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Chapter 1

INTRODUCTION

1.1. General Remarks

This work presents a synthesized runoff model of surface flow
and subsurface flow for hillslope system, and on the basis of it a
powerful approach for real-time operation of reservoir systems is

proposed.

In recent past decades, with the industrialization developing
over the world, the social environments have greatly changed so that
the requirements for the supply of water resources have increased
sharply and water pollution has become quite serious. Consequently the
shortage of fresh water has become a great problem. For example, in
China, according to a preliminary estimation the total amount of water
resources will be 2700 billion cubic meters, but the water quantity
per capita is only 2700 cubic meters, which is far less than the
average of 10930 cubic meters per capita through the world. Moreover,
the distribution of water resources is uneven; water resources are
deficient in the north. In the Hai-Luan River and Liao River basins,
water supply for industrial and agricultural production is by far
insufficient and water shortage is so acute that at times people's
daily life in the cities is affected. Water deficiency can also be

felt in Beijing, Tianjing and many cities in Shanxi, Hebei and



Liaoning provinces as well as in the industrial bases. It is clear
that water deficiency in the not-so-distant future will become even
more acute and will be a major factor constraining the development of
local economy in North China.

In order to guarantee an adeqrate supply for both national
economic development and people's needs, water resources are to be
developed in a comprehensive manner through overall planning and with
good management, so that optimum results of disaster control and
consequential benefits may be achieved at the least possible cost.
This thesis will deal with the technical problem concerned. When
formulating a development plan of water resources or a management
program for existing projects, one of the most important needs is a
method to accurately estimate the runoff from hillslope system. In
this thesis the runoff processes will be explained from both physical
and hydrological points of view, and one approach for real-time

control of water resources systems will be presented.



1.2. Development of Runoff Model

Modern hydrology dates from the 1930s with the work of
Horton(1933) and Sherman(1932). Horton first outlined in full the
classical model of hillslope hydrology in terms of his infiltration
theory of runoff. Central to his analysis of runoff was the view that
the soil surface acts as a sieve capable of separating rainfall into
two basic components, surface runoff and subsurface runoff. Horton's
two assumptions that the excess of rainfall intensity over
infiltration capacity is the sole source of runoff quick enough to
produce the stream hydrograph peak and that all infiltration would
pass into groundwater and was the sole source of the baseflow part of
the hydrograph fitted very well with Sherman's unit hydrograph theory
of basin runoff.

Although the hydrological models of Horton and Sherman proved to
be so historically complementary ,they were fundamentally different in
character. Sherman employed sweeping assumptions to develop a "
black-box " approach to the prediction of storm runoff output from a
watershed as the result of storm input. Horton belonged to the
traditjonal " white-box " school of hydrology.

For making the runoff process clear, white-box models are
indispensable. In the following pages a summary of white-box hillslope
runoff models will be presented.

Figure 1.1 shows the physical setting of a hillslope feeding a
stream channel. There may be surface flow( including overland flow )
across the land surface and interflow( or subsurface flow ) in the
soil layers including saturated flow and unsaturated flow. A so-called
white-box model is a mathematical model which uses the time- and

space-dependent rainfall as inputs, and then outputs (a) the outflow
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Figure 1.1 The mechanisms of delivery of rainfall
to a stream channel from a hillslope.



hydrograph, (b) the time- and space-configurations of such internal
variables as the pressure head, water-table height, soil moisture
content, seepage-face height, depth and velocity of streamflow and
overland flow, and infiltration{ or return flow ) intensity.

What can be immediately recognized is that a mathematical runoff
model in the general form is made up of a set of three component
models, one for overland flow, one for subsurface flow and one for
channel flow. The near-surface saturated stormflow and unsaturated
stormflow are generally classified as subsurface flow. The groundwater
flow forms the baseflow of hydrograph, and has fewer contributions for
the short-time runoff than the near-surface saturated flow. Moreover,
the groundwater flow generally does not fluctuate very widely
according to rainfall intensity. For these reasons, it is usually
neglected from the short-time runoff models. The three component
mathematical models of hillslope hydrology can be summarized as
follows:

(1) Transient, saturated-unsaturated, subsurface flow in a two-
dimensional cross-section with heterogeneous, anisotropic
media; boundary conditions that allow time- and space-
dependent arrival of rainfall on the upper surface and
outflow to the stream and overlandsystem through a transient
seepage face.

(2) One-dimensional, transient, channel flow with boundary
conditions that allow time- and space-dependent arrival of
lateral inflow.

(3) One-dimensional treatment of the sheetflow representation of
transient overland flow; boundary conditions that allow time-

and space-dependent arrival of rainfall, infiltration to the



subsurface system or inflow from the subsurface system, and
outflow to the stream.

Solutions are available for each of these component systems.
Saturated flow is a classical field of geohydrology and hydrogeology.
The equation of motion of saturated flow is expressed as Darcy's law.
The main solutions were analytical methods until the 1950s. However,
in recent decades, the development of computers has made complex
problems which cannot be solved with analytical methods capable of
being solved with numerical techniques. The biggest remaining problem
is that there is seldom enough data of the hydrogeological parameters
available at field sites to provide the necessary input to the
physically-based models.

Since Darcy's law for saturated flow was extended to unsaturated
flow by Richards(1933), unsaturated flow can be treated with the same
model and same solving technique as saturated flow. But, the
infiltration of rainfall is a pending problem. Hydrologists have tried
to explicate what role the infiltration plays, and scientists of
agriculture and soil mechanics to explain the mechanism of motion of
water in the unsaturated zone. Much of this research was based on the
work of Horton and Philip. Satisfactory results have not yet been
fouﬁd.

Flow in stream channels can be analyzed with the classical
methodology of open-channel hydraulics. The standard text is
Chow(1959). Regan(1966), Strelkoff(1969), and Freeze(1972a) made great
contributions to the development of the equations of flow and
numerical techniques.

Sueishi(1955) assumed that overland flow can be treated as
sheetflow, and first made use of a form of the kinematic approximation

of the shallow water equations. Ishihara and Takasao(1959) solved



analytically the kinematic wave model of overland flow with the
boundary conditions that allow time-dependent arrival of lateral
inflow. Based on the result, they explained the primary
characteristics of the overland runoff of rainfall.

However, as shown later by Ishihara and Takasao(1963) themselves,
in the hillslope soil near land surface usually there is a high-
conductivity layer( termed the A-layer by Takasao ), where so-called
interflow exists. This interflow sometimes returns to the overland
flow system. With Ishihara and Takasao's interflow theory, it has been
proven that the interaction of overland flow and interflow has strong
influence on the runoff process of hillslope. Furthermore, Takasao,
Ikebuchi and Shiiba(1977) proposed a coupled model of overland flow
and interflow. Recently, Takasao and Shiiba(1981) have extended the
kinematic wave model to consider the effect of hillslope geometry.

In fact, recent research has led one step further. Models of each
of these components have been presented which have boundary conditions
that are compatible with the adjoining component model. In this way,
two or more of these models can be coupled even though they have not
been fully integrated. A decision has thus been forced on us by the
state of the art. We will have to be satisfied with coupled component
boundary problems rather than a single fully-integrated analysis.
Takasao et al.'s model mentioned previously is, in fact, a coupled
model of overland flow and interflow. Regrettably, unsaturated flow is
not included in the model. According to Sloan and Moore (1984)
unsaturated flow generally has powerful influence on the runoff
process of hillslope. Many of hydrogeologists have tried to couple the
saturated and unsaturated flows. Freeze(1971), Neuman(1973) and Akai,
Ohnishi and Nishizaki(1977) coupled the models of saturated and

unsaturated flows to form a synthesized subsurface model. The



treatment of the water table is satisfactory but the treatment of
seepage face is not, because the effect of overland flow is not taken
into consideration.

