度低下を三軸圧縮試験で求めている。次に、乾湿サイ クルの繰返しに伴うコンシステンシー変化をスレーキングによる細粒化と水分保持特性から検討を 加えている。また、長期間にわたって乾湿を繰返した供試体の強度をフォールコーンと三軸圧縮試 験で求め、その強度低下をスレーキングによる含水比増加と関係づけて示し、さらに三軸圧縮試験 による圧密非排水せん断結果に種々の考察を加え、乾湿作用だけによる強度低下の限界を検討して いる。

第6章においては、島尻層における切土のり面保護と地すべり・斜面崩壊の事例について調べて いる。島尻泥岩層を地質的に与那原泥岩層と新里粘土層に区分し、前者では第5章の実験結果にも とづき、後者では地すべり地内の地質調査とボーリングコアーの物理的、力学的試験にもとづいて斜 面安定を検討している。特に与那原泥岩層よりも堆積年代が若く、かつ固結度が低い新里層粘土の力 学特性が与那原層泥岩と比較、検討されている。また、島尻層の地質についても略述している。

第7章および第8章においては,泥質岩の盛土材料としての可否あるいは設計・施工の指針とな る資料を提供するために,締固め試験ならびに三軸圧縮試験による締固めた供試体のせん断試験結 果を示している。すなわち,掘削直後のれき状泥質岩片が外的条件変化により軟弱化することに問題があるとして,第7章では最初に,非乾燥法・非繰返し法による締固め試験結果について締固め 含水比,締固め仕事量,締固め直後と水浸後のCBR,締固め時の破砕と水浸の両作用による細粒化状況か ら検討を加え,乾燥密度~含水比図上に締固めの性状を明示している。次に,実際的見地から自然 含水比状態に限定して,締固め条件として泥質岩片の最大径と締固め仕事量を種々変化させて締固 めを行い,締固め密度とCBRの関係,細粒化と締固め条件の関係について考察と検討を加えてい る。また,第8章においては,締固めた供試体の非圧密非排水せん断および圧密非排水せん断試験 の結果を示している。最初に,側圧一定条件下での締固めた供試体の非排水強度と含水比,締固め 仕事量,締固め方法の違いとの関係を検討し,また耐水性の程度を検討するため乾燥密度を拘束し て水浸だけによる強度変化を示す。次に,非圧密非排水せん断結果を締固めによる泥質岩片の破砕 状況から考察を加え,ついで水浸後の締固め供試体についての圧密非排水試験結果からせん断特性 について種々の考察を加えている。

最後に、第9章においては、各章における研究結果を要約して結論としている。

参考文献

- 1) 土質工学会編:日本の特殊土・第7章泥岩および山砂,土質工学会, pp. 315~355, 1974.
- Underwood, L. B.: Classification and identification of shale, Proc. of ASCE, Vol. 93, No. SM 6, pp. 97 ~116, 1967.
- Johnson, S.: Engineering properties and behavior of clay-shale, Proc. 7th ICSMFE, Vol. 3, pp. 483~488, 1969.
- 4) Morgenstern, N. et al.: Classification of argillaceous soils and rocks, Proc. of ASCE, Vol, 100, No. GT10, pp. 1137~1156, 1974.
- 5) Bjerrum, L.: Progressive failure in slopes of overconsolidated plastic clay and clay shale, Proc. of ASCE, Vol. 93, No. SM 5, pp. 3~49, 1967.
- 6) 吉中龍之進:軟岩の変形・強度に関する2~3の特性,土と基礎, Vol. 22, No. 6, pp. 7~12, 1974.
- 7) Bishop, A. W. et al.: Undisturbed samples of London clay from the Ashform Common shaft: strengh-effective relationships, Geotechnique, Vol. 15, pp. 1~31, 1975.
- 8)赤井浩一・足立紀尚・西好一:堆積軟岩(多孔質凝灰岩)の弾・塑性挙動,土木学会論文報告集,No. 271, pp. 83~95, 1978.
- 9) Casagrande, A. et al.: Effect of rate of loading on the strength of clays and shales at constant water content, Geotechnique, Vol. 2, pp. 251~263, 1951.
- Skempton, A. W. et al.: The Bradwell slip: A short-term failure in London clay, Geotechnique, Vol. 15, pp. 221~242, 1965.
- Bieniawski, Y. T.: Mechanism of brittle fracture of rock, Int. J. Rock Mech. Min. Sci., Vol. 4, pp. 395~430, 1967.

- Heck, W. J.: Development of equipment for studing pore pressure effects in rock, Proc. 10th Symposium on Rock Mechanics, pp. 243~266, 1972
- Akai, K., Adach, T. and Nishi, K.: Mechanical properties of soft rocks, Proc. 9th IC SMFE, Vol. 1, pp. 7~10, 1977.
- 14) Skempton, A. W.: Horizontal stresses in an overconsolidated Eocene clay, Proc. 5th ICSMFE, Vol. 1, pp. 351~357, 1961.
- Duncan, J. M. et al.: Slopes in stiff-fissured clays and shales, Proc. of ASCE, Vol. 95, No. SM 2, pp. 467~492, 1969.
- 16) Windle, D. et al.: In situ measurement of the properties of stiff clays, Proc. 9th I CSMFE, Vol. 1, pp. 347~352, 1977.
- 17) 吉中龍之進・他:泥岩の圧密排水せん断試験結果の1例,第31回土木学会年次講演集,第3部, pp. 230~231, 1976.
- 18) 吉中龍之進・他:泥岩の強度・変形特性,第32回土木学会講演集,第3部,pp. 356~357, 1977.
- 19) 吉中龍之進・他:軟岩の応力~ヒズミ挙動に関する実験的研究(1),第33回土木学会年次講演集, 第3部,pp.448~449,1978.
- 20) Akai, K. et. al. : Constitutive equations of geotechnical materials based on elastoviscoplasticity, Preprents of Specialty Session 9, 9th ICSMFE, pp. $1 \sim 10$, 1977.
- 21) 足立紀尚:軟岩の強度~変形に関する一考察,第12回土質工学研究発表会講演集,pp. 1073~ 1076, 1977.
- Atkinson, J. H.: Anisotropic elastic deformation in laboratory test on undisturbed London clay, Geotechnique, Vol. 25, pp. 357 ~ 374, 1975.
- 23) Hooper, J. A.: Elastic settlement of a circular raft in adhese contact with a transversely isotropic medium, Geotechnique, Vol. 25, pp. 691~711, 1975.
- 24) 村山朔郎・八木則男:泥岩または粘板岩の吸水膨張について,材料,第14巻,pp.84~89, 1965.
- 25)仲野良紀:第三紀層地スベリ母岩(泥岩)の軟弱化と物性の変化について、農業土木試験場報告、第4号、pp. 143~169, 1966.
- 26) Terzaghi, K.: Stability of slopes in natural clay, Proc. Ist ICSMFE, Vol. 1, pp. 161
 ~ 165, 1936.
- Skempton, A. W.: Long-term stability of clay of slopes, Geotechnique, Vol. 14. pp. 77~ 101, 1964.
- 28) Skempton, A. W. and Hutchinson, J. H.: Stability of natural slopes and embankment foundation, Proc. 7 th ICSMFE, State of the Art Volume, pp. 291~340, 1969.
- 29) Chandler, R. J.: The measurement of residual strength in triaxial compression, Geotechnique, Vol. 16, pp. 181~186, 1966.
- 30) Bishop, A. W. et al.: A new ring shear apparatus and its application to the meas-

urement of residual strength, Geotechnique, Vol. 21. pp. 273~328,1971.

- Skempton, A. W.: First-time slides in overconsolidated clays, Geotechnique, Vol. 20, pp. 320 ~ 324, 1970.
- 32) Vangham, P. R. et al: Pore pressure changes and the delayed faiture of cutting slopes in overconsolidated clay, Geotechnique, Vol. 23, pp. 531~539, 1973.
- Skempton, A. W.: Slope stability of cutting in brown London clay, Proc. 9th ICSMFE, Vol. 3, pp. 261~270, 1977.
- 34) 奥園誠之: 切土ノリ面の崩壊とノリコウ配, 土と基礎, Vol. 20, No. 2, pp. 33~40, 1972.
- 35) 種村喬郎・他:ダム用土としての泥岩について、土と基礎、Vol. 22, No. 6, pp. 37~44, 1974.

第2章 泥質堆積岩の一般的な力学的性質

2.1 概 説

最近, 泥質岩からなる地盤を対象とした土木工事が増加するにつれ, 種々多様な問題点が指摘さ れるようになり,工学的見地からの泥質岩に関する研究の必要性が要請されていることは第1章に 述べたところである。しかし,設計・施工指針が確立されていない現状においては,泥質岩を対象 とする構造物を築造する場合,それに先立ち,これまでの経験とデータの集積にもとづいて力学挙 動を予測し,これを考慮した設計・施工法を立案する必要がある。その際,泥質岩は地域性の強い 地盤材料であるとともに,地質履歴による固結度に応じて幅広い力学的性質を示すものであるから, 対象とする泥質岩がどのような力学挙動を示し,かつその性質が幅広い力学的性質での位置する範 囲を把握した上で他の泥質岩に関するデータの集積から適切な情報を得るのでなければ,一連の調 査,設計,施工案は合理性を欠くものとなるであろう。そのために,対象とする泥質岩の一般的な 力学的性質を単純な室内試験で把握して,工学的見地からの泥質岩に関する分類があれば,その結 果を分類法に適用することによりその位置づけを行い,それと類似の泥質岩を選択すれば,それを 対象とした工事報告書から多くの示唆を受けるものと考えられる。しかも、このことは特定の地域 において単に経験のみに頼っていた設計・施工法に合理性を加味できるのみならず,調査,研究に おける問題点の所在を明示する一助となりうるであろう。

以上の観点から本章では、本研究で実験試料として選んだ島尻層泥岩の工学的見地からの位置づけを目的として、それの一般的な物理的、力学的性質を羅列検討して把握することにする。工学的見地からの位置づけはすでに提案されているUnder wood¹⁰による頁岩の工学的分類法とMorgenstern ら²⁾による泥質岩の分類法にもとづいて行う。 Under wood による分類法は Morgenstern らの方法 よりも大まかであるが、分類基準となる要素が室内試験としての物理的、力学的性質および現場観察などの多くの項目にわたり、一般的な性質の調査手段を示唆しているので、本論に入る前にその分類法を以下に略述する。

Underwood は、固結した粘土岩あるいはシルト岩に剝離性が付加されたものを「頁岩(shale)」 と定義して、これを、(1)締固まった頁岩あるいは土質材料的頁岩(soil-like shale)と、(2)十分に こう結した頁岩あるいは岩質材料的頁岩(rock-like shale)に大別した。さらに、頁岩を工学的 見地から分類する場合、粒度組成、化学成分、鉱物学的分析結果、剝離性などの地質学的要素は分 類手段としてあまり有意性がないとし、頁岩層を対象とした過去の多数の工事例から頁岩の室内試 験結果、野外での観察、それと問題となった原位置挙動に注目し、これらを比較検討して頁岩の工 学的分類を提案している。この提案は、室内試験による物理的、力学的性質ならびに野外での観察 から設計・施工上考慮しなければならない原位置挙動(問題点)を予想しようとするもので、前者 を物理的性質と総称し、それには室内試験による圧縮強度、弾性係数、粘着力、内部摩擦角、乾燥

- 14 -

密度,膨潤量,自然含水比,透水係数,粘土鉱物の種類,Skemptonの活性度,また野外観察とし て乾湿による細粒化,地質的な弱面の間隔,弱面の配向,地盤内応力(静止土圧係数Koの大きさ) を挙げ,一方原位置挙動には大きな間隙水圧の発生,支持力不足,除荷に伴う浮上り量,斜面安定, スレーキング速さ,侵食性,トンネル支保工上の問題を挙げている。そして,ここでいう物理的性質 の個々の要素については,その測定値(観察状態)が好ましい値(状態)と好ましくない値(状態) に2分され,物理的性質の個々の値が好ましくない値として測定されると,その物理的性質からい くつかの考慮すべき原位置挙動がチェックできるとするものである。例えば、含水比20%以上で あるなら好ましくない値で,大きな間隙水圧の発生と斜面安定上の問題が,あるいは圧縮強度21 kg/cmf以下の場合は好ましくない値で,大きな間隙水圧の発生と支持力問題が示唆されることになる。 このような好ましくない値で,大きな間隙水圧の発生と支持力問題が示唆されることになる。 このような好ましくない値で,大きな間隙水圧の発生と支持力問題が示してなる真岩(problem shale)」に,好ましい値にある頁岩は「inactive shale」あるいは「問題なの頁岩(nonproblem shale)」に分類され、また「active shale」よるいは「問題ない頁岩(nonproblem shale)」に分類され、また「active shale」はその性質の程度によって「highly active」、 「active」、「slightly active」な頁岩に細分類されるとしている。そして、土質材料的頁岩は後者に対応するとしている。

本章では,以下島尻層泥岩の一般的な物理的,力学的性質を述べるが,その際, Underwood¹⁾と ²⁾ Morgenstern らによって集録,報告されている世界各地の泥質岩,および Ward らによる London clay の性質と比較する。そして, Morgenstern らの分類法を示した後に,島尻層泥岩の性質を適用 して分類上の位置づけを行う。次に標準貫入試験のN値から島尻層泥岩地盤特性を把握し,最後に 本章の結語としている。

2.2 泥質岩の一般的な物理的,力学的性質

2.2.1 物理的性質

泥質岩は,堆積後の上載荷重の大きさ,時間,その他の要因の影響を受けて半固結状態にある。 その固結程度は地質履歴と地域によって異なるが,泥質岩の基本的な性質を決定する要素となる。

泥質岩の状態量としての単位体積重量と含水比は固結程度によって著しい差異を示すものである が、一般に同一地質においては場所と深さによって変化するものと考えられている。しかし、通常 の土質調査の深さの範囲に限定すれば、著しい過圧密効果と結合力の影響のために深さ方向での差 異はわずかである。従って、同一地点でのこれら物理量の差異は風化程度に反映されるものである。

Underwood によると、頁岩の自然含水比は 2 %~ 36 %、乾燥密度は 1.12 t/m^a~2.56 t/m^a にま たがっていて、含水比 20 %以上および乾燥密度 1.76 t/m^a以下は好ましくない泥質岩で、含水比に 対しては大きな間隙水圧発生および斜面安定が、乾燥密度に対しては大きな間隙水圧発生が問題に なるとしている。Morgenstern らが対象とした多くの泥質岩における自然含水比も 1.7 %~ 40 % にまたがるものである。一方、London clay の自然含水比は 21 ~ 26 %、単位体積重量は 2.00~ 2.10 t/m^a である。 島尻層泥岩地盤を大まかに未風化層と風化層に区分して、それらの状態を乾燥密度と自然含水比の関係で示したのが図-2.1である。

未風化泥岩の関係は一軸圧縮強 度測定のために同一地点から採取 した多くの供試体についての例で あり,風化層の関係は砂川らによ るN値10以下の不撹乱試料につ いての調査結果である。図には, Underwoodが集録した含水比20 %以上の泥質岩ならびにLondon clayについての関係も示してあ る(比重は明示してない)。島尻 層未風化泥岩(以後,未風化泥岩 という)の含水比は主に22~28 %に分布し,また単位体積重量は 2.00~2.10 t/m²の範囲にあり,

London clay の値と類似している。

図-2.1 自然含水比と乾燥密度の関係

一方,風化層は,風化作用によって結合力が破壊された 結果その間隙比を増し,含水比増加と乾燥密度の減少が もたらされたことがわかる。また,図から含水比30%, 乾燥密度1.5 t/m²をもって未風化層と風化層の区分が できそうである。

ところで、未風化泥岩に注目すると、同一地点で採取 した供試体に対する関係であるにもかかわらず、比重 2.75 とすれば、含水比23 ~ 28 % の範囲でほぼ飽和状 態にあり、しかも乾燥密度は含水比増加に伴い零空隙曲 線に沿って減少している。一方、含水比23 %以下では 飽和度は減少し、乾燥密度はほぼ一定値にある。飽和状 態で乾燥密度が変化するのは収縮あるいは膨張挙動によ るものと考えられ、そのうちの収縮特性を示すために準 備したのが図-2.2 である。この図は、試験開始時の含 水比が異なる供試体について乾燥に伴う体積収縮量と含 水比の関係を、乾燥密度と含水比の関係に対応させて示 したものである。体積変化はほぼ3cm立方供試体を用意して

図-2.2 未風化泥岩の収縮特性

徐々に乾燥させながら水銀置換法によって測定し,試験開始時(初期含水比)の体積を基準にして いる。炉乾燥までの全収縮量は初期含水比によって異なるが,含水比減少に伴う収縮の傾向は含水 比24 %までの直線的かつ急激な体積減少,そして含水比23~24%を境としてゆるやかな減少 にある。それに対応して,含水比24%以上では飽和状態が維持され,それ以下では乾燥により飽 和度が著しく減少する。なお,含水比24%以上での収縮量は乾燥によって失われた水分の体積に 等しいことが確められている。従って,この未風化泥岩の収縮限界は23~24%であることがわか る。また,初期含水比が異なるにもかかわらず,収縮限界から炉乾までの乾燥密度と収縮量はほぼ 一定値を示し,全収縮量は初期含水比と収縮限界の差に支配されるものである。

以上の収縮挙動から、この程度の固結状態にある泥質岩では乾燥に伴う収縮挙動を示し、また飽 和状態での含水比や乾燥密度の差異は力学挙動に影響を及ぼすものと考えられる。

泥質岩は,岩に比べ解きほぐしが比較的容易で,また風化によりある程度粘土化しているので, その母岩構成粒子の性質が母岩の性質を支配するとして,通常の土の物理試験が行われている。し

かし,通常の土質材料よりも固結しているので,解 きほぐしてこね返しただけでは粒子が分離せず,小 さな団粒を形成したままであるため,構成粒子の性 質を精度よく測定することは困難と思われる。ここ では,解きほぐした状態での物理試験結果について 示す。

上原ら´の調査によると,島尻層泥岩の比重は2.70 ~2.80の範囲にある。また,粒度試験結果を三角座 標に示すと図-2.3のようになり,三角座標分類で は粘土に,日本統一土質分類基準では細粒土Fに分 類される。一般に泥岩は構成粒子の粒度によって粘 土岩とシルト岩に区別されるが,この粒度試験結果 にもとづくと,島尻層泥岩は粘土岩に分類されるこ とになる。なお,島尻層泥岩の粒度試験では分散剤 としてトリポリリン酸ナトリウム (1g/1,000 cc)が 効果的であることが知られており⁷⁾,上記の結果は この分散剤を使用した値である。

粘土の特性を調べるのに液性限界 wL と塑性限界 wp は非常に重要なものである。これらの量は粘土 含有量だけでなく、その鉱物組成、塩分含有量、塩 基置換容量等に影響されるといわれている。従って、

図-2.3 泥岩粒子の三角座標分類

図-2.4 塑性図による分類

- 17 -

泥質岩を解きはぐして測定したコンシステンシーも鉱物組成や地質履歴によって異なったものとなる。 Morgenstern らによる多くの泥質岩についての結果と島尻層泥岩の結果を塑性図に比較したのが図-2.4 である。図には示してないが、カナダのEdmonton層では $w_L = 180$ %, $w_p = 17$ %, $\stackrel{20}{31}$ またBearpaw層では $w_L = 127$ %, $w_p = 28.6$ %のように大きな液性限界を示す泥質岩も存在するようである。また、London clay では $w_L = 60 \sim 80$ %, $w_p = 21 \sim 32$ %の値が報告されている。図に示した島尻層泥岩の多くは $w_L = 50 \sim 80$ %にあり、A線より上に位置してCHに分類され、塑性限界 w_p は20 ~ 30 %の範囲にある。これらの値はLondon clay と類似した値で、また Morgenstern らによる多くの泥質岩と比較すると中位の塑性にあることが推察される。

また、粘性土の特性を知るために活性度がよく用いられる。活性度はSkempton[°]により次式,

活性度 A =
$$\frac{PI}{2 \mu 以 下粘土含有量}$$
 (2.1)

ここに、PI: 塑性指数, で定義されている。図-2.5 は島尻層泥岩の結果を示したものであるが, London clayの範囲も比較してある。Skemptonは粘土を活 性度によりA=0.75以下では不活性粘土, A=0.75~ 1.25では普通粘土, A>1.25では活性粘土に分類し ている。島尻層泥岩の活性度は0.75~1.0に分布し, 普通粘土に分類される。Underwood によると活性度 0.75以上は好ましくない泥質岩で, 斜面 安定上問題 があるとしている。

粒度試験やコンシステンシー試験において, 泥質岩 を一次粒子まで解きはぐすことが困難であることは前

述したとおりであるが、それに関連して試験開始時の含水比が液性限界に影響を与えることが明ら かとなっている。表-2.1は4ヶ所で採取した島尻層泥岩について乾燥度合を変化させたときの液

	自然含水比 (20~25%)	風 乾 (5%前後)	炉 乾 (105℃)	備考
А	68.5	63.2	56.7	深度 30 cm
В	77.8	62.0	55.8	プロックサンプル
С	75.0	69.3	56.3	"
D	73.5	62.7	58.7	深度 30 cm
Ď	62.3 -	61.8	58.3	<i>w</i> 5 cm

表 – 2.1 初期含水比による液性限界の違い

(%)

性限界を示したものである。一般に未風化泥岩は風化を受けると酸化により褐色を帯びるが、表に 示した試料は未風化のブロックサンプルあるいは固結状態にある地盤の表層を掘削して採取したも のである。表から明らかなように、液性限界は乾燥度合の著しいものほど減少していることがわか る。また、D'の自然含水比の液性限界はDの風乾による液性限界に等しいことから、過去に乾燥を 受けたことを示唆している。このように乾燥により液性限界が減少することは、こね返しても団粒 を形成したままであるので、団粒内の水分が自由水化してしまうと、再びもとの団粒内にもどらな いことに起因するものと考えられる。従って、風乾した試料は液性限界を小さめに測定することに なり、また風化を受けることにより液性限界が減少するという特異な性質を示すことが予想される。

2.2.2 化学的性質

Under wood によると、泥質岩の平均的な化学組成はSiO2: 60%, Al2O3: 17%, Fe2O3:5 ~ 10%, Mg: 2%, K2O: 2.5~3.8%およびその他の塩化物からなるが、多くの泥質岩の化学 組成は類似の値にあり、工学分類上有意性がないとしている。

土壌化した島尻層泥岩の化学組成は松坂らによって表-2.2のように求められている。また、川島らは、CaCO3の含有量が風化層では1.08%、未風化層では15.76%である例を報告している。 ¹⁰⁾ 上原らは、島尻層泥岩のpH は8以上でアルカリ性を示し、塩化物含有量は0.00014~0.0093% の低い値にあることを報告している。

試 料	SiO2	Al ₂ O ₃	Fe_2O_3	MgO	CaO	Na ₂ O	K₂O	$\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3}$	Free Fe₂O₃
1	45.5	23.2	9.8	2.6	2.68	1.9	3.8	3.3	2.9
2	48.4	22.1	8.0	2.9	2.74	1.7	3.4	3.7	0.9

表 - 2.2 泥岩の化学組成分析結果(松坂らによる)

他に TiO₂, P₂O₅, MnO を含有する

Underwood は、モンモリロナイトなどの膨潤性粘土鉱物を含む泥質岩は吸水膨張を生ずる好ましくない泥質岩で、大きな間隙水圧発生、斜面安定上問題があるとしている。

松坂ら⁹によると,島尻層泥岩には一次鉱物としての石英の他に,粘土鉱物としてのイライト,バ ーミキュライト,カオリンおよび多量のモンモリロナイトや緑泥石が含まれているとされている。 ¹²⁾ 一方,沖縄天然ガス調査団によると,粘土鉱物は雲母粘土鉱物,膨潤性緑泥石,モンモリロナイト 様鉱物で,非粘土鉱物として石英,長石,方解石を含むとしている。ここに,モンモリロナイト様 鉱物としているのは,X線測定において膨潤性緑泥石のパターンを示すにもかかわらず,650℃加 熱処理によってモンモリロナイトに近い性質を示すためであるとしている。

2.2.3 力学的性質

(1) 圧密特性

島尻層群は地質年代的に上部中新世の最下部から鮮新世にまたがる堆積物で、続成作用を受けて

半固結化し、その後の上載圧力除去により現在過圧密状態にある。

通常の土質用圧密試験機を用いて未風化泥岩の圧密試験を行った場合、その載荷荷重は降伏荷重 を生じさせるのに十分でない。そこで図-2.6に示すように、圧密圧力 200 kg/cmまで 耐えうる-

1. 供試体 2. 圧密リング 3、ポーラスステンレス 4. 底板 5. 水槽カラー 6. 載荷ピストンガイド 7. 載荷ピストン 8. 0リング

図-2.6 高圧圧密容器

次元圧密容器を試作した。圧密容器は固定リング型で、リングは内径60㎜,肉厚8㎜,高さ20㎜ のステンレス製である。加圧板は偏心をさけるためペアリングを埋込んだ円筒でガイドされ、また 排水面はポーラスストーンの代わりにポーラスステンレスを使用している。載荷装置は琉球大学土 木工学科の大型高圧圧密試験機(直径110 mの供試体に圧密圧力50 kg/cm まで載荷可能)のフレー ムを利用した。

試科は南風原村で採取した含水比 28.7 %,湿潤密度 2.00g/cmの未風化泥岩である。載荷軸が地 盤に対し鉛直となるように供試体を成型して、荷重増分比1,各圧密荷重段階の載荷時間 24 hr で 圧密試験を行っている。また、同一試料をスラリー状に練返し、0.5 kg/cml で予圧密して 準備した

図-2.7 に不撹乱泥岩供試体と練返し正規圧密供試 体の e ~ logp 関係を示してある。不撹乱泥岩の先行圧 密荷重は Casagrande 法により $p_0 = 67 \text{ kg/cm}$ として求 められる。しかし、Bjerrum ´が指摘したように、続 成作用によって泥質岩に付加された結合力の効果の一 つは変形に対する抵抗性を増加させることにあるので、 圧密試験においては最大土かぶり圧よりも大きな圧密 圧力まで変形に対する抵抗性を示すこととなり、最大 土かぶり圧、すなわち先行圧密荷重は決定できないこ とになる。従って、この $p_0 = 67 \text{ kg/cm}$ は、 未風化泥

図-2.7 圧密圧力と間隙比の関係

岩供試体の骨格構造が圧密によって降伏する値に相当するものと考えられる。不撹乱泥岩の e ~¹0gp 関係から、圧密降伏値 Þoよりも小さな圧密荷重段階ではわずかの圧縮量にあるが,降伏値を境とし

て圧縮量は増加し、e~logp 関係は正規圧密粘土と類似の関係に移行する。一方、練返し正規圧密 供試体の圧密は圧密荷重段階 12.8 kg/cml までしか行っていないが、e~logp 関係はほ ぼ直線関係 にある。そこで、圧密圧力 12.8 kg/cml 以上においてもこの直線関係が成立すると仮定すれば、この 関係は降伏値以下での不攪乱泥岩の e~logp 関係と交わることになり、第1章、図-1.1 に示した ¹⁴⁾ Bjerrum による結合力の影響を考慮した泥質岩の e~logp モデルと一致している。この現象は上述 の圧密降伏値と併せて、島尻層泥岩が単に上載荷重による過圧密効果だけでなく、続成作用によっ て付加された結合力の影響を受けていることを示唆するものである。

また、この結合力は降伏値以後の圧縮性にも影響を及ぼすようである。図中の不撹乱泥岩におけ る降伏値以降での圧縮指数 Cc は 0.603 で、この値は練返し正規圧密供試体の Cc = 0.510 よりも大き 15) な値を示している。ところで、吉中らは、等方圧密圧力による圧縮性から泥岩を粒子間結合力の強 い泥岩と密度に規制される泥岩に区別している。London clayのように密度に規制される泥岩では 圧縮性の傾向は一般の粘土の圧縮性に類似のもので、等方圧密圧力の増加により高密度化を伴って 圧縮性は減少する。一方、粒子間結合力の強い泥岩では、圧力の増大に伴い降伏値を境にして大き な圧縮性を示す。これらの圧縮性の区別から、不撹乱泥岩における降伏値以降の圧縮指数 Cc は高. 密度化に伴う練返し正規圧密供試体の Cc よりも大きな値になることが類推される。

次に、 図 – 2.8 に 平均有効圧密圧力 p と体積圧縮係数 m_v の関係を示してある。降伏値以下での $m_v t (x, y) + \epsilon_{\pi}$ しているが、降伏値を境として $\log m_v \sim \log p$ 関係は練返し正規圧密供試体の 関係の延長線に一致するようである。降伏値以下における m_v の値は $5 \times 10^{-4} \sim 10^{-3}$ cml/kg にある。 また、 図 – 2.9 t \sqrt{t} 法による圧密係数 c_v を 平均圧密圧力に対して示したものである。練返し正 規圧密供試体の c_v が一定値を示すのに比べ、不撹乱泥岩の c_v は圧密圧力の増加に伴って降伏値ま で増加するが、それ以降では逆に減少する傾向にある。さらに、 図 – 2.10 は透水係数 k と 平均圧力

図-2.8 平均圧密圧力と体積圧縮係数の関係

pの関係を示したものである。練返し正規圧密供試体 の透水係数kは圧密圧力の増加に伴って減少する。一 方,降伏値以下における不撹乱泥岩のkはバラツキを 示すが,オーダ的には一定値にあり,また降伏値を超 えると,kは減少傾向を示す。このことから,未風化 泥岩供試体の透水係数は平均 3×10^7 cm/min であると 推定できる。

Underwood によると、泥質岩の透水係数は一般に $10^{-6} \sim 10^{-10}$ cm/secのオーダにあって、実用上 不透水層 と考えられ、通常の透水試験法による透水係数の測定 が困難であるとし、また 10^{-5} cm/sec 以下のオーダにあ る泥質岩では、大きな間隙水圧発生、斜面安定上問題 があり、かつ急激なスレーキング現象が問題になると している。

(2) 一軸圧縮強度⁴⁾

Underwood によると、 泥質岩の圧縮強度は固結度の低い泥質岩に対する 1.8 kg/cmi から十分固結した泥質岩に対する 1,000 kg/cmi まで変化するとして、 21 kg/cmi 以下の泥質岩では 大きな 間隙水圧発生と支持力が問題であるとしている。一方、 Morgenstern らによる工学的分類においては圧縮強度 4.1 kg/cmi ~ 300 kg/cmi にある泥質岩を対象としている。

未風化泥岩については、同一地点から多数のブロックサンプルを採取し、直径を35 mと50 mの 2 種類として、その高さと直径の比が2.0~2.5となるように成形した供試体について 一 軸圧縮試 験を行った。その際、一部については同一ブロックから同一方向に2 個の供試体を成形し、1 個は

直ちに圧縮試験を,もう一方は58~72日間水浸し た後に同様に圧縮試験を行っている。なお,先に示 した図-2.1はこれら供試体の成形時の含水比と乾 燥密度の関係を示したものである。

非水浸供試体の破壊ひずみ ^cf は 0.7~2.2%, 圧 縮強度 *qu* は 17~40 kg/cdi に分布していた。これら のバラツキの要因として, 含水比, 異方性, 潜在的 なクラック, ひび割れなどの構造上の欠陥, 供試体 の寸法などが考えられるが, これらの影響を考慮せ ずに, すべての結果について含水比を普通目盛で, 圧縮強度を対数目盛で示したのが図-2.11 である。 ばらついているが, 含水比の減少に伴って強度が増

- 22 -

加する傾向にある。図-2.1に示したように、含水比 23~28%においては供試体が飽和を持続しながら収 縮性を示し、それに対応して密度も増加する。この密 度増加が含水比減少に伴う強度増加に反映していると 考えられる。一方、水浸供試体の結果も図に示してあ 個 るが、これによると、わずかの含水比増加に伴って著 しい強度減少を示している。しかし、非水浸供試体な らびに水浸供試体を包含した一義的な含水比~圧縮強 度関係は成立しないようである。これは、水浸供試体 が吸水による含水比増加を生ずるだけでなく、供試体 内部に構造上の乱れを生じたことによるものと 3.00

この水浸供試体の強度低下を吸水膨張との関係でとらえるために、同一ブロックから成形した水浸供試体と非水浸供試体の強度比をそれぞれの初期含水比に対してプロットしたのが図ー 2.12 である。初期含水比が低いものほど、強度比は小さくなる傾向にある。また、水浸供試体と非水浸供試体の乾燥密度の比を初期含水比に対して示すと図ー2.13 となり、初期含水比が低いものほど乾燥密度比も小さくなっている。

図-2.13 体積変化と初期含水比の関係

と仮定すれば、吸水による体積変化 AV/Vと乾燥密度比の間には次式が成立する。

$$\frac{dV}{V} = \frac{V_f}{V_i} - 1 = \frac{r_{di}}{r_{df}} - 1$$
(2.2)

ここに、Vi, rdf: 水浸前の体積と乾燥密度

 V_f 、 T_{df} : 水浸後の体積と乾燥密度

図-2.13 には吸水による体積変化 AV/ Vも示してある。 これらの関係から,初期含水比の低いも のほど乾燥密度比が小さくなるのは,大きな吸水膨張を示すものほど水浸後の体積が増大した結果 にもとづくことがわかる。すなわち,初期含水比が低いものほど吸水膨張は大きく,かつ密度は減 少し,その結果水浸による強度は著しく低下する。

(3) スレーキングと吸水膨張

泥質岩は、その種類によって自然含水比状態のまま水浸すると吸水膨張を生ずるが、崩壊するに 至らないものもある。しかし、一度乾燥した泥質岩は、水浸するとスレーキング現象を伴って崩壊 する。このスレーキング現象は泥質岩に共 通な性質で,斜面保護上考慮すべき重要な 性質である。

島尻層泥岩においても自然含水比状態で 水浸した場合,スレーキング現象は認めら れないが,一度乾燥した泥岩では水浸によ り激しいスレーキング現象を伴って細れき 化し,さらに乾燥・水浸を繰返すことによ って粘土化することが観察される。この状 況を示したのが写真-2.1~2.3である。 写真-2.1と2.2はそれぞれ自然含水比供 試体と風乾供試体(一辺約4 cmの立方体) を3日間水浸した状態である。また,写真 -2.3は,乾燥・水浸を3回繰返した状態 を示したものである。このように,人工的 撹乱を与えなくても,乾燥・水浸作用によ り細片化,さらに粘土化する。

一方,自然含水比状態にある泥質岩はス レーキング現象を伴わないが,上載荷重の 除去による応力解放や膨潤性粘土鉱物の存 在によって吸水膨張を生ずるといわれてい る。

そこで、島尻層泥岩の吸水膨張量を調べ るために、表-2.3 に示すような未風化泥 岩試料について、次のような吸水膨張試験 を行った。試験方法は、ブロックサンプル から直径6cm、高さ2cmの供試体を成形し、 これを圧密容器に入れて、側方拘束、無載 荷(実際には圧密容器加圧板の自重のみ載 荷)条件で水浸して、供試体軸方向への膨 張量を測定するものである。各供試体につ いての結果を、時間の対数を横軸にとり、 膨張量~時間曲線で示したのが図-2.14

写真-2.1 水浸72時間後(試料A)

写真-2.2 風乾後水浸した泥岩(試料A)

写真-2.3 風乾・水浸3サイクル後の 泥岩(試料A)

粒度組成(%) 液性限界 塑性限界 自然含水比 試料Na 採取地 真比重 粘土分 シルト分 砂 分 (%) (%) (%) 62^{*}(78)^{*} 26 (26) 豊見城村翁長 2.77 43 А 52 5 $20 \sim 24$ В 沖縄 市包瀬 2.77 25 19 (20) 75 69 (75) $19 \sim 23$ С 南風原村 2.78 72 28 60 (60) 19 (18) $23 \sim 26$ * JIS A1205,1206による ** 自然含水比状態よりテスト

表-2.3 試料の物理的性質

である。この関係から,自然含水比にある供試 体は吸水膨張を生じ,その膨張曲線は圧密~時 間曲線と類似の形状にあることがわかる。また, 供試体A,Cについて,その初期含水比をわず かに変化させて,同様に3日間吸水膨張試験を 行い,その膨張量と初期含水比の関係を示した のが図ー2.15である。含水比が20%以下に なると,膨張量は著しく増大する。含水比20% 以下では不飽和状態となり,水浸によりスレー キング現象を生ずると考えられるから,低い初 期含水比からの吸水膨張はスレーキング現象を 伴った膨張量として測定されていると思われる。 このことは,逆に,スレーキング現象は吸水膨 張を伴うことを示唆している。

ところで,水浸による圧縮強度の減少につい 響 ては前項で述べたところであるが,別に行った 実験をスレーキングによる強度低下とともに示 す。表-2.3に示した試料から,直径3.5 cm, 高さ8 cmの供試体を成形して,①自然含水比状 態,②7日間水浸した状態,については一軸圧

縮試験を、また③風乾供試体については、メンブレンで包み、三軸セル内でスレーキングを伴った吸 水膨張をさせた状態に対して、側圧1kg/miでの圧密非排水試験(CU試験)を行った。とこでC U試験を行った理由は、供試体がスレーキングにより自立できないことによるものである。これら の応力~ひずみの関係を各試料に対し図-2.16に示してある。 図から、自然含水比状態にある泥 岩の強度は、水浸により自立できないほどの強度まで減少することがわかる。いま、水浸供試体の 応力~ひずみ関係に注目すると、破壊時のひずみは自然含水比状態のそれに等しいか、あるいはや や少なめである。このことは、短期間の水浸 においては泥岩の吸水によって粒子間隔が一 様に広がるのではなく、層理面あるいは潜在 的クラック面に沿って水が侵入し、弱面が形 成されることも強度低下の要因であることを 示唆している。

図-2.17 は、図-2.14 に示した吸水膨 張量と強度比の関係を示したもので、強度比 は自然含水比状態の強度と水浸状態の強度の 比として求めたものである。クラック面への 水の侵入も吸水膨張量として測定されるもの と考えられるので、水浸供試体の強度低下は 主に吸水膨張量に支配され、0.5 %というわ ずかな膨張量で強度が1/2 に減少し、膨張量 の増大とともに強度が減少する傾向にある。

Underwood によると、乾湿の 繰返しによって 薄片状の塊を維持するものは好ましい泥質岩、細 粒土化するものは好ましくない泥質岩として観察 で区別し、好ましくない泥質岩においては急激な スレーキングと侵食性が問題になるとしている。 また、膨張量が3%以上にある泥質岩では、除荷 による浮上り、斜面安定、トンネル支保工上問題 があり、かつ急速な侵食を受けるとしている。

なお,スレーキングの量的把握については後に 示す。

(4) 水浸に伴う強度低下¹⁷⁾

これまで示した水浸供試体の一軸圧縮強度は層理面あるいは潜在的クラックの影響を受けること が推察されたので、これらの影響を最小におさえるために、側圧 3.5 kg/cdf 作用下での非圧密非排 水型三軸圧縮試験(UU試験)を行い、水浸時間の経過に伴う強度変化を調べた。この実験は、後 に述べるように、Morgenstern らが泥質岩の工学的分類の一基準となる水浸に伴う強度低下の速さ を知るために行った試験法と同一のものである。

先の一軸圧縮試験の供試体は原位置における方向性を考慮していないが、ここで用いた試料は、 方向性を確認したブロックサンプルとして豊見城村で採取したものである。その物理的性質は、w = 27.2 %, G = 2.75、 7t = 2.06 t/m³ である。供試体はブロックサンプルから地盤に対し鉛直方

図-2.17 吸水膨張による強度低下

向に直径 35 m, 高さ 80 mの円柱形にコアードリルとコアーカッターで成形したものである。せん 断試験は 0.1 %/minのせん断速さで行うが,結果にバラッキが予想されたので,供試体の数は成形 直後に 6 個,他の供試体は直ちに水浸して,水浸日数の経過に応じて 4 個ずつである。なお,ここ で試験した供試体の最長水浸日数は 350 日である。

供試体はすべて飽和しているので、UU試験の結果を通常の飽和粘土と同様にせん断強度 $cu = (\sigma_1 - \sigma_3)f/2$ で表示し、各水浸時間(日数)における cuと含水比の変化を示すと図 -2.18のよ

図-2.18 水浸時間に伴うせん断強度と含水比の変化

うになる。図にはバラッキの幅と平均値を同時に示してある。これによると、cu は水浸100 日までは急激に低下するが、それ以後における減少はゆるやかである。一方、含水比は水浸50 日まで 急激に増加するが、それ以後はほぼ一定値を示し、水浸350 日間での含水比増加は約1%である。 いま、各水浸時間に対する cu の平均値を初期強度としての成形直後の平均強度 cuo で無次元化し た強度比を cu / cuo とすると、この強度比と水浸時間の対数の関係は図ー2.19 となり、 この関係 には直線関係が認められ、強度は時間の対数とともに直線的に減少している。しかも、水浸約1年

経過での強度比は未だ 0.67 で, 引 き続き 長時間にわたって水浸による 強度低下が生ずるものと予想される。 水浸した供試体の強度は日数の経過 に伴って最終的にある一定の強度ま で減少する。Morgenstern らは, こ の最終強度を完全軟弱化状態の強度 cuf とし,多くの泥質岩では 200日 以内に完全軟弱化状態に達するとし ている。しかし,図から明らかなよ うに, この未風化泥岩が完全軟弱化

するにはさらに数年の期間を必要とするよう である。

この事実をさらに明らかにするため、5年 間水浸しつづけてきた供試体について同様に UU試験を行った。この供試体は、先に図ー 2.11 に示したように、一軸圧縮試験の ため に準備した供試体の一部を水中に放置してあ ったものである。供試体3個について実験を 行い、その応力~ひずみ関係を図-2.20 に 示してある。この図には、上述した成形直後 の供試体ならびに水浸350日供試体の応力~ ひずみ関係も比較のために示してある。水浸 5年経過供試体では $cu = 1.41 \sim 2.25$ kg/cm¹, 含水比 $w = 31.5 \sim 32.0$ %にあって、採取地 点を異にするが、この平均強度を先の成形直

図-2.20 水浸泥岩の応力~ひずみ関係

後の平均強度 cuo と比較すると、 その強度比は約0.1 となる。せん断試験後、供試体の内部を調 べたところ、直径3.5 cmの供試体周辺から内部に向けて褐色に変色しているが、直径1 cm ほどの中 央部分は未風化泥岩と同色のままであることが観察された。この褐色部分は遊離酸化鉄の溶出によ って変色したもので、風化としての化学的変質を受けていると考えられ、この供試体は5 年経過し ても、吸水膨張と化学的変質の影響による軟弱化過程にあるといえる。従って、水浸による強度低 下は吸水膨張と同時に化学的変質作用の影響を受けて進行するものであるから、泥質岩の種類によ っては軟弱化の速さが緩慢で、完全軟弱化に要する時間は長期間にわたる場合もある。

乾燥の影響を受けないが、常時自由水に接触している泥質岩を対象として構造物を築造する場合、 水浸による完全軟弱化状態での強度を長期強度として考慮しなければならない。この完全軟弱化強 度については、長期にわたる実験と詳細な研究が望まれるところである。

¹⁸⁾ (5) 練返しによる強度低下

泥質岩は通常の土質材料に比較して半固結化している。この続成作用による結合力が泥質岩の力 学挙動を支配することはこれまで述べたことであるが、土の鋭敏比を支配する要因の一つでもある といわれている。そこで、泥質岩を練返して粒子間結合力を除去した場合、そのことが力学挙動に およぼす影響を調べることは、泥質岩を破砕して、盛土材料として利用した土構造物の力学挙動を 予測する上で重要である。ここでは、練返しによる強度低下、すなわち鋭敏比を求めることを目的 としながら、自然泥岩と練返し供試体(自然含水比を維持しながら練返し、再びもとの密度にもど した状態)の強度あるいは変形挙動を比較し、泥質岩の力学挙動におよぼす結合力の影響を明らか にする。
豊見城村で採取した島尻層泥岩のブロックサンプルから,地盤に対し鉛直となるように直径50mm, 高さ100mmの不撹乱供試体をコアードリルとコアーカッターで成形した。一方,採取時の含水比を 維持しながら十分練返し,再び不撹乱状態と同一密度になるように締固めて作成する練返し供試体 も同一寸法に準備している。この練返し供試体の作成は次の方法によった。練返しは,手による方 法が著しく困難であったので,必要量の泥岩片を突固め試験用モールドに入れ,4.5 kg ランマーを 約300回落下させる方法で行った。供試体作成装置は内径50mmの2つ割モールドで,プランジャ ーでモールド上下面より試料を締固めたとき,125mmの供試体高さが得られるように調整されたも のである。このモールドに練返し試料を所定量詰め,圧縮試験機でモールド上下面よりプランジャ ーを介し圧縮力を作用させて,静的締固めを行った。125mmの供試体高さを維持したまま24時間 放置した後に,供試体を脱型し,両端面を削り取って高さ10cmに成形した。不撹乱泥岩と練返し 供試体の物理量が表-2.4に比較してある。練返し供試体の含水比はわずかに減少しているが,密

試 料	含水比 %	湿 潤 密 度 g/cni	間 隙 比 e	飽 和 度 Sr %
自然泥岩	$27.3 \sim 28.5$	$2.00 \sim 2.02$	$0.76 \sim 0.78$	99 ~ 100
練返し供試体	$26.3 \sim 27.9$	2.01 ~ 2.03	0.72 ~ 0.74	$97.5 \sim 99.5$

 $w_{b} = 27.6 \%$

表-2.4 物理的性質

度はほぼ不撹乱泥岩と一致している。これらの供 試体を用いて一軸圧縮試験ならびに非圧密非排水 型三軸圧縮試験(UU試験)を行った。せん断速 度は,不撹乱泥岩に対し0.02%/min,練返し供試 体に対し0.2%/minとしまたUU試験では間隙水 圧も測定した。

 $w_L = 78.5 \%$

G = 2.74

図-2.21 は、一軸圧縮試験と側圧3^{kg}/cndのU U試験における応力~ひずみ関係を、また側圧3 kg/cndのUU試験における間隙水圧~ ひずみ関係 をそれぞれ不撹乱泥岩と練返し供試体について示 したものである。不撹乱泥岩が大きな強度と小さ な破壊ひずみを伴ったぜい性挙動をするのに比べ て、練返し供試体では破壊ひずみが著しく増大し、 応力~ひずみ関係に明確なピークが現れない。すな わち、応力~ひずみ関係は、前者では弾性変形、ひず み硬化、最大強度を経た後にひずみ軟化を示し、一

図-2.21 不撹乱泥岩と練返し供試体の 応力~ひずみ関係

方後者ではひずみ硬化一塑性変形の形にある。他方,間隙水圧に注目すると,不撹乱泥岩における間隙水圧 は最大強度とほぼ同一ひずみにおいて最大となるが,練返し供試体での間隙水圧は,最大強度に達 する以前でピークを生じ,その後ひずみの増加に伴って徐々に減少している。この練返し供試体の 間隙水圧挙動は通常の過圧密粘土と類似の傾向を示し,せん断に伴う正のダイレイタンシーが生じ ている。破壊の形態は,不撹乱泥岩では単一のすべり面を形成するが,練返し供試体ではたる状を 形成していた。すなわち,撹乱を受けて結合力が破壊された泥岩は,ぜい性挙動からプラスチック な挙動に変態することが明らかである。

図-2.22は強度と側圧の関係を示したものである。 不撹 乱泥岩,練返し供試体ともに、その強度はばらついているが、 両供試体とも飽和しているので,強度は側圧の影響を受けな いとみなすと、これらの平均強度の比、すなわちこの泥岩の 鋭敏比はほぼ4となる。このことは、盛土材料として利用す る場合,地山状態の密度まで締固めても、その強度はかなり 減少することを示唆している。また、この練返し供試体は、 (种野による人工泥岩に対応するものであるが、それによると 水に接すると容易に軟弱化し、また相当の圧力を加えてもこ れを押上げて膨張する性質があるといわれている。

図-2.22 練返しによる強度低下

上述の実験結果から、続成作用による結合力は通常の過圧 密粘土に対し、強度増加とぜい性的な変形挙動をもたらすことが推察される。一方、この種の泥質 岩の力学挙動は応力レベルの影響を受け、特に結合力の強さを上まわる有効拘束応力レベルでは正 規圧密状態の挙動と類似していることが明らかにされている。このような高応力レベルでは結合 力の影響が消失していると考えられるので、人工的に準備した供試体による力学挙動の説明が可能 となる。しかし、低応力レベルにおいては、上述の実験結果からも明らかなように、人工的に準備 した供試体で自然泥岩の力学挙動を説明することは困難であり、泥質岩の力学挙動を明らかにする ためには不撹乱泥岩を用いた研究が必要となる。

(6) せん断特性(UU試験)

Underwood は、せん断強度定数が試験法、あるいは全応力か有効応力かによって異なる値をとるので、泥質岩の工学的分類手段に利用困難であるとしながら、 $c < 7 \text{kg/cni}, \phi < 20^{\circ}$ にある泥質岩においては掘削による浮上り、斜面安定、トンネル支保工上問題があるとしている。しかし、この強度定数に対して有効応力・全応力の区別を明示していない。一方、土かぶ圧力に対応する拘束圧力でのLondon clay における非排水強度は $c_{4} = 2.4 \sim 10.9 \text{ kg/cni}$ (深度 15 m \sim 48 m)である。

せん断強度定数は、安定解析を行う場合に設計・施工条件を満足するように選択される定数であって、全応力か有効応力かのどちらかで規定されるものであるから、泥質岩に対する Terzaghiの 有効応力概念の適用可否が重要である。ここでは、未風化泥岩の非排水せん断特性と Terzaghiの 有効応力概念の適用について述べる。

前項の図-2.22 に示した未風化泥岩の鉛直供試体に対するUU試験による破壊包絡線を全応力 表示すると図-2.23のようになる。 いくらかのバラツキがあるが、側圧 20 ㎏/cml にわたっても

図-2.23 島尻層泥岩の破壊包絡線 (鉛直方向供試体,UU-試験)

強度増加が見られない。このことは、供試体が完全飽和しているので、非排水条件では側圧の増分 だけ間隙水圧が増加するため、有効応力が不変のままであることを意味する。すなわち、Terzaghi の有効応力概念が適用できることを示唆している。従って、排水を許すことにより有効応力が増加 して、側圧の増加に伴った強度増加が期待できる。また、この試料の全応力による強度定数は、通 常の飽和粘土と同様、 $\phi_{u}=0$ で、平均的に $c_{u}=11.5$ kg/cm となる。従って、クラックなどの地質構 造上の分離面を含まない均一な地盤を仮定すれば、地盤の支持力の短期安定解析には $\phi=0$ 法の適 用が可能となる。

次に,他の地点で採取した未風化泥岩供試体についてのUU試験を有効応力概念から検討す δ^{29} 。 実験試料は西原村のA地点でブロックサンプルとして採取したが、供試体は原位置での方向性を考 慮せず,全くランダムな方向に成形したものである。供試体の物理的性質は、G = 2.78、w = 22%、 $T_t = 2.10 t/m^3$, $T_d = 1.70 t/m^3$, e = 0.60, $S_T > 96\%$, 一軸圧縮強度 $q_u = 23 kg/cm^2$ である。実 験は、供試体をセットした後に所定の等方圧力を最大 $30 kg/cm^2$ まで作用させ、それに伴う発生間隙 水圧が定常になるのをまって、($2 \sim 2.6$)× $10^{2}\%/min$ のひずみ制御でせん断試験を行っている。 非排水条件で供試体に作用する等方圧力 $\sigma_3 \epsilon 4 \sigma_3$ だけ変化させたときの間隙水圧uの変化を4uと すると、Skemptonの間隙圧係数 B は次式で定義され δ^{29} 。

$$B = \Delta u / \Delta \sigma_3 \tag{2.3}$$

図ー2.24は、作用等方圧力 o 3と発生間隙水圧 40の関係を示したものである。 この関係は近似的に、

$$\boldsymbol{u}_0 = \boldsymbol{\sigma}_3 - \boldsymbol{u}_s \tag{2.4}$$

のように示される。この式の勾配は1であるから、Skemptonの間隙圧係数はB=1となる。また、

us ⇒ 3 kg/cm であるから, 飽和供試体におよそ3 kg/cm のサクションが存在しているものと推定される。なお, このサクションは除荷に伴う弾性ひずみ回復と供試体保存中飽和を維持した状態でのわずかな乾燥によってもたらされたものと推察される。

次に、これらについてせん断試験を行い、応力と軸ひ ずみの関係の代表例を $\sigma_3 = 1 \sim 30$ kg/cm での各側圧に ついて示したのが図-2.25 である。 破壊ひずみは側圧 の大きさに関係なく、0.75 ~ 1.67 %の範囲を示し、ま た、最大強度は、バラッキが大きく、側圧の増加に伴っ た強度増加あるいは発生間隙水圧の大きさに対しては何 ら傾向が認められない。そこで、それぞれの供試体につ いてせん断直前のサクション u_s (式(2.4)で定義)と

の関係

図-2.25 応力~間隙水圧~ひずみ関係(UU-試験)

最大強度 (σ₁-σ₃)maxの関係をプロットすると図-2.26 となり,サクションの増加に伴って強度が増加する傾向にあることがわかる。このことは,サクションが有効拘束圧力として作用するため,サクションの大きいものほど有効拘束圧力が増大して,その結果強度も増加することを示して

いる。従って、UU試験における強度は、側圧の大きさ よりも、むしろサクションの影響を受けるものである。

しかし、サクションを考慮しても、強度のバラッキは 著しい。ちなみに、全応力によるモールの応力円を描く と図-2.27のようになり、図-2.23に示した鉛直方向 供試体の結果に比べてバラッキが著しく、強度定数 cu, øuの決定が困難である。これは、この泥岩が強度的に 異方性を示すにもかかわらず、原位置での方向性を無視 して、ランダムな方向に成形した供試体をせん断試験に 供したことに起因するものと考えられる。この強度異方 性については第3章で詳細に述べるが、それによると圧 密段階で3 kg/cmのバックプレッシャーを作用させてサ

クションを解消させた供試体につ いて圧密非排水せん断試験を行っ た結果、全応力による強度定数は 異方性の影響を受けるが、有効応 力によるそれは異方性の影響を受 けないことが確められている。ラ ンダムな方向に成形した供試体に ついても、バックプレッシャーを 作用させて同様な圧密非排水 せん断試験を行った結果につ いて、最大強度時の応力状態 を有効応力で示すと図-2.28 のようになる。比較的バラッ キが小さく、有効拘束圧力の 増加に伴ってせん断強度も増 大することが明確である。ま た、この図には、先に示した UU試験結果にサクションを 圧密圧力に対応する初期有効 応力として考慮した場合の最 大強度時の有効応力状態をプ ロットしてあるが、その結果

は圧密非排水せん断試験結果とよく一致している。従って,このことからもサクションが有効応力 として作用することは明らかである。

以上のことから、供試体が飽和であれば、Terzaghiの有効応力が適用可能となり、 またサクションも有効応力として作用する。一方、せん断挙動を調べるに際しては、異方性材料であるので供 試体の方向性を考慮すること、および間隙水圧の測定に当っては、サクションの影響を除去するた めにバックプレッシャーを作用させることが、実験操作上必要である。

(7) 変形係数

Under wood によると泥質岩の変形係数は, 固結度の低い泥質岩では 1.4 × 10³ ~ 14 × 10³ kg/cm, 十分固結した泥質岩では 1.4 × 10⁵ kg/cm の場合もあり,変形係数 14 × 10³ kg/cm 以下の泥質岩では 地盤の支持力,トンネル支保工に問題があるといわれている。また,Wardらは,深度 15 ~ 48 m からプロックサンプルとして採取した London clayについて繰返し載荷試験を行ったときの 変形 係数が初期載荷過程で 500 ~ 3,000 kg/cm, 再載荷過程で 850 ~ 4,000 kg/cm にあると報告している。 --方, 圧縮強度と変形係数の関係づけがよく行われ,竹中は大阪洪積粘土に対し,

$$E = 210 c_{\boldsymbol{u}} \tag{2.5}$$

ここに、 *cu*: 非排水せん断強さ、を提案している。また、Miller は、一軸圧縮強度と変形係数の 関係にもとづいて岩石の工学的区分を行っている。

これまで述べたように、一軸圧縮 試験ならびに非圧密非排水型三軸圧 縮試験によって得られた未風化泥岩 ×10³ の圧縮強度と変形係数の関係を. Miller の分類法にならって両対数表 示したのが図-2.29である。ここに、 UU試験の結果も表示した理由は、 強度が側圧の影響を受けないものと 解釈したからである。また、図中に は水浸供試体ならびに練返した供試 体の関係も示してある。供試体の種 類ごとに、変形係数と圧縮強度は異 なった値にあるが、それにもかかわら ず変形係数と圧縮強度の比、すなわ ち modulus ratio は 100 : 1 の 関 係にある。この関係は式(2.5)に おける関係とほぼ一致し、また、世

界の多くの泥質岩に対してもほぼ類似の関係が認められている^{4,15,20}。従って,他の硬岩に比較して この modulus ratioの値は泥質岩に共通した値となるようである。 (8) スレーキング特性

スレーキング現象は泥質岩に共通する性質で、その激しさは固結度合に影響され、また斜面保護 上考慮すべき重要な性質であることは前に述べたことである。しかし、Underwood は、その工学 的分類においてスレーキング程度の差異を単に観察にもとづいて判断することにとどまった。一方、 28) 変しるびに Morgenstern ら²⁾は、スレーキング量を乾湿サイクルの増加に伴う含水比増加でとら えている。この方法は、細片化あるいは細粒化に伴って表面に付着する水分が増加することに着目 したものと考えられる。特に Morgenstern らは、次節で説明するように、スレーキング特性をスレ ーキング速さとスレーキング量の2要素に分けて、前者を乾湿サイクルに伴った液性指数の変化量 で、後者を液性限界で量的把握を試みている。

島尻層泥岩のスレーキング特性は第5章で詳し く述べるが、それによると、乾湿サイクルに伴う含 水比増加は供試体の拘束条件によって異なること、 および液性限界は乾湿サイクルに伴って変化する ことが明らかとなっている。ここでは、Morgenstern らの分類法に適用する上で必要な実験結果だけを 示す。実験は Morgenstern らの手法といくらか異 なるが、直径5 cm、高さ 2.5 cm の供試体を内径 5.2 cmの塩化ビニール管を利用して準備したモー ルドに入れ、乾燥とモールド底面からの吸水によ る乾湿作用を繰返した。乾燥方法は風乾と炉乾の 2 種類とし、乾湿サイクルに伴った含水比変化を 図ー2.30 に、またこの結果に対応して乾湿サイ クルの平方根と液性指数 *IL* の関係を図ー2.31に 示してある。液性指数 *IL* は次式、

$$I_L = \frac{w - w_p}{P I} \tag{2.6}$$

で定義される。ここに、w: 吸水後の含水比, $w_p: 塑性限界, PI = w_L - w_p: 塑性指数, w_L:$ 液性限界。この供試体の液性限界は、初期状態で $w_L = 82 % にあるが、乾湿 15 サイクルでは 風$ 乾の場合 78 %、炉乾の場合 65 % に変化する。一

図-2.30 乾湿サイクルによる含水比変化

方,塑性限界は乾湿サイクルの影響を受けない。従って, PIは乾湿サイクルごとに変化するので ILも各乾湿サイクルに対しwとPIから求めたものである。

図において,乾燥方法による吸水含水比の差異は顕著でないが,液性限界の変化を考慮すると, 乾湿サイクルに伴った含水比は最終的に,炉乾の場合液性限界に等しくなるが,風乾の場合液性限

- 35 -

界以下の含水比で一定となる。それに対応して,液性指数は炉乾の場合L=1になるが,風乾の場合はL=0.7である。一方,スレーキング速さの基準となる乾湿1サイクルでの液性指数の変化量 AlL1は,風乾の場合 0.32,炉乾の場合 0.35 で,ほぼ一致した値にある。

2.2.4 むすび

本節においては,泥質岩の一般的な物理的,力学的性質を示すために,主に本研究の実験供試体 である島尻層泥岩についての実験結果を羅列,検討した。ここで示した実験結果はすべての性質を 包含するものではないが,特性としての島尻層泥岩の性質を把握できるものと考えられる。次節で は,これらの性質を工学的見地からの工学的分類法に適用して,泥質岩のなかにおける島尻層泥岩 の位置づけを行うが,以下に島尻層泥岩の性質を要約して,本節のむすびとする。

(1) 原位置での島尻層泥岩は、含水比30%、乾燥密度1.50 t/m²を境として、大まかに風化層と未風化層に区分できる。半固結状態にある未風化泥岩は乾燥に伴った収縮挙動を示す。

(2) 泥岩を解きほぐして行った物理試験結果によると、比重は 2.70 ~ 2.80 で、 粒度成分は粘 土分が多く、液性限界は 50 ~ 80 %に分布し、塑性図による分類は A 線より上に 位置 し C H に、 Skempton の活性度は 0.75 ~ 1.0 の値にある。また、試験前の乾燥処理により液性限界は減少し、 風化による液性限界の減少が予測される。

(3) アルカリ性を示し、化学組成は他の多くの泥質岩と類似している。

(4) 続成作用による結合力の影響を受けた泥岩の圧密降伏荷重は最大土かぶり圧力に相当する 先行荷重よりも大きく,降伏後の圧縮指数は練返して正規圧密した供試体のそれよりも大きく,ま た降伏荷重よりも小さな圧密圧力レベルでの体積圧縮係数は $m_v = 5 \times 10^{-4} - 10^{-3}$ cml/kg,透水係数は $k = 10^{-7}$ cm/minのオーダにある。

(5) 自然含水比状態にある未風化泥岩は水浸によるスレーキング現象を伴なわず,吸水膨張を 生ずる。しかし,一度乾燥した泥岩は著しいスレーキング現象を生じ,乾燥程度の大きいものほど 吸水膨張量が大きい。自然含水比状態で17~40 kg/cmlにある圧縮強度も,この吸水膨張とスレー キングにより激減する。特に,水浸だけによる強度減少は水浸時間の対数と直線関係にあって,1 年経過後の強度は未だ初期強度の67%である。これは,吸水膨張と化学的変質の両作用の影響を 受けることによるもので,完全軟弱化状態に要する時間は年単位の長期にわたるものである。

(6) また,強度低下の要因に練返しの効果がある。自然含水比を維持しながら練返し,もとの 密度に締固めた練返し供試体の強度は自然泥岩の1/4程度で,しかも自然泥岩の変形挙動がぜい性 的であるのに対しプラスチックな挙動を示す。従って,通常の応力レベルにおいては,練返し供試 体で自然泥岩の力学挙動を説明することができない。

(7) 飽和泥岩に等方圧力を作用させると、Skemptonの間隙圧係数Bが1となり、Terzaghiの 有効応力が適用できる。これは、側圧 20 kg/cmiまでのUU試験から強度定数が $\phi u = 0$ となること からも明らかである。一方、飽和状態でサクションが生ずるとき、このサクションは有効応力とし て作用する。また、地盤に対し鉛直な供試体のUU試験から強度定数cu = 11.5 kg/cmi、 $\phi u = 0$ の

- 36 -

例が得られ,均質な地盤を仮定すれば支持力の短期安定解析に Ø = 0 法の適用が可能である。しかし,非排水強度は異方性を示すので,強度定数の決定には供試体の方向性を考慮しなければならない。

(8)変形係数と圧縮強度の関係は自然泥岩,水浸あるいは練返し供試体にかかわらず,およそ100:1の関係にある。

(9) 乾湿サイクルに伴って含水比は液性限界近くまで増加し、それに対応して液性指数も1に 近づく。

2.3 泥質岩の工学的分類

¹⁾ 泥質岩に関する工学的分類法はUnderwood と Morgenstern らによって提案されているが,前者 については前に概述したとおりである。ここでは,前節で示した島尻層泥岩の物理的,力学的性質 をそれらの分類法に適用して,その位置づけを試みる。

最初に、Underwoodの分類法に適用する。 前節に示した物理的,力学的性質はこの分類法に示 されているすべての性質を包含していないが,島尻層泥岩における乾燥密度,自然含水比,ヤング率, 透水係数,活性度あるいはスレーキング観察の結果は好ましくない泥質岩の範囲にある。また,第 3章で推定しているように,島尻層泥岩地盤での横方向応力は土かぶり圧力を上まわり,好ましく ない泥質岩の性質を示すものである。一方,圧縮強度,膨張量は分類区分の境界にあるが,これら は水浸あるいはわずかな撹乱や乾燥を受けただけで容易に好ましくない泥質岩の範囲に移行するも のである。以上の性質にもとづいて予測される原位置挙動をチェックすると,大きな間隙水圧発生, 支持力不足,掘削に伴う浮上り,斜面安定,急速なスレーキング,侵食性,トンネル支保工に問題 があることとなり,島尻層泥岩は「active shale」に区分される。事実,斜面安定,急速なスレーキ ング,侵食性に関しては問題が生じており,地すべり対策工やのり面保護工などが実施されている。 一方,他の挙動に関してはその現場測定あるいは現象についての報告がなされていないが,重量構 造物の建設や大規模土工工事を実施した場合,十分予測される挙動である。

ところで、「active shale」でもその範囲が広く、どの程度の active であるのか、その区分基準 が明確でなく、位置づけが判然としない。すなわち、「highly active」、「active」、「slightly active」の判断あるいは細区分は、室内試験結果だけでは困難で、島尻層を対象とした工事そのも のの多くの経験の集積にもとづかなければならないようである。その点、Morgensternらは細分類 を試みている。

Morgenstemらは、泥質岩を対象とした場合、(1)掘削、切取りでの時間経過に伴った安定性の変化、すなわち長期安定に必要な強度低下の予測、(2)水路やトンネルの壁面に対する耐久性の検討、あるいはショットクリートの適用、(3)盛土材料の選定、締固めの程度および盛土の設計、(4)ずり捨場の設計、(5)フィルター材の選定、などの多くの実際的な面から、耐水性の程度が重要な要素であるとした。そして、これを判定する方法として、(1)水浸に伴った軟弱化(softening)試験と、(2) スレーキング試験に注目し、多くの地域から集めた泥質岩について実験を行い、その結果を工学的

分類尺度として利用している。

(1)の水浸に伴った強度低下試験は、側圧 3.5 kg/cmⁱでの非圧密非排水型三軸圧縮試験で、自然含水 比のまま水浸した供試体の非排水強度 ^{cu}を水浸時間ごとに測定しながら、完全軟弱化強度 ^{cu}f (強 度低下の最終状態)を求めるものである。多くの泥質岩についての測定結果を、完全軟弱化に要す る時間と完全軟弱化強度の両面から検討して、次のグループ分けをしている。完全軟弱化に要する 時間にもとずいて、(1)1ヶ月以上、(2)数日~十数日、(3)数時間以内、にグループ分けが可能で、一 方完全軟弱化強度は、(1)初期強度の 50 %以上、(2)数日で初期強度の 50 %以下、(3)数時間で初期強 度の 50 %以下、にグループ分けしている。

また、初期強度 cu_0 と完全軟弱化強度 cu_f の関係を検討して、初期強度 cu_0 = 17.5 kg/cnlを境界として泥質岩は $cu_f/cu_0 > 0.6 \ge cu_f/cu_0 < 0.4 に区分$ できるとしている。以上のような検討 にもとづいて、図 – 2.32 に示す 工学 的分類を提案している。すなわち、自 然含水比での非排水せん断強度 cu_0 が、 $cu_0 > 17.5$ kg/cnlのとき泥岩、 $cu_0 <$ 17.5 kg/cnlのとき粘土として区別する。 両者の水浸に伴った軟弱化の程度とし ては、完全軟弱化過程で失われた強度

 Δ^{cu} が, 泥岩の場合 40 %以下 ($\Delta^{cu} < 0.4 cu_0$)で, 粘土の場合 60 %以上 ($\Delta^{cu} > 0.6 cu_0$)であ る。また, 含水比増加 ΔW はそれぞれ 1 %以下, 1 %以上である。粘土は, さらに初期強度 cu_0 の 50 %まで軟弱化するのに要する時間, t_{50} によって, t_{50} が数日以内 ($t_{50} > 1$ day)であれば非常に 堅い粘土 (hard clay),数時間以内 ($t_{50} < 1$ day)であれば堅い粘土 (stiff clay),水浸後間もな く ($t_{50} < 1$ hour)完全に強度を失うなら普通~軟かい粘土, に細区分される。他方,泥岩は構成 粒子の粒度組成で粘土岩とシルト岩に区別される。また,泥岩に剝離性があるときは, 頁岩と呼ば れる。

次に、(2)のスレーキング試験は、乾湿サイクルごとに湿潤時の含水比を求め、その含水比が最大 に達するまで乾湿を繰返すものである。その結果をスレーキング量とスレーキング速さの2要素に 分けて検討している。先の区分による泥岩、粘土にかかわらず、スレーキングによる最大含水比は その材料の液性限界に等しくなることが実験的に明らかにされたことから、スレーキング量は液性 限界で判定できるとした。そして、液性限界 w_L とスレーキング現象の観察にもとづいて、スレーキン グ量は、(1)非常に少ない(VL): $w_L < 20$ %、ひび割れの発生とわずかの分解、(2)少ない(L) : 20%< $w_L < 50$ %、角片状に分解、(3)普通(M): 50%< $w_L < 90$ %、普通の軟かさの粘土 あるいはしばしば角れき状、(4)多い(H): 90%< $w_L < 140$ %、外見上均質な軟かい粘土、(5)非 常に多い(VH): $w_L > 140$ %、乾湿 1 サイクルで完全に分解(初期の骨格構造の喪失)、に細区 分される。特に、 $w_L > 50$ %にある泥岩あるいは粘土においては、湿潤過程で不等ひずみを伴った 吸水膨張により初期骨格構造が最終的 には完全に破壊されるとしている。また, 乾湿サイクルごとの液性指数と乾湿サイ クルの平方根の関係が初期の乾湿サイ クルでほぼ直線関係にあることに注目 して,スレーキング速さは乾湿1サイ クルでの液性指数の増加量で判定でき るとしている。そこで,液性指数の増 加量 *dIL*1とスレーキング現象の観察 にもとづいてスレーキング速さを,(1) 遅い(S): *dIL*<0.75,細~粗粒塊

表 - 2.5 スレーキング特性による分類 (Morgensternらによる)

	スレーキング速さ Ws =WL				
	非常に 少ない	少ない	中	多い	非常に 多い
	VL	L	м	н	νн
	₩ _L < 20	20(WL(50	50(W(90	90(W{(¥0	₩ _) 140
¹⁰ 選いS △1 ₁ (0.75	V L S	L S	M S	H S	VH S
√1 + ∃速い F 0.75(▲] _L (1.25	VL F	L F	MF	H F	VH F
」 ゴ非常に K ▼ 速い VF ▲I」)125	VL VF	L VF	M VF	H VF	VH V F

に分解,(2)速い(F): 0.75 < II_L < 1.25,軟かい均質な粘土,(3)非常に速い(VF), II_L >1.25, 非常に軟かい粘土,に区分している。以上のスレーキング量とスレーキング速さとでスレーキング 特性を記述できる分類表を表 - 2.5のように与えている。