Smith and Woolhiser(1971a, 1971b) coupled an overland flow model
in the form of a kinematic cascade to a subsurface flow model in the
sense that they determine infiltration from the plane at any point
with a one-dimensional, vertical, saturated-unsaturated flow
calculation. The mathematical model consisted of the simultaneous
solution of the kinematic equation of overland flow and the one-
dimensional form of the subsurface flow equation. Similarly to Neuman
et al.'s model, in Smith and Woolhiser's model infiltration was
calculated on the basis of Darcy's law; the hydraulic effect of
overland flow( which was described by the kinematic wave mddel ) on
the subsurface system was completely neglected.

Ishihara and Takasao(1959), Wooding(1965a,1965b,1966), Harbaugh
and Chow(1967), Chen and Chow(1968) and Kibler and Woolhiser(1970)
have created watershed models for upstream catchment areas that couple
models of overland flow to models of channel flow. With this approach
the shallow water equations, or their kinematic approximation, are
first applied to the overland flow phase with rainfall as the lateral
inflow, and then to the channel flow phase with overland flow as the
lateral flow. In all these watershed models, coupling exists only
between the surface flow components. Subsurface flow is either ignored
or specified as a simple external function representing loss by
infiltration.

Freeze(1972b) has coupled the saturated-unsaturated subsurface
flow model with the channel flow model. In the coupled model overland

flow is not included.



For the purpose of analyzing comprehensively the hillslope
hydrological processes a completely integrated model of overland flow,
subsurface flow and channel flow is necessary. In this thesis the
saturated-unsaturated subsurface flow model will be coupled with the
overland flow model to form a synthesized hillslope model. On the
basis of the resulting model the control problem of reservoir systems

will be examined.



1.3. The System Approach to Solving Water Resources Problems

In recent decades, in the area of water resources management two
new developments are becoming increasingly more important. These are
the application of systems analysis techniques to improve the planning
and decision-making processes, and the need for interdisciplinary
teamwork during such analyses. Systems analysis has provided a new
dimension to man's analytical capabilities, and improvements in
computer technologies have significantly improved man's computational
abilities. These two development, in combinations, now enable planners
to develop new and effective management strategies for a resource like
water.

In general a system is an arbitrarily isolated combination of
elements( abstract and arbitrary subdivisions ) of the real world.
Usually the elements correspond to physical components of the real
world, as illustrated in Figure 1.2 for a river basin.In this case the
components are rivers, dams, sources of water, users of water,etc. The
mathematical representation of the system is termed the model of the
system. The systems approach represents an attempt to find answers to
questions that are posed regarding complex assemblies of physical
systems with interaction between the subsystems. Systems analysis may
be defined as an analytical study that helps the decision maker to
identify and select a preferred course of action among several
feasible alternatives. It is a logical and systematic approach wherein
assumptions, objectives, and criteria are clearly defined and
specified. It can significantly aid a decision maker to arrive at
better decisions by broadening his information base, by providing a
better understanding of the system and the interlinkages of the

various subsystems, by predicting the consequences of several

10



Sub-basin

Recreation

Hydroelectric plant

Farm pond > [ » Steam power plant

Irrigation

e

Y

Municipal

—
water works

4
uotae3TABN

Factory -
City
=
[ ad
: l
2 Sewage

treatment plant

Figure 1.2 Physical components of a river basin
that form a system.

11



alternative courses of action, or by selecting a suitable course of
action that will accomplish a prescribed result. Systems analysis has
added a totally new dimension to the science of policy-planning and
decision-making.

When we relate the concepts of systems analysis to the problems
of water resources management, there are two major areas of
application: (1) the planning and (2) the operation of water resources
systems. Planning for the unified development of a river basin
consists of the collection of a data base followed by a series of
decisions, e.g., whether and when to build each dam and canal, where
to locate new towns and industries, how to operate the reservoirs and
so forth. Planning is concerned with selecting from all possible
alternatives that particular set of actions which will best accomplish
the overall objectives of the policy planner.

Operation of a water resources system, on the other hand, is
concerned with what decisions are necessary to best accomplish the
objectives of an existing system. While the operation of an existing
water resources system may be considered disjointly from the planning
functions, the planning for expansion of existing system definitely
must encompass the hypothesized future operation of the system. In
general, operation is concerned with the optimization of an existing
system, whereas planning attempts to formulate an optimal system by
possible additions of elements to the existing system. In this work,
we only deal with the operation problem of an existing system.

Water resources systems are large-scale projects generating a
variety of influential outputs. Water supply for municipal,
industrial, or agricultural use,flood protection, energy generation,
navigation, water quality improvement and recreation are some of the

many benefits these systems offer to the societies living within their
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influence range. To fulfil these objectives, a water resources system
must successfully manage the water volumes provided by the uncertain
natural processes.This is where the element of risk originates and
often becomes the cause of costly operational failures.

As defined earlier, operation of a water resources system is
concerned with the optimization of the system. Various mathematical
optimization models of water resources systems have been suggested(see
Chapter 4). Although some of these models perform satisfactorily in
the particular applications for which they are developed, a
methodology able to handle the operational problem of water resources
systems in its full complexity is still lacking. As a result, in
practise the majority of water resources systems are operated by
heuristic rules derived by computer-aided simulation and engineering
intuition.

Optimization of uncertain dynamic systems is the subject of
optimal stochastic control theory. A stochastic control study is
generally completed in two steps:

(1) system model development: This is the phase where a model
able to adequately reproduce the system's behavior is identified. The
identification process requires intuitive understanding of the laws
governing the system dynamics and can take advantage of input-ocutput
data records to properly adjust certain model parameters. A system
model, of course, incorporates many simplifying assumptions to make
the model manageable. One must be wary that the models developed do
not become so simple that they no longer reflect the real physical
system, or so rigid and mechanical that they cannot include the social
benefits and costs.

(2) stochastic controller design: Based on the identified model

and specified performance criteria which must correctly reflect the

13



system's objectives, an optimization algorithm( controller ) is
designed to guide the system in successful operation.

This study's developments will proceed along these lines.

14



1.4 Framework and Outline

This thesis contains two parts: development of hillslope runoff
model and real-time operational management of multireservoir systems
in their general form. The organization is indicated by the following
outline.

In Chapter 2 a synthesized hillslope runoff model will be
developed and applied to hillslope systems. The mathematical model
consists of the simultaneous solution of the equation of two-
dimensional saturated-unsaturated subsurface flow and the sheetflow
equation of overland flow. The intention is to take into consideration
the hydraulic interaction of overland flow with subsurafce flow in a
runoff model.The mathematical model is solved by the Galerkin Finite
Element Method. This chapter also contains simulation analyses of
influence of the various hydrological parameters on runoff
characteristics and hillslope hydrologic processes.

In Chapter 3, based on the comprehensive understanding of
hillslope runoff processes obtained in Chapter 2, the synthesized
runoff nodel is lumped to form a lumped parameter runoff model for
practical purposes.

Chapter 4 discusses the real-time control problem of
miltireservoir systems. The system model will first be developed in
its general form. From the system model, the mathematically treatable
operation problem will be derived and then the development of a
suitable control algorithm will follow.

Chapter 5 is a verification and test of the control method's
reliability, computational efficiency, and potential in real-time

decision making.
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Chapter 6 concludes the study and identifies further research

directions.
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Chapter 2

A SYNTHESIZED RUNOFF MODEL OF

SURFACE FLOW AND SUBSURFACE FLOW

2.1. Mathematical Model

2.1.1. Region of Flow

The two-dimensional vertical cross-section ABCDEFGHA shown in
Figure 2.1 is chosen as the region of flow. We will assume this
section to be in a plane parallel to the delivery direction of water
toward a stream. The stream bounds the section at ABC and flows
roughly perpendicular to it. The region of flow is bounded along AH by
the table of overland flow, and along HG by the land surface. The
basal boundary is a geological one separating the permeable near-
surface soils from the less-permeable underlying soils or rocks. In
some cases this boundary may occur where the developed A-layer of soil
profile blends into the parent material; in other cases it may
separate unconsolidated geological deposits from bedrock. If the
permeability contrast across boundary is large enough( say 2 - 3
orders of magnitude or more ), we are justified in taking the boundary
as impermeable and disregarding the very small contributions to the
flow system that occur below it. The right-hand boundary GF is in the
plane separating our region of flow from the adjacent hillslope that

feeds the adjacent tributary stream. The configuration of the flow
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system decrees that there is no flow across this plane and in our two-
dimensional section it becomes an imaginary impermeable boundary.

The region of flow consists of three sub-regions: region of
overland flow ABHA, region of saturated subsurface flow BCDEHB, and
region of unsaturated subsurface flow HEFGH. The boundaries may be
highly irregular, and the region may harbour a complex heterogeneous
and anisotropic configuration of soil layers and geological

formations.
2.1.2. Equation of Saturated-Unsaturated Subsurface Flow

The equation of saturated-unsaturated subsurface flow is
developed on the basis of the equation of continuity for transient
flow through a saturatd-unsaturated porous medium, and is put into its

usual form with the aid of Darcy's law.
2.1.2.1 Pressure Head

In the field of soil physics the energy is usually used as state
variable. When the fluid is assumed to be homogeneous, a potential
function ¢ may be introduced such that:

- p 1 1.2 :
¢ = gz + fpo p(p) dp + 2v (2.1)

where g is gravitational acceleration, Z elevation above some

reference datum, p fluid pressure, Pg reference pressure. If we
consider the reference pressure Py to be zero, then fluid pressure p

is the pressure above atmospheric. P is fluid density and a function

of fluid pressure p, v is fluid velocity. Generally the kinetic energy
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of the fluid through a porous medium is assumed to be too small to be
considered by virtue of the low velocities encountered in subsurface
flow. Between the fluid pressure p and pressure head h the following
relation holds true:

dp = go(p)dh (2.2)

Combination of (2.1) and (2.2) yields
h
b =g2 + fogdh = g(Z + h) (2.3)

The hydraulic head H is defined as
H=%/g=2+h (2.4)

In the case of saturated-unsaturated flow, the pressure head h is
generally selected as a state variable. The soil water in the
saturated zone is at a pressure greater than atmospheric, so its
pressure head is positive. The soil water in the unsaturated zone is
at a pressure lower than atmospheric, so its pressure head is
negative( a subpressure commonly known as tension or suction ). The
pressure head at a free-water surface is zero, thus the pressure head

is continuous over the entire region of subsurface flow.
2.1.2.2 Continuity Equation for Saturated-Unsaturated Flow

The equation of continuity is a statement of the conservation of
mass during fluid flow through an elemental volume of porous media. It
states that the net rate of fluid mass flow into any elemental control
volume within the porous media must equal the time rate of change of
fluid mass storage within the element. Referring to the elemental
volume shown in Figure 2.2, the equation of continuity can be written

as follows(Hillel,1971):

Selov) + atovy) + Btov)) = - S(ow) (2.5)
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For the two-dimensional flow problem to be considered in this study,

Eq.(2.5) becomes:
3 9
Sev) + 5-(ov,) = - 2o(pw) (2.6)

where p: density of water[M/LB]
v=(vx,vy,vz): velocity of fluid flow(L/T}

w: moisture content of soilldecimal fraction)
X,y,2: coordinate directions[L]

t: time[T)

2.1.2.3 Equation of Motion for Saturatd-Unsaturated Flow
For saturated flow, the velocity is given by a simplified form of

the momentum balance equation known as Darcy's law

9H
Vx x
{v } = _K{BH} = —K gradH (2.7)
2 ok
oz
where K: hydraulic conductivity of soil[L/T]

H: hydraulic head defined by Eq.(2.4)[L]
grad: gradient operator
In this case K is constant in space and time.
For saturated flow in an anisotropic porous medium, Darcy's law

takes the following form(see Appendix A):

oH
e T T T R g (2.8)
v T 'k kMo T T E :
z ZX 22 oo
02
where K: hydraulic conductivity tensor
K =K cos?a + K_sina
XX z n
_z . R = 2
Kzz = KCSIH o + Kncos a
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C,—n:hydraulic conductivities in the principal
directions[L/T]

a: angle of the principal directions relative to the
coordinate axes

For saturated flow in a heterogeneous and anisotropic medium,

Kij( i,j = x,z ) becomes a function of space due to the spatial

heterogeneity, that is, Kij=Kij(F)=Kij(x,z), where F denotes a

specific geologic formation or soil type.

Darcy's law, though originally conceived for saturated flow only,
was extended by Richards(1933) to unsaturated flow with the provision
that the conductivity is a function of the pressure head h( see Figure
2.3 ). Since the pressure head changes with time, k is also a function
of time. For unsaturated flow in a heterogeneous, anisotropic medium,
Darcy's law can then be written as

v

{vx} = -K(x,2,h) gradH (2.9)

2z

Inserting Eq.(2.9) into Eq.(2.6) yields

2 2
3 BH \ _ . oH
2oL ogr PRy - a) =M B (2.10)
i=1j=1 i
where (x1,x2) = (x,z)
(K 1K 00Kp1Kpa) = (KoK, oK, 0K L)

M : fluid mass capacity[M/LA]
The fluid mass capacity is defined as follows
-4 4
M, = gp(Pw) =g (enS ) (2.11)

where n: porosity of soil[decimal fraction]
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Sr=w/n: saturation[decimal fraction]

The right-hand side of Eq.(2.11) can be expanded to produce three

terms

_ &Sr, dn, _dp
Mc = Png— + pSrdh + nsrdh (2.12)

The three terms in Eq.(2.12) have very specific and important
meanings. They refer respectively to changes in the mass storage
within the elemental volume due to (1) changes in the degree of
saturation, (2) changes in the porosity, and (3) changes in the fluid
density. The first of these effects is limited to the unsaturated
zone, and the second to the saturated zone. The changes in the
porosity are related to the compressibility of the porous medium, and
the changes in the fluid density to the compressibility of the fluid.
If water and soil can be considered to be elastic materials. The

compressibilities of water and soil can be expressed approximately as

follows:
dn _
ap = Peo (2.13)
do _ R
anh = P &8 - (2.14)
where a: compressibility of soil

B: compressibility of water
On the other hand, the moisture content w is a characteristic
function of the pressure head. Soil physicists have denoted the slope
of this curve, which is also a function of pressure head, as the
specific moisture capacity:

¢ = d(nSr)/dh (2.15)

For a heterogeneous medium, ¢ = C(F,h).
Inserting Egs.(2.12), (2.13), (2.14), and (2.15) into Eq.(2.10)

yields
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2 2
3 oH 3p
I Zlpzs—(K, . 5—) + =— }—p(c+ss)
i=1j=1 3x ij axj ax. ij Bx
(2.16)
where Ssdenotes specific storage and is defined as
S, = pg(a + nB) (2.17)

The second term in the left-hand side of Eq.(2.16) is far smaller
than the first term.Thus, it is usually neglected. This approximation
reduces Eq.(2.16) to

i§1j§1 gx (K 5 j(h +x,)} = (C+ s ) g% (2.18)

This is the final form of the governing equation for saturated-

unsaturated subsurface flow.