さて、島尻層未風化泥岩の初期せん断強度 cu_0 は、図 - 2.18より 13.5 ~ 16.3 kg/cnl, 平均 14.9 kg/cnlであり、また図 - 2.23 に示したように側圧の大きさにかかわらず、直径 5 cnn 供試体のUU試験では平均 11.5 kg/cnl にある。従って、強度の面から島尻層泥岩は粘土に区分される。一方、図 - 2.19 に示すように水浸 1 年経過後のせん断強度 cu は初期せん断強度 cu_0 の 67 %、含水比増加は 1 %で、未だ軟弱化過程にあって、 $Acu > 0.6 cu_0$ を満足するものではないが、明らかに $t_{50} > 1$ year > 1 day であることから hard clay に細区分される。次に、液性限界は 50 ~ 90 % に分布しており、また図 - 2.31 から $AI_{L1} = 0.32 \sim 0.35$ の値にあるからスレーキング特性は、 スレーキングの量が M、スレーキングの量がSにあるものとして分類される。しかも、このスレーキングの量 Mおよび Sの 観察状況は島尻層泥岩の観察結果と一致するもので、乾湿 1 サイクルのスレーキング状況はクラックの発生、あるいはれき状塊への分離程度のものである。

地區夕	地質	位署	採取	wn	wp	w_L	PI	圧縮	分	類	
	年代		休皮 m	%	%	%	%	强度 kg/cnł	軟弱化試験	スレーキ ング量	スレーキ ング速さ
Edmonton	白堊紀	カナダ	4.5	17.2	17.0	180	163	7.7	Hard to stiff clay	VН	S∼F
Oxford clay	ジュラ紀	イギリス	-	21.9	14.9	68.5	43. 9	9.8	Hard clay	L	S
Battle	白堊紀	カナダ	18	21.2	25.7	50.0	24.3	10.2	Hard clay	L∼M	S
Bearpaw	白堊紀	カナダ	3.6	\sim^{18}_{-28}	$^{17.0}_{\sim 28.6}$	47.0 ~127.0	30 ∼94	33.6	Hard clay	L∼M∼H	F
Pierre	白堊紀	アメリカ	25	25.8	32.7	44.7	12	42.0	Mudstone	L∼M	S
Clagget	白堊紀	アメリカ	135	13.5	27.8	89.6	62	84	Mudstone to hard clay	М∼Н	VF

表-2.6 泥質岩の特性(Morgensternらによる)

 w_n :自然含水比, w_p :塑性限界, w_L :液性限界,PI:塑性指数

ところで、Morgenstern らが対象とした泥質岩の分類結果をみると、 brown London clay は stiff clay, スレーキング量Mとして分類され, また hard clay あるいは泥岩に分類されている泥 岩質を例示すると,それらの物理的性質とともに表-2.6のようになる。表中, hard clay である Bearpaw 層と泥岩である Pierre 層とが強度的に島尻層泥岩と類似している。しかも、 Bearpaw 層 には大きな塑性を示すものも含まれていることと、スレーキング速さがF であることを除いて、両 泥質岩と島尻層泥岩には大差がない。そこで,強度が軟弱化する速さの面から島尻層泥岩と両泥質 岩を比較、検討する。すなわち、島尻層泥岩は、強度的には hard clay であるが、完全軟弱化強度 は「粘土」の分類条件を満足するものではなかった。一方,ここでは上記泥質岩に対する cu / cuo $\sim \log t$ 関係図を示していないが、それによるとBearpaw 層では水浸12日で cuf < 0.4 cuo、また Pierre 層では水浸 32 日で cuf ÷ 0.8 cuo のように, hard clay と泥岩の差は軟弱化の 速さにおい て顕著のようである。しかも、泥岩に分類された5種類の泥質岩に対して、完全軟弱化状態が確認 されたものは1種類で、Pierre 層と他の3種類(砂岩と頁岩に分類)では完全軟弱化が確認されな いまま水浸32日~200日で実験を中止し、そのときの強度を完全軟弱化強度としているようであ る。しかし、Pierre 層と島尻層泥岩の $cu / cuo \sim \log t$ 関係を比較すると、図上での時間的な位置と その直線の勾配が一致することが確められている。すなわち, Pierre 層の軟弱化は長 期にわたっ て進行し、その完全軟弱化強度がさらに減少することを示唆しており、軟弱化の速さも「粘土」と 「泥岩」を区分する基準になりうるものと考えられる。従って、軟弱化の速さの観点からは、島尻 層泥岩はPierre 層と類似し、泥岩として分類される性質をも示すものである。

以上のことを考慮すれば、島尻層泥岩は、強度的には粘土に分類されるが、耐水性の程度においては泥岩の性質を示すものであるから、Morgensternらが対象とした多くの泥質岩に対比させて、 「hard clay から泥岩」にまたがり、 そのスレーキング特性は低~中位にある泥質岩として位置づけできよう。

なお,比較の対象にしたBearpaw 層とPierre 層は,Underwood によって「active shale」に分類 されているので,島尻層が「泥岩」に分類された場合でも問題ある泥質岩であることに注意しなけ ればならない。

2.4 N値からみた島尻層泥岩の地盤特性

地盤の特性を把握するためには、現場での土質調査と室内での土質試験の両面からの検討が必要 である。一般に土質調査は、各種の調査方法から調査目的に最も適合した方法を選択して行われる べきものであるが、島尻層では標準貫入試験を主体とした調査が慣例的に行われている。そこで、 N値にもとづいて島尻層泥岩地盤の特性を把握する。

先に概略した力学的性質は、未風化泥岩に関するものが主体である。一方、地盤は風化層と未風 化層で構成され、標準貫入試験による調査は風化層をも対象とするものであるから、その性質をあ る程度把握する必要がある。しかし、風化層に関する研究はほとんどなされていないので、ここで は原位置での観察にもとづく風化分帯について略述する。前章で引用したように、Bjerrum¹⁴⁾は泥 質岩層における風化層を表層から深さ方向に、①気候条件による物理的風化作用で結合力が完全に 破壊され,かつ化学的風化作用も進行している表層部,②季節的な地下水位の周期変動に伴った有効応力変化が結合力を破壊する領域で、クラックが発達し、そのクラックに沿って自由水が循環する領域、③地表面に作用する風化要因を受けないが、上載荷重の除去に伴って発生する不均一な膨張ひずみに起因して,緩慢な速度で結合力が破壊される領域、に区別している。一方、島尻層泥岩では、切土斜面などで観察される標準的な風化層は、④土壌化した褐色の表土、回軟質な小角れき状の塊を含むが、全般的に粘土化した層で褐色を呈す、④クラックなどの分離面が発達し、分離されたブロックは岩状を呈するが、クラック面に沿って褐色の軟質な薄層を挾んだ層、に区分される。この風化層をBjerrumの風化分帯に対比させると、④と回は①に、④は②に対応して いると考えられるが、③に対応する層は肉眼での区別が困難なようである。この層を確認するには具体的な尺度を必要とするであろう。

砂川らは,那覇市の地盤特性を明らかにするため、これまで行われた多くの標準貫入試験結果から各地点での柱状図とN値を集録している。それによると、泥岩層での柱状図は、N<30の場合現場での判別分類によりCH(高塑性粘土)として、N>30の場合島尻固結粘土として土層区分されている。それぞれの層でのN値は、CH層では20以下が多く、島尻固結粘土では急激な増加を示し、打撃数50回の貫入打止めとなっている。また、含水比とN値の関係が示されているが、含水比20~30%ではN>30となる頻度が多く、一方含水比30%以上ではN値の多くは10以下にあることが推定できる。すなわち、CH層の大部分は風化状態、島尻固結粘土層は未風化状態にあることを示唆している。しかし、CH層での区分、とりわけCH層から島尻固結粘土層へのN値の変化は明確でない。この点を明らかにするために砂川らの集録とは別に、2地点での調査結果を示し

たのが図-2.33である。 図中,打撃数50回 の打止めの場合のN値は, 30 cm未満の貫入 量と打撃数から近似的に比例関係で 30 cm貫 入量に換算した値を示したものである。A 地 点での調査は浦添市内での建築基礎の設計を 目的としたもので,地形は平担であるが,周 辺に比較してくぼ地で,表層部分に捨土され た形跡がある。B 地点の調査は既設送電鉄塔 の移設を必要とするかを検討するために行わ れた斜面での調査である。A 地点でのN値は、

深度 6 mまでは 2~5の値にあるが、 6~10 mの間でほぼ直線的に 170 まで増加し、10 m以深で は 160~180 の一定値を示す。観察記録によると、 6~10 mの間では縦方向にクラックが存在す るが、 10 m以深では非常に硬質であるとされている。一方、B 地点でのN 値は、2 mまでは 20以 下にあるが、2~4mの間ではA地点同様、直線的に 70 まで増加し、9 m付近の弱面層 を除いて4 m 以深では 70 前後の一定値を示している。これらの深度方向へのN 値の変化から明らかなように、地 盤は地表より N< 20 の領域、深度とともに N 値が 50 以上に増加する領域、増加した N 値が一定値 を示す領域に区別できる。これらは通常の大まかな風化分帯に従うと、上位より強風化帯(表土も 含めた風化層),弱風化層(準風化層),未風化帯に区分できるであろう。

一般に、正規圧密粘土地盤では土かぶり厚さの影響を受けて深度方向への含水比減少や強度増加 を示し、それに対応してN値も増加する傾向にあるといわれている。一方、泥質岩地盤は地質履歴 により著しい過圧密効果と結合力の影響を受けて半固結化しているので、通常の土質調査の深度に 限定すると、土かぶり厚さよりも固結度に支配されて、深度方向へのN値は一定値を示す傾向にあ るとみなすことができる。この傾向は、図-2.33の未風化帯でのN値一定の傾向からも明らかであ り、また先の砂川らによって集録された約90本の柱状図から10 m以深のN値(30 cm貫入量に換 算)を調べたところ、深度方向への著しい変化はみられず、調査地点によって70~180 の値にあ ることからも明らかである。さらに、上原もN>30の地盤においては、深度によるNの増加が認 められないとしている。従って、深度方向へのN値の著しい変化は、土かぶり厚さよりも風化程度 に支配されるといえる。もちろん、風化層に限定すれば、N値は土かぶり厚さの影響を受けるもの であり、未風化層は均一なものでなく、砂岩との互層を形成したり、断層などの弱面を含むことは いうまでもない。なお、Bjerrumの風化分帯と対応させると、強風化層は①に、弱風化層は②と ③に対応すると推察されるが、弱風化層を②と③の風化分帯に細区分することはN値特性からでも やはり困難のようである。

ところで、N値と圧縮強度の関係づけがよく行われる。Terzaghi – Peck²⁰ は粘土のコンシステンシー、N値および一軸圧縮強度 q_u の関係を与えている。この提案値の概数としての $q_u \Rightarrow N/8$ (kg/cm³)が、N値から粘土の圧縮強度を推定するのによく利用されている。一方、島尻層泥岩地盤 に対しては次の関係式が提案されているようである。

$$q_{u} = \frac{N}{4} \sim \frac{N}{5}$$
(2.7)³³⁾
$$q_{u} = \frac{N}{6} \sim \frac{N}{15}$$
(2.8)³¹⁾

これらの式の風化層,未風化層への適用区別は明らかでないが,風化層における強度試験データ が乏しいので,未風化泥岩供試体の強度との比較で検討する。先に示したように,未風化泥岩層の N値は地域によって70~180の範囲にある。この値を式(2.7)に代入すると,圧縮強度は qu= 14~45 kg/cmlと推定される。この推定値は,図-2.11に示したように,未風化ブロックサンプル から成形した供試体の圧縮強度 17~40 kg/cmlとほぼ一致している。他方,式(2.8)に適用すると, 分母に小さい値を採用すれば実測値と大差ないが,分母に大きな値を採用すると未風化泥岩の強度 を過小評価することになる。これらのことから,式(2.7)は未風化泥岩の強度を評価するのに妥 当な推定式であり,一方式(2.8)は風化層と未風化層の両方を対象として提案されたものと推察 される。

2.5 結 語

本章においては,泥質岩の一般的な性質を把握するために,本研究の実験試料である島尻層泥岩 に関して,主として通常の土質試験にもとづいて得られた物理的,力学的性質を羅列し,これに若

- 42 --

干の検討と考察を加えた。そして, この結果を既往の泥質岩に対する工学的分類法に適用し, 他の 多くの地域の泥質岩の性質と比較して, その位置づけを行った。また, 標準貫入試験による N値か ら島尻層泥岩地盤の特性を明らかにした。

また,島尻層泥岩の物理的,力学的性質を2.2.4 にまとめてあるが,これらを要約すると,次の ようである。泥岩を解きほぐした試料についての物理的性質は通常の粘土とそれほど変らず,しか も,膨潤性粘土鉱物を多量に含む特異な泥質岩を除けば,多くの地域の泥質岩の物理的性質と類似 のものである。一方,力学挙動は続成作用による結合力に影響されるものである。すなわち,不撹 乱泥岩と練返して正規圧密した供試体についての標準圧密試験,あるいは不撹乱泥岩と練返し供試 体についての圧縮試験結果を比較,検討したところ,この結合力が泥岩に対してもたらす効果は強 度増加と変形の抵抗性であることが明らかとなった。しかし,この結合力の効果は吸水膨張,乾湿 作用および撹乱によって,容易に喪失するものである。また,この泥岩の力学挙動を調べる際,試 料が飽和していれば,間隙水圧の役割を無視することができず,Terzaghiの有効応力でもって,そ の力学挙動を記述できることが明らかになった。

次に、本章で略述した物理的、力学的性質にもとづいて、島尻層泥岩をUnderwoodによる泥質岩の分類法に適用すると、「active shale」に分類され、土木工事上考慮されるべき多くの問題点が示唆された。Morgenstern らによる分類法に適用した場合、強度的には粘土に分類されるが、耐水性に関しては泥岩としての性質を示すものであるから、「hard clay から泥岩にまたがる」地盤材料に分類される。一方、スレーキングの程度は、他の多くの地域の泥質岩に比較して、むしろ中程度以下にあるといる。しかし、島尻層泥岩に対する耐水性の検討は、長期にわたる実験結果にもとずくもので、しかも水浸による完全軟弱化状態に要する時間は数年の単位を必要とするものである。このような長期にまたがる実験から泥質岩の軟弱化過程の把握と完全軟弱化強度を明らかにすることは興味あるところであるが、判別法や分類法を目的とした実際的見地からは単純かつ短時間に行える試験法が適切であり、完全軟弱化強度に代わる尺度、あるいは別の判定法の提案が望まれるところである。

ところで、stiff clay、あるいは hard clay (clay shale)のような用語は我が国ではあまり用 いられないが、一方泥岩は通常、粒径によって粘土岩およびシルト岩に分類されている。表 - 2.5 に引用したように、Morgensternらが対象としたヨーロッパやカナダにおける泥質岩の多くは古い 地質年代の堆積物であるにもかかわらず、我が国における第三紀層泥岩に比較して、強度が低く、 あまり固結していない。この固結度の低さが過圧密粘土としての取扱いを可能にし、Morgenstern らの分類用語にみられるような、stiff clayやhard clay (clay shale)の表現が用いられるように なったものと考えられる。それに対して、我が国における第三紀層泥岩の多くは比較的固結してい て、半固結状態にある堆積岩、あるいは軟岩として表記され、粘土としてのニテンスは含まれない ようである。したがって、島尻層泥岩は、我が国における泥岩の種類の中でも低い固結状態の部類 にあると思われるので、Morgensternらの分類用語による「hard clay から泥岩にまたがる」地盤 材料としてよりも「弱固結状態にある粘土岩」としての表記が適切であろう。

このような弱固結状態にある島尻層泥岩地盤のN値は,地質履歴による結合力と過圧密効果の影響を受けて,通常の土質調査深度ではほぼ一定値を示す傾向にあり,場所によって異なるが,N=

70~180にあると推定される。一方,深度方向へのN値の急激な変化は風化程度に支配されるもので,このN値特性から地盤を強風化層,弱風化層,未風化層に大別することが可能である。

参考文献

- Underwood, L. B. : Classification and identification of shales, Proc. of ASCE, Vol. 93, No SM 6, pp. 97 ~ 116, 1967.
- Morgenstern, N. R. et al. : Classification of argillaceous soils and rocks, Proc. of ASCE, Vol. 100, № GT 100, pp. 1137 ~ 1156, 1974.
- Ward, W. H. et al. : Further studies of the properties of London clay, Geotechnique, Vol. 9, pp. 33 ~ 58, 1957.
- 4) 新城俊也:沖縄における泥灰岩の工学的特性(Ⅲ), 琉球大学農学部学術報告,第19号,pp. 331~342, 1972.
- 5) 砂川徹男・上原方成:路床土としての島尻層土について,琉球大学理工学部紀要工学篇,第9 号,pp.151~156,1975.
- 6) 上原方成・砂川徹男:沖縄地方の細粒土の物理的性質について,琉球大学理工学部紀要工学篇, 第7号, pp. 119~125, 1974.
- 7) 宮城調勝:土の粒度試験におけるトリポリリン酸ナトリウムの分散効果,沖縄農業, Vol. 6, No 2, pp. 32 ~ 35, 1967.
- Skempton, A. W. : The colloidal "Activity " of clays, Proc. 3rd ICSMFE, Vol. 1, pp. 57~61, 1953.
- 9) 松坂・他:沖縄本島・久米島の土壌分類について,農業技術研究所報告B, Vol. 22, pp.305~ 404, 1975.
- 10) 川島・他:沖縄におけるジャーガルならびにマーヂ土壌とその母岩について,土壌肥料学雑誌, Vol. 17, pp. 451~454, 1943.
- 上原方成・大成博文:沖縄・島尻層構成土の化学特性とすべり・崩壊について,第30回土木学 会年次学術講演集,第3部,pp. 398~399, 1975.
- 12) 福田・他:第5次沖縄天然ガス資源調査・研究概報,地質調査月報,Vol.21, Na 11, pp.627~ 672, 1970.
- 13) 新城俊也・小宮康明:島尻層新里粘土の力学特性,琉球大学農学部学術報告,第25号,pp.325
 ~ 337, 1978.
- Bjerrum, L. : Progressive failure in slopes of overconsolidated plastic clay and clay shales, Proc. of ASCE, Vol. 93, Na SM 5, pp. 3~49, 1967.
- 15) 吉中龍之進・山辺正:泥岩の強度・変形特性,第32回土木学会年次学術講演集,第3部,pp. 356~357,1977.
- 16) 新城俊也:沖縄における泥灰岩の工学的特性(I),琉球大学農学部学術報告,第18号,pp. 127~136,1971.

- 17) 新城俊也・小宮康明:乾湿繰返しによる島尻層泥岩の強度低下,琉球大学農学部学術報告,第
 25 号,pp. 307 ~ 323, 1978.
- 18) 新城俊也:島尻層泥岩のセン断特性,琉球大学農学部学術報告, Vol. 23, pp. 237~254,1976.
- 19) Mitchell, J. K. et al.: Causes of clay sensitivity, Proc. of ASCE, Vol. 95, Na SM 3, pp. 845 ~ 871, 1969.
- 20) 仲野良紀:第三紀層地スペリ母岩(泥岩)の軟弱化と物性の変化について,農業土木試験場報告, Na 4, pp. 143~169, 1966.
- 21) 足立紀尚・小川豊和・山本雄二:低圧および高圧下の軟岩の力学挙動,第13回 土質工学研究 発表会講演集,pp. 1125 ~ 1128, 1978.
- 22) 吉中龍之進・山辺正:軟岩の応力~ひずみ挙動に関する実験的研究(I),第33回 土木学会 年次学術講演集,第3部,pp.448~449,1978.
- 23)赤井浩一・足立紀尚・新城俊也:沖縄,島尻層泥岩の力学特性,京都大学防災研究所年報,Vol. 16 (B), pp. 753 ~ 764, 1973.
- 24) Skempton, A. W. : The pore-pressure coefficients A and B, Geotechnique, Vol. 4, pp. 143 ~ 147, 1954.
- 25) 竹中準之助:土質調査試験結果の解釈と適用例,土質工学会,pp.155~190, 1968.
- 26) Deere, D. U. : Rock Mechanics in Engineering Practice, ed. by Stagg and Zinkiwicz, John Wiley and Sons, pp. 4 ~ 12, 1968.
- 赤井浩一・足立紀尚・田伏宣夫:有効応力からみた軟岩の力学特性,材料,Vol. 23,pp. 368~ 373, 1974.
- 28) 奥園誠之:切土ノリ面の崩壊とノリコウ配,土と基礎, Vol. 20, No.2, pp. 33~40, 1972.
- 29) 砂川徹男・上原方成:那覇市の地盤について,琉球大学理工学部紀要工学篇,第6号,pp. 101
 ~ 162, 1973.
- 30) 関陽太郎:建設技術者のための岩石学,共立出版, pp. 96~97, 1976.
- 上原方成:沖縄における地盤災害とその対策に関する研究,京都大学工学博士学位請求論文, pp. 152~168, 1977.
- 32) 星埜和・他訳:テルツアギ・ペック土質力学応用編,丸善,pp. 303, 1970.
- 33) 松井彰・横山羌泰:沖縄の地盤,土木学会誌, Vol.58, Na 9, pp. 59~67, 1973.

第3章 泥質堆積岩(島尻層泥岩)の強度特性^{1,2,3)}

3.1 概説

従来,泥質岩からなる基礎地盤は通常の粘土層に比べて堅固であることから,比較的良好な支持 層とみなされ,工学上あまり関心が払われなかった。しかし,最近の土木構造物の大型化,多様化 に伴って泥質岩層を対象とした重量構造物基礎の設置あるいは大規模な切土,開削工事が行われる ようになり,重量構造物建設の可否や応力解放に伴う地盤の安定性を検討するために泥質岩の力学 特性を把握することが必要となっている。

半固結状態にある泥質岩は、その固結度合に応じて硬岩から通常の過圧密粘土にまたがった幅広 い力学的性質を示すものである。しかも、この種の泥質岩は著しい地質履歴を受けているので、そ の強度・変形特性は固結度合と異方性に支配されるであろう。従って、本章においては、前章にお いてその工学的位置づけがある程度明確にされている島尻層泥岩を試料に選び、60 kg/cml に及ぶ拘 東圧力下での三軸圧縮試験により弱固結状態にある泥質岩の強度・変形特性を明らかにしようとす るものである。そこで、初めに、第1章で略述した Bjerrum による泥質岩の力学挙動に及ぼす地 質履歴の影響をせん断挙動に対しても考察する。そして、改めて本章の目的とする泥質岩の強度・ 変形を明らかにするために準備された三軸装置と実験方法が概略され、また実験操作上の問題点、ここでは バックプレッシャーの大きさの決定とメンブレンの補正が実験的に調べられる。次に、地盤に対し鉛直方向 の供試体について圧密圧力60 kg/cml までの圧密非排水型三軸圧縮試験および拘束圧力25 kg/cml までの 圧密排水型三軸圧縮試験を行い、破壊時に注目した体積変化と間隙水圧の特性から強度と有効応力の 関係、また残留強度について検討、考察し、さらに地盤内応力の推定を試みる。そして、それらの結果に基 づいて算出した支持力を平板載荷試験あるいは杭載荷試験と比較することにより強度定数の選択と適用 法について若干の検討を行う。最後に、地盤に対し種々の軸方向を有する供試体について圧密圧力25 kg/ cml までの圧密非排水型三軸圧縮試験を行って、非排水強度及び間隙水圧の挙動の異方性を調べる。

なお、支持力問題が破壊と変形に関する検討を必要とするように、明らかにされるべき力学特性 では強度と変形が同時に検討されなければならないが、本章では主に破壊点付近に注目し、強度特 性を検討することとし、変形挙動の詳細は次章で検討することとする。

3.2 せん断挙動に及ぼす地質履歴の影響

第1章緒論において述べたように、Bjerrum⁴⁾によると、泥質岩は、数百万年から数千万年前に 堆積した粘土層が堆積後の地質学的尺度としての長年月にわたる続成過程を経て、その過程で生成 された結合力により半固結化したものといわれている。また、このような半固結化した泥質岩はそ の後の上載荷重の除去により過圧密状態にあるが、単に過圧密効果だけを受けただけで結合力をも たない粘土に対比させると、続成作用による結合力によって変形に対する抵抗性と強度増加が付加 されたものであることもこれまで述べたところである。すなわち、強度ならびに変形特性が結合力 の影響を受けていることは、第1章、図-1.1(a) に示したように、半固結化した泥質岩が除荷-載荷過程でさしたる体積変化を伴わずに挙動すること、また第2章で述べたように、十分練返すこ とにより結合力を除去した供試体が不撹乱供試体に比較して小さな強度とプラスチックな変形挙動 を示すことからも推察されうるものである。一方,最近の実験的研究によると,低圧から数百 kg/ cmlにまたがる拘束圧力下での泥質岩のせん断特性は通常の過圧密粘土の特性に類似したものである ことが明らかにされ^{5,6},結合力の効果は通常の過圧密粘土における過圧密効果の現象に包含された ものとなっている。しかし,現在のところ,せん断挙動を過圧密効果と結合力効果の挙動に分離す ることは可能でないように思われる。そこで,これまで多くの実験事実に基づいて明らかにされた 通常の過圧密粘土のせん断特性に結合力の効果を付加した場合,泥質岩がいかなるせん断挙動を示 すかを概念的に以下のように考察する。

図 -3.1(a) は圧密圧力と含水比の関係を示 すものであるが、この図は先の図 -1.1(a) に おける圧密圧力 p を普通目盛に改め、それに実 験室で再現可能な通常の過圧密状態の関係を図 中の記号 b d で追加したものである。周知のよ うに、図中に示した堆積過程(正規圧密) a b 及 び過圧密状態 b d にある粘土に対し圧密非排水 せん断試験を行った場合、圧密圧力 p と非排水 せん断強度 c_u の関係、ならびに圧力 p と破壊 時の間隙圧係数 A_f の関係はそれぞれ図(b)と図 (c)に、図(a)の記号と対応させて示される。

一方,自然地盤の堆積粘土が図(a)の土かぶり 状態bで何百年も何千年もの間一定の有効応 力のもとでそのままの状態におかれると,二 次圧密を生じ,粘土の含水比は状態eまで減少

図-3.1 泥質岩の形成とせん断挙動の概念図

して平衡する。その後,直ちに上載荷重が除去されると,比較的大きな回復ひずみを伴うことから 圧密圧力と含水比の関係は ef'の関係で示される。しかし,状態 e にある粘土がさらに地質学的尺 度の長期間にわたってそのままの状態におかれると,続成作用により粘土粒子間に結合力が発達し, 半固結化した状態となる。従って,半固結化した粘土の場合,この粒子間結合力が除荷に伴う回復 ひずみを拘束するため,除荷過程ではさしたる体積変化なしに ef の経過をたどり,また有効上載 荷重以上の荷重増加に対しても結合力で拘束されている骨格が降伏するまでは,さしたる体積変化 を伴わず,処女圧密曲線と点g で交わる egc の経過をたどることも先に述べたことである。いま, ここでは結合力を受けた粘土に限定し,結合力の効果の1つである強度増加を非排水せん断強度 c_u と、またもう1つの変形に対する抵抗性をせん断に伴う体積変化,すなわちダイレイタンシーの 関数である破壊時の間隙圧係数 A_f と関連させれば,せん断挙動に及ぼす結合力の影響は図(b)と (c)において,除荷過程の場合 ef で,また載荷過程の場合 ec で示される。すなわち,図(b)に おいて圧密圧力の増加に伴って a から b まで増加した非排水せん断強度 c_u は,長期間一定有効応 力状態のままおかれると二次圧密と続成作用の結合力の影響を受けて状態 e まで増大するであろう。 しかも,結合力が粒子間を拘束しているので除荷に伴う含水比の増加はわずかであり、また結合力 によって拘束されている骨格が降状するまでは圧密による含水比減少はわずかである。従って,圧 密降伏荷重以下での除荷・載荷に伴った強度変化はわずかなものとなるから,圧密圧力と非排水強 度の関係は,圧密降伏後に状態 c で正規圧密の強度増加線と交わるような fec 関係で示される。 しかし, この関係は通常の過圧密粘土の過圧密領域における傾向と類似したもので,試験に当り試 料の過去における最大土かぶり厚さが既知でなければ,非排水強度を過圧密効果と結合力の効果に 分離することは不可能である。

次に,通常の過圧密粘土においては過圧密比が大となれば,せん断に伴う正のダイレイタンシー を生じ,間隙圧係数が負の値になることは周知のことである。一方,圧密圧力bの状態で結合力の 影響を受けた粘土は,同一圧密圧力における結合力を持たない正規圧密粘土に比較してぜい性的な 挙動を示し,小さな破壊ひずみのもとに弾性挙動が卓越するであろう。従って,結合力を受けた粘 土においてはせん断に伴う体積変化はわずかとなり,正規圧密粘土に比較して発生間隙水圧は小さ く,しかもせん断強度は増大しているので,間隙水圧係数 A_fは図(c)に示すように bからeま で減少する。そして,eより小さな圧密圧力においては結合力によるぜい性的挙動が維持されてい るため,除荷に伴うA_fの減少は通常の過圧密粘土ほど著しくなく,またeより大きな圧密圧力に おいては圧密圧力の増加に伴ってぜい性的挙動からプラスチックな挙動に移行するため,A_fは徐 々に増加し、圧密降伏圧力を境として正規圧密粘土と同様一定となるであろう。

以上の推察は泥質岩を、結合力が著しく付加された過圧密粘土とみなし、これを通常の過圧密粘 土と対比させることにより、そのせん断特性を土質力学的に考察したものである。このことに関し ては、異なる結合力の状態にある種々の泥質岩について低圧から高圧にまたがる拘束圧力下での詳 細な実験的研究によって明らかにされる必要があるが、本章でも弱固結状態にある泥岩のせん断挙 動と併せて等方圧密圧力60 kg/miまでの拘束圧力下における上述の特性について検討する。

3.3 実験装置と実験方法の概要

3.3.1 実験装置

本章においては、軸対称の三軸圧縮試験を行うことにより低圧から高圧にまたがる応力下での泥 質岩の力学挙動を明らかにしようとするものである。そのためには、側圧10 kg/cml 未満の低応力範 囲を対象とする通常の土質用三軸試験装置のみならず、数十 kg/cml 以上の側圧と数 ton の軸荷重容 量をもつ装置が必要であるとともに、それらの測定系は高精度の計測装置を具備していることが要 求される。しかし、単一の装置でこれらすべてを満足させることは困難であり、応力レベルに見合 う負荷容量と精度を備えた三軸試験装置を個々に準備する必要がある。

ここで用いる三軸装置は赤井ら^{7,8)}によって開発,試作された装置あるいはそれと同等の機構を もつ装置である。これらは従来の三軸装置に比べて,三軸室,載荷制御装置および測定系に改良が 加えられたものである。以下に三軸装置についてその概要を説明する。

1) 三軸室

使用する三軸室は側圧10 kg/cm 以下の低圧用1種類ならびに側圧30 kg/cm と70 kg/cm まで作用可能な中圧用2種類である。低圧用三軸室は図-3.2 に、また中圧用三軸室は図-3.3 と図-3.4 に それぞれ示してある。これらの三軸室は図に示すように、機構的に同一で、通常のボルトあるいは 蝶ネジによる三軸室の固定方式を改め, ワンタッチジョイント方式を採用することにより取扱いの 簡便化, 三軸室の小型化をはかったものである。また,用いる供試体の寸法は直径50 mm,高さ125 mmの円柱形で,供試体端面の摩擦を軽減させるため,ペーパードレインによる側方排水方式とし, 排水は底面のペデスタル側面にはめ込まれた円環状のポーラスメタルを通して排水用ビユレットに 導かれ,一方間隙水圧測定は排水系と独立させてペデスタル中央部にはめ込んだ径10mmのポーラス

図-3.2 低圧用三軸室 (容量10 kg/cm²)

図-3.3 中圧用三軸室 (容量30 kg/cmⁱ)

図-3.4 中圧用三軸室 (容量70 kg/cm²)

メタルを通して行われる。低圧用三軸室は側圧10 kg/cmi,軸荷重1 ton まで載荷可能で,セルはア クリルでできている。図-3.3 に示す中圧用三軸室の1つは側圧30 kg/cmi,軸荷重3 ton まで載荷可 能で,セルは肉厚30 mmのアクリル円筒を用い,常時外部から供試体の状況を可視できるようにした ものである。図-3.4 に示すもう1つの中圧用三軸室は側圧70 kg/cmi まで載荷可能で,セルは肉厚1 cmの鋼製円筒でできているが,他の高圧三軸室と比較して人力で取扱いが可能な程度に軽量化され たものである。

2) 載荷制御装置

軸荷重載荷装置は主に容量10 ton の電動式圧縮試験機を使用し,他に赤井らによって準備された 装置も利用した。電動式圧縮試験機は単に定ひずみ速度試験しか行えないが,無段変速機と4段変 速のギャーボックスを組合せることにより軸変位速度は0.0005 mm/min~6 mm/minの範囲内で任意 に選定可能である。

試験中側圧を一定に保持する機構が必要である。10 kg/cml以下の側圧はコンプレッサーからの空気圧を空気圧制御弁で制御し、三軸室内で水圧に変換して載荷される。使用した空気圧制御弁は高精度のもので、その機構は所定圧以上の過剰圧力を排気弁により常時排出し、一次圧の振動は制御膜により隔絶され、制御室内で減幅されるから、コンプレッサーなどによる一次圧の変動には影響されず所定の二次圧が得られる機構になっている。また、一次圧の許容最大圧力は17.5 kg/cml、二

次圧の制御範囲は 0 ~ 10.5 kg/cmi,その精度は 7 mm水頭,すなわち 0.0007 kg/cmi 以下である。一 方,10 kg/cmi 以上の側圧に対しては図一 3.5 に示すような油圧制御装置を用いた。それは,まず,

コンプレッサーからの空気圧に よって駆動する空気圧駆動油圧 ポンプ(air pressure-driven oil pump)で所定の油圧を発 生させ,ポンプの作動時の衝撃 圧の吸収と一定油量の獲保のた めアキュームレイターを付置し, それに油圧を蓄圧して一次圧と し,これを高精度の油圧制御弁 (oil pressure regulator)を 用いて二次圧として制御し,所 定の側圧を保持する機構である。 この油圧は三軸室あるいは水タ

図-3.5 中圧用三軸装置と側圧負荷機構

ンク内で水圧に変換され、側圧として作用する。空気圧駆動油圧ポンプの利点は空気圧で駆動する点 であり、その機構は制御された空気圧により一定の倍率の油圧を発生し、かつその圧力に達するま では無制限に油を送るポンプの機能を有している。油圧制御弁は自動閉鎖、圧力封入により、圧を 一定に保つことができるので、温度、体積変化などによる二次圧側の圧力の増減に対処し、二次圧 を常時一定に制御できる。赤井らが準備した油圧ポンプの倍率は約20倍(空気圧1 kg/cml に対し油 圧20 kg/cml が発生)、油圧制御弁の容量70 kg/cml であるが、これとは別に油圧ポンプ倍率約35倍、 油圧制御弁の容量 210 kg/cml からなる図-3.5 の装置を用意した。

3) 測定系

軸荷重の測定は各種の定格容量のプルービングリングか荷重変換器を使用した。また、軸変位の 測定は同様にダイヤルゲージか差動トランス型変位計(LVDT)を使用した。間隙水圧の測定は 供試体底面の中央部で、前述のようにペデスタル中央部にはめ込んだポーラスメタルを通し、半導 体小型圧力変換器によって行われる。これらの記録は、軸荷重測定にプルービングリング、軸変位 測定にダイヤルゲージを使用する場合、肉眼で行い、間隙水圧だけを打点記録計に自記させた。一方、 荷重変換器、差動トランス型変位計を使用する場合、軸荷重、軸変位および間隙水圧ともXYレコ ーダ(2ペン)に自記させる方法をとっている。

排水用ビユレットは、空気圧制御弁を用いて任意の大きさのパックプレッシャーが圧密開始と同時に作用でき、かつ圧力による排水量の読みへの影響をなくするために、空気圧10 kg/cmi に耐える 二重構造となっている。その容量は50cc、最小目盛0.1 cc で、その測定は肉眼で行う。

3.3.2 実験方法

弱固結状態にある泥岩を試料に選び,上述の三軸試験装置を用いて,軸対称の非圧密非排水型三 軸圧縮試験(UU-実験), 圧密非排水型(CU-試験)及び圧密排水型(D-試験)三軸圧縮試 験を行うが,それぞれの試験は以下の方法によって行った。 まず,直径50 m,高さ100 mの円柱供試体を準備する。この供試体をセットする前に,三軸室内 に水をペデスタルより少し上まで入れて真空ポンプでサクションをかけ,間隙水圧測定系と排水系 の脱気を行う。供試体のセットに当っては,端面の摩擦を軽減するためにシリコンオイルを塗った テフロンシートを敷き,また間隙水圧の平衡と圧密の促進のためにペーパードレインを供試体に巻 いた。メンプレンは,側圧10 kg/cnl以下の場合厚さ0.2 mmの生ゴム2枚,側圧10 kg/cnl以上の場合 厚さ2 mmの生ゴム1枚を使用している。供試体をセットした後,供試体キャップの上まで水を入れ て,側圧は三軸室上方から空気圧あるいは油圧で作用させるが,まず,0.2 kg/cnlの側圧を作用さ せて約10分間排水を許し,セットの際に混入した余分の水を排除する。その後所定の側圧を作用さ せ,それに伴って発生した間隙水圧が定常になるのを待って次の操作に移る。実際にはその時間は 1時間以内であった。

UU-試験では、その後直ちに0.02~0.026 %/minの定ひずみ制御で側圧を1.0 kg/cm から 30.0 kg/cm まで変化させてせん断試験を行った。その際、間隙水圧の測定も行っている。その実 験結果は、例として前章の図-2.25 に応力~間隙水圧~ひずみ関係を、また破壊包絡線を図-2. 23 と図-2.27 に示した。

一方, CU-試験ならびにD-試験においては,所定の初期パックプレッシャー(initial back pressure)を作用させながら24時間等方圧密(吸水)を行った。その後,CU-試験では, 非排水状態で間隙水圧の測定を行いながらひずみ速度0.02%/minでせん断する。また,D- 試験では,圧密終了後パックプレッシャーを作用させながら0.001%/minの定ひずみ速度で排水せん断 を行う。側圧30 kg/cm 容量の中圧用三軸室を用いた三軸試験の状況が写真-3.1に示されている。

本章においては、CU - 試験とD - 試験の結果について示すが、 その際強度に及ぼすバックプレッシャーの影響、また最大応力後の 主応力差に及ぼすメンブレンの影響を明らかにする必要性から、そ れぞれについて次に示すような実験を行って、バックプレッシャー の大きさの選定と強度に及ぼすメンブレンの補正について調べてい る。

3.3.3 バックプレッシャー #6 の選定

通常,三軸試験では,供試体を飽和し,その中に発生している負 圧を消滅させること,また圧密非排水せん断試験を行う場合せん断 に伴う発生間隙水圧を正確に測定するために,せん断直前の間隙水 圧を同一レベルの一定値にすることを目的としてバックプレッシャ ーの利用が行われている。特に,本章で対象とする島尻層泥岩供試 体は,前章の図-2.24と図-2.26に示すように,飽和状態でもサ

写真-3.1 三軸試験 の状況

クションが存在し、かつこのサクションの大きさが強度に影響を及ぼすことが明らかとなっている。 従って、強度特性を有効応力に基づいて検討するためには供試体にバックプレッシャーを作用させ てサクションを消滅させる必要がある。このような目的のために、圧密非排水せん断試験を行うに 先立ち、バックプレッシャーの大きさが主応力差に及ぼす影響を調べるとともに、実験上適切なバ ックプレッシャーの値を選定するため、以下のような実験を行った。 試料は西原村でブロックサンプルとして採取したもので、その物理的性質は含水比22%、湿潤密度2.10t/m³、間隙比0.60、飽和度96%以上、一軸圧縮強度は平均23 kg/cd である。供試体はコアードリルとコアーカッターで直径50 mm、高さ100 mmに成形した。ただし、ブロックサンプルの方向性の向きは採取時に確認されていないので、供試体は全くランダムな方向を有するものである。実験条件は、等方圧密の開始と同時にバックプレッシャーを与える初期バックプレッシャーの方法をとり、圧密時間は24時間に限定している。バックプレッシャーの大きさは $u_b = 0, 1, 2, 3, 4, 5$ kg/cd と変化させ、圧密圧力は $\sigma_c^2 = 9$ kg/cd 以下である。三軸室は図 - 3.2 に示した低圧用を使用し、軸ひずみ速度は0.026%/minである。また、実験結果にバラッキを予想して、供試体の数はバックプレッシャー u_b と圧密圧力 σ_c^2 の組合せに対し3個ずつである。

作用させたバックプレッシャー u_b と最大主応力差 $(\sigma_1 - \sigma_3)_f$ の関係を各圧密圧力に対して示したのが図 - 3.6 である。実験結果には、供試体の方向性を無視したことにより異方性がもたらし

た強度のバラッキが認められるが、図中の実線 はバックプレッシャーの大きさによって最大主 応力差が変化する傾向を圧密圧力の大きさごと に示したものである。それによると、 バックプ レッシャーが0から2kg/cmiまで増加すると、 それとは逆に最大主応力差は減少し、 $u_h = 3.0$ kg/cmi以上ではバックプレッシャーの大きさに 関係なく最大主応力差は一定になる傾向にある。 $u_b = 3.0 \text{ kg/cm}$ 以下においてバックプレッシャ -の値が小さいほど,最大主応力差が増大して いることは、24時間程度の圧密(吸水)時間は 供試体のサクションを消滅させるのに十分な時 間でなく、しかもバックプレッシャーが小さい ほど、有効拘束圧力としてのサクションは大き な値となって残存していることによるものと考 えられる。従って、圧密時間を24時間に限定す

図-3.6 最大応力に及ぼすバックプレッシャーの影響(CU-試験)

れば,有効応力を正しく算定するためには u_b = 3.0 kg /cml 以上のバックプレッシャーを作用させる ことが必要である。

ところで、 圧密圧力の大きさに支配されることであるが、 サクションがバックプレッシャーより 大きな場合供試体は吸水現象を、またその逆の場合圧密現象を示すであろう。先の図 – 3.6 には側 圧 9 kg/cml以下での非圧密非排水せん断試験による最大主応力差の平均値 27 kg/cml も破線で示し てある。この値とバックプレッシャー $u_b = 3.0$ kg/cml以上の圧密非排水における最大主応力差を比較 すると、 圧密圧力 $\sigma_c^* = 5$ kg/cml 以下では UU 試験における最大主応力差が CU 試験における 値よ りも大きく、その差は圧密圧力が小さくなるほど著しくなっている。このことは、 バックプレッシ ャー作用過程で吸水現象を生じ、含水比が増加し、その結果強度が減少することを示唆するもので ある。一方、 圧密圧力が増大すると、 圧密効果により CU – 試験 における強度は増大する。いま、 この吸水および圧密現象を圧密圧力と含水比変化の関係で示したのが図-3.7である。ここに、含

水比変化は圧密前と圧密後(せん断試験終了後に測 定)の増減で示してある。測定値にかなりのバラッ キがあるが、圧密圧力 5.0 kg/cd 以下では吸水過程, それ以上の圧密圧力では圧密過程にあることが傾向 として認められる。供試体は飽和しているので、含 水比変化が生じない圧密圧力 5.0 kg/cd は体積変化 を許さない拘束圧力を意味し、この値が実験に供し た試料のサクションに等しい値と考えられる。

以上のことから、圧密圧力の大きさにより供試体 は吸水あるいは圧密現象を示すものであるが、低圧 密圧力でのサクションの消滅とせん断時の間隙水圧 を同一レベルに保持するために、本実験では初期バ ックプレッシャーとして $u_b = 3.0 \text{ kg/cnl}$ を適用す る。

3.3.4 三軸試験における破壊後の断面とメンプレン補正

本章で対象とする泥質岩を圧密降伏圧力以下の拘束圧で三軸試験を行うと、ある角度の明確な1 つのすべり面が形成される。このような破壊形態を生ずる供試体では、軸変位の増加とともに接触 面積は変化し、さらにメンブレンは供試体の変位を拘束するから、軸荷重は誤差を含んだものとな る。そこで、破壊後さらに変形を与えて達成される残留応力状態あるいは critical stateを求める 場合、それらに対する補正を行って正確な応力を算定する必要がある。

- 53 -

破壊後の軸ひずみ増加に伴う供試体の 接触断面の補正は,次に示すように Chandler⁹⁾の方法に基づいて行う。図 -3.8 は軸変位*dh*を受けたときの水平 $に対し角度 <math>\alpha$ からなる単一のすべり面を 形成する供試体を示したものである。図 (a)は高さ*h*,直径 2 r からなる供試体が *dh*だけ軸変位を受けたときの寸法,図 (b)は立体的なスケッチ,図(c)は接触面の 平面図,また図(d)は供試体の端面からみ た接触面の平面図で,斜線をほどこした 面積が接触面積となり,図中の記号を用 いてその面積は任意の軸変位に対し次式 となる。

$$A = \left(2 r^{2} \sin^{-1}(x/r) + 2 x \sqrt{(r^{2} - x^{2})}\right) \begin{array}{l} x = r \\ x = (\Delta h \cot \alpha)/2 \end{array}$$
(3.1)

ここに, A:接触面積, 2r:供試体の直径, α:せん断面が水平となす角。

次に、軸変位の増加に伴うメンブレンの拘束力は実験的に求められた。直径50 mm, 125 mmのプラ スチック円柱体をモデル供試体として準備したが、それは水平に対しα=55°の角度で切断されて いる。供試体のセット方法は切断面にグリースを塗り、メンブレンで包み、サクションを作用させ ながら三軸室にセットした。側圧を作用させた後、供試体内を大気圧にもどし、軸変位速度1.25 mm /minで排気型三軸圧縮試験を行う。側圧は25 kg/cml まで変化させるが、側圧の大きさに応じてメンブ レンの種類と枚数を替えている。すなわち、側圧10 kg/cml 以下の場合は厚さ0.2 mmの生ゴムメンブレ ン2 枚使用、側圧10 kg/cml 以上の場合は厚さ2 mmの生ゴムメンブレン1 枚使用した。図-3.9 は各側

Eに対する軸荷重と軸変位の関係を示したも のである。図によると、この関係は軸変位4 mm前後まで乱れを生じているが、それ以上の 軸変位ではほぼ直線関係が存在している。し かも、この直線関係は側圧の大きさにあまり 影響を受けず、それぞれのメンブレンに対し 傾きはほぼ一定値を示している。そこで、そ れぞれのメンブレンに対する直線関係の平均 勾配fを算出し、破壊後の軸荷重に及ぼすメ ンブレンの影響は次式で補正した。

 $(P_1 - P_3)_c = f \cdot dh$ (3.2) ここに, $(P_1 - P_3)_c$: 軸荷重の補正量(kg), dh: 軸変位 (mm), f:定数 (kg/mm)。

なお,最大応力までの断面補正は C U-試験 および D- 試験 ともに通常の三軸圧 縮試験の補正法に基づいて行い,上述の式

(3.1)と(3.2)の補正はD-試験におけ最大応力後の変位増加に対し適用した。

3.4 泥質岩のせん断特性

3.4.1 序

本節においては、地盤に対し鉛直方向軸をもつ供試体を対象として、圧密圧力60 kg/cm までの圧密非排水型三軸圧縮試験ならびに拘束圧力25 kg/cm までの圧密排水型三軸圧縮試験から得られたせん断特性が示されている。

3.4.2 試料と実験方法

本節で使用する試料は沖縄本島中南部に分布する島尻層群の与那原層に属し,半固結〜弱固結状態にある泥岩である。試料は那覇市の近郊,西原村の土地造成現場で土かぶり厚さ約20mほど除去した位置からブロックサンプルとして採取したものである。その方法は,手掘りによる方法が困難

であったので、土工機械に装着させたリッパーで地山をゆるめ、その際数十cmから1m程度の塊状プ ロックが形成されるので、適当な大きさの塊に方向を印し、その場で一辺約40~50cmの立方体に成 形した。このブロックサンプルは、含水比が変化しないようにビニールを被せて実験室に搬入し、 直ちにパラフィンコートを行い、さらにビニールで包んで保存した。

三軸圧縮試験用供試体は、ブロックサンプルを適当な寸法に切断し、コアードリルとコアーカッ ターを用いてその軸が地盤に対し鉛直な方向となるように直径50mm、高さ100mmの円柱形に成形し た。その際、ひび割れや弱面(遊離酸化鉄の影響で褐色の筋を形成している)が認められる供試体 は除去した。

この試料の物理的性質は表-3.1に示して ある。表中の比重, コンシステンシー及び粒 度は風乾した試料を解きほぐして測定したも のである。また、飽和度は96%以上で、ほと んどの供試体が飽和度100%の完全飽和であ った。写真-3.2は、乱さない試料を乾燥さ せた後,その水平断面を走査型電子顕微鏡で 観察したものである。島尻層には粘土鉱物と して雲母粘土鉱物、膨潤性緑泥石及びモンモ リロナイト様鉱物、また非粘土鉱物として石 英,長石及び方解石が含まれていると報告さ れている10)。観察によると、非粘土鉱物の他 に、 微細な板状の粘土粒子あるいはコロイド が存在していることがわかる。すなわち、こ の泥岩はシルト径大のペッドと非粘土鉱物の 集合によって形成されている。しかも、この 泥岩は続成作用を受けたものであるから、シ ルト径大のペッドはもちろんのこと、ペッド 相互間あるいはペッドと非粘土鉱物間は互に セメンテーションによって結合されているも のと推察される。この結合度合の大きさが力 学的性質に影響を及ぼすと考えられる。

実験はCU-試験及びD-試験を行って いる。CU-試験は初期バックプレッシャ

== =	2 1	か理かれた
<u>ax</u> –	- J . I	初珪的性質

含	水	比	w	24.6 %
単	位重	量	r_t	2.03 t/m ⁸
比		重	G	2.79
間	隙	比	е	0.71
飽	和	度	Sr	96~100%
液	性限	界	w_L	67 %
塑	性限	界	wp	26 %
塑	性指	導	ΡI	41 %
		[砂分		3 %
粉	庻	シルト	分	36 %
1.1.	ix	*- 1.1	$\langle \langle 5 \mu \rangle$	61 %
		[柘土ケ	$f = 2 \mu$	45 %

写真-3.2 島尻層泥岩の水平断面の顕微 鏡写真

- $u_b = 3.0 \text{ kg/cnl}$ を作用させながら圧密圧力 $\sigma_c = 5, 10, 15, 20, 25, 35, 45, 55 \text{ Z}0$ 65 kg/cnl で等方圧密を 行い,その後せん断速度 0.02 %/min で非排水せん断を行う。しかし、圧密圧力 25 kg/cnl までは圧 密は24 時間以内で終了したが、圧密圧力 35 kg/cnl 以上になると圧密は長時間を要する。それは、 排水がペーパードレインを通してペデスタル側面から行われているので、圧密圧力が増加したとき、 圧密の進行に伴って有効側圧が増大するから、ペーパードレイン自体の圧密による透水性の低下が 生じたことに原因していると考えられる。このような場合, $u_b = 3.0 \text{ kg/cd}$ よりも大きい間隙水圧 を残留させたまま圧密を打ち切り,非排水せん断試験を行った。従って,後で示す実験結果には区 切りの良くない圧密圧力の値が用いられている。また,供試体の数はパラツキを予想して $\sigma_c = 25$ kg/cd までは各圧密圧力に対し3個ずつであるが,それより大きい圧密圧力においては実験の都合 上1個ずつである。

一方, D- 試験 は圧密圧力 $\sigma_c^2 = 1$, 3, 5, 7, 10, 15, 20 及び 25 kg/cmi について行い, 圧密過程及び せん断過程を通して $u_b = 3.0$ kg/cmi を作用させている。せん断速度は 0.001 %/minで, 最大応力後 の主応力差がほぼ一定となるまで供試体に軸変位を与えた。供試体の数は各側圧に対し 1 個ずつで ある。

なお、図 – 3.10 は CU – 試験 及び D – 試験 における圧密開始直前の側圧 σ_3 と発生間隙 水圧 u_0 の関係を示したもので、両者には $u_0 = \sigma_3 - 2.32$ (kg/cmⁱ)なる関係が成立し、Skempton の間 隙圧係数 B は 1 となり、供試体は飽和しているが、

2.32 kg/cmlのサクションを有する。しかし、このサクションは圧密過程でパックプレッシャーの 作用により消減したものと推察される。

また、高拘束圧力を受けた泥岩は正規圧密状態 に移行するものと仮定し、高圧密領域でのせん断 特性を予測するために、次のような正規圧密粘土 に関する実験も行っている。試料は別に豊見城村 で採取したものである。供試体は、泥岩を解きほ ぐして高含水比でスラリー状に練り返した後、大 型圧密容器(直径 30 cm)で 0.5 kg /cm の予圧密を 行い、それから直径 50 mm、高さ 100 mm の寸法に 成形したものである。この供試体の物理的性質は

G = 2.74, $w_L = 78.5$ %, $w_p = 27.6$ % (PI = 50.9%)で,予圧密終了後の含水比は 43.5% で ある。実験はCU-試験 を行うが, 圧密圧力は初期バックプレッシャー $u_b = 3.0$ kg/cmi のもとに 1 kg/cmi から 15 kg/cmi まで変化させ, 24 時間圧密した後せん断速度 0.1%/min で非排水せん断を行 う。

3.4.3 実験結果と考察

(1) 応力とひずみの関係及び間隙水圧,体積変化とひずみの関係

図-3.11はCU-試験における主応力差と軸ひずみの関係,及び間隙水圧と軸ひずみの関係を 代表例について示したものである。図中,実線は主応力差を,破線は間隙水圧を、また数値は圧密 圧力を示している。実験の圧密圧力の範囲内では,応力とひずみの関係は,初期のひずみにおける 直線関係から次第に離れ,ひずみ硬化によって最大応力に達し,その後ひずみの増大とともに応力 が減少する典型的なひずみ硬化-軟化型である。この応力~ひずみ関係から圧密圧力の増加に伴っ て最大応力は増加する傾向が明らかであり,圧密による強度増加が期待できる。また,同様に圧密 圧力の増加に伴って応力~ひずみ関係における初期の傾きは徐々に急傾斜となるが,低圧密圧力で は比較的最大応力まで弾性的挙動で ある。それに対し, 圧密圧力が増加 した場合は塑性的挙動の範囲が広が る傾向にある。供試体の破壊ひずみ は0.9~1.3%の範囲にあり、破壊 面は最大主応力面に対し50~60° の角度にある明確な単一のすべりを 形成している。一方、間隙水圧はひ ずみの増大とともに増加を続け、破 壊の直前あるいは破壊と同時に最大 となる。この現象は、通常の過圧密 粘土において実験的に明らかにされ ている初期ひずみでのダイレイタン シーによる間隙水圧減少とは、予想 に反して異なった挙動である。しか も、最大値に達した間隙水圧は、圧 密圧力 o_c = 32 kg/cm の範囲内では 破壊と同時に体積増加を伴って急激 に減少するが、 圧密圧力 42.5 kg/cml 以上では逆に破壊と同時に間隙水圧 が上昇するという特異な挙動を示し ている。

図-3.12はD-試験における主 応力差と軸ひずみ関係を示したもの で,図中の数値は有効拘束圧力を表 わしている。これらの応力~ひずみ 関係はCU-試験におけると同様 に,初期のひずみにおける直線関係 からひずみ硬化に伴って最大応力に 達し,それ以降ではひずみの増大と ともに応力が減少して,最終的に応 力がほぼ一定となる残留強度に至る, 典型的なひずみ硬化-軟化型である。 また,拘束圧力の増加に伴う最大応 力の増大,及び応力~ひずみ関係の 傾きが急となることもCU-試験 の場合と同様であるが,破壊ひずみ

は CU - 試験 の場合よりも大きく,有効拘束圧力の増加に伴って $\sigma_c^2 = 1.0 \text{ kg/cni}$ における 1.35% から $\sigma_c^2 = 25 \text{ kg/cni}$ における 1.75% まで徐々に増加する傾向にある。破壊の形態は CU - 試験 と 同様,明確な単一のすべり面を形成し,その角度もほぼ一致したものであった。一方,体積変化と 軸ひずみの関係に注目すると,実験の拘束圧力の大きさのいかんにかかわらず,破壊直前あるいは 破壊までは軸ひずみの増大とともに体積圧縮を示し,その後は拘束圧力の大きさによって 異なるが,拘束圧力 15 kg/cni 以内では体積膨張を,拘束圧力 20 kg/cni 以上では破壊後の ある軸ひずみ増分に対して,さらに体積圧縮が維持され,その後に体積膨張が生じている。 その様子をさらに詳しく示すために,拘束圧力 15,20,25 kg/cni における最大応力付近の 主応力差と体積変化の対応関係を拡大したのが図-3.13である。明らかなように,拘束圧力

15 kg/cdiにおいては最大応力と同時に体積 変化が体積圧縮から体積膨張に移行してい るが、拘束圧力 20 kg/cdi及び 25 kg/cdiに おいては最大応力に達した後も体積圧縮が 継続している。特に、拘束圧力 25 kg/cdiに おいては、最大応力後、軸ひずみがさらに 0.4%も増大して、初めて体積変化が体積 圧縮から体積膨張に移行している。

上述のCU-試験における間隙水圧挙動 とD-試験における体積変化を比較する と,間隙水圧はダイレイタンシーに依存す るものであるから,両試験における挙動は

図 - 3.13 最大応力付近の応力~体積ひずみ 関係の拡大図

何ら相反する現象ではない。また、破壊時に注目すると、間隙水圧の減少または体積膨張の場合、 及び間隙水圧の増加または体積圧縮の場合が存在するが、これらの差異は、次項で図-3.15 に 示すように、CU- 試験 の間隙水圧増加と D-試験 の体積圧縮の場合の破壊時の応力状態がほ ぼ一致していることから、破壊時の有効応力レベルに支配されるといえよう。ところが、これらの 挙動はHenkel¹¹⁾によって実験的に明らかにされた過圧密粘土の挙動とは異なったものである。い ま、泥岩を著しく過圧密された粘土とみなせば、泥岩と通常の過圧密粘土との違いは過圧密効果の 度合の差の他に、続成作用による粒子間結合力の差にあると考えられる。そこで、写真-3.2に示 した泥岩構成粒子の結合状態に基づいて泥岩のせん断に伴う体積変化、すなわちダイレイタンシー 特性について検討しよう。先に推察したように、泥岩の骨格構造は微細な板状粒子の凝集からなる シルト径大のペッドと非粘土鉱物で形成され、しかも骨格には続成作用による結合力が発達してい る。この結合力はせん断応力に抵抗し、ペッドが単体として挙動することを拘束するので、破壊に 至る過程で体積膨張が抑制される。さらに、せん断応力が増大するとペッド間の結合力は破壊され、 骨格はペッドあるいはいくつかのペッドの集合体に分離するが、すべり面は1つしか形成されてい ないので、このような領域はすべり面付近に限定されていると考えられる。従って、破壊時の拘束 圧力が小さい場合、ペッドあるいはその集合体は単体として挙動し、 せん断ひずみの増大に伴ってこ れらの再配列が終了するまでは、体積膨張あるいは間隙水圧の減少が生ずる。一方、拘束圧力が大

きい場合は、さらにペッドそのものが破壊され、すべり面に沿う破壊領域は一時的に密な状態に移 行するため、体積圧縮の持続あるいは間隙水圧の上昇がもたらされ、しかる後にひずみの増大に伴 う粘土粒子の再配列が生ずるものと推察される。以上の検討は推測の域を出るものではないが、と もあれ、破壊時の拘束圧力が大きい場合に間隙水圧が破壊と同時に上昇する現象はこの種の泥岩に 認められる実験事実であるように思われる。

なお、破壊までの間隙水圧の挙動と変形特性については次章で詳しく論じられる。

図-3.14は, 練返し正規圧密粘土の応力とひずみ, 及び発生間隙水圧とひずみの関係を示したものである。 実験結果はいくらか乱れを伴っているが,一般的な正 規圧密粘土と同じ挙動を示している。

(2) 強度と有効応力の関係

図-3.15はCU-試験における有効応力径路の代 表例を示したものである。図中には併せて D-試験 での圧密圧力15 kg/cml以上の有効応力径路も破線で 示されている。CU-試験における c'=32 kg/cml 以下での有効応力径路は、過圧密状態にある粘土と類 似の径路を示しながら最大応力に達し、その後せん断 応力の減少と間隙水圧の減少を伴って残留応力状態へ 向っている(ただし、CU-試験では残留応力状態 を決定するだけのひずみを与えていない)。一方、32 kg/cmlより大きな圧密圧力における応力径路は最大応 力に達すると、図-3.11に示したような破壊に伴 った間隙水圧の増加が応力径路を破壊包絡線に沿って 移動させ、その後にせん断応力の減少に伴って残留応 力状態に向う。ところで、最近の実験的研究^{5,6)}によ

ると、低圧から数百 kg/cdi にまたがる拘 束圧力下での泥質岩のせん断特性は現象 的には過圧密粘土と類似したもので、拘 束圧力の増加に伴って過圧密状態にある 挙動から正規圧密状態にある挙動へと移 行することが明らかにされている。図の 有効応力径路に注目すると、その径路は 過圧密粘土の過圧密領域における径路と 類似したものとなっている。従って、正 規圧密状態に類似した径路を明らかにす るためには、さらに大きな圧密圧力のも とでの実験が必要となるであろう。

図-3.14 練返し正規圧密粘土の応 カ〜間隊水圧〜軸ひずみ 関係

図-3.16はCU-試験とD-試験 の結果を比較するために破壊時の有効応 力状態を $\frac{1}{2}(\sigma_1 - \sigma_3) \sim \frac{1}{2}(\sigma_1' + \sigma_3')$ 関 係で示したものである。図より,両試験 とも破壊包絡線は過圧密粘土と同様に非 線形関係にあることが明らかであるが, 破壊時の有効応力レベルが増大すると, 両試験には差が生じ,D-試験の応力 状態はCU-試験よりも低い応力状態 に位置している。D-試験ではせん断 中に排水を伴う体積圧縮が生じ,かつ有 効応力も増大するから,同一圧密圧力にお

けるせん断強度は CU- 試験 よりも D- 試験 において大きくなる。しかし,破壊時の有効応力状 態がほぼ同一である場合の両試験を比較すると,D-試験 ではせん断中の排水に伴い泥岩を構成 しているペッド間の結合力は徐々に崩壊すると考えられ,従ってD-試験 の応力状態は,間隙水 圧が増加するCU-試験の場合よりも減少したものとなる。また,破壊時の有効応力レベルが増大し た場合,先に推論したように,ペッドあるいはペッドの集合体そのものが破壊すると考えられ,こ の現象は高圧下での排水せん断による砂の粒子破砕¹²⁾と類似の挙動にあり,このことが過圧密効 果の他に,破壊包絡線が非線形となる一要因となっている。このように,破壊時付近でペッドある いはそれらの集合体が砂と同様単体として挙動することからダイレイタンシーが生ずると考えられ るので,D-試験 の結果にTaylor – Bishopのエネルギー補正を行うと,補正後のせん断強度は

$$(\sigma_1 - \sigma_3) = (\sigma_1 - \sigma_3)_r + \sigma_3 \frac{d\left(\frac{dV}{V}\right)}{d\epsilon}$$
(3.3)

ここに、 $(\sigma_1 - \sigma_3)$: 三軸試験で測定される主応力差、 $(\sigma_1 - \sigma_3)_r$: せん断のみに消費される主応力差、 σ_3' : 拘束圧力、d(AV/V): 体積ひずみの増分、 $d\varepsilon$: 軸ひずみの増分、で求められる¹³⁾。エネルギー 補正を行った破壊時の有効応力状態も図-3.16に示してある。その結果はCU-試験の結果とほぼ一致 していることがわかる。なお、Chandler¹⁴⁾ は Keuper marl についてCU-試験とD-試験を行 ったところ、破壊時の応力状態に差が生ずるが、D-試験にTaylor-Bishopのエネルギー補正を 行うと、D-試験とCU-試験の結果は一致することを報告している。また、Keuper marl の骨 格構造は、電子顕微鏡による研究¹⁵⁾に基づくと、写真-3.2に示した島尻層泥岩と類似のペッドを 形成していることが明らかにされている。

以上のことから、CU-試験の結果に基づいて有効応力による破壊包絡線を示すと図-3.17の ようになる。包絡線は上方に凸な曲線で示され、低圧部から高圧部にまたがってその曲線は急な勾 配からゆるやかな勾配へと変化している。有効応力による強度定数は、低有効垂直応力領域におけ る $c' = 4 \text{ kg/cd}, \phi' = 55^\circ \text{ から}, \sigma' = 50 \text{ kg/cd} 付 近の接線として求められる <math>c' = 19 \text{ kg/cd}, \phi'$ = 16°へと応力レベルの大きさに応じて変化する。従って、実験の圧密圧力の範囲内では Mohr の 破壊規準が適用される。 図 - 3.18 は練返し正規圧密粘土の 有効応力径路を示したものである。実 験上の乱れがあるが,正規圧密粘土に おける典型的な応力径路を示し,その 強度定数は c'=0, ø'=23°である。

(3) 間隙水圧の挙動における特性
 Skempton¹⁶⁾は,土要素に外力を
 加えたときの間隙水圧を間隙圧係数B,
 Aを用いて次式で表わしている。

 $Au = B \{ A \sigma_3 + A (A \sigma_1 - A \sigma_3) \}$ (3.4) B は土の飽和度で決まるものであるが, A は土の応力履歴や土の種類によって 変化し,さらに一つのせん断過程でも せん断ひずみによって変化する。完全 飽和の土では B = 1となり,側圧一定 の軸対称三軸圧縮試験では A は次式で 決定できる。

 $A = \Delta u / \Delta (\sigma_1 - \sigma_3)$ (3.5) 破壊時の間隙圧係数は A_f で表わされ, 粘土に対する平均的な値が表 - 3.2 に 示されている¹⁶⁾。

過圧密粘土においては,間隙圧係数 Af は過圧密比に関係づけられ,過圧密比の減 少につれて Af は正規圧密状態の値まで増 加することが知られている。ところが,実 験供試体の泥岩の先行圧密荷重は決定され ていない。そこで,圧密圧力とAf の関係

で示すと図 – 3.19のようになる。 これによると, 圧密 圧力の増加に従って, A_f は σ_c^2 = 5 kg/cmi における 0.15 から σ_c^2 = 59.2 kg/cmi における 0.49 まで増加して いる。この傾向は過圧密粘土の傾向と一致し, 圧密圧 力の増加とともに徐々に正規圧密状態に移行すること を示唆している。しかし, 低圧密圧力の領域において も A_f は正の値にあり, この泥岩を著しく過圧密され た粘土とみなしたとき, Skemptonによって示された 表 – 3.2 の値とは異なったものとなっている。この現 象は, 泥岩の粒子間結合力がせん断過程でダイレイタ

図-3.18 練返し正規圧密粘土の有効応力径路

表-3.2 Skemptonの間隙圧係数

粘土の種類	A_f
正規圧密粘土	$0.5 \sim 1.0$
わずかに過圧密された粘土	$0 \sim 0.5$
著しく過圧密された粘土	$-0.5 \sim 0$

- 61 -

ンシーを拘束することによってもたらされるものと考えられ, Af < 0 の 現象は期待できないこ と になる。

次に, 圧密圧力の増大に伴ってAf が増加することは上述したところであるが, さらに圧密圧力が増加することによって正規圧密状態に移行した場合のAf を予測してみよう。図-3.20は, 一連の CU- 試験 における破壊時の間隙水圧 d u と最大主応力差 $(\sigma_1 - \sigma_3)f$ の関係を圧密圧力に関係なく示したものである。また, 図には間隙水圧 d u と応力比 $(\sigma_1 - \sigma_3)f / \sigma_{inf}$ の関係も同時に示されている。ここに, $\sigma_{inf} = (\sigma_1 + 2\sigma_3)/3$ は平均主応力である。いま, d u $\geq (\sigma_1 - \sigma_3)f$ の関係に注目すると, それらの間には直線関係が認められ, その勾配はおよそ0.70 である。なお, 破壊

時の間隙圧係数 $A_f = 4u/(\sigma_1 - \sigma_3)f$ は、図では原点を通る直線の勾配と して定義される。そこで、正規圧密 状態に移行した場合の A_f は圧密 圧 力の大きさのいかんにかかわらず一 定値にあると仮定すると、それは図 中の破線で示される原点を通る直線 上にあって、この直線は実測値であ る $4u \ge (\sigma_1 - \sigma_3)f$ の直線関係の延 長と交わることになる。従って、正 規圧密領域での A_f は0.70よりも小さ な値となる。一方、間隙水圧 $4u \ge c$ 応 力比 $(\sigma_1 - \sigma_3)f/\sigma_{mf}$ の間にも直線

図-3.20 最大応力及び応力比と間隙水圧の関係 $\sigma'_m = (\sigma_1' + 2\sigma_3')/3$

関係が認められ、**4** の増加に伴って応力比は減少する傾向にある。このように、実験の圧密圧力 の範囲内では応力比が一定値にないことは、図-3.17 に示したように、破壊包絡線が線型でなく、 非線型の関係にあり、破壊規準としてMohrの規準が適用されることを意味している。しかし、一 般的には土の破壊包絡線は直線とみなされ、破壊規準としてMohr – Coulombの規準,式(3.6)

$$\left(\frac{\sigma_1 - \sigma_3}{2}\right)_f = \frac{c' \cos \phi' + \sigma_3' \sin \phi'}{1 - \sin \phi'}$$
(3.6)

が適応される。従って,正規圧密領域に移行したとき,Mohr-Coulombの破壊規準が成立し, かつ c'=0とすれば,式(3.6)は

$$\left(\frac{\sigma_1 - \sigma_3}{2}\right)_f = \frac{\sin \phi'}{1 - \sin \phi'} \sigma_3'$$

となり、これから正規圧密領域での応力比は

$$\frac{(\sigma_1 - \sigma_3)f}{\sigma'_{mf}} = \frac{6\sin\phi^*}{3 - \sin\phi^*} \tag{3.7}$$

となり、 ϕ 'に関する定数となる。 ϕ 'の値は、次項の図 – 3.21 に示すように残留時の値が23°~25°、 また先に示した練返し正規圧密粘土においては ϕ ' = 23°であるから、これらの値から ϕ ' = 23°とす れば応力比は $(\sigma_1 - \sigma_3)f/\sigma_{mf}^{\prime} = 0.90$ となる。すなわち、 Δu の増加に伴って応力比が 0.90 まで 減少すると、そのときの間隙水圧は $\Delta u = 42 \text{ kg/cnl}$ となることが図からわかる。この付近の値を過 圧密状態から正規圧密状態に移行する境界とみなすと、 $\Delta u \ge (\sigma_1 - \sigma_3)_f$ の関係を延長した線上 の $\Delta u = 42 \text{ kg/cnl}$ の点と原点を通る直線の勾配が正規圧密状態での A_f となる。 従って、図から求 められる値は $A_f = 0.53 \ge cx0$, しかもこの値は表 - 3.2 に示した正規圧密粘土に対する値と一致 している。

(4) 残留強度

D-試験においては、図-3.12に示したように、ひずみ硬化により最大応力に達した後、さら にひずみの増大に伴って応力は低下して、応力がほぼ一定となる残留強度に至るまで供試体に変位を 与えた。供試体は明確な1つのすべり面を形成するので、その角度を測定し、すべり面上のせん断 応力τと垂直応力σ'の関係を最大応力と残留強度に対し示したのが図-3.21 である。最大応力の

包絡線は先に述べたように非線 形となるが,残留強度の包絡線 は線形関係となり,Coulombの 破壊規準が適用できる。その残 留強度に対応する強度定数はc'= $1.2 \text{ kg/cm}, \phi' = 23°である。$ この残留強度,すなわちひずみ軟化によってせん断応力と体積(含水比)が一定となる状態はCambrige学派によるcriticalstateに相当するものである。このcritical state は粘土を排水せん断した場合,正規圧密