2.1.2.4 Soil Parameters

In the unsaturated domain, the hydraulic conductivity K and
moisture content are both functions of the pressure head h for any
gsoil type F. The functional relationships are hysteretic in that the
curves differ depending on whether the soil is wetting or drying. To
illustrate, Figure 2.3 shows the characteristic curves for a
naturally-occurring soil known as Del Monte sand(Liakopoulos,1965).
The scanning curves between the main wetting and drying curves provide
the necessary data for cases where the soil changes from wetting to
drying or vece versa at some intermediate condition of saturation.

The specific moisture capacity C that appears in Eq.(2.18) is

simply the slope of the curve w = w(h). For saturated flow(h > 0), the

soil parameters are constant, and K = Ks(saturated hydraulic

conductivity), w = n, and C =
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As pointed out by Freeze(1971), while hysteresis can be important
in some applications, it seems likely that the uncertainties as to the
exact form of the basic curves for field soils will more than outweigh
the secondary influences of hysteresis in hillslope hydrology
simulations. It is therefore common to utilize single K(h) and w(h)
curves to represent the unsaturated hydrologic properties of a soil.

The K(h) and w(h) curves are strongly dependent on soil texture.
Figure 2.4 shows curves for three hypothetical soil types(Freeze,
1971): (a) a uniform sand, (b) a silty sand, and (c) a silty clay. The
uniform sand shows high saturated hydraulic conductivity, a low
porosity, a high capacity over a narrow range of pressure heads, and
low moisture content at high tension needs. Such a soil would show a
sharp gradient in moisture content and permeability across the water
table. As a soil becomes less uniform and less permeable( curves b and
¢ ), the porosity increases, and the specific storage capacity becomes
more uniform. Moisture contents and permeabilities would tend to show
more gradual changes in the viecinity of the water table in such soils.

The ha value shown in Figure 2.5 represents the air-entry
pressure head. Over the range 0 v ha’ conditions remain saturated even

though the pressure heads are less than atmospheric. This gives rise
to the tension-saturated zone above the water table, better known as
the capillary fringe.

The characteristic curves can be determined in the laboratory
using techniques that are well developed in the soil physics field.
Data on naturally-occurring soils abound in the soil physics
literature. But the reliability of the data comes in to question.

Clearly, the greater are the changes in hydraulic conductivity

(K) and moisture content (w) due to the changes in pressure head of
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unsaturated zone, the stronger is the non-linearity of the governing
equation (2.18). Sometimes its solution may be very difficult. In
these cases it is common for one to rewrite the pressure head (h)
based Eq.(2.18) into the moisture content (w) based form. The specific
storage is generally considered to be constant.

Neuman(1973) assumed that the hydraulic conductivity can be

approximately expressed asg

K = Kr.KS (2.19)

where K° is the saturated hydraulic conductivity tensor and is only a

function of geological formations (F). K. denotes relative hydraulic
conductivity and is a monotone function of moisture content (w); Kr =

1 in the saturated zone, Kr £ 1 in the unsaturated zone.

2.1.2.5 Initial Conditions

The initial conditions for the governing equation (2.18) are the
distributions of pressure head over the region of subsurface flow and
can be stated as

h(xpsx,0 )| ) = hy(x;,x,) (2.20)
where ho(x1,x2) is a prescribed function and will not be given

arbitrarily. There are two sets of initial conditions that are
hydrologically meaningful and mathematically treatable: (1) static
conditions, and (2) steady state flow. The first one can be considered
a special case of the second one.

Under static initial conditions, it is assumed that there is no

flow through the system. The hydraulic head H(x1,x 0) is constant for

2’
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all (x1,x2), and the water table{ h = 0 ) is horizontal and at an

elevation level with the stream surface. Above the water table, there
will be an equilibrium configuration of pressure heads and moisture
content.

For steady state flow, the time-dependent term is removed from
the right-hand side of Eq.(2.18); the steady state equation of flow

becomes

Q

1 9%

it~
MmN
Iw

) =
I {Kij 5 (h + x,)} =0 (2.21)
i=1j J
The initial flow regime is determined by solving this reduced flow

equation for h(x1,x2), given K(F,h) for each soil type and a set of

steady state boundary conditions around the region of flow.

2.1.2.6 Boundary Conditions

The boundary conditions can be divided into three types: (1)
Dirichlet type( or first-type ), (2) Neumann type( or second-type ),
and (3) mixed type( or third-type ). Dirichlet boundary conditions are
the value of function h, Neumann boundary conditions the normal
derivative of h, and the mixed boundary conditions the combination of
the function and the normal derivative on the region of definition.
The mixed boundary conditions do not commonly appear in subsurface

flow problems.

(1) Neumann Boundary Conditions
Referring to Figure 2.1, along the basal impermeable boundary

CDEF and the imaginary vertical impermeable boundary FG

%;(h v x 0 (2.22)

2) (x4,%,)ECDEFG =
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where n is the outward unit normal direction of the boundaries.
On the land surface BHG

2 2 3
L LK ———(h+x2)cos(n,xi)

i=1j=1 13 3%; (x; %, )EBHG = Qxyoxp,t)

(2.23)

where Q(x1,x2,t) is the prescribed flux distribution along the

boundary BHG. On the boundary HG we allow a time- and space-dependent

rainfall({ or evaporation )} rate R(x1,x2,t)( with dimensions [L/T] ),

where R positive is a rainfall rate and R negative is an evaporation
rate. If we restrict ourselves to rainfall rate less than the
saturated hydraulic conductivity of the surface soils, then ponding
will not occur on the surface where h < 0, and there is no
possibility of overland flow. Under these circumstances, all
precipitation R becomes infiltration. This fact can be stated as

Q(x1,x2,t) = R(x1,x2,t)cose , h<o0 (2.24)

(x1,x2)€HG

where 8 is the angle of land surface from the horizontal level and is

a function of (x1,x2).

Along the saturated land surface BH

Q(x1,x2,t) (x1,x2)€BH = I(x1,x2,t)cose ,hzo0 (2.25)

where I positive is an infiltration rate and I negative is a seepage
rate( or return flow flux ), I will be treated as another independent
variable in addition to the pressure head h. I and h are the solution
of simultaneous equations consisting of the subsurface flow equation
(2.18) subject to the initial and boundary conditions and the overland

flow equation to be derived in the next section.

(2) Dirichlet Boundary Conditions
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Along the boundary BC, the hydraulic heads are specified
h(x1,x2,t) (x1,x2)€BC = HD(x1,x2,t),- x, = hD(x1,x2,t)

(2.26)

where HD(x1,x2,t) is a prescribed function.
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2.1.3 Equation of Overland Flow

Overland flow is assumed to be one-dimensional flow in the S-
direction(Figure 2.5) parallel to the X-Z plane of the subsurface
cross-section in Figure 2.1. We will also make use of the sheetflow
representation of overland flow and form of shallow water equations.
The governing equations are derived on the basis of an equation of
continuity and the Navier-Stokes equations, and simplified by using

the kinematic approximation and the Manning equation.
2.1.3.1 Equation of Continuity

Referring to Figure 2.5, if the fluid is assumed to be
homogeneous, incompressible Newtonian fluid, the equation of
continuity can be written as

oU | oW _
= + = = 0 (2.27)

where S and T are the tangent direction and the normal direction of
the land surface, respectively, and U and W are the velocity
components in S and T directions, respectively. The kinematic boundary
conditions at the free-water surface and at the land surface,

respectively, can be expressed as follows:

dh oh

5T T )IT=hs = R(x1,x2,t)cosﬁ (2.28)

-W = I(x1,x2,t)cose (2.29)

|1=0
where hS denotes depth of overland flow in the T-direction and is a

function of S. Eq.(2.27) is integrated with respect to T from O to hS

using the boundary conditions Egs.(2.28) and (2.29) and evaluating
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Figure 2.5 The coordinate system for
overland flow.
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each term by the Leibnitz rule of differentiation under the integral
sign, to yield

3 /n ahs

ﬁ(Uhs) + 3T - (R - I)cos6 (2.30)
where T is average velocity of overland flow in T-direction, and

defined as

h
IOS U dT (2.31)

==
w

2.1.3.2 Equation of Motion

Only S-direction component of the Navier-Stokes equation is
necessary due to the assumption that overland flow is one-dimensional

flow along the land surface:

B, AU AU 13p
5t Uas + waT = gsinb - 5 3T (2.32)

where p is the density of water, g gravitational acceleration, and p
pressure. The kinematic boundary conditions at the free-water surface
and at the land surface, respectively, are given by Eq.(2.28) and
Eq.(2.29). The dynamic condition at the free-water surface, neglecting

the insignificant surface tension, can be written as

p(S.T.t)|T=h =0 (2.33)
S

The dynamic condition at the land surface is expressed as

where Py is the pressure along the land surface, which depends on the
0

flow conditions. Because a simple relation between the fluid velocity

and the changes in pressure has not yet been found, the treatment of
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Py becomes a problem, In order to avoid this problem, Shiiba(1983)
0

has assumed that the velocity of overland flow can be expressed as a
summation of the velocity of subsurface flow at the land surface and
the velocity of overland flow in the case where there is no
infiltration or seepage. We shall also make use of this approximation
to derive the average velocity of overland flow in the S-direction.
Following the above assumption, even though the continuity

equation (2.30) will be used, the pressure at the land surface Pp
0

depends only on the velocity of overland flow in the case where there
is no infiltration or seepage. Under this assumption, we integrate

Eq.(2.32) with respect to T from O to h . Using the Leibnitz rule of

differentiation under the integral sign and the corresponding boundary

conditions at the free-water and land surfaces yields the following

equation:
3 a ahs s
R(Ulhs) + H(U'hs) - RVcosB = ghssine - gh zgcosd - 5
(2.35)

where V is the mean terminal velocity of rainfall which is assumed

vertical, TS boundary shear in S-direction. Note that U' represents

the average velocity of overland flow in the case where there is no
infiltration or seepage.

The mathematical treatment of Eq.(2.35) is very difficult, but
many of the problems can be removed if we make use of a simplified
analysis based on the kinematic flow model. Kinematic flow occurs on a
plane whenever a balance between gravitational and frictional forces
is achieved. Under such circumstances, the left-hand side of Eq.(2.35)

is too small to be neglected and the equation of motion reduces to
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T oh

85 _ ; _h -3
o h_sin hsas cosh (2.36)

Woolhiser and Liggett(1967) have given the conditions under which the
kinematic approximation is valid, and shown that the kinematic
approximation is best for a rough, steep slope with low rates of
lateral inflow. This approximation is valid on almost all overland

flow planes.

The boundary shear TS can be defined by a depth-velocity

relationship such as the empirical Manning equation. For sheetflow,

the Manning equation can be written as:
T = Dgnzh-1/3|U'|U' (2.37)
5 0's
in which n, is a resistance parameter known as Manning's fraction

factor(or roughness) and a dimensionless number. The relation (2.37)
was originally proposed for channel flow, but Takasao and
Gishimoto(1961) have shown that it is also valid for overland flow.
The Manning equation is now widely used for overland flow analyses,

though n, varies widely with the land surface conditions. Many workers
have noted that ng is not a true constant but is a function of the
depth of flow. In this analysis, however, ng is taken as constant for

all flow depths and at all times for any point on the hillslope. The

value of n, is allowed to vary along the length of the hillslope.

Inserting Eq.(2.37) into Eq.(2.36) yields

v = v 1sinB ="5h_ /35 cosb| h'?/3 (2.38)
ng ] s

where o = 1 if (sin® - BhO/BS cosB) 2 0, a = -1 if (sind® - aho/BS

cos@) < 0. Then following the Shiiba's assumption, the avérage
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velocity of overland flow can be expressed as( for convenience' sake,

U is written as U below )

=& : 2/3 :
U= ng v [sinb - 8hs7BS cosB] h + Vg (2.39)

where Vg is the velocity of subsurface flow on the land surface. Based

on Darcy's law it can be expressed as ( Appendix A ):

)} oh
Vg = Eg3s * &t * &0 (2.40)
where
g = —l[K 00326 + 2K ,_.sinfcosO + K sin26]
s n 1 12 22
gn = l[(K - K..)sinBcosb + K (00520 - sin29)]
T n 22 " 12
1 5
gy = n[K12cosﬂ + K2231n6]
K12 = Ky

2.1.3.3 Boundary Conditions and Initial Conditions for Overland Flow

In order to relate overland flow with subsurface flow, we re-
write the depth-based equations (2.30) and (2.39) into the pressure-

based form. The relation between the flow depth hS and pressure head h
can be expressed as
2
h = h, cos™0 (2.41)

Substitutions of this equation into Egs.(2.30) and (2.39) reduce
the equation of continuity and the equation of motion, respectively,

to

%g(Uh/cosze) + g%/coszﬂ = (R - I)cosb (2.42)
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U= F(%g)hz/B s (2.43)

where

oh,

F(3s

= & /15178 BR735(175030)T (cos8)™4/3)
0

Now we can write the initial and boundary conditions for overland

flow as follows:

Refferring to Figure 2.2, at the outlet of overland flow

B(5,8) ot point B = BplXqs%pst) (%, +%,)=(0,D) (2.44)
where hD(x1,x2,t) is defined by Eq.(2.26).
At the seepage point H, we have
h(s,t)|S=O =0 (2.45)
The initial conditions can be stated as
h(S,) | g = B(xyaxy) (x,,%,)€BH (2.46)

2.1.3.4 Linearization of the Equations of Overland Flow

Since Eqs.(2.42) and (2.43) are strongly non-linear with respect
to h and %% s their numerical treatments are very difficult and

sometimes the solution may diverge. For this reason we shall make use

of their quasi-linearized forms for analyses.

0
Uh can be considered a function of h and 5% . If we consider a

nominal function h = h(S) for h, Uh can be approximated as:

_ 3(Un) —y . 9(Un) 3h  dh
Uh = Un|_ + S| * (hh) + @ - oo
35
= [ A1(3)38 + BN (S)h + C(S) ] + gohin (2.47)
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- f(')|h=ﬁ,ah/as=m‘1/as

and

AT(S) = ‘5/3F-< B

' - h\-2/3 |
B'(S8) = ( )h SBS g,

cr(s) = 285/%p(3h) | §5/3p 20)2 _ 2R

=3 35’35 ~ 8shas

When F( ) 0, F'( ) becomes infinite. In this case, a enough large

number will be chosen by considering the admissible error to

approximate it. Then we can put the equation of overland flow into the

following final forms

d_(,0h oh, 2 oh, 2, _
as(AaS + Bh +C +gThaT/cos 8) + at/cos 8 = (R - I)cos®
(2.48)
2
where A = A'(S)/cos™ 6

2

B = B'(S)/cos”6
2

C = C'(S)/cos"B
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2.2 Solution of the Mathematical Model as a Simultaneous System

In this section we shall solve the hillslope hydrologic model
described in the preceding section by the Galerkin Finite Element
Method. The steady state flow problem will be first considered to

examine the possibility of approximating the land surface curve by a
series of straight-line elements, then the transient flow problem is

to be solved.