粘土に対してはひずみ硬化により体積圧縮を伴って体積と応力が一定となるときのせん断強度として、 また過圧密粘土に対してはひずみ軟化によって体積膨張を伴い含水比が増加して、強度が完全軟化 し、かつ体積が一定となるときのせん断強度として定義され、実際の過圧密粘土においてはその強 度を決定することが困難であるが、近似的には練返して正規圧密した粘土におけるせん断強度とし て求められるといわれている¹⁷⁾。

ところで、三軸圧縮試験においては供試体に与え得るひずみはせいぜい十数%が限度であるにも かかわらず、critical state はそのひずみ内で達成され、そのときの粒子配列はランダム構造に あるようである。しかし、繰返し一面せん断試験¹⁸⁾あるいはリングせん断試験¹⁹⁾では最大応力に 達した後さらに大変位を与えることが可能で、しかもせん断領域はすべり面に沿った薄層に限定さ れるものであるからせん断ひずみはとてつもなく大きなものとなり、板状の粘土粒子はすべり面に 沿って完全平行配列となり、その結果せん断応力はcritical state よりもさらに減少する。従 って、このような大変位を受けた極限の残留強度は本章で実験的に求められた残留強度、すなわち critical stateとは区別され、実際的な適用においても前者は土塊が大変位を受けた状態に、後 者は土塊が最初に破壊される場合にそれぞれ適用されるものとして区別される。この適用例はLondon clay を例にとると、いま粘着力成分を無視すると、強度定数はcritical state に対し ϕ ' = 20°、極限の残留強度に対し ϕ ' = 13° であり、切土斜面の安定解析では、critical state のパ ラメータは切取りによって初めてすべりが発生する(first-time slides)場合に、また極限の残留 強度パラメータは過去に大変位を生じて、すでにすべり面が形成されている斜面に切取りを行う場合 に、それぞれ適用されることが明らかにされている²⁰⁾。

一般に、過圧密粘土における critical state あるいは極限の残留強度に対する粘着力成分 c'あ るいは c; は近似的に無視されるが、本実験の泥岩では図一3.21 に示すように c' = 1.2 kg/cm の値が 得られている。その理由として、三軸圧縮試験では粒子の再配列を生ぜしめるに十分な変位を与え ることができないことと、先に推察したように泥岩のすべり面に沿うせん断領域ではシルト径大の ペッドあるいはそれらのいくつかの集合体がかみ合せの挙動をすることが挙げられるであろう。す なわち、低拘束圧力ではシルト径大のペッドが単体として挙動し、それらのかみ合せにより摩擦力 成分は増大するが、拘束圧力の増大に伴ってペッドそのものが板状の粘土粒子に破砕され、粘土粒 子の再配列が進行して摩擦力成分は減少する。従って、図一3.21 の破線で示すように c' = 0 と仮 定すれば、各拘束圧力に対する d'は拘束圧力の増加に伴って徐々に減少し、拘束圧力が15 kg/cm 以 上になると d' = 25° の一定値となる。しかも、この拘束圧力15 kg/cm 以上でのせん断強度パラメー タ c' = 0、 d' = 25° は図 - 3.18 に示した練返し正規圧密粘土のパラメータ c' = 0、 d' = 23° に近 似した値で、critical state にあるものと考えられる。

以上の推察に基づくと、泥岩の critical state は粒子間結合力の影響を受けて非線形となり、 実験的には低拘束圧力領域における c'= 1.2 kg / cml, ϕ' = 23° と、拘束圧力が増大した領域での c' = 0、 ϕ' = 25° で与えられる。

Bishop²¹⁾は過圧密粘土に対する進行性破壊に関連させてぜい性度指数 I_B を次式で提案している。

$$I_B = \frac{\tau_f - \tau_r}{\tau_f} \tag{3.8}$$

ここに、 $r_f:最大せん断応力、<math>r_r: 残留強度。 この式は、過圧密粘土の応力~ひずみ関係がぜい$ 性挙動を示し、そのひずみ軟化が進行性破壊の一要因であることを意味するものであるが、いまひ $ずみ軟化の量的把握として式(3.8)の<math>r_r$ の代りに、本実験では critical state に対して I_B を 求める。図 – 3.22 は拘束圧力(圧密圧力)と I_B の関係を示したものである。

 I_B は拘束圧力1 kg/cm における 0.8 から25kg /cm における 0.4 まで減少し,拘束圧力の影響を 受けている。このことは,拘束圧力の増加に従っ て応力~ひずみ関係がぜい性挙動からductile な 挙動へと移行することを意味し,図-3.21 の最大 応力と残留強度の包絡線はさらに大きな拘束圧力 のもとで互に接近することが推定できる。すなわ ち,ぜい性度指数 $I_B = 0$ となり,残留強度はひず み硬化によって達成され,最大応力と残留強度は 一致し,それらの包絡線は正規圧密状態における

図-3.22 側圧とぜい性度指数

- 64 -
ものと同一のものとなるであろう。次に、これらに関してCU - 試験 における圧密圧力と非排水 強度の関係から検討しよう。

(5) 圧密圧力と非排水強度の関係

図-3.23(a),(b)はCU-試験による圧密圧力と非排水強度の関係,および圧密圧力と破壊時の間隙圧係数 Af の関係をそれぞれ示したものである。図から明らかなように,圧密圧力の増加とともに非排水強度は増大しており,その傾向は過圧密粘土と類似したものである。また,破壊時の間隙圧係数 Af も同様に圧密圧力の増加にともなって増大し,低圧密圧力でも正の値にあることを除けば,やはり過圧密粘土と類似の傾向にある。

周知のように、Skempton は正 規圧密状態にある自然堆積粘土に対 する不撹乱試料の非排水せん断試験 及び原位置ベーンせん断試験に基づ いて、非排水強度 cu と有効土かぶ り圧力 p の比 cu/p を塑性指数 PI と関連づけて次式を提案している。

 $c_u / p = 0.11 + 0.0037$ (PI) (3.9) ここに, $c_u = (\sigma_1 - \sigma_3)f/2$, p: 圧密 圧力。

また, Bishop ら²²⁾は London clay の未風化不撹乱試料に対し低 圧から高圧にまたがる圧密圧力での CU-試験 を行い、過圧密領域か

ら正規圧密領域にまたがる非排水強度と圧密圧力の関係を求め、正規圧密領域における c_u/p は Skempton の提案式(3.9)から求めた値と一致することを報告している。そこで、実験供試体 に対しても式(3.9)から c_u/p を求めると、表 - 3.1より PI = 41 % であるから c_u/p = 0.26 となり、この関係も図(a)に破線で示されている。いま、圧密圧力 o'_c = 60 kg/cm までの c_u と p の 関係を外挿して c_u/p = 0.26 関係との交点を求めると、p = 160 kg/cm となる。この c_u = 42 kg/ cm の値は図 - 3.20 において間隙水圧を媒介として応力比 ($\sigma_1 - \sigma_3$)f / $\sigma'_m f$ が一定となる点、すな わち過圧密状態から正規圧密状態へ移行するところの最大主応力差 ($\sigma_1 - \sigma_3$)f とほぼ一致してい る。従って、圧密圧力の増加に伴って過圧密状態から正規圧密状態へ移行するのに必要な圧密圧力 はおよそ p = 160 kg/cm であることが推定できる。また、このことは、図 - 3.20 で同時に推算し た正規圧密状態における破壊時の間隙圧係数が A_f = 0.53 となることの妥当性を示唆するもので、 A_f は圧密圧力 p = 59.2 kg/cm における 0.49 から、圧密圧力の増加に伴って p = 160 kg/cm にお ける 0.53 までわずかに増大し、それ以後一定値にあるものと推察される。

一方, 図-3.24 は, スラリー状から正規圧密した粘土に対する圧密圧力15kg/cm までの非排水 強度と圧密圧力の関係, および間隙圧係数と圧密圧力の関係を示したものである。図から, この正 規圧密粘土に対する cu/p の値は 0.31 となり, PI = 50.9 %として式 (3.9)から求まる cu/p = 0.30 とほぼ一致する。また,間隙圧係数 A_f は圧密圧力 7 kg / cm 以内ではおよそ 0.8 の値 にあるが, 圧密圧力10 kg / cm 以上においては $A_f > 1$ となっている。周圧による圧密が完 了していないとき,供試体内に残留圧密間隙 水圧が存在するので,その状態で非排水せん 断を行うと,せん断に伴う発生間隙水圧に残 留圧密間隙水圧が追加され,その結果 A_f は 1 よりも大きな値になるといわれている²³)。 圧密圧力10 kg / cm および15 kg / cm の場合,24 時間以内で圧密を打切り,非排水せん断を行 ったが, この圧密時間では間隙水圧が十分に 消散していなかったために A > 1の結果がも たらされたものと考えられる。なお,不撹乱 泥岩に対する推定値 c_{44} / かおよび A_f は練返

国 3.24 線図し正況圧留相上に対する圧留 圧力と非排水強度ならびに間隙圧 係数の関係

し正規圧密粘土における値と異なるものであるが、この両者における差異は自然堆積試料と実験室 で作成した試料の骨格構造の差異に影響されたものと考えられる。

図-3.1 に示した泥質岩のせん断挙動に関する概念図は以上の実験結果に基づいて検討したもの であるが、現象的にはこれらの挙動は通常の過圧密粘土と類似の傾向にあり、その差は外力として の応力レベルの大きさだけであり、本章における実験結果だけではせん断強度及びその変形挙動を 過去の応力履歴(過圧密効果)による成分と、続成作用によってもたらされた結合力の効果による 成分とに分離することができず、結合力の影響の存在を不明確にしている。とはいえ、実験供試体 に用いた島尻層泥岩が単に過圧密効果だけの影響を受けたものであると仮定すれば、単位体積重量 $\tau_t = 2.1 t / m^2$ として地下水の存在を考慮すると、過圧密状態から正規圧密状態に移行する圧密圧 力 $p = 160 kg/cm^2 it 1450 m の土かぶり厚さに相当するものである。しかし、このことを立証でき$ る島尻層に関する地質学の記録は見当らないようである。

この種の泥質岩の圧密試験においては、過圧密状態から正規圧密状態へ移行する荷重は、泥質岩 の変形に対する抵抗性に付与している応力履歴と続成作用による結合力の両効果が消失する荷重、 すなわち降伏荷重と見なすべきもので、その結果からは過去の土かぶり厚さの推定が不可能である ことはBjerrum⁴⁾が指摘するところである。また、前章における2.2.3(1)の図 - 2.7 に示した不 撹乱泥岩と練返し正規圧密粘土の圧密試験の比較、同様に前章における2.2.3(5)の図 - 2.21 及び 図 - 2.22 に示すように、不撹乱泥岩と練返して結合力を除去した供試体(不撹乱泥岩と同一の含 水比及び単位体積重量)の圧縮強度と変形特性の比較、さらには本章における不撹乱泥岩のせん断 試験結果に関する検討からも明らかなように、単に過圧密効果の影響だけでなく、続成作用によっ てもたらされた結合力が泥岩の強度及び変形挙動に影響を及ぼしていることは定性的に実験事実と 見なすことかできるであろう。 (6) 地盤内初応力の推定

一般に、過圧密粘土地盤および岩盤における応力状態は、水平方向の有効垂直応力 σ_3' が鉛直方 向の有効垂直応力 σ_1' より大きいこと、すなわち静止土圧係数 $K_0 = \sigma_3'/\sigma_1'$ が1より大きいことが 知られている。地盤の掘削に伴う応力解放の程度は地盤の初応力に支配されるといわれ、またBjerrum⁴⁾は、図-1.1(b)に示すように、過圧密粘土あるいは泥質岩における $K_0 > 1$ の状態が進行 性破壊の要因となることを指摘している。Skempton²⁴⁾は London clay を対象として室内試験 に基づいた K_0 の推定法を提案し、 $K_0 = 2.5$ の値を求めている。Bishopら²²⁾はSkempton の方 法に従って求めた地盤内側方有効応力と受働土圧の関係を検討している。また、Windleら²⁵⁾は原 位置で地盤の側方応力を測定できる機器の開発を行い、 $K_0 > 1$ の状態を確認している。

ここでは、実験試料である島尻層泥岩の K_0 をSkemptonの方法²⁴⁾に基づいて推定する。

地盤が水平なとき,地表面より深さzにある土要素に作用する鉛直方向応力 og 及び水平方向応力 of は主応力であるとする。それぞれの有効応力は

 $\sigma_v = \sigma_v - u_0 = p$

 $\sigma_h = \sigma_h - u_0 = K_0 p$

ここに、u₀:地盤内の間隙水圧、p:有効土かぶり圧、K₀:静止土圧係数。

地盤より試料を取り出した場合,全応力で考えると拘束圧は存在しないことになるから,試料に 作用する全応力は0となるが,試料は膨張しようとするため負の間隙水圧 uが発生する。従って, 試料の有効応力 pb は

$$\boldsymbol{p}_{\boldsymbol{k}} = \boldsymbol{0} - \boldsymbol{u} \tag{3.10}$$

となり、この *b_k* はサクション u に等しい。また、このサクション u は初期の間隙水圧 u₀ と除荷に 伴う間隙水圧変化 *du* の和である。除荷に伴う主応力変化は

$$\begin{cases} \Delta \sigma_1 = -\sigma_p = -(p + u_0) \\ \Delta \sigma_3 = -\sigma_h = -(K_0 p + u_0) \end{cases}$$
 (3.11)

除荷に伴う間隙水圧変化 4 4 を Skempton の間隙圧式で表示すると, 飽和土に対しB=1であるから

$$\Delta u = \frac{1}{3} \left(\Delta \sigma_1 + 2 \Delta \sigma_3 \right) + \left(A - \frac{1}{3} \right) \left| \Delta \sigma_1 - \Delta \sigma_3 \right|$$
(3.12)

右辺第1項は平均主応力による間隙水圧,第2項は主応力差による間隙水圧であることに注意して, $K_0 > 1$ の場合 $\Delta \sigma_3$ が最大主応力となるから, $|\Delta \sigma_1 - \Delta \sigma_3| = \sigma_h - \sigma_v$,また膨張過程の間隙圧係 数をAsとすれば,

 $u = u_0 + \Delta u = u_0 + \frac{1}{3} (\Delta \sigma_v + 2 \Delta \sigma_h) + (A_s - \frac{1}{3}) (\Delta \sigma_h - \Delta \sigma_v) \quad (3.12 - a)$ この式に式 (3.11)を代入し,式 (3.10)を適用すると

 $p_{k} = p \{ K_{0} - A_{s} (K_{0} - 1) \}$ (3.13)

従って,
$$K_0 = \frac{p_k/p - A_s}{1 - A_s}$$
 (3.14)

となり、 p_k と A_s が定まれば、 K_0 が推定できる。

Skempton は、 p_k の決定法として(1)三軸試験の圧密過程における体積変化の測定、(2)膨潤圧の 測定、(3)サクションの測定、(4)圧密非排水型三軸試験結果の利用、を提案し、一方 A_s は三軸試験 で供試体を $\sigma_1 < \sigma_2 = \sigma_3$ の条件で圧密した後に等方圧力をある量減少させる方法で決定して、London clay に対し $A_s = 0.3$ の値を求めている。

ところで、実験試料は、初期の状態でサクションが存在することを図-3.10に示したが、ここではSkemptonの方法にならって三軸試験の圧密過程での体積変化から *pk* を求める。 初期にサクションが存在するとき、圧密圧力が小さければ吸水現象を、圧密圧力が大きければ圧密現象を示すから、圧密段階での含水比変化を各圧密圧力に対し示すと図-3.25 となる。 含水比変化を生じない圧密圧力がサクションに等しいと仮定すれば、図か

ら近似的に $p_k = 5 \text{ kg}/\text{cm}$ が求まる。

一方,第1章,図-1.1 に示したように,泥質岩に おいては結合力が回復ひずみを拘束するので,除荷に 伴う側方応力は通常の過圧密粘土より小さい。このこ とは,外力の作用に対し弾性挙動が卓越することを示 唆している。いま,弾性領域において載荷一除荷を繰 返したとき,外力と体積変化の関係におけるヒステリ シスがわずかであると仮定すれば,体積変化に支配さ れる間隙圧係数は載荷一除荷過程で近似的に等しくな るから, A_s は載荷過程のAで近似できるであろう。 しかし,実験試料に対して条件 $\sigma_1 < \sigma_2 = \sigma_3$ なる伸張 試験は行っていない。本章では,後に示すように,強

図-3.25 圧密圧力による含水比変化

度異方性を明らかにするために鉛直方向供試体のみならず、水平方向供試体についても側圧を一定 に保った軸対称三軸圧縮試験を行った結果を述べている。その結果に基づいて次章で弾性挙動につ いて検討し、弾性領域での間隙圧係数は鉛直供試体に対し $A_{\nu} = 0.43$ 、水平供試体に対し $A_{H} = 0.25$ となることが明らかにされている。水平供試体における試験条件は、その主応力を原地盤の主応力 と対応させると、 $\Delta \sigma_{1} = \Delta \sigma_{h}$ 、 $\Delta \sigma_{2} = \Delta \sigma_{h} = 0$, $\Delta \sigma_{3} = \Delta \sigma_{v} = 0$ となり、鉛直供試体に対する伸張 試験の条件と一致しないが、ここでは $A_{H} = 0.25$ で A_{s} の値を仮定する。

いま, 試料の土かぶり厚さをz = 20 m, 単位体積重量を $r_t = 2.03 \text{ t/m}$, また, 地下水位は地表面に一致すると仮定してp = 2.06 kg/cn, $A_s = 0.25$, $p_k = 5 \text{ kg/cn}$ を式 (3.14) に代入すると $K_0 = 2.9 \text{ が求まる}$ 。

London clay の K_0 は, Skempton によると, z = 6 mにおける $K_0 = 2.8$ からz = 33 m にお ける $K_0 = 1.46$, また Bisopらによると, z = 9 m における $K_0 = 3.4$ からz = 41 m における $K_0 = 2.0$ のよう に, 深さともに変化することが明らかである。さらに Bishop らはこの K_0 を用いて深さごとに推定した 側 方有効応力 $K_0 p$ と三軸試験結果による破壊時の受働土任 σ_1' (水平方向が最大主応力となるから $\sigma_1' = K_p \sigma_3'$, K_p : 受働土圧係数)の比較を行っている。それによると、新鮮な供試体 (intact sample)で求めた受 働土圧 σ_1' は推定 $K_0 p$ より大きな値にあるが、地表近くに位置している供試体では応力解放に伴ったひび 割れ (fissure)が形成されているので、それらの供試体の σ_1' は $K_0 p$ よりわずかに小さな 値 に あ り、また新鮮な供試体及びひび割れを伴った供試体の受働土圧 σ_1' あるいは推定 $K_0 p$ は残留強度に 対して求めた受働土圧 (このLondon clay では c' = 0, $\phi_{r'} = 15^\circ$)より大きな値にあることから、 地盤が水平であれば London clay の長期せん断抵抗力は残留強度よりも大きなものと予測している。 このような側方応力の変化に関する例から推察すると、過圧密粘土では過圧密比が増大すると(地 表面に近づくと)、静止土圧係数 K₀の値は受働土圧係数K_pの値に増加し、粘土における応力状態 は受働破壊の状態に接近することが予想される。

(7) 圧縮強度と変形係数の関係

地盤を弾性体とみなし、その変形性状を推 定するためにヤング率の代わりに変形係数 E_{50} を求めることがある。この E_{50} は圧縮強度と 関係づけられ、また E_{50} と一軸圧縮強度の関 係はほぼ 100:1の関係にあることが認めら れ、しかもこの比は竹中によって沖積粘土な らびに洪積粘土に対して求められた $E = 105 q_u$ $(q_u: - 軸圧縮強度)とほぼ - 致したものである。$

本章におけるCU-試験及びD-試験での 応力~ひずみ関係は図-3.11及び図-3.12 に示したように圧密圧力によって変化してい る。いま、これらの応力~ひずみ関係から E50 を求め、これらと最大主応力差 $(\sigma_1 - \sigma_3)_{max}$ の関係を両対数表示すると図-3.26のよう になる。 $(\sigma_1 - \sigma_3)_{\text{max}}$ の増加とともに E₅₀は 増大し、図上ではそれぞれの試験結果に直線 関係が認められる。圧密圧力の増加に伴って $(\sigma_1 - \sigma_3)_{\text{max}}$ は増大するから、 E_{50} は圧密圧 力の影響を受けることになる。そこで、同様 に圧密圧力と E50の関係を両対数紙上にプロ ットすると図-3.27 のようになる。図から 明らかなように, E₅₀は圧密圧力の影響を受 けているが、 圧密圧力の影響は D-試験にお けるよりもCU-試験で著しく、しかも同一 田密圧力に対する E₅₀はCU-試験とD-試験 では異なった値にある。

 $CU - 試験における E_{50} \geq (\sigma_1 - \sigma_3)_{max} O$

比は圧密圧力の影響を受けて一定とならず、その比は圧密圧力の増加に従って増大している。そこで圧密圧力60kg/cmの範囲における E_{50} と($\sigma_1 - \sigma_3$)maxの関係にべき関数を仮定して、最小二乗法により両者の関係を求めると次式となる。

 $E_{50} = 10.8 \ (\sigma_1 - \sigma_3)_{\max}^{1.635} \qquad (\text{kg / cm}^2) \tag{3.15}$

一方, D-試験における E_{50} と($\sigma_1-\sigma_3$)maxの関係は,その比が70:1 である線上に分布している。従って,その比は圧密圧力の大きさに関係なくほぼ一定値を示すことがわかる。

なお、CU-試験及びD-試験におけるヤング率の差異については次章に詳しく述べる。

3.4.4 むすび

本節においては,弱固結粘土岩とみなせる島尻層泥岩を試料に選び,圧密圧力60kg/cmiまでの圧密非排水せん断試験及び圧密圧力25kg/cmiまでの圧密排水せん断試験を行い,それらの実験結果に泥質岩に対する地質履歴の効果を加味して,そのせん断特性を検討した。それらを要約すると次のようである。

(1) 島尻層泥岩は, 微細な板状の粘土粒子が凝集してシルト径大のペッドを形成し, これらの集合体から構成されている。しかも, ペッドを構成する粘土粒子はもとよりペッドも互に, 続成作用によってもたらされた結合力で拘束されていると推察される。

(2) 供試体の間隙圧係数Bは1で飽和しているが,平均2.3 kg / cm のサクションが存在する。しかし, このサクションは圧密段階で吸水作用により消滅する。

(3) この泥岩の応力~ひずみ関係は、ひずみの増加にしたがって初期の弾性挙動からひずみ硬化 を伴う塑性変形に入り、最大応力に達した後ひずみ軟化により応力は減少し、最終的に応力と体 積とがともに変化しない残留応力状態に達する。この残留応力はCambrige 学派の critical state に対応するもので、大変位を与えて達成される極限の残留応力とは区別される。

(4) このような応力~ひずみ関係に対応して、CU-試験における間隙水圧は最大応力まで増加を 続けるが、その後は最大応力時の有効応力の大きさによって異なり、低有効応力においては間隙 水圧の減少を、高有効応力においては一時的に間隙水圧の増加を示す。この間隙水圧の挙動は、 D-試験における最大応力までの体積減少、及び最大応力以後では有効応力レベルの大きさに支配 される体積膨張あるいは体積圧縮と一致するものである。

(5) 従って、せん断に伴うダイレイタンシーは最大応力となるひずみ付近で生じ、しかも明瞭な 単一のすべり面を形成することから、すべり面に沿った薄いせん断領域に限定されるであろう。

(6) 最大応力に対する破壊包絡線は非線形関係となり, Mohrの破壊規準が適用されるか, 残留 強度に対する包絡線は線形となり, Mohr-Coulomb の破壊規準が適用でき, しかもそのとき の内部摩擦角はスラリーから正規圧密した粘土の最大応力に対する有効内部摩擦角 ¢'にほぼ一致 している。

(7) 破壊時の間隙圧係数 A_f は圧密圧力の増加にしたがって 5 kg / cm における 0.15 から60 kg / cm における 0.49 まで増加する。さらに大きな圧密圧力を作用させたとき、せん断試験結果に Mohr – Coulomb の破壊規準が 適用できると仮定すれば、この供試体が取り得る A_f の最大値は 0.53 となることが推算される。

(8) 不撹乱供試体とスラリーから正規圧密した粘土のCUー 試験 から, 非排水強度と圧密圧力 の関係は通常の過圧 密粘土と類似したものであるが, 過圧密状態へ移行するときの圧密圧力は, 応力履歴と続成作用によってもたらされた結合力との効果が消失される降伏荷重とみなすべきで ある。

(9) 地盤における初応力は、水平方向応力が鉛直方向応力より大きく、深度20mにおける静止土 圧係数K₀は 2.9の値にあることが推測された。

(10) 変形係数は圧密圧力の影響を受けるか、その影響の度合はD-試験よりもCU-試験におい て著しい。また、変形係数と最大主応力差の比は、CU-試験では圧密圧力に対し一定とならない が、D-試験では圧密圧力の大きさに関係なく一定となる。

3.5 泥質岩地盤における基礎の支持力推定

ここでは、これまで述べた島尻層泥岩のせん断試験結果を基礎の支持力算定に適用する際の問題 点について2,3の検討を行う。

従来,構造物基礎が固結地盤あるいは岩盤におかれるとき,その支持力に関する検討はさほど問題とならなかった。しかし,近年構造物の大規模化に伴って基礎底面に働く荷重は増大する傾向となり,固結地盤はもとより軟岩地盤においても支持力に関する検討の必要性が生じている。

構造物基礎の設計は変形と破壊,すなわち沈下と極限支持力の両面から検討されなければならな いが、ここでは支持力に注目することとし,沈下に関する問題は弾性変形の立場から次章で若干の 検討を行う。また、これまで示した実験結果は主に鉛直方向の供試体に関するものであって、支持 力算定にあたって異方性を無視して、地盤は等方性と仮定する。

浅い基礎の極限支持力は通常 Terz aghi の支持力公式で求められる。この支持力公式は連続フー チングに対し誘導されたものであるが,経験的な形状係数を導入して有限長の形状をした基礎に対し ても適用できるように,次式として一般化されている。

$$q_{d} = \alpha c N_c + \beta \gamma B N_{\gamma} + \gamma D_f N_a \qquad (3.16)$$

ここに、 q_d : 極限支持力、c:基礎荷重面下にある地盤の粘着力 (t/m^2) 、r:地盤の単位体積 重量 (t/m^2) 、 D_f :基礎の根入れ深さ (m)、B:基礎荷重面の最小幅 (m)、 円形基礎では直径、 N_c 、 N_7 、 N_q : Terzaghi の支持力係数、 α 、 β :基礎の形状係数、円形基礎に対し $\alpha = 1.3$ 、 $\beta = 0.3$ 、正方形基礎に対し $\alpha = 1.3$ 、 $\beta = 0.4$ 。

飽和粘土地盤の場合,非排水条件に対し, c > 0, $\phi = 0$ とすると, $N_{\gamma} = 0$, $N_{q} = 1$ となり, 式 (3.16) は次式となる。

$$q_d = \alpha \ c \ N_c + \gamma D_f \tag{3.17}$$

ここに、基礎底面がなめらかな場合 $N_c = 5.14$,粗な場合 $N_c = 5.7$ 。この非排水条件での支持力は Skempton によっても式 (3.17)と同一の形で提案されているが、支持力係数は基礎の根入れ深 さ D_f と基礎幅Bの比、 D_f/B の増加とともに増大する。円形基礎と正方形基礎の場合、 $D_f = 0$ の ときの $\alpha N_c = 6.2$ から増大し、 $D_f/B = 4$ 以上における $\alpha N_c = 9$ の一定値となる。なお、 αN_c = 6.2 は、基礎底面がなめらかな場合の $N_c = 5.14$ と $\alpha = 1.2$ の積として求められるようである²⁶)。

一方, Terzaghi の杭の支持力公式は式(3.16)あるいは式(3.17)を利用して次式で与えられる。

$$Q_d = Q_p + Q_s = q_p A_p + U D_f f_s$$
 (3.18)

ここに、 Q_d : 杭1本の全支持力、 Q_p : 先端抵抗力、 Q_s : 周辺摩擦抵抗力、 q_p : 杭先端の地盤の 単位面積当りの支持力、 A_p : 先端の面積、U: 杭の周長、 D_f : 根入れ深さ、 f_s : 杭の周面摩擦。 また、 q_p は式(3.16) あるいは式(3.17) から求めればよい。

ところで,強度定数 c, øは一般に室内試験で求められるが,その際解析手法,すなわち短期安 定あるいは長期安定,換言すれば全応力あるいは有効応力解析のいづれに基づくかによりせん断試 験の排水条件が異なる。 短期安定解析では $\phi = 0$ 法が適用されるので,強度定数は非圧密非排水せん断試験で決定される。 ここで対象としている島尻層泥岩の非排水試験結果は前章の図-2.23 に示すように,鉛直方向供 試体に対し $c_u = 11.5$ kg/cm⁴, $\phi_u = 0$ が得られている。従って,支持力は式(3.17)において, cの代りに c_u を用いて求めることができる。しかし,室内試験で求めた強度定数はその地盤を代 表する値とならない場合が多いといわれている。その原因として,サンプリングの方法,異方性の 影響,供試体の寸法,せん断試験の速度などが挙げられるが,特にひび割れや分離面を含む硬質ひ び割れ粘土あるいは泥質岩においては,供試体の寸法が強度定数の評価に著しい影響を及ぼすよう である。三軸試験用供試体の標準的寸法は直径 3.5 cm,高さ 8 cmの円柱形で,しかも試験に当って 弱面を含む供試体は取り除かれる。London clay を例に供試体寸法が強度に及ぼす影響をみると, 標準寸法にある供試体の非排水強度を基準にとると,供試体の寸法が大きくなるにつれて非排水強 度は減少し,London clay で観察される代表的ひび割れの形態を包含しているとみなせる直径30 cm,高さ60 cmの円柱形寸法にある供試体の非排水強度は標準寸法にある供試体の65%に減少すると いわれている²¹。

一方,長期安定解析では排水せん断試験で求められる強度定数 c', ϕ' が式(3.16) に適用され る。ところが,図-3.12に示すように,排水せん断試験における応力~ひずみ関係はひずみ硬化に よって最大応力に達した後,ひずみの増大とともに応力が減少する典型的なひずみ硬化-軟化型で あるから,すべり面に沿ったひずみは一様でなく,進行性破壊が生ずるであろう。また,ひび割れ や弱面などの分離面が存在する場合,そのせん断強度は分離面のせん断強さに支配される。しかも, その分離面のせん断強度は完全軟弱化状態あるいは critical stateにほぼ等しいといわれている²²⁾。 従って,図-3.21に示すように,最大応力に基づいた破壊包絡線ではなく,残留強度 (critical stateに対応)に基づいた強度定数 $c' = 1.2 \text{ kg/cnl}, \phi' = 23°$ が式(3.16) に適用され,長期安 定解析に基づいた支持力が推定されることになる。

以上の強度定数に基づいて支持力を算定すればよいが、これを島尻層泥岩地盤における平板載荷 試験ならびに杭の載荷試験結果と比較してみよう。

ここで引用する載荷試験は、建築物工事に伴う地耐力調査のために那覇市牧志町で島尻層泥岩地

盤を対象に行われたものである。載荷試験は地表面 から4.8 m掘削した地点で30×30 cmの正方形載荷 板を用いて行われた。その荷重強度 p と沈下 δ の関 係を図-3.28 に,また log p と log δ の関係を 図-3.29 に示してある。 この図から,破壊荷重は p_u = 444 t / m²で,また降伏荷重は p_y = 255 t / m² であると推定される。この載荷試験は非排水状態で 実施されるから,式(3.17)で支持力を計算する。 いま,載荷地点の掘削壁面の位置と載荷板設置場所 との間には余裕があるから, rD_f はおさえ荷重 と しての効果を期待できないとすれば, D_f =0 とみな せるので, c_u = 11.5 kg / cm² を用いると, q_d = 768

- 72 -

~852 t/m² となり、この値は平板載荷試験の破壊 荷重 $p_u = 444 \text{ t} / \text{m}^2$ よりかなり大きな値となってい る。また、Skempton の支持力は、 $\alpha N_c = 6.2$ と すれば、713 t/m[®] となり、やはり大きな値となっ ている。この試験値と計算の差異の要因は種々考え られるが、先に述べたように、 強度定数決定の際の寸 法効果は重要な要因となるであろう。ちなみに、支 持力公式に平板載荷試験の結果を適用して Cu を 逆 算すると、Terzaghiの支持力公式において cu = $60 \sim 66 t / m^2$, Skempton 支持力公式では $c_u = 72$ t/m^2 となり、これらは $c_u = 115 t/m^2$ に対しそれ ぞれ 52~57% と 62% で, これらの割合は London clay に対する寸法効果による強度比65%に近似し た値となっている。このことは、未風化の島尻層泥 岩においても潜在的なひび割れやジョイントなどの 閉塞した分離面を含んでいることに注目すれば、載 荷試験結果から逆算した cu は弱面を含んだ地盤に

対する平均的な値であることを示唆するものである。従って,非排水条件下での支持力算定に当っては, cu として寸法効果を考慮した値を適用しなければならない。島尻層泥岩の非排水強度に及 ぼす寸法効果については今後明らかにされる必要がある。

一方,長期間経過後の支持力は,式(3.16)において D_f = 0, r = 2.05 t / m^a, B = 0.3 m, ま た地下水面は基礎底面にあるとすれば, r' = 1.05 t / m^a, そして c' = 12 t / m^a, \u03c6' = 23°とすると, Terzaghi の支持力係数 N_c = 22, N_T = 8 であるから

 $q_d = 1.3 \ c' \ N_c + 0.8 \times \frac{1}{2} \ r' \ BN_r = 344 \ t/m^2$ この値は載荷試験における降伏荷重 $p_y = 255 \ t/m^2$ と破壊荷重 $p_u = 444 \ t/m^2$ の中間値を示している。

次に、同様な比較検討を杭の載荷試験についても行ってみよう。ここで引用する杭の載荷試験結果は同様に那覇市古島で島尻層泥岩地盤を対象としたものである。試験杭は直径 40 cm の先端閉塞 PC 杭である。杭の設置法は、地表面下 12.00 m まで 直径 40 cm のアースオーガーで掘削して杭を 押入し、その後杭打ち機で地表面下 17.55 m まで貫入し、その地点で載荷試験を実施している。図 - 3.30 は荷重 P と 沈下 δ の関係を、また図 - 3.31 は log P と log δ の関係を示したもので、こ れらの図から破壊荷重は P_u = 200 ton、降伏荷重は P_y = 110 ton であると推定される。いま、式 (3.18)を用いて杭の支持力を推定する。まず、杭の先端抵抗力 Q_p を求める。 非排水条件のとき 式 (3.17) に c_u = 115 t / m³、 D_f = 17.55 m、B = 0.4 m、 A_p = 0.1256 m³、 T_t = 2.05 t / m³、 また地下水面は地表面下 9 mの地点にあると判断すると、 Q_p = 100 ~ 110 ton となる。また、周辺摩擦抵抗力 Q_s は、杭打ちによる貫入量 ℓ = 5.55 m の範囲に周面摩擦力が作用すると仮定すれ ば、U = 1.26 m、 ℓ = 5.55 m、また f_s に関するデータが明らかでないので、N 値特性より f_s =

= 20 t/m²²⁷⁾ とすれば, $Q_s = 140$ ton となる。従って, Terzaghi による杭の極限支持力は $Q_d = Q_p + Q_s = 240$ ~ 250 ton となり,載荷試験の破壊荷重 $P_u = 200$ ton よ り 20 ~ 25 %大きな値となっている。

周辺摩擦力 f_s の値については疑問が多く,さらに検討 を必要とするが,先端抵抗力 Q_p に注目すると, $Q_p = 100$ ~ 110 ton は載荷試験の破壊荷重 $P_u = 200$ ton よりかな り小さく,その値の 50 ~ 55 % である。浅い基礎の支持力 推定では供試体の寸法効果を考慮して非排水強度 c_u を低 減させる必要があるが,杭の支持力においては杭の先端周 辺の地盤は上載圧力によって拘束された状態にあると考え られるので,外力を受けても分離面は閉塞した状態を保持 し,すべり面は土塊をせん断して形成されると考えられる。 従って,杭の極限支持力の算定においては非排水強度 c_u に対する寸法効果を考慮する必要はないように思われる。

一方,長期間経過後の杭の極限支持力を推定するために は,浅い基礎の場合と同様,強度定数は, $c' = 12 t/m^3$, $\phi' = 23°が適用される。いま,地下水面は地表面に一致$ $しているとし,支持力係数 <math>N_c = 22$, $N_T = 8$, $N_q = 12 °$ あるから,先端抵抗力は $Q_p = q_d A_s = 71$ tonとなる。ま た,杭周辺の泥岩は打込み時に撹乱を受け,さらにその後 地下水の影響を受けて完全軟弱化がもたらされると考えら れる。このような完全軟弱化した状態のせん断強さは正規

図-3.30 杭の荷重~沈下曲線

圧密状態における強さに近似できるので、周辺摩擦力 f_s は 3 t/m² とし²⁸⁾、しかも ℓ = 17.55 m 全 長にわたり作用しているものとすれば、周辺抵抗力は $Q_s = f_s \ell U$ = 66.3 ton となる。 従って、 長期周経過した後の杭の極限支持力は $Q = Q_p + Q_s = 137.3$ ton となり、この値は載荷試験の降伏 荷重 $P_v = 110$ ton に近似している。

以上のように、ここでは、せん断試験による強度定数を適用した Terzaghi の支持力と平板及び 杭の載荷試験結果を比較検討した。その結果、長期安定としての極限支持力推定には排水せん断試 験から求めた最大応力後のひずみ軟化によって達成される critical state の強度定数が適用可能 である。

3.6 強度異方性

3.6.1 序

自然に堆積した粘土層では、その堆積過程を通じて一次元的に圧密されるから薄片状の粘土粒子 が上載荷重の増加ならびに長期間の載荷によって方向性をもって配列され、水平配向構造をなすと いわれている。このような地盤は成層あるいは層状構造を形成し、しかも構造的に異方性となるか ら,その地盤の強度,変形あるいは透水性などの力学的性質は異方性を示すことになる。本研究での実験用供試体となる島尻層泥岩が異方性を示すことは例外ではない。従って,この種の地盤における支持力及び沈下を検討するためには,粘土の力学的な異方性を明らかにする必要がある。本節においては,最初に,方向性を考慮しないで成形した供試体の三軸圧縮試験結果を間隙水圧の挙動から異方性について検討し,次にこれらのことを検討することを含めて,地盤に対し種々の方向性をもつ供試体を準備して圧密圧力25 kg/cml までの圧密非排水型三軸圧縮試験を行い,主に強度異方性が調べられる。

3.6.2 間隙水圧の挙動からみたランダムな軸方向にある供試体のせん断特性

ここで用いる島尻層泥岩試料は、西原村の宅地造成現場において土工機械により地山を掘削して 採取したブロックサンプルである。しかし、これらのブロックサンプルの方向性は確認されず、し かも供試体はブロックサンプルからランダムな方向に、コアードリルとコアーカッターで直径 5 cm、 高さ10 cmの円柱形に成形した。

このような供試体について非圧密非排水(UU)及び圧密非排水(CU)型三軸圧縮試験を行ったが、その実験結果の一部はすでに前章に示されている。すなわち、物理諸量はG = 2.78, w = 22%, $r_t = 2.10 \text{ t}/\text{m}^3$, e = 0.60,

 $S_r > 96 % で, UU - 試験 におけ$ る応力~ひずみ関係,ならびにせん断に伴う発生間隙水圧~ひずみ関係の代表例が図 - 2.25 に,全応力による破壊包絡線が図 - 2.27 に,さらにせん断開始前のサクションを有効応力とみなしたときの破壊時の有効応力状態をCU - 試験の結果とともに図 - 2.28 に示されている。ここでは,間隙水圧の挙動から異方性を検討するためにCU - 試験の結果を主に述べる。

実験は本章 3.3 に示した方法で行っている。初期バックプレッシャー u_b = 3 kg/cni のもとで圧密圧力 σ_c' = 27 kg/cni までの CU – 試験における応力,間隙水圧~ひずみ関係の代表例を示したのが図 – 3.32 である。応力 ~ ひずみ関係及び間隙水圧~ひずみ関係は先に示した鉛直方向供試体における関係と同じ傾向にあるか,図 から明らかなように,圧密圧力の大

図-3.32 応力~間隙水圧~ひずみ関係 (CU-試験)

きさと最大応力の関係, 圧密圧力の大きさと破壊ひずみの関係, さらには圧密圧力の大きさと間隙 水圧の大きさの関係には何ら一定の傾向はみられない。また, 図には示していないが, 複数の供試 体について同一圧密圧力でせん断したところ, 最大応力と間隙水圧の大きさに著しい差異を生ずる 場合がみられた。このような同一圧密圧力における最大応力と間隙水圧の差異の状況を示すために準

備したのが図 – 3.33 に示す有効応力径路である。 この図において、最大応力に対する差はせん断応 力の差で、また間隙水圧の発生状況は、各圧密圧 力からの完全排水径路である $A(\sigma_1 - \sigma_3)/A(\sigma_1'$ + $\sigma_3') = 1$ からの離れとして表示されるから、同 一圧密圧力で応力径路が著しく異なることは、最 大応力ならびに間隙水圧の発生に著しい差異があ ることを明示している。

ところで、Bishop ら²²⁾は乱さない London
clay の鉛直および水平方向供試体についてCU
二試験を行って、図-3.34 に示すような有効
応力径路の結果を得ている。このLondon clay

図-3.34 London clay の鉛直及び水平軸方向供試体に対する有効応力径路 (Bishop et al. による)

の先行圧密圧力はおよそ600 lb/in²で,静止土圧係数 K_0 は2.1と推定されている。図から明らかなように, 過圧密領域における同一の圧密圧力で圧密を行った鉛直方向供試体と水平方向供試体の有効応力径路は 異なり,間隙水圧の発生は水平方向供試体よりも鉛直方向供試体で大きく,非排水強度は水平方向供試 体で大きく現われている。また,間隙圧係数 A_f は圧密圧力 $\sigma_c' = 145$ lb/in²のとき鉛直方向供 試体で0.42,水平方向供試体で0.19 となり,間隙水圧は異方的性質を示すことがわかる。一方, 先行圧密圧力以上の正規圧密領域では両供試体に対する有効応力径路に差異がみられず,非排水強 度もほぼ一致し,間隙圧係数 A_f は鉛直方向供試体で0.74,水平方向供試体で0.77 と一致して, 異方的性質は消失するようである。このことは,先行圧密圧力以上の圧密圧力が作用すると,圧密 過程で土の骨格構造が破壊され,構造的な異方性を消失しながら等方圧密作用を受けて,その結果 等方的な性質に移行するものと考えられる。

図-3.33 に示した有効応力径路の傾向から島尻層泥岩の先行圧密圧力は実験の最大圧密圧力 ac

- 76 -

= 27 kg/cml より大きな値にあると推定されるので,過圧密領域におけるLondon clay の応力径 路に準拠すると、この泥岩の応力径路の差異は方向性に起因する間隙水圧の挙動の差異によるもの と考えられる。そこで、London clay の実験結果にもとづいて、図 – 3.33 に示すような同一圧 密圧力における応力径路が明らかに著しく異なる場合、両極端の応力径路をそれぞれ鉛直方向供試 体と水平方向供試体とに分類できるものと仮定しよう。このように分類した鉛直方向供試体と水平 方向供試体に対する最大主応力差 ($\sigma_1 - \sigma_3$)max とそれに対応する発生間隙水圧の関係を示すと

図-3.35となる。 図中, 方向が 明示されていない供試体は鉛直と 水平の間の任意の方向をもつもの であるが, 鉛直と水平方向に区分 された供試体は明らかにグループ 分けでき, 過圧密領域における間 隙水圧の挙動は方向性の影響を受 けていることがわかる。

次に、これらグループ分けした 供試体について、それぞれの破壊 時における応力状態を全応力なら びに有効応力で示したのが図-3. 36 である。 全応力表示による破 壊時の応力状態は,鉛直と水平供 試体とでは明らかに差異が認めら れ、水平供試体の応力状態は鉛直 供試体より上位に位置し、全応力 による強度定数 c, φは方向性の 影響を受けることがわかる。一方, 有効応力で表示すると、応力状態 には差が認められず, 有効応力に よる強度定数 c', ø' には方向性の 影響が認められないようである。 すなわち、非排水強度の異方性は 間隙水圧の大きさの差によってもた

らされたものといえる。そこで、有効応力による強度定数 c'、 o' には方向性 がないとみなし、UU - 試験 ならびに CU - 試験 を問わず、すべてのせん断試験結果を有効応力で整理した場合の破壊時の応力状態が前章で示した図-2.28 である。 これらの関係は非線形にあって、Mohr の破壊 規準が適用できる。これらの関係を理想化して、有効応力に基づく Mohr の応力円を示すと図-3.37 となり、破壊包絡線は非線形となる。

以上の実験結果は、この種の泥岩の力学的性質を調べる際、常に方向性を考慮しなければならない事例で

あるが、すでに Ward β^{29}) あるいは Bishop β^{22}) は London clay の非排水強度の異方性について 報告しており、さらに Bishop β^{22} は、先述のよ うに、London clay において有効応力による強 度定数 c'、 ϕ' には方向性が認められないとしてい る。同様に、Duncan β^{30} は、過圧密粘土のCU - 試験 を行って全応力による強度定数 c、 ϕ は 水平と鉛直供試体とでは明瞭な差がみられるが、 有効応力による強度定数 c'、 ϕ' には方向性がない

ことを示し,非排水強度の異方性はせん断に伴って発生する間隙水圧の大きさの差異によるもので あると述べている。

従って、これまで示した異方性に関する考察の妥当性を検討するとともに、鉛直ならびに水平方 向のみならず、任意の軸方向にある供試体の非排水強度、間隙水圧及び強度定数などの異方的性質 を明らかにするために、次のような実験的研究を行った。

3.6.3 試料及び実験方法

用いた試料は表 - 3.1 に示したものと同一であり、また使用した三軸装置はすでに述べたところである。

供試体はサンプリング時に方向を確認したブロックサンプル からコアードリルとカッターを用いて直径50mm,高さ100mmの 円柱形に成形するが、図-3.38に示すように、供試体の軸方 向と水平地盤とのなす角βが90°(鉛直方向供試体),60°,45°, 30°,0°(水平方向供試体)となるように切り出している。な お、供試体を準備する際、肉眼で識別できる弱面を含む供試体 は除去した。

各軸方向の供試体に対し圧密非排水型三軸圧縮試験(CU-試験)を行うが、圧密圧力は $\sigma_c'=5$, 10, 15, 20, 25 kg/cm の等方圧密圧力で、圧密およびせん断過程を通し て間隙水圧の測定が行われている。また、結果に バラツキが予想されたので、供試体の数は各軸方 向とも同一圧密圧力に対し3個以上である。さら に、各軸方向に対し一軸圧縮試験も行った。せん 断速度は一軸圧縮試験を含め,すべて 0.02%/min の変位制御で行っているが、一軸圧縮試験は供試

図-3.39は圧密開始直前の作用側圧と発生間 隙水圧の関係を各軸方向βについて示したもので ある。バラツキを伴っているが、各軸方向の供試

- 78 -

体に対する間隙水圧 $u_0 \ge$ 側圧 σ_3 の間係をまとめると, $u_0 = (1 \sim 0.9)\sigma_3 - (1.0 \sim 2.2)$ (kg / cm¹) となり, Skempton の間隙圧係数 *B* は近似的に 1 で, 供試体は飽和であるが, 1.0 ~ 2.2 kg / cm¹のサクションが存在している。しかし, このサクションは初期バックプレッシャー $u_b = 3.0$ kg / cm¹を作用させるから, 圧密過程で消滅するものと考えられる。

3.6.4 実験結果と考察

(1) 応力~ひずみ関係および間隙水圧~ひずみ関係

種々の軸方向βが応力~ひずみ関係,間隙水圧の大きさおよび最大応力に及ぼす影響を比較する ために, 圧密圧力 σ_c' = 5 kg / cm の場合の応力~間隙水圧~ひずみ関係の代表例が図 - 3.40 に示

されている。図中、実線は応 力、破線は間隙水圧の変化を 示し、数値は供試体の軸方向 βを表わしている。この図か ら、応力~ひずみ関係、最大 応力および間隙水圧の発生状 況は軸方向βにより異なると とがわかる。この傾向は他の 圧密圧力においても同じであ った。破壊面は、軸方向 β に かかわらず最大主応力面に対 し 55°~70°の角度をなし、 明確な単一の薄層すべり面が 形成された。ただし、水平供 試体に対する一軸圧縮試験で は 70°~90°の破壊面が形成 された。

ここでは,破壊ひずみと破 壊時の間隙水圧の挙動に注目 しよう。

図-3.41 は軸方向 β に対 する破壊ひずみ ε_fの関係を

図-3.40 応力~間隊水圧~ひずみ関係

各圧密圧力の平均値で示したものである。図から明らかなように、破壊ひずみ ϵ_f は軸方向 β によっ て異なり、拘束圧力が作用する場合には $\beta = 30^\circ \sim 45^\circ$ で最小値となり、また一軸圧縮状態では β = 0° ~ 30° で最小値を示している。しかし、拘束圧力を受ける場合、 β による ϵ_f の変化は圧密圧力 の大きさの影響を受けないようである。試料を構成している粘土粒子は続成作用による結合力で拘 束され、この結合力は外力に対し弾性的応答をすると考えられるから、小さなひずみで破壊される であろう。また、粘土粒子は配向構造をなしているので、破壊面と配向方向が交差する場合、結合 力が破壊した後さらに粘土粒子は再配列しながらひずみ硬化を伴って最大応力に達することになり、 破壊ひずみ & は増大するであろう。しかし, β = 30°の供試体では破壊面と粒子配向面が一致するの で, 粒子の再配列をさほど必要とせず,比較的小さ なひずみで破壊するものと考えられる。一方, β = 0°の水平方向供試体に限定すると,粒子配向と最大 主応力方向が一致し,一軸圧縮状態におけるように, 側方への拘束が存在しない場合,破壊面は鉛直方向 へのクラックとして発生し,側方への変位とも相ま って破壊ひずみはわずかとなるが,側圧が作用する 三軸状態では側方への変位が拘束されているから, 最大応力に達するには破壊面に沿った粘土粒子の再 配列を必要とし,破壊ひずみは一軸状態に比べて増 大する。

以上のような変形挙動をせん断に伴うダイレイタンシーに支配される間隙水圧の挙動から検討して みよう。先の図-3.40 でも明らかなように、間隙水圧が最大となる軸ひずみ ε_u は破壊ひずみ ε_f にほぼ一致するか、それより小さくなっている。このことは軸方向 β の影響を受けていることを示 すものであろう。いま、各軸方向 β における ε_u と ε_f のずれを比較するため、各圧密圧力に対する

εu と εf の比を平均値で示すと図 3.42 の ようになる。図から明らかなように、ひず みのずれは圧密圧力の大きさと軸方向 β と の両方の影響を受けている。まず、圧密圧 力の影響をみると、低圧密圧力では間隙水 圧のピークが破壊に先行して生ずるが、圧 密圧力が増大するにつれて間隙水圧のピー クと破壊は一致するようになる。すなわち、 間隙水圧の挙動は体積変化に依存するもの であるから、間隙水圧が増加過程から減少 過程に移行することは、せん断に伴う体積 変化が体積圧縮から体積膨張に移行するこ

Ef:破壊ひずみ

とを意味し、ダイレイタンシーは低圧密圧力においては破壊に先行して生ずるが、圧密圧力が増大 すると破壊と同時に生ずることになる。次に、 β による影響をみると、間隙水圧のピークが破壊に 先行して生ずる度合は、 $\beta = 0^{\circ}$ の水平供試体で最も著しく、 $\beta = 30^{\circ}$ の供試体でわずかとなってい る。しかし、圧密圧力が増大するにつれて β による影響が認められなくなる。いま、低圧密圧力領 域に限定すると、 β の影響は先に述べた破壊面に沿った粒子の再配列に関する検討から明らかとな るであろう。すなわち、 $\beta = 30^{\circ}$ の供試体のように粒子配向と破壊面が一致する場合、最大応力に 達するまで粒子の再配列があまり生じないので、それに伴うダイレイタンシーはわずかであるが、 一方粒子配向と破壊面が交差するような他の軸方向 β の場合、せん断面に沿って粒子の再配列を必要 とするから,最大応力に先がけて著しいダイレイタンシーが生ずる。特に, β = 0°の水平供試体においては粒子配向が最大主応力方向と一致しているので,軸ひずみの増大に伴って鉛直方向へのクラ ックが発生し,それに伴って側方へのひずみが生じて体積増加がもたらされるため,破壊ひずみに 著しく先行してダイレイタンシーが生ずるものと考えられる。

写真-3.3は、鉛直方向供試体をせん断試験後一度炉乾燥して、 再び水浸したときの状況である。先に示した写真-3.2のように 走査型電子顕微鏡によるミクロ的な構造の観察からは異方性が判 断できないが、この写真では水平方向に剝離現象が見られ、明ら かにマクロ的な構造の異方性が観察される。なお、供試体で水平 に対しおよそ60°の角度で形成されている分離面はせん断による 破壊面である。このような構造異方性が、変形のみならず強度に 対しても異方的性質をもたらすものと考えられる。

(2) 強度異方性

せん断強度に関する異方性は,非排水強度の異方性と強度定数 の異方性について明らかにされる必要がある。ここでは非排水強 度の異方性について検討する。

図-3.43は、Skempton ら²²⁾がこれまで行われた粘土の強 度異方性に関する研究成果をまとめたもので、鉛直方向供試体の 非排水強度を基準にして任意の軸方向にある供試体の強度を示し

たものである。図には正規圧密あるいは わずかに過圧密された3種の粘土と,著 しく過圧密された粘土である London clay 2種についての強度異方性が示さ れている。粘土の強度異方性には2種類 あって,静止土圧係数 $K_0 < 1$ の状態に ある正規圧密あるいはわずかに過圧密さ れた粘土では水平方向の強度が鉛直方向 より小さい場合と, $K_0 > 1$ の状態にあ る著しく過圧密された粘土では水平方向 の強度が鉛直方向より大きい場合がある。 また,著しく過圧密された粘土では水平方向 の強度が鉛直方向より大きい場合がある。 また,著しく過圧密された粘土では水平方向

図-3.44 は, 圧密圧力と最大応力の 関係を各軸方向 β ごとに示したものであ

(Skempton et al. による)

る。図中, 横軸の圧密圧力は各 β ごとにずらし, 最大応力は一軸圧縮強度の結果も含めてバラツキ の幅と平均値が示されている。大きなバラツキを示しているが, 平均値を比較すると, 圧密圧力の

ę

写真-3.3 破壊後の供試体 (鉛直供試体)

増大に伴う強度増加と軸方向βによ る強度の差異が認められる。そこで 図-3.43 にならって $\beta = 90^{\circ}$ であ る鉛直方向供試体における平均強度 を基準にとり、圧密圧力ごとに各軸 方向 β に対する平均値の強度比を示 すと、図-3.45のようになる。一 軸状態における強度はβ=90°のと き最大であるが、軸が傾斜するにつ れて減少し、 $\beta = 30^{\circ}$ 、 0° において $\beta = 90^{\circ}$ の場合の約 80 % まで減少 する。一方,三軸状態でのCU-試験による非排水強度は, β = 30° と 60°の供試体で圧密圧力に対する バラツキがみられるが、 $\beta = 45^{\circ}$ で $\beta = 90^{\circ}$ の場合の強度のほぼ90%に 減少し、逆に β = 0°の水平供試体 では10%の強度増加がみられる。こ のような軸方向 β による強度変化の 傾向は図 - 3.43 に示した London clay における $\beta = 45^{\circ} \mathcal{C} \beta = 90^{\circ} \mathcal{O}$ 80%, $\beta = 0^{\circ} \subset \beta = 90^{\circ} \oslash 150\%$ のような著しい強度変化に比較する と,実験供試体に対する強度異方性 は量的に著しいものであるとはいえ ないようである。

(3) 間隙水圧の挙動の異方性

先に示したように、図 - 3.40 の 間隙水圧~ひずみ関係ではせん断に 伴う発生間隙水圧の大きさが供試体 の向きによって異なっていた。破壊 時の間隙水圧の挙動を示すのに、

図-3.45 強度異方性と側圧の影響

Skempton の間隙 圧係数 A_f がよく利用される。 A_f は過圧密比に関係づけられ,通常の粘土で は過圧密比の減少とともに A_f は増加することが実験的に明らかにされている。ところが、実験に 用いた供試体の圧密降伏圧力は実験的に明らかにされていないので、過圧密比を求めることができ ない。そこで、過圧密比の代わりに圧密圧力に対する A_f の変化を各軸方向 β ごとに示したのが、図 - 3.46 である。なお、図中の A_f は平均値である。図から明らかなように、圧密圧力の増加に伴 って A_f は増大し,しかもその値は各 β で異なったものである。すなわち, A_f は, $\beta = 90^\circ$ と 60°で最大値, $\beta = 0^\circ$ で最小値をとり, $\beta = 45^\circ$ と 30°ではそれらの中間に位置している。 このことから,過圧密領域における A_f は方向 性を示すことがわかる。

さらに、間隙水圧の大きさの差を明らかにす るために、破壊時の間隙水圧と最大応力の関係 が図 – 3.47 に示されている。図中には β ごと に示され、その関係にはかなりのバラツキを伴 うが、近似的に線形関係が認められる。そのな かの $\beta = 90^{\circ}$ の鉛直供試体に対する関係は、すで に図 – 3.20 に示したように、 $\sigma_{c}^{2} = 60 \text{ kg/cm}$ までのCU – 試験より約0.70 の勾配にあるこ とが明らかにされている。しかし、

他の軸方向 β については $\sigma_c = 25$ kg / cm までの試験結果からその勾配が 精度よく決定されないが、その値は $\beta = 90^\circ$ に対する 0.70 と $\beta = 0^\circ$ に 対する 0.52 の間にある。ただし、 $\beta = 30^\circ$ における勾配は 0.35 であっ た。 A_f は図では原点を通る直線の 勾配で定義されるが、正規圧密領域 における鉛直供試体の間隙圧係数は $A_f = 0.53$ となることを先に推定し た。また、図 = 3.34 で引用したよ うに、London clay の鉛直および

水平方向供試体の A_f は正規圧密領域ではほぼ同じ値にある。従って, 圧密降伏荷重は β ごとに異 なるであろうが, 正規圧密領域においては破壊時の間隙水圧と最大応力の線形関係は $A_f = 0.53$ の 関係に移行すると予想される。しかし, $\beta = 0^\circ$ に対する $0.52 \lor \beta = 30^\circ$ の 0.35 が $A_f = 0.53$ と交 わるためにはとてつもなく大きな圧密圧力を必要とすることになるので, 鉛直供試体と同様に大き な圧密圧力領域にまたがる CU – 試 験 を各 β の供試体について行う必要がある。ここで強調され ることは, せん断に伴う発生間隙水圧は $\beta = 90^\circ$ の鉛直供試体で最大, $\beta = 0^\circ$ の水平供試体で最 小, 他の β ではその中間値を示し, 異方的性質を示すことである。

(4) 強度~有効応力関係

間隙水圧の発生量が軸方向βによって異なることを示したが、このことは、有効応力径路が方向 性の影響を受けることを意味している。図-3.48は圧密圧力10kg/cmlと20kg/cmlにおける各βに 対する有効応力径路の代表例を 示したものである。図において, 間隙水圧は $d(\sigma_1 - \sigma_3)/d(\sigma_1'$ + $\sigma_3') = 1$ からの離れとして表 示されているから,その離れは $\beta = 90°で最大, \beta = 0°で最小$ を示し,有効応力径路は方向性の影響を受けていることがわかる。なお,この図に示した有効応力径路の結果は,図 - 3.33に示した方向を考慮していない供試体を極端に異なる有効応力径路から鉛直及び水平供試体に

グループ分けして異方的性質を検討したことの妥当性を示唆するものである。

先に,非排水強度に及ぼす β の影響を明らかにしたが,続いて β が強度定数 *c*, φ に及ぼす影響 について検討しよう。図

- 3.49 は、全応力によ る強度定数 c_{cu} 、 ϕ_{cu} に及 ぼす β の影響を示すため に、破壊時の応力状態を $(\sigma_1 - \sigma_3)/2 \sim (\sigma_1 + \sigma_3)$ / 2 関係で各 β について 示したものである。ばら ついているが、 $\beta = 90^\circ$ と $\beta = 0^\circ$ とでは明らか に差異がみられ、強度定 数 c_{cu} , ϕ_{cu} は β ごとに異 なった値にあることが推測さ

される。間隙水圧が方向性を示すことから、全応力による強度定数 *ccu*, *øcu* はこの間隙水圧の異方 的性質に反映されて方向性を示すことになる。なお、せん断応力と平均応力の関係には線形関係が 認められ、全応力による破壊包絡線は Mohr – Coulomb の破壊規準が適用できる。

図-3.50 は有効応力による $(\sigma_1 - \sigma_3)/2 \sim (\sigma_1' + \sigma_3')/2$ 関係を示したものである。 $\beta = 45^\circ$ の場合を除けば、この有効応力関係は、 β による影響がわずかで、特に $\beta = 90^\circ \geq \beta = 0^\circ$ における 関係は著しく近似したものである。従って、有効応力による強度定数 c' o'は構造的に異方性であっ ても方向性を示さないといえよう。このことは、先の Duncan ら³⁰⁾ の過圧密粘土及び Bishop ら²²⁾ の London clay に関する実験結果、すなわち全応力による強度定数は異方的であるが、有効応力 による強度定数は異方的でないことと一致している。なお、破壊時の有効応力関係は非線形で、 Mohr の破壊規準が適用できる。

以上の実験結果から明らかなよう に、軸の方向性を全く考慮していな い供試体から異方的性質を検討,考 察したことの妥当性が,軸方向を確認 した供試体の実験結果により検証さ れた。

(5) 圧縮強度と変形係数の関係 鉛直供試体に限定した場合の圧縮 強度と変形係数の関係はすでに3.4. 3(7)に示したことである。この圧縮 強度と変形係数の関係に及ぼす軸方 向 β の影響を調べるために、CU-試験に基づく圧密圧力25kg/cmlま での各 β に対する関係を両対数に示 したのが図-3.51である。パラツ キが大きく、一定の傾向をみい出す ことは困難であるが、いま E_{50} と(σ_1 - σ_3)maxの比が一定であると仮定 すれば、各 β に対する平均値は次の ようになる。

$$E_{50} = 120 \ (\sigma_1 - \sigma_3)_{\max}$$

β=45°に対し

$$E_{50} = 150 \ (\sigma_1 - \sigma_3)_{\max}$$

 $\beta = 30^{\circ}, 0^{\circ}$ に対し

 $E_{50} = 170 \ (\sigma_1 - \sigma_3)_{\max}$

βが減少するとともに,E50と(O1

- o3)max の比は増加する傾向にある。

図-3.51 最大応力と変形係数の関係

他方、応力~ひずみ関係は圧密圧力の影響を受けるので、 $(\sigma_1 - \sigma_3)_{max}$ のみならず、 E_{50} も変化し、その比は一定とならず、一般に次の関係が成立する。

 $E_{50} = a (\sigma_1 - \sigma_3)^b_{\max}$

ここに, a, b:定数。

鉛直方向供試体に対してはa = 10.8, b = 1.635 がすでに求められているが、他の軸方向 β に 対するa, bは、圧密圧力 25 kg / cm までの β の影響を明らかにすることができなかった。今後、 鉛直供試体以外に関しても高圧密圧力領域までの試験を行って、方向性の影響をより詳細に調べる 必要がある。

3.6.5 むすび

水平な地盤に対し種々の軸方向にある不搅乱泥岩供試体を切り出し,一軸圧縮試験ならびに圧密 圧力25 kg / cm までの圧密非排水型三軸圧縮試験を行い,強度,間隙水圧の挙動及びせん断強度定数 に及ぼす方向性の影響を明らかにした。その結果をまとめると次のようになる。

1) 破壊ひずみは、 $\beta = 90^{\circ}$ なる鉛直供試体で最大となり、粒子配向と破壊面が一致する $\beta = 30^{\circ}$ の供試体で最小となる。

2) ひずみの増大に伴って間隙水圧が増加から減少へと移行するときのひずみ,すなわちダイレ イタンシーは低圧密圧力では破壊ひずみに先行して生ずるが,圧密圧力の増加とともに破壊と同時 に生ずるようになる。また,低圧密圧力でのこれらのずれはβ=0の水平供試体で最も著しく, β=30°の供試体で最小である。

3) 非排水強度は供試体の軸方向によって変化し,異方的性質を示す。鉛直供試体の非排水強度 を基準にとると,その異方性の程度は β = 30°,45°の供試体で約10%の強度減少,逆に β = 0° の水平供試体で約10%の強度増加である。

4) せん断に伴う発生間隙水圧は、圧密圧力が同一の場合 $\beta = 90^{\circ}$ の鉛直供試体で最大、 $\beta = 0^{\circ}$ の水平供試体で最小となり、明確な異方的性質を示す。従って、Skemptonの間隙圧係数 A_f も同様に異方的性質にある。

5) この間隙水圧の差異が非排水強度の異方性および全応力による強度定数 *c_{cu}, φ_{cu}* に方向性をもたらす。

6) また,間隙水圧の差異は有効応力径路にも影響を及ぼすが,有効応力表示による強度定数 c', ¢'には方向性が認められない。

7)変形係数と強度の比は軸方向βの減少とともに増加する傾向にある。

8) 以上の結果は、供試体の軸方向を考慮せずに行った CU- 試験 における間隙水圧の挙動か ら異方的性質の検討を行った結果が妥当であることを示すものである。

3.7 結 語

本章においては、弱固結状態にある島尻層泥岩を試料に選び、圧密圧力60 kg/cml までの圧密非排 水型軸対称三圧軸 縮試験と拘束圧力(圧密圧力)25 kg/cml までの圧密排水型軸対称三軸圧縮試験 を行った結果を示し、それについて考察を加えたものである。すなわち、3.4 では地盤に対し鉛 直の軸方向をもつ供試体に限定してそのせん断特性について、また3.6 では地盤に対し種々の軸 方向をもつ供試体について異方性の観点から実験的研究を行った。そのために、3.2 では泥質岩 のせん断挙動に及ぼす地質履歴の影響を検討し、3.3 ではせん断特性を明らかにするために必要な 実験装置と実験方法について概説し、一方3.5 では試験結果の利用の立場から Terzaghiの支持力 公式への強度定数の適用について述べている。

以上の実験的研究の結果の概要といくつかの問題点を順を追って示し、第3章の結語とする。

泥質岩のせん断特性は現象的には通常の過圧密粘土と類似したもので、その差は外力としての応 カレベルの大きさだけである。すなわち、ここでは、最初に泥質岩は、通常の過圧密粘土に地質履歴 によってもたらされた結合力が付加されて、半固結化した著しい過圧密粘土であるとみなし、かつ この結合力の効果は通常の過圧密粘土に強度増加と変形に対する抵抗性を付与することにあるとし, 圧密圧力に対する非排水強度および間隙圧係数との関係に基づいて, せん断挙動を概念的に過圧密 効果と結合力効果に分離して土質力学的検討を行った。しかし,これらの分離に対する量的把握は実 験的に明らかにされていない。

次に, 泥質岩のせん断特性を調べるために低〜中圧の三軸装置を準備したが, 実験結果からさら に高圧の三軸装置が必要である。実験方法においては,供試体は飽和でサクションが存在すること から,そのサクションを解消するために適正なバックプレッシャーを実験的に選定し,また最大応 力後のひずみ増大に伴う応力を精度よく測定するためにメンブレンのキャリブレーションも実験的 に求めた。

上述の低~中圧用三軸装置を用いて鉛直方向供試体について実験を行い,その結果に地質履歴の 影響を考慮しながら,応力~ひずみ関係,間隙水圧あるいは体積変化~ひずみ関係,最大応力と有 効応力の関係,破壊付近の間隙水圧の挙動,残留強度に関する検討を行い,またこの種の地盤に おける開削や切取りによる周辺地山の安定上重要となる地盤内初応力についても既往の手法に基づ いて推定している。それらの結果の要約は3.4.4 にまとめて示したところである。しかし,高圧密 圧力領域でのせん断挙動は練返し正規圧密粘土に関する挙動から類推せざるを得なかった。さらに 高圧三軸装置を用いた実験的検証が望まれるところである。

上述の鉛直方向供試体のせん断試験に基づいて Terzaghi の支持力公式による支持力と載荷試験 結果を比較して強度定数の適用について2,3の検討を行った。異方性を考慮しないものとすれば, 室内試験の結果は,浅い基礎の短期破壊荷重の予測に対してはひび割れ等の弱面に伴った強度に及 ぼす寸法の影響を考慮しなければならないが,深い基礎の短期破壊荷重に対してはそのまま適用で きそうである。また,長期安定としての極限支持力の推定には,最大応力後のひずみ軟化によって 達成される応力,体積変化一定の状態での強度定数が適用される。

以上の実験では異方性を考慮していないが、堆積過程で構造的に異方性である泥質岩においては その強度・変形特性も異方的であるから、地盤に対し種々の軸方向にある供試体について圧密圧力 25 kg / cm までの CU - 試験 を行い、変形、強度および間隙水圧の挙動についての異方的性質を実 験的に明らかにし、その結果の要約は 3.6.4 にまとめて示したところである。従って、この種の地 盤においても変形および破壊に関する問題は異方性を考慮して解析することが必要である。

なお構造物を対象とする地盤においては、地盤材料は、変形と破壊が同時に検討、考察されなけ ればならないが、本章においては主に破壊点付近または破壊後の強度に注目して考察したもので、 変形に関する検討は次章で異方弾性体の立場からその変形挙動についてなされる。

参考文献

- 1) 赤井浩一・足立紀尚・新城俊也:沖縄・島尻層泥岩の力学特性,京大防災研年報,第16号B, pp. 753~764,1973.
- 2) 新城俊也:島尻層泥岩のセン断特性, 琉大農学報, 第23号, pp. 237~254, 1976.
- 3) 新城俊也:島尻層泥岩の強度異方性, 琉大農学報, 第23号, pp. 255~267, 1976.