2.2.1 Galerkin Finite Element Method

2.2.1.1 Finite Element Method

The finite element method is a numerical method for solving
differential equations by means of " piecewise approximation ". As
distinct from the finite difference method, which regards the solution
region as an array of grid points, the finite element method envisions
the region as being made up of many small interconnected subregions
called " finite elements ". Such elements, which generally take simple
shapes( e.g. triangular, quadrilateral, and rectangular ), are then
assembled in various ways to represent a solution domain of arbitrary
geometry.

The finite element analysis of a physical problem can be
described as follows:

(1) The physical system is subdivided into a series of finite
elements that are connected at a discrete number of nodal points, this
process is often called " discretization ". Each element is identified
by its element number and the lines connecting the nodal points

situated on the element boundary. These nodal points serve the purpose
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of locating the unknown function, this is, they are the points within
the problem domain at which the values of the unknown function are
computed. Furthermore, the unknown function within each element is
defined in terms of the nodal values by basis or interpolation
functions. The unknown function is defined throughout the problem
domain in a piecewise fashion over the individual elements.

(2) A matrix expression is developed to relate the nodal
variables of each element. The resulting matrix is commonly referred
to as an " element matrix ". For a discrete problem, the element
matrix relation can often be established via direct physical
reasoning. For a continuous problem, the element matrix expression
must be obtained via a more general mathematical formulation that
normally makes use of either a variational or weighted residual
method.

(3) The element matrices are combined or assembled to form a set
of algebraic equations that describe the entire global system. The
coefficient matrix of the final set of equations is called the "
global matrix ". The assembly procedure is performed in such a way
that certain compatibility conditions are satisfied at each node
shared by different elements.

(4) Prescribed boundary conditions are incorporated into the
assembled or global matrix equation.

(5) The resulting set of simultaneous algebraic equations is
solved. Here, many different solution algorithms can be employed.
Among the widely used algorithms are the Gauss diminution and Choleski
decomposition algorithms that take into account the banded and
symmetric feature of the coefficient matrix.

The fifth step is the final step if we only want to obtain the

nodal values of the unknown function. Additional computation must be
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made if other quantities involving derivatives of the function are to

be derived from the nodal values.

2.2.1.2 Galerkin's Method

Among the widely used methods for deriving the element matrix
equation are the variational method and the weighted residual method.
The Galerkin method is a special case of the weighted residual method.
The Galerkin method is combined with the finite element technique so
frequently that the two have become practically synonymous.

The philosophy behind a variational principle is that a physical
quantity, such as the rate of energy dissipation, may be minimized
over the problem domain. This rate can be expressed in terms of the
potential( head ) throughout the domain. If the potential is expressed
in terms of its nodal values, the variational principle leads to
algebraic equations. Although the variational method provides a
convenient approach for deriving the element matrix equation, it is
not the only approach available. Frequently we encounter practical
problems for which the classical functionals cannot be derived or have
not been found( e.g. for non-linear problem ). In other words, the
variational principle does not exist. For these cases we have to
employ a more general approach for formulating the element matrix
equations. The weighted residual method is one such approach and has
been widely used.

A weighted residual principle is expressed directly in terms of
the governing partial differential equation without need to resort to
a physical quantity. The residual at each point in the problem domain
is a measure of the degree to which the head does not satisfy the

governing equation. If a particular weighted average of the residual
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is forced to vanish, the nodal heads are obtained as the solution of a
system of algebraic equations.

Consider a continuum problem governed by the differential
equation

L(h)-f =0 (2.49)
in the region D enclosed by }, where operator L acts on the unknown
function h to generate the known function f. To obtain an approximate
solution, the method is applied in three steps. the first step is to

approximate the unknown function h by a trial function of the form

K (2.50)

=
]
N M=
=4
h=a

where ¢K are linearly independent basis functions( also known as

coordinate functions and bases ) defined over the entire solution

domain, and aK the unknown parameters to be determined subsequently.

It is a common practice to select the N basis functions in such a way
that all essential{or Dirichlet type) boundary conditions are

satisfied.
Because the trial function h is only an approximation, it is not

likely to satisfy Eq.(2.49) exactly. Substitution of h in Eq.(2.49)

thus results in an error or residual:

e=Lh) -f#£0 (2.51)
The method of weighted residuals seeks to determine the unknowns

GK in such a way that the error is minimal in some specified sense.

This is accomplished by forming a weighted integral of € over the
entire solution domain and then setting this integral( weighted

residual ) to zero. The second step of the procedure thus consists of
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selecting N linearly independent " weighting " functions Wn and

requiring that

ID wne dD=0 , n=1,2,**,N (2.?2)
Once we specify the functional form of the weighting functions, we can

employ Eq.(2.50) to represent h and combine this information with
Eq.(2.52) to provide a set of simulteneous equations in the N unknowns

GK, K=1,2,***,N. The final step is to solve these equations for GK and

hence obtain an approximate representation of the unknown function h
via the use of Eq.(2.50). Various classical weighted residual methods
can be generated depending on the choice of the weighted functions.

The Galerkin method is formulated by selecting the basis function ¢K

as the weighting functions. Thus the weighted residual equations

become

ID ¢€dD =0 , n=1,2,°,N (2.53)

At this stage, the integral obtained via the Galerkin criterion
contains higher-order differentials than the variational functional.
This is undesirable because a higher continuity requirement would have
to be imposed on the element basis functions( the higher the order of
continuity, the narrower our choice of functions becomes ).
Fortunately, in most cases, we can overcome this difficulty by
applying Green's theorem( integration by parts ) to the higher-order
terms in the integral expression of Eq.(2.53). The order of the
integrand is thereby reduced, and this enables us to use interpolating

functions with a lower-order inter-element continuity requirement.

2.2.2 Solution of Steady State Flow Problem
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In this section, we solve the steady state flow problem. In order
to examine the possibility of approximating the land surface curve by
a series of straight-line elements, two cases will be used for
comparison: the case where all elements are linear triangular
elements, and the case where the internal elements( with not more than
one node on land surface ) are linear triangular elements and all the
other elements( surface elements ) are curved-sided triangular

elements.
2.2.2.1 Finite Element Mesh

The first step of the finite element procedure is to divide the
solution domain into a series of finite elements. there are many
applicable elements, and it is apparent that the type of element has a
great influence upon the degree of accuracy of the solution and the
cost of element matrix computation. A question then arises as to which
type of element is most appropriate for a particular problem.
Unfortunately, there is ﬁo clear-cut answer to this question. The
optimal element varies generally from problem to problem. The
selection of particular elements is very much dependent on the
experience and judgment of the analyst. For a two-dimentional problem
the most widely used element is a linear triangular element, but it
cannot be used directly for our problem described in the preceding
section.

The equation of overland flow, Eq.(2.48), contains the partial
differentiation with respect to the tangential direction of land
surface, 9/9S. Because the S~direction is an axis of the curvilinear
coordinate system on land surface, its derivative must be continuous.

As shown in Figure 2.6, if the linear triangular elements were used,
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Figure 2.6 The surface curved-sided element
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the continuity requirement could not be satisfied. For example, at the

point A in Figure 2.6, 3/3S o=1i and 3/23S o= would be the

differentiations with respect to different directions.

For this reason, it is necessary to approximate land surface by a
smooth curve at least with C1-continuity. The simplest curve which can

satisfy the C1—continuity requirement is a quadratic curve. Thus we
can use linear triangular elements for internal elements and curved-
sided triangular elements with the same quadratic-curved side as the
land surface curve for surface elements.

However, it is apparent that the application of two different
types of elements to a solution domain must result in complication of
the problem and the requirement of more input data and more
computation cost. Therefore, we shall examine the possibility of using
the simpler linear triangular elements for surface elements, by
considering the fact that if the error between the correct solution
and the numerical solution is less than the allowed error for a
practical purpose, the numerical solution will be referred to as the
approximate solution of the problem. In this section we shall solve
the steady state flow problem by use of the two different type

elements for surface elements respectively and compare the solutions.
2.2.2.2 Basis Functions

Requirements for Basis Functions

The procedures for formulating the element equations via both the
variational and weighted residual approaches rely on the assumption
that the integral over the entire solution region is equal to the

summation of the integrals performed over element subregions. To
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ensure that this assumption is valid and that our approximate solution
converges to the correct solution as we refine the element mesh, the
interpolating( basis or shape ) functions must satisfy certain
requirements. These requirements are as follows:

(1) At element interfaces, the unknown function h and any of its
derivatives up to one order less than the highest derivative appearing
in the functional or the weighted residual integral must be
continuous. This is called the continuity requirement or the
compatibility requirement. Thus, suppose the integrand in the element
equation contains up to (r+1)th derivatives of function h. Then at the

element interfaces we must have continuity in the rth derivative of h.
This is called the Cr-continuity requirement.

(2) The trial function h and its derivatives must be able to
represent any constant values of h and its derivatives appearing in
the functional or the weighted residual integral as, in the limit, the
element size is reduced to zero. Thus, suppose the integrand in the
element equation contains . up to (r+1)th derivatives of function h,
then at any of the internal points of the element we must have
continuity in the (r+1)th derivative of h. This is known as the

completeness requirement.

It is not difficult to derive a C1—continuity basis function for
linear elements, but the difficulty increases sharply as the order of
continuity becomes higher. Fortunately, neither second-order nor
higher than second-order derivatives will appear in our problem if we
apply Green's theorem to reduce the order of the integrand. Thus, the
linear basis functions are appropriate for our problem. In the
following we shall derive the linear basis functions for the linear

and curved-sided triangular elements, respectively.
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Linear Basis Function of the Linear Triangular Element

Consider the typical triangular element e with the nodes numbered
in the counterclockwise direction, as shown in Figure 2.7. Following
the preceding discussion, the trial function can be represented within

this element by the linear polynomial
e
h™{x,z) = @, +oonx + a,z (2.54)
where a1, a2, and a3 are constants that need to be determined( note

that the symbol e is being used to designate element number). These

constants can be determined by setting up three equations which

require that the nodal values hz are obtained at the nodal coordinates

(xn,zn):
h? 1 X, 24 a,
{ h; b=11 X, 2,1 (o} (2.55)
h; 1 x3 z3 a3

Solving for a,, @,, and g, and substituting these into Eq.(2.54), we

obtain
e 3 e
h'(x,z) = Z h_ ¢ (2.56)

in which ¢§ are the element interpolation or basis function and

defined as

e

= 1 =
¢n = 2Ae (an + bnx + cnz) ,y n=1,2,3 (2.57)
where a, = x223 - x322 ’ b1 =2z, - 23 » €y = x3 - X5
a =

5 x321 - x1z3 ,'b2 = z3 -2y Cp =X - x3

a, = X, 2

3 1

2 = X524 b3 =2y = 25, 03 =X, - Xy
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Figure 2.7 A typical triangular element.
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and

1 X, z,
=1 = ;
Ae =3 1 X, 2, | = area of the triangular element
1 x3 23

Linear Basis Function of the Curved-Sided Triangular Element

In the case of the linear triangular element, the geometry is
described by the same degree polynomial as that used in the trial
function. In other words, the element geometry and the trial function
are expressed in terms of the same basis. Elements using the same
basis for both purposes are denoted as isoparametric elements. There
are occasions, however, when complex geometry dictates the use of
polynomials of higher degree than is required in the trial function.
Elements that use higher-degree polynomials to define the geometry
than the trial function are called superparametric elements.

As discussed in the preceding section, the linear trial function
is sufficient for the requirement of our problem. This means that the
curved-sided triangular elements must be treated as superparametric
elements.

Referring to Figure 2.8, by dividing the region of subsurface
flow, the land surface becomes a series of curves defined over the
discrete intervals

by = XX o0 Xy 2%y = Iy (2.58)
where M is the number of the nodes on the saturated surface. Because S

. . A . 1 s s .
is an axis of the curvilinear coordinate system, ¢ -continuity is

required. Therefore we approximate it by

Zi(x) = Zi(xi) + ai(x—xi) + Bi(x—xi)2 » X, ZXEX,
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Figure 2.8 The division of land surface.

53



i=1,2, *°s, M1 (2.59)

where ai and Bi are constants. These constants are determined in such

a way that the following constraints are satisfied

23 (%590 = 2544 (x549)

2! (x,,,) = (x,,,)

it7ie Zi+1 i+
i=1, 2, ¢, M1 (2.60)

Now, we derive the linear basis function for the surface
elements. For convenience' sake, a natural coordinate system is used.
Referring to Figure 2.9a, the Cartesian coordinate system (x,2) can be
transformed into a natural coordinate system (£,n) by

£ = PQ/L, n = QS/0S (2.61)
where L is length of the curved side of the surface triangular
element. As shown in Figure 2.9b, the curved-sided triangular element
becomes a right-angled triangle in the natural coordinate system
(£,n)( Appendix B ). Thus, the trial function within this element can

be represented in the same way as the linear triangular element by the

linear polynomial
e -_—
h™(€,n) = oy + a8 + axn (2.62)

where a1, a2, and aB are constants. These constants are determined by

writing
e
hy T &0 oy
e _
(nS1 =016 n1 {q) (2.63)
by 1 &5 ng o3

note that (51,n1)=(0,0), (52,n2)=(1,0), and (EB,n3)=(O,1). Solving for

@y Oy and g and substituting these into Eq.(2.62), we obtain
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Figure 2.9 The natural coordinate system for
sureface curved-sided elements.
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3
e _ e .e
h(e,n) = I S ¢° (2.64)

n=1
where ¢z are the basis function of the curved-sided triangular element

and defined as

07 =1-€-n

e_

¢, = ¢ (2.65)
oS = n

3

0s&E=s1-n,0zsnz=s1
Since the triel functions within the linear and the curved-sided
triangular elements are both linear polynomials, the compatibility(
continuity ) requirement is satisfied at the interface of the linear
and curved-sided triangular elements.

The relationship between the natural and Cartesian coordinates is
derived in Appendix B and reproduced below

LE = S;(xg) (1 -n)

X (1-n)xs+nx3

N
1]

(1 -nm )zS + nz3 (2.66)
z=z+a(x-x)+8(x-x)2
S 1 i*’s ™M it’s 1

Jacobian Matrix:

o o
13 on
o 9(x,2) _
Jd = m:n—) =( . 2 ] (2.67)
3%  on
9x
5g = L/8{(xg)
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1}

3% Lri(xs)/S£(xS)

oX _

3 = X3 - Xg + Si(xs)/Si(xS)

3z _ 2, - 2o + r,(x )S,{x.)/8!(x,)

on 3 S it"s’7i S i'"s

Si(x) = f§1 ds , x1§ X = x

ri(xs) = dzS / dxS =a, + ZBi(xS - x1) (2.68)

The derivatives of the basis function can be calculated by

e
. ¥ g
a0y . | % B
x I .
3
on n
i=1,2,3 (2.69)
e
o a
W L
oz [J] o
x %
on on
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2.2.2.3 Formulating the Matrix Equation for Steady State Flow

Problem by Linear Triangular Elements

The region of flow is subdivided into a finite element network
that consists of N nodes and M elements.