- Bjerrum, L.: Progressive failure in slopes of overconsolidated plastic clay and clay shales, Proc. of ASCE, Vol. 93, No.SM 5, pp. 3~49, 1967.
- 5) 吉中龍之進・他:泥岩の圧密排水せん断試験結果の1例,土木学会第31回年次講演集,第3 部, pp. 230~231, 1976.
- 6) 足立紀尚・他:低圧ならびに高圧下の軟岩の力学挙動,第13回土質工学研究発表講演集,pp. 1125~1128,1978.
- 7)赤井浩一・他:空気圧制御方式による三軸試験装置とその適用(その1),土と基礎,Vol.23, No. 3, pp. 39~45, 1975.
- 8) 赤井浩一・他:軟岩の降伏特性,土木学会関西支部年次講演会講演概要,Ⅲ-41,1975.
- Chandler, R. J. : The measurment of residual strength in triaxial compression, Geotechnique, Vol. 16, pp. 181~186, 1966.
- 10) 福田・他:第5次沖縄天然ガス資源調査・研究概報,地質調査月報,第21巻,第11号, pp. 627~672,1970.
- Henkel. D. J.: The relationships between the strength, pore-water pressure and volume-change characteristics of saturated clays, Geotechnique, Vol. 9, pp. 119~135, 1959.
- Lee, K. L. and Seed, H. B. : Drained strength characteristics of sands, Proc. of ASCE, Vol. 93, No. SM 6, pp. 117~141, 1967.
- 13) 最上武雄編著:土質力学, 技報堂, pp. 529, 1969.
- 14) Chandler, R. J.: The effect of weathering on the shear strength properties of Keuper marl, Geotechnique, Vol. 19, pp. 321~334, 1969.
- Sides, G. R. : Soil microstructure and sample disturbance observations in stereoscan electron microscope, Proc. Roscoe Memorial Symposium, pp. 89 ~98, 1971.
- 16) Skempton, A. W. : The pore-pressure coefficients A and B, Geotechnique, Vol. 4, pp. 143~147, 1954.
- Skempton, A. W. : First-time slides in overconsolidated clays, Geotechnique, Vol. 20, pp. 320 ~ 324, 1970.
- Skempton, A. W.: Long-term stability of clay slopes, Geotechnique, Vol. 14, pp. 75~102, 1954.
- 19) Bishop, A. W., et al. : A new ring shear apparatus and its application to the measurment of residual shear strength, Geotechnique, Vol. 21, pp. 273~328, 1971.
- 20) Skempton, A. W. : Slope stability of cuttings in brown London clay, Proc.
 9 th ICSMFE, Vol. 3, pp. 261~270, 1977.
- 21) Skempton, A. W., et al.: Stability of natural slopes and embankment foundations, Proc. 7th ICSMFE, State of the art volume, pp. 291~340,

1969.

- 22) Bishop, A. W., et al. : Undisturbed samples of London clay from the Ashford Common Shaft ; strength-effective stress relationships, Geotechnique, Vol.15, pp. 1~31, 1965.
- 23) R. N. ヤング・B. P. ワーケンチン(山内・他監訳):新編土質工学の基礎, 鹿島出版会, pp. 233, 1978.
- 24) Skempton, A. W. : Horizontal stresses in an overconsolidated Eocene clay, Proc. 5th ICSMFE, Vol. 1, pp. 351~357, 1961.
- 25) Windle, D., et al. : In situ measurement of the properties of stiff clay, Proc. 9th ICSMFE, Vol. 1, pp. 347~353, 1977.
- 26) テルツアギ・ペック(星埜・他訳):土質力学基礎編,丸善, pp. 194, 1969.
- 27) Chellis, R. D. : Pile Foundation, 2nd ed. Kogakusha, pp. 42, 1961.
- 28) 村山朔郎・他: 基礎工学ハンドブック, 朝倉書店, pp. 446, 1964.
- 29) Ward, W. H., et al. : Further studies of the properties of London clay, Geotechnique, Vol. 9, pp. 33~58, 1959.
- Duncan, J. M., et al. : Anisotropy and stress reorientation in clay, Proc. of ASCE, Vol. 92, No.SM5, pp. 21~50, 1966.

第4章 泥質堆積岩の異方弾性変形挙動

4.1 概 説

前章では主に,弱固結状態にある島尻層泥岩供試体を用いて,軸対称三軸圧縮試験によって圧密 圧力60 kg / cm までの強度特性を調べた。この泥岩の応力~ひずみ関係は,軸応力の増加に伴って弾 性的挙動を経てひずみ硬化を伴う塑性変形を示し,最大応力に達した後ひずみ軟化,すなわちひず みの増大とともに応力は減少し,最終的に応力がほぼ一定となる残留応力状態に至る,典型的なひ ずみ硬化一軟化型である。その際,島尻層泥岩が異方性挙動を示すにもかかわらず,主に強度の観 点から破壊時における挙動に注目し,その強度特性あるいは有効応力による破壊規準について検討 した。その検討過程で,特に応力~ひずみ関係が初期の比較的線形関係にある範囲で,間隙水圧の 発生ならびにそれに反映される有効応力径路が供試体の向きによって著しい差異を生ずることを指 摘したが,このことは外力に対しその変形挙動が異方性を示すことを示唆するものである。

近年土木構造物の重量化,大規模化に伴って,支持層としての軟岩地盤あるいは著しく過圧密さ れた硬質粘土地盤を対象とする地盤の支持力が注目されているが,破壊荷重以下での地盤の変形問 題も,その変形が上部構造物に有害なものであってはならないことから基礎工学上重要である。こ の種の地盤はもとより,通常の土質地盤においても,外力による地盤内の応力あるいは変形の予測 には,従来から弾性体理論の適用がよく行われている。しかし,実際の地盤は異方性を示す場合が 多いにもかかわらず,その変形挙動に関する研究は等方性地盤を対象としたものが主である。異方 性地盤では,主軸が地盤に対し鉛直な対称軸である直交異方性体と見なせる場合が多い。

本章では、実験試料である島尻層泥岩を異方弾性体と見なし、室内三軸圧縮試験における異方弾 性挙動について調べることを目的とする。初めに、軟岩および硬質粘土の弾性挙動に関する従来の 主な研究を概観し、この研究成果にもとづいて実験試料の弾性挙動とその弾性限界について検討す る。次に、第3章では種々の軸方向をもつ供試体について実験を行ったが、ここでは地盤に対し鉛 直および水平な供試体に限定し、それらの圧密非排水および排水型軸対称三軸圧縮試験結果につい て異方弾性挙動を検討するが、主に圧密非排水せん断試験を行っているので、間隙水圧の挙動から 異方弾性挙動を検討し、その特性を利用して、弾性パラメータを推定した後、鉛直供試体の排水せ ん断試験結果についても2・3の考察を行う。さらに、室内実験結果から求めた異方弾性パラメー タを利用して、半無限異方弾性地盤に円形等分布荷重が作用した場合の弾性沈下についても簡単に 考察する。

なお,実験試料および方法については第3章に示してあり,ここでは実験結果のみを引用し,検 討の対象とする。

4.2 異方弾性体の応力~ひずみ関係ならびに弾性的挙動の特性¹⁾

4.2.1 異方弾性地盤の応力~ひずみ関係

地盤材料の応力~ひずみ関係は一般に非線形であって,フックの法則は適用しにくい。しかし, その要素が現在地盤内で受けている応力とひずみ状態を基準にとって,小さな応力増分に伴って生 ずる微小ひずみ増分に注目すれば、近似的にフックの法則の適用が容認され、地盤を弾性体と仮定 した線形弾性体理論が地盤内応力あるいは変形の推定に援用される。弾性体の表面に集中荷重が作 用するときの応力および変形に関する Boussinesq の厳密解は、岩盤あるいは土質地盤における応 力分布、変位の推定の基本となっていることは周知のことであるが、これは等方等質弾性体に対す る解で、地盤を等方性と考えて、その解を地盤に適用している。しかし、一般に地盤は等方性では ない。土の堆積過程で予想されるように、堆積した板状粘土粒子は引続き堆積する土の上載荷重の 増加によって水平に配向し、成層や層状構造を形成する。その傾向は堆積岩や著しく過圧密された 粘土層で顕著となり、その地盤が弾性的挙動を示すなら異方弾性体として取扱わなければならない。 このような地盤で成層が水平のとき、地盤に対する鉛直軸が異方性の対称軸となる直交異方体は cross anisotropy あるいは transverse isotropyと呼ばれ、対称軸とそれに直交する水平面の弾性 パラメータは異なるが、水平面では等方性である。本章では、異方性とは上述の異方性体のもつ性 質を示すものとする。

弾性体理論において線形を仮定すると、応力とひずみの関係は主軸をx、 9、 2軸とすれば、一般に次式で示される。

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$
 (4.1)

この式には36個の弾性パラメータが含まれているが、地盤に対し鉛直方向に z 軸、それに直交す る平面に x, y 軸をとると、z 軸が異方性の対称軸、x y 平面で等方性であるような異方弾性体に おいては、独立した5つの弾性パラメータを含む式とな 2^{2} 。この弾性パラメータとして次のものが 選ばれている³⁾。 $n = E_H / E_V$:ヤング率比、 E_H :水平方向のヤング率、 E_V :鉛直方向のヤン グ率、 ν_H :水平応力が水平方向のひずみに及ぼす影響を示すポアソン比、 ν_{HV} :水平応力が鉛直 ひずみに及ぼす影響を示すポアソン比、 ν_{VH} :鉛直応力が水平ひずみに及ぼす影響を示すポアソン 比、 G_{VH} :鉛直方向のせん断弾性定数。これらの弾性パラメータ間にはひずみエネルギーの考察 から次の関係がある。

$$\nu_{VH} / E_V = \nu_{HV} / E_H$$

この弾性パラメータを用いて式(4.1)を有効応力表示で書き改めると,

$$\varepsilon_{\boldsymbol{x}} = \frac{\sigma_{\boldsymbol{x}}'}{E_{H}} - \frac{\nu_{H} \sigma_{\boldsymbol{y}}'}{E_{H}} - \frac{\nu_{VH} \sigma_{\boldsymbol{z}}'}{E_{V}}$$

$$\varepsilon_{\boldsymbol{y}} = -\frac{\nu_{H} \sigma_{\boldsymbol{x}}'}{E_{H}} + \frac{\sigma_{\boldsymbol{y}}'}{E_{H}} - \frac{\nu_{VH} \sigma_{\boldsymbol{z}}'}{E_{V}}$$

$$\varepsilon_{\boldsymbol{z}} = -\frac{\nu_{HV} \sigma_{\boldsymbol{x}}'}{E_{H}} - \frac{\nu_{HV} \sigma_{\boldsymbol{y}}'}{E_{H}} + \frac{\sigma_{\boldsymbol{z}}'}{E_{V}}$$

$$(4.2)$$

$$\begin{aligned} \gamma_{xy} &= \frac{1 + \nu_H}{E_H} \quad \tau_{xy} \\ \gamma_{yz} &= \tau_{yz} / G_{VH} \\ \gamma_{zx} &= \tau_{zx} / G_{VH} \end{aligned}$$

従って,式(4.2)の弾性パラメータは有効応力にもとづく量である。また,この式に含まれる ポアソン比は次の条件を満足しなければならない。

$1 - \nu_H - 2 \nu_{HV} \nu_{VH} > 0$		
$1 - \nu_H > 0$	}	(4.3)
$1 + \nu_H > 0$		
等方弾性体においては,次のような周知の関係になる。)	
$\varepsilon_{\boldsymbol{x}} = \frac{1}{E} \left[\sigma'_{\boldsymbol{x}} - \nu \left(\sigma'_{\boldsymbol{y}} + \sigma'_{\boldsymbol{z}} \right) \right]$		
$\boldsymbol{\varepsilon} \boldsymbol{y} = \frac{1}{E} \left(\boldsymbol{\sigma} \boldsymbol{y} - \boldsymbol{\nu} \left(\boldsymbol{\sigma} \boldsymbol{x} + \boldsymbol{\sigma} \boldsymbol{z} \right) \right)$	-	
$\boldsymbol{\varepsilon}_{\boldsymbol{z}} = \frac{1}{E} \left(\boldsymbol{\sigma}_{\boldsymbol{z}}' - \boldsymbol{\nu} \left(\boldsymbol{\sigma}_{\boldsymbol{x}}' + \boldsymbol{\sigma}_{\boldsymbol{y}}' \right) \right)$	}	(4.4)
$\gamma_{xy} = \tau_{xy} / G$		
$\gamma_{yz} = \tau_{yz} / G$		
$\gamma_{zx} = \tau_{zx} / G$		

ここに、E:ヤング率、 ν :ポアソン比、 $G = E/2(1 + \nu)$:せん断弾性定数。

4.2.2 軸対称三軸圧縮試験への適用

(a)

軸対称の三軸圧縮試験においては円柱供試体の軸方向に最大主応力 o', それに直角な方向に最小 主応力 o'3 を作用させるから,供試体として地盤に鉛直な供試体と水平な供試体を選べば,異方性 対称軸と主応力軸は一致することになる。いま主応力増分を d o'1 および d o'3 として,それぞれの 向きの供試体に式(4.2)を適用する。

鉛直供試体の場合 (
$$\Delta \sigma'_{z} = \Delta \sigma'_{1}$$
, $\Delta \sigma'_{x} = \Delta \sigma'_{y} = \Delta \sigma'_{3}$)
 $\varepsilon_{r} = \varepsilon_{x} = \varepsilon_{y} = \frac{1}{E_{H}} [(1 - \nu_{H}) \Delta \sigma'_{3} - n \nu_{\nu_{H}} \Delta \sigma'_{1}]$
 $\varepsilon_{a} = \varepsilon_{z} = \frac{n}{E_{H}} [-2 \nu_{\nu_{H}} \Delta \sigma'_{3} + \Delta \sigma'_{1}]$

$$(4.5)$$

ここに、 ϵ_a :軸ひずみ、 ϵ_r :側方ひずみ。

(b) 水平供試体の場合 (x軸を最大主応力軸に一致させると、 $\Delta \sigma'_x = \Delta \sigma'_1$ 、 $\Delta \sigma'_y = \Delta \sigma'_z = \Delta \sigma'_3$)

$$\varepsilon_{a} = \varepsilon_{x} = \frac{1}{E_{H}} \left[\Delta \sigma_{1}^{\prime} - (\nu_{H} + n \nu_{VH}) \Delta \sigma_{3}^{\prime} \right]$$

$$\varepsilon_{r1} = \varepsilon_{y} = \frac{1}{E_{H}} \left[-\nu_{H} \Delta \sigma_{1}^{\prime} + (1 - n \nu_{VH}) \Delta \sigma_{3}^{\prime} \right]$$

$$\varepsilon_{r2} = \varepsilon_{z} = \frac{n}{E_{H}} \left[-\nu_{VH} \Delta \sigma_{1}^{\prime} + (1 - \nu_{VH}) \Delta \sigma_{3}^{\prime} \right]$$

$$(4.6)$$

- 92 -

ここに、 ϵ_{r1} 、 ϵ_{r2} はそれぞれ 9 軸および 2 軸方向への側方ひずみ。

式(4.5),(4.6)に注目すると、せん断弾性定数 G_{VH} が含まれていないので、鉛直および水 平供試体の変形挙動は4つの独立した弾性パラメ – タ $n, E_H(E_V), \nu_{VH}(\nu_{HV}), \nu_H$ で記述でき ることになる。

この応力~ひずみ関係の数学モデルにもとづいて、室内実験による変形挙動に関する研究が行われている。Henkel⁴⁾は非排水三軸圧縮および平面ひずみ試験における有効応力径路が異方性の影響を受けることから、この有効応力径路の勾配で異方弾性挙動を予測できるとした。Atkinson⁵⁾は、 排水せん断試験ではRoweのダイレイタンシー式の線形が、また非排水せん断試験ではHenkel の有効応力径路の線形性が異方弾性挙動を支配するパラメータとし、不撹乱のLondon clay につい て三軸圧縮および平面ひずみ試験を行い、鉛直および水平供試体の排水せん断試験から弾性パラメ ータが決定できることを示し、ヤング率に及ぼす応力履歴の影響を調べている。Starzewski ら⁶⁾は 著しく過圧密されたLias clayについて圧密排水せん断試験を行い、体積ひずみと軸ひずみは線形 関係にあって、そのひずみ比は載荷径路が異なっても一定となることを示し、また、排水せん断試 験で求めた弾性パラメータから非排水せん断のヤング率および間隙圧係数を予測できるとしている。 一方、赤井ら^{7.8.9}は、軟岩を対象とする構造物の強度・変形問題に適用できる、より一般性をもつ構

一万, 赤井ら は, 軟岩を対象とする構造物の強度・変形問題に適用できる, より一般性をもつ構成式の確立を目的とし, 地盤材料をひずみ硬化 – 軟化型の弾塑性体で, かつダイレイタンシーを伴うひずみ速度依存性材料ととらえた一連の研究を行っている。彼らは等方材料である第三紀堆積軟岩に属する多孔質凝灰岩の円柱供試体を用いて等方圧密試験, 圧密非排水および圧密排水せん断試験を行って, その力学特性を調べた。その結果のうち, 軟岩の弾性挙動に注目しよう。堆積軟岩は水で飽和していれば, Terzaghiの有効応力を用いてその力学挙動を記述できる。非排水圧縮せん断過程では平均応力 σm の増分 Δσm に見合う間隙水圧増分 Δu のみが生ずる領域があり, その過程は完全な弾性体として挙動し, 排水せん断試験では体積圧縮が生じ, この領域で弾性定数が決定できるとしている。また, この領域は骨格構造の弾性挙動過程で, 引続いてダイレイタンシーを伴うせん断変形による弾性変形領域があり, 両者を含めた弾性変形の限界, すなわち塑性降伏応力は主応力差~偏差ひずみ関係を両対数紙上に求めて得られる折点の応力値として決定でき, この降伏値から求まる降伏曲面は平均有効応力 σm と非線形関係となるとしている。

ここに注目されることは、弾性挙動領域での体積ひずみと軸ひずみの関係の線形性に関し、London clay, Lias clay のような硬質粘土と赤井らの用いた軟岩とに差異があることである。次に、少し 詳しく弾性挙動特性について見てみよう。

4.2.3 弾性変形挙動の特性

図-4.1と図-4.2は島尻層泥岩の圧密排水試験による主応力差〜軸ひずみ関係と,圧密非排水 試験による主応力差〜間隙水圧〜軸ひずみ関係の例を示したものである。これらの応力〜ひずみ関 係は初期の部分で比較的線形を示しているが,厳密には線形関係にない。

Atkinson¹⁰⁾は土の弾性挙動と塑性挙動の区別について考察している。理想弾性体の変形は、等方性、異方性、線形性あるいは等質性に関係なく除荷過程で完全回復性で、載荷一除荷サイクルで物体に供給されるエネルギーは零となり、変形は応力増分に依存し、載荷履歴には無関係である。一方、理想塑性体の変形は非回復性で、載荷履歴によりエネルギーは物体内で消散し、変形は応力状

図-4.1 主応力差と軸ひずみの関係 (圧密排水三軸圧縮試験)

図-4.2 主応力差~間隙水圧~軸ひずみ関係 (圧密非排水三軸圧縮試験)

態に依存し、そのときのひずみ増分ベクトルの方向は応力増分の方向に無関係である。従って、そ れぞれの構成関係は次式で示される。

弾性変形
$$d \epsilon_{ij} = F(d\sigma'_{kl})$$
 (4.7)
塑性変形 $d \epsilon_{ij} = G(\sigma'_{kl})$ (4.8)

ここに、i, jおよびk, l=1,2,3。式(4.7)は式(4.1)の増分形式で示され、他方式(4.8)の関数Gには降伏関数、流れ則および硬化則が含まれている。この両式で弾性挙動と塑性挙動を定義できるが、室内試験の排水ならびに非排水三軸圧縮試験における供試体の挙動は、主応力差~軸ひずみ関係に代わるものとして次式で示される2つのパラメータで弾性・塑性の区別が可能である。

$$D = 1 - \frac{d \epsilon_v}{d \epsilon_a} \tag{4.9}$$

$$M = \frac{d \sigma_1'}{d \sigma_3'} \tag{4.10}$$

 C^{CR} , ϵ_v :体積ひずみ, ϵ_a :軸ひずみ。DはRoweのダイレイタンシー式で、 $\epsilon_v \geq \epsilon_a$ の関係の傾き, MはHenkelによる σ_1^i , σ_3^i 応力面での有効応力径路の傾きである。式(4.7)が異方弾性体のとき式(4.2)で、等方性のとき式(4.4)で示され、ヤング率 Eii とポアソン比 ν_{ij} が含まれるなら、弾性としてのサフイクス e を付して、次式で示される。

$$De = F_1(\nu_{ij}, n, \frac{d\sigma_3}{d\sigma_1})$$
 (4.11)

$$Me = F_{2}(v_{ii}, n)$$
 (4.12)

いま、 ν_{ij} とnは一定とすれば、通常の側圧を一定に保つ三軸排水試験では $d\sigma_3 = 0$ となるから、 De = const, Me = const (4.13)

この式は、通常の三軸圧縮試験での弾性挙動として、ひずみ径路あるいは応力径路が線形でなけれ ばならず、そのためにはヤング率は一定でなくてもよいが、ポアソン比 ν_{ij} とヤング係数比 n は一 定でなければならないことを意味している。塑性域では Dp, Mp(p: 塑性の意味) は非線形とな り、この線形から非線形に変化するときの応力値を降伏応力と定義した。この手法を不撹乱 London clay を用いて調べ⁵⁾、軸対称三軸圧縮試験のみならず、平面ひずみ試験にも適用できること、また、 Dおよび Mの線形からの離脱点とした求めた降伏応力は両者で一致することを示している。なお、 先に述べた Stazewski ら⁶⁾のLias clay の弾性挙動も上述の特性を満足するものである。

他方.赤井ら⁷⁾による等方性の凝灰岩を用いた排水せん断試験を見てみよう。その結果を体積ひず み ε_v と偏差ひずみ e_1 (= $\varepsilon_a - \varepsilon_v$ /3)の関係で圧密圧力5 kg/cd と25 kg/cd の場合に示したのが

図-4.3 多孔質凝灰岩の体積ひずみと偏差ひずみの関係(赤井らによる)

図-4.3 である。この関係に注目すると、図中に示すA点までαの角度をもつ直線関係があるが、 A点からはα'の異なる角度の直線関係に変化してB点に至り、それ以降は急激に非線形の関係となっている。図中のB点は降伏応力に対応しているが、この降伏応力は主応力差〜偏差ひずみ関係を 両対数紙上に求めて得られる折点の応力値として決定され、この決定法は載荷 - 除荷の繰返し試験 によってその妥当性が確められている。ところで、図中の直線部分の勾配 tan α (tan α')はポア ソン比 ν と次の関係にある。

$$\nu = (1 - \frac{2}{3} \tan \alpha) / 2 (1 + \frac{1}{3} \tan \alpha)$$
 (4.14)

 $\tan \alpha$ 一定の部分から求まるポアソン比は、実験では圧密圧力に関係なく一定であるが、A点以降 での $\tan \alpha$ 一定部分では、圧密圧力5 kg/cd の場合のように、体積膨張を示す拘束圧の低いときポ アソン比の増加、体積圧縮の生ずる圧密圧力25 kg/cd のときポアソン比の減少へと変化する。この ことは、A点に相当する応力まで骨格構造の弾性挙動を、A点以降の応力では拘束圧が小さいとき には構造の局部的破壊が体積の膨張として、拘束圧が大きいと体積の圧縮となるダイレイタンシー を伴う弾性変形を示す。すなわち、A点は体積変化の比例限界、B点はせん断変形の比例限界で、 B点までは安定な変形過程にあるとしている。このA点までの骨格構造の弾性挙動は、非排水せん 断試験での平均応力 σ_m の増分 $\Delta \sigma_m$ に等しい間隙水圧増分 Δu が生ずるという実験事実にもとづ くものであるが、Henkelの有効応力径路にも弾性領域内で異なる勾配の2つの直線関係が成立する と予想される。 以上のことから、London clay やLias clay の変形特性と赤井らの用いた試料の変形特性とに差 異があることがわかる。前者は古第三紀,中生代の古い地層の硬い土であるが,あまり固結してな く過圧密効果が著しいものであるのに対し,我が国における堆積軟岩は前者より非常に新しい時代 の堆積物であるが,固結したものが多いといわれている。従って前者のような著しい過圧密土では, 主にダイレイタンシーを伴う弾性変形であるのに比べ,後者のような続成作用による結合力が発達 した軟岩では,この結合力が破壊されるまでは骨格構造の弾性挙動を示し,その後に過圧密土と同 じダイレイタンシーを伴う弾性変形を生ずるものと考えられる。

次に、体積ひずみと軸ひずみとのひずみ比.および有効応力径路の傾きを異方弾性パラメータで 示す。軸対称三軸圧縮排水試験において $\Delta \sigma'_1 \ge \Delta \sigma'_3$ が一定の応力比で作用するとき、その比を $\bar{K} = \Delta \sigma'_3 / \Delta \sigma'_1$ とおいて⁶⁾, 鉛直供試体の場合、

$$\varepsilon_{a} = n \Delta \sigma'_{1} (1 - 2 \nu_{VH} \overline{K}) / E_{H}$$

$$\varepsilon_{r} = \Delta \sigma'_{1} [(1 - \nu_{H}) \overline{K} - n \nu_{VH}] / E_{H}$$

これより体積ひずみ *ε*v は,

$$\varepsilon_{v} = \varepsilon_{a} + 2\varepsilon_{r} = \Delta \sigma'_{1} \left[n(1 - 2\nu_{VH}) + 2(1 - \nu_{H} - n\nu_{VH}) K \right] / E_{H}$$

$$\widetilde{c}_{v} \sim \tau, \quad \left(\frac{\varepsilon_{v}}{\varepsilon_{a}} \right)_{v} = \frac{\left[(1 - 2\nu_{VH}) + 2(1 - \nu_{H} - n\nu_{VH}) \overline{K} / n \right]}{(1 - 2\nu_{VH}\overline{K})}$$

$$(4.15)$$

水平供試体の場合も同様に求めると,

$$\left(\frac{\varepsilon_{v}}{\varepsilon_{a}}\right)_{H} = \frac{\left[\left(1 - \nu_{H} - n \nu_{VH}\right) + \left(1 + n - \nu_{H} - 3 n \nu_{VH}\right) \bar{K}\right]}{1 - \left(\nu_{H} + n \nu_{VH}\right) \bar{K}}$$
(4.16)

側圧を一定に保ち、軸応力だけを増加させる通常の三軸圧縮試験では $d\sigma_3 = 0$ であるから、

$$\left(\begin{array}{c} \frac{\varepsilon_{v}}{\varepsilon_{a}}\right)_{v} = 1 - 2 \nu_{vH} \\
\left(\frac{\varepsilon_{v}}{\varepsilon_{a}}\right)_{H} = 1 - \nu_{H} - n \nu_{vH} \\
D_{v} = 2 \nu_{vH} \\
D_{H} = \nu_{H} + n \nu_{vH} \\
\end{array}\right)$$
(4.17)
$$(4.18)$$

有効応力径路の勾配 Mは Henkel によって求められている⁴⁾。非排水せん断試験では供試体が水で 飽和していれば、固体実質部の圧縮率が水の圧縮率より小さいので水の体積圧縮量に近い変化しか 生じない。従って、通常体積変化がない($\epsilon_v \neq 0$)として取扱うことができるから、鉛直供試体 に対する勾配 M_v は、

$$M_{V} = \frac{\Delta \sigma'_{1}}{\Delta \sigma'_{3}} = -\frac{2 (1 - \nu_{H} - n \nu_{VH})}{n (1 - 2 \nu_{VH})}$$
(4.19)

また,水平供試体に対する勾配 M_Hは,

$$M_{H} = \frac{\Delta \sigma'_{1}}{\Delta \sigma'_{3}} = -\frac{1 + n - \nu_{H} - 3 n \nu_{VH}}{1 - \nu_{H} - n \nu_{VH}}$$
(4.20)

いま,等方性を仮定すれば、n = 1, $\nu = \nu_{VH} = \nu_H$ として $M = M_V = M_H = -2$ となり,弾性パラ メータに無関係な定数となる。このことは,有効応力径路の勾配を調べることにより異方性を容易 に判断できることを示している。

4.2.4 弱固結状態にある泥質岩の弾性変形特性

ここで対象としている島尻層泥岩の変形特性を Atkinson⁵⁾および赤井ら⁷⁾の結果と比較して みよう。

図-4.4は鉛直供試体に対して行った排水せん 断試験結果のうち, 圧密圧力 $\sigma_c^2 = 1,10,25 \text{ kg} / \text{ cm}$ の各場合について体積ひずみと軸ひずみの関係を, 軸ひずみ2%まで示したものである。 $\sigma_c = 1 \text{ kg} / c_c$ cmiと10kg/cmiの場合について見ると、図中に示す Y点までのαの角度をもつ直線関係があり、Y点 でその直線から離脱し、わずかな範囲で異なる 角度の直線が見られるが、その後は非線形を示し ながら破壊点 P に至る。一方、 $\sigma_c = 25 \text{ kg} / \text{calo}$ 場合には、線形関係の初期の部分に乱れが生ずる が, 図中のA点からY点までαなる角度の線形に あり、Y点以降は $\sigma_c = 1 \text{ kg} / \text{cm}$ あるいは10 kg / cm の場合と同様な過程をだどる。このような実験結 果は、Y点まで1つの直線関係のタイプと、この 直線の初期の部分に乱れを生ずるタイプの2つの グループに分けられ、前者は $\sigma_c = 1, 10, 15, 20$ kg / cm o場合に、後者は $\sigma_c = 3, 5, 7, 25 kg / cm$ の場合に現われ、それぞれのタイプは半々である。

図-4.4 排水圧縮せん断過程における 体積ひずみと軸ひずみの関係

いま,初期に乱れのある場合の体積ひずみと軸ひずみの関係をまとめて示すと図-4.5となる。A 点までの線形関係は良くないが,原点とA点を直線で置換えると,骨格構造の弾性挙動の存在が示 唆される。しかし,その勾配は圧密圧力によってかなりのばらつきを示しているのに対し,初期の

乱れのない場合,Y点までの線形の勾配は圧密圧 力の影響を受けず,ほぼ一定値を示している。す なわち, $\sigma'_c = 3, 5, 7, 25 \text{ kg} / \text{cm}$ の場合のように 弾性変形に骨格構造の弾性挙動が顕著に現われる のか,あるいは $\sigma'_c = 1, 10, 15, 20 \text{ kg} / \text{cm}$ の場合 のように骨格構造の弾性挙動とせん断変形の弾性 挙動がその卓越した特性を相互に相殺しながら挙 動しているのか,今回の排水試験結果から明確に 判断できない。そこで,この挙動を非排水試験の 有効応力径路で調べてみよう。

図-4.5 初期の線形に乱れがある場合の 体積ひずみと軸ひずみの関係

図 – 4.6 は σ_c^2 = 5, 15, 25 kg / cm の場合の鉛直および水平供試体に対する有効応力径路を最大応力まで示したものである。また、図 – 4.7 は σ_c^2 = 30 ~ 60 kg / cm における鉛直供試体の有効応

図-4.6 有効応力径路の比較

図-4.7 高圧圧密圧力時の有効応力径路

力径路を示したものである。図-4.6から明らかなように、供試体の向きによってその応力径路が 異なり、その立ち上りは等方弾性体の有効応力径路の勾配である $\Delta \sigma'_1 / \Delta \sigma'_3 = -2$ を基準とする と、鉛直供試体では左方へ、水平供試体では右方へ向いている。それぞれの径路の傾向は図中のA点 まではある勾配の線形関係にあり、A点からB点までは異なる勾配の線形関係を示し、その後非線 形となって破壊に至る。このA~B間の線形関係は、鉛直供試体では $\sigma'_c = 60$ kg/cdまで体積膨張 傾向を示しているが、水平供試体については $\sigma'_c = 20$ kg/cdまでは体積膨張傾向、 $\sigma'_c = 25$ kg/cd では体積圧縮傾向($\sigma'_c = 25$ kg/cdでは水平供試体3個について同じ結果である)を示し、骨格構 造の弾性変形とダイレイタンシーを伴う弾性変形の存在が予想される。さて、等方弾性体の有効応

力径路の勾配M = -2と比較すると,実験 に用いた試料は明らかに異方弾性体として 挙動しており,しかも圧密圧力60 kg / cdに おいても異方性は顕著である。いま,A点 までの有効応力径路の勾配を鉛直および水 平供試体に対しそれぞれ M_V , M_H とし, 各圧密圧力に示すと図 - 4.8 となる。図に は複数供試体のとき,その幅と平均値を同 時に示してあるが,圧密圧力25 kg / cf 以

図-4.8 圧密圧力と有効応力径路勾配Mの関係

下に限定すると、 M_v , M_H は圧密圧力の影響を受けず、平均値として $M_v = -1.30$, $M_H = -3.10$ である。また、 $\sigma_c = 30 \sim 60 \text{ kg / cd}$ で $M_v = -0.9 \sim -1.0$ であるが、同様に圧密圧力の影響は認められない。

次に, 排水試験におけるひずみ径路の線形関係の限界, あるいは非排水試験における有効応力径 路の線形関係の限界を降伏応力との関係で調べてみよう。ここで, 排水と非排水試験結果を比較す るため鉛直供試体だけに限定し, また降伏応力は赤井ら²⁾による決定法にもとづくものである。排 水試験による主応力差と偏差ひずみの関係を両対数プロットした例が図-4.9で, 容易に降伏応力 を決定できる(偏差ひずみの代わりに軸ひずみを用いても結果は同じである)。このようにして求

めた降伏応力と図-4.4の排水試験によるひずみ 径路の線形関係からの離脱点として求まる Y点の 応力を($\sigma_1 - \sigma_3$)/2~ σ_m 応力面で比較すると 図-4.10となる。この図には同時に非排水試験の 両対数表示で求めた降伏応力も示してある。排水 試験での Y点は降伏応力と一致し、しかも非排水 試験による降伏応力とも一致している。このこと から弾性限界はひずみ径路の線形関係の限界 Y点 として決定でき、その決定法も容易である。次に、 図-4.11は非排水試験の降伏応力と有効応力径路 での B点、A点の応力を同様に比較したものであ

図-4.9 降伏応力の決定

る。B点の応力は降伏応力と一致しているので,B点が弾性限界であることがわかる。また,A点の応力はB点の応力よりも低い値を示している。従って,この島尻層泥岩の弾性挙動特性は,A点までは骨格構造の弾性挙動,A点からB点まではダイレイタンシーを伴う弾性挙動を示すものである。さらに図-4.11には,図-4.5に示したように,排水試験によるひずみ径路の初期に乱れのあ

る場合のひずみ径路上のA点の応力も比較してあるが、この応力は非排水試験による有効応力径路 でのA点の応力とほぼ一致していて、排水試験でも骨格構造の弾性挙動が顕著に現われうることを 示唆している。なお、比較のため残留強度時の応力状態も同時に図中に示してある。 以上の検討より,実験に用いた供試体の弾性挙動特性が明らかとなったので,再び排水試験によるひずみ径路に注目すると,図~4.4 に一部示したように, $\sigma'_{c} = 1$,10,15,20 kg/cm²の場合のひずみ径路の直線勾配を tan α とし,また $\sigma'_{c} = 3$,5,7,25 kg/cm²の場合のA Y間の直線勾配を tan α ,図~4.5 に示すように,原点とA点を直線に近似させたときの勾配を tan α_1 として,式(4.17)からそれぞれのポアソン比 ν_{VH} を求め,各圧密圧力に対して示すと図~4.12となる。tan α とtan α'

から求まるポアソン比はばらつきがあるが、傾向 として圧密圧力の影響を受けずほぼ一定値で、平 均値はそれぞれ0.14、0.18である。この $\tan \alpha'$ から求めたポアソン比0.18は、弾性挙動特性から 明らかなように、ダイレイタンシーを伴った弾性 挙動時の値を意味している。一方、 $\tan \alpha_1$ から求 まる骨格構造の弾性挙動時のポアソン比は、 $\sigma'_c =$ 1 kg/cd'での-0.19から $\sigma'_c = 25$ kg/cd'での0.10 と変化し、確かな傾向でないが、圧密圧力の影響 を受ける結果となっていて、図-4.8に示した骨 格構造の弾性挙動としての M_v が圧密圧力の影響 を受けないことに反する結果となる。このことに

ついては、実験結果としての tan α_1 の線形性が良くないことから、さらに詳細な排水試験の追試が鉛 直供試体のみならず、水平供試体についても必要である。水平供試体についての排水試験の必要性は、 式(4.17)から明らかなように、異方弾性パラメータを決定するためには鉛直と水平の両供試体について の実験結果を必要とすることの他に、水平供試体の非排水試験において圧密圧力25kg / cdfでの有効 応力径路がA点以降では体積圧縮傾向を示している実験事実によるものである。ともあれ、現在のデ ータから確かなポアソン比の決定ができないことになるが、次節の非排水試験の間隙水圧特性から 異方弾性挙動を検討する上で、排水試験から求まる何らかの異方弾性パラメータが必要であり、し かもその際ポアソン比が圧密圧力の影響を受けるなら、その取扱いは非常に困難となる。そこで、 tan α から求まるポアソン比が骨格構造の弾性挙動をも表現していると仮定し、以後本研究ではこ の試料のポアソン比の1つである ν_{VH} は0.14の値であると仮定する。この仮定は、以後の検討で 定量的取扱に関して問題を生ずるかも知れないが、異方弾性体挙動の定性的取扱い、あるいは異方 弾性パラメータ決定手法については何ら支障をきたすものではないと考えられる。

以上のことを実験に用いた島尻層泥岩についてまとめると、次のようになる。弾性挙動は骨格構 造の弾性挙動とダイレイタンシーを伴う弾性挙動の両挙動を示し、弾性限界は、排水試験の場合図ー 4.4 に示すひずみ径路のY点、非排水試験の場合図-4.6 に示す有効応力径路のB点に相当し、そ の応力は応力~ひずみ関係を両対数紙上に求めて得られる折点の応力値として決定される降伏応力 と一致している。骨格構造の弾性挙動は続成作用による結合力の影響の寄与によるものと考えられ、 この挙動は非排水試験の有効応力径路に顕著に現われる。弾性挙動としてのダイレイタンシー過程は、 鉛直供試体の場合圧密圧力60kg / cmiにおいても体積膨張傾向にあるが、水平供試体の場合は小さい 拘束圧で体積膨張傾向、大きな拘束圧(圧密圧力25kg / cmi) で体積圧縮傾向にある。また、有効応
力径路から異方性が明らかであるが、異方弾性パラメータ決定にはさらに水平供試体について排水 試験を必要とする。

行った実験の主体は,鉛直および水平供試体についての非排水試験で,異方性を示す有効応力径 路は間隙水圧の発生量に反映されるものである。そこで,次に間隙水圧挙動から異方性挙動を検討 し,排水試験結果にもとづいて仮定したポアソン比 *vvH* を利用して他の異方弾性パラメータを決定 しよう。なお,有効応力径路の2つの線形関係を同時に対象とすることは排水試験の追試を必要と するので,以後の弾性挙動は骨格構造の弾性挙動に限定する。

4.3 間隙水圧挙動から見た異方弾性挙動(非排水せん断試験における弾性挙動)¹⁾

4.3.1 間隙圧係数

非排水せん断試験での異方弾性挙動はHenkelの有効応力径路の勾配 M_V, M_Hで示されるが, 有 効応力径路がせん断応力の増加に伴う発生間隙水圧の影響を受けることから, 弾性挙動範囲での間 隙水圧挙動に注目してみよう。

Skempton¹¹⁾は、土を等方弾性体と仮定して飽和した土の三軸圧縮試験における間隙水圧を次式で示した。

$$\Delta u = \Delta \sigma_3 + \frac{1}{3} (\Delta \sigma_1 - \Delta \sigma_3)$$

しかし、実際の土は弾性体でも等方性でもないことから、間隙圧係数Aを導入し、

 $\Delta u = \Delta \sigma_3 + A \left(\Delta \sigma_1 - \Delta \sigma_3 \right) \tag{4.21}$

と表示した。もちろん、等方弾性体としての土ではA=1/3である。

Pickering¹²⁾は Skempton と同様な手法を用いて異方弾性土の間隙水圧挙動を考察している。異 方性供試体に等方有効応力 *do*'を作用させると、そのときの体積ひずみは

$$\epsilon_{\boldsymbol{v}} = \epsilon_{\boldsymbol{x}} + \epsilon_{\boldsymbol{y}} + \epsilon_{\boldsymbol{z}} = (n+2-4 \ n \ \nu_{VH} - 2 \ \nu_{H}) \frac{\Delta \sigma'}{E_{H}}$$
(4.22)

となり、この体積ひずみは一般に次式で示される。

$$\varepsilon_{v} = \varDelta V / V = C_{s} \varDelta \sigma' \qquad (4.23)$$

ここに、
$$C_s = \frac{n+2-4 n \nu_{vH} - 2 \nu_H}{E_H}$$
 :土の骨格圧縮率 (4.24)

通常の側圧を一定に保って軸応力だけを増加させる圧密非排水型三軸圧縮試験では、間隙水圧の変化によって $\Delta \sigma_1$, $\Delta \sigma_3$ が変化するから、いま鉛直供試体について考えると、 $\Delta \sigma_1$, $\Delta \sigma_3$ の変化 による体積ひずみは

$$\varepsilon_{\boldsymbol{v}} = \frac{n\left(1-2\,\boldsymbol{v}_{VH}\right)}{E_{H}}\,\boldsymbol{\Delta}\,\boldsymbol{\sigma}_{1}^{\prime} + \frac{2\left(1-\boldsymbol{v}_{H}-n\,\boldsymbol{v}_{VH}\right)}{E_{H}}\,\boldsymbol{\Delta}\,\boldsymbol{\sigma}_{3}^{\prime}$$

である。一方、供試体が飽和していると、その供試体の間隙率をn',間隙を満たす水の圧縮率を C_w とし、間隙水圧が Δu だけ変化したときの間隙水の体積変化は $\Delta u \cdot C_w \cdot n'$ となる。この間隙水の体積変化と有効応力変化による上式の体積ひずみを等しくおき、 $\Delta \sigma'_1 = \Delta \sigma_1 - \Delta u$ 、 $\Delta \sigma'_3 = \Delta \sigma_3 - \Delta u$ および C_s を考慮すると、

$$\Delta u (C_s + C_w n') = C_s \Delta \sigma_3 + \frac{n (1 - 2 \nu_{VH})}{E_H} (\Delta \sigma_1 - \Delta \sigma_3)$$

の関係が得られる。*Cw*の値は一般の地盤材料の*Cs*に比べてそのオーダが低いことから、これを無 視し、*Cs*を弾性パラメータで示すと、間隙水圧は次式となる。

$$\Delta u = \Delta \sigma_3 + \frac{n (1 - 2 \nu_{VH})}{n + 2 - 4 n \nu_{VH} - 2 \nu_H} (\Delta \sigma_1 - \Delta \sigma_3)$$
(4.25)

この式を式(4.21)の形に表示すると、鉛直供試体の間隙水圧は、

$$\Delta u_V = \Delta \sigma_3 + A_V (\Delta \sigma_1 - \Delta \sigma_3)$$

$$Z \subset VC, \qquad A_{V} = \frac{n (1 - 2 \nu_{VH})}{n + 2 - 4 n \nu_{VH} - 2 \nu_{H}} \qquad (4.26)$$

となり、 A_V が鉛直供試体の間隙圧係数である。

以上の Pickering の手法は水平供試体にも容易に適用できる。水平供試体に $\Delta \sigma_1^{\prime}$, $\Delta \sigma_3^{\prime}$ が作用 するときの体積ひずみは,

$$\varepsilon_{v} = \frac{(1 - \nu_{H} - n \nu_{VH})}{E_{H}} \Delta \sigma'_{1} + \frac{(1 + n - \nu_{H} - 3 n \nu_{VH})}{E_{H}} \Delta \sigma'_{3}$$

これを間隙水の体積変化と等しくおいて、 C_s は式(4.24)と同一であることと、 $\Delta \sigma'_1 = \Delta \sigma_1 - \Delta u$ 、 $\Delta \sigma'_3 = \Delta \sigma_3 - \Delta u$ を考慮すると、

$$\Delta u (C_s + C_w n') = C_s \Delta \sigma_3 + \frac{(1 - \nu_H - n \nu_{VH})}{E_H} (\Delta \sigma_1 - \Delta \sigma_3)$$

Cw を無視すれば、

$$\Delta u = \Delta \sigma_3 + \frac{1 - n \nu_{VH} - \nu_H}{n + 2 - 4 n \nu_{VH} - 2 \nu_H} (\Delta \sigma_1 - \Delta \sigma_3)$$

すなわち,水平供試体の間隙水圧は

$$\Delta u_{H} = \Delta \sigma_{3} + A_{H} (\Delta \sigma_{1} - \Delta \sigma_{3})$$

$$A_{H} = \frac{1 - n \nu_{VH} - \nu_{H}}{n + 2 - 4 n \nu_{VH} - 2 \nu_{H}}$$
(4.27)

となり、A_Hが水平供試体の間隙圧係数である。

式 (4.26)と(4.27) から明らかなように,間隙圧係数は骨格構造の異方弾性パラメータで表現でき,間隙水圧挙動が異方性を示すことがわかる。等方弾性体としての土を仮定すると,n=1. $\nu = \nu_{VH} = \nu_H \ge table$, $A = A_V = A_H = 1/3$ で Skempton の間隙圧係数に他ならない。

さて,異方弾性土の間隙水圧は式(4.21)で一般表示できることが明らかとなったが,Henkel¹³⁾ は,間隙水圧の発生は平均応力 *om* と偏差応力とによるものと考え,次式で表わした。

$$\Delta u = \frac{\Delta \sigma_1 + 2 \Delta \sigma_3}{3} + (A - \frac{1}{3}) (\Delta \sigma_1 - \Delta \sigma_3)$$
$$= \Delta \sigma_m + (A - \frac{1}{3}) (\Delta \sigma_1 - \Delta \sigma_3) \qquad (4.28)$$

この式を変形すると,

$$\frac{\Delta u}{\Delta \sigma_m} = 1 + (A - \frac{1}{3}) \frac{(\Delta \sigma_1 - \Delta \sigma_3)}{\Delta \sigma_m}$$

側圧 σ_3 を一定に保つ通常の三軸圧縮試験では、主応力差の増加 $\Delta(\sigma_1 - \sigma_3)$ とともに平均応力 $\Delta \sigma_m$ が $\Delta(\sigma_1 - \sigma_3) / 3$ だけ増大することになる。そこで、上式の左辺 $\Delta u / \Delta \sigma_m$ はそのま

まにし、右辺で $\Delta \sigma_m = \Delta(\sigma_1 - \sigma_3) / 3 \ge 0$ 、Aについて整理すると、

$$A = \frac{1}{3} \cdot \frac{\Delta u}{\Delta \sigma_m} \tag{4.29}$$

ここに、 $\Delta \sigma_m = \Delta(\sigma_1 - \sigma_3) / 3$ 。すなわち、弾性領域で $\Delta u \ge \Delta \sigma_m$ との比が一定であると、 その比の1/3が間隙圧係数として求まる。赤井ら⁷⁾は等方性である多孔質凝灰岩を $\Delta u \sim \Delta \sigma_m$ 関係で整理し、これらの関係が45°の直線上にあること、すなわち $\Delta u / \Delta \sigma_m = 1$ となることから A = 1 / 3とし、理想等方弾性として挙動することを示している。

実験に用いた試料について、鉛直供試体と水平供試体の平均応力増分と間隙水圧変化の関係の代

表例を示したのが図-4.13である。各供試体 とも **Δu** と **Δo**_m の関係は, 図中のA 点まで一 定比の直線関係, A点からB点までは比の値 が異なるが、やはり直線関係を示し、 B 点以降 では非線形となる。A点までの平均応力増分 と間隙水圧変化の関係を見ると、鉛直供試体 では $\Delta \sigma_m$ の増分よりも大きな間隙水圧変化を, 水平供試体では *d* om の増分よりも小さな間隙 水圧変化を示し、しかも等方弾性体挙動とし ての45°線上になく明らかに異方性である。 A点以後の線形が初期の線形から下方へ離脱 するのは間隙水圧の減少、すなわち体積膨張 傾向を、また水平供試体の $\sigma_c = 25 \text{ kg} / \text{cm}$ の 場合のように、上方への離脱は体積圧縮傾向 を表わし, AB間ではせん断による体積変化, いわゆるダイレイタンシー挙動を示している ことが明らかである。しかもこのA, B点は

図-4.6 に示した有効応力径路上のA点, B点に対応するものである。従って, A点までを骨格構造 の弾性挙動とし, その直線の勾配の1/3として求めた間隙圧係数A_V, A_Hを圧密圧力に対して示すと

図 - 4.14となる。 $\sigma'_{c} = 30 \sim 60 \text{ kg}/\text{cd}$ での A_{v} は平均0.5と大きな値を示すが、 $\sigma'_{c} = 25 \text{ kg}/\text{cd}$ 以下 に限定すると、 A_{v} 、 A_{H} はともに、圧密圧力の影響が 見られず、平均値はそれぞれ $A_{v} = 0.43$ 、 $A_{H} =$ 0.25 である。一方、AB間はダイレイタンシー過 程にあるので、せん断応力の増加に伴って間隙圧 係数が変化する。これをA点からB点までの間隙圧 係数の変化量で示すと、その変化量は原点とB点を 結んだ直線の勾配の1/3の値と骨格構造の弾性挙 動としての A_{v} あるいは A_{H} との差で示される。そ こで、その変化量を各圧密圧力での平均値の差で求

めると、鉛直供試体では $\sigma'_c = 30 \sim 60 \text{ kg} / \text{cnl} の領域を含めて、 <math>-0.06 \leq \Delta A_v \leq -0.02$ 、水平供 試体では $\sigma'_c = 25 \text{ kg} / \text{cnl}$ での増加を含めると、 $-0.06 \leq \Delta A_H \leq 0.02$ で、その変化量は著しいもの ではない。なお、 A B間の間隙圧係数は、式 (4.29)で $\Delta \sigma_m = \Delta (\sigma_1 - \sigma_3) / 3$ として、

$$A = \frac{\Delta u}{\Delta(\sigma_1 - \sigma_3)}$$
で示される。

また、有効応力径路の勾配 M_V , M_H は間隙圧係数 A_V , A_H と次の関係にある。

$$M_V = -2 \frac{A_H}{A_V}$$
, $M_H = -(1 + \frac{A_V}{A_H})$ (4.30)

等方弾性体のとき $A_v = A_H = 1 / 3$ で、 $M = M_v = M_H = -2$ に一致する。また、 $A_v = 0.43$ 、 $A_v = 0.25$ とすれば、 $M_v = -1.16$ 、 $M_H = -2.72$ となり、図 - 4.8 に示した平均値より小さめの値であるが、測定範囲内にある。

4.3.2 非排水圧縮によるヤング率

非排水型三軸圧縮試験から求まるヤング率 E_{U} は排水型三軸圧縮試験,すなわち有効応力状態でのヤング率Eとは異なったものである。

Henkel⁴⁾は非排水ヤング率
$$E_U \ge M_V$$
, M_H , 異方弾性パラメータの関係を次のように求めている。
鉛直供試体では, $\epsilon_a = \frac{1}{E_V} (1 - \frac{2\nu_{VH}}{M_V}) \Delta \sigma_1'$, $\Delta \sigma_a = (1 - \frac{1}{M_V}) \Delta \sigma_1'$, これより,
 $E_{UV} = \frac{\Delta \sigma_a}{\epsilon_a} = E_V \left(\frac{M_V - 1}{M_V - 2\nu_{VH}} \right)$ (4.31)

水平供試体では、 $\epsilon_a = \frac{1}{E_H} \left[1 - (\nu_H + n \nu_{VH}) M_H \right] \Delta \sigma'_1, \Delta \sigma_a = (1 - M_H) \Delta \sigma'_1,$ これより、 $E_{UH} = \frac{\Delta \sigma_a}{\epsilon_a} = E_H \frac{(1 - M_H)}{1 - (\nu_H + n \nu_{VH}) M_H}$ (4.32)

一方, Starzewski $\delta^{(6)}$ は, 間隙圧係数 A_v を利用して鉛直供試体のヤング率を, $\epsilon_a = (\Delta \sigma'_1 - 2 \nu_{vH} \Delta \sigma'_3) / E_v$ に, $\Delta \sigma'_1 = \Delta \sigma_1 - \Delta u = (1 - A_v) \Delta \sigma_1$, $\Delta \sigma'_3 = -\Delta u = -A_v \Delta \sigma_1$ なる関係を代入して, 次の関係を求めた。

$$E_{UV} = \frac{\Delta \sigma_1}{\epsilon_a} = \frac{E_V}{1 - A_V (1 - 2 \nu_{VH})}$$
(4.33)

同様に、水平供試体についても A_H を用いると、 $\epsilon_a = \left[\varDelta \sigma'_1 - (\nu_H + n \nu_{VH}) \varDelta \sigma'_3 \right] / E_H$. $\varDelta \sigma'_1 = \varDelta \sigma_1 - \varDelta u = (1 - A_H) \varDelta \sigma_1$, $\varDelta \sigma'_3 = -\varDelta u = -A_H \varDelta \sigma_1$, なる関係から次式が求まる。

$$E_{UH} = \frac{\Delta \sigma_1}{\epsilon_a} = \frac{E_H}{1 - A_H (1 - n \nu_{VH} - \nu_H)}$$
(4.34)

式(4.31)と(4.33),または式(4.32)と(4.34)は、異方弾性パラメータだけで表示すると、同一の式となり、ヤング率は間隙圧係数 A_v あるいは A_H で表わすことができる。また、非排水ヤング率の比Nは式(4.33),(4.34)を用いると、

$$N = \frac{E_{UH}}{E_{UV}} = n \frac{1 - A_V (1 - 2 \nu_{VH})}{1 - A_H (1 - n \nu_{VH} - \nu_H)}$$
(4.35)

となる。この式は Uriel $ら^{14}$ によって求められた次の異方弾性パラメータ表示式と同一のものである。

$$N = \frac{2 n (1 - \nu_H - 2 n \nu_{VH}^2)}{(1 - 2 n \nu_{VH} + n - n^2 \nu_{VH}^2 - 2 n \nu_{VH} \nu_H - \nu_H^2)}$$
(4.36)

地盤材料では、その変形が弾性的であっても、測定される応力~ひずみ関係は非線形となり、ヤン グ率は一定でない。土のヤング率は一般に、応力~ひずみ関係で最大応力の1/2点と原点との割線 係数としてのE50、あるいは応力~ひずみ曲線の原点における初期接線係数Eiが用いられる。周知の ように、排水型三軸圧縮試験ではE50とEiは比較的一致するが、非排水試験ではそれらに差異が 生ずるといわれ、また、ヤング率はせん断開始時の応力状態あるいはそれ以前の応力履歴に影響を 受けるといわれている。

Atkinson⁵⁾は、非線形の応力~ひずみ曲線の任意のひずみ測定点 1 におけるヤング率 Etを

$$E_{t}(j) = \frac{\sigma'(j+1) - \sigma'(j-1)}{\epsilon_{a}(j+1) - \epsilon_{a}(j-1)}$$
(4.37)

ここに、 $\sigma' = (\sigma_1 - \sigma_3), \epsilon_a: 軸ひずみ, として求め,$ $<math>\epsilon_a(j)$ に $E_t(j)$ をプロットして、図ー4.15に示すよう に、 $\epsilon_a = 0$ での値を E_i としている。このように求めた E_{UV} , E_{UH} を圧密圧力との関係で示したのが図ー4. 16である。図からわかるように、圧密圧力の増加に伴 ってヤング率は増加する傾向にある。また、ヤング率 の平均値の比Nも同時に示したが、Nは圧密圧力に無 関係でほぼ一定値を示し、その平均はN = 1.54 であ る。一方,図ー4.17には E_{50} による E_{UV} , E_{UH} を同 様に圧密圧力に対して示してあるが、 E_i の場合と同じ ように圧密圧力の増加に伴い増加し、 E_i の場合に比べ て E_{50} の場合の値は小さめであるが、Nはやはり圧密 圧力に無関係で、その平均はN = 1.60 であって、 E_i の場合とほぼ一致している。従って、決定法の便宜さ $\boxtimes - 4.15$

図 – 4.15 *E*;の決定(鉛直供試体) いえよう。

4.3.3 異方弾性パラメータの決定

異方弾性パラメータ $n, E_V(E_H), \nu_{VH}, \nu_H$ は, 鉛直および水平供試体について排水せん断試験 を行えば,式(4.17)から決定できる。いま,ここでは非排水せん断試験結果にもとづいて異方弾性 パラメータを決定しようとするものであるが、以後の混乱をさけるために、全応力による異方弾性 パラメータについて明確にしておく。式(4.2)を全応力表示にして軸対称三軸圧縮試験に適用す ると、全応力による異方弾性パラメータを N, $E_{UV}(E_{UH}), \nu_{UVH}, \nu_{UH}$ とすれば、非排水せん断 試験では $\varepsilon_0 = 0$ となるので、

鉛直供試体の場合

 $N(1-2\nu_{UVH}) \Delta\sigma_1 + 2(1-\nu_{UH}-N\nu_{UVH}) \Delta\sigma_3 = 0$ (4.38) 水平供試体の場合

 $(1 - \nu_{UH} - N \nu_{UVH}) \Delta \sigma_1 + (1 + N - \nu_{UH} - 3 N \nu_{UVH}) \Delta \sigma_3 = 0$ (4.39) 両式はいかなる応力径路に対しても成立しなければならない。従って、両式を満足するためには、

$$\nu_{UVH} = \frac{1}{2}$$
, $\nu_{UH} = 1 - \frac{N}{2}$ (4.40)

すなわち, *N*, *E*_{UV} (*E*_{UH}), *G*の3つがわかれば, 全応力による異方弾性挙動が記述でき, さら に等方弾性体では*G* = *E*_U / 2(1 + ν_U), ν_U = 1 / 2 になる周知の関係から*E*_U だけ求めれば よいことになる。実験に用いた島尻層泥岩の異方弾性パラメータは, *N* = 1.60, ν_{UVH} = 0.5, ν_{UH} = 0.2 で与えられることになる。

さて、非排水せん断試験にもとづいて有効応力状態での異方弾性パラメータの決定を試みる。この試みは、Henkel⁴⁾により、その仮定の根拠は定かでないが、London clay について $\nu_H = (\nu_{HV} + \nu_{VH}) / 2 = \nu_{VH} (1+n) / 2 と仮定して行われたが、後に排水三軸圧縮試験による結果と矛盾することが Atkinson⁵⁾によって指摘された。従って、非排水三軸圧縮試験だけでは異方弾性パラメータが求まらず、何らかの排水試験を必要とする。ここでは、鉛直供試体の排水三軸圧縮試験から <math>\nu_{VH}$ は既知であるとする。圧密非排水三軸圧縮 試験での測定量と異方弾性パラメータの関係を再度次式の関係で示す。

$$a_r = \frac{A_v}{A_H} = \frac{n (1 - 2 v_{VH})}{1 - n v_{VH} - v_H}$$
(4.41)

$$m_r = M_V M_H = \frac{2(1+n-\nu_H - 3 n \nu_{VH})}{n(1-2\nu_{VH})} = 2(1+\frac{1}{a_r}) \qquad (4.42)$$

$$N = n \frac{1 - A_V (1 - 2 \nu_{VH})}{1 - A_H (1 - n \nu_{VH} - \nu_H)}$$
(4.35)

ここに、式(4.41)と(4.42)は等価で、しかも測定量 a_r 、 m_r 、Nは全応力量であるから、上 記3式から求まるパラメータは式(4.40)と一致することになる。そこで、 ν_{VH} は既知量として、 式(4.41)と(4.35)から残りの ν_H 、n を求めるが、 A_V 、 A_H 、N および ν_{VH} は実験結果に により圧密圧力の影響を受けないことがわかっているので、 ν_H 、nも圧密圧力に無関係とする。 式(4.41)を ν_H について解くと、

$$\nu_{H} = 1 - \frac{(1 - (2 - a_{r}) \nu_{VH})}{a_{r}} n = 1 - bn$$

$$z \in \mathcal{U}, \quad b = \frac{(1 - (2 - a_{r}) \nu_{VH})}{a_{r}}$$

 $\nu_{H} = 1 - bn$ として式(4.35)に代入し, nについて整理すると、

$$n = \frac{N}{1 - A_{V} (1 - 2 \nu_{VH}) - A_{H} N (\nu_{VH} - b)}$$

いま,既知量あるいは測定量を $\nu_{VH} = 0.14$, $A_V = 0.43$, $A_H = 0.25$ ($a_r = 1.72$), N = 1.60とすると、b = 0.56となり,これより, n = 1.86, $\nu_H = -0.04$ が求まる。すなわち,実験に用い た島尻層泥岩の異方弾性パラメータは

n = 1.86. $\nu_{VH} = 0.14$, $\nu_{H} = -0.04$ で、この値は条件式(4.3)を満足するものである。

以上本節では、非排水せん断試験の有効応力径路は測定量としての間隙水圧に支配されることか ら、間隙水圧そのものに注目して弾性挙動を検討した。土の骨格構造の弾性領域では間隙水圧の変 化そのものが異方性で、その挙動は Skempton の間隙圧係数 Aと類似の間隙圧係数で表現できる。 しかも、この間隙圧係数は間隙水圧と平均応力の関係から求まり、異方弾性挙動のパラメータとし て有効である。有効応力径路の勾配M、非排水ヤング率は間隙圧係数で表わすことができる。なお、 非排水三軸圧縮試験結果だけでは有効応力状態での異方弾性パラメータは決定できないが、排水試 験データの一部でもあれば可能となる。ここでは、鉛直供試体の排水試験結果と間隙圧係数、非排 水ヤング率比から実験試料についての異方弾性パラメータを決定する手法を示した。この手法は既 往の非排水三軸圧縮試験結果を利用する場合に参考になると思われる。このことに関連して、異方 弾性体についての他の有効応力径路表示の特性について、次に検討する。

4.3.4 他の有効応力径路表示について

土の有効応力径路を示すのに ($\sigma_1 - \sigma_3$) / 2 ~ ($\sigma_1 + \sigma_3$) / 2 関係. および $q = (\sigma_1 - \sigma_3)$ ~ $\sigma_m = (\sigma_1 + 2\sigma_3)$ / 3 関係 がよく用いられる。鉛直および水平供試体に限定するが、これら の有効応力径路を M_V , M_H あるいは A_V , A_H , また異方弾性パラメータ n. ν_{VH} , ν_H と関係 づけておくことは、既往の試験結果を利用する場合、また等方弾性体と比較する場合、有用である。

(i) $(\sigma'_1 - \sigma'_3) / 2 \sim (\sigma'_1 + \sigma'_3) / 2$ 関係

鉛直供試体の場合

$$\frac{\varDelta \sigma'_1 - \varDelta \sigma'_3}{\varDelta \sigma'_1 + \varDelta \sigma'_3} = \frac{M_V - 1}{M_V + 1} = -\frac{A_V + 2A_H}{A_V - 2A_H} = \frac{2 + n - 4n\nu_{VH} - 2\nu_H}{2 - 2\nu_H - n} \quad (4.43)$$

水平供試体の場合

$$\frac{\varDelta \sigma'_1 - \varDelta \sigma'_3}{\varDelta \sigma'_1 + \varDelta \sigma'_3} = \frac{M_H - 1}{M_H + 1} = \frac{A_V + 2A_H}{A_V} = \frac{2 + n - 2\nu_H - 4n\nu_{VH}}{n(1 - 2\nu_{VH})}$$
(4.44)

等方弾性体の場合, *n* = 1, ν = ν_{VH} = ν_H とすると,式(4.43),(4.44)はともに3となり, 有効応力径路の向きは勾配3の直線で示される。

図-4.18は実験結果を例示したものである。先に求めた異方弾性パラメータを用いて計算した径

路の向きは、 ($\sigma'_1 + \sigma'_3$) / 2 軸から反時針方向に、鉛直供試体では $\beta_v = 86^\circ$ 、水平供試体では $\beta_H = 65^\circ$ (等方弾性体では $\beta = 72^\circ$) となり実験結果と比較的よく一致している。

(ii)
$$(\sigma'_1 - \sigma'_3) \sim \sigma'_m$$
 関係

鉛直供試体の場合

$$\frac{\varDelta \sigma'_1 - \varDelta \sigma'_3}{\varDelta \sigma'_m} = 3 \frac{M_V - 1}{M_V + 2} = -\frac{3}{2} \frac{A_V + 2A_H}{A_V - A_H} = \frac{3}{2} \frac{2 + n - 4 n \nu_{VH} - 2 \nu_H}{1 - \nu_H - n (1 - \nu_{VH})}$$
(4.45)

水平供試体の場合

$$\frac{\varDelta \sigma'_1 - \varDelta \sigma'_3}{\varDelta \sigma'_m} = 3 \frac{M_H - 1}{M_H + 2} = 3 \frac{A_V + 2A_H}{A_V - A_H} = -3 \frac{2 + n - 4 n \nu_{VH} - 2\nu_H}{1 - \nu_H - n (1 - \nu_{VH})}$$
(4.46)

等方弾性体の場合, n = 1, $\nu = \nu_{VH} = \nu_H$ とすると, 式 (4.45), (4.46) はともに, ($\Delta \sigma'_1 - \Delta \sigma'_3$) / $\Delta \sigma'_m = \infty$ となり, 有効応力径路の向きは σ'_m 軸に垂直となる。

図-4.19に実験結果を例示した。径路の向きを σ'_m 軸から反時針方向に β をとると,異方弾性パ ラメータによる予測値は、 $\tan \beta_v = -\tan (180^\circ - \beta_v) = -7.76$, $\tan \beta_H = 15.5$ から、 $\beta_v = 97^\circ$ 、 $\beta_H = 86^\circ$ となる(等方弾性体は $\beta = 90^\circ$)。ただし、図では縦軸を($\sigma'_1 - \sigma'_3$)/2 で示してあるか ら $\beta_v = 104^\circ$ 、 $\beta_H = 83^\circ$ となって、これも比較的よく一致している。

また,式(4.45)と(4.46)の比をとると,次式となる。

$$\frac{\tan \beta_V}{\tan \beta_H} = -\frac{1}{2} \tag{4.47}$$

この式は、鉛直あるいは水平供試体のどちらか一方の有効応力径路がわかれば、他方の径路も推定できることを意味する。すなわち、 β_V が既知量であるとき、 β_H は次式で求まる。

$$\beta_{H} = \beta_{V} - \tan^{-1} \left(\frac{3 \tan \beta_{V}}{1 - 2 \tan^{2} \beta_{V}} \right)$$
 (4.48)

4.4 排水三軸圧縮試験における弾性挙動¹⁾

4.4.1 排水三軸圧縮試験によるヤング率

排水三軸圧縮試験は鉛直供試体だけについて行い,その弾性挙動については本章で一部はすでに 示したが,水平供試体の挙動をも予測することも併せて,排水三軸圧縮試験の弾性挙動について検 討する。

実験試料の水平供試体の弾性挙動は、すでに求めた異方弾性パラメータn, ν_{VH} , ν_{H} で予測されるので、その値の妥当性を E_V で確めてみる。

ヤング率は、先に示したように、 E_{50} あるいは E_i として求める方法があるが、この供試体ではいず れの方法の結果もほぼ一致していたので、 E_{50} と して求めた E_V を圧密圧力に対して示したのが図 - 4.20である。この E_V は、先に示した E_{UV} 、 E_{UH} と同様、圧密圧力の増加に伴って増大する傾向にあ る。この E_V を用いて式(4.33)、(4.34)から $E_{UV} = 1.45 E_V$, $E_{UH} = 2.31 E_V$ として計算し した値を図中に示し、これをすでに図 - 4.17に示 した測定値と比較してある。計算値と実測値はよ

く一致することがわかる。しかし、この E_V による E_i としての E_{UV} , E_{UH} の予測は困難なようである。

4.4.2 排水三軸圧縮試験における弾性定数

図-4.21は排水三軸圧縮試験による主応力差と偏差ひずみの関係を,また図-4.22は主応力差と 体積ひずみの関係を示したものである。

図-4.22 体積ひずみと主応力差の関係

等方弾性理論によると、次式が成立する。

図-4.21 偏差ひずみと主応力差の関係

$$\varepsilon_{v} = \sigma'_{m} / K \qquad (4.49)$$

 $e_1 = (\sigma_1 - \sigma_3) / 3 G$ (4.50)

ここに、 ϵ_v :体積ひずみ、 $\sigma'_m = (\sigma'_1 + 2\sigma'_3) / 3$:平均有効応力、 $e_1 = \epsilon_a - \epsilon_v / 3$: 偏差ひ

ずみ, σ'_1 , σ'_3 : 軸方向ならびに側方応力成分, K: 体積弾性係数, G: せん断弾性係数。従って, $\varepsilon_v \geq \sigma'_m$ の関係からKが, $e_1 \geq (\sigma_1 - \sigma_3)$ の関係からGが決定できる。しかし, ここでは異方 弾性体を対象とし,実験は主応力方向と異方性対称軸が一致した場合だけを取扱っている。そこで, 上記の $K \geq G$ には鉛直供試体に $V \varepsilon$,水平供試体に $H \varepsilon$ サフイクスとして付し, G_V , G_H は式(4. 2)における G_{VH} とは別のもので, $e_1 \geq (\sigma_1 - \sigma_3)$ を関係づける定数とする。また, 側圧を一定 に保ち, 軸圧のみを増加させる軸対称三軸圧縮試験を対象とする。

等方応力状態での体積弾性係数 K (i. p) は式(4.24)の逆数で示される。

$$K(i, p) = \frac{n E_{v}}{n + 2 - 4 n v_{vH} - 2 v_{H}}$$
(4.51)

一方,排水三軸圧縮試験では $\Delta \sigma'_m = \Delta \sigma'_1 / 3 \ge \tau a$ となるから,鉛直供試体の場合, $\epsilon_v = \Delta \sigma'_1 (1 - 2\nu_{VH}) / E_v = \Delta \sigma'_1 / 3 K_v$ より

$$K_{\nu} = \frac{E_{\nu}}{3(1-2\nu_{\nu H})}$$
(4.52)

水平供試体の場合, $\epsilon_v = \Delta \sigma'_1 (1 - n \nu_{VH} - \nu_H) / E_H = \Delta \sigma'_1 / 3 K_H$ より

$$K_{H} = \frac{E_{H}}{3 (1 - n \nu_{VH} - \nu_{H})}$$
(4.53)

等方弾性体の場合、n = 1, $E = E_V = E_H$, $v = v_{VH} = v_H$ とすれば、 $K = K_{(i,p)} = K_V = K_H = E$ / 2(1 – 2v) なる周知の関係となり、等方圧密試験と排水三軸圧縮試験のKは一致する。この 種の実験では、本実験同様、排水促進のため、ペーパードレインがよく使用されるが、赤井ら⁷⁾ は、 等方圧密試験ではドレイン自体の圧密排水量補正に難点があることから、側圧を一定に保ち、 軸応力だけを増加させる通常の排水三軸圧縮試験からKを求めることを提案している。しかし、異 方弾性体では、排水三軸圧縮試験から求まる K_V あるいは K_H は、等方圧密試験によるK(i,p) と は異なったものである。

次に、式(4.50)は偏差応力として考慮されているが、偏差応力は $\Delta\sigma'_1 - \Delta\sigma'_m = 2\Delta\sigma'_1/3$ となるので、鉛直供試体の場合、 $e_1 = \epsilon_a - \epsilon_v/3 = 2(1 + \nu_{VH})\Delta\sigma'_1/3E_v = \Delta\sigma'_1/3G_v$ より

$$G_{V} = \frac{E_{V}}{2(1+\nu_{VH^{+}})}$$
(4.54)

水平供試体の場合, $e_1 = (2 + n \nu_{VH} + \nu_H) \Delta \sigma'_1 / 3 E_H = \Delta \sigma'_1 / 3 G_H$ より

$$G_{H} = \frac{E_{H}}{2 + n \nu_{VH} + \nu_{H}}$$
(4.55)

等方弾性体の場合、 $G = G_{\nu} = G_{H} = E / 2(1 + \nu)$ の周知の関係となる。また、等方弾性体におけると同様、それぞれの向きの供試体に対して次式が成立する。

$$E_{V} = 9K_{V} G_{V} / (3K_{V} + G_{V})$$

$$2\nu_{VH} = (3K_{V} - 2G_{V}) / (3K_{V} + G_{V})$$

$$E_{H} = 9K_{H} G_{H} / (3K_{H} + G_{H})$$

$$\nu_{H} + n\nu_{VH} = (3K_{H} - 2G_{H}) / (3K_{H} + G_{H})$$

$$(4.56)$$

これらの式の (2), (4) は、式 (4.18) の D_V , D_H を K_V , G_V , K_H , G_H で表現していること

になる。

n、 ν_{VH} , ν_{H} が既知であれば、 K_{V} , G_{V} は E_{V} から計算でき、さらに $n = E_{H} / E_{V}$ を考慮 すると、 K_{H} , G_{H} も E_{V} から推定可能である。また、これらは E_{V} と同様、圧密圧力の影響を受け ることが明らかである。実験に使用した供試体では $K_{V} = 0.46 E_{V}$, $G_{V} = 0.44 E_{V}$ となり、 K_{V} と G_{V} がほぼ等しい結果となっている。

4.4.3 ひずみ径路

図-4.23 は $\sigma'_{c} = 10 \text{ kg}/\text{cnl}$ における体積ひずみと偏差 ひずみの関係を示したものである。図中のY点まで線形関 係を示し、その後非線形となることは図-4.4 の体積ひず み〜軸ひずみ関係と同じで、Y点は降伏点に一致している。 この直線の勾配、すなわち体積ひずみ ε_{v} と偏差ひずみ e_{1} の比を異方弾性パラメータおよび図中の α_{v} を用いて示す と、次式となる。

 $\left(\frac{\varepsilon_{v}}{\varepsilon_{1}}\right)_{v} = \frac{3\left(1-2\nu_{VH}\right)}{2\left(1+\nu_{VH}\right)} = \tan\alpha_{v} \quad (4.57)$

これを変形すると,

$$\nu_{VH} = \frac{3 - 2 \tan \alpha_{V}}{2 (3 + \tan \alpha_{V})} = \frac{1 - 2 \tan \alpha_{V} / 3}{2 (1 + \tan \alpha_{V} / 3)}$$

となり、この直線の勾配から ν_{VH} が求まる。この値が $\varepsilon_v \sim \varepsilon_a$ 関係から求まる値と一致するのは もちろんのことである。上式を式(4.56)の(2)と比較すると、次式となる。

$$G_V / K_V = \tan \alpha_V \qquad (4.58)$$

すなわち、 $\tan \alpha_v$ が一定であるということは、偏差応力の増加に伴い G_v , K_v が変化するとして も、その比が一定であるように変化することになる。

水平供試体について $\epsilon_v \sim e_1$ 関係の直線関係を予測すると,

$$\left(\frac{\varepsilon_{v}}{e_{1}}\right)_{H} = 3 \frac{1 - \nu_{H} - n \nu_{VH}}{2 + \nu_{H} + n \nu_{VH}} = \tan \alpha_{H}$$
(4.59)

 $ch \, \sharp \, b, \, \nu_H + n \, \nu_{VH} = \frac{1 - 2 \tan \alpha_H / 3}{1 + \tan \alpha_H / 3}$

これと式(4.56)の(4)を比較すると、次式となる。

(4,60)

等方弾性体の場合, n=1, $\nu = \nu_{VH} = \nu_{H}$, $\alpha = \alpha_{V} = \alpha_{H}$ とすれば, 式(4.14)となる。

 $G_H / K_H = \tan \alpha_H$

実験に使用した供試体の異方弾性パラメータをn = 1.86, $\nu_{VH} = 0.14$, $\nu_{H} = -0.04$ とすれば、

$$(\varepsilon_v / e_1)_v = 0.95$$
 $(\varepsilon_v / e_1)_H = 1.05$

となり、この関係は図 – 4.23 に破線で示してある。 $(\epsilon_v / e_1)_v = 0.95$ は実験結果とわずかにず れているが、 $(\epsilon_v / e_1)_v \ge (\epsilon_v / e_1)_H$ を比較すると、その径路の差はわずかである。また、そ の径路は $G_v = 0.44 E_v \ge E_v = 0.46 E_v$ の比、および $G_H = 0.45 E_H \ge K_H = 0.43 E_H$ の比から求めた 結果とも一致する。 Atkinson⁵⁾は、London clay の D_V , D_H は圧密圧力の影響を受けるが、両者には差がないことから、 $D_V \neq D_H$ とおき、 $2 \nu_{VH} = \nu_H + n \nu_{VH}$ から次式を求め、

$$\nu_{H} = \nu_{VH} (2 - n)$$

(4.61)

n=1とすれば、 $\nu_{H} = \nu_{VH}$ となり、等方性を満足し、London clay の値、n=2、 $\nu_{H} = 0$, $\nu_{VH} = 0.19$ を満足するもので、またn>1のとき $\nu_{VH} > \nu_{H}$ となることが妥当であるとしている。本実験の供試体では $D_{V} = 0.28$, $D_{H} = 0.22$ で、これをあえて $D_{V} \neq D_{H}$ とすれば、式(4.61)の適用が可能となろうが、あくまでも ν_{H} を求めるのに利用すべきである。一方、Starzewskiら⁶⁾によるLias clay の結果は $n=3.97 \sim 6.37$. $\nu_{VH} = 0.04$, $\nu_{H} = -0.35$ であるが、 $n=3.97 \sim 6.37$. $\nu_{VH} = 0.04$ として式(4.61)から $\nu_{H} = -0.08 \sim -0.21$ となり、実験値と著しく異なる。このことは、nが大きい場合は経験式としての式(4.61)は不適当で、nが2前後のとき適用可能と考えられる。

以上,ここでは鉛直供試体の排水三軸圧縮試験について述べ,水平供試体の弾性挙動を推定した。 すなわち,ヤング率 E_V を求め,これから非排水ヤング率を推定して実験値と比較すると,よく合 っことがわかった。そして,鉛直および水平供試体のそれぞれの弾性定数 K_V , G_V あるいは K_H , $G_H \ge n$, E_V , ν_{VH} , ν_H との関係を求め,それらの関係がそれぞれの供試体において等方弾性 体に対する関係と等価な関係にあることを示した。また,本実験の供試体で、非排水三軸圧縮試験 では異方性が顕著であるのに比較し,ひずみ径路の異方性は著しくない。このことについてはさら に詳細な排水せん断試験を必要とする。

さて、本章の目的は弱固結状態にある泥質岩の異方弾性挙動を知ることにあるが、さらに今後塑性 変形挙動も検討される必要がある。その際、異方性体への弾塑性体理論の適用が考えられる。そこ で、次に、その適用の可能性の一端を知るために、上述のように鉛直または水平供試体個々の側圧 一定三軸圧縮試験結果が等方性体と等価な挙動にあるものとして、赤井ら⁷⁾によって求められた弾 塑性体理論にもとづく塑性降伏関数に排水三軸圧縮試験結果を適用することを試みる。

4.4.4 塑性降伏関数への適用

初めに、塑性降伏関数の決定について以下に述べる。

弾塑性理論における associated flow rule, すなわち塑性ポテンシャル関数と降伏関数が一致 すると仮定し, この associated flow rule の立脚する normality rule(塑性ひずみ増分ベクトル の方向は塑性ポテンシャル面に直交する)にもとづいて、降伏関数が第1, 第2応力不変量の関数 であると仮定すると,次の関係式で表わすことができる。

$$\frac{d\varepsilon_v^p}{\sqrt{2I_2}} = -\frac{d(\sqrt{2J_2})}{d\sigma'_m}$$
(4.62)

ここに、 $\sqrt{2J_2} = \sqrt{s_{ij}s_{ij}}$ は応力の第2不変量、 $\sqrt{2I_2} = \sqrt{de_{ij}^p} de_{ij}^p$ は塑性偏差ひずみ増分 (de_{ij}^p)の第2不変量である。従って、式(4.62)の左辺が応力の関係として決定できれば、式 (4.62)は応力のみの関数として積分でき、降伏関数が求まる。そこで、弾性ひずみは直線関係に あるものとして、全ひずみから弾性ひずみ成分を差し引いたものが塑性ひずみであるとし、降伏後 の微小塑性ひずみ増分比 $d\varepsilon_v^p / de_1^p$ と降伏時における応力比 [($\sigma_1 - \sigma_3$) / σ_m] の関係を次の 実験式で表わす。

$$\frac{(\sigma_1 - \sigma_3)}{\sigma'_m} = \alpha \left(-\frac{d \varepsilon_b^p}{d \varepsilon_1^p} \right) + \left(\frac{\sigma_1 - \sigma_3}{\sigma'_m} \right)_c$$
(4.63)

ここに、 $\alpha \ge [(\sigma_1 - \sigma_3) / \sigma'_m]_{c}$ は材料定数で、多孔質凝灰岩に対し、 $\alpha = 0.75$ 、 $[(\sigma_1 - \sigma_3) / \sigma'_m]_{c} = 1.25$ 。この式を不変量表示すると、次式となる。

$$\frac{\sqrt{2J_2}}{\sigma_m'} = \alpha * \left(-\frac{d\varepsilon_v^p}{\sqrt{2J_2}}\right) + \left(\frac{\sqrt{2J_2}}{\sigma_m'}\right)_c \qquad (4.64)$$

この関係を式(4.62)に代入すると,

$$\frac{d \left(\sqrt{2J_2}\right)}{d \sigma'_m} = \frac{1}{\alpha^*} \left\{ \left(\frac{\sqrt{2J_2}}{\sigma'_m}\right) - \left(\frac{\sqrt{2J_2}}{\sigma'_m}\right)_c \right\}$$

 $\sqrt{2J_2} / \sigma'_m = \eta$ とおいて積分すると、

$$ln \ \sigma'_{m} + \int \frac{d \eta}{\frac{\alpha^{*}-1}{\alpha^{*}} \eta + \frac{1}{\alpha^{*}} \left(\frac{\sqrt{2 f_{2}}}{\sigma'_{m}}\right)_{c}} = C_{1}$$

さらに左辺の積分を行い,整理すると,

$$\sigma'_{m} \left\{ \frac{1}{\alpha^{*}} \left(\frac{\sqrt{2J_{2}}}{\sigma'_{m}} \right)_{c} + \frac{\alpha^{*}-1}{\alpha^{*}} \left(\frac{\sqrt{2J_{2}}}{\sigma'_{m}} \right) \right\}^{\frac{\alpha}{\alpha^{*}-1}} = C_{1} \qquad (4.65)$$

ここに、C1は積分定数で、この式(4.65)が降伏関数である。

実験供試体の塑性ひずみ成分 ϵ_n^p , e_1^p を 求めよう。図-4.24 (a), (b) は $\sigma'_c = 15$ kg / cni の場合の $(\sigma_1 - \sigma_3) \sim e_1$ 関係と ϵ_n ~ 01 関係を対応させて示したものである。 図(a)の $(\sigma_1 - \sigma_3) \sim e_1$ 関係は図(b)の ϵ_v ~ e1 関係と対応してY点まではほぼ直線 関係にあり、降伏点であるY点以降この直 線から離脱する。この初期の直線関係が降 伏後も成立すると仮定し、それからのずれ を塑性ひずみ e^p と考える。そして、Y点 の e1 を図 (b)の e1 軸上にとり、この点を 原点Y'とし、縦軸に e^p軸をとって先に求 めた e_1^p をプロットすると、 $e_1 \sim e_1^p$ 関係 が得られる。また、図(b)には、図中のY点 以後YB間に直線関係が認められるので (他の圧密圧力の場合も認められている), この直線関係を原点Y'まで平行移動し,縦 軸を ϵ_{v} 軸にとって $e_{1} \sim \epsilon_{v}$ 関係が図示し てある。この $e_1 \sim \epsilon_v$ 関係上で、 e_1 に対 応する点から水平に e^pだけ左方に移すと,

図-4.24 排水三軸圧縮試験での各種ひずみの関係

弾性成分 $e_1^e = e_1 - e_1^p$ が求まり、これらの点をつらね ると、ほぼ直線関係と見なせる $e_1^e \sim \epsilon_v$ 関係が得ら れる。また、直線関係OYが降伏後も成立すると仮定 すると、この直線は $e_1^e \sim \epsilon_v^e$ 関係を示すことになるの で、原点Y'まで平行移動する。結局 ϵ_v^p は、ある e_1^e に対する $e_1^e \sim \epsilon_v^e$ 関係上の点と $e_1^e \sim \epsilon_v$ 関係上の点の 離れとして決定できる。

このようにして求めた降伏後の塑性ひずみ増分 $d\epsilon_v^P$ と de_1^p の比 $d\epsilon_v^p / de_1^p$ と、降伏時における応力比 $[(\sigma_1 - \sigma_3) / \sigma_m]$ の関係をプロットしたのが図 – 4.25 である。かなりばらついているが、式(4.63) の線形関係を仮定し、最小二乗法で材料定数を適用す ると、

lpha = 0.79, $[(\sigma_1 - \sigma_3) / \sigma'_m]_c = 1.25$ となる。これらの値は多孔質凝灰岩に近い値を示し, 特に $[(\sigma_1 - \sigma_3) / \sigma'_m]_c = 1.25$ が一致しているのは

興味が持たれる。この材料定数を用いた応力関数,式(4.65)を($\sigma_1 - \sigma_3$)/2 $\sim \sigma_m$ 応力面内 で降伏応力にフィティングさせ, $C_1 = 32$ kg / cm の場合の降伏曲面を示したのが図-4.26 である。

 $\sigma'_{c} = 25 \text{ kg} / \text{cd}$ の場合を除いてよくフィ ティングされている。また、同図には $d \epsilon_{v}^{p} \ge d e_{1}^{p}$ で決定される塑性ひずみ増 分ベクトルを図中のスケールで示してあ る。降伏曲面と塑性ひずみ増分ベクトル の直交性は、この程度の近似度で表わし うることがわかる。

ここでは,鉛直供試体について排水状 態での側圧一定三軸圧縮試験結果を等方 性と等価なものとして,赤井らの塑性降 伏関数の適用を試みた。しかし,種々の 応力下での挙動は多くの異方弾性パラメ

図-4.25 降伏時の有効応力比と塑 性ひずみ増分比の関係

ータを必要とし, さらに主応力軸と異方対称軸が一致しない場合は, 弾性域のみならず塑性域での 異方性による影響がかなり複雑になると予想される。これらのことについては今後の研究課題とし, ここでは特定の応力条件下の弾性挙動についての考察にとどめる。

4.5 弾性沈下量推定への適用

4.5.1 半無限異方弾性地盤の弾性沈下

地盤の極限支持力が地盤上の構造物による外力に対し十分な安全率を確保できる余裕がある場合,

-114-

支持層としての基礎地盤は破壊に対し良好な地盤となる。しかし,地盤は圧縮性であることから, 沈下による上部構造物への著しい幣害を生ずることがあり,沈下量の推定は重要な課題である。弾 性的な地盤にその降伏荷重以下の外力が作用するとき,地盤の変形問題には弾性理論の適用が可能 と考えられる。ここでは,異方弾性理論による沈下推定について従来の研究を概観し,この厳密解 に対し,本章の実験で求めた弾性パラメータを適用する。次いで,従来の飽和粘土地盤を対象とした 多次元圧縮沈下推定法に異方性を考慮し,最後に円形等分布載荷の中心点における地表面沈下量を 例に,これらの沈下推定法の比較を行う。

地盤内応力分布ならびに変位推定には、従来から等方弾性としてのBoussinesq の解が多用されて いる。一方、ここで対象とする異方性地盤に関しては、地盤を異方弾性体と考えたいくつかの研究 がある。Michell は、鉛直に関して対称性を持つ半無限弾性体の表面に集中荷重が作用したときの 応力および変位解を求め、また Wolf は、同一荷重に対し地盤の水平方向と鉛直方向で弾性定数が 異なる場合についてポアソン比零として解析を行った¹⁵⁾。Barden³⁾は、Wolf と同じく水平方向と 鉛直方向の弾性定数が異なる弾性体の解析を、ポアソン比が零でないとして行い、鉛直方向のせん 断弾性定数 *G*_{VH} を平面応力状態でヤング率とポアソン比に関連づけたが、平面応力条件を軸対称問 題に適用することは適切でないことが Dooly¹⁶⁾によって指摘されている。

Gerrard と Harrison¹⁷⁾は、G_{VH}を独立した弾性パラメータとし、地盤上に多様な形式の荷重が 作用した場合について地盤応力および変位の厳密解を与えた。Hooper¹⁸⁾は、この厳密解を円形等 分布荷重作用による異方弾性地盤の沈下量推定に適用するため、沈下量におよぼす異方弾性パラメ ータの影響、ならびに載荷条件によるこのパラメータの選択について検討している。ここでは、沈 下量推定の厳密解として以下に示すHooperの解析結果を適用する。すなわち、底面が滑らかで完 全たわみ性の半径 Rの円形基礎に等分布荷重 q が作用したとき、基礎中央直下の地表面沈下量は次 式で示される。

$$\rho_{(\text{exact})} = \frac{2 q R (1 - \nu_{VH}^{2})}{E_{V}} I_{w}$$
(4.66)

ここに、 I_w は沈下に関する影響値である。 I_w は次式に示される無次元量 $lpha^2$ ならびに eta^2 に 支配される。

$$\alpha^{2} = \frac{ad - c^{2} - 2cm + 2m(ad)^{\frac{1}{2}}}{4md}$$

$$\beta^{2} = \frac{ad - c^{2} - 2cm - 2m(ad)^{\frac{1}{2}}}{4md}$$

$$(4.67)$$

$$(4.68)$$

ここに、
$$\gamma = (1 - \nu_H - 2 n \nu_{VH}^2)$$
とおくと、

$$a = \frac{n(1 - n\nu_{VH}^{2})}{\gamma(1 + \nu_{H})}, \quad c = \frac{n\nu_{VH}}{\gamma}, \quad d = \frac{1 - \nu_{H}}{\gamma}, \quad m = \frac{G_{VH}}{E_{V}}$$

ひずみェネルギーに関する考察から、 $\alpha^2 > 0$ であるが、 β^2 は、 $\beta^2 > 0$ 、 $\beta^2 = 0$ 、 $\beta^2 < 0$ の3 通りに区別される。一般に、地表面の沈下量を求めるには、 $\beta^2 \ge 0 \ge \beta < 0$ の2通りに区別して 式(4.66)を用いる。すなわち、 $\beta^2 \ge 0$ のとき

-115-

$$I_{w} = \frac{\alpha d (c+m) (\alpha^{2} - \beta^{2})}{m (1 - \nu_{VH}^{2}) (c + d (\alpha - \beta)^{2}) (c + d (\alpha + \beta)^{2})}$$
(4.69)

 $\beta^2 < 0$ のとき

$$I_{w} = \frac{\alpha (ad)^{\frac{1}{2}}}{(1 - \nu_{VH}^{2}) (ad - c^{2})}$$
(4.70)

また、 $\beta^2 < 0$ である条件は

$$m > \frac{1}{2 \gamma} \left\{ (1 - \nu_{H}) \left[\frac{n (1 - n \nu_{VH})}{1 - \nu_{H}^{2}} \right]^{\frac{1}{2}} - n \nu_{VH} \right\}$$
(4.71)

以上は排水状態,すなわち最終沈下量を求める式である。一方,載荷直後の非排水状態,すなわち 非圧縮性の弾性沈下量は,パラメータとして,N, $\nu_{UVH} = 1 / 2$, $\nu_{UH} = 1 - N / 2$,および $m_U = G_{UVH} / E_{UV}$ を用いて

$$\rho_{i} = \frac{3 \, q \, R}{2 \, E_{\, UV}} \, I_{wi} \tag{4.72}$$

ここに、すべての β^2 に対し

$$I_{wi} = \frac{1}{3} \left(\frac{4 - N}{m_{U}} \right)^{\frac{1}{2}}$$
 (4.73)

等方弾性地盤の場合, $\alpha^2 = 1$, $\beta^2 = 0$ で, $I_w = 1$, $I_{wi} = 1$ となる。

厳密解には独立した弾性パラメータ G_{VH} が含まれている。との土に関する鉛直方向のせん断弾 性定数 G_{VH} は現在のところ測定されておらず、 $m = G_{VH} / E_V$ がどの範囲の値をとるかについて も、全くデータがないといわれている¹⁹⁾。従って、異方弾性地盤の圧縮沈下量はmを仮定しなけれ ば求められないことになる。本実験の結果、n = 1.86、 $\nu_{VH} = 0.14$ 、 $\nu_{H} = -0.04$ を式(4.71) に代入すると、

$$\beta^2 < 0$$
 cosocial (4.74) (4.74)

となる。

4.5.2 従来の多次元圧縮沈下と異方性の適用

飽和粘土地盤の三次元圧縮沈下は、二次圧縮沈下量を無視すると次式で示される。

$$\rho_t = \rho_i + \rho_c \tag{4.75}$$

ここに、 ρ_t :全沈下量、 ρ_i :即時沈下量、 ρ_c :圧密沈下量。

圧密沈下量の推定法として,Terzaghiの一次元的圧縮沈下を三次元的に修正した慣用法, Skempton-Bjerrumの方法²⁰⁾および応力径路による方法が適用されている。ここでは慣用法およびSkempton-Bjerrumの方法に限定し,その一部に異方性を考慮する。応力径路法で沈下量を推定するためには種々の応力下での異方性体の挙動を解明する必要があり,ここでは除外する。なお, 厳密解との比較のために荷重条件は先の厳密解の場合と同一とする。

(1) 慣用法

有限厚さ δh の粘土層の鉛直ひずみ $\delta \epsilon_V$ は

$$\delta \epsilon_V = m_v \cdot \varDelta \sigma_z$$

ここに、 m_v :体積圧縮係数、 $\Delta \sigma_z$:Boussinesq 解による鉛直有効応力。全沈下量は

 $\rho_t = \rho_{\text{oed}} = \sum m_v \Delta \sigma_z \delta h$

となる。 ρ_i は m_v に包含されているので、この場合 ρ_i と ρ_c を区別する必要はなく、また通常の 標準圧密試験によって求められることから、 ρ_{oed} として示される。半無限地盤に拡張すると、

 $\rho_{\text{oed}} = \int_0^\infty m_v \, \Delta \sigma'_z \, dh = 2 \, q \, R \, m_v \tag{4.76}$

これを異方弾性地盤に適用するには、 m_v は鉛直供試体について標準圧密試験を行えばよいので、 これを m_{vv} とおき換ればよいが、応力分布 $\Delta \sigma_z$ は厳密解の複雑さを考慮してBoussinesq 解をそのまま利用する。

一次元圧密条件は,水平ひずみが零でなければならないことから,

$$0 = \varepsilon_r = \frac{1}{E_H} \left[(1 - \nu_H) \Delta \sigma'_3 - n \nu_{VH} \Delta \sigma'_1 \right]$$

一方,鉛直ひずみは,

$$\varepsilon_{V} = \frac{1}{E_{V}} \left(-2 \nu_{VH} \Delta \sigma'_{3} + \Delta \sigma'_{1} \right)$$

これらの式から m_{vv} は次式として求まる²¹⁾。

$$m_{\nu \nu} = \frac{\epsilon_{\nu}}{\Delta \sigma_1} = \frac{1}{E_{\nu}} \left(1 - \frac{2 n \nu_{\nu H}^2}{1 - \nu_H} \right)$$
(4.77)

本実験の結果を式(4.77)に代入すると、 $m_{vv} = 0.9326 / E_v \ b \ cv$ から $E_v \ b \ colored E_v \ b \ colored E_v \ co$

(2) Skempton-Bjerrum の方法²⁰⁾

Skempton らは三次元的な圧縮沈下について三軸圧縮試験をもとにした解法をとることを考え、 間隙圧係数Aを用いる方法を提案した。すなわち、式(4.75)に示すように全沈下 ρ_t を即時沈 下 ρ_i と圧密沈下 ρ_c に分けて考えた。 ρ_i は載荷の瞬間に等体積せん断変形によって生ずる鉛直ひ ずみの和であって、粘土層内間隙水の排出には無関係な沈下である。一方、 ρ_c は載荷によって粘 土層内部に生じた過剰間隙水圧が消散する過程で生ずる沈下であって、一次元圧密に関するTerzaghi の理論を三次元的に修正して計算できるとしている。

等方弾性理論より

$$o_i = 2 q R \frac{1-\nu^2}{E} I_\rho$$

ここに、 I_{ρ} :載荷形状と粘土層厚によって決まる沈下に関する影響値。即時沈下は非排水状態. すなわち非圧縮性弾性変位であるから $\nu = 1/2$,また半無限地盤の円形等分布載荷の中央点で I_{ρ} =1となり,

$$\rho_{i} = \frac{3 \, q \, R}{2 \, E} = \frac{3 \, q \, R}{2 \, E_{\, UV}} \tag{4.78}$$

これを異方弾性地盤に適用するとき、Eの代わりにEuv を用いる。Euv は式(4.33)の関係か

らEvによって推定される。

一方, 圧密沈下 Pc は飽和粘土に対し次式で示される。

$$\rho_c = \int_0^z m_v \, \Delta \, u \, d \, z = \int_0^z m_v \left(\Delta \sigma_3 + A \left(\Delta \sigma_1 - \Delta \sigma_3 \right) \right) \, d \, z$$

この圧密沈下 ρ_c は、標準圧密試験による沈下量 ρ_{oed} と比べると、応力状態が異なるので一般に等しくないが、これらの比 ρ_c / ρ_{oed} は次式で決まる。

 $\mu = \rho_c / \rho_{oed} = A + \alpha (1 - A)$

 $\zeta \subset \mathcal{U}, \quad \alpha = \frac{\int_{0}^{z} \Delta \sigma_{3} dz}{\int_{0}^{z} \Delta \sigma_{1} dz}$

異方弾性地盤に適用するとき、Aの代わりに式(4.26)の関係を用いると、

 $\rho_{c} = \left\{ A_{V} + \alpha \, (1 - A_{V}) \right\} \rho_{\text{oed}} \tag{4.79}$

ここに、 ρ_{oed} は異方性を考慮した式(4.76)を用いる。 α は載荷幅と粘土層厚の比のみによって 定まる定数で、半無限地盤、円形等分布載荷のとき、 $\alpha = 0.25$ である。

本実験結果によると、Av = 0.43 であることから、式(4.79)は次式で与えられる。

 $\rho_{c} = 0.57 \ \rho_{oed}$

4.5.3 異方弾性理論による厳密解と近似式による沈下量の比較

Burland ら¹⁹⁾は厳密解と種々の圧縮沈下推定法との比較を行い、これにおよぼす n, mの影響を 検討している。一方、ここでは n, ν_{VH} , ν_{H} は本実験の結果を利用し、mを適当に仮定した場合 の厳密解と 慣用法、Skempton - Bjerrum 法との比較を行う。mは $\beta^2 \ge 0 \ge \beta^2 < 0$ の2つの場合 を考慮して、m = 0.5 とm = 1.0の2つの値に限定する。ただし、この mの値の妥当性については 検討しない。従って、ここでの比較検討の対象は、島尻層泥岩からなる半無限異方弾性地盤と なる。

厳密解は次のようになる。

m = 0.5 のとき、 $\alpha^2 = 1.47 > 0$ 、 $\beta^2 = 0.13 > 0$ で $I_w = 0.90$ これより $\rho_t = \frac{2 q R (1 - \nu_{VH}^2)}{F_w} I_w = 1.76 \frac{q R}{F_w}$

 $m = 1.0 \text{ obs}, \ \alpha^2 = 0.96 > 0, \ \beta^2 = -0.38 < 0 \text{ cm} I_w = 0.72,$

$$\rho_t = \frac{2 \, q \, R \, (1 - \nu_{VH}^2)}{E_V} \, I_w = 1.41 \frac{q \, R}{E_V}$$

一方, 慣用法によると,

$$\rho_{\text{oed}} = 2 q R \frac{1}{E_V} \left(1 - \frac{2 n \nu_{VH}^2}{1 - \nu_H} \right) = 1.87 \frac{q R}{E_V}$$

従って,厳密解と比較すると,

$$m = 0.5 \text{ Obs}, \frac{\rho_{\text{oed}}}{\rho_{(\text{exact})}} = 1.06$$

$$m = 1.0 \text{ Obs}, \frac{\rho_{\text{oed}}}{\rho_{(\text{exact})}} = 1.32$$

-118-

Skempton - Bjerrum の方法によると、 $E_{UV} = E_V / (1 - A_V (1 - 2\nu_{VH}))$ の関係を利用して、

$$\rho_{i} = \frac{3 \, q \, R}{2 \, E_{UV}} = \frac{3 \, q \, R}{3 \, E_{V}} \left\{ 1 - A_{V} \left(1 - 2 \, \nu_{VH} \right) \right\} = 1.04 \, \frac{q \, R}{E_{V}}$$

$$\rho_{c} = \left\{ A_{V} + \alpha \left(1 - A_{V} \right) \right\} \rho_{\text{oed}} = \left\{ A_{V} + \alpha \left(1 - A_{V} \right) \right\} \left(1 - \frac{2 \, n \, \nu_{VH}}{1 - \nu_{H}}^{2} \right) \frac{2 \, q \, R}{E_{V}} = 1.06 \, \frac{q \, R}{E_{V}}$$

$$\therefore \rho_{t} = \rho_{i} + \rho_{c} = 2.10 \, q \, R \, / E_{V}$$

従って,厳密解と比較すると,

$$m = 0.5$$
のとき、 $\frac{\rho_t}{\rho_{(\text{exact})}} = 1.19$

$$m = 1.0$$
のとき、 $\frac{\rho_t}{\rho_{\text{(exact)}}} = 1.49$

以上の計算結果から、従来の沈下計算法はmの増加に伴って厳密解よりも大きな沈下量を示し、しかもその傾向は慣用法よりもSkempton-Bjerrumの方法において著しいことがわかる。いま、島尻層泥岩のmの値が $\beta^2 \ge 0$ を満足する範囲(0 < m < 0.58)にあって、0.5の値に近いと仮定すれば、厳密解と慣用法はほぼ一致し、一方Skempton-Bjerrumの方法は沈下量を大きく見積る傾向にあるといえよう。

全圧縮沈下量に占める即時圧縮沈下量の割合は、Skempton-Bjerrumの方法の場合、上の計算結果から $\rho_i / \rho_i = 0.50$ となる。この比を厳密解について求める。いま、 G_{VH} は非排水および排水条件とも同じ値にあると仮定すると、次の関係が導かれる。

$$m_{U} = \frac{G_{VH}}{E_{UV}} = \left\{ 1 - A_{V} (1 - 2 \nu_{VH}) \right\} \frac{G_{VH}}{E_{V}} = \left\{ 1 - A_{V} (1 - 2 \nu_{VH}) \right\} m$$

実験結果を代入すると、 $m_U = 0.69 m$ となり、 $m = 0.5 \ge 1.0$ に対し m_U はそれぞれ 0.35、0.69 となる。従って、式(4.72)の I_{wi} はそれぞれ 0.87、0.62 となる。また、 $E_{UV} \ge E_V$ の関係を考慮すると、

$$m = 0.5 \mathcal{O} \ge \mathfrak{F}, \quad \rho_i = 0.90 \quad \frac{qR}{E_V} \ge t_x \mathcal{O}, \quad \frac{\rho_i}{\rho_t} = 0.51$$
$$m = 1.0 \mathcal{O} \ge \mathfrak{F}, \quad \rho_i = 0.64 \quad \frac{qR}{E_V} \ge t_x \mathcal{O}, \quad \frac{\rho_i}{\rho_t} = 0.45$$

この計算結果から、mの^増加に伴って ρ_i / ρ_t の比は小さくなる傾向にあるが、m = 0.5のとき即時沈下は全沈下量の50%に相当していることがわかる。

4.6 結 語

本章では,前章の非排水および排水型三軸圧縮試験の結果にもとづき,弱固結状態にある島尻層 泥岩の弾性挙動を異方性の観点から検討し,線形異方弾性理論を適用して若干の考察を加えること により,間隙水圧ならびに変形挙動の異方性を明らかにした。その結果を要約すると,次のように なる。

(1)著しく過圧密された硬質粘土.ならびに骨格粒子間に結合力をもつ多孔質凝灰岩の弾性挙動に

関する従来の研究を有効応力径路とひずみ径路について検討し、その結果と本実験に用いた泥岩の 挙動とを比較したところ、この泥岩を含めて粒子間結合力をもつ軟岩の弾性挙動は、骨格構造の弾 性変形過程とダイレイタンシーを伴う弾性変形過程とからなることが明らかとなった。骨格構造の 弾性挙動は続成作用によってもたらされた粒子間結合力の寄与によるものと考えられ、せん断応力 が増加して結合力の強さを越えると、骨格の局部的破壊を生じてダイレイタンシー挙動に移行する と考えられる。

(2)実験に使用した泥岩の弾性挙動は、非排水三軸圧縮試験での有効応力径路の線形関係、あるい は排水三軸圧縮試験での体積ひずみと軸ひずみ(または偏差ひずみ)との関係、すなわちひずみ径 路の線形関係で示されるが、これは骨格構造の弾性挙動としての線形関係と、それとは勾配を異に したダイレイタンシーを伴う弾性挙動としての線形関係とからなる。しかし、今回の実験結果では、 ひずみ径路に関しては両者の区別が明確でなかった。弾性限界は、この直線関係からの離脱点とし て決定され、その応力値は応力~ひずみ関係を両対数紙上に求めて得られる折点の応力値としての 降伏応力と一致する。このようにして求めた降伏応力は平均有効応力 σ_mと非線形関係にあり、し かも非排水および排水三軸圧縮試験による結果は一致する。

(3)この弾性領域での有効応力径路は鉛直および水平供試体で著しく異なり,実験試料の泥岩は明 らかに異方弾性体である。有効応力径路を支配するのは間隙水圧である。従って,間隙水圧特性に 注目し,この泥岩の異方弾性挙動を検討した。

(4)弾性領域内で,間隙水圧は平均応力と線形関係にある。この線形関係は、骨格構造の弾性挙動 とダイレイタンシーを伴う弾性挙動に区分される。骨格構造の弾性域における間隙水圧増分*du*は、 平均応力の増分*dom*に比べて鉛直供試体で大きく,水平供試体で小さな値を示し,間隙水圧その のものが異方弾性にある。その挙動は、Skemptonの間隙圧係数*A*と同様、それぞれの軸方向をも つ供試体について式(4.26)と式(4.27)で示される間隙圧係数*A_V*,*A_H*で表現できる。しかも、 これは異方性の程度を示すパラメータとなり、ヤング率とも関係づけられるものである。

(5)ダイレイタンシーを伴う弾性過程では、鉛直供試体が $\sigma_c = 60 \text{ kg}/\text{cd}$ でも体積膨張傾向、すなわち間隙水圧の減少にあるのに比べ、水平供試体は $\sigma_c = 25 \text{ kg}/\text{cd}$ においてすでに体積圧縮傾向、すなわち間隙水圧の増加に移行している。この過程で間隙圧係数が変化するが、その変化量は骨格構造の弾性挙動に対する値に比較して顕著なものではない。

(6) この泥岩の異方弾性パラメータ n, ν_{VH} , ν_{H} は,非排水三軸圧縮試験からの A_{V} , A_{H} , ヤング率比Nと鉛直供試体の排水三軸圧縮試験結果とを利用して求められた。これらの値は圧密圧力の影響を受けない。

(7) 排水三軸圧縮試験は鉛直供試体のみについて行っているので、先に求めた異方弾性パラメータ を用いて水平供試体の弾性変形挙動を予測したが、ひずみ径路の異方性は間隙水圧におけるほど顕 著でない。また、側圧一定の三軸圧縮試験の弾性域から求まる鉛直ならびに水平供試体のそれぞれ の弾性定数 K_V , G_V あるいは K_H , G_H は等方弾性体の場合と等価な関係にあって、しかもn, ν_{VH} . ν_H を用いて E_V と関係づけられ、これらは圧密圧力の大きさによって変化する。

(8)また,(6)で求められた異方弾性パラメータを用いて,半無限異方弾性地盤に円形等分布荷重を 載荷した場合の載荷中央点での地盤表面沈下を例にとり,異方弾性理論にもとづく厳密解と従来の 多次元圧縮沈下推定法とを比較したところ、慣用法が厳密解と比較的一致することが判明した。

以上の結論はさらに詳細な排水三軸圧縮試験を行って確認することが必要であるが、そのことと 併せて、種々の応力・変形条件下での挙動を原地盤に適合させた変形問題として、今後さらに究明 されなければならない。

- 参考文献
- 1)新城俊也:弱固結粘土岩の異方弾性挙動,琉球大学農学部学術報告, Vol. 26, pp. 307~327, 1979.
- 2) J.C. ジェーガー(飯田汲事訳):弾性・破壊・流動論,共立出版, pp. 67~71, 1968.
- 3) Barden, L. : Stresses and displacements in a cross-anisotropic soil, Geotechnique, Vol. 13, pp. 198~210, 1963.
- 4) Henkel, D. J.: The relevance of laboratory-measured parameters in field studies, Proc. the Roscoe Memorial Symposium, pp. 669 ~ 675, 1972.
- 5) Atkinson, J. H. : Anisotropic deformation in laboratory test on undisturbed London clay, Geotechnique, Vol. 25, pp. 357 ~ 374, 1975.
- 6) Starzewski, K. and Thomas, C. P.: Anisotropic behaviour of an overconsolidated clay, Proc. 9th ICSMFE, Vol. 1, pp. 305 ~ 310, 1977.
- 7)赤井浩一・足立紀尚・西好一:堆積軟岩(多孔質凝灰岩)の弾・塑性挙動,土木学会論文報告集,第217号,pp.83~95,1978.
- 8) Akai, K. et al.: Mechanical properties of soft rocks, Proc. 9th ICSMFE. Vol.
 1, pp. 7~10, 1977.
- 9) Akai, K. et al. : Constitutive equations of geomechanical materials based on elasto-viscoplasticity, Preprints of Specialty Session 9, 9th ICSMFE, pp. $1 \sim 10$, 1977.
- 10) Atkinson, J. H. : Elasticity and plasticity in soils, Geotechnique, Vol. 23, pp. 565 $\sim 571,\ 1973$.
- Skempton, A. W.: The pore-pressure coefficients A and B. Geotechnique, Vol. 4. pp. 143 ~ 147, 1954.
- Pickering, D. J.: Anisotropic elastic parameters for soil, Geotechnique, Vol. 20, pp. 271 ~ 276, 1970.
- Henkel, D. J.: The shear strength of saturated remoulded clays, Proc. ASCE. Research Conf. on the Shear Strength of Cohesive Soils, pp. 533 ~ 554, 1960.
- 14) Uriel, A. O. and Cañizo, L. : On the elastic anisotropy of soil, Geotechnique, Vol. 21, pp. 262 ~ 267, 1971.
- 15) 木村孟:土の応力伝播, 鹿島出版会, 1978,
- 16) Dooly, J.C. : Discussion on "Stresses and displacements in a cross-anisotropic

soil ", Geotechnique, Vol. 14, pp. 278 ~ 279, 1964.

- Poulos, H. G. and Davis, E. H.: Elastic Solutions for Soil and Rock Mechanics, John Wily and Sons, pp. 337 ~ 398, 1974.
- Hooper, J. A. : Elastic settlement of a circular raft in adhesive contact with a transversely isotropic medium, Geotechnique, Vol. 25, pp. 691 ~ 711, 1975.
- Burland, J. B. et al. : Behaviour of foundation and structures, Proc. 9th ICSMFE, Vol. 2, pp. 495 ~ 546, 1977.
- 20) Skempton, A. W. and Bjerrum, L: A contribution to the settlement analysis of foundations on clay, Geotechnique, Vol. 7, pp. 168 ~ 178, 1957.
- 21) Wroth, C. P.: Some aspects of the elastic behaviour of overconsolidated clay, Proc. the Roscoe Memorial Symposium, pp. $347 \sim 361$, 1972.

第.5章 乾湿作用による泥質岩の物性と強度の変化^{1,2)}

5.1 概 説

泥質岩からなる地盤は、その堆積過程をとおして続成作用と過圧密効果の影響を受けて半固結状 態にあり、通常の土木構造物の基礎としては良好な支持層となることは、前章までに述べたことで ある。他方、泥質岩層における自然斜面あるいは掘削のり面に注目すると、地すべり、崩壊あるい はのり面侵食に対する防止・対策が工学上重要な課題となっている。特に第三紀泥岩層は地すべり 頻発地として知られるように、自然斜面では地すべり・崩壊が多発しており、さらに切盛土を行う と、斜面崩壊を生ずる場合が多い。また、それらの未風化層は一時的に安定な状態にあり、急傾斜 の高切土のり面が形成される場合が多く、そののり面は短期間に風化を受けて表層部の剝離・滑落 または著しいガリ侵食を受けている。

このような崩壊現象の原因は泥質岩の強度低下に起因しているが、その要因として風化作用と応 力解放による吸水膨張が挙げられる³⁾。周知のように、風化作用には物理的、化学的および生物的作 用があり、これらの作用には様々な風化要因が含まれていて、自然界の風化過程ではこれらの多く の風化要因が互に作用しあいながら進行するものである。そのうちの物理的風化作用の一要因であ る乾湿作用は、他の物理的風化要因に先行するのみならず、化学的あるいは生物的風化作用をも促 進させる要因ともなっている。このように、乾湿風化は風化過程での重要な要素でありながら、あ まり研究がなされていない⁴⁾。

本章においては,泥質岩の強度低下(軟弱化)を対象としているが,吸水膨張だけによる強度低 下については,すでに第2章でその経時的変化から検討して述べてあるので,ここでは主に乾湿作 用に注目し,容易にスレーキング現象が生ずる弱固結状態にある泥質岩を試料に選び,乾湿作用に おける乾燥度合および乾湿作用の繰返しがその物性変化,強度減少あるいはせん断特性の変化に及 ぼす影響を室内実験に基づいて定性的に把握し,さらにその結果を原位置の風化表層土と比較して, 崩壊等の対策工の指針となる基礎資料を提供しようとしている。

5.2 強度低下の概念

泥質岩は、その堆積過程で続成作用による結合力が発達して半固結状態となり、その後侵食を受けて上載圧力が除去され、現在過圧密状態となっている。結合力の影響は、第3章で述べたように、 強度増加と変形に対する抵抗性をもたらすことにあり、このような泥質岩が通常の土砂の程度にま で軟弱化すのは何らかの要因で結合力が破壊されるからであろう。結合力の破壊の原因としては、 外力としての応力レベルの大きさ、風化作用、人為的撹乱などが挙げられるが、ここでは風化作用 としての乾湿作用に注目して、それによる強度低下を応力解放に伴う吸水膨張によるそれと対比さ せながら、土かぶり圧力と含水比の関係、及び土かぶり圧力とせん断強度の関係で検討した概念図 が図 - 5.1 である。

この図において、堆積過程を経た後応力解放によって過圧密状態となっているが、乾燥を受ける

ことのない深さにある状態では、吸水膨 張により含水比がわずかに増加すると、 それに見合う強度減少が生ずる。一方, 乾燥の影響を受ける浅い深さの領域では、 まず乾燥収縮に伴って泥質岩層内に分離面 やクラックが生じて、ブロック状に分割 され、このクラックに沿って地表水や地 下水が容易に浸透し、再び湿潤状態とな って吸水膨張とスレーキングが生じ、泥 **質岩の結合力の一部が破壊**,あるいは弱 められる。このような乾湿サイクルが繰 返し作用すると、結合力は徐々に破壊さ れ,深さによって異なるが,土かぶり圧力 の大きなところでのクラック面に沿って 軟化しているブロック状から、地表面近 くでの著しいスレーキングによる堆積時 の細粒土にまで分離した状態となる。こ のように、乾湿作用による結合力の破壊 度合に応じて間隙が増大するから、図示 するように、深さで異なる含水比の増加

図-5.1 強度低下の概念

がもたらされ、それらの含水比増分に応じて強度は減少することになる。

この乾湿作用による結合力破壊はスレーキングによる細片化現象として観察される。Terzaghi に よるスレーキングのメカニズム⁵⁾ は次のようである。乾燥した土塊を水浸すると、水は毛管現象に よって土塊中に吸込まれ、そのとき外側の部分は飽和するから、空気は内部にとじ込められて圧縮 され、そのときの空気圧が土塊に引張応力を与えて破壊される。このスレーキングに伴って泥質岩の 構成単位である粘土鉱物に吸水膨張が起こり、泥質岩の結合力を著しく減少させてスレーキングを 一層激しいものにしている。仲野⁶⁾ によると、スレーキングと膨張が生ずるのは、泥岩を構成して いる粘土粒子に吸着されている水の放出する自由エネルギーの一部が力学的破壊エネルギーに転化する ためで、水蒸気圧が相対湿度 100%付近をわずか1~2%変化しただけでスレーキング現象が生ず るとしている。しかし、スレーキング現象と強度を関係づけた研究は少ないようである。

5.3 実験方法

図-5.1 に示す泥質岩の強度低下に関する概念図に対応させて乾湿作用に基づく物性の変化と強 度低下を明らかにするために、以下のような実験を行った。

本章の実験に用いる主たる試料は、豊見城村でブロックサンプルとして採取した未風化の島尻層 泥岩である。不撹乱状態での物理諸量は w = 27.3 ~ 28.5 %, *T*t = 2.00 ~ 2.02 g / cml, e = 0.76~ 0.78, *S*r = 99 ~ 100 % で, また解きほぐし試料に対する比重は *G*s = 2.76 である。実験では, 採 取時の状態を維持しながら実験目的に応じて種々の形状の供試体を成形し、その状態を初期条件と して、それに対して乾湿作用が付加される。また、三軸圧縮試験用供試体は、その軸が地盤に対し て鉛直となるように準備した。

実験項目とその方法は次に示すとおりである。

(1) 乾燥度合の違いによる強度低下とコンシステンシー変化

この実験では乾湿作用を1サイクルに限定し、乾燥含水比を4段階に変化させることにより強度 低下とコンシステンシーに及ぼす乾燥度合の影響を調べる。

供試体は三軸試験を目的として直径 50 m,高さ 100 mの円柱形に成形した。 乾燥方法は土壌水 分測定法⁷⁾の1つである蒸気圧法に準ずるもので,種々の濃度に調節した濃硫酸の吸湿性を利用し て、デシケーター内で真空を保ちながら含水比を平衡させる方法である。供試体はデシケーター内 に3~4ヶ月間放置した。目標とする乾燥度合はpF4.5, 5.0, 5.5, 6.0の4段階であったが、1 つのデシケーターで同時に多数の供試体を乾燥させたために供試体からの水蒸気移動に伴って硫酸 の濃度が低下し、最終平衡時のpFは4.48、4.96、5.36、5.82であった。このように、4 段階の乾 燥含水比で平衡させた供試体は三軸室内にセットして,有効拘束圧力 0.1㎏/ cm のもとで 24 時間吸 水させた。その際,バックプレッシャー ug = 0.5kg/cmの作用と,それに併せて供試体上面からサ クションをかけながら排気させて供試体の飽和につとめた。その後側圧1㎏/cmlでの非圧密非排水 型三軸圧縮試験(UU試験)ならびに u_{b} = 0.5 kg / cm のもとでの圧密非排水型三軸圧縮試験(C U 試験)を行う。CU試験における圧密圧力はσ,'= 0.2 ~ 1.5 kg / cm の比較的低圧力領域である。また, せん断速度は、両試験ともに0.02%/minの軸ひずみ制御で、間隙水圧の測定も同時に行っている。

一方、それぞれの乾燥度合にある供試体を1週間以上水浸し、それを解きほぐして液性限界と塑 性限界を測定した。また、同様なコンシステンシー測定は自然含水比及び炉乾燥した試料について も行った。

なお、pF4以下の水分特性を加圧膜法で測定し、蒸気圧法と併用して実験試料のpF~含水比関 係を求めた。

しかしながら、上述の乾湿方法はそれを繰返して継続する場合、長時間を要すること,膨大な数 の供試体を必要とすること、三軸試験用供試体の形状維持が不可能であることなどから乾湿の繰返 し回数に限度がある。そこで、乾湿繰返しによる物性および強度変化を調べるために、次の実験(2)。 (3)を行う。

(2) 乾湿繰返しによるコンシステンシー変化

ブロックサンプルから1辺約20×15cm,厚さ3cmの板状ブロック 供試体を数個成形し、これを有孔底からなる容器に沪 紙を敷いて入 れ、図 - 5.2 に示すような手順で乾湿操作を繰返す。乾燥は沪紙を 通しての脱水と4~7日間の風乾とし、湿潤は沪紙を通した吸水と 2日間の水浸とした。これらの乾湿供試体については乾湿サイクルご とに液性限界、塑性限界及び団粒分析試験を行った。また、比較のた めに、乾燥方法として炉乾燥の繰返しの場合も上述の項目の測定を行 っている。なお、粒度試験では撹拌時間の長さによってその粒度組成 図-5.2 乾湿操作法

が変化し、乾湿による細粒化の評価が困難であることから、ここでは団粒分析試験を行って細粒化 の様子を調べている。さらに、乾湿サイクルごとに試料を粒度試験用撹拌機で5分間撹拌を施し、 その上、筆あるいは指先で十分にほぐした試料についても液性限界と塑性限界の測定を行っている。 これは、分散可能な粒径の状態にして乾湿作用による界面活性の変化を調べるとともに、先の実験 結果との比較を目的としたものである。また、団粒分析試験は土壌物理の分野で行われている試験 法⁷⁾に準ずるもので,風乾重量で約50gの供試体を蒸留水に24時間水浸させた後,2,1,0.5, 0.25, 0.1 cm の組ふるいに移して,それを振幅 3 cm,振動数 20 回/分で 60 分間水中上下振動させ てふるい分けするものである。

(3) 乾湿作用の繰返しによる強度変化

ここでは、乾燥含水比を1つに定めて乾湿を繰返し作用させた場合の乾湿回数が強度あるいはせ ん断特性に及ぼす影響を調べている。供試体は直径 50 ㎜であるが、それぞれ 25 ㎜と 100 ㎜の高さ の異なる2種類のものを準備した。乾湿を繰返すとき、供試体は水浸の際に自立しないので、図ー

5.3 に示すような内径 52 mmであるが,高さがそれぞれ 3 cm, 11 cm と異なるモールドA及びBを用意した。これらのモールドの底面は アクリルの有孔板とし、乾湿作用における脱水と吸水を容易にして いる。供試体のセットは両モールドとも底面に沪紙を敷くが、モー ルドBにおいては脱型を容易ならしめるために内壁にワセリンを塗 り、さらに供試体と壁面の間にはビニールシートを挾んでいる。乾 燥は風乾とし,含水比はモールドAで5%,モールドBで10%とし たが、その値は厳密なものではない。モールドAにおける供試体は 図-5.3 乾湿用モールド 1週間以内で乾燥するが、モールドBの供試体は乾燥に1ケ月以上

を要したので、ある程度乾燥が進行した段階でデシケーター内で硫酸による調湿を併用して乾燥日 数を短縮した。湿潤は水浸によるが,モールド上方からの浸水は供試体の上下で著しいスレーキング の差異を生ずることから、モールド底面より4~5日間にわたって吸水させ、その後モールド外で の水位を上昇させて、供試体上面に水位面が形成されるようにしている。この水浸過程での吸水膨 張は鉛直方向に対して自由であるが、側方に対しては初期状態の4%まで自由で、それ以上の膨張 はモールド壁で拘束される。なお,同様な乾湿供試体は乾燥条件として炉乾燥の場合についても― 部用意した。乾湿回数は風乾の場合 15 回以上,炉乾の場合 20 回以上である。

乾湿作用を受けた供試体の湿潤時の強度は次の方法で求めた。モールドAの乾湿供試体に対して はフォールコーン試験(先端角 60°, 重量 60g)を行って,貫入量からせん断強さを推定した。ま た,貫入量を測定した後,直ちにモールドから試料を取り出して十分練返し,再びモールドAに詰 めて同様な試験を行った。供試体の数は同一乾湿サイクルに対して3個ずつである。一方,モール ドBの場合は供試体をモールドから押し出し、三軸圧縮試験によりUU試験及びCU試験を行った。 UU試験は,所定の乾湿サイクルにおける風乾および炉乾の両乾湿供試体に対して,側圧 0.5~3.0 kg/cm, 軸ひずみ速度 0.5 \mathscr{B}/m inのもとで行っている。 CU 試験は,バックプレッシャー $u_b=3$ kg/cn¹, 圧密圧力 o_c² = 0.2 ~ 6.0 kg/cn¹のもとで等方圧密した後, 0.1 %/minの軸 ひずみ 制御で, 風乾による乾湿供試体に対してだけ行っている。CU 試験を行 った乾湿回数は 3,5,7,10,15

サイクルである。また、間隙水圧はCU 試験の場合のみ測定している。

(4) 練返し正規圧密試料のせん断試験

乾湿サイクルを繰返し受けた泥岩のせん断特性がどの程度変化するかを明らかにするため、その 比較対象として泥岩を粉砕して液性限界付近の含水比で十分練返し、大型圧密容器で圧密圧力 0.5 kg/cmiの予圧密を行った正規圧密粘土の供試体を準備した。この供試体に対する三軸圧縮試験は、 u_b = 3 kg/cmi, 軸ひずみ速度 0.1 %/minの圧密非排水せん断である。

(5) 風化土のコンシステンシーとせん断試験

本章の乾湿用試料を採取したのと同じ地点で、切取り後約1年経 過した斜面の表層部から風化試料を採取して、それらに対して液性 限界、塑性限界及び団粒分析試験を行った。試料は、図-5.4 に示 すように、のり面中央部とのり尻の2ケ所で採取し、それぞれA1 及びA2の符号を付してある。これらの試料は土砂化しているが、未 だ色調は灰色を帯びている。

一方,表-5.1に示すような5ケ所の地点で,自然斜 面の風化層を対象として表土を20~30㎝除去した深度 で,直径50㎜,高さ150㎜のシンオールチューブを打 込んで風化試料を採取した。これらの試料を水浸飽和さ せてフォールコーン試験,UU試験及びCU試験を行うと ともに,自然状態,風乾状態及び炉乾状態の試料に対す る液性限界及び塑性限界を測定し,乾湿供試体と比較し ている。これらの風化土は完全に褐色に変色したもので ある。

図-5.4 切土斜面でのサン プリング位置

表-5.1 風化試料の採取位置

採	取場	所
豊	見	城
東	風	平
大		里
西		原
南	風	原
		採取場 豊見 東風 大西風 南風

5.4 実験結果と考察

5.4.1 乾湿における乾燥度合が強度低下とコンシステンシーに及ぼす影響

土が乾燥を受けると、それに含まれている土中水は乾燥度合に応じて様々な形態で存在している。 このような土中水はエネルギー的な取扱いがなされ、その状態はpF 値で表わされている。 実験供 試体の乾燥に伴う水分特性を明確にするために、加圧膜法と蒸気圧法で測定した土中水ポテンシャ ルを表示したのが図-5.5に示す pF ~含水比(w)関係である。

実験で用いる供試体の乾燥状態は、含水比が大きな順に、図中に記号A, B, C, Dで表示してある。一般に、土中水は土 粒子と水の結合状態により自由水,半結合水,結合水に分類され、 次の形態をとる⁸⁾。自由水であった土中水がpF3以上になる と、半結合水となり、毛管凝縮に伴って土粒子間での凝集・集 積水となって、自由水とは異なる性質を示し、土の物理、力学 的性質あるいはその挙動に影響を及ぼすといわれている。また、 半結合水の上限は pF4.5で、それは相対湿度 98%に対応し、こ

の pF 値からは土中水は土粒子表面に多分子層を形成した配向吸着の結合水となり, pF 6.2 ~ 6.3 では単分子飽和吸着膜を形成するといわれている。

このような土中水の特性と図に示した泥岩の乾燥状態を関連づけると次のようになる。第2章に おける図-2.2に示した乾燥収縮特性をも参照すると、加圧膜法による測定範囲に相当するpF3~ 4においては、泥岩中の水は脱水に伴った毛管凝縮による体積収縮を生じさせながら半結合水の状 態となるが、飽和は維持されている。脱水がすすみ、収縮限界付近である乾燥状態Aに達すると、 不飽和に移行し、その水分状態は半結合水から結合水に変化する過程にあって、pF4.5に相当して いる。さらに、B、C、Dと乾燥が進むにつれて、わずかの体積収縮を伴って飽和度が急激に減少 し、水分は多分子層結合水の状態となる。

このような乾燥状態にある泥岩供試体を水浸した後に解きほぐし、液性限界(w_L)と塑性限界

(wp)を測定して、その結果を乾燥含水比との関係で示したの が図-5.6である。図には自然含水比と炉乾燥の場合の結果も 示してある。ばらついているが、乾燥度合が大きい試料ほど、 wLは減少することがわかる。このような傾向は関東ロームなど の火山灰質土で顕著に現われ、その理由として、乾燥によって 失われた団粒内の水が即座にもとにもどらないことや、堆積過 程でとり込められた構造的非自由水が乾燥によって自由化した ためといわれている⁹⁾。 実験供試体の場合は、火山灰質土ほど 乾燥の影響は著しいものではないが、後述のように、乾湿1サ イクルの作用では泥岩の結合力を十分に破壊するまでに至らず、 解きほぐしてもある程度の結合力をもった団粒を形成している 状態にあり、乾燥度合が大きいほど構造的非自由水の自由化が

著しいうえに,逆にその後の加水に伴って団粒内に拘束される水分は減少し,その結果 w_Lの 減少 が生ずるものと考えられる。一方,wpに対する乾燥の影響は明確でない。

供試体の非排水強度を基準にとり、それに対す る各乾燥状態での吸水後の強度の比を乾燥状態 (pF)に対して示すと図-5.8となる。 自然 含水比からわずか2~3%含水比を減少させた だけで強度は65%に低下し、乾燥含水比が4% になると、その比は20%まで減少する。また、 この図には乾燥含水比と吸水後の含水比も同時 に示してあるが、乾燥度合が大きいほど、吸水 後の含水比は増加している。このことは、先に 示した乾燥に伴って液性限界が減少することを 考慮すると、粒子間にとりこまれる水分の増加 に伴った含水比増加ではなく、スレーキングに よるクラックなどのマクロな間隙が増加し、そ れを満たすに必要な水分が増加した結果である と推察される。

図-5.9はCU試験における圧密圧力 σ_c'=1.5 kg/cm の場合の各乾燥状態に対する応力~間隙 水圧~ひずみ関係を示したものである。この関 係は先のUU試験とほぼ同じ傾向にあるが 間 隙水圧の発生量は、乾燥状態がAからBへと進 行すると、減少するが、さらにC、Dへと乾燥 すると、逆に増加する傾向にある。このことは、 乾燥状態B付近で主応力差の増加に伴う体積圧 縮傾向の程度が小さくなることを示し、また供 試体はその乾燥度合によりスレーキングを異に するものであるから、このような間隙水圧の発 生量の差異は、スレーキングの度合がダイレイ

図-5.10 全応力による破壊時の応力状態

タンシーに影響を及ぼすことを示唆している。

図 - 5.10 と図 - 5.11 はCU試験による破壊時の応力状態を全応力と有効応力でそれぞれ示し, 乾燥度合に対する破壊包絡線を比較したものである。強度に比べて側圧が小さいが,乾燥度合の増 加に伴った強度定数の変化は,全応力の場合は c_{cu}の減少と φ_{cu}の増加,また有効応力の場合は φ' はほぼ一定であるが, c'は減少する傾向にあることが認めら

れる。この傾向から、乾湿 1 サイクルの作用による結合力の 0.2 部分的な破壊は粘着力成分の減少をもたらし、その減少は乾 燥度合が大きいほど著しいといえよう。なお、乾燥状態Dに $\stackrel{\checkmark}{\bullet}$ 0.1 対する強度定数は $c' = 0.75 \text{ kg/cm}, \phi' = 34° であった。 図 - 5.12 は圧密圧力に対して破壊時の間隙圧係数 <math>A_f$ を乾燥状 0 態ごとに示したものである。 図 - 5.9 における間隙水圧の発 生量の大きさの順とは異なり、乾燥度合が大なるほど A_f は 増大している。

5.4.2 乾湿繰返しによるコンシステンシー変化

実験(2)の板状供試体に乾湿サイクルを繰返し作用させると、①乾湿サイクル1~2回では堆 積層に沿った分離あるいはタマネギ状の剝離、②乾湿サイクル3~7回では薄片状あるいは細れき 状の細片化を経て、細粒化の増大、③乾湿サイクル8回以上では細粒化に伴った粘土化が観察され る。ただし、3~7回では細粒化の様子が肉眼で識別可能であるが、8回以上においてはその程度 が明確に判断できない状態にあった。いま、この細粒化の状況を把握するために、できるだけ人為 的な撹乱を加えないように行った団粒分析試験の結果が図-5.13(b)に各乾湿サイクルに対して 示してある。この結果を先の細片化の観察と対応させると、乾湿サイクルの増加に伴って泥岩塊は 乾湿 7サイクルまでは急激に細粒化し、11サイクル以上になるとほぼ一定の団粒分布となり、団粒 試験の結果と観察はほぼ一致していることがわかる。しかしながら、この団粒分析試験においては 0.1 mm 以下の団粒径の分布を明らかにすることができないので、乾湿作用を受けて細粒化したとき

に卓越して存在する団粒径の大きさが明らかでない。他方,土質試験における粒度試験では,その 操作上機械的撹乱が入り,乾湿作用だけによってもたらされる団粒分布を表現することが困難であ ると予想されるが,撹拌の限界と分散剤の効果を明らかにするために,次に示す予備的な実験を行 い,その結果と団粒分析試験結果を比較して卓越して存在する団粒径の大きさを推定する。

予備実験は乾湿1サイクルを経た420 μフルイ通過の風乾試料に対して、分散剤としてJISに基 づいたケイ酸ナトリウム,トリポリリン酸ナトリウム(1g/ℓ),ヘキサメタリン酸ナトリウム(1N, 20 cc)を使用した場合のその効果の比較,及びヘキサメタリン酸を使用して撹拌時間を1分から60 分まで変化させたときの分散の比較を行った。それらの結果が図 - 5.13(a)に示されている。図 から明らかなように、撹拌時間の長いものほど粘土含有量が増加しており、機械的撹拌によって団 粒が徐々に破壊されることがわかる。図には示してないが,撹拌時間 240 分についても行ったとこ ろ,その粒径分布は60分の場合と一致しており,従って,その状態が一次粒子にまで分散している か、あるいはペットのままであるかは別として、機械的撹拌による分散には60分の撹拌時間を必要 とする。そこで、60分間撹拌が機械的撹拌による細粒化の限界と考えて、図-5.13に並列してある 図(b)の乾湿 11 サイクル以上の団粒分布と比較すると,乾湿作用を受けた泥岩は外見的に粘土様 であっても、シルト径大の団粒が卓越していることが推定される。従って、乾湿作用だけでは泥岩 がそれを構成している一次粒子にまで分散することはないと考えられる。また、このことは泥岩の 風化状態を表現する手段として粒度試験は不適切であることを示唆している。ただし、このシルト 径大の団粒がどの程度の外力に抵抗できるかは、今後の研究に興味が持たれるところである。なお、 分散剤としては第2章で述べたように、トリポリリン酸ナトリウムが良好であることが再度確認さ れた。

> 100 **湿潤(採取**) o 撹拌 状態 *90 風乾 ▲ 炉乾 80 ≯่ 70 60 ,40 • ~30 20<u>-</u> 202 5 10 15 C, D, D, E, E, F 乾湿サイクル(回) 風化泥岩 図 - 5.14 乾湿サイクルによるコンシステンシー 変化および風化土との比較

次に、乾湿サイクルに伴う液性限界 (w_L)と塑性限界 (w_b)の変化が図 – 5.14に示されている。

測定条件としての乾湿供試体の状態は, ①図-5.2 に示すような容器内で風乾 により乾湿サイクルを受けた状態(風 乾試料), ②この風乾試料をスラリー状 で撹拌して適当な含水比まで乾燥させ た状態(撹拌試料),③炉乾燥した状 態(炉乾試料)の3通りについて比較 してある。風乾試料に対する液性限界 は, 5.4.1 で述べたように, 初回の乾 燥で一度は減少するが、その値は乾湿 7サイクルまでは徐々に増加し,その 後乾湿サイクルの増加に伴って逆に減 少する傾向を示している。一方, 撹拌 試料に対する液性限界は乾湿サイクル の増加に伴って減少傾向だけを示し、 乾湿20サイクルにおいてはその値が

風乾試料に対するそれにほぼ等しくなっている。このように、液性限界が変化することは、乾湿繰 返しに伴って泥岩の水分保持特性が変化することによるものと考えられる。その要因としては、液 性限界の増加に対しては乾湿に伴って泥岩塊が細粒化するにつれて、団粒表面に拘束される水分が 増加すること、液性限界の減少に対しては団粒(粒子)が親水性から疎水性へ移行することなどが 挙げられる。特に後者の要因は、乾湿サイクルの増加に伴って撹拌試料に対する液性限界が減少す ることから推察されることであるが、島尻層泥岩に含まれる水溶性成分 Ca, Mg,K,Na,Si,Fe などは水浸-乾燥作用で容易に離脱するといわれ¹⁰,この化学的性質の変化が疎水化をもたらすも のと推察される。このような上述の細粒化と疎水化は土の水分保持力に関して相反する作用である が、乾湿繰返しに伴って両作用は同時に、互に作用し合い、その時点での水分保持特性は、それら のいずれかの卓越する要因に支配されると考えられる。すなわち、先の図 – 5.13(b)の団粒分析 試験と対応させると明らかなように、乾湿 7 サイクルまでの液性限界の増加は、細粒分の増加に伴 う保水力の増加が卓越することによってもたらされ、一方 8 サイクル以降での液性限界の減少は、 わずかに細粒分が増加するが、逆に疎水化に伴った水分保持力の低下が卓越することによってもた らされるといえよう。

炉乾試料の液性限界は乾湿サイクルの増大にもかかわらず,ほぼ一定値を示し,その値は風乾試料に比べて常に小さく,乾湿20サイクルでは両者の間に約12%の差が生じている。このように乾湿繰返しの影響を受けないのは,泥岩を構成しているペッドが以後の乾湿作用の影響を受けないほど,強い乾燥収縮を伴った集合化,あるいは熱的変質を受けた結果であると考えられる。

塑性限界は,他の試料に比べて炉乾試料ではわずかに小さな値を示しているが,風乾試料と撹拌 試料では差異が認められず,しかも乾湿サイクルに関係なく一定値を示し,乾湿の影響が生じない ようである。

以上のことは、室内試験に基づいて未風化泥岩に乾湿作用を繰返してコンシステンシーの挙動を 調べたものであるが、次にこの結果を原位置における風化泥岩に対するコンシステンシーと比較す る。

まず,実験供試体の採取地点で,切取後ほぼ1年経過した斜面から採取した試料 $A_1 \ge A_2$ につい て行った団粒分析試験の結果が,乾湿供試体と比較するために,先の図 – 5.13(b)に示してある。 試料 A_1 及び A_2 の団粒分布はともに風乾試料の7サイクル以下の乾湿段階にある。また,液性限界 と塑性限界の結果も同様に室内乾湿繰返し供試体と比較するために図 – 5.14 に示してある。 試料 A_1 及び A_2 に対する液性限界は室内乾湿供試体の乾湿 20 サイクルの値よりも小さく,しかも風乾す ることにより,その値は増加している。一方,試料 A_1 及び A_2 の撹拌状態に対する液性限界は,室 内乾湿供試体の撹拌試料に対する乾湿 20 サイクルの値よりもわずかに小さい。このような液性限界 の値は,試料 A_1 及び A_2 が乾湿による細粒化過程にあるにもかかわらず,化学的変質を伴った疎水 化がすでに進行していることを示唆している。実際には、切取後1年の間にはこの斜面では乾湿の 繰返しと侵食による新露出面の出現の繰返しとが生じていたと考えられるので、上述の団粒分布お よび液性限界の特性から原位置でののり面表層は、数回の乾湿繰返しを受けただけで容易に侵食さ れやすい状態にありながら、その時点では、すでに化学的変質を伴った疎水化がかなりの程度まで 進行していると推察される。

-132-

次に、風化泥岩に対する液性限界及び塑性限界が同様に図-5.14に示してある。この風化泥岩は 自然斜面の残積風化層あるいは崩積層で、褐色に変色していて、その状態は土壌化したもの、ある いはブロック状のものである。図から明らかなように、これらの風化泥岩に対する液性限界は、乾 燥処理することにより湿潤状態(採取時の状態)、風乾状態、炉乾状態の順に減少する傾向にある。 この傾向は未風化泥岩の場合と同じであるが、試料A1及びA2の場合とは逆の傾向にある。これら の風化泥岩に対して、乾湿繰返しによる液性限界の変化は調べていないが、原位置ではすでに乾湿 作用を過去にいく度となく受けていることは容易に推測できることであって、過去に乾燥により自 由化した水分のいくらかは長い年月の間に再び団粒内の間隙にとり込められるであろう。従って、 風乾処理すると、この拘束水が再び自由化して非可逆的となり、液性限界は減少する。しかも、こ れらの値は室内乾湿供試体に対する乾湿20サイクルの場合とほぼ同じか、小さめである。これらの ことから、風化泥岩の液性限界は、風化としての乾湿作用による細粒化よりも、化学的変質に伴っ た疎水化に強く支配されるようである。

Bjerrum¹¹⁾は弱い結合力をもつ過圧密粘土のLittle Belt clay に対する乾燥処理によるコンシス テンシー変化を表-5.2のように示している。湿潤状態では単に機械的に練返しただけでは結合力 が破壊されないが、風乾による乾湿処理をほどこすと、容易に結合力が破壊され、細粒子分が増加 して液性限界と塑性限界が増加することを示している。すなわち、この粘土では乾湿風化を受ける と、コンシステンシーが増加することを意味する。従って、この粘土に対比させると、本研究の実 験試料である島尻層泥岩は、風化すると液性限界が逆に減少するという特性を示すといえそうである。

				w _L	wp	Ip .
湿	潤	試	料	178	46	132 %
風	乾	試	料	208	52	156
炉	乾	試	料	147	47	100

表-5.2 Little Belt clay のコンシステンシー(Bjerrum による)

5.4.3 乾湿繰返しによる強度低下

(1) スレーキング特性

5.4.2では、乾湿サイクルの増加に伴うスレーキ ング現象としての泥岩ブロックの細片化・細粒化を 団粒分析試験に基づく団粒径分布の変化として示し た。ここでは、実験(3)で説明したように、せん 断用供試体の形状を維持するためにモールド内で乾 湿を作用させているので、スレーキング特性は奥園¹²⁾ やMorgensternら¹³⁾の手法にならって含水比の増加 で表示する。このことは、乾湿の繰返しに伴って泥 岩塊が細れき状に分割し、さらには細団粒へと変化 するにつれて間隙が増大すると、それに伴って飽和

含水比が増加することに着目したものである。先の図-5.3 で示したモールドA及びBを用いて供 試体に風乾-水浸,あるいは炉乾-水浸の乾湿を繰返し,乾湿サイクルごとに水浸時に対する飽和 含水比を示すと図-5.15となる。モールドAにおいては,風乾の場合乾湿5サイクルまでは含水比 が急激な増加を示しているが,それ以降ではその増加は緩慢となり,一定値に落着く。炉乾の場合 の含水比は15サイクルまで増加して,その後一定となる。乾湿サイクルに伴った含水比増加は, 同時に図中に示したモールドBの場合にも同様に認められるが、モールドAとBとではその含水比 に大きな差異がある。ただし、モールドAにおいては乾湿12サイクル以降の含水比が,風乾よりも 炉乾において増大している。

ところで、モールドによる含水比の差、すなわちスレーキング特性の差異は、図から明らかなよう に、供試体の寸法(ここではモールドの高さ)と乾燥法の違いによってもたらされることが推察さ れる。これらに対する要因として、モールド壁面の摩擦抵抗、乾燥度合によるスレーキングの差、 乾湿に伴う粒子表面の親水性から疎水性への変化などが考えられる。スレーキング現象は吸水膨張 を伴うものであるから、供試体が初期寸法の4%以上に吸水膨張すると、側方へはその膨張がモー ルドで拘束され、それに伴って発生する膨張圧の大きさに応じて摩擦力が壁面に作用し、この摩擦 力と自重の効果で鉛直方向への吸水膨張がさまたげられることになる。従って、等断面積であれば 高さに影響を受け、鉛直方向への膨張はモールドBよりもAで著しく、間隙比も増大するからモー ルドAの含水比が大きいことになる。事実、モールドAの供試体は細粒化が著しいのに比べ、モー ルドBの供試体は乾湿15サイクルにおいても、後に写真 – 5.1に示すように、クラックで分離 された細れき状(結合力はある程度破壊されている)のままであることが観察された。また、モー ルドBでは風乾による含水比が炉乾の場合よりも大きな値にあるが、これは、細粒化が抑制されて いるから、炉乾による疎水化が卓越したことによるものと考えられる。一方、壁面摩擦力などの拘

束力が小さいモールドAでは、乾湿サイクルの増加 とともにスレーキングの激しさによる細粒化の影響 が疎水化よりも卓越して、乾湿12サイクル以降では 炉乾試料の含水比が増大するものと考えられる。

いま, 乾湿サイクルごとに飽和含水状態を液性指数で表示したのが図 – 5.16である。液性指数 *I_Lは次* 式で求められる。

$$I_L = \frac{w - w_p}{I_p} \tag{5.1}$$

 エー
 1
 モールド日
 回風乾

 ※
 0.5
 モールド日
 回風乾

 00
 5
 10
 15

 乾湿サイクル
 (回)
 図-5.16
 乾湿サイクルによる液性

 指数の変化
 15

ここに、w:水浸飽和含水比、 w_p :塑性限界、 $I_p =$

 $w_L - w_p$: 塑性指数, であるが, $w \ge w_p$ の値は図-5.14 に示すような乾湿サイクルごとの値を用いた。周知のように, I_L が0に近づくほど安定な状態にあり, 逆に1に近づくほど不安定な状態にある。モールドBの供試体は $I_L = 0.1 \sim 0.2$ にあって安定な状態であるが, 他方モールドAの供試体では乾湿サイクルの増加に伴って I_L が増加して不安定な状態に移行することがわかる。両モールドにおいて I_L の差が著しいことは、スレーキングによる骨格構造の乱れの差異によってもたらされるもので, 拘束条件が乾湿に対する骨格の安定性を支配することを意味している。従って, 自然斜

面や切土面における表層部は乾湿作用を受けただけで不安定となり,降雨の浸透水等の水位上昇に 伴って流動しやすい状態となることを示唆している。また,このことは豪雨時に多発する小規模の 泥流状崩壊の要因となりうるであろう。

(2) 乾湿繰返しによる強度低下

非排水せん断強度は、モールドAの供試体に対してはフォールコーンで、モールドBの供試体に対しては三軸圧縮試験のUU試験で求めている。

モールドAの供試体に対する強度は、乾湿サイクルの水浸過程でフォールコーンを貫入させ、その貫入量から Hansbo¹⁴⁾の式で求めた。

kg/cm²

3

0.1

$$\tau = K \frac{W}{H^2} \qquad (5.2)$$

ここに、 τ : せん断強度 (kg/cd), K: 定数, W = 60 g ($\neg - \nu$ 先端角 60°), H: $\neg - \nu$ 貫入量(cm) である。定数Kは土の種類と $\neg - \nu$ 貫入量によって 変化するといわれている¹⁵⁾が、ここでは Hansbo が 提案した値、K = 0.3を使用する。

図-5.17は、縦軸にフォールコーンで求めたせん 断強度を対数目盛で、 横軸に乾湿サイクルを普通目 盛で示したものである。図には供試体3個の平均値 を,また試験後試料を練返して、再びモールドに詰 めて求めたせん断強度も示してある。図では乾燥法 によって強度に差を生じているが、それはモールド 全体の平均含水比とコーン貫入領域付近のそれに差

 11500 // n n

 かたせん
 n

 シャラ値
 n

 シャラ値
 n

 レドに詰
 0.010^{-5}

 10
 15

 20
 n

 支
 n

 10
 n

 11
 n

 10
 n

フォールコーン試験

異が生じたことによるものであって、後述のように、せん断強度は含水比に支配されるようである。 この図は、ここでは乾湿サイクルの増加に伴って強度が減少する傾向を例示するために準備した。 強度は、初期の乾湿サイクルでは急激に減少するが、乾湿5サイクル以降ではせん断強度の対数と 乾湿サイクルの関係は直線関係にある。

次に、図-5.18(a)、(b)はそれぞれ風乾と炉 乾の場合について各乾湿サイクルに対するUU 試験の応力~ひずみ関係を示したものである。 自然泥岩に対する圧縮強度は平均 22kg / cml,破 壊ひずみは2%以下であるから, 乾湿供試体の 強度は著しく減少し,破壊ひずみは増大してい ることがわかる。しかし、乾湿3サイクル以上 になると、応力~ひずみ関係は一定の傾向にな いが、それは写真-5.1に示すような水平方向 の分離面だけでなく、供試体ごとに異なる鉛直 方向の分離面が不規則に発生するためであると 考えられる。いま、これらの非排水強度 cn = $(\sigma_1 - \sigma_3)_f / 2 を 乾湿 サイクル ごとに示すと図$ - 5.19となり, ばらついているが, 乾湿3サイ クルまでは著しい強度の減少を示し、5サイク ル以降では先の図-5.15に示したわずかな含水 比増加に対応して強度も徐々に減少する傾向に ある。非排水強度は、乾湿5サイクルですでに 0.5 kg/cmまで減少し、それ以降のサイクルに 対する強度は初期強度の4~5%に相当するだ けで, 第2章の図-2.18及び図-2.19に示し たように、吸水膨張だけによる1年後の強度が 初期強度の約70%であることに比較すれば, 乾湿 作用が強度低下の速さに著しい影響を及ぼして いることがわかる。

写真-5.1 三軸圧縮試験用供試体 (乾湿15サイクル,モールドB)

一般に、同一粘性土の強度は含水比によって一義的に定まることが認められている。水浸した乾 湿供試体は飽和しているとみなせるので、フォールコーン試験とUU試験で求めた非排水強度(*r* = *c*_u)と含水比の関係を示すと図-5.20となる。この図は縦軸に含水比 wを普通目盛で、横軸にせ ん断強度 r を対数でとり、w ~ log r 関係を示したものである。また、この図には実験(5)の風化 土に対するせん断試験の結果、及び第2章の図-2.18と図-2.20で示した吸水膨張だけを受けた 供試体に対するUU試験の結果も含まれている。ばらついているが、w ~ log r 関係はフォールコー ンで求めた結果と三軸圧縮試験で求めた結果の2つのグループに分けられ、それぞれに対して直線 関係が認められる。このように、同一の土に対して別々の w ~ log r 関係が成立 することは測定方 法の差に原因するとも考えられるが、先のスレーキング特性から明らかなように、モールドAとB の供試体とではスレーキングによる泥岩の構造的乱れに差があり、これが強度特性に反映されたも のと推察される。すなわち、フォールコーン試験による強度特性は細粒状にある供試体に対して、 他方UU試験による強度特性はれき状塊にある供試体に対して適用できるものと推察される。

風化土に対しては、フォールコーン用供試体は細粒化した試料を選んで行っているので、その強度は細粒状態にある供試体に対する w~log r 関係で近似される。一方、供試体全体は均一なものでなく、含水比は細粒化した供試体で大きく、れき状塊を含む供試体で小さくなることは推測されることであるから、UU 試験の強度は、供試体の状態が細粒化しているか、あるいはれき状塊にあるかによって、含水比が大なる場合はフォールコーン試験に対する w~log r 関係で、含水比が低い場合はUU試験に対する w~log r 関係で近似できることになる。

(3) せん断特性に及ぼす乾湿繰返しの影響

モールドBの供試体を用いて,風乾による乾湿1,3,5,7,10,15サイクルに対する一連 のCU試験を行った。これらの供試体は,先のスレーキング特性あるいは写真-5.1から明らかな ように,クラックで分離されたれき状塊の集合体である。ただし,れき状塊それ自体は乾燥収縮を 受けて過圧密状態にあると考えられる。その塊は自然泥岩に比べて軟弱化しているが、骨格構造そ

のものは収縮一膨潤を繰返しても分離せずに、もとの 状態を維持していると考えられる。ここでは、乾湿供 試体のせん断特性は練返して正規圧密した試料のそれ と比較対比させることにし、この試料に対しては本章 の練返し正規圧密試料をNa1、すでに第3章に示した 試料をNa2として示してある。また、未風化泥岩のせ ん断特性は第3章に述べたところである。

図-5.21 (a), (b) は応力~間隙水圧~ひずみ関係を それぞれ乾湿1サイクルと15サイクルの場合について 示したものである。両図を比較すると、乾湿繰返しの 増大に伴って同一圧密圧力における最大応力は減少し ていることがわかる。ただし、図には示していないが、 UU 試験におけると同様に、5サイクル以降での強度低 下は著しいものではなかった。いま、応力~ひずみ関

図-5.21(a) 応力~間隙水圧~ひずみ関係

係に注目すると、乾湿回数にかかわらず、 それは拘束圧力の大きさによってひずみ 硬化-軟化型とひずみ硬化型に分類され る。すなわち、1サイクルでは圧密圧力 $\sigma_c' = 0.4 \sim 0.8 \text{ kg/ cm}, 15サイクルでは$ $のc' = 1.5 <math>\sim 3.0 \text{ kg/ cm}, 25 \times 10^{-10}$ 供用Eではひずみの増大に伴って応力が増 大して一定値となるひずみ硬化型であり、 それより大きな側圧ではひずみ硬化によ って最大応力に達した後に応力がひずみ の増大とともに減少して残留状態となる ひずみ硬化-軟化型である。しかし、低

側圧領域での応力~ひずみ関係は通常の過圧密粘土 とは異なった挙動にある。一方,図-5.22 は練返 して正規圧密した試料の応力~間隙水圧~ひずみ関 係で,通常の正規圧密粘土の挙動と一致している。

硬質ひび割れ粘土(stiff -fissured clay)のせん 断特性を調べるために行ったMarsland¹⁶⁾の排水せん 断試験によると、次のことが明らかにされている。ひ び割れによって分離された粘土塊そのものは著しい 過圧密効果を受けて固結しているから、低拘束圧の 状態では塊がれきのように挙動し、ゆる詰め砂と同 様に応力~ひずみ関係にピークを生じない。一方、 拘束圧力が増大するにつれて塊のかみ合いが生じ、

せん断面の大部分は塊そのものを通って形成されるから、過圧密状態にある塊をせん断することに なり、通常の過圧密粘土と同様に応力~ひずみ関係にピークが現れる。そして、破壊包絡線は有効 応力レベルに左右される塊の挙動に反映されて非線形となる。これまで示した乾湿泥岩の応力~ひ ずみ関係は上述のひび割れ粘土に類似し、しかも写真-5.1に示したように、細れき状の塊の集合 であり、せん断挙動も硬質ひび割れ粘土のそれと類似するものと推察される。

図-5.23は、CU 試験による各乾湿サイクル供試体及び練返し正規圧密試料に対する含水比 $w \sim$ E密圧力 $\sigma_c' \sim$ 最大主応力差 $(\sigma_1 - \sigma_3)$ 関係を示したものである。練返し正規圧密試料に対する $w \sim \log \sigma_c'$ 関係と $w \sim \log (\sigma_1 - \sigma_3)$ 関係は, 一般に認められているように、線形で、かつ互に平 行関係にあるが、乾湿供試体では $w \sim \log \sigma_c'$ 関係は非線形、 $w \sim \log (\sigma_1 - \sigma_3)$ 関係は直線関係 を示している。 $w \sim \log \sigma_c'$ 関係に注目すると、乾湿 3 サイクルまでは同一圧密圧力に対して含水比 が増しているが、3 サイクル以降では $\sigma_c' = 0.8 \sim 1.5$ kg / cml 付近を境として、低い圧密圧力では含 水比の増加、高い圧密圧力では含水比の減少を示し、その関係は乾湿サイクルの増加に伴って練返 し正規圧密試料の関係に移行する傾向がわずかに認められる。また、 $w \sim \log (\sigma_1 - \sigma_3)$ 関係も 様な傾向にあると考えられるが、乾 40 湿サイクルの増加に伴う直線関係の デ 勾配には明確な差がない。従って、 両関係はともに乾湿15サイクルにお いても、なお練返し正規圧密試料の ¹35 それとはかなりのへだたりがある。 长

ところで、w~log a' 関係に再び 如注目すると、その関係は a' = 0.8~.
1.5 kg / cml で 先行圧密された粘土の
再圧密曲線に類似している。しかしながら、この非線形性は、第2章の
図 - 2.7 で示したように、未風化泥岩の w~log a' 関係が降伏荷重以上の圧密圧力領域では練返し正規圧密

試料のそれとほぼ平行していること、また先述したように、低圧密圧力領域では塊がれきとして挙動することなどから推察すると、 $\sigma_{c}^{\prime} = 0.8 \text{ kg} / \text{cnl}$ までは等方圧密によるれき状塊のかみ合せ過程にあり、 $\sigma_{c}^{\prime} = 1.5 \text{ kg} / \text{cnl}$ 以上では塊自体の過圧密領域における $w \sim \log \sigma_{c}^{\prime}$ 関係を示しているものとみなすべきであろう。

各乾湿サイクルに対して圧密圧力による 強度増加を示したのが図−5.24 であり、ま た全応力に基づいた破壊時の応力状態を示 したのが図-5.25 である。圧密に伴う強度 増加は乾湿サイクルの増加とともに減少し ているが、5サイクル以降の比はほぼ一定 J となっている。しかし、練返し正規 圧密試 料に対する強度増加 cu / p = 0.31 ~0.33に 比べると、未だかなり大きな値にある。同 様に、全応力に基づく強度定数 ccu, φcu は 乾湿サイクルの増加とともに減少する傾向 にある。以上のような乾湿繰返しに伴う特 性の変化は、図-5.19の非排水強度の減 少傾向と同じであるように、乾湿5サイク ル以降ではわずかとなり、練返し正規圧密 試料の状態となるにはさらに長年月にわた る軟弱化を必要とするかもしれない。

次に、図-5.26は最大応力に対する有効 応力状態を各乾湿サイクルに対して示した

ものである。図中の包絡線は乾湿1サイクル と15サイクルに対するものであるが、先に引 用した硬質ひび割れ粘土の場合と同様に非線 形関係となり、乾湿サイクルの増加とともに 低圧領域での粘着力成分は減少していること がわかる。

この粘着力成分の減少は、低圧領域での塊 がれきのように挙動することによってもたら されるものであるが、各乾湿サイクルに対し て, 非線形にある包絡線を圧密圧力 σ_c = 1.5 kg / cm 以下と oc' = 3.0 kg / cm 以上で別々の 直線に近似させ、それぞれにMohr-Coulomb の破壊規準が適用できるとし、 $\sigma_c = 1.5 \text{kg/cm}$ 以下での強度定数をc', ϕ' , 及び $\sigma_c' = 3.0$ kg / cm以上での強度定数を φ, とすれば, 乾湿 サイクルの増加に伴うそれらの変化が図-5. 27 に示されている。c'は 3 サイクルまでに 激減し、その後徐々に減少する傾向にある。 一方, φ, は, 逆に5サイクルまで増加してい るが、その後乾湿の増大に伴って減少傾向に ある。ここでは、乾湿15サイクルまでのこと φ'の変化を示しただけであるが、実際には乾 湿が継続して作用すると、れき状塊の表面や 角が軟弱化し、さらには潤滑化も進行する¹⁶⁾ であろうから、強度定数はさらに減少し、特

に粘着力成分は c' = 0 になるものと予想される。従って、地盤掘削の際、掘削のり面がある期間放置されると、乾湿の影響を受けて軟弱化するであろうから、その安定性は c' の効果を期待せずに、時間の経過に伴った o' の減少を考慮して、その安定性を検討する必要がある。

他方, ϕ_2 はれき状塊の過圧密領域での内部摩擦角を示していると考えられ, ばらついているが, 乾湿サイクルの増加に伴った傾向は定かでなく, ほぼ 30°の一定値にあるようである。なお, ϕ_2' の 直線関係を延長して求まる粘着力成分 c' は 1 サイクルの場合 1.5 kg / cd, 15サイクルの場合 0.5 kg / cd であった。また,練返し正規圧密試料の強度定数は c' = 0, $\phi' = 23°$ である。

次に、風化供試体について圧密圧力 $\sigma_c^2 = 3.0 \text{ kg} / \text{crl}$ 以下で行ったCU試験の結果を乾湿 15 サイ クル供試体及び練返し正規圧密試料と比較して示したのが図 – 5.28 である。 これら風化供試体の 破壊時の有効応力状態は乾湿 15サイクル供試体と練返し正規圧密試料に対する間にあって、強度定 数は $c^2 = 0.04 \sim 0.13 \text{ kg} / \text{crl}, \quad \phi^2 = 26 \sim 30^\circ$ にある。なお、図に示してないが、風化土 Fは比較的 クラックの少ない褐色の試料で、その強度定数は $c^2 = 0.55 \text{ kg} / \text{crl}, \quad \phi^2 = 27^\circ$ であった。 以上のこ

-140-

とは、乾湿を受けてれき状化した泥岩がその後さらに軟弱化や化学的風化を受けて細 粒化した風化表層部(深度 30~50 cmを対 象)でさえ、その強度は練返し状態まで軟 弱化していないことを示唆している。

ところで、図-5.21(b)の乾湿15サイク ル供試体では軸ひずみ13%以上にわたって 応力~ひずみ関係が示され、低側圧でのひ ずみ硬化に伴った一定応力、あるいはそれ より大きな側圧でのひずみ軟化に伴った一 定応力が求められている。いま、これらに

図-5.29 乾湿 15 サイクル供試体の有効応力径路と残留応力

対して最大ひずみまでの有効応力径路を圧密圧力ごとに示したのが図-5.29である。そして、この 図では最大応力と残留応力に対するモールの応力円を描き、それぞれに対する包絡線が示されてい る。最大応力に対する包絡線は先に述べたとおりであるが、残留応力の包絡線は $\sigma'=2 \text{ kg}/\text{cnl}$ 付近 を境として低側圧領域での非線形、それ以上の側圧領域での原点を通る直線関係とからなり、過圧 密粘土に対する過圧密領域から正規圧密領域にまたがる破壊包絡線と類似した形にある。しかしな がら、低側圧領域での非線形は、先述したように、れき状塊としての挙動に反映されたものである。 そこで、 $\sigma'=1.5 \text{ kg}/\text{cnl}$ 以上の圧密圧力に対する包絡線に注目すると、その強度定数はc'=0、 $\phi'=23.5^{\circ}$ にあって、練返し正規圧密試料とほぼ一致している。従って、乾湿作用を受けてある程度軟 弱化した泥岩は、さらに外力の作用による変形でひずみ軟化を受けてはじめて、その強度が十分に 撹乱を与えたのと同程度に減少することが推察できる。

以上のせん断試験の結果から,乾湿作用が泥岩の強度低下を著しく促進させる要因となりうるこ とは明らかである。実際の切取斜面あるいは自然斜面においては,この乾湿作用と併せて化学的風 化作用が並行し,さらに局部的なひずみ軟化領域が徐々に拡大していく進行性破壊の影響を受けて, 最終的には練返し正規圧密試料の状態までその強度は減少するものと推察される。

5.5. 結 語

本章においては,泥質岩の強度低下の要因として乾湿風化を取り上げ,未風化泥岩に乾湿を繰返 し作用させた場合のコンシステンシー変化,強度の減少及びせん断特性の変化を室内実験に基づい て定性的に把握するとともに,その結果と原位置風化土に対する結果を比較検討した。この実験的 研究から得られた成果をまとめると,次のようになる。

(1) 乾湿1サイクルに限定して乾燥度合を種々変化させた場合,液性限界は乾燥含水比が低いほ ど減少する傾向にある。同様に,スレーキングも激しくなり,それに対応して強度が著しく減少し, 自然含水比より2~3%の含水比が減少しただけで,水浸強度は初期強度の65%,また乾燥含水比 が4%の供試体ではその強度は20%にも減少する。

(2) 続成作用による泥岩の結合力は乾湿作用によって破壊されるが、その破壊程度は乾燥含水比が低いほど著しい。しかも、この結合力の破壊は粘着力成分 c'の減少をもたらすものである。しかしながら、含水比4%まで乾燥させた水浸供試体の強度定数は c'=0.75 kg / cni, φ'= 34°と比較的大きく、乾湿 1 サイクルだけでは十分に軟弱化していない。

(3) 乾燥含水比を定めて乾湿サイクルを増大させた場合,液性限界は第1回目の乾燥で減少する が,乾湿サイクルの増加とともに8サイクルまで増加し,それ以降の乾湿サイクルにおいては再び 減少する傾向にある。すなわち,実験供試体である島尻層泥岩は風化によりその液性限界が減少す るという特性を示している。

(4) 乾湿サイクルに伴うスレーキング特性は乾燥法,拘束条件などに影響を受けるが,特に拘束 力の大きさの影響が著しく,それがゆるい条件では容易に細粒化するが,拘束力の増大に伴ってク ラックで分離されたれき状塊の程度になる。

(5) 乾湿供試体の強度は飽和含水比と一義的な関係にあるが、それらの関係はスレーキングによる供試体の分離程度に応じて勾配を異にしている。

(6) 乾湿供試体のCU試験では、低側圧領域においてはれき状にある塊が粒状体のように挙動して、応力~ひずみ関係にピークが現れないが、拘束圧力の増大に伴って塊そのものがせん断されて 応力~ひずみ関係にピークが生ずる。その結果、破壊包絡性は非線形となる。

(7) 強度定数 c, ϕ は乾湿サイクルの増加とともに減少する傾向にある。しかしながら,乾湿15 サイクル供試体に対する強度定数は c = 0.05 kg/cml, $\phi = 39.5^{\circ}$ で, この値は練返し正規圧密試料 に対する c = 0, $\phi = 23^{\circ}$ よりも大きな値である。

(8) また,風化土の強度定数 C, かは乾湿 15 サイクル供試体と練返し正規圧密試料に対する間にある。

(9) 乾湿サイクルを受けた供試体の残留応力に対する強度定数は c = 0, $\phi = 23.5^{\circ}$ で、これは 練返し正規圧密試料にほぼ等しい。

(10) 従って、乾湿作用は強度の減少を著しく促進させる主要因となり、これに並行して長期間にわたる化学的風化作用や軟弱化が進行するであろうが、外力によってもたらされるせん断ひずみに伴った軟化を伴なわなければ、練返し正規圧密試料の状態にまでその強度は減少することはないといえそうである。

参考文献

- 新城俊也・小宮康明:乾湿繰返しによる島尻層泥岩の強度低下,琉球大学農学部学術報告,Vol. 25, pp. 307 ~ 323, 1978.
- 小宮康明・新城俊也:乾湿繰返しによる島尻層泥岩における2,3の物理的性質の変化,琉球 大学農学部学術報告,Vol. 25, pp. 295 ~ 305, 1978.
- 3) 篠木嶺二・奥園誠之:斜面安定の問題・安定計算における理論と実際,土と基礎, Vol. 21, No. 11, pp. 47~52, 1973.
- 4) 松尾新一郎監訳:風化・その理論と実態, ラティス, pp. 27~31, 1971.
- 5) 星埜和・他訳:テルッアギ・ペック土質力学基礎編, 丸善, pp. 126, 1969.
- 6) 仲野良紀:第三紀地すべり母岩(泥岩)の軟弱化と物性の変化について,農業土木試験所報告, 第4号, pp. 143~169, 1966.
- 7) 土壤物理性測定法委員会編:土壤物理性測定法,養賢堂, pp. 59~64, 1972.
- 8) 山崎不二夫監修:土壤物理,養賢堂, pp. 77~83, 1969.
- 9) 山崎不二夫・竹中 肇:風乾がアッターベルグ限界に及ぼす影響,農業土木学会論文集,第 14
 巻, pp. 46~48, 1965.
- 大屋一弘・他:ジャーガルとその母材に関する研究(第2報),琉球大学農学部学術報告.第 23号,pp. 165~176, 1976.
- Bjerrum, L. : Progressive failure in slopes of overconsolidated plastic clay and clay shales, Proc. of ASCE, Vol. 93, No SM 5, pp. 3~49, 1967.
- 12) 土質工学会編:日本の特殊土,土質工学会,pp. 325~327, 1974.
- Morgenstern, N. R. and Eigenbrod, K. D. : Classification of argillaceous soils and rocks, Proc. of ASCE, Vol. 100, Na GT 10, pp. 1137 ~ 1156, 1974.
- 14) Hansbo, S. : A new approach to the determination of the shear strength of clay by the fall-cone test, Royal Swedish Geotechnical Institute Proc. 14, 1957.
- 15) 高山昌照:有明粘土のこね返し強さについて,農業土木学会誌, Vol. 39, Na 7 pp. 25~30, 1971.
- Marsland, A. : The shear strength of stiff fissured clays. Proc. of the Rosco Memorial Symposium, pp. 59 ~ 68, 1971.

第6章 島尻層泥岩地帯における斜面安定

6.1 概 説

我が国の地すべりは、その70%以上が第三紀層地すべりに分類されているように、第三紀泥岩層 は地すべり頻発地として知られている。一般に、地すべりの発生の原因として地質、地形、降雨, 地下水、人為的作用などが挙げられるが、第三紀泥岩層に地すべりが集中して発生する原因として は、生成時代が新しく、固結度が低いために風化により容易に粘土化する岩質であること、断層・ 破砕帯などの地質構造的欠陥などの要因が考えられている。従って、地すべり防止工事等を行うに は対象とする地すべりの素因と誘因が明らかにされるべきである。このことは本章で対象とする島 尻層泥岩斜面における崩壊・地すべりに対しても考慮されるべきことであるが、その調査・研究は 未だ十分な成果が得られていないように思われる。一方,我が国における地すべり対策工を目的と した安定解析には、すべり面のつり合いから逆算した強度定数*c*、*ø*が用いられているのに対して、 ョーロッパにおける第三紀層固結粘土ではひずみ軟化を考慮した強度定数に基づいて斜面破壊に対 する安定解析が行われている。

そこで、地すべりの発生には多くの素因と誘因が考えられるが、本章においては泥岩が乾湿作用 により容易に軟弱化するという素因に立脚して、島尻層泥岩斜面の安定性について検討するととも に、斜面安定解析に対して泥岩の完全軟弱化状態での強度定数の適用を試みる。すなわち、最初に 粘性土斜面における崩壊・地すべりの形態と我が国における地すべり対策工上の安定解析を略述す る。続いて、本章で対象とする島尻層の地質について概略する。その際、島尻層泥岩を新里層と与 那原層に区別している。そして、まず与那原層泥岩の斜面安定を、前章で明らかにした乾湿作用に よる軟弱化現象に基づいて検討する。次いで、新里層で発生した地すべりの一事例について、新里 粘土の力学特性を明らかにするとともに、そのすべりに対して考察を行っている。

6.2 地すべりの形態と斜面安定解析

6.2.1 粘土斜面における崩壊・地すべりの形態

地すべりの分類には、地質的要因、地すべりの構造、移動形式あるいは地形発達史的な見方など、 それぞれに基づく諸説がある。

SkemptonとHutchinson は、一般にいう地すべりとは主にせん断破壊によって土塊あるいは岩塊 が斜面に沿って下方に移動する現象として定義し、粘土斜面における地すべりの形態を図-6.1(a)、 (b)のようにまとめている。図(a)のグループは単一のすべり面からなり、その判別は容易で、基本的 な形態として分類されるものである。他方、図(b)のグループは、図(a)の基本的な形態がいくつか組 合わさった場合の代表例である。これらについて略述すると、次のようになる。

基本的な形態

1. 崩壞

2. 回転すべり a) 円弧すべり b) 浅いすべり c) 非円弧すべり

3. 複合すべり(円形と平面の組合わせ)

-144-

図-6.1 粘土斜面における地すべり・崩壊の形態 (Skempton and Hutchinsonによる)

4. 平面すべり (a) 地塊すべり (b) 板状すべり

5. 流動 (a) 土石流 (b) 泥流 (c) ソリィフラクションによる薄層すべり 基本的形態の組合わせによる複合形態

1) 連続的すべり 個々の浅い回転すべりの集合

2)多段的退行性すべり 1個のすべりがつぎつぎと退行的に発達して生ずる地すべりであって、 回転すべりと平面すべりとがある。

3) 崩落 土石流 回転すべりと裂状型泥流の中間移向型で普通よくみられる形式

4) 岩屑層すべり a) 岩屑層地すべり b) 崖錐地すべり

5) 拡大すべり ゆるい粘土斜面にみられる急激な後退性の地すべり

6) クイック粘土のすべり 後退性複合回転すべりで、すべった形がびん状となる。

図-6.1の地すべりの形態はその大部分が氷河粘土あるいはロンドン粘土を対象としたものであ るが、これまで述べたように、ヨーロッパにおける第三紀層の泥質岩は我が国の第三紀層よりも固 結度が低いといわれている。従って、地質条件が相違していることから、地すべりの分類はわが国 におけるそれとは異なっている。

我が国における地すべり分類法は種々提案されているが、地すべりの発生・分布がある一定の地 域に集中していることに注目した分類に、第三紀層地すべり、破砕帯地すべり、温泉地すべりに区 分する方法がある。第三紀層地すべりは第三紀層地域に発生した地すべりを総称するもので、我が 国における地すべりの70%以上が第三紀層地域に発生している。その原因として、生成時代が新し く、固結度が不十分なために、一般に風化に対する抵抗力が小さく、粘土化し易い岩質であること、 並びに地質構造的な素因が強く影響していることなどが挙げられている。しかし、第三紀層の地す べりの移動土塊の地質構成は、風化岩または岩盤のすべりが全体の31%強で、残りの69%弱が崩 積土層のすべりであるといわれ、第三紀層すべりといっても、第三紀層の基岩そのものが滑ってい るものよりも、むしろ崩積土層が滑っているのがはるかに多いのが実態のようである³⁾。

6.2.2 斜面安定解析の方法⁴

粘土斜面における地すべりの形態は複雑であるから、土質工学的な安定解析法を適用することは 容易でない。ここでは、我が国における地すべり対策工のための安定解析法について概略する。

安定解析が実用的に最も多く使われるのは、斜面が崩壊するとか、あるいは地すべりの動きが明 らかで、復旧工または対策工を計画する場合に工法の効果を試算する場合である。従って、安定解 析は自然斜面の崩壊の予知などの手段としては用いられず、地すべりの危険性のある斜面または、 すでにすべりの発生しつつある斜面に適用されることになる。このような斜面ではすべり面が調査 によって推定できる場合が多いから、すべり面を円弧と仮定して、安定解析の方法は分割法によっ て行われている。それには簡便法とBishop法とがあるが、簡便法は実用的な安定解析法として最も 多く使われている。

簡便法は図-6.2 において

$$F_{s} = \frac{\sum s \cdot l}{\sum W \cdot \sin \theta} = \frac{\sum \{ c'l + (W \cos \theta - ul) \tan \phi' \}}{\sum W \cdot \sin \theta}$$
(6.1)

で示される。ここに、 F_s :安全率、W:単位幅当りの分割片の重力による応力 (t/m)、l:分割片 がすべり面を切る弧の長さ (m)、 θ :分割片とすべり面の傾斜角 (度)、u:すべり面の単位面積 当りの間隙水圧 (t/m^2) 、s:単位面積当りのせん断強さ (t/m^2) 、c':土の粘着力 (t/m^2) 、 ϕ' :土の内部摩擦角である。

Bishop 法は

$$F_{s} = \frac{1}{\Sigma W \sin \alpha} \Sigma \left\{ \{ c'b + \tan \phi' (W - ub) \} \frac{1}{\cos \alpha + \frac{\tan \phi \sin \alpha}{F_{s}}} \right\}$$
(6.2)

で示される。ここに, b:分割片の幅。

-146-

以上のような安定解析を行う場合、土の強 度定数 c', o'は土質試験から求められるが, 地すべり斜面における粘土は均一でないので, それによる強度定数ではすべりを説明できな い場合が多い。従って、一般には逆算によっ てせん断強さを求める方法が用いられる。ま ず、すべりが平衡状態にある時点の安全率を 1として,推定すべり面に対して簡便法を適 用し、そのすべり面の平均的な土の強度を逆 算する。このように求めた土の強度は強度定 数c, ϕ (またはc, ϕ) で示されるから, 一義的に定まらないで、図-6.3に示すよう な c - o 関係図で表わされる。従って, c ま は決められない。推定の一つの方法は、土の 粒度からφを推定するもので表−6.1に示さ れる。もう一つの方法は、すべり面の深度か らcを推定するもので表-6.2に示される。

以上のような方法により土の強度を推定し た後,その値を用いて対策工法を施した場合 に,安全率がどれほど向上したかを試算して,

質

±.

土

<u>±</u>.

図-6.3 安全率を1としたときの ¢と¢の関係

対策工法の決定の資料として安定解析が利用されている。

内部摩擦角(度)

 $15 \sim 20^{\circ}$

 $20 \sim 25^{\circ}$

 $25 \sim 30^{\circ}$

 $30 \sim 35^{\circ}$

表-(6.1	粒度によ	る内	部摩擦	角の推定
-----	-----	------	----	-----	------

表- 6.2	層厚による粘液	皆力の推定
地すべり	垂直層厚(m)	C(t/m²)

地9、り世追眉厚(m)	ι(t/m)
5	0.5
10	1.0
15	1.5
20	2.0
25	2.5

6.3 島尻層泥岩の地質背景

6.3.1 島尻層の地質

質

質

砂、れき混じり砂

土

粘

粘

砂

琉球列島の地質は、小西によると、6つの地質区に分帯されて帯状構造をなしていると考れられ ている。沖縄本島の帯状構造は、図-6.4に示すように、本部累帯、国頭累帯、島尻累帯に分けら れ、本部、国頭累帯は古期岩帯、島尻累帯は第三紀累帯に属している。これらの基盤岩類をおおっ て、第三紀末から第四紀にかけて隆起サンゴ礁石灰岩類と段丘礫層、砂丘堆積物などが新しい地形面 を形成し,広く分布している。表-6.3は沖縄の地質 構造区分と地質層序を示したもので,表中,石垣累帯 は本部累帯の北側に位置し,古期岩帯に属する。

沖縄の地質の研究は、半沢⁹以来多くの調査研究がな されている。小西によると、島尻層群は浅海ないし半 深海相の純海成中新 — 鮮新統の砂岩・泥岩の厚相で、 現在は box-fold型の櫂曲変形をなしているといわれて いる。島尻層群を主体とした沖縄本島中南部地域の地 質層序は、半沢⁶、MacNeil⁷、牧野・樋口、福田・影山⁹ によって区分が試みられた。そのうち、牧野ら及び福 田らの報告は沖縄天然ガス調査としての成果であるが、

図-6.4 沖縄本島の帯状構造 (小西による)

その調査はその後も継続され,詳細な地表並びに試錐調査に基づきこれまでの層序を修正し,地質の特徴と構造を明らかにしている。ここでは、この調査報告¹⁰⁾に基づいて島尻層群の層序,地質,地 質構造を概略する。

沖縄本島中南部地域の地質層序の大要は MacNeilによる層序を修正し,図-6.5に示 すように、知念砂層を含めて琉球石灰岩と島 尻層群とは互に不整合をなし、島尻層群は上 位から新里層,与那原層,那覇層に区分され、 それらは互に整合をなしている。さらに、そ のうちの与那原層は、その岩質から上・中・ 下の3部層に細区分されている。これら島尻 層群の地質の層厚と特徴が表-6.4に、中南 部地域の地質図が図-6.6に示されている。

この地質図にみられる大規模な地質構造線 は天願断層で、この断層を境として南側に島 尻層群が分布している。この断層は北谷村砂 辺に始まり、ほぼ南西— 北東に走って、具 志川市宇堅の天願川下流方向にのび、北落ち の正断層と推定されている。

天願断層に次ぐ大規模な地質構造線は,那 覇市泊港から安里,松川,南風原村新川を経 て与那原町与那原に至る北西西 — 南東東の 走向を持った首里断層である。この断層は, 西半部では北落ち,東半部では南落ちで,北 側が南側に対して大きく東方にずれている。 さらに,那覇市松川付近の東方にはほぼ東西

表-6.3 沖縄の地質構造区分と地質層序表

$\overline{\ }$	祥	Ş.	_			<u> </u>				-	
	$\sum_{i=1}^{n}$	(巾)	石		Ēt	本	<u>-</u> 종(围	蝢	.	尻
畸	17	\geq	20	~3	35km	25~	45km	20)km	60~	75km
	-		L		隆	51		<u>~</u>	<u>ज स्क्र</u>		
	第四				琉球	石灰岩	(牝 5 (引 一 月	文港石 作谷石 『覇石	灰岩 灰岩		
新	54		名	蔵	瓅囨	イートー 仲尾次	# # [国頭	碟盾		2008
		鮮新世	T	IT	ITT	Π	ΠΠ		пп	島尻	「「」」 「唐群
生	第	ф		LL-	Ш	ļ					TTTT
		新	λ	ĒЦ	層群	ļ		l			9 I F I
	Ξ	世	7Ŧ	11	达 崗岩	l					
代		渐新		IT	ПТ						1117
		世	Щ	μ	Щ	μų		l		μ <u>m</u>	
	1*0	新世	h	Ę ۲	۲ ۳	h		ŀ			
		曉	111	11	••••	1''		l			
	L	新世				ш	ш	ш	ШЦ	ш	ш
4	5	白亜紀	1			諸リ	見圈	大野・	嘉陽層	ļ	
±	ŧĺ	ジョラ	Į			m		81	後層].	
11	e۲	三三	ł			今帰	仁層	+	<u> </u>	1	
)所 <u> </u>				IIII	ΠΠ	1		L	
节生什		二 四 紀	Į.	Ц	山 ル層	本部の古	半島ら 生層				

方向に走る副断層が認められている。

首里断層より南側の地域の地質構造は南東方向に傾斜 する単斜構造を基調とした単調なものであるが,階段断 層群を構成する小断層の発達が顕著なところがある。

一方,首里断層より北側の地域における地質構造はか なり複雑であるが,大局的には南東東方向に緩斜する単 斜構造である。しかし,浦添市牧港付近から首里にかけては, 南に沈む顕著な半ドーム構造があり,その周囲には複雑な

表-6.4 島尻層群の地質の特徴(福田らによる)

地層	鬙名	層	厚	特	截
				1. 与那原層の上に整合に重なる。	
,	er.			2. 琉球石灰岩を主とする第四系におわ	れている。
7	ग			3. 基底部が砂岩を主にそれより上位が	粘土岩を主にした互層である。
F	Ŧ	950)	4. 基底部には磨砂凝灰岩を2~3枚挾	むほか,軽石の円礫を多量に含む細
5	E	250	J m	~中粒砂岩がある。	
E	5			5. 本層の主体をなすのは基底部の上に	重なる帯緑灰色粘土岩を主とし砂岩
	e			を従とする互層で、この部分の上部に	も凝灰岩が挾まれており,まだ中部
	1			および上部に貝化石が多産することが	ある。
	全	900) m	1. 島尻層群の主体をなすものでその分	布も広い。
	体			2. 本層は主として帯緑あるいは帯青灰	色の粘土岩からなる。
	ŀ			1. 本部層の下限は厚さ4~5mの微細	粒砂岩の始まるところとした。
与	「」」「」」	工 層 350 部	350 m	2. 本部層の上位と下位には厚さ20~30	cmの磨砂凝灰岩および安山岩質結晶
	部			凝灰岩がある。	
	40			3. 本部層は下位の中,下部層に比べて	貝化石が多い。
那	中			1. 本部層は主として散在する浮石片に	富む粘土岩からなる。
	部屬	500	500 m	2. 全層にわたって凝灰岩の薄層を夾有	するが上半部のものは安山岩質.ま
				た下半分のものは石英安山岩類である	
原				1. 本部層の最上位には含貝化石細粒砂	岩があり与那原層中の良好な鍵層と
	下	50)	なっている。	
	\$277	2		2. この砂岩は風化すると黄褐色となり	, とくに厚く発達する付近では小禄
圕	Чп	80)	砂岩に似ているが貝化石が含まれてい	ること、および重鉱物組成が異なる
	層	n n	1	ことから両者を区別することができる	o
				3. 上記砂岩のトに本部層の主体をなす	粘土岩があり中位には厚さ数10cm以
				トの細~中粒砂岩と凝火岩の薄層を夾	
羌	邦			1.	は最上部の 65 m はどしか露出してい
				ない。そのうち60mは小様砂岩とし	(知られている砂賀宕層である。
ł	朝	1,15	0 m		,シルト質微細粒~細粒砂岩からなる。
				3. 地友において小俅砂岩以下の那覇層	かみられるのは那朝巾小碌付近と豊 した「 - 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
屑	ŝ			見 吸付 花 那 朝付 近 た け で あ り , 向 地 域	ともちm肌後の帯緑火色の粘土岩が
				わりかに頭部を現わしているたけであ	る。

図-6.6 沖縄本島中南部地域の地質図(福田らによる)

小櫂曲のくり返しがみられる。また、中城湾では南東方向に島尻層群下の基盤の高まりが認められ ている。

6.3.2 地盤特性

図-6.6及び表-6.4から明らかなように、島尻層群の主体をなすものは与那原層であり、これ が地表面に露出して分布し、その層厚は900mにも及ぶといわれている。与那原層は主として帯緑 あるいは帯青灰色の泥岩からなり、砂岩、凝灰岩の薄層を挾有している。新里層は南部の知念村から具志 頭村にかけて与那原層の上に整合に重なって分布している。その層厚は約250mで、帯緑灰色粘土 岩を主とし、砂岩を従とする互相をなし、上部では凝灰岩を挾んでいる。那覇層は、その大部分が 地下にだけ発達していて、わずかに最上部の砂岩が局所的に露出しているのみである。これらの島 尻層は部分的に、琉球石灰岩を主とする第四系の堆積物でおおわれている。

以上の島尻層分布から,土質力学的に対象となるのは主に与那原層であるが,新里層においても 地すべり・崩壊が多発する傾向にある。そこで両層を対象として,それらの地盤の特性について概 観する。

第三紀層は、地質時代全体からみれば、その生成が新しく、固結度が低い。島尻層は中新統から 鮮新統に堆積した半固結~未固結状態の堆積物で、比較的軟弱な泥岩を主体としている。島尻層は 10°内外の緩傾で分布しているが、堆積後の変動により大小、多くの断層がみられ、さらに櫂曲構造、 層内櫂曲なども認められ、複雑な地殻変動を受けたようである。このような地質構造上の欠陥と最 近の人工的な地形の改変とに反映されて、与那原層あるいは新里層の斜面においては地すべり・崩 壊が豪雨の際に多発する傾向にある。このような地盤災害と関連づけて、島尻層の地盤特性に関す る調査がいくつかなされている。

露木¹¹は、島尻層における地すべり・崩壊の地質学的要因を次のように述べている。島尻層の削剝 面はほぼ水平で、この上位に琉球石灰岩が不整合にのっているが、この石灰岩自体、溶洞が多く、 かつその下部は砂質になっているので、降雨は表層土を浸透して琉球石灰岩中に入る。不整合面は 比較的小起伏に富み、緩傾斜をなしているので、浸透した水は琉球石灰岩の下部及び島尻層との境 界に滞留することになる。滞留した地下水は局所的に存在している断層、櫂曲に沿って浸透し、地 層の乱れや割れ目の発達をうながし、また島尻層泥岩が透水性の砂岩と互層をなしていることも原 因して、地層縁辺部における斜面のすべり・崩壊がもたらされると説明している。また、琉球石灰 岩はその直下の軟弱化した島尻層に対して外力として作用するから、不安定化した斜面の崩壊を助 長させるとし、比較的軟弱な泥岩を主体としているので、本州における第三紀層地すべりと同じ形 態にあると述べている。

一方,上点"は島尻層における地すべり・崩壊の調査をすすめて,地質構造および地形との関連性 を明らかにしている。すべり・崩壊が発生している斜面は約10°~15°程度の緩傾斜をなし,その 分布地域は次のように区分できるとしている。

1) 玉城村北部——知念村——佐敷村—— 与那原町東南部

2) 糸満市北部 —— 玉城村西部 —— 東風平村 —— 大里村 —— 与那原西南部

3) 東風平村 — 豊見城村 — 南風原村南部

北中城村 —— 旧美里村東部 —— 具志川市東部

以上のように,地すべり・崩壊などの地盤災害は地形・地質上の諸要素に影響されるので,地形, 地質構造,土質,地下水などの素因および誘因と関連させて詳細な土木地質的調査・研究が必要と なる。

6.4 与那原層泥岩における斜面安定

6.4.1 序

島尻層群の分布から明らかなように、主体をなすのは与那原層であり、土質工学上種々の問題が ある。一方、分布地域は限定されているが、新里層でも地すべり・崩壊が多発する傾向にある。本 章では与那原層と新里層における斜面を対象として、それら岩質の力学的特性に基づいて斜面安定 上の問題点の現状とその対策に関するいくつかの検討と考察を行うものである。与那原層泥岩の力 学的性質はこれまで詳しく述べたところであり、他方新里層については次節で与那原層と対比させな がらその特性を明らかにする。

上原⁴は,島尻層における地すべり・崩壊が第三紀層地すべりに分類できるとし、さらに崩壊型地 すべり,斜面崩壊及び泥流(土石流)の3つの形態に分けている。これらは主に風化層に発生する ものであるが,未風化泥岩層の切土のり面においても侵食あるいは軟弱化に伴った崩壊が顕著であ る。

6.4.2 未風化泥岩層切土のり面における侵食と崩壊

道路の新設や土地造成に伴って泥岩層地山での大規模な切取りが行われるようになり、急傾斜の り面が形成されている。例えば、泥岩層を対象として、1971年に行った29箇所での切土のり面調 ¹⁵⁾によると、29箇所で切土高が10m以上、最高30mで、そのうち20箇所ではのり面勾配が45° 以上で、多くは60°前後の勾配を形成していた。しかも、これらのり面の大半は何ら保護工が施 されず、大気にさらされたままであった。その後の詳しい調査は行っていないが、切土規模は大き くなる傾向にあり、それに対応して、のり面に対する保護も施されているようである。

のり面が大気にさらされると、泥岩は乾燥と降雨による乾湿作用を繰返し受け、スレーキング現 象を伴って細片化、細粒化する。泥岩層は不透水層とみなすことができるので、降雨は表流水となっ て斜面を流去するから、乾湿作用により結合力を失って細粒化した表層部は容易に流失される。さ

らに,表流水が集中するところでは水みちが 形成されて,写真-6.1に示すように,ガリ 侵食を受けて斜面崩壊の原因となっている。

一方,表流水が流去しない場合でも,切土 による応力解放に伴って潜在的なクラックが ひらき,そのクラック面に沿って乾湿作用が 斜面内部にまで進行し,それに伴って表層部 分は遂次剝離・滑落して崖錐を形成している。 特に,応力解放に伴うクラックに沿った軟弱 化は,のり面深く,泥岩をブロック状に分離

写真-6.1 降雨表面水によるのり面の侵食

させるので、その斜面は泥岩ブロックによる石積状態になっているから、数年放置した後に再度切 土工事を行う場合には崩壊を生ずる危険性があり、施工法には十分注意が必要である。

このように斜面は,侵食,剝離,滑落を繰返して徐々に後退するので,斜面保護工を施す必要 がある。保護工としては,擁壁,石張工(間知ブロックあるいは石材),コンクリートブロック枠 工,モルタル吹付工などの構造物による方法,または植生工による方法が単独に,あるいはそれら の組合わせで行われている。規模の小さいのり面に対しては,主に構造物による保護工が用いられ, 他方造成地にみられる規模の大きなのり面ではのり尻付近で擁壁工が一部施されているが,大部 分ののり面は植生工で保護されている。しかし,植生の根付きが悪く,また根付いても,根は乾湿 作用に加えて泥岩をloosening化するので,急勾配斜面では植生もろともシート状に滑落する場合が 多い。そこで,植生工の効果を期待するためにはのり面勾配を緩くすることが必要である。いうま でもなく,表流水の排水処理が最も重要であり,その対策を常に留意することが必要である。

6.4.3 風化泥岩層斜面のすべり・崩壊

(1) 泥流状表層すべり

豪雨の際,自然斜面の表層部分が数十mから数百mの長さにわたって泥流状に流れ落ちる場合が ある。その流動速度は数m/secのオーダと考えられることから、この崩壊は、現象的には泥流(mud flow)としてよりも土石流(earth flow)に分類されるようである。しかも、崩壊後の斜面には全 長にわたって比較的新鮮な泥岩が露出している。このような崩壊が発生する斜面での風化層の層厚 は1~2mで、著しい乾湿風化を受けている上に、ススキ、カヤなどの繁茂によりloosening化が著 しく、その下の固結層とは一線を画し、水を含むと液性指数が増加し、表層は流動し易い状態にあ ると考えられる。しかも、崩壊を生じた斜面の上部には土地造成などの排土で盛土が形成されてい る場合が多く、豪雨の際、この盛土の崩壊流動が引き金となり、流動し易い状態にある風化層を上 部から次々に流動させるものと考えられる。この現象は運動式として表現されるべきであろうが、 風化層の崩壊厚さが斜面長に比べて小さいので、図-6.7に示すように、無限長斜面の単位長さの 静的つり合いを考える。浸透水位を地表面に一致させ、せ ん断応力を $\tau = c_4$ とし、安定であるためには、

 $c_{\boldsymbol{u}} \ge \tau \, \boldsymbol{z} \, \sin \beta \, \cos \beta \tag{6.3}$

となる。ここに、z:風化層厚, β :斜面の傾斜,r:風 化層の単位体積重量,cu:風化層のせん断強さである。い ま,r = 1.8 t/mとして, $\beta = 10^\circ$, 15°, 20°に対するcuとzの関係を示すと図-6.8となる。前章で示したように、 風化層に対するUU試験では深さ方向へのcuの変化は調 べていないが,深度 50 cmの試料に対して $cu = 0.5 \sim 9.0$ t/mに分布しており、それに基づくと、 $\beta = 20°$ 以下では 安定状態にあるといえる。しかしながら、勾配が急になる

未風化固結層

図-6.7 泥流状破壊の機構

と崩壊の発生が予想され,また勾配が急でなくとも斜面上部に引き金となる原因が存在すれば,こ れによってもたらされる外力Pにより,つり合いは一瞬にして

 $c_u < \tau z \sin \beta \cos \beta + \tau_0 (P)$

(6.4)

ここに, τ₀(P):外力Pによるせん断応力,となること は十分考えられることであり,土石流状の斜面崩壊の 発生の可能性を常にはらんでいるといえよう。従って, 斜面への捨土をさけ,表流水の処理が不可欠である。

(2) 地すべり・崩壊

与那原層の自然斜面では多くの地すべり・崩壊が発 生している。そのうち,地すべり防止指定区域の斜面, あるいは道路が設置されている斜面においては,地す べり防止対策を目的として地質調査,すべり面調査, 地下水調査などが行われ,その対策工が検討され,一

図 - 6.8 無限長斜面の安定に必要 な強度と風化層厚の関係

部の地域ではその結果に基づいて防止対策工事が施工されている。対策工事が実施された地域には、 地すべり防止区域に指定されている北中城村の安谷屋地すべりと喜舎場地すべりとがある。一方, 防止区域に指定されていないが,道路を含めた斜面の破壊例として,北中城村の仲順地区と熱田地 区,中城村の奥間地区と添石地区,沖縄市の高原地区などが挙げられる。これらの地域の斜面では 地質調査,すべり面調査,地下水等の調査がなされ, 6.2.2 に示したような安定解析に基づいて対 策工が提案されている¹⁷。

これらの報告書によると、すべり斜面のボーリング調査に基づく土質構成は、多くの場合上位より、 崩積土(泥岩を起源とする二次堆積物)と残積風化層、撹乱粘土層(すべりにより泥岩が撹乱されて できた粘土層),強風化層(風化を受けているが岩組織を残存),新鮮泥岩層の順序である。崩積 土(残積風化層を含む)と撹乱粘土層が移動土塊、強風化層が準移動土塊、新鮮泥岩が不動岩であ るとみなしている。すべり面は崩積土層または撹乱粘土層に形成されている場合が多く、ごくまれ に強風化層の下面に形成されるようであるが、すべり面の深さは10m以内にあって、その大半は崩 積土でしめられている。従って、過去に何らかの状態で乾湿作用を受けて軟弱化した層に沿って、 すべりが発生していると考えられる。

このようなすべり面に対して円弧を仮定し、 6.2.2 に示した安定解析から推定された強度定数は $c = 0.5 \sim 1.1 \text{ t/m}^2$, $\phi = 4 \sim 10^\circ$ である。この c, ϕ 値はすべり面に沿った平均せん断強度定数で, 防止対策工の設計のために安定解析を行う立場からは合理的な経験的推定値である。

一方, これらのすべりは集中豪雨に伴って発生し, かつその安定は地下水位の変動に左右される ので, 水の影響が作用する長期安定問題とみなし, 有効応力による安定解析が適当である。従って, 通常適用されているすべり発生の予測のための長期安定に対する安定解析には, 有効応力に基づく 強度定数 c'=0, $\phi'>0$ が用いられる。泥岩の完全軟弱化した状態での強度定数は, 前章において 明らかにしたように, 高含水比で練返して正規圧密した試料に対する値 c'=0, $\phi'=23^\circ$ である。 Skempton¹⁸によると,風化ロンドン粘土の切土斜面に対する安定解析を行うに際して,室内試験に 基づく最も妥当な強度定数は,そのすべりが切取後長期間経過した後に初めて発生する場合には練 返して正規圧密した試料の強度定数(ロンドン粘土 c'=0, $\phi'=20^\circ$)であり,他方過去にすべり 面が形成されている斜面では大変位を与えて達成される残留強度(c'=0, $\phi'r=13^\circ$)であるとされ ている。 そこで,上述の与那原層泥岩斜面における破壊例に対して報告書に示された現状地下水位とすべり 面に対する安定解析を,練返して正規圧密した強度定数 c'=0, ø'=23°を用いて,次の条件で行う。

- c'=0, φ'=23°のときの安全率(F.S)
- ② F.S=1及び c'=0としたときの o'の逆算値
- ③ F.S=1及び φ'=23°としたときの c'の逆算値

この結果をまとめて示したのが表-6.5である。c'=0, $\phi'=23^{\circ}$ として安定解析を行うと、これ

グループ	地す	べり	安全率 c'=0. ¢'=23°	¢'の逆算 F.S=1, c'=0	c'の i F. S=1, ¢	逆算 '=23°
I	安谷	入屋 計場 丁	1.63 1.85	14.6° 13.1°		
		 	0.91	24.9°	0.02	kg/cm1
П	熱 奥) 田 間 原	0.78 0.83 0.79	28.4° 27.0° 28.0°	0.04 0.09 0.03	
	-					

表-6.5 安全率(F·S)と逆算強度定数(与那原層)

らのすべりは、安全率が F.S>1 である I グループ:安谷屋, 喜舎場, 添石と, 安全率が F.S<1 である II グループ:仲順, 熱田, 奥間, 高原の2 グループに分けられる。それぞれのグループに対して逆に、F.S=1、 c'=0として ϕ' を逆算した場合、 I グループでは $\phi'=13.7^{\circ}\sim14.6^{\circ}$, II グループでは $\phi'=24.9^{\circ}\sim28.4^{\circ}$ にある。また、 II グループに対して F.S=1、 $\phi'=23^{\circ}$ として c'を逆算した場合には、 $c'=0.02\sim0.09$ kg/cdが得られる。ここに、F.S=1、 c'=0のときの I グループに対する逆算値 $\phi'=13.1^{\circ}\sim14.6^{\circ}$ は、練返し正規圧密試料に対する $\phi'=23^{\circ}$ よりも小さな値となっている。一方、 II グループに対して F.S=1 としたときの強度定数の組合わせ、c'=0、 $\phi'=24.9^{\circ}\sim28.4^{\circ}$ 、あるいは $c'=0.02\sim0.09$ kg/cd、 $\phi'=23^{\circ}$ は、前章の図 – 5.28 に示したように、乾湿15サイクル供試体と練返し正規圧密供試体に対する値の間にあって、しかも風化表層土に対する強度定数とはぼ一致した値にある。

与那原層泥岩に対して大変位を与えて達成される極限の残留強度は求めていないので、上述の Skemptonによる風化ロンドン粘土の斜面安定に関する研究に準拠すると、 c'=0としたときのIグ ループのすべりに対する強度定数 ø'=13.1°~14.6°が残留強度に対応しており、このすべりは過去 に残留強度に達するだけの変位を受けているが、他方 II グループに対する ø'= 24.9°~28.4°は、軟 弱化が進行して、はじめてすべりが発生したときの平均強度定数に対応しているものと考えられる。

ところで,我が国における第三紀層地すべりにおいてはその地層が均一でない場合が多く,室内 試験結果を直ちに安定解析に適用することはできないといわれ,従って既存のすべりに対して安全 率を1として逆算された強度定数が用られ,この値は地すべり対策工の設計の立場からは合理的で あり,かつ現時点ではそれに代わる設計値はないように思われる。しかしながら,この手法は、c, øがそれぞれ明確にされなければ、風化層での切土斜面に対する長期安定を予測する安定解析が 行えないことになる。そこで、上述の風化ロンドン粘土の場合と同様な有効応力解析が適用可能か を調べるために、すべりの兆候がある与那原層泥岩斜面に対して強度定数 c'=0, φ'=23°を用いた 安定解析を試みる。

この斜面の地形と推定すべり面が図-6.9に示されているが、これは北中城村安谷屋地内にあって、表-6.3に示した安谷屋地すべり斜面よりも上方に位置した斜面である(既存の地すべりは頭部に道路があるが、この斜面はその道路よりも上に位置している)。既存の地すべりに対して防止

工が施工され、その効果を確認する ために計器類観測を行った結果、こ の斜面において新たなすべりの兆候 が確められている。図に示してある 地下水位とすべり面に対してc'=0、 $\phi'= 23$ °を用いて、簡便法に基づき 安定解析を行うと、その結果はF.S = 1.2 となり、安定しているが、地 下水位を地表面近くまで上昇させる と、F.S≦1となり、地下水位の変 動によりすべりが生ずる可能性をひ

めているといえよう。このことは、風化層での切土斜面の長期安定を予測するために、強度定数と して c'=0, ø'=23°, すなわち完全軟弱化状態に対する強度定数が安定解析に対して妥当な値と なりうることを示唆している。

6.4.4 むすび

島尻層中の与那原層泥岩斜面においては、主に切土のり面の侵食,泥流状の表層すべり,斜面崩 壞,地すべりなどが発生し,その防止対策が重要な課題となっている。ここでは,これらの崩壊現 象が前章で定性的に把握された乾湿作用による物性及び強度の変化に基づいて検討された。しかし, その検討はあくまでも乾湿風化という側面的な立場でなされたものであり,かつ安定解析には前章 で示した実験結果のみを使用し,さらに大ざっぱな仮定に基づくものであって,斜面の安定性に関 してはさらに詳細な多面的調査・研究がなされねばならない。

6.5 新里粘土の力学特性²⁰⁾

6.5.1 序

6.3 でも概観したが、図 - 6.10 に示すように、知念半島から具志頭村にかけて与那原層の上に整合に新里層が重なって分布している。この新里層は帯緑灰色粘土岩を主として砂岩を従とする互層をなし、上部に凝灰岩を挾み、その層厚は最大 250 mにも及ぶといわれ、図からも明らかなように、第四系の琉球石灰岩で部分的に覆われている。この新里層の分布地域では佐敷村の新里地すべりに 代表されるように、国道 331 号線沿い、玉城村屋嘉部地内、その他で地すべり・崩壊が発生している。 従来,土質工学的には,新里層は新 里地すべり地内の露頭にみられるシルト 質凝灰岩で代表され、その層の主体であ る軟質の粘土岩は与那原層泥岩の風化層 に対応しているとみなされていたように思 われる。新里層における地すべり・崩壊の 防止対策工事立案のために地質調査がな されているが,標準貫入試験によるN値 は未風化度でも20~30にあって,与 那原層泥岩の50以上に比べてかなりの 軟質な粘土岩であることが推測される。 しかも,与那原層泥岩に比べて塑性的 であり,粘土岩としてよりも硬質粘土 とみなした方がよさそうである。すな わち,新里粘土は,与那原層泥岩に比

図-6.10 新里層の分布図

べて生成時代が新しく,その力学挙動も異なるものと予想される。従って,防災あるいは道路維持 管理上,対策工を実施する上から新里粘土の力学特性の解明が急がれる。その対象は,崩壊が生ず る風化層粘土のみならず,防止杭などの構造物の支持層としての未風化硬質粘土であり,それらの 特性を明らかにする必要がある。

玉城村屋嘉部地内での地すべり及び国道 331 号線沿いでの地盤調査の際,ボーリングにより不撹 乱試料を入手し,それについて物理的,力学的試験を行った。ここでは,その結果をこれまで明ら かにした与那原層泥岩の力学特性と比較しながら,新里粘土の力学特性を明らかにし,斜面破壊に 対して若干の考察を行う。

6.5.2 地盤特性と物理的性質

(1) 地盤特性

玉城村屋嘉部地すべり地内と国道 331号線 沿いにおいて,標準貫入試験を主体とした地 盤調査が行われた。。そのうちの屋嘉部と志 堅原において,それぞれの調査孔の1つに対 して深度ごとに物理試験といくつかの化学的 性質を調べ,その結果をN値とともに示した のが図-6.11と図-6.12である。通常,島 尻層の地盤では,N値とボーリングによるコ アーの観察によってその特性が判断されるの で,ここではN値に基づいて新里層と与那原 層の特性を比較する。そのためには新里層で の地盤構成(風化層,未風化層の区別など)

図-6.11 土質柱状図(玉城村屋嘉部地内)

を明らかにすることが必要である。 図ー 6.11 には屋嘉部地すべり地内での深度 30 mまでのN値と 現場含水比が示してある。現場含水比に注目すると、深度 7 ~ 10 m間の 30 %を除いて深度 15 m までは 35 ~ 43 %の含水比を示している。深度 12 mで石灰岩れきの混入が認められることから、12 mまでは同一粘土を起源とする崩積土であると推定される。 15 mを境として含水比は急に減少し、 15 ~ 30 m間では 25 ~ 30 %の間を変動している。この含水比の変動に対応して、N値は 7 mで12 に達し、7 ~ 15 mでほぼ一定値を示した後に 15 mを境として、急にN = 20 に増加し、深度 30 mで のN = 30 まで徐々に増加している。 これらN値と含水比の特性に基づいて地盤の構成を区別する と、この調査孔では深度 12 mまでを崩積土層、 12 ~ 15 m間では残積風化層、 15 m以下では未風化 層(完全未風化層であるか、部分的に風化を受けているか、その判断は明確でない)となる。同一 地すべり地内の他の4 つの調査孔においても未風化層のN値は 20 ~ 30 であるが、一箇所だけ深度 28 ~ 30 mでN = 40 が認められた。 図 - 6.12 は国道沿いの志堅原地区における例であるが、含水

比は 30 ~ 35 %と大きめの一定値 を示し、N値は深度 4m で20に達 している。国道沿いの他の 7 調査 孔においても、深度 10m まではN= 20が限度で、久手堅地区の 1 調 査孔でN = 30を示しただけである。 以上のことから新里粘土の未風化 層におけるN値は、これまでの調 査深度範囲では40以下にあるとい えよう。

図-6.12 土質柱状図(玉城村志堅原地内)

一方,与那原層泥岩地盤におけるN値特性は,すでに第2章で述べたところである。すなわち, 図-2.34 で示したように,深度方向へのN値の変化は風化層,準風化層,未風化層で著しく異なり, その区別は比較的明確である。しかも,未風化層は比較的浅い深度にあって,N値は50以上の値を 示すのが特徴である。これに比較して,新里粘土の未風化層におけるN値はかなり小さいことがわ かる。この差異は,与那原層に比べて新里層の生成年代が新しいことに起因するもので,その固結 度の差に反映されていると考えられる。この固結度の差異はN値特性のみならず,後述の力学特性 にも影響を及ぼすであろう。

(2) 物理的性質

JIS土質試験法に準じて比重,粒度,液性限界及び塑性限界を求めた。ただし粒度試験は,分 散剤としてトリポリリン酸ナトリウム(1g/1000cc)を用い,煮沸後十分解きほぐして行った。 比重は,深度による差がみられず,2.74~2.79にある。深度による粒度組成,液性限界及び塑性限 界の変化が先の図-6.11と図-6.12に併記されている。粘土分含有量(5µ以下)には深度によ る差がみられず,屋嘉部で65~70%,志堅原で60~70%にあって,両地点での差もわずかであ る。コンシステンシーは,図-6.11に示すように,崩積層でわずかに大きな値を示しているが, $w_L = 55 ~ 70\%$, $w_p = 22 ~ 25\%$ にあり,また図-6.12では $w_L = 55 ~ 60\%$, $w_p = 25\%$ を示し, 深度及び場所による差異はわずかである。いま,この結果を与那原層泥岩と比較するために塑性図 で示したのが図-6.13で、これによるとA線よりも 上に位置し、両者の差は明確でなく、CH(高塑性 無機質粘土)に分類される。また、活性度を比較す ると、図-6.14に示すように、新里粘土では0.7~ 1.0にあり、これは与那原層泥岩の値に包含され、 Skemptonの分類²⁸によれば「普通の活性度を有する 粘土」となる。以上のように、固結度が異なっても、 解きほぐした状態でのコンシステンシーなどの物性 は、風化と未風化、あるいは新里粘土と与那原層泥 岩とに差異がなく、ほぼ同一の性質を示している。

次に、おおよその化学的性質を把握するために、 pHと炭酸カルシウム含有量を測定した。pHは土質工 学会基準に従い、また炭酸カルシウム含有量はシュ レッター法²⁴⁾によって測定している。

与那原層泥岩のpHは,深度50mまでは7~8.5で, それ以深では9~10であることが報告されている。 図-6.11と図-6.12に示したように,新里粘土の pHは,屋嘉部では15mで8.5~9,15m以深で9.5~ 10,志堅原では深度5mまで8~8.5を示している。 すなわち,屋嘉部地内での深度方向へのpHの変化は 与那原層泥岩と類似した傾向にあり,地盤の上層で 弱アルカリ性,下層で強アルカリ性である。個々

の化学成分は測定していないが,一般にpH8~8.5の土はカルシウム,マグネシウムで塩基飽和さ れ,pH 8.5~10の土は交換性ナトリウムをかなりの量含有するといわれている。

また,新里粘土の炭酸カルシウム含有量は志堅原の試料について測定し,図ー6.12に示してある。 表層付近で6%,下層で12%と,表層に近づくにつれて含有量は減少している。このことは,第2 章でも引用したように、川島ら²⁶⁾による与那原層泥岩の炭酸カルシウム含有量が未風化層で15.8%, 風化土壊で1.1%にあるとする報告に一致している。土中の炭酸カルシウムは雨水の浸透で容易に溶 脱されると考えられ、与那原層と新里層の表層付近で含有量に差があるのは風化の進行程度による もので,未風化層では両者に差がないと考えられる。なお、ごく表層で高い炭酸カルシウム含有量 が測定されたが、それは石灰岩の破片の混入によるものと推測される。

以上のように、pHと炭酸カルシウム含有量からおおよその化学的性質を比較すると、新里粘土と 与那原層泥岩では差がなく、むしろ化学的風化や地下水の変動の影響を受けている風化層と、そう でない未風化層においてその性質に差異があるといえよう。

6.5.3 力学特性

(1) 圧密特性

通常の圧密試験機で与那原層泥岩の圧密試験を行っても明瞭な降状点が生じないことから、高圧

圧密容器を試作して高圧圧密領域までの圧密試験を行ったことは第2章で述べたところである。新 里粘土に対してもこの圧密容器を用いて圧密圧力181kg/cmlまでの圧密試験を行っている。

図-6.15は、志堅原、百名、屋嘉部地内 で深度別に採取した不撹乱試料(SU)と 練返し正規圧密試料(SD)に対するe~ log p 関係を示したものである。また、圧密 試験結果は表-6.6にまとめて示してある。 なお、練返し正規圧密試料は、自然含水比 の状態で十分解きほぐし、スラリー状で練 返しと煮沸を行い、0.42 mm ふるいで裏ご しをして液性指数2.5程度のペースト状に 含水比を調整した後、圧密容器(直径60 mm,高さ100 mm)とペロフラムシリンダーを 組合わせた圧密装置で圧密荷重0.8kg/cd (試 料記号SD1,4,6)と3.2kg/cd (SD2) で5日間予圧密したものである。

図中,風化の影響が小さいと推測される 2.5 m以深の不撹乱試料(SU2~6)の e~ log p関係に注目すると,圧密降伏応力以下 では変形に対する抵抗が著しく大きく,そ の間隙比の変化はわずかで,しかも圧密降

_							
	供試体	深度 m	含水比 %	E 縮 指 数 <i>c_c</i>	膨張指数 <i>cs</i>	王密降状応力 kg /cml	
	SU 1	1.6	34.7	0.36	0.10	5.4	
	SU 2	2.5	34.3	0.54	0.11	15.2	-t- ex es
	SU 3	3.6	33.1	0.48	0.11	16.0	芯堅原
	SU 4	4.8	33.9	0.51	0.12	17.8	
	SU 5	10.9	30.4	0.40	0.07	19.3	百名
	SU 6	22.0	28.7	0.53	0.16	24.9	屋嘉部
	SD 1	1.6	49.9	0.44	0.09	0.8	
	SD 2	2.5	40.0	0.39	0.09	3.2	志堅原
	SD 4	4.8	52.2	0.45	0.10	0.8	
	SD 6	22.0	60.5	0.51	0.16	0.8	屋嘉部

表-6.6 新里粘土の圧密試験結果

伏応力は練返し正規圧密試料の e ~ log p 関係よりも右側に現われている。圧密降伏応力を超えると、 変形に対する抵抗は急激に減少し、大きな圧縮指数を示すぜい性的特徴がみられ、さらに圧密圧力 が増大すると、 e ~ log p 関係は練返し正規圧密試料(SD)のそれに漸近する傾向を示しているが、 深度が浅くなるにつれてぜい性的挙動はうすらいでいる。一方、風化を強く受けていると推測され る 深度 1.6 mの試料(SU - 1)は、変形に対する抵抗が小さく、圧密降伏応力も明瞭に現われず、し かも圧縮指数は練返し正規圧密試料のそれよりも小さく、骨格構造が機械的乱れを受けていること が推測される。この試料を除いて、他の不撹乱試料では圧密降伏応力が現在の土かぶり圧力よりも はるかに大きく、過圧密状態にあることがわかる。しかし、個々の供試体に対して圧密降伏応力と 土かぶり圧力を比較すると、深度が浅くなった場合の試料の圧密降伏応力の減少は土かぶり圧力の 減少よりも著しく、試料ごとの圧密降伏応力の差は土かぶり圧力の差に無関係である。このことは、 堆積中の続成作用によって付加された結合力が上載荷重の除去に伴う吸水膨張や風化作用によって 一部破壊されたことによるもので、その破壊の程度が圧密降伏応力の大きさの差異に影響を及ぼし ていると推察される。

次に,表-6.6に示した膨張指数を比較すると,試料SU6を除いて,他の試料の膨張指数はほぼ 一致した値にある。しかも,この値は練返し正規圧密試料に対する値にほぼ一致している。これら の値は圧密降伏応力よりもはるかに大きな圧力からの除荷による膨張曲線で求めているが,その圧 力状態では結合力が完全に破壊され,試料はすべて同一の粒子配向に変化しているものと推察され る。

次に、与那原層泥岩の圧密特性と比較するために、すでに第2章,図-2.7に示した与那原層 泥岩と、新里粘土の中で最も風化を受けていないと推測される屋嘉部地内での深度22mからの不撹

乱試料に対して、 e~ log p 関係を比較して示し たのが図-6.16 で、図中には、それぞれに対す る練返し正規圧密試料の結果も同時に示してあ る。与那原層泥岩のe~log p 関係は図-6.15で 説明した傾向をさらに強く示し、それに対する 圧密降伏応力 70 kg/cd は新里粘土の 25 kg/cd よ りもはるかに大きい。両試料での圧密降伏応力 の差は、過去の土かぶり圧力の差の他に、堆積 年代の差による粒子間結合力の差が著しく反映 されている。

(2) せん断特性

屋嘉部,志堅原,百名地内で未風化層と風化 層(崩積土も含む)から採取した不撹乱試料に 対しては一軸圧縮試験,非圧密非排水型および

圧密非排水型三軸圧縮試験を行い,志堅原の風化層(褐色)と未風化層(青灰色)から採取した試 料に対しては手で練返して,その後成形した供試体を準備して一軸圧縮試験を行った。また,志堅 原の未風化試料を解きほぐして高含水比で練返し,直径 30 cmの大型圧密容器で0.5 kg/cm の予圧密 を行った試料も準備し、CU試験を行った。供試体はすべて直径 50 mm,高さ 100 mmの円柱形 である。

新里粘土の未風化層は、先の圧密試験結果から明らかなように、与那原層泥岩と同様に続成作用 による結合力の影響を受けていることが推察される。この結合力の効果はせん断強度の増大と変形 に対するぜい性挙動に寄与することにあるから、風化を受けた場合、結合力が破壊されて含水比増 加、強度低下、ぜい性挙動から塑性的挙動への移行などが生ずることを意味している。なお、与那 原層未風化泥岩の一軸強度は20 kg/ cml以上、その破壊ひずみは2%以内である場合が多い。

同一飽和粘土では非排水強度は含水比によって一義的に定まることが知られている。いま,この 飽和含水状態にある土の状態を液性指数 I_Lで表現し,新里粘土の未風化層と風化層に対して一軸試 験とUU試験から求めたせん断強度 cuとI_Lの関係を片対数表示すると図-6.17 となる。この図に

は練返し試料と練返して正規圧密した試料に 対する結果も示してある。ばらついているが、 $I_L = 0.2 \sim 0.5 \text{ old}$ では未風化層、風化層、練 返し試料及び練返して正規圧密した試料のそ れぞれに対して、個々のlog $c_u \sim I_L$ 関係が成 立し、液性指数の値を定めれば、その強度は 未風化粘土、練返して正規圧密した試料、風 化粘土、練返して正規圧密した試料、風 化粘土、練返し式料の順に小さくなっている。 このように強度が異なっているにもかかわら ず、未風化粘土と風化粘土の液性指数がほぼ 同じ範囲にあることは、風化による強度低下 の主たる要因がコンシステンシーなどの物性 の変化にあるのではなく、土の構造的強さの 減少にあることを示唆している。また、高含

図-6.17 せん断強度と液性指数の関係

水比で十分練返して正規圧密した試料の強度が風化粘土よりも大きいことに注目すると,土の構造 的強さの減少は続成作用による結合力の喪失とともに,機械的乱れにも原因していると推察できる。 また,練返し試料は未風化,風化粘土にかかわらず,機械的乱れにより同じ強度まで低下している ことがわかる。

他方、CU試験はバックプレッシャー $u_b = 3 \text{ kg/cd}$ のもとで圧密した後、 $0.05 \, \%/\text{min}$ のせん断 速度で行った。供試体は、屋嘉部の風化層(崩積土も含む)と百名の深度 10 m(N = 20)から採 取した不撹乱試料である。また、志堅原の未風化粘土に対する練返して正規圧密した試料は0.1%/minの速さでせん断している。

図-6.18 は屋嘉部地内の風化粘土, 図-6.19 は百名の未風化粘土に対する応力~間隙水圧~ひ ずみ関係を示したものである。両試料において圧密による強度増加がみられ,風化粘土に対する破 壊ひずみは8~10%で,塑性的挙動を示し,また間隙水圧の発生状況から,その挙動は通常の過圧 密粘土に類似している。一方,未風化粘土の強度は風化粘土に比べて大きく,かつ破壊ひずみは 2.5~3%と小さく,ぜい性挙動を示している。また,間隙水圧の挙動の乱れがあるが,それはひ

-162-

び割れを含んでいることに原因していると考えられる。 図では示していないが,練返し正規圧密試料の応力~間 隙水圧~ひずみ関係は通常の正規圧密粘土のそれと同じ である。

これらの有効応力径路を示すと図-6.20のようになり, 練返し正規圧密試料に比較して風化粘土の挙動は過圧密 粘土と類似の挙動を示していることがわかる。実験の圧 力範囲ではMohr-Coulombの破壊規準が適用でき,そ れから求まる強度定数は、未風化粘土ではc'=1.0kg/cd, $\phi' = 25^{\circ}$,風化粘土では c' = 0.25 kg/cd, $\phi' = 23^{\circ}$,また 練返し正規圧密試料では c' = 0, $\phi' = 23^{\circ}$ である。固結 状態にある新里粘土が風化を経て練返し正規圧密試料の 状態にまで軟弱化すると仮定して、これらの強度定数を 比較すると,その過程において c'は減少して消失するが ∮はほぼ一定値のままであることが推察できる。いま、 この結果を第3章に示した与那原層泥岩の結果と比較し たのが図 6.21 である。未風化新里粘土は未風化与那原層 泥岩の排水せん断試験で求めた残留強度に近似しており、 また両試料に対する練返し正規圧密試料の結果は一致し ている。しかも、与那原層泥岩の最大強度に対する強度 定数を除いて、 ø'は23°~25°と,ほぼ一定値にあるが、 こ れは両試料のコンシステンシーがほぼ一致していること によるものと考えられる。また、両試料とも結合力の破 壊程度に応じてc'が減少しているが、このことは有効応 力に基づく長期安定解析においては c'の効果が期待でき ないことを示唆している。

図 - 6.18 新里層風化粘土の応力~ 間隙水圧~ひずみ関係

図 - 6.19 新里層未風化粘土の応力~間隙水圧~ひずみ関係

図-6.21 新里粘土と与那原層泥岩に対 する破壊時の応力状態の比較

(3) 斜面安定解析への強度定数の適用

玉城村屋嘉部地内で発生した地すべりの安定解析に対してせん断試験結果の適用を試みる。 図 - 6.22 は地すべりの断面図を示したものである。この斜面には県道48 号線が通っていて、こ

図-6.22 安定解析例(玉城村屋嘉部地内)

の道路より右方斜面に公民館建設のための盛土工事が行われた。盛土を終了して公民館の基礎とし ての鋼管杭打設工事中,昭和51年7月29日の豪雨の際にすべりが発生した。調査によると,図中の Aでテンションクラツク,Cでクラックと湧水,Dで押出しがみられるが,先の図ー6.11に示した ように,B点での深度12mと,盛土のり面中央付近での深度7mにおいて石灰岩れきを含んだ高含 水比の軟弱粘土層が確認されているので,ABCを通る円弧すべりが最初に発生し,それに付随し てBDに沿ったすべりが発生したものと推測される。すべりの要因としては盛土と鋼管杭打設によ る地盤の撹乱とが考えられるが,盛土による上載荷重の増加を主要因とし,豪雨に伴う地下水位上 昇による地すべり面上方の土塊重量の増加と有効応力の減少が付加され,その結果起動モーメント の増加がもたらされたと想定される。そこで,この斜面の安定解析には全応力解析法(φ=0法) を適用する。

安定解析は、測定された地下水位を参考にして図に示した異常高水位とABCの円弧すべり面を 仮定して分割法(簡便法)によって行った。

すべり面に沿ったせん断強さ *cu*の分布が定かでないので,盛土前と盛土後のそれぞれの場合に対して安全率から平均的な *cu*を逆算して, この *cu*と安全率関係を示すと図 – 6.23となる。いま,図 –

6.17 に示した風化土塊に対する $c_u \ge I_L$ の関係を再び 示すと図-6.24 となり、 $c_u = 2 t / m^2$ 以下の2点を除 いて $c_u \ge I_L$ の関係は風化の程度に応じて幅をもった log $c_u \sim I_L$ の直線関係が成立する。ここで、すべり面 は崩壊土塊と残積風化層の境界にあって、すべり面付 近の土塊は過去にかなりの機械的撹乱を受けたと考え られるもので、log $c_u \sim I_L$ は下限の直線関係をとるこ とにする。調査によると、すべり面付近の含水比は35~ 40 %の間にあるが、図-6.11の例を除いてコンシス テンシーは測定していないので、平均値として $w_L =$ 65 %、 $w_p = 25$ %とすると、 $I_L = 0.25 \sim 0.37$ となり、

図-6.23 せん断強度と安全率の関係

 $c_u \sim I_L$ 関係から $c_u = 2.7 \sim 4.3 \text{ t}/\text{m}$ として求まる。 このせん断強さに対する安全率を計算すると,盛土前 では1.08~1.72,盛土後では0.84~1.34となる。せん断 強さによって安全率に幅があるが,図-6.11に示した 深度11mではw = 38.6%であるから, $I_L = 0.32$ から $c_u = 3.4 \text{ t}/\text{cm}$ と推定でき,このせん断強さに基づく安 全率は,盛土することによって1.36から1.06 まで低 下する。この安定解析にはテンションクラックを考慮 していないこと,すべり面に沿って一様なせん断強さ を用いていることなどを考慮すると、 $\phi = 0$ 法で求め た安全率はほぼ妥当な値と考えられる。

ちなみに、練返して正規圧密した試料の強度定数

c'=0, $\phi'=23^{\circ}$ を用いて有効応力による安定計算を行うと,安全率は盛土前で1.34,盛土後で1.16 と過大な値となる。ここに, c'=0, $\phi'=23^{\circ}$ を用いたのは,すべり面付近で土塊が過去の機械的撹 乱により結合力の効果を喪失しているものと考えたからである。

この斜面は、盛土部が取除かれて安定を保っているが、極限状態にあると仮定して F.S = 1とc'= 0 から ϕ' を逆算すると、 ϕ' = 17.6°となる。この値は ϕ' = 23°より小さく、残留強度に対応するもの と推測される。この斜面が自然斜面として破壊することが予測されるなら、残留強度に支配される 長期安定問題となる。

6.5.4 む す び

島尻層新里粘土の不撹乱試料について物理試験および力学試験を行い、その結果を与那原層泥岩の特性と比較して次の結論を得た。

(1)標準貫入試験によるN値は、未風化与那原層泥岩に対する50以上に比べて、新里粘土では20~ 40と、軟質で塑性的である。

(2)コンシステンシーからみた物性は、風化層と未風化層、また与那原層泥岩と新里粘土にはその 差がない。塑性図ではCHに、活性度によれば普通の活性度を有する粘土に分類される。

(3) pHと炭酸カルシウム含有量からみた化学的性質は、与那原層泥岩と新里粘土とでは差がなく、 風化層と未風化層にその差が認められる。

(4) 圧密圧力 181 kg/cniまでの高圧圧密試験を行った結果,未風化新里粘土は過圧密効果の他に続成作用による結合力の影響を受けていることが推察される。また,試料ごとの圧密降伏応力の差は 土かぶり圧力の差ではなく,風化による結合力の破壊程度に支配される。

(5)また, 圧密降伏応力は未風化新里粘土で 25 kg / cmi, 与那原層泥岩で 70 kg / cmiの 測定例があるが, 両者の差は過圧密効果以外に堆積年代の差に反映されている。

(6)非排水強度 c_u と液性指数 I_L の関係は未風化粘土,風化粘土,練返し粘土のそれぞれに対して成立し,かつ $I_L = 0.2 \sim 0.5$ の間では未風化粘土,風化粘土,練返し粘土の順に小さくなることから,風化による強度低下の主な要因はコンシステンシーなどの物性の変化にあるのではなく,土の構造的強さの減少にある。

(7)新里粘土の有効応力による強度定数は,風化や機械的撹乱による軟弱化に伴って, c'は減少し て消失するが, φ'はほぼ一定値にあって,練返し正規圧密試料の c'=0, φ'=23°の状態まで減少 する。

(8)玉城村屋嘉部地内の地すべりを全応力に基づく φ = 0 解析法で安定解析を行った。その際,風 化土塊のlog c_u~I_L 関係は風化に応じて幅をもった直線関係群にあると仮定し,強度が下限を示す 直線関係とすべり面付近の含水比に基づいた非排水強度 c_uを用いている。

6.6 結 語

島尻層泥岩は通常の構造物の支持層としては良好な地盤であることはすでに述べたことであり、 問題はむしろ斜面安定にある。

本章においては、島尻層泥岩斜面における切土斜面の侵食、風化層での表層すべり並びに地すべ り・崩壊現象が斜面安定上重要であるとし、それぞれに対して乾湿風化作用の観点からその対策に ついて検討を加えた。すなわち、切土斜面では乾湿作用による軟弱化に対する保護工が重要であり、 風化表層では植生によるloosening化が著しく、かつその下の固結層とは一線を画している場合が多 いので、表層すべりを防止するためには斜面頭部付近への土地造成に伴う排土をさけなければならず、 また風化層の切土斜面に対する安定解析には詳細な調査、研究が必要である。

次に、島尻層泥岩を与那原層と新里層に区分して、新里層の力学特性を明らかにするとともに、 地すべりの一事例に対して検討を加えた。その力学特性は、前章までに明らかにした与那原層泥岩 の力学特性と比較したところ、固結度が低く、軟質であるが、コンシステンシーや十分練返した後 の強度特性は類似したものである。新里層での固結度が低く、軟質であることは、与那原層に比べ て生成時代が新しいことに原因しているとしたが、一方それは、与那原層が大規模な地殻変動を受 けた結果であるとする見方もある。しかしながら、新里層分布地域における土質調査に際して重要 なことは、与那原層とはその固結度が異なっていることに留意することである。

参考文献

- 1) Skempton, A. W. and Hutchinson, J. N.: Stability of natural slopes and embankment. foundations, Proc. 7th ICSMFE, State of the art volume, pp. 291 ~ 335, 1969.
- 2) 山田剛二:自然斜面と築堤の基礎,土と基礎, Vol. 18, No. 3, pp. 27~32, 1970.
- 3) 酒井淳行:第三紀層地すべり,土と基礎, Vol. 27, No. 3, pp. 85~86, 1979.
- 4) 小橋澄治:斜面安定, 鹿島出版会, pp. 55~75, 1975.
- 5) 小西健二:琉球列島(南西諸島)の構造区分,地質学雑誌,第 71巻, pp.437~457, 1965.
- 6) Hanzawa, S.: Topography and Geology of the Ryukyu Islands, Sci. Rep. Tohoku Imp. Univ., Sec. 2, 17, pp. 1~61, 1935.
- 7) MacNeil, F. S.: The tertiary and quaternary gastropoda of Okinawa, U.S.G.S., Prof. Pap. (339), pp. 1~148, 1960.
- 8)牧野・樋口:沖縄本島南部の天然ガス・鉱床の地質学的考察,石油技術協会誌,Vol. 33, No.

2, pp. 1 ~ 36, 1967.

- 9) 福田・他:第3次沖縄天然ガス鉱床調査の記録, 地質ニュース, 157号, pp.14~31, 1967.
- 10) 福田・他:第5次沖縄天然ガス資源調査・研究概報,地質調査月報, Vol. 21, No. 11, pp. 627~672, 1970.
- 11) 露木利貞: 沖縄における地質特性と地盤災害, 沖縄の自然災害の調査報告書(代表者中島鴨太郎), pp. 30~33, 1972.
- 12) 上原方成:島尻層における地すべり・崩壊について,沖縄開発に伴う土地環境の変化と防災に 関する研究(自然災害特別研究成果,代表者藤川武信), pp. 13~24, 1975.
- 13)新城俊也・小宮康明:乾湿繰返しによる島尻層泥岩の強度低下,琉球大学農学部学術報告,第
 25 号, pp. 307 ~ 323, 1978.
- 14) 上原方成:第三紀島尻層における地すべり・崩壊について,琉球大学理工学部紀要工学篇,7 号,pp. 103~117,1974.
- 15) 新城俊也:沖縄における泥灰岩の工学的特性(II),沖縄農業,第10巻, pp. 25~31, 1971.
- 16) 上原方成: 沖縄における地盤災害とその対策に関する研究, 京都大学工学博士学位請求論文, pp. 208~250, 1977.
- 17) たとえば、沖縄県:北中城村安谷屋地内地すべり対策工事報告書,1973,,沖縄県:北中城村喜 舎場地内地すべり対策工事報告書,1973,など
- Skempton, A. W.: Slope stability of cuttings in brown London clay, Proc. 9th IC SMFE, Vol. 3, pp. 261~270, 1977.
- 19) 沖縄県:北中城村安谷屋地すべり対策工事報告書, 1974.
- 20)新城俊也・小宮康明:島尻層新里粘土の力学特性,琉球大学農学部学術報告,第25号,pp. 325~337,1978.
- 21) 沖縄県:県道 48 号線土質調査·解析設計業務, 1977.
- 22) 沖縄総合事務局:一般国道 331 号測量設計業務報告書, 1977.
- Skempton, A. W.: The colloidal "Activity' of clays, Proc. 3rd ICSMFE, Vol. 1,, pp. 57~61. 1953.
- 24) 京都大学農学部農芸化学教室編:農芸化学実験書(第1巻), 産業図書, pp. 301, 1975.
- 25) 和田秀徳・他:ペドロジー・土壌学の基礎,博友社,pp. 85~87,1977.
- 26)川島禄郎・他:沖縄におけるジャーガルならびにマーヂ土壌とその母岩について、土壌肥料学 雑誌、Vol. 17, pp. 451~454, 1943.

第7章 泥質岩に由来する土質材料の締固め特性¹⁾

7.1 概 説

堤防やアースダム,道路などの盛土のように、土を構造材料として用いて構造物を築造する場合 に、土を締固めて密度を高めることにより、その強度を増大させ、あるいは圧縮性や透水性を低下 させるなど、土の工学的性質を改善することが古くから行われている。その際、土構造物の機能や 安定性が確保される工学的性質をもち、かつ施工性、経済性などを満足するような土質が盛土材料 として選定されている。しかし、最近の土木工事の多様化と機械化による大規模土工工事の急速施 工化に伴って、現地付近で採取できる土を盛土材料として使用することが一般化し、従来経験しな かった土質や、材料としては不適当であるとみなされてきた土質をも盛土材料の対象とする場合が 急増している。

第三紀層の泥岩やシルト岩は、吸水膨張による強度低下、あるいは乾湿風化を受けて容易に土砂 化するなど、その結合力が不安定であり、盛土材料としては不適当な土質材料に分類される場合が 多い²⁾ しかしながら、上述の大規模土工工事におけるように、土取場の地域的制約や経済性の理由 から泥岩を利用する場合も多くなり、その材料の締固め特性、並びに締固め泥岩土の力学特性を明 らかにして、盛土材料としての可否、あるいは設計・施工の指針を確立することが急がれている。

締固めの効果は、通常土の密度が高まる度合によって判定する。締固め土の密度は、一般に土の 粒度組成、含水比、締固め仕事量、締固めの方法などに左右されることが知られている。一般的な 土の締固め特性は次のようである。粒径の大きい砂質土を多く含む土ほど最大乾燥密度が高く、最 適含水比が低くなる傾向を示し、それに対して、粒径の小さい粘性土が多くなると、締固め曲線が 平らになり、最大乾燥密度が小さく、最適含水比が高くなる傾向にある。また、締固め仕事量が増 大すると、最大乾燥密度は増大し、その最適含水比は小さくなる。しかし、締固め仕事量の増大に 伴う乾燥密度の増加は含水比に左右され、最適含水比よりも乾燥側では密度増加が著しく、工学的 性質が改善されるが、湿潤側では密度があまり増加しないばかりか、逆に強度は低下し、性質が劣 化することもある。

本研究で対象としている泥質岩では、それを十分解きほぐした状態で締固めを行えば、上述の細 粒土に対する一般的な締固め特性と何ら異なることはなく、含有される粘土鉱物の種類が締固め土 の力学挙動を支配することになる。ところが、本章における実験試料として選んだ島尻層泥岩(与 那原層)を例にとると、この泥岩は地山では半固結状態にあるが、土工機械で容易に掘削でき、そ れによって採取される材料の粒度組成はミリメートル以下の細粒径から数十cm径の泥岩塊にまたが るものである。しかも、この泥岩塊は吸水膨張による強度低下と乾湿作用による著しい軟弱化に伴 って細粒化する不安定な性質のみならず、転圧の際には破砕性を示すものである。すなわち、安定 した状態にある泥岩は、掘削、破砕を経て、その結合力が破壊されて、軟弱化する。しかも、これ を締固めて単に密度を増加させただけでは、もとの結合力の強さを再現することが不可能であるこ とはすでに第2章で述べたところである。従って現象的には、この種の材料においては締固めて密 度を増加させることは、結合力破壊に伴う軟弱化を抑制することを意味するものである。 ところで、土構造物の安定性と施工管理に難点があるとして、泥岩土を盛土材料に利用すること が敬遠されているが、規模の小さな道路の路体、あるいは土地造成の盛土に部分的な利用がなされ ている。このような場合、一般的な土と同様に標準締固め試験に基づいた設計・施工がなされてい るが、これは泥岩塊の軟弱化と破砕性を考慮したものではない。島尻層泥岩層から採取した土(以 後泥岩土という)の締固め特性に関しては、上原が土質安定処理と締固めのメカニズムの観点より 実験的研究を行っている^{3,4)}。それらは風乾後加水して締固めた場合のものであり、そのような場合泥 岩塊は、乾燥により強度が増加するが、締固め含水比調節のために加水すると、少量の加水では細 粒分と粗粒塊の表面のみが湿潤し、内部までは水分が行きわたらず、締固め含水比は不均一となり、 また多量に加水した場合にはスレーキングによって粗粒塊は消失して粘土化するであろう。すなわ ち、風乾した泥岩土に加水して含水比を変化させると、含水比の大きさに応じて粒度が異なり、締 固め密度もその粒度の影響を受けるであろう。他方、現場締固めでは、地山を掘削して採取した泥 岩土は短期間内にまき出して、直ちに転圧することが経済的であり、またその期間内ではそれほど 乾燥するとは考えられず、乾燥した場合でもスレーキング特性を考慮すると、散水してまで締固め を行うことは施工上不都合であると考えられる。従って、この種の泥岩土に対しては、地山掘削直 後の粒度を維持した状態での締固め特性を明らかにする必要がある。

以上のことを考慮して、本章においては、地山掘削直後に現場で室内締固め試験のためにふるい 分けして採取した島尻層泥岩土を試料に選び、最初に、非乾燥法・非繰返し法で種々の含水比に対 する締固め試験を行い、締固め曲線、締固め仕事量の効果、力学的尺度としてのCBRについて検 討し、それに基づいて乾燥密度~締固め含水比図上に締固め泥岩土の力学性状を明示する。次に、 自然含水比を維持した状態で種々の大きさのふるいを通して採取した試料に対し、締固め仕事量を 変化させて締固めを行い、締固めに及ぼす粗粒塊径の大きさの影響を明らかにするとともに、締固 め泥岩土の水浸による性状変化を調べている。なお、風化泥岩土は実験の対象としていないが、そ れらの調査・報告書にもとづいて、その特性を未風化泥岩土と比較している。

7.2 締固め特性に及ぼす含水比と締固め仕事量の影響

7.2.1. 試料及び実験方法

(1) 試料

試料は、浦添市(試料A)と南風原村(試料B)の土地造成現場において、未風化層泥岩地山を 土工機械で掘削した直後に採取した。その際、泥岩土は細粒から粗粒塊にまたがる粒度分布を示す ので、できるだけ現場での粗粒塊の状態と自然含水比(地山含水比)とを維持しながら、試料Aに 対しては 4.8 mmふるいと 19.1 mmふるいを通過した試料を、また試料Bに対しては 4.8 mm, 9.6 mm, 19.1 mm, 25.4 mm, 38.1 mm の5種類のふるいを個々に通過させて、最大径と粒度分布が異なる5種 類の試料を準備した。これらの試料はビニール袋に詰めて、含水比が変化しないように実験室内で 保存した。以後、ここでいう未風化泥岩土(あるいは単に泥岩土)とは、地山掘削の際に土工機械 の破砕によって生成された細粒から粗粒径にまたがる粒度の土質材料をさし、採取した試料は、実 験室内では破砕などによって最大径及び粒度の再調整を行っていない。実験に使用した試料の物理 的性質が表-7.1 に示してある。

<u>北</u> 支	拉田士	下手	粒 度 組 成 (%)			液性限界	塑性限界	自然含水比
щ M	环圾地	山里	粘土分	シルト分	砂分	(%)	(%)	(%)
А	浦 添 市	2.72	73	25	2	61.6	23.0	21.5
В	南風原村	2.72	54	45	1	52.9	22.5	23.0

表 - 7.1 物理的性質

(2) 実験方法

土の締固め方法はJIS A 1210 突固めによる土の締固め試験方法に準じている。試料A とBを自然含水比を基準として、風乾によって乾燥側に4段階、及び加水によって湿潤側に2段階 に締固め含水比を変化させ、非乾燥法・非繰返し法で締固め試験を行った。ただし、試料Bに対し ては38.1 mmふるい通過試料のみを使用している。締固め試験の条件は、表-7.2 に示すように、最 大粒径、モールド、ランマー重量、突固め層数および回数を変化させている。また、15 cmモールド を使用した場合には突固め回数、突固め層数にかかわらず、JIS A 1211 に従って非水浸C BRと水浸CBRを測定し、締固め泥岩土の力学性状を把握している。

武料	含有最大塊径 🚥	モールドcm	突固め層数	層当り突固め回数
А	4.76 19.1	1 0 1 5	3 5	10, 25, 50 55
В	38.1	15 15	3 5	17, 42, 67, 92 55

表 - 7.2 突固め方法

一方,泥岩塊はランマーの打撃を受けて変形,破砕するから,締固め過程での破砕量を量的にと らえることは興味あることであるが,予備試験の結果,変形・破砕またはこね返しを受けた泥岩塊 は再び集合して締固まった土塊を形成するので,その土塊を破砕された状態に解きほぐすことが不 可能であることが明らかとなった。そこで,試料Bに対して,水浸CBRを測定した後に締固め土 塊を数日間水浸して,水中でふるいを上下に揺蕩してふるい分けを行い,締固め過程と水浸による 細粒化をまとめて量的に把握している。また,これと並行して水浸のみによる細片化を調べるために,

初期含水比が異なる試料 Bの供試土を24時間以上水 浸して水中ふるい分けを行 った。図-7.1は,締固め 前の塊径分布と水中ふるい 分けした団粒分布を初期含 水比に対して示し,さらに 土の粒度試験法による粒度 分布とも比較してある。締

固めの前の試料は分取器で必要量採取したものであるが、いくらかその分布は変動している。しか しながら、これらの粒度は水浸しただけで著しく変化していることが明らかであり、特に自然含水 比より乾燥側での細粒化が著しく、74μふるいを通過する団粒の量は80%以上であることがわかる。

7.2.2 実験結果及び考察

(1) 締固め曲線

図-7.2は試料Aの締固め曲線を示したものである。10cmモールドと2.5kgランマーを用い,4.76 mmふるい通過試料を3層にてん充し,各層の突固め回数を10回,25回,50回とした場合の締固め曲

線は、自然含水比より乾燥側と湿潤側において 2つの極大値を示し、突固め回数に伴って乾燥 密度が増加しているが、その形状は類似し、最 大乾燥密度は湿潤側にある。この現象は、すで に上原⁴⁾が乾燥法・非乾返し法による締固めでも 認めている。他方、15cmモールドと4.5kg ラン マーを用い、19.1mmふるい通過試料を5層にてん 充し、層当り55回の突固め回数の場合の締固め 曲線は通常の土の締固め曲線に類似した形状を 示し、最適含水比の乾燥側への移動がみられる。

泥岩塊は掘削の際過度の応力を受け、マス状 から塊状化したものであるから、その骨格構造 はある程度乱されている。このような泥岩塊が 乾燥を受けると、収縮に伴うひび割れを生ずる が、粒自体の強度は増大し、また、加水した場 合には構造的弱面に沿って吸水膨張を生じ、そ の強度が低下するものと考えられる。このよう

な泥岩塊は破砕されやすい状態にあり、締固め仕事量は泥岩塊の破砕作用と密度増加についやされ るが、同一締固め仕事量に対する締固め過程においてはその含水比に応じて破砕量が異なる。これ らのことから10cmモールドの場合の締固めについて推測すると、自然含水比より乾燥側では、破砕 についやされる締固め仕事量は含水比の減少に伴って増大するので、自然含水比よりわずかに乾燥 した状態で破砕作用による粒度のかみ合わせが最適となり、密度は増大する。一方、湿潤側では、含 水比が増大した場合には通常の土の湿潤側での締固め特性と同様、軟弱化した泥岩塊がランマーで 練返されるが、わずかに湿潤した状態では潤滑作用と破砕作用により密度が増加する。しかし、15 cmモールドを用いた5層55回の締固めでは、締固め仕事量が破砕作用だけでなく、密度増加に対し ても十分寄与するので、自然含水比より乾燥側での乾燥密度は締固め含水比の影響をあまり受けな い。

図-7.3は、38.1 m ふるい 通過試料 B に対し、15cmモールドと 4.5 kgランマーを用い、3 層17回、 42回、67回、92回と5 層55回に対する締固め曲線を示したものである。3 層の場合、突固め回数17 回と42回の締固め曲線は自然含水比状態において最大を示し、最適含水比は自然含水比に一致して いる。しかし、突固め回数67回と92回の締固め曲線では、最適含水比が自然含水比よりも乾燥側に 移動し、また、3層92回と5層55回の締固め曲線はほぼ一致している。このように、締固め仕事量 に対して締固め曲線が変化することは、上述の推測に従うと、含水比による泥岩塊の強度の差とそ

の破砕量とに影響されていると考えられる。す なわち,乾燥側の状態では,締固め仕事量は主 に泥岩塊の破砕に消費されるが,締固め仕事量 が増大すると,破砕のみならず密度増加に対し ても十分寄与し,密度は増大する。一方,湿潤 側および自然含水比状態では,泥岩塊の破砕に とどまらず,締固め仕事量の増加に伴って練返 しが生じ,密度増加に限界が生ずるから,最適 含水比は乾燥側に移行する。

なお、図-7.2の10cmモールドに対する締固 め曲線と、図-7.3の15cmモールド、3層17回、 42回の締固め曲線の差異は、ランマー重量、落 下高、泥岩塊の径の大きさなどが破砕効果に影 響していることによるものと考えられる。

次に、泥岩塊の破砕現象を締固め仕事量に伴う密度増加から把握する。

(2) 締固め仕事量の増加に伴う密度増加

図-7.4は、締固め仕事量の増加に伴う破砕現象を把握するために準備したものである。この図 には、試料Bを4.76 mふるいを通過させ、これを2 mふるいに留まる試料と2 mふるいを通過する 試料とに分け、10 cm モールドと 2.5 kg ランマーを用

い、3層にてん充し、突固め回数を10回から100回 まで変化させた場合の乾燥密度と突固め回数(対数) の関係が示されている。両試料を比較すると、2mm ふるい通過試料は、2mmふるいに留まる試料に比べ て粒度配合がよいから、締固めた乾燥密度は大きく なる。しかし、両試料の粒度が異なっていても、泥 岩塊が破砕性であれば、締固め仕事量の増加に伴っ て破砕後の粒度は近似し、乾燥密度はほぼ等しくな るはずである。図に示すように、突固め回数の増加 に伴って両試料の乾燥密度は徐々に接近し、泥岩塊 の破砕を伴った密度増加が生じている。しかも、こ れは4.76 mmふるい通過試料に対する実験結果であ って、泥岩塊の径が大きくなると、ランマーは直接 泥岩塊を打撃するので、15cmモールドと4.5 kg ラン

マーの締固めにおける破砕効果はさらに顕著なものとなるであろう。
図-7.5は、試料Bの38.1 mmふるい通過試料に対する突固め回数と乾燥密度の関係を締固め含 水比ごとに示したものである。前図と同様、締固め回数は対数表示してあるが、各締固め含水比に

対し,締固め回数の増加に伴って乾燥密度は増加し,か つ突固め回数42回と67回の間で密度増加に変曲点が生 じている。しかし,乾燥密度の増加割合は含水比によっ て異なり,自然含水比(23%)よりも乾燥側では密度増 加が著しいが,湿潤側では含水比の増加に伴う密度増加 の割合が減少し,密度増加に限界が生じている。自然含 水比より乾燥側では泥岩塊の強度が増大し,突固め回数 17回のような小さな締固め仕事量の大部分は泥岩塊の破 砕についやされるから,低い含水比ほど密度は減少して いるが,他方67回以上になると,破砕過程を経て密度増 加のためにも締固め仕事量が寄与し,各締固め含水比で の破砕作用と密度増加の作用とに差異がなくなり,それ ぞれの乾燥密度及びその増加はほぼ等しくなっている。 一方,自然含水比およびそれより湿潤側では,締固め仕 事量の増加に伴って乾燥密度が増加しているが、その増

加割合は乾燥側に比べて減少し、その傾向は含水比の増加に伴って顕著となり、通常の細粒粘性土 に対する最適含水比より湿潤側の状態での締固め特性と同様、締固め仕事量の増大に伴った練返し 作用が卓越することを示している。なお、この傾向は図-7.2に示した試料Aに対しても認められ ている。

以上のことから、この種の泥岩土の締固め機構は次のようにいえる。すなわち、自然含水比及び それより乾燥側では、締固め仕事量の増大に伴って泥岩塊が破砕されて粒径の組合わせがよくなり、 乾燥密度が増加する。一方、湿潤側では、締固め仕事量の増大に伴って泥岩塊が変形を受け、その 後に練返され、密度増加が抑制される。

図-7.6は、試料Aに対する自然含水比における乾燥 密度とProctor の締固め仕事量の関係を示したものであ る。ここに、Proctor の締固め仕事量Ec は次式

$$Ec = \frac{W_R \cdot H \cdot N_B \cdot N_L}{V} (\operatorname{cm} \cdot \operatorname{kg} / \operatorname{cm}^3) (7.1)$$

ここに、 W_R : ランマーの重量(kg), H: ランマーの 落下高(cm), N_B : 層当り突固め回数, N_L : 層の数, V: モールドの容量, で定義される。この図において, 締固め仕事量の増大に伴う乾燥密度の増加は, 泥岩塊の 最大径, モールド, ランマー重量, 締固め層数などに影 響を受けている。

(3) CBR特性

図-7.3に示した試料Bに対する締固め曲線に対応させて、締固め直後と水浸後でそれぞれCB Rを測定した。水浸に伴う吸水膨張は4日間では終了しないので、吸水膨張がほぼ停止するのをま ってCBRを測定したが、その水浸日数は7~14日であった。

図-7.7は、

締固め含水比に対する非水浸CB Rと水浸CBRを突固め回数ごとに示したもので ある。非水浸CBRは、自然含水比よりも乾燥側 では含水比が低いほど、また突固め回数が多いほ ど増大しているが、一方自然含水比あるいは湿潤 側では、含水比の増加に伴ってCBRは減少する のみならず、突固め回数の増大に伴っても減少し、 締固め過度(over - compaction)現象が生じて いる。このことは、湿潤側の締固め過程において は締固め仕事量の増大に伴って練返し作用が顕著 となることを示唆し、先の締固め機構に対する推 察の妥当性を示すものである。他方、水浸CBR は自然含水比あるいはわずかに湿潤側で最大を示 し、しかも乾燥側では締固め含水比が低いほど、 水浸に伴うCBRの減少が顕著である。図-7.8 は突固め回数と水浸CBRの関係を締固め含水比 ごとに示したものである。これによると、水浸C BRは締固め含水比に関係なく、突固め回数67回 で最大値を示している。このように、乾燥側では 単に乾燥密度を増大させても、その状態は水浸に より劣化したり、逆に湿潤側では乾燥密度が大き いほど、水浸に対して安定となるなど、水浸後の 力学性状は締固め含水比と締固め仕事量に支配さ れるようである。

(4) 乾燥密度と締固め含水比図上での泥岩土の性状

これまでは,締固め曲線に対応させて,締固め 仕事量の増加に伴う乾燥密度の増加及び力学尺度 としてのCBRについて説明し,締固めた泥岩土

図 - 7.7 CBRに及ぼす締固め 含水比の影響

の性状は水浸の影響を受けることを示した。これらのことを明示するためには、締固め直後の力学的性状と水浸後のそれを乾燥密度 7aと締固め含水比 w 図上に同時に示しておくことが、締固めの目標とする土の状態をどこに求めるべきかを明らかにしうる点で、締固め曲線よりも合理的表示法である。図-7.9 は、図-7.3 に示した乾燥密度と含水比の関係が水浸の影響を受けて変化する状

況を示したものである。全般に水浸によっ て、含水比の増加と乾燥密度の減少が生じ ているが、その傾向は締固め含水比が低い ほど著しく、水浸後の泥岩土は締固め含水 比に関係なく、飽和度90~100 %の範囲に ある。水浸による乾燥密度の減少は吸水膨 張に伴うものであるから、締固め泥岩土の 膨張性状を明らかにするために、CBR測 定の際の吸水膨張試験で求めた膨張比の等 値線も、締固め含水比に対して示してある。 これによると、締固め含水比が低く、乾燥 密度が大きいほど、膨張比は増大しており、 膨張比を3 %以内におさえるためには、自 然含水比あるいはそれより湿潤側での状態 で締固めを行うことが必要となる。

図-7.10は、非水浸CBRと水浸CBR のそれぞれの等値線を乾燥密度と締固め含 水比の関係図上に示したものである。非水 浸CBRの等値線は、同一密度に対して締 固め含水比が低下するほど、その値が増大 しているが、他方水浸CBRの等値線は、 最適含水比よりもわずかに乾燥側で、かつ 密度の増加に伴って最大となり、それぞれ に対する等値線の形状は著しく異なってい る。すなわち、自然含水比よりも乾燥側に おける締固めは、低含水比で、かつ低密度 であるほど、水浸による強度低下が著しい ことがこの図からも明らかである。従って、 水浸後の強度を確保するためには、図-7. 3に示した締固め曲線も考慮して、締固め

仕事量の大小により、自然含水比(突固め回数17回と42回の場合),あるいは最適含水比(突固め 回数67回と92回の場合)のもとで高密度に締固めることが必要となる。しかしながら,図-7.9 に 示したように、膨張比を3%以下とし、しかも水浸CBRを増大させるためには、自然含水比で、 かつある程度まで密度を増加させるような締固めが必要となる。

乾燥密度を増加させるためには、締固め仕事量をある程度まで増大させることが必要であるが、 それに伴う締固め過程では泥岩塊は破砕され、破砕された塊は水の影響でさらに細粒化することが 推測される。しかも、このことは、締固め泥岩土をれき混り土、あるいは細粒粘性土としてみなす かによって、その力学特性を検討する上で重要であり、細粒化の状況を把握することが必要となる。そこで、図-7.3に示したように、種々の乾燥密度と締固め含水比の状態にある泥岩土を、十 分水浸した後に水中ふるい分けをして、2mmふるい通過量と締固め含水比の関係を突固め回数ごと

に示したのが図-7.11である。 一部を除 いて74 µふるいも通過させているが、2 m ふるい通過量と74 µふるい通過量の差は最 大7%であり、細粒化していることが明ら かである。また、図中には、図-7.1に示 した水浸のみによる水中ふるい分けに対す る2 mふるい通過量と含水比の関係も比較 してある。それによると、自然含水比より も乾燥側においては、締固め土の方が、水 浸のみを受けた泥岩土よりも粗粒状態にな っている。これは、締固め過程で泥岩塊が 破砕された後に締固まった団粒となり、そ のままの状態で水浸を受けたもので、指先

で容易にほぐせる程度のものである。一方,湿潤側では,締固めによって細粒化していることがわ かる。これらのことから,泥岩塊は締固め作用と水浸作用を受けて,締固め前のれき状塊はかなり 消失し,締固め泥岩土の力学的性質は細粒粘性土とみなして検討できそうである。

7.3 自然含水比状態における締固め特性

前節においては,締固め含水比と締固め仕事量を変化させて締固めを行い,乾燥密度と締固め含 水比の関係図上での等膨張量線と等水浸CBR線から類推し,力学的に良好な締固め状態は,自然 含水比の状態で,かつ乾燥密度をある程度まで増加させるように締固めた場合に得られることが明 らかとなった。ここでは,自然含水比を維持した状態での締固め特性を詳しく調べることにする。

7.3.1 試料及び実験方法

実験試料は表-7.1に示した試料Bで,現場で4.78,9.6,19.1,25.4,38.1 mm ふるいを個々

に通過させた5種類の粒度からなる泥岩土を準備した。 これらの粒度分布の例を図-7.12に示してある。これ らの試料に対し,自然含水比を維持した状態で15cmモー ルドと4.5kgランマーを用い,表-7.3に示すように, 締固め層数を3層と5層の2種類とし,式(7.1)の Proctor の締固め仕事量がほぼ等しくなるようにそれぞ れの突固め回数を変化させて締固めた。すなわち,図-7.12に示すような粒度の泥岩土を表-7.3に示す種々 の締固め仕事量で締固めを行い,非水浸CBRと水浸C BRを測定するとともに,前節と同様,水中ふるい分け

による団粒分布を調べている。なお,以後 本文においては,図-7.12に示す粒度の 個々の試料はふるい径の大きさによって, 例えば9.6 mふるい通過試料,あるいは最 大径9.6 m試料のように呼称して,区別す ることにする。

表 - 7.3	締固め条件	(15cmモール	ド使用)
---------	-------	----------	------

	層当り突固め回数				
3 層 5 層	17 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Proctor の仕事量 cm ・ kg / cm ・	4.6	11.5	18.4	25.3	

7.3.2 実験結果及び考察

(1) 締固め仕事量の影響

種々の最大径と粒度の泥岩土を締固めたとき,締固めに対する締固め仕事量の影響は前節で示し た傾向と類似している。ここでは,実験結果と併せて,個々の泥岩土の締固めに対する締固め仕事 量の影響を示すために,図-7.13には締固め仕事量(対数)と乾燥密度の関係,図-7.14には締 固め仕事量(対数)と非水浸CBRの関係,図-7.15には締固め仕事量(対数)と水浸CBRの関 係が示してある。これらの図から,①締固め仕事量の増加に伴って乾燥密度が増加し,その値は, 同一のProctorの仕事量に対して5層よりも3層締固めにおいて大きいが,その差はわずかである, ②非水浸CBRは3層42回,5層25回のとき最大値を示し,それ以上の仕事量に対しては締固め過

度が生じ、CBRが減少する、③いくらかばら つきがあるが、水浸CBRは3層67回、5層40 回において最大を示し、ある程度締固め過度の 状態が水浸の影響を受けにくい状態にあり、し かも5層締固めの方が大きな水浸CBRにある ことなどが明らかである。

ここでは,締固めに及ぼす粒度の影響につい て以下に示す。

(2) 粒度の影響

図-7.16は,乾燥密度に及 ぼす最大塊径の影響を突固め回 数に対して示したものである。 泥岩塊径が大きくなるに従って バラッキを伴っているが,3層 17回あるいは5層10回のような 小さな仕事量で締固めた場合は, 最大径の増大に伴って乾燥密度 は減少している。一方,締固め 仕事量が増加すると,3層締固 めと5層締固めはともに,最大 径 9.6 mi試料において乾燥密度 が最大となっている。最大径

19.1 ~ 38.1 mi試料では最大径の大きさが締固め層厚に近いか,それよりも大きいので,締固めの 際にランマーはこれらの泥岩塊を直接打撃することになり,最初に塊の破砕現象が生ずる。そこで, 締固め仕事量が小さい場合は,その仕事量のほとんどが泥岩塊の破砕についやされ,しかも塊径が 大きいほど,破砕に対する消費量は増大するから,密度増加に対する効果は減少して,乾燥密度が 小さくなっている。一方,締固め仕事量が増大すると,破砕のみならず密度増加に対しても寄与し, 乾燥密度が増加することになる。しかしながら,それらのなかでは最大径 9.6 mi 試料に対する乾燥 密度が最大値を示している。いま,個々の試料に対する泥岩塊の径は同一でないが,4.76 mi以上の 泥岩塊をれきとみなした場合,図 - 7.12 の粒度分布から類推すると,れき含有率は近似的に9.6 mi ふるい通過試料に対して 23%,19.1 miから 38.1 mi ふるい通過試料に対して 55~66%となり,3 層 42回以上及び 5 層 25回以上の締固めにおける最大径と乾燥密度の関係は,れき混り土を締固めた場 合のれき混入率と乾燥密度の関係に類似している。このことは,締固め過程では泥岩塊が破砕され るにもかかわらず,れきと同様な挙動を示しながら,乾燥密度の増加に影響を及ぼしていることを 示唆している。

(3) CBR特性

非水浸CBRと水浸CBRは図一7.14と図-7.15に示したが、図-7.17は水浸CBRと最大 径の関係を突固め回数ごとに示したものである。3層締固めの場合の最大径とCBRの関係は、図 -7.16(a)に示した最大径と乾燥密度の関係に対応していて、水浸CBRは締固め乾燥密度とと もに増大することが推測される。一方、5層締固めの場合には、突固め回数40回と55回に対する最 大径とCBRの関係は、図-7.16(b)における最大径と乾燥密度の関係において乾燥密度が最大 となる場合の径よりも、ふるいの径が一つ大きな試料においてCBRが最大を示し、しかも、同一 締固め仕事量に対する3層締固めの場合よりも著しく大きな値となっている。このことは、最大塊 径の大きさと締固め層厚の関係から類推できるように、3層締固めよりも5層締固めにおいて、泥 岩塊が十分に破砕されて細粒化し、水が浸透しにくい状態に移行したことによるものと考えられる。

このことを膨張比と細粒化の面から検討するた めに準備したのが図-7.18と図-7.19である。 図-7.18は最大径と膨張比の関係を示したも ので、3層締固めにおいては締固め仕事量ある いは最大径の違いによる膨張比の差異はわずか で、しかも膨張比はすべて2%以上の値にある。 一方,5層締固めにおいては、締固め仕事量が 小さい場合は大きな膨張比を示しているが、突 間め回数40回と55回の場合の最大径9.6 m 以 上の試料の締固めに対しては、膨張比が2%以 下を示し、水浸の影響が比較的小さくなってい る。また、図-7.19は、CBR測定の後に締 固め土約1kgを水中ふるい分けして,74μふる いを通過した量と最大径の関係を示したもので

ある。最大径が大きな試料ほど、細 粒分が減少する傾向にあり、3層17 回あるいは5層10回のような小さな 締固め仕事量の場合を除いて、細粒 分の量に及ぼす締固め仕事量の影響 は顕著でなく、最大径 19.1 mm 以上 の試料に対しては、3層締固めより も5層締固めの場合に細粒化してい ることがわかる。

以上のことから,大きな締固 め仕事量で泥岩塊を細粒化させ ながら締固めを行うと、水の影 響を受けにくい締固め状態とな ることが推察できる。このこと は、現場締固めにおいて掘削直 後の泥岩塊をブルドーザー等で 破砕しながら薄層まき出しを行 い、さらに破砕効果のある締固 め機械で転圧を行えば、水の影 響を受けにくい締固め状態が得 られることを示唆している。

図-7.19 破砕作用と水浸作用を受けた泥岩土の細粒化

17

含有最大塊径

4.8

9.6

mm

19.1

38.1

38.1

なお、図-7.19から明らかなように、自然含水比で締固めた場合でも、泥岩塊の大部分は破砕 され、水の影響を受けて細粒化するので、締固めた泥岩土は細粒粘性土とみなすことができる。

9.6

19.1

%

50

48

(4) 締固め乾燥密度と水浸CBRの関係

先の図 – 7.10 において,乾燥密度~締固め含水比図上に締固め泥岩土の力学性状を示したが, それと同様,自然含水比を維持した状態で締固めた結果を,締固め仕事量の大小を区別せずに,乾

燥密度と締固め含水比の関係 に示したのが図-7.20であ る。この図には等水浸CBR 線も示してあるが、3層17回 と5層10回の締固めに対する 乾燥密度は、CBR=2の等 値線より下に位置している。 この泥岩土を利用した小規模 な盛土工事においては、一般 的な方法を準用して、標準締 固め試験による最大乾燥密度 の90%以上、あるいは95%以 上を締固め目標とする場合が 多い。この泥岩土に対する標 準締固め試験による最大乾燥 密度は平均1.50g/cml であ るが、図中に比較してあるよ

うに,これを基準として締固めて水浸した場合の力学性状は,CBRが2以下の状態に相当している。従ってこれ以上の力学性状を確保するためには,標準締固め試験よりも大きな締固め仕事量で 締固めを行うことが必要となる。

実験では未風化泥岩土を対象としているが、次に調査,報告書にもとづいて、風化泥岩土の締固 め特性について検討する。砂川らは路床土としての風化泥岩土のCBR調査を行い、風化地山層に おける含水比は30~50%にあると報告している。また、沖縄県材料試験所が与那原町と東風平村で 行った農道路床土用風化泥岩土のCBR調査でも、同様な結果が報告されている。このことは、現 場締固めでは未風泥岩地山の自然含水比よりも湿潤側で転圧される場合が多いことを示唆している。 さらに、現場含水比を維持して、15cmモールドと4.5 kgランマーを用い、3層67回の締固めを行っ ているが、その結果も図-7.20 に引用してある。このような仕事量で風化土を締固めたとき、乾 燥密度は標準締固め試験による最大乾燥密度の90%以上の値にある。

図-7.21は、図-7.20に示した結果を締固め乾燥密度と水浸CBRの関係に再プロットしたものである。ここで、未風化泥岩土に注目すると、先の図-7.16(a)と図-7.17において乾燥密度と水浸CBRの相関性を予測したように、3層締固めの場合には、乾燥密度の増加に伴ってCBRが直線的に増大していることがみとめられる。しかし、5層締固めの場合には、乾燥密度が1.58g/cd以上になると、CBRは大きな値を示す場合が多く、乾燥密度と水浸CBRの関係には線形関係が成立しないようである。そこで、これらの結果を締固め仕事量の大きさでグループ分けする

と、3層17回及び5層10回に対す る締固めは乾燥密度 1.50g / cm以 下. CBR 2.5 以下の領域に.3層 42回以上及び5層25回以上に対す るる締固めは乾燥密度 1.58g/cm 以 上, CBR3以上の領域に分けら れる。従って、CBRが3以上で あるためには、乾燥密度が1.58g /cm以上でなければならないが. この値は標準締固め試験による最 大乾燥密度 1.50g / cm よりも大き な値である。そこで、乾燥密度が 1.58g/cmより大きな現場締固め が実際に可能であるかが重要とな る。入手できるデータが少ないが、 東風平村での農道建設の際、地山 切土を利用した厚さ2 mの盛土が 行われ、現場密度を4点で測定し た結果、含水比は 20.3 ~ 25.3 %

で,平均 21.8 %,乾燥密度は 1.58 ~ 1.62g/cd で,平均 1.61g/cd である。従って,比較的大きな 乾燥密度の現場締固めが可能である。しかしながら,現場と室内とでは締固め機構が異なると考え られるので,室内試験の結果を現場の転圧に結びつけるためには,現場締固めに関する多くのデー タの集積が必要である。

また,図-7.21 には先の調査,報告書による風化泥岩土の締固め乾燥密度と水浸CBRの関係 もプロットしてあるが,未風化泥岩土と比較して,乾燥密度が小さいにもかかわらず,大きなCB Rを示している。種村ら²¹によると,いったん風化した泥岩はこれを十分締固めることによって,そ の安定性は逆に向上するようである。また,第5章で述べたように,未風化の島尻層泥岩が乾湿作 用を受けると,乾湿サイクル7~8回までは塑性指数が増加するが,それ以上に乾湿サイクルが増 大すると,逆にその値は減少することが明らかにされている。従って,風化泥岩土も締固め含水比 を規定して,十分締固めるなら,盛土材料としての利用が可能と思われる。このことについては, 特に含水比30%以上の高い含水比での締固め特性,あるいはその力学性状について,調査・研究が 必要となる。

7.4 結 語

本章においては,弱固結状態にある島尻層泥岩を対象として,地山を掘削して採取した泥岩土の 締固め特性を,含水比,締固め仕事量及び粒度を変化させて検討するとともに,CBRを調べてそ の力学性状を明らかにしている。その結果を要約すると,次のようになる。 (1) 10cmモールドと 2.5 kg ランマーを用いて締固めを行うと、自然含水比の乾燥側と湿潤側の両 側に乾燥密度のピークが生ずるが、湿潤側で最大乾燥密度を示している。15cmモールドと 4.5 kg ラ ンマーを用いた締固めの場合は、ある締固め仕事量までは自然含水比状態で最大乾燥密度が生ずる が、締固め仕事量がそれ以上に増大すると、最適含水比は自然含水比よりも乾燥側に移動する。

(2) 細粒から粗粒塊にまたがる粒度をもつ泥岩土に対する締固め機構は,乾燥側では破砕作用と ともに密度増加の作用がもたらされるが,湿潤側では破砕作用の後に練返し作用が卓越すると考え られる。従って,湿潤側では,大きな締固め仕事量による締固めは締固め過度を生ずる。

(3) 3 層締固めの場合の水浸CBRは締固め含水比に関係なく、突固め回数67回で最大を示している。

(4) 乾燥密度と締固め含水比の関係図上に示した等膨張線と等水浸CBR線の形状から, 締固めの目標は、自然含水比を維持して、乾燥密度をある程度まで増加させることである。

(5) 含有最大径が 4.76 mから 38.1 mまで変化する種々の泥岩土に対して自然含水比の状態で締 固め試験を行うと、締固め仕事量が小さい場合には、最大塊径が大きな試料ほど、その乾燥密度は 減少するが、他方締固め仕事量が増大した場合には、乾燥密度と最大径の関係は、れき混り土に対 する乾燥密度とれき混入率の関係に類似し、泥岩塊は締固め過程でれきと類似の挙動をすることが 推測される。しかし、破砕作用と水浸作用を受けた泥岩土は、74 μふるいを通過する細粒分が卓越 した細粒土の状態にある。

(6) 自然含水比を維持し,層数と突固め回数を変化させて締固めた場合のCBRは,3層42回及び5層25回で最大値を示すが,水浸CBRは,それより大きな締固め仕事量で締固めた場合に大きな値となる。特に,最大径19.1 mu以上の試料を5層で,突固め回数40回よりも大きな締固め仕事量で締固めた場合の水浸CBRは,泥岩塊の細粒化に伴って透水性が低下するから,それ以外の締固めの場合よりも大きな値を示している。

(7) 従って,現場締固めでは自然含水比で薄層まき出しを行い,破砕効果のある締固め機械で転 圧を行うことが,水の影響を受けにくい締固め状態となることを示唆している。

(8) 自然含水比で締固めた泥岩土は、締固め仕事量の大きさによって、乾燥密度 1.50g/cd以下、 CBR 2.5以下の領域と、乾燥密度 1.58g/cd以上、CBR 3.0以上の領域とにグループ分けでき、 乾燥密度 1.58g/cd は標準締固め試験による最大乾燥密度よりも大きな値であるが、この値は現 場締固めでも可能な締固め密度である。

室内締固め試験結果は以上のようであるが、これらは現場締固めに対しても適用可能であるかが 問題として残されている。転圧機種、まき出し厚、転圧回数及び含水比の管理など、この種の泥岩 土に関する現場転圧データが乏しいので、それらのデータの集積につとめるとともに、現場盛土試 験を実施して、泥岩土を使用した盛土などの土構造物の設計・施工指針を確立する必要がある。

参考文献

- 1)新城俊也:島尻層泥岩土の締固めに関する2・3の特性,琉球大学農学部学術報告,第24号, pp.413~425,1977.
- 2) 土質工学会編:日本の特殊土,土質工学会,pp. 313~342, 1974.
- 3)上原方成:路盤の安定処理工法に関する基礎的研究(Ⅲ)島尻層泥岩土・その1, 琉球大学理 工学部紀要工学篇, 4号, pp. 63~88, 1971.
- 4)上原方成:土の締固めに関する研究(第1報),琉球大学理工学部紀要工学篇,8号,pp.47 ~64,1976.
- 5) 久野悟郎: 締固めと力学特性の相関,土と基礎, Vol. 22, No. 4, pp. 5~10, 1974.
- 6) 砂川徹男・上原方成:路床土としての島尻層土について,琉球大学理工学部紀要工学篇,9号, pp.151~156,1975.
- 7)種村喬郎・他:ダム用土としての泥岩について・三重県企業庁山村ダムの例,土と基礎, Vol. 22, No.6, pp. 37~44, 1974.

第8章 締固めた泥質れき状土のせん断特性¹⁾

8.1 概 説

アースダム,堤防,道路路体などの土構造物の建設が盛んになるとともに,その規模は巨大化の 傾向にあり、それらの設計,施工を合理的,経済的に行うためには締固めた粘性土の強度・変形特 性を把握することが重要となる。

一般に締固め粘性土は不飽和状態にあって、その強度は含水比、乾燥密度、飽和度に支配される ことが知られていたが、Lambe²⁾は、土粒子と水の物理化学的相互作用が締固めた粘性土の構造を 決定し、力学的性質に影響を及ぼすとした。さらに、SeedとChan³⁾はこの土構造の概念を拡張発 展させて、締固めた粘性土の強度・変形が、含水比あるいは乾燥密度と同様に、土の構造にも支配 されることを示した。これらの研究成果によると、粘性土を締固めるとき、含水比と締固めの方法 によって土粒子の配列に差異が生ずる。すなわち、最適含水比よりも乾燥側で締固めた土の構造は、 締固めの方法のいかんにかかわらず、土粒子の配列が不規則となる、いわゆる綿毛構造をとる。一 方、湿潤側では、締固めの方法によって構造が異なり、突固めのような動的締固めあるいは半動的 締固めの方法の場合はランマーあるいはタンパーの先端が土中に貫入して、土のせん断破壊が生じ、 せん断面に沿って土粒子が平行に並ぶ傾向をとり、突固め回数の増加とともに土粒子配向の平行度 が増し、いわゆる分散構造となる。他方、モールド内の試料の表面をおおうような載荷板を介して 静荷重で締固める、いわゆる静的締固め方法では土の内部にせん断破壊を生じさせる可能性がない ので、土粒子配列は綿毛構造のままである。そして、含水比と乾燥密度が同一となるように締固め の方法を変えて綿毛構造と分散構造の供試体を準備し、非排水せん断を行うと、綿毛構造は分散構 造に比較して強度が大きく、かつ変形に対する抵抗性が大きいことを明らかにしている。

ところで,盛土構造物では施工後降雨の浸潤,またアースダムでは貯水の浸透,道路盛土では地 山からの地下水などにより,盛土は水浸作用を受け,軟弱化するので,盛土の安定や変形を検討す るためには締固めた土の強度・変形に及ぼす水浸の影響を把握しなければならない。前章で概説し たように,吸水膨張や乾湿作用により容易に軟弱化する性質をもつ泥質岩類を盛土材料の対象とす る場合には,強度特性に及ぼす水浸の影響が重要である。

盛土の安定,あるいは変形の解析には室内試験結果が利用される。その試験方法としては,施工 の段階とその速さに対応させて,急速施工による盛土では非圧密非排水せん断試験を,一方盛土が 段階的にゆっくり施工される場合には圧密非排水せん断試験を行えばよい。しかし,施工後水浸作 用を受ける長期安定に対する解析をも考慮する場合には,圧密段階で吸水飽和させた供試体につい て圧密非排水せん断試験が行われる。

本章においては、水浸による締固めた泥岩土の強度特性の変化を明らかにすることを目的として、 まず締固め含水比、乾燥密度(締固め仕事量)及び締固めの方法を変化させて締固めた供試体に対 し、非水浸と水浸状態で側圧1kg/cmlの非圧密非排水型三軸圧縮試験を行ない、応力~ひずみ関係 とせん断強度に及ぼす水浸の影響について検討するとともに、締固め含水比~乾燥密度~強度関係 を明らかにする。次に, 締固めの方法を動的方法に限定し, 自然含水比付近で乾燥密度と締固め含 水比を変化させて締固めた供試体に対し, 締固め直後に非圧密非排水試験を, 吸水飽和後に圧密非排水 試験を行い, 水浸による締固め泥岩土のせん断特性の変化を把握している。

8.2 実験方法

8.2.1 試料

試料は島尻層群中の与那原層泥岩であって,豊見城村の土地造成現場で未風化層地山から土工機 械で掘削して採取した。この泥岩土の粒度は細粒から粗粒塊にまたがるが,現場で生成される泥岩 塊の形状と自然含水比を維持しながら,三軸圧縮試験用供試体の寸法を考慮して,現場で4.76 mm ふるいを通過させた試料を採取し,含水比が変化しないように実験室内に保存した。この泥岩土を 自然含水比のままふるい分けした場合の泥岩塊の粒径分布と,自然含水比にある試料を24時間水浸

した後に水中ふるい分けした場合の粒径分布 が図-8.1に示してある。これによると,水 浸によって細粒化することが明らかであるが、 これは掘削の際の過度の応力による骨格構造 の乱れや潜在的なクラックなどの弱面に沿っ て水が浸透し,泥岩塊のいくらかが分離した 結果であると考えられる。しかし,このよう に自然含水比での水浸作用による細粒化はわ ずかであるが,前章の図-7.1に示したよう に,乾燥後水浸すると,著しい細粒化が生ず るものと考えられる。

試料を十分解きほぐして行った物理試験の 結果が表-8.1に、粒度試験結果が図-8.1 に示してある。

8.2.2 実験方法

先に述べたように,締固めた粘性土のせん 断強度に及ぼす要因は乾燥密度,含水比及び 土の構造であるが,これらの要因は締固め含 水比,締固め仕事量及び締固めの方法に支配

される。また,その強度は水浸作用を受けて変化する。ここでは,標準的な三軸圧縮試験を行って, 締固めた泥岩土のせん断特性に及ぼす上記の要因の影響を明らかにするが,そのためには次のよう な締固め試料を準備した。

試料の含水比を気乾によって自然含水比より乾燥側に3段階,また加水により湿潤側に2段階変化させ,自然含水比を含めて,6段階の締固め含水比の試料を準備した。これらの試料について JISに規定されている土の突固め試験法に準じて締固めを行うが,締固め仕事量は,10cmモールド, 2.5kg ランマー,突固め層数3層の場合には突固め回数を層当り10回,25回,50回とし,また15cm モールド,4.5kgランマー,5層の場合は層 当り55回である。また,非乾燥法・非繰返 し法による締固めを行った。それぞれの締 固め仕事量に対する締固め曲線は図-8.2 に示してあるが,前章で示した傾向と同様, 締固め仕事量が小さい場合には最大乾燥密 度は自然含水比より湿潤側に生ずるが,締 固め仕事量の増加とともに,最適含水比は 自然含水比,さらには自然含水比より乾燥 側へと移行している。これら締固め曲線上 での締固め供試体に対して,排水条件と拘 束圧力を変えて次のような三軸圧縮試験を 行った。

なお,使用した三軸装置とその操作法は, 第3章,3.3で説明した低圧用三軸室を用 いる場合と同じである。

図-8.2 締固め曲線と供試体の締固め状態

(1) 一定拘束圧力作用下での非排水せん断試験

供試体は、上記の締固め含水比と締固め仕事量で突固めたモールドから直径5cm,高さ10cmに成 形した動的締固め供試体と、これらと同一の乾燥密度になるように静的に締固めた静的締固め供試 体の2種類を用意した。静的締固め供試体の作製には、内径5cmで、高さがプランジャーで12.5cm となるように調整されている鋼鉄製2つ割モールドを準備し、これに泥岩土を必要量入れて、圧縮 試験機で上下端からプランジャーを介して静的圧力を作用させて締固めている。しかしながら、密 度が大きい場合には、脱型の際リバウンドが生じ、乾燥密度を一致させることが困難であった。こ れらの供試体に対し、非水浸状態で側圧1kg/cm のもとでの非排水型三軸圧縮試験(UU試験)を 行った。

次に、上述の動的及び静的締固め供試体に対し、体積を拘束した状態で水浸飽和させるために、 内径が52 mm,高さが10 cmの塩化ビニール管を用意し、側方への膨張は厚手の沪紙を供試体に巻い てすき間をうめて拘束し、また供試体上下端に沪紙をはさみ、モールド上下端から有孔アクリル板 を当て、これを4箇所でボルト締めして上下方向への膨張を拘束している。供試体とモールドの間 に沪紙をはさんだのは飽和を促進させることを目的としたが、水浸に伴ってモールド内で吸水膨張 を許し、わずかに乾燥密度が減少し、水浸作用の影響だけでなく、乾燥密度の減少の影響をも含めた 強度変化を調べたことになる。供試体を飽和させるために、水浸のみならずデシケータ内で水浸減 圧して脱気も行っている。これらの供試体に対してもUU試験を行っているが、間隙水圧の測定は 行っていない。また、非水浸供試体と水浸供試体に対するせん断速度は1%/minである。なお、 水浸に伴う乾燥密度と含水比の変化が、図-8.3(a)、(b)に締固めの方法別に示してある。

図-8.3 水浸による状態の変化

(2) 非圧密非排水せん断試験(UU試験)

先の図 -8.2の締固め曲線上にアルファベットA, B, C, D, E, Fの記号で示した動的締固 めの状態に対し、側圧を変化させた一連のUU試験を行っている。これは、供試体B, A, F, C では乾燥密度を変化させ、また供試体E, A, Dでは締固め含水比を変化させて、せん断特性に及 ぼす乾燥密度と含水比の影響を調べることにある。突固め試料を直径 5 cm, 高さ10 cmの円柱供試体 に成形し、側圧 0.5 \sim 5 kg/cm の範囲でせん断速度 1 % / min の UU試験を行っているが、 間隙水 圧の測定は行っていない。

(3) 圧密非排水せん断試験(CU試験)

この実験は、上述の実験(2)に対する水浸作用の影響を調べるとともに、有効応力によるせん断特 性を把握することを目的としている。従って、図-8.2の締固め曲線上のアルファベットA、B、 C、D、E(Fを除く)の記号の状態にある動的締固め供試体を準備し、これを実験(1)の水浸用モ ールドに入れてデシケータ内で水浸脱気した後、三軸室にセットして、初期バックプレッシャー4b = 3.5 kg / cd を作用させて有効側圧 $q_c' = 0.5 \sim 5 kg / cd$ の範囲で等方圧密し、せん断速度 0.05%/min で非排水せん断を行った。せん断中間隙水圧の測定を行っているが、体積変化は測定していない。

ところで、一連のUU試験あるいはCU試験を行うためには同一の供試体を多数準備する必要が あるが、均一な供試体を用意するためには、一つの締固め試料から多数の供試体を成形することが 望ましい。そこで10cmモールドの代わりに15cmモールドを使用し、プロクターの締固め仕事量が同一 となるように5層、ランマー2.5kg、落下高 30 cmの条件下で突固め回数を変化させ、一回の締固め から4個の供試体を成形した。

また,締固め作用による過圧密効果を調べるために,泥岩塊を十分解きほぐしてスラリー状に練返し,大型一次元圧密容器を用いて 0.5 kg/cmlで予圧密した飽和正規圧密試料に対するCU 試験も 行っている。この結果は、すでに第3章及び第5章で示した結果と類似しているので、ここでは締 固め土のCU試験と対比させるにとどめる。

8.3 実験結果及び考察

8. 3. 1 締固めた泥岩土の強度と水浸による強度変化

(1) 応力~ひずみ関係

側圧1kg/cmlでの三軸圧縮試験による応力~ひずみ関係に及ぼす含水比,乾燥密度,締固めの方 法及び水浸作用の影響について示す。

乾燥密度の影響の代表例として、図-8.4 には自然含水比状態で乾燥密度を変えた場合 の非水浸状態に対する応力~ひずみ関係を, 実線で動的締固めの場合、破線で静的締固め の場合を示してある。動的締固めに対する応 カーひずみ関係は乾燥密度の増加につれて、 ひずみの増大とともに応力が増大する、いわ ゆるひずみ硬化によって最大応力に達した後 ひずみ硬化ー軟化型に移行することがわかる。 すなわち、乾燥密度の増加に伴って、応力~ ひずみ関係は塑性的挙動からぜい性的挙動へ と移行し、それに伴って最大応力が増大する

ົ∫₄=1.65

が,破壊ひずみは減少する傾向にある。他方, 図−8.4 応力~ひずみ関係に及ぼす密度の影響 静的締固めの場合も,乾燥密度の増加に伴う応力~ひずみ関係の変化は動的締固めの場合と同様で あるが、両締固め供試体に対する乾燥密度が一致していないので、強度を直接比較するととができ ない。図に示していないが、密度増加に伴う応力~ひずみ関係が密度増加に伴って塑性的挙動から ぜい性的挙動へと移行する傾向は, 締固め含水比が低くなるほど顕著となり, 一方, 自然含水比より湿 潤側では高密度に伴うぜい性的挙動は現われず,乾燥密度に関係なく,応力~ひずみ関係はひずみ 硬化型である。しかも、湿潤側では、静的締固めの場合は乾燥密度の増加に伴って最大応力は増大 するが、動的締固めの場合は最大応力が減少し、締固め過度(over-compaction)が生じている。 図-8.5は締固め含水比の影響の代表例として、10㎝モールド、3層25回の締固めに対する応力 ~ひずみ関係を,前図と同様,実線は動的締固め,破線は静的締固めとして,締固め含水比ごとに

示してある。応力~ひずみ関係は、自然含 水比より湿潤側で締固めた場合はひずみ硬 化型であるが、締固め含水比の減少に伴っ てひずみ硬化-軟化型へと移行し、それと ともに最大応力の増加と破壊ひずみの減少 が現われる。この傾向は、静的締固めの応 カーひずみ関係においても同様である。ま た、図示していないが、締固め含水比の減 少に伴う応力~ひずみ関係のぜい性挙動は、 乾燥密度が大きいほど顕著に現われる。な

-188-

お,締固めの方法に関係なく,締固め含水比25%以下では応力~ひずみ関係に最大応力が生じているが, 締固め含水比28%では応力にピークが現われない。 この場合の破壊は,ひずみが15%のときの応力値で 定義した。

次に、図-8.6は、図-8.4の非水浸状態に対応 させて、水浸状態での応力~ひずみ関係を示したも ので、図中の数値は水浸後の乾燥密度を表わしてい る。水浸による乾燥密度の減少はわずかであるにも かかわらず、応力~ひずみ関係は乾燥密度に関係な くひずみ硬化型を示し、高密度化に伴うぜい性挙動 は消失している。また、水浸の場合も乾燥密度の増 加に伴って強度は増大しているが、非水浸供試体に 比較して、水浸作用により強度の減少と塑性的変形 挙動がもたらされている。

同様に,図-8.7は,図-8.5の非水浸状態に対応させて,水浸状態での応力~ひずみ関係を示した もので,図中の数値は締固め含水比を表わしている。 この場合も,締固めの方法あるいは締固め含水比に 関係なく,応力~ひずみ関係はひずみ硬化型に移行 し,その傾向は締固め含水比が小さいほど顕著で, 強度の減少が著しい。従って,水浸後の強度は,自 然含水比よりも湿潤側の状態で締固めた場合に大き な値を示している。

以上のような水浸状態に対する応力~ひずみ関係 は、他の乾燥密度と締固め含水比においても締固め

図-8.6 応力~ひずみ関係に及ぼす水浸 の影響(密度が異なる場合)

の影響(締固め含水比が異なる場合)

の方法に関係なく、同様な傾向にあり、しかも応力にピークが生じない。このような水浸供試体の 強度は15%ひずみに対する応力値を用いる。

ところで、土構造物の応力状態や変形を解析するために、土に対する種々の応力~ひずみ関係式 が提案されている。Kondner⁴⁾は、土の非線形応力~ひずみ関係が双曲線で近似できることを示し た。この双曲線式は

$$(\sigma_1 - \sigma_3) = \frac{\epsilon}{a + b \epsilon}$$
 (8.1)

ここに、 $(\sigma_1 - \sigma_3)$: 主応力差、 ϵ : 軸ひずみ、a, b: 実験から求まる定数、 で表わされ、これ を次式のように変形すると、

$$\frac{\epsilon}{(\sigma_1 - \sigma_3)} = a + b \epsilon$$
(8.2)

ε と ε / ($\sigma_1 - \sigma_3$)の関係は直線となるから、これから切片がα、勾配が b として求まる。 a は、応力~ひずみ関係における初期接線変形係数 $E_i \ge E_i = 1/a$ の関係に、b は、ε →∞のときの終極強度 ($\sigma_1 - \sigma_3$)_{ult} ≥ ($\sigma_1 - \sigma_3$)_{ult} = 1 / b の関係にある。 不飽和土の応力~ひずみ関係は側圧の影響 を受けるが、ここでは側圧 1 kg/cml での応力~ひずみ関係への式(8.1)の適合性について、乾燥 密度、締固め含水比、締固めの方法及び水浸作用の影響を調べる。

図-8.8は図-8.4の非水浸状態下での動的締固めに対する式(8.2)の適合性を、図-8.9は 図-8.5の結固め含水比の影響に対する適合性を、また図-8.10は図-8.6の水浸作用の影響を、 図-8.11は図-8.7の静的締固めに対する水浸の影響を示したものである。図-8.8と図-8.9よ り、非水浸供試体に対しては最大応力までの双曲線への適合性は比較的よく、乾燥密度の増大に伴 って適用ひずみ領域が減少するが、含水比の増加とともに適用ひずみ領域は拡大している。しかし ながら、適合性に及ぼす締固めの方法の影響は明確でない。他方、図-8.10と図-8.11から、水浸 状態での応力~ひずみ関係は、乾燥密度が小さく、また締固め含水比が高いほど、双曲線式への適 合性がよく、しかも静的締固めよりも動的締固めにおいて良好となる傾向にある。すなわち、ひず み10%前後で直線関係に折点を生ずるが、その傾向は静的締固めにおいて著しい。このように、水

図 - 8.8 応力~ひずみ関係の双曲線式への適合性(乾燥密度の影響)

図 - 8.9 応力~ひずみ関係の双曲線式への適合性(締固め含水比の影響)

図-8.11 水浸供試体の応力~ひずみ関係に
 対する双曲線式への適合性(締固)
 め含水比の影響)

浸供試体に対する双曲線式の適合性がよいことは応力~ひずみ関係の形状からも推測できることである。いま、定数bから求まる終極強度 $(\sigma_1 - \sigma_3)_{ult}$ と破壊強度 $(\sigma_1 - \sigma_3)_f$ との比を次式で定義すると、

$$(\sigma_1 - \sigma_3)_f = R_f(\sigma_1 - \sigma_3)_{\text{ult}}$$
(8.3)

 R_f は破壊比と呼ばれ,通常その値は $0.75 \sim 1$ の間にあって、これを式(8.2)に代入すると、次式となる⁵⁾。

$$(\sigma_1 - \sigma_3) = \frac{\epsilon}{\left(\frac{1}{E_i} + \frac{\epsilon R_f}{(\sigma_1 - \sigma_3)_f}\right)}$$
(8.4)

いま,水浸供試体に対し, $\epsilon = 10 %$ 前後までの $\epsilon / (\sigma_1 - \sigma_3) \sim \epsilon$ 関係の勾配bから求めた $(\sigma_1 - \sigma_3)_{ult}$ と破壊強度 $(\sigma_1 - \sigma_3)_f$ の関係を示すと図 - 8.12となる。破壊比 R_f の平均値は動的締固めで 0.929,静的締固めで 0.966 で,締固めの方法でわずかに異なっている。一方,水浸供試体は飽和 状態にあるから,側圧の変化に伴って有効応力が変化しないので, E_i を支配する要因は乾燥密度と 締固めの方法である。図 - 8.13に E_i と乾燥密度の関係を示してあるが、締固めの方法による差異 は明確でない。

(2) 強度特性

締固め粘性土の破壊強度 $(\sigma_1 - \sigma_3)_f$ は締固め含水比, 乾燥密度及び締固めの方法によって異な り, さらに水浸作用によって変化する。強度に及ぼす締固めの方法の影響を明らかにするためには, 含水比と乾燥密度を一致させて比較することが望ましいが, すでに述べたように, 動的締固めと静 的締固めの乾燥密度を一致させることが困難であったので, 図 – 8.14に示すように, 乾燥密度と強 度 (対数)をプロットして締固めの方法による強度の比較を行った。図から明らかなように, $r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係には締固め含水比ごとに直線関係が成立し, 締固め含水比 28 %の動的締固め を除いて, 乾燥密度が増加するほど, また締固め含水比が減少するほど, 強度は増加することがわ かる。また, 自然含水比 (23 %)より乾燥側では, 動的締固めと静的締固めの $r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係に差がなく, 締固めの方法の影響を受けないようである。一方, 自然含水比より湿潤側では, $\tau_{a} \sim \log (\sigma_{1} - \sigma_{3})_{f}$ 関係に締固めの方法に よる差異が生じ、乾燥密度が同一のとき、静 的締固めの強度が動的締固めよりも大きいこ とがわかる。特に、含水比28%の場合、静的 締固めにおいては乾燥密度の増加に伴って強 度も増加しているが、動的締固めにおいては 締固め仕事量の増加に伴って強度と乾燥密度 はともに減少し、締固め過度の現象が生じて いる。

前章で述べたように、細粒から粗粒塊にま たがる粒度をもつ泥岩土に対する締固め機構

図-8.14 乾燥密度と強度の関係

は、乾燥側では破砕作用とともに密度増加がもたらされるが、湿潤側では破砕作用の後に練返し作 用が卓越することである。自然含水比より湿潤側で動的に締固めたとき、含水比と締固め仕事量の 増加に伴って締固め土は大きなせん断ひずみを受け、分散構造を形成するであろう。このことは、 自然含水比より湿潤側で締固めたとき、通常の粘性土と同様、動的締固めでは分散構造、静的締固 めでは綿毛構造が形成されていると推測される。他方、自然含水比より乾燥側での締固めは、通常 の粘性土同様、締固めの方法にかかわらず綿毛構造を形成していると考えられるが、本実験では、 これが土粒子レベルの配列構造であるのか、泥岩塊レベルの集合状態であるのか、泥岩塊の細粒化 の状況を把握してないので明瞭でない。

次に、同図には水浸後の供試体に対する乾燥密度と強度の関係が締固め含水比に関係なく示され ている。先にも述べたように、ここでは乾燥密度を拘束して、水浸のみによる強度の変化を調べる ことを目的としたが、水浸作用のみならず乾燥密度の減少をも伴った強度の変化となっている。締 固めた土は不飽和状態にあって、土中内のサクションは有効応力として作用し、その強度に影響を 及ぼしているが、水浸するとサクションの解消、土粒子の吸着水層の拡大などのために強度は低下 する。いま、乾燥密度の変化がわずかであるから、それに伴う強度の変化は無視できると仮定すれ ば、図において水浸に伴う強度の減少は乾燥密度を一定にしたときの強度差 として求められ、水 浸による強度の減少割合は、締固め含水比が低いほど、また乾燥密度が小さいほど、著しいことが わかる。

また、水浸供試体に対しても $T_d \sim \log(\sigma_1 - \sigma_3)$ 関係には線形関係が成立し、しかもこれらの関係には締固めの方法による差異がみとめられない。水浸供試体は飽和しているから、この関係は零空積曲線上での強度分布に対応し、乾燥密度によって一義的に強度が定まるばかりでなく、飽和状態での含水比と乾燥密度の間には次の関係があるから、含水比と強度の関係も推定できる。

$$w = \left(\frac{r_w}{r_d} - \frac{1}{G_s}\right) S_r \tag{8.5}$$

ここに、w:含水比、Ta:乾燥密度、Gs:土粒子の比重、Tw:水の単位体積重量、Sr:飽和度。 図 - 8.15は強度を対数目盛でとり、実測含水比と強度の関係を示したものである。この場合も締 固めの方法による差異は認められず、水浸飽和した締固め土の強度は、通常の飽和粘土と同様、含 水比と一義的関係にある。

なお、式(8.4)の応力~ひずみ関係に対する双 曲線式における $(\sigma_1 - \sigma_3)_f$ は、水浸供試体に対す る $\tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係から求めればよい。

(3) 含水比~乾燥密度~強度関係

非水浸供試体は不飽和であるので,非排水条件で 側圧を増加させると,空気の圧縮により間隙比の減 少と有効応力の増加が生じ,せん断強度は側圧に影 響されることになる。従って,締固め含水比と乾燥 密度の関係図上における等強度線は側圧により変動 する⁶⁾。しかしながら,含水比~乾燥密度~強度関係 を明示しておくことは,乾燥密度だけでなく,強度

をも考慮して締固めの目標を定める上で重要である。これらの関係は通常、上述のように、含水比 ~乾燥密度関係図上に等強度線を描くことによって求められる。ここでは、含水比と乾燥密度は普 通目盛で、強度は対数目盛にとり、図 – 8.16に示すような含水比w ~乾燥密度 r_d ~強度 $(\sigma_1 - \sigma_3)_f$ 関係で示すことにする。

この図の $w \sim r_d$ 平面には、締固め仕事量を変化させたときの締固め曲線群と零空積曲線とが示されているが、締固め曲線上の締固めに対する強度の対数は、図 – 8.14に示したように、締固め含水比一定のとき乾燥密度と線形関係にあるから、この図においても含水比一定の平面上で $r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係は線形関係にある。ただし、締固め含水比と締固め仕事量が増大して、締固め過

度が生ずるような場合,例えば含水比28%の 動的締固めでは, $r_{d} \sim \log(\sigma_{1} - \sigma_{3})_{f}$ 関係 iw = 28%平面で曲線関係にある。一方, r_{d} ¹⁰ $\sim \log(\sigma_{1} - \sigma_{3})_{f}$ 関係の直線群と乾燥密度一 定平面の交点をつらねると,乾燥密度一定に 対するw $\sim \log(\sigma_{1} - \sigma_{3})_{f}$ 関係は曲線を形成¹ する。しかも,この曲線は乾燥密度によって 異なる形状を示している。従って,非水浸状 態に対するw $\sim r_{d} \sim \log(\sigma_{1} - \sigma_{3})_{f}$ 関係は 態に対するw $\sim r_{d} \sim \log(\sigma_{1} - \sigma_{3})_{f}$ 関係は 愈和土においては側圧によって変動するもの で,この場合は側圧 $\sigma_{3} = 1 \log/cni$ に対するも⁰ のである。

一方,水浸飽和の $w \sim r_d$ 関係は零空積曲線 上にあるから,水浸後の $w_f \sim r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係は,図中の太い破線で示してある ように, $w \sim r_d$ 面の零空積曲線の垂直曲面上

図-8.16 締固め含水比~乾燥密度~強度関係

にあって曲線を形成している。従って、非水浸 での $w \sim \tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係の曲面は水 浸作用により曲線に集約されることになる。い ま、図の混乱をさけるために、水浸後の $w_f \sim$ $\tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係だけを図-8.17に示 してある。この図において $w_f \sim \tau_d$ 面に投影す ると、零空積曲線となり、また $\tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 面への投影は図-8.14に示した水浸状態 に対する $\tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係と、 $w \sim \log (\sigma_1 - \sigma_3)_f$ 面への投影は図-8.15の $w \sim \log (\sigma_1 - \sigma_3)_f$ 関係と一致している。このことは、 水浸による含水比の増加、乾燥密度の減少及び 強度の減少が生じても、 $w_f \sim \tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係は零空積曲線への垂直面に包含され、それ

より外側にはみ出ることはなく、しかも水浸供 図 - 8.17 水浸含水比~乾燥密度~強度関係 試体は飽和しているから、強度は側圧の影響を受けずに一定となる。従って、水浸後の $w_f \sim r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係は側圧に関係なく、乾燥密度あるいは含水比によって一義的に定まるといえよう。

なお、図-8.16あるいは図-8.17において、強度を限定すれば、曲面あるいは曲線からその強度 に対応する*w*~*7* 関係が求まる。 従って、盛土の水浸作用による乾燥密度の減少程度が推定でき るなら、水浸後の強度を考慮して締固め目標を設定することが可能となるであろう。

8.3.2 非圧密非排水せん断試験(UU試験)

図-8.2 に示した記号A~Fの締固め状態の供試体に対して、側圧0.5~5 kg/cmの範囲でUU 試験を行っているが、表-8.2 にはそれらの供試体の締固め含水比と乾燥密度、並びにせん断試験 結果をまとめて示し、また図-8.18にはそれぞれの締固め状態における応力~ひずみ関係と全応力 による破壊包絡線を示してある。

図-8.18の応力~ひずみ関係に注目すると、締固め含水比が自然含水比で、かつ乾燥密度が変化 する場合は(乾燥密度の大きさ、B<A<F<C)、供試体Bでは側圧1kg/cmlまでは応力~ひず

供試体	含水比 <i>w %</i>	乾燥密度 7ag/cm ¹	c _u kg∕cnỉ	¢ _u (度)	
А	23.1 ± 0.2	1.49 ± 0.02	1.17	27.8	_
В	22.9 ± 0.3	1.37 ± 0.02	0.65	29.0	
С	23.0 ± 0.1	1.62 ± 0.01	2.42	24.5	
F	23.0 ± 0.3	1.58 ± 0.01	2.41	23.8	
D	27.0 ± 0.1	1.52 ± 0.01	0.97	22.0	
E	18.5 ± 0.2	1.47 ± 0.02	1.07	32.9	

表-8.2 供試体とUU試験結果

み関係がひずみ硬化ー軟化型であるが 側圧の増加に伴ってひずみ硬化型に移 行している。このように、応力~ひず み関係がひずみ硬化-軟化型からひず み硬化型に移行するときの側圧の大き さは、乾燥密度の増加とともに増加し、 供試体Aでは $\sigma_3 = 5 \text{kg/cnl}$,供試体F, Cでは5 kg/cnl以上になっている。こ の様に、含水比が一定の場合の応力~ ひずみ関係は乾燥密度と側圧の影響を 受けることが明らかであるが、乾燥密 度が増大すると、供試体FとCにおけ るように、応力~ひずみ関係は類似し ている。

一方,供試体E,A,Dのように, 締固め含水比が変化するときの応力~ ひずみ関係を比較すると,側圧の大き さに関係なく,供試体Dではひずみ硬 化型,供試体Eではひずみ硬化-軟化 型で,側圧の増加に伴う強度の増加は, 供試体Eで著しく,供試体Dでわずか

図-8.18 応力~ひずみ関係と破壊包絡線(UU試験)

である。供試体Eでは,先述したように,非排水条件で不飽和土に作用する側圧を増加させると, 空気の圧縮に伴って間隙の減少と有効応力の増加が生じ,その結果強度が増大するが,供試体Dの ように飽和度が高い場合には,側圧の増加に伴って空気が間隙水に溶解し,飽和に近い状態となり, 強度は一定となる。

次に、図-8.18には各締固め状態でのモールの応力円と破壊包絡線が示してあるが、供試体A, F, C及びEの包絡線は直線で、Mohr-Coulombの破壊規準が適用でき、他方供試体BとDでは 非線形である。そのうち、供試体Dに対する包絡線は全圧力領域にわたって曲線であるが、供試体

Bに対する包絡線は低圧領域で直線,高圧領域で「 曲線を示している。供試体Bに対する低圧領域で の直線は空気の圧縮に伴う密度増加によって,ま た供試体Bの高圧領域と供試体Dに対する曲線は 側圧の増加に伴う飽和への移行によってもたらさ れたものと考えられる。

いま、各締固め状態に対する包絡線を比較する ために、全応力による破壊時の応力状態を($\sigma_1 - \sigma_3$)/2~($\sigma_1 + \sigma_3$)/2関係で示したのが図 -

8.19である。また、表 -8.2には強度定数 c_u 、 ϕ_u が示されているが、供試体BとDに対する値は 低圧領域における包絡線を直線で近似して求めた値である。自然含水比での締固めを比較すると、 供試体CとFの強度定数はほぼ一致しているが、供試体B、A、F、Cの順に、乾燥密度が増大す ると、 q_u は増加し、 ϕ_u は減少する傾向にある。一方、乾燥密度がほぼ一定で、含水比が異なる供 試体E、A、Dを比較すると、 c_u の差はみられないが、 ϕ_u は自然含水比よりも乾燥側で大きな値 を示している。ところで、これらのうち、供試体A、B、Eは他の供試体に比較して大きな ϕ_u を示 している。前章で明らかにしたように、大きな締固め仕事量あるいは高含水比での締固めの場合に は、泥岩塊は締固め過程で破砕作用あるいは糠返し作用を受けて細粒化するが、他方小さな締固め 仕事量での締固めにおいては十分破砕されないまま、締固められている。従って、供試体A、B、 Eのような締固め状態では、十分破砕されていない泥岩塊が締固め土中に存在し、しかもこの場合 は水浸作用を受けていないので、これらがせん断中に粒状体として挙動し、大きな ϕ_u の値がもたら されたものと推測される。

8.3.3 圧密非排水せん断試験(CU試験)

図-8.2 に示した締固め状態A, B, C, D, E に対し, 水浸飽和後 0.5 ~ 5.0 kg/cm の圧密圧 力の範囲内でCU 試験を行っているが, 表-8.3 には供試体の締固め含水比と乾燥密度, 並びにせ ん断試験結果がまとめて示してある。

供試体	含水比 w%	乾燥密度 7g/g/cm	_	強	度	定	数		17th Late ().
			全口	じ カ	(σ ₁ ·	$-\sigma_3)_f$	$(\sigma'_1 /$	σ_3')max	蚁 谡 戊 万
			ccu	¢си	C'	¢'	c'	¢'	R _f
А	22.8 ± 0.3	1.49 ± 0.03	0.34	17.2	0.14	29.2	0.17	29.2	0.976
В	22.6 ± 0.2	1.34 ± 0.02	0.30	1 3 .2	0.08	28.3	0.06	29.2	0.972
C	22.7 ± 0.3	1.63 ± 0.01	1.38	20.1	0.09	32.4	0.29	33.7	0.875
D	26.5 ± 0.5	1.52 ± 0.01	0.79	16.0	0.18	28.9	0.22	30.6	0.964
Е	18.7 ± 0.6	1.46 ± 0.01	0.24	18.5	0.17	29.2	0.08	30.1	0.965

表-8.3 供試体とCU試験結果

水浸供試体は圧密過程でバックプレッシャー 46 = 3.5 kg / cniを作用させているが、図 – 8.20は圧密後の含水比 と圧密圧力の関係を示したものである。圧密後の含水比 は図中に示した締固め含水比よりも増加しているから, この圧密圧力の範囲内では、圧密過程で吸水現象が生じ ていることがわかる。一方、締固め乾燥密度を一定に保 ったまま飽和させたときの含水比は、A:31%、B:38%, C: 25%、D: 30%、E: 32%であるから、すべての 供試体で吸水しているにもかかわらず、供試体Bではす べての圧密圧力に対して体積圧縮が生じ、逆に供試体C では体積膨張が生じ、また他の供試体A、D、Eでは圧

-196-

密圧力の増加に伴って、体積膨張から体積圧縮へと移行している。さらに、自然含水比の乾燥側と 湿潤側で締固めた供試体EとDを比較すると、圧密圧力の増加に伴う含水比変化は、乾燥側で締固 めた供試体Eで著しい。これは、十分に破砕されていない乾燥した泥岩塊が、低圧密圧力では吸水 膨張を生ずるが、圧密圧力の増加に伴って泥岩塊の吸水による崩壊現象が生じ、含水比減少がもた らされたものと推測される。

このような圧密供試体に対して非排 水条件でせん断を行い,各締固め状態 に対する応力~ひずみ関係,有効主応 力比(σ_1 / σ_3)~ひずみ関係及び間隙 水圧~ひずみ関係を示したのが図-8. 21(a)~(e)である。これらの関係を図-8.20に示した圧密終了時の状態と対応 させて検討すると,圧密過程で体積減 少が生じている供試体Bにおいては, 応力~ひずみ関係はひずみ硬化型で, 間隙水圧はひずみの増加に伴って増加 し,その後一定となり,通常の正規圧 密粘土と類似の挙動を示している。一 方,体積膨張が生じている供試体Cで

図-8.21 応力~有効主応力比~間隙水圧~ひずみ関係(CU試験)

は、応力~ひずみ関係は圧密圧力の増加に伴ってひずみ硬化型からひずみ硬化-軟化型へ移行し、 また間隙水圧~ひずみ関係は最大応力よりも小さなひずみで最大値を示し、その後ダイレイタンシ ~を伴って間隙水圧が減少し、通常の過圧密粘土と類似の挙動を示している。また、供試体Aでは、 圧密圧力の増加に伴って低圧での過圧密的挙動から高圧での正規圧密的挙動へと移行している。供 試体Dでは、供試体Cと同様、過圧密的挙動を示しているが、供試体Eでは、先述したように、水 浸作用による状態変化が著しいので、正規圧密的挙動を示している。

通常せん断応力が最大になった状態を破壊とするが、有効主応力比(σ_1' / σ_3)の値が最大となる 状態で強度定数を決定する場合がある。有効側圧 $\sigma_3 を$ 一定に保ちながら軸応力 σ_1 を増大させる排水 せん断試験では、有効主応力比の最大値(σ_1' / σ_3')maxと主応力差の最大値($\sigma_1 - \sigma_3$)maxのひずみ は一致するが、非排水せん断試験の場合には、ひずみの増大に伴って間隙水圧が増加するような正 規圧密粘土では、 (σ_1' / σ_3')maxが($\sigma_1 - \sigma_3$)maxよりもかなりおくれて現われ、他方、過圧密粘土 のように、間隙水圧の減少に伴って有効側圧 σ_3' が増加する場合には、(σ_1' / σ_3')maxは($\sigma_1 - \sigma_3$)max に先行して現われるといわれている⁷)。図 - 8.21に示した(σ_1' / σ_3')~を関係に注目すると、過圧密 粘土に類似した挙動を示している供試体C、D及び供試体Aに対する低圧密圧力領域では、(σ_1' / σ_3') る高圧密圧力領域では、 ($\sigma_1 - \sigma_3$)~ を関係と(σ_1' / σ_3') ~ (関係は同じ形を示している。

いま,破壊強度を ($\sigma_1 - \sigma_3$)max,あるいは15%ひずみの応力で定め,水浸飽和による強度の変化 を把握するために,各圧密圧力(側圧)に対してUU試験とCU試験の強度を比較したのが図 - 8. 22である。CU試験では,圧密圧力の増加に伴って乾燥密度が変化するので,水浸飽和だけによる 強度の減少とはいえないが,UU試験の強度と比較する

と,強度変化の様子が明らかである。また,強度の低下 は水浸飽和によるサクションの解消などによってもたら されるが,供試体B,A,Eに対する強度の減少が著し いのは,それ以外に,UU試験のところで述べたように, 十分破砕されていない泥岩塊が水浸作用を受けて,さら に軟弱化したためであると考えられる。しかし,これら の比較は圧密圧力5kg/cmiまでの領域であり,供試体D から予測されるように,さらに大きな圧密圧力(側圧) レベルでは排水条件によって有効応力レベルが著しく異 なるから,逆にCU試験による強度が増大するであろう。

図-8.22 水浸作用による強度変化

次に、CU試験の結果を含水比*wf* ~ 圧密圧力 d_{a} ~ 強度 $(\sigma_{1} - \sigma_{3})_{f}$ 関係で表示すると、図 - 8.23 と図 - 8.24のようになる。なお、これらの図には、比較のために練返し正規圧密粘土の*wf* ~ d_{a} ~ $(\sigma_{1} - \sigma_{3})_{f}$ 関係も併記してある。図 - 8.23は自然含水比状態で密度を変化させて締固めた場合の供試 体A、B、Cの比較を行い、図 - 8.24は自然含水比の乾燥側と湿潤側で締固めた場合の供試体EとDの 比較を行っている。周知のように、飽和粘土の強度は含水比に支配される。そして、正規圧密粘土に 対してCU試験を行った場合、含水比 *wf* と圧密圧力 d_{c} の関係は含水比 *wf* と強度 $(\sigma_{1} - \sigma_{3})_{f}$ の関係と平 行関係にあることが知られている。図から明らかなように、実験試料の泥岩を練返して正規圧密 した

(乾燥密度の影響)

(締固め含水比の影響)

試料では $w_f \sim \log \sigma_c$ 関係と $w_f \sim \log (\sigma_1 - \sigma_3)_f$ 関係はそれぞれ線形関係にあって、かつ互に平 行している。それに対し、締固め土においては $w_f \sim \log \sigma_c$ 関係と $w_f \sim \log (\sigma_1 - \sigma_3)_f$ 関係はそれ ぞれ線形関係にあるが、互に平行関係にない。しかしながら、図 – 8.23に示すように、供試体 B で は o_c = 2.5 kg / cm付近で, Aでは 5 kg / cm付近で両関係が交差している。また, 供試体 C では著し く大きな圧密圧力で両関係が交差することが推測できる。他方、図-8.24 では供試体DとEに対す $\delta w_f \sim \log (\sigma_1 - \sigma_3)_f$ 関係は線形で、ほぼ一致しているが、 $w_f \sim \log \sigma_c'$ 関係は異なり、それぞれ の関係は、供試体Eでは4kg/cml付近で、Dでは6kg/cml付近で交差している。Leeら⁸⁾の圧密圧 力 $\sigma_c' = 70 \text{ kg} / \text{cm}$ までの締固めカオリナイト粘土に対するCU試験によると、 $w_f \sim \log \sigma_c'$ 関係と w_f $\sim \log (\sigma_1 - \sigma_3)$,関係は低圧密圧力領域では平行関係にないが、圧密圧力の増加に伴って $w_r \sim \log \sigma_c$ 関係が屈折して、 $w_f \sim \log (\sigma_1 - \sigma_3)_f$ 関係と交差し、最終的には正規圧密粘土と同様、互に平行と なることが明らかにされている。図より、締固め泥岩土の場合も圧密圧力の増加に伴ってwf~log o 関係と $w_f \sim \log (\sigma_1 - \sigma_3)_f$ 関係は交差し、互に平行となることが推測されるが、この関係が図中に 示した練返し正規圧密試料の延長線と互に平行となるかは明らかでない。先に、応力~間隙水圧~ ひずみ関係からこれらの供試体を正規圧密的挙動と過圧密的挙動に分類したが、上述の挙動に基づ くと、水浸作用を受けた供試体でも実験に対する圧密圧力の範囲では過圧密的状態にあって、しか もそれぞれに程度の差があり、供試体A、B、Eはわずかに過圧密された状態、供試体Dは過圧密 された状態、供試体Cは強く過圧密された状態にあるといえよう。

以上のように,締固め土は締固め過程で過圧密状態となるが,水浸作用ではこの過圧密効果が消 失しないことが明らかであり,従ってせん断に伴う間隙水圧は過圧密効果の影響を受けていると考 えられる。

図 – 8. 25 は破壊時の間隙水圧 Au_f と圧密圧力 q の関係,並びに Skempton の間隙圧係数 $A_f \ge \sigma_c^r$ の関係を同時に示したものである。供試体 A, B, E では圧密圧力の増加に伴って間隙水圧 Au_f は増

-199-

加しているが、供試体C, Dでは圧密圧力が小さいときは負の間隙水圧を生じ、圧密圧力の増大に 伴って間隙水圧は負から正へと変化している。一方、締固め土の先行圧縮応力が定かでないので、 過圧密比の代わりに圧密圧力との関係で間隙水圧 *Af* を示すと、供試体C, Dでは 圧密圧力の増加 に伴って *Af* が増加しており、また供試体 A, B, Eでは圧密圧力の増加に伴う *Af* の増加割合が圧 密圧力 2 kg / cml を境として急変しているが、*Af* は圧密圧力とともに増加していて、過圧密的挙動 にあることがわかる。

次に、図-8.26は、全応力による破壊包絡線を比較するために、各供試体の $(o_1 - o_3)/2 \sim (o_1 + o_3)/2$ 関係を示したものである。破壊包絡線は非線形関係にあるが、これを直線近似して 求めた場合の強度定数 c_{cu} 、 ϕ_{cu} が先の表 - 8.3 に示してある。 自然含水比で締固めた場合の強度 定数に及ぼす乾燥密度の影響を調べると(乾燥密度、B $\leq A \leq C$)、 c_{cu} 、 ϕ_{cu} は乾燥密度の増加に 伴って、ともに増加する傾向がみられる。また、締固め含水比の影響を調べるために供試体E、A Dを比較すると、含水比の増加に伴って c_{cu} は増加しているが、 ϕ_{cu} は逆に減少する傾向を示して いる。

ところで、せん断に伴う間隙水圧は締固め状態によって異なっていることを述べたが、有効応力 径路は間隙水圧に影響されるから、例として圧密圧力1 kg / cm と4 kg / cm の場合の各供試体に対す る有効応力径路を比較したのが図 - 8.27 である。この図には練返し正規圧密試料の有効応力径路も

-200-

示してあるが、これと締固め土とを比較 すると, 圧密圧力 1 kg / cm の場合は締固 め土の有効応力径路は練返し正規圧密試 料のそれと異なるが、圧密圧力4kg/cml の場合は供試体A,B,Eの径路が練返 し正規圧密試料のそれと比較的類似して いる。また、図-8.28には供試体Aに対 する有効応力径路が示してあるが、それ らは圧密圧力2kg/cmlを境に過圧密的挙 動からやや正規圧密的挙動へ移行してい ることがわかる。さらに、図中の径路に は有効主応力比 ($\vec{\sigma}_1 / \vec{\sigma}_3$)が最大となる 位置が矢印で示してあるが、 $(\sigma_1 - \sigma_3)_{max}$ と $(\vec{q}_1 / \vec{q}_3)_{max}$ に対する包絡線には大差 がないことが推測できる。そこで、破壊 強度 $(\sigma_1 - \sigma_3)_f$ に基づいて破壊時の応力 状態を有効応力で表示し、各供試体を比 較すると図-8.29のようになる。破壊包 絡線は線形関係にあり, Mohr-Coulomb の破壊規準が適用可能となる。各供試体 の強度定数は先の表-8.3に示してある。

図から明らかなように、供試体 A、 B、 D、 E の包絡線はほぼ一致し、それらは $\dot{c} \approx 0$ であるが、 $\dot{\sigma}$ に注目すると、 $\dot{\sigma}$ は 28.3° ~ 29.2°で、供試体 C の $\dot{\sigma}$ = 32.4°よりも小さいが、練返し正規圧密 試料の $\dot{\sigma}$ = 26°よりはわずかに大きな値である。従って、自然含水比を中心として含水比に幅をも たせて(ここでは含水比 19 % ~ 27 %)、標準締固め試験における締固め仕事量の程度で締固 めた場合は、水浸作用を受けた後のせん断特性は締固め含水比と乾燥密度の影響をあまり受けない ことがわかる。しかも、供試体 A、 B、 E は、UU 試験では泥岩塊が十分破砕されていないために 大きな ϕ_{4} の値を示していたが、CU 試験では水浸作用を受けて泥岩塊が軟弱化と細粒化を生じたこ とに伴って、供試体 A、 B、 E、 Dに対する $\dot{\sigma}$ がほぼ一致したものと推測される。なお、表 - 8.3 には ($\dot{\sigma}_{1}/\dot{\sigma}_{3}$)maxに基づく強度定数 \dot{c} 、 $\dot{\sigma}$ も示してあるが、($\sigma_{1}-\sigma_{3}$)max に基づく強度定数と 比較して、 \dot{c} 、 $\dot{\sigma}$ はともにわずかに大きな値を示している。

なお、CU試験の応力~ひずみ関係にKondnerの双曲線式(8.2)を適用した場合の例として、 圧密圧力 2 kg / cniの場合の適合性を示したのが図-8.30 であり、その適合性は比較的良好であること がわかる。また、式(8.2)の係数 aの逆数として求めた初期接線変形係数 E_i と圧密圧力 σ_c の関 係を両対数紙上に示したのが図-8.31 である。他方、 bの逆数から求めた終局強度($\sigma_1 - \sigma_3$)ult と ($\sigma_1 - \sigma_3$) の比で表わされる式(8.3)の破壊比 R_f は、圧密圧力ごとの平均値として各供試体に 対し、表-8.3 に示してある。そこで、式(8.4)において($\sigma_1 - \sigma_3$) が決まれば、 応力~ひず

図-8.30 CU試験による応力~ひずみ関係の双曲線式への適用例

図-8.31 圧密圧力と初期接線変形係数の関係

み関係が予測できることになる。Mohr-Coulomb の破壊規準式(8.6)を適用すると、そのときの $(\sigma_1 - \sigma_3)_f = \frac{2c\cos\phi + 2\sigma_3\sin\phi}{1 - \sin\phi}$ (8.6)

側圧 σ_3 は一定でなければならないので、せん断中の排水条件に応じて、表 -8.3の強度定数を選択して式 (8.6) に適用すればよい。 \sim \sim

前章では,泥岩土の締固め特性あるいは強度 の尺度としてのCBR特性に基づいて,水浸作用 を受けにくく,かつ力学的に安定な土構造物を 築造するためには,自然含水比付近で高密度と なるような締固めを行えばよいことを明らかに した。他方,上述したCU試験の結果からは, 自然含水比を中心として含水比に幅をもたせて 締固めた場合,水浸作用後のせん断特性は締固 め含水比の影響を受けないが,標準締固め試験 以上の締固め仕事量で高密度に締固めた場合は, せん断強度が増加することが明らかとなった。 すなわち,図-8.32は含水比と強度の関係を示

したものであるが、強度は含水比のみならず水浸後の乾燥密度にも支配されることがわかる。この ことは前章の結果と一致することである。しかしながら、水浸あるいに圧密過程での体積変化は測 定していないが、低密度の締固めでは水浸作用と圧密圧力の作用によって体積減少が生じて、密度 が増加したり、あるいは自然含水比より乾燥側での締固めでは、圧密圧力の大きさによって吸水膨 張や水浸に伴う骨格構造の崩壊による体積減少を示し、また高密度に締固めた場合には圧密圧力の 作用にもかかわらず、吸水膨張が生ずる。従って、水浸作用を受ける土構造物の安定の検討は、破 壊に対する検討のみならず、圧密、骨格構造の崩壊に伴う体積減少あるいは吸水膨張など、変形に 対する検討をも必要とするであろう。 また,締固めるということは,その過程で,地山で固結状態にある泥岩を人為的な掘削,破砕に よって,その結合力を破壊して土砂化することである反面,細粒化した土の密度を増加させて強度 を増し,土構造物全体の安定性を確保しようとすることである。従って,このような締固めた土の 強度は,水浸作用によってその強度が変化しても,土粒子が正規圧密された状態の強度(ここでは $\vec{c} = 0$, $\vec{\phi} = 26^{\circ}$)に比較して,締固め過程での締固め仕事量による過圧密効果を受けただけ,強 度が増加($\vec{c} > 0$, $\vec{\phi} > 26^{\circ}$)しているといえよう。

8.4 結 語

١.

本章においては,弱固結状態にある泥質岩を盛土材料に選び,これを締固めた場合の強度・変形 特性に及ぼす締固め含水比,乾燥密度(締固め仕事量),締固めの方法,あるいは水浸作用の影響 を明らかにするために,種々の締固め状態の供試体に対し,非水浸並びに水浸状態で側圧1kg/cml のUU 試験を行って含水比~乾燥密度関係図上での強度分布を把握し,次に自然含水比付近で含 水比と乾燥密度を変えて締固めた供試体に対し,UU試験,さらに水浸飽和後にCU試験を行い, それらのせん断特性を調べている。本実験の結果を要約すると,次のようになる。

(1) 側圧1kg/cniのUU試験による応力~ひずみ関係は,乾燥密度の増加に伴ってひずみ硬化型 からひずみ硬化-軟化型に移行するが,自然含水比より湿潤側ではひずみ硬化型,乾燥側ではひず み硬化-軟化型である。この傾向は,動的締固めと静的締固めとでは同じであるが,水浸飽和後の応力~ ひずみ関係は締固め含水比と乾燥密度とに関係なく,ひずみ硬化型に変化している。また,この水 浸後の応力~ひずみ関係にKondnerの双曲線式が適用できることが明らかとなった。

(2) 含水比が一定のとき,非水浸の強度は乾燥密度の増加とともに増大し,強度の対数と乾燥密 度とには線形関係が成立し,しかも自然含水比より乾燥側ではその関係に締固めの方法による差が みられないが,湿潤側では差が生じ,同一乾燥密度に対する強度は静的締固めの場合に大きな値を 示している。しかしながら,動的締固めの場合には,含水比と締固め仕事量の増加に伴って締固め 過度が生じ,強度の対数と乾燥密度の関係は非線形となる。

(3) 水浸飽和後の含水比は供試体ごとに異なるが、それらの強度の対数と乾燥密度とには線形関係が成立し、しかもこの関係は零空積曲線上における強度を表わしている。従って、水浸飽和後の 強度は乾燥密度あるいは含水比で一義的に定められる。

(4) 上述の強度特性を含水比w, 乾燥密度 r_d 及び強度 $(\sigma_1 - \sigma_3)_f$ (対数目盛)を座標軸にとると, 締固め不飽和土の $w \sim r_d \sim \log(\sigma_1 - \sigma_3)_f$ 関係は座標空間で曲面を形成するが,水浸作用によって 飽和すると,この曲面は曲線に集約される。しかも,不飽和土に対する曲面は側圧の大きさによっ て変動するが,水浸後の曲線は側圧に関係なく一定である。

(5) UU試験においては、自然含水比で締固めた供試体の応力~ひずみ関係は側圧の増加に伴っ てひずみ硬化型からひずみ硬化-軟化型に移行し、そのときの側圧は乾燥密度の増加とともに増大 している。一方、自然含水比より湿潤側の応力~ひずみ関係は側圧に関係なくひずみ硬化型であり、 側圧の増加に伴って飽和するので、強度増加は小さいが、乾燥側では通常の側圧範囲(ここでは5 kg/cd)に対する応力~ひずみ関係はひずみ硬化-軟化型で、空気の圧縮に伴う間隙の減少と有効 応力の増加によって強度増加が著しくなる。 (6) 従って、UU試験に基づく強度定数は、自然含水比の場合は乾燥密度の増加に伴ってcuが増加し、φuが減少するが、乾燥密度がほぼ一定で、含水比が変化する場合は、cuは含水比の変化に対してほぼ一定で、φuは自然含水比より乾燥側で大きな値を示す傾向にある。他方、自然含水比あるいはそれより乾燥側において、標準締固め仕事量程度で締固めた場合のφuは他の締固めに比較して大きな値を示しているが、これは締固め過程で十分破砕されていない泥岩塊が粒状体として挙動することに基づくと考えられる。

(7) CU試験においては, 圧密後の供試体はすべて吸水現象を示しているにもかかわらず, 乾燥 密度が小さい場合は体積圧縮が生じ, 密度が大きい場合は吸水膨張が生じ, その中間の締固め状態 では圧密圧力の増加に伴って吸水膨張から体積圧縮に変化している。また, 自然含水比より乾燥側 では, 十分破砕されていない泥岩塊が圧密圧力の増加に伴って水浸崩壊し, 体積圧縮が生ずる。

(8) 応力~ひずみ関係はひずみ硬化型を示す場合が多いが、自然含水比で高密度に締固めた場合 には圧密圧力の増加に伴ってひずみ硬化-軟化型へと変化している。また、これらの応力~ひずみ 関係へのKondnorの双曲線の適合性は良好である。

(9) 練返し正規圧密試料と締固め土の含水比~圧密圧力~強度関係を比較することにより, 締固 めた泥岩土は水浸作用を受けても, 締固めによる過圧密効果が残存していて, 過圧密状態にあるこ とが明らかにされた。そして, この過圧密効果が締固め土の間隙水圧あるいは有効応力径路に影響 を及ぼしている。

(10) 締固め過程で十分破砕されていない泥岩塊が圧密過程での吸水作用により軟弱化,細粒化す ることから,標準的な締固め仕事量による締固めでは,水浸後の有効応力の強度定数 c', ϕ' は,締 固め含水比が異なっていても,その値に大差がない。それらの値は $c' = 0.08 \sim 0.18 \text{ kg/cd}, \phi' = 28.3° \sim 29.2°であり, <math>\phi$ に注目すると,練返し正規圧密試料に対する $\phi = 26°(c' = 0)$ よりも 大きいが,自然含水比で高密度に締固めた場合の $\phi' = 32.4°$ よりは小さい。すなわち,締固め作用に よる過圧密効果は,水浸作用を受けた後のせん断特性に影響を及ぼし,そのせん断強度は水浸後の 乾燥密度に支配されるようである。従って,せん断強度を増大させるためには,水浸後も高密度が 維持できるような締固めを行えばよい。

以上のように本章では、締固め直後とそれを水浸飽和させた場合のせん断強度について調べてい るが、泥岩のれき状塊を使用して盛土工事を行う場合、のり面に近い部分や盛土浅部では乾湿作用 を繰返し受けて強度低下が生じ、のり面崩壊や鉄道での噴泥現象などの原因になるといわれている⁹。 締固めた泥岩土は、乾湿作用による乾燥収縮一吸水膨張を繰返し受けると、間隙比と含水比の増加 に伴って強度が減少することが推測される。しかも、第5章の乾湿作用による泥岩の強度変化に関 する実験結果から、乾湿作用による強度低下の限界は練返し正規圧密の状態であると類推できる。 しかしながら、このことに関しては、今後詳細な実験的研究が必要である。

参考文献

1) 新城俊也:締固めた泥岩土(島尻層)の強度特性,第13回土質工学研究発表会講演集,土質工

学会, pp. 637 ~ 640, 1978.

- Lambe, T. W. : The structure of compacted clay, Proc. of ASCE, Vol. 84, No. SM 2, Paper No. 1654, 1958.
- Seed, H. B. and Chan, C. K. : Structure and strength characteristic of compacted clays, Proc. of ASCE, Vol. 85, No. SM 5, pp. 87 ~ 128, 1959.
- 4) Kondner, R. L. : Hyperbolic stress strain response ; cohesive soils, Proc. of ASCE, Vol. 89, No. SM 1, pp. 115 ~ 143, 1963.
- Duncan, J. M. and Chang, C. Y. : Nonlinear analysis of stress and strain in soils, Proc. of ASCE, Vol. 96, No. SM 5, pp. 1629 ~ 1653, 1970.
- Seed, H. B. et al. : The strength of compacted cohesive soils, Proc. of ASCE, Research Conf. on Shear Strength of Cohesive Soils, pp. 877 ~ 964, 1960.
- Hvorslev, M. J. : Physical components of the shear strength of saturated clay, Proc. of ASCE, Research Conf. on Shear Strength of Cohesive Soils, pp. 169 ~ 273, 1960.
- Lee, K. L. and Haley, S. C. : Strength of compacted clay at high pressure, Proc. of ASCE, Vol. 94, No. SM 6, pp. 1303 ~ 1332, 1968.
- 9) 土質工学会編:日本の特殊土,土質工学会,pp. 315 ~ 355, 1974.

第9章結 論

本論文における研究は、泥質堆積岩地盤を対象とした土木構造物の設計・施工の指針を確立する ために有用な資料を提供することを目的として行われたものである。近年土木構造物の大型化、あ るいはそれらの立地条件の制約に伴い、第三紀層から洪積層にかけて堆積している半〜弱固結状態 の泥質岩地盤を対象に、トンネルの開削、構造物の基礎の設置、斜面の切取りなどに伴う力学挙動 の把握の必要性、あるいは道路、フィルダムなどの盛土材料としての利用の可否に対する関心など が高まっている。泥質岩に対する工学上の問題点は地質履歴によって付加された結合力の不安定さ にあるとし、本論文においては、泥質岩の結合力の破壊要因として外的応力レベルの大きさ、風化 作用の一つである乾湿作用、及び掘削・転圧などの人為的撹乱を取上げ、それぞれを支持力、沈下、 斜面安定及び盛土材料に関係づけ、それらの要因が作用する条件下での力学的挙動を実験的に究明 した。各章の要点を結論として要約すると、以下のとおりである。

第1章は緒論であり、本論文における研究の目的と意義、並びに泥質岩の定義とその力学挙動に及ぼす地質履歴の影響について要約し、また、本論文に関連する分野の研究の紹介を行なった。

第2章においては、本研究の実験試料である島尻層泥岩を既往の泥質岩に関する工学的分類法に 適用して、それの工学的位置づけを行うために、一般的な物理的、力学的性質を羅列して、他の泥 質岩と比較,検討を行った。すなわち,物理的性質としては,原位置の含水比と乾燥密度,土の物理 試験法に基づいて求めた比重,粒度組成,コンシステンシー,活性度など,化学的性質としては化 学組成, pH, 塩分含有量,粘土鉱物の種類,また力学的性質としては圧密特性,圧縮強度,水浸 に伴う強度変化,非排水せん断強度,変形係数,スレーキング特性などを羅列して示してある。これ らの結果から,島尻層泥岩のコンシステンシーは通常の粘土の性質とそれほど変らず,中位の塑性 を示し,また膨潤性粘土鉱物を多量に含むような特異な泥質岩を除けば,多くの地域の泥質岩の物 理的性質は類似していることが明らかになった。また、この泥岩はアルカリ性を示しているが、そ の化学組成は他の多くの泥質岩と類似している。次に、不撹乱泥岩と、それを練返して正規圧密し た試料とに対する圧密試験の比較,あるいは不撹乱泥岩と,それを同一密度に締固めた試料とに対 する圧縮試験の比較から,泥岩の結合力は強度と変形の抵抗性とに寄与していることが判明した。し かしながら、この結合力は吸水膨張、乾湿作用及び撹乱作用によって容易に喪失するものである。 水浸作用だけによる強度の減少は水浸時間の対数と直線関係にあり,水浸1年後の強度は初期強度 の67%で、完全軟弱化の状態に至るには長年月を要することが推測されたが、乾湿作用は強度低下 と化学的風化を著しく促進する要因となる。また、非圧密非排水型三軸圧縮試験によると、 供試体が飽和していれば,間隙水圧の役割を無視することができず, Terzaghi の有効応力概念が 適用できること,強度・変形特性は異方性であること,変形係数と圧縮強度の比は 100:1 の関係 にあることなどが明らかとなった。一方、泥岩に乾湿作用が繰返し作用すると、乾湿サイクルの増 加に伴って湿潤含水比が液性限界に接近するとともに、液性指数が1に近づくことを示した。そし て、これらの物理的、力学的性質に基づいて島尻層泥岩を既存の工学的分類法に適用すると、

Underwood の分類法では「active shale」に分類され、支持力、掘削、トンネル支保工、斜面安定、 のり面保護などに問題が生ずることが示唆された。また、Morgenstern らの分類法によると、強度 と耐水性の観点からは「hard clay から泥岩」にまたがる性質を示し、他方スレーキングの激しさ は低~中位にある。これより、島尻層泥岩は弱固結状態にある粘土岩とみなせる。さらに、標準貫 入試験のN値から島尻層泥岩地盤の特性について検討しているが、未風化層のN値は 70~ 180 に あること、また深度方向へのN値の変化状況から地盤を強風化層、弱風化層、未風化層に大別する ことが可能であることを示した。

第3章においては、島尻層泥岩を試料に選び、圧密圧力 60 kg / cm までの圧密非排水型三軸圧縮 試験と有効側圧 25kg / cd までの圧密排水型三軸圧縮試験を行って、弱固結状態にある泥質岩の強 度・変形特性及び強度異方性について実験的に究明した。実験に先立ち、結合力が泥質岩の強度と 変形の抵抗性に寄与しているとして,泥質岩に対するせん断応力~圧密圧力関係,及び間隙水圧~圧 密圧力関係をBjerrum の含水比~圧密圧力関係モデルに対応させて検討し、これを模式的に過圧密 効果と結合力の効果に分離したが、実験的にはこれらの分離は困難である。次に、低圧領域のみな らず高圧領域での力学挙動をも明らかにするために用意した三軸装置について、三軸室、載荷制御 装置及び測定系に対する機構,容量,精度などを説明した。また,実験方法を述べるとともに,強 度に及ぼすバックプレッシャーとメンブレンの影響を実験的に明らかにして、本研究では初期バック プレッシャ-を3kg / cd作用させることに決定した。そして,まず地盤に対して鉛直方向の供試体 について圧密圧力60kg / cdまでのCU 試験と有効側圧25kg / cdまでのD試験を行って、次のこと を明らかにした。まず、島尻層泥岩は、顕微鏡観察によると、構造的には板状粘土粒子の凝集によ って形成されているシルト径大のペッドの集合体であり、これらは結合力で拘束されていること、 また飽和状態で有効応力として作用する供試体内のサクションはバックプレッシャーの作用で消滅 することが推測された。これらの応力~ひずみ関係は、初期の弾性挙動からひずみ硬化に伴って最 大応力に達し,その後ひずみ軟化とともに残留応力状態となる,ひずみ硬化-軟化型である。この 応力~ひずみ関係に対応して、CU試験における間隙水圧は最大応力まで増加した後に減少し、 また破壊時の応力レベルが増加した場合には破壊と同時に、一時的に間隙水圧が上昇するが、これ らの挙動はD試験における破壊後の体積膨張現象,あるいは体積圧縮の持続現象と一致する挙動で ある。これを結合力の破壊に伴うシルト径大のペッドの挙動に関連させて考察し, ダイレイタンシー は最大応力付近で、しかも単一のすべり面に沿った薄いせん断領域で顕著に現れることを推測した。 また,最大応力に対する破壊包絡線は非線形となるが,残留応力状態に対する包絡線は線形となり, Mohr - Coulomb の破壊規準が適用され、その内部摩擦角の値は練返し正規圧密試料のそれにほ ぼ一致することが明らかにされた。さらに,破壊時の間隙圧係数Afは,圧密圧力5kg / cdにおける 0.15 から 60 kg / cm における 0.49 まで増大するが、それ以上の圧密圧力の作用下では、過圧密挙動 から正規圧密挙動に移行すると仮定し、有効応力比とMohr - Coulomb の破壊規準をもとに、Af の最大値は 0.53 となることを推算した。また供試体のサクションと弾性領域での間隙水圧挙動から、 この供試体の深度20mにおける静止土圧係数Kgの推定値は2.9となり、地盤内初応力は鉛直方向よ りも水平方向で著しく大きいことを示した。さらに、変形係数は圧密圧力の影響を受けて変化する が,その影響の度合はD試験よりもCU試験において著しく,変形係数と強度の比は,CU試験で

は圧密圧力とともに変化するが、D試験では圧密圧力に関係なく一定となることが判明した。なお、 以上のせん断試験に基づいて基礎の支持力の算定を行ない、載荷試験結果と比較したところ、短期破 壊荷重に対しては、浅い基礎ではせん断強度にひび割れなどの弱面の影響を考慮する必要があるが、 深い基礎では室内試験結果がそのまま適用できること、また長期安定としての極限支持力の推定に は残留応力状態に対する強度定数が適用可能であることを示唆した。

次に、水平地盤に対し種々の軸方向をもつ供試体について圧密圧力25kg/cdまでのCU試験を行って、強度・変形特性あるいは間隙水圧の挙動に及ぼす方向性の影響を調べた。その結果、供試体の軸と水平とのなす角度を β とすると、破壊ひずみは鉛直供試体で最大をとり、堆積時の粒子配向と破壊面とが一致する $\beta = 30^{\circ}$ で最小となること、ダイレイタンシーは水平供試体で著しく、 $\beta = 30^{\circ}$ でわずかであること、また非排水強度は明らかに異方性で、鉛直供試体の強度を基準にとると、 $\beta = 30^{\circ}$ と45°では10%の強度減少、水平供試体では逆に10%の強度増加が生ずることが判明した。他方、間隙水圧の発生量は鉛直供試体で最大、水平供試体で最小となり、間隙水圧の挙動が異方性を示すことを明らかにした。この間隙水圧の異方性が全応力表示の強度定数に方向性を与え、一方、有効応力表示の強度定数には異方性による影響が認められないことを示した。

以上は破壊点付近に注目し,主に強度特性について検討したものであるが,地盤の変形挙動に関 しても,異方性体としての検討と考察が必要である。

第4章においては,第3章の非排水及び排水型三軸圧縮試験結果に線形異方弾性体理論を適用し て,弱固結状態にある泥質岩に対する弾性領域での間隙水圧の挙動と変形との異方性を明らかにし た。まず,著しく過圧密された硬質粘土並びに半固結状態にある泥質岩の弾性挙動に関する研究を 紹介し,それらと本研究で対象とする泥質岩とをひずみ径路,あるいは有効応力径路の線形性に関し て比較検討したところ、半〜弱固結状態にある泥質岩の弾性変形挙動は、骨格構造の弾性変形と骨 格構造の局部的破壊によってもたらされるダイレイタンシーを伴う弾件変形とからなり、ひずみ径路 あるいは有効応力径路は両弾性変形過程でそれぞれ直線関係にあり、この直線性からの離脱点の応 力が弾性限界,すなわち降伏応力であり,しかも両径路から別々に求めた降伏応力は (g₁ - g₃)~ 関係図上で一致し、 $(\sigma_1 - \sigma_3)$ は σ'_m と非線形関係にあることが明らかにされた。この弾 σ_m 性領域における間隙水圧の挙動に注目して、鉛直供試体と水平供試体を例にとると、せん断に伴う 間隙水圧と平均応力の関係には線形関係が認められ、この関係は骨格構造の弾性挙動と、それに続 いて間隙水圧減少傾向(体積膨張)あるいは間隙水圧増加傾向(体積圧縮)で示されるダイレイタ ンシ-を伴った弾性挙動に区分され,しかもこの線形関係の傾きは供試体の向きにより著しく異な っていることが明らかにされた。そして、そのうち、骨格構造の弾性挙動に対する鉛直と水平供試 体の間隙圧係数 A_V , A_H は,直線の勾配の3分の1として求められ、また異方弾性体理論により異 方弾性パラメータで表示できることを示した。この間隙圧係数はHenkel の有効応力径路の勾配, あるいはヤング率と関係づけられ,しかも圧密圧力に無関係な一定値を示し,異方性の程度を示す パラメータとなりうる。この間隙圧係数Av, AH, 非排水試験によるヤング率,及び鉛直供試体の ひずみ径路を利用した異方弾性パラメ-タの決定法を示し,このパラメ-タを用いて予測した有効 応力径路は実験結果とよく一致することを示した。なお,島尻層泥岩に対する間隙圧係数はAv = 0.43,A_H = 0.25 であるが,その後に続くダイレイタンシーを伴う弾性挙動領域での変化量 ΔA_V,
ΔA_H は、それぞれ-0.06 $\leq \Delta A_V \leq -0.02$ 、 $-0.06 \leq \Delta A_H \leq 0.02$ の範囲にあって、わずかなな値 であることが明らかにされた。さらに、この異方弾性パラメータを排水せん断試験に適用してひず み径路を予測したところ、ひずみ径路の異方性は有効応力径路ほど顕著でないこと、側圧を一定に 保ち、軸圧だけを増加させる軸対称三軸圧縮試験から求まる弾性定数の相互関係は、鉛直あるいは水 平供試体に対して、それぞれ等方弾性体における関係と等価であることを示した。そして、それぞれ の供試体に対して赤井らによる弾塑性体理論に基づく塑性降伏関数が適用できることを示した。ま た、半無限異方弾性地盤上に円形等分布荷重が載荷した場合の載荷中央点での沈下量を例として、 異方弾性体理論に基づく厳密解、Terzaghiの一次元圧縮沈下を三次元的に修正した慣用法及び Skempton – Bjerrumの方法に対し、先に求めた異方弾性パラメータを適用し、沈下量を比較する と、慣用法と厳密解の沈下量が比較的一致することが明らかにされた。

以上は、第3章の実験結果を弾性変形の観点から考察したものである。

第5章においては, 泥質岩の結合力の破壊要因である乾湿風化に注目し, 乾湿作用における乾燥程 度と乾湿繰返しとによる物性の変化、強度減少およびせん断特性の変化について、室内実験に基づく 定性的な把握を行った。まず、第3章に示した泥質岩に対する含水比〜圧密圧力関係と、せん断強 度~圧密圧力関係の模式図に基づき、乾湿作用による含水比増加とせん断強度の低下の概念を結合 力の破壊と関連させて検討した。そして、この概念に対応させて種々の実験を行った。最初に、乾 湿作用を1サイクルとし、強度とコンシステンシーに及ぼす乾燥程度の影響を調べたところ、液性 限界は、乾燥が著しくなるほど減少すること、非排水強度は、乾燥程度が著しくなるほど減少する こと、また乾湿作用による結合力の破壊は、有効応力表示による強度定数のうち、粘着力成分でを 減少させることなどが明らかとなった。しかしながら, 乾湿1 サイクルの作用だけでは, この泥質岩 は完全に軟弱化するものではない。そこで、乾燥含水比を定めて乾湿サイクルを繰返し作用させて、 物理的性質の変化と,フォールコーンと三軸圧縮試験によってせん断強度の変化を調べた。すなわ ち、泥岩は乾湿サイクルの増加に伴って細粒化が進み、乾湿8サイクル以後では、シルト径大の団 粒分が卓越し,しかもその団粒径の分布は定常となる。一方,この細粒化に伴って液性限界は乾湿 8サイクルまでは徐々に増加するが、それ以後では乾湿サイクルの増加にもかかわらず、逆に減少 することが認められた。このことは、乾湿サイクルの増加に伴って団粒あるいは泥岩構成粒子が親 水性から疎水性へと移行することを示唆し,風化の進行とともに,液性限界が減少する特異性を示 している。しかしながら、乾湿サイクルに伴うスレーキングの激しさは拘束条件に支配されること が明らかにされ、これを強度試験用供試体についてみると、フォールコーン用モールドでは著しい 細粒化が生じ、他方三軸試験用モールドではクラックで分離されたれき状塊の細片化の程度であっ た。従って,乾湿作用を受けた供試体の非排水強度はスレーキングの激しさの程度によって2つの グル-プに区分され、それぞれに対して、非排水強度と含水比の関係が成立することが明らかにさ れた。一方,乾湿作用を受けた供試体に対するCU試験によると,れき状の泥岩塊は低拘束圧領域 では粒状体と同様な挙動を示し,応力~ひずみ関係はひずみ硬化型であるが,拘束圧が増加すると, 塊そのものがせん断され,応力~ひずみ関係はひずみ硬化-軟化型となり,最大応力に基づく破壊 包絡線は非線形となることが示された。なお,強度定数c', φ' は, 乾湿サイクルの増加とともに 減少することが明らかにされた。それらのうち, 乾湿15サイクル供試体に対する最大応力時の強度

定数は $c' = 0.05 \text{ kg} / \text{ cd}, \phi' = 39.5^\circ$ のように大きな値にあるが、15 %ひずみ応力状態(残留応力 状態に近似している)に基づく強度定数は $c' = 0, \phi' = 23.5^\circ$ の値にあり、練返して正規圧密し た試料に対する $c' = 0, \phi' = 23^\circ$ にほぼ一致している。また、原位置風化層に対する強度定数 c', ϕ' は練返し正規圧密試料に対する値よりも大きいことが明らかにされた。以上の結果に基づいて、 乾湿作用を受けて強度が減少し、それと並行して化学的風化や軟弱化が進行しても、せん断応力の 作用に伴うひずみ軟化を生じさせるだけの変位が伴わなければ、練返し正規圧密試料の状態までに は軟弱化しないことが推測された。

第6章においては、島尻層泥岩地帯における斜面安定に関して、第5章の乾湿風化作用による軟 弱化現象の観点から検討するとともに,一地すべりを事例にとり,その地すべり地内の粘土の力学 特性を明らかにして、斜面安定に関する検討を行った。最初に、粘土斜面における崩壊と地すべり の形態を紹介し、続いて我が国における地すべり対策工事上の安定解析法について述べた。そして、 これまで行われた島尻層の地質に関する調査・研究に基づいて、島尻層の地質、地盤特性及び地盤 災害について略述した。次に、島尻層泥岩を与那原層泥岩と新里層粘土に分け、まず与那原層泥岩 の斜面安定の問題点を示し、その対策に関して検討と考察を行った。すなわち、切土斜面の侵食お よび風化層での表層すべりと地すべり・崩壊が斜面安定上重要であるとし、切土斜面では乾湿作用 に伴う軟弱化に対する保護工が必要であること、泥流状崩壊は、風化層が浅く、その下の固結層と 一線を画している場合に多く発生し、斜面頭部付近への土地造成に伴う排土をさけなければならな いことを指摘し、さらに地すべり・崩壊は、斜面に堆積した崩積層で発生する場合が多いことを指 摘し,その安定解析に対しては,練返し正規圧密状態まで軟弱化したときの強度定数が適用できる 場合と大変位を与えて達成される極限の残留応力状態に対する強度定数が適用できる場合とがある ことを示した。一方,新里層粘土の物理的,力学的性質は,与那原層泥岩の性質と比較して明らか にした。未風化層のN値は,与那原層では50以上であるが,新里層粘土では20~40と軟質で塑性 的であることが明らかにされた。物理的性質は,両地盤で差がなく,また風化層と未風化層でも差 が認められないが,化学的性質は,風化層と未風化層とに差が認められることが判明した。さらに, 新里層粘土は,与那原層同様,結合力の影響を受けているが、その程度が低いことを圧密試験から明 らかにした。また,非排水強度と液性指数の関係は風化程度に応じて異なった関係にあるが.この 要因は風化によるコンシステンシーなどの物性の変化にあるのでなく、土の構造的強さの減少にあ ることが推測された。さらに,有効応力にもとづく強度定数は,風化や撹乱による軟弱化に伴って、 c'は減少するが,φ'は一定値を示し,しかもφ'は練返し正規圧密状態に対する値と一致してい ることが示された。 なお, 新里層 粘土における地すべりに対する安定解析を ϕ = 0 ー 解析法で行った が,そのときの非排水強度は風化土塊に対する非排水強度と液性指数の関係から推定できることを 示した。

第7章においては、泥質岩のれき状塊を盛土材料に選び、その締固め特性を締固め含水比、締固め仕 事量及び粒度から検討するとともに、その締固めに対し非水浸と水浸でのCBR特性を調べ、水浸 による力学性状の変化を明らかにした。実験は、締固め含水比を種々変化させた場合と、締固め含水 比を自然含水比に維持し、粒度を変化させた場合とに分けて行った。10cmモールドで締固めた場合の締 固め曲線は、自然含水比の乾燥側と湿潤側とに極大値が生ずるが、湿潤側で最大乾燥密度を示し、一方 15cmモールドで締固めた場合は、締固め仕事量の増加に伴って、最適含水比は自然含水比から乾燥 側へと移動することを示した。また、泥岩塊は破砕性で、締固め仕事量の増大に伴う乾燥密度の増 加割合が自然含水比より乾燥側と湿潤側とで異なることから、泥岩土に対する締固め機構は、乾燥 側では破砕作用に伴う密度増加であり、湿潤側では破砕作用の後に練返し作用が卓越することであ る。従って、湿潤側では締固め仕事量の増加に伴って締固め過度が生ずる。しかしながら、水浸C BRは、締固め含水比に関係なく、3層67回の締固めに対して最大となることが判明した。また、 締固め泥岩土は水浸の影響を受けて、その性状が変化することから、乾燥密度と締固め含水比の関 係図上に等膨張線と等水浸CBR線を求めて,締固めの目標は、自然含水比を維持して、乾燥密度を 増加させる締固めであることが明らかとなった。そこで、自然含水比を維持した状態で、最大径が 異なる、種々の粒度の泥岩土に対し締固めを行い、締固め仕事量が小さい場合には、最大塊径が大 きな試料ほど、乾燥密度が減少するが、一方締固め仕事量が増大した場合には、乾燥密度と最大径 の関係はれき混り土に対する乾燥密度とれき混入率の関係に類似し、最適な最大径と粒度の存在が 示唆された。従って、現象的には締固め過程で泥岩塊がれきとして挙動するが、このれき状塊は締 固め過程での破砕作用とその後の水浸作用とによって細粒土に変化することが締固め+に対する水中 ふるい分けから明らかにされた。また、非水浸CBRは3層42回あるいは5層25回で最大になるが、 水浸CBRは,非水浸CBRの場合よりも大きな締固め仕事量による締固めで大きくなり.いくら か締固め過度の状態が水浸の影響を受けない締固めであるといえよう。このことは、現場締固めで は自然含水比で薄層まき出しを行って、破砕効果のある締固め機械で転圧を行えば、水浸の影響が 少ない締固め状態となることを示唆している。

第8章においては,弱固結状態にある島尻層泥岩を締固め材料に選び,三軸圧縮試験を行って, 締固めた泥質れき状土のせん断特性とそれの水浸作用による変化を調べた。まず,締固め土の強度 を支配する要因として締固め含水比,乾燥密度(締固め仕事量)及び締固めの方法(静的締固めと 動的締固めの2法)を取り上げ,これらが締固めた泥岩土の強度・変形に及ぼす影響を,側圧一定 の非排水せん断試験結果を比較して調べた。応力~ひずみ関係は、締固め含水比と乾燥密度に影響 されて変化するが、締固めの方法には影響されないこと、強度は締固め含水比と乾燥密度の影響を 受けて変化し,締固め含水比が一定のとき,強度(対数)と乾燥密度の関係は線形関係にあること, 自然含水比より乾燥側での締固めに対する強度は締固めの方法に影響されないが、湿潤側では静的 締固めによる強度が動的締固めよりも大きくなること,また湿潤側での動的締固めの場合には締固 め仕事量の増大に伴って強度が減少し,締固め過度の現象が生ずることなどの特性が明らかにされ た。一方,水浸作用を受けた締固め泥岩土の特性としては,応力~ひずみ関係がすべてひずみ硬化 型であること、強度は、締固め含水比に関係なく、水浸飽和後の乾燥密度とともに増大し、強度 (対数)と乾燥密度の関係には直線関係が成立し,かつこの関係は零空積曲線上の強度分布を表示 していることが示された。以上の結果を含水比w,乾燥密度 au_d ,強度(対数) $\log (\sigma_1 - \sigma_3)_f$ を 軸とする座標空間に表示すると、 $w \sim \tau_d \sim \log (\sigma_1 - \sigma_3)_f$ 関係は、非水浸状態では側圧によって 変動する曲面で,水浸飽和状態では側圧に対して一定状態にある曲線で示されることが明らかとな

った。次に、締固め含水比を自然含水比付近(ここでは19%~28%)に限定して、動的に締固めた 泥岩土の非排水せん断強度に及ぼす締固め含水比と乾燥密度の影響を調べた。すなわち、応力~ひ ずみ関係は乾燥密度、締固め含水比、側圧の影響を受けて変化すること、また全応力にもとづく強 度定数cu, , ゆ,のうち, cu は, 締固め含水比に対しては変化しないが. 乾燥密度に対してはそれ の増加に伴って増大し、他方 ダルは、締固め含水比の増加と乾燥密度の増加とに対して減少する傾向 にあることが判明した。このうち、締固め過程で泥岩塊が十分破砕されない場合には、泥岩塊が粒 状体として挙動するため、 タルが増大することが推測された。さらに、これらを水浸飽和させて行 った圧密非排水せん断試験では、圧密過程における供試体はすべて吸水現象を示すにもかかわらず、 低密度の締固めでは体積圧縮、高密度の締固めでは吸水膨張が生じ、その中間の締固めでは締固め 含水比によって圧密圧力に差があるが、圧密圧力の増加に伴い、吸水膨張から体積圧縮へと変化する ことが示された。従って、この圧密過程においては、十分に破砕されていないれき状塊が水浸作用に よって軟弱化、細粒化することが推測された。そしてこれらを非排水せん断した場合、応力~ひず み関係はひずみ硬化型である場合が多く、しかもこれらの含水比~圧密圧力~強度関係を練返し正 規圧密試料のそれと比較すると,水浸作用を受けた供試体でも,その挙動は過圧密状態にあること が明らかにされた。さらに、標準的な締固め仕事量による締固めの場合、有効応力にもとづく強度 定数c', φ'は締固め含水比に関係なくほぼ同一の値を示し,そのうち,φ'に注目すると,こ の値は練返し正規圧密試料に対する $\phi' = 26°(c' = 0)$ よりも大きく,高密度の締固めに対する 値よりは小さいことが示された。これより,水浸飽和後のせん断強度は含水比のみならず,乾燥密 度の影響をも受けることが明らかにされ、せん断強度を増大させるためには、水浸作用後も高密度 が維持できるような締固め方法が勧められる。なお、これらのせん断強度は、水浸作用と圧密圧力 の作用を受けて体積圧縮あるいは吸水膨張の変形過程を経た後の状態に対するものであるから、せ ん断強度の変化のみならず、水浸作用によって生ずる変形挙動に対しても実験的研究が重要となる。

本論文の結論は以上のとおりであるが、これらは泥質堆積岩地盤を対象とした土木構造物の設計・施工の指針を確立するための有力な資料となりうるものである。しかしながら、島尻層泥岩での切土斜面を例にとると、単にのり面保護工を施すだけでよいのか、擁壁工を施す場合には軟弱化の領域と土圧をどのように定めるか、などの未解決の問題が多く、本研究の成果を具体的に個々の構造物の設計法あるいは施工法に反映させるためには、今後さらに多くの研究が必要である。本論文の成果が今後の研究の一助になれば著者の幸とするところである。

最後に本研究を遂行するにあたり終始一貫懇篤な御指導と御鞭撻を賜わった恩師,京都大学教授 赤井浩一先生,ならびに本論文の内容について御助言をいただいた京都大学教授松尾新一郎先生, 同助教授足立紀尚先生,本論文の研究を遂行する上で多くの御助力をいただいた琉球大学教授上原 方成先生,同助手小宮康明君にそれぞれ深甚な謝意を表する次第である。また,沖縄の自然災害の 研究を通じて本研究に御助力をいただいた九州大学教授藤川武信先生,同助教授高山昌照先生,実 験の便宜と御協力をいただいた琉球大学助教授宮城調勝先生,小波蔵政良氏,京都大学工学部交通 土木工学教室路盤基礎工学研究室の教職員諸氏に謝意を表するものである。さらに,日頃激励を 賜わった元琉球大学教授東郷成蔵,高田雄之両先生に謝意を表するものである。なお,この研究の 遂行にあたり,文部省科学研究費〔自然災害研究(1) (分担者 昭和48年~49年),一般研究D 昭和49年,50年,54年〕の交付を受けた。ここに記して関係各位に謝意を表する。