We define the basis function in the region of flow as

¢; , 1f the element e contains node K.
o = { (2.70)
0 , otherwise.
where K=1, 2, **+, N, and e=1, 2, *++, M. Note that the subscript K
indicates the number of the node in the global coordinate system and

the subscript k is the number of node K in the local coordinate

system. Thus the trial function in the region of flow can be expressed

as( cf. Eq.(2.50), " ~ " is omitted )
N
h = E hy O (2.71)

We first formulate the element matrix equation for subsurface
flow. Application of Galerkin's criterion to the governing equation
(2.21) yields

2 2 3 N
r1rz i Kijsg—( E

hy ¢, + x, ) 1¢_dx.dx, =0
D i=1 j=1 j k=1 KK 720 T R

n=1, 2, ses, N (2.72)

Applying Green's theorem to Eq.(2.72) we obtain

2 3¢n 2 3 N
JJ =1 ZK,s=~( L h, o, ) +K,, ldx.dx, -
D i=13xi =1 133xj K=1 K “K i2 1772
2 2 3 N
- bq o, '§ [ .f Kijs;T § he o )+ K> ]cos(n,xi)dQ =0
i=1  j=1 j K=
n=1, 2, ***, N (2.73)
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where 1 is the boundary of the region of flow, and n the outward unit

normal direction of .

Let the above two integrals be I1 and I2, respectively. Next, we

assume that the saturated hydraulic conductivity is constant within
the triangular element and that the relative hydraulic conductivity

can be interpolated in the same way as the pressure head, that is,

=
o
|
H Mw

r

K, ¢y (2.74)

in which 1 stands for the corners of the triangular element. Thus, the
integrals I1 and 12 can be performed analytically. The procedures are

as follows.

Inserting Eq.(2.74) into I,, and noting that the integral over

the region of flow is equal to the summation of the integrals over all

the element subregions, we obtain

M e
I1 = E I1

e=1

M 2 3¢ 2 3 3

=z Jf ZW[ ZK ()3 Kd)l)—( )Zh¢)
e=1 De i=1 j=1 i=1 j K=1
s T.e
+ Kiz('Z Kl¢l) ]dx1dx2
i=1
M3 eKr s
=1 E KAA(K b bK+K12b cK+K2 c bK+K22cncK) +
e=1 K=1
(K b+K22 ) (2.75)
where
=r _ 1 r r r
K —3(K1+K2+K3)
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Assembling the results of the integrals over the element
subregions into the global coefficient matrix at the appropriate
locations yields

N

I1 = K£1 AnK hK + Fé (2.76)

Now consider the integral 12. Note that

2 2 3 N
[ LK, —( Z hK ¢K )+ K12 ]cos(n,xi)

i=1 j=1 1%y gy
is the flux per unit length along Q( cf. Eq(2.23) ). Along the
impermeable boundary the flux is zero, so this term vanishes. When a
constant head or Dirichlet boundary is encountered, no equation is
generated and consequently, it is unnecessary to evaluate this term.
When a Neumann boundary is encountered the flux is specified, and we
have to evaluate this term.

Inserting the Eqs.(2.23), (2.24), and (2.25) into I2 we obtain

12 = - IGH ¢chosedS - IHB ¢nIcosedS (2.77)

Because the seepage rate I is an unknown variable, the above integral
cannot be evaluated. Later we shall show that it can be removed by
treating overland flow and subsurface flow as a simultaneous system.
Here we first formulate the matrix equation for overland flow.

As in the case of subsurface flow, applying the Galerkin
criterion to the governing equation of steady state overland flow we
obtain

)
- IHB ¢nIcosedS = IHB§§(Uh/cose)¢ndS - IHB ¢chosﬁdS

(2.78)
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Let the first integral in the right-hand side be I'. Performing the

integration by parts yields

9%

I' = Uh/cose¢nlg - IHngﬂ(Uh/cose)dS (2.79)

At point H, h=0 and Uh/cose¢n H vanishes. At point B, which belongs to

a Dirichlet boundary, h is specified, no equation is generated and

consequently, it is unnecessary to evaluate Uh/cosecbn The second

B
integral in the right-hand side of Eq.(2.79) is easily evaluated if we
use the quasi-linearization approximate instead of Uh. The procedufes
are as follows.

The trial function takes the following simpler form along the

land surface( Figure 2.10 )

eS eS eS eS ]
h®=6,"n%+¢,"n
eS eS eS eS
= (1-8/L°%)n 7§ +8/L %, (2.80)

where the symbol ey is being used to designate surface element number.

Inserting Eqs.(2.47) and (2.80) into Eq.(2.79) yields

e
s . 8
h. ~h S S e S
cr=r (2152 a5+ £ 2 Bh %as + [.2 cas +
e eS S1 S1 S1
eS L s L
S es e es e es e
2.0h s oh " ="soh " -"s
+ gT/conefS1[—§T— h “+50h - AT h “las}
(2.81)
s
-hH ¢n - ¢1
where § = {
_ .8
1, ¢n = ¢2
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Figure 2.10 The basic function for land
surface element.
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If the same interpolation function for h is used for h, all these
integrals can then be performed analytically. Assembling the results
into the global matrix at the appropriate locations, I' can be written

as

I'=-% F_h, - F (2.82)

Now it can be seen that the seepage rate I is removed by

inserting Eq.(2.78), (2.79), and (2.82) into Eq.(2.72). thus, we

obtain
= e - 1
12 IGH ¢chosedS IHB ¢chosedS + I
N
= -K£1 FnK hK - Fn (2.83)

0
where Fn = Fn + IGH ¢chosedS + IHB ¢chosedS

Substitution of I, and I, into Eq.(2.73) gives

N
I (A =F dh =F —Fl , n=1,2,00¢N (2.84)

K=1 nK nK K n
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2.2.2.4 Formulating the Matrix Equation for Steady State Flow

Problem by Curved-Sided Triangular Elements

The formulating procedures are the same as in the case of linear
triangular elements. However, since the integrals over the surface
elements here cannot be performed analytically, we have to use some
numerical technique. In this study, the Gauss numerical integration
method is used. For more information about the Gauss numerical
integration method see the Appendix C. For overland flow, the Gauss
numerical integration method is applied after transforming the
integrals in the curvilinear coordinate system into their counterparts
in the natural coordinate system by the relationship expression S = L
£ (see Eq.(2.65), at the land surface n = 0 ). Thus, a global matrix
equation with the same form as in the case where all elements are

linear triangular elements can be obtained.
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2.2.2.5 Incorporating the Dirichlet Boundary Conditions

and Solving the Global Matrix Equation

The Neumann type boundary conditions have been considered through
the formulation process. What remains to be incorporated is the
Dirichlet type boundary conditions. For convenience' sake, we rewrite
Eq(2.84) into the following matrix form

(A] {n} = {F} (2.85)
N*N N*1 Ne*1

The incorporating procedure is as follows.

If h is specified, we set ¥ =h , F, =t F_ - A, h for all i #
n n n’ i i in n

n, and A =1, A, =A, =0 for all i # n. This procedure is
nn ni in

repeated for each specified head h.

Once the boundary conditions have been incorporated, the
algebraic equations are solved by the Gauss-Sediel method. Because the
problem is nonlinear, an iterative process is necessary. The iteration
procedure is repeated until the difference between successive

iterations is within a specified error «, i.e.

Max{ lhii)— héi+1)| , n=1,2, ¢« N} <a (2.86)

where the supercript (i) indicates the number of iterations. In this
study we have set @ = 0.001(m). During the iterative cycle, each h is

updated by

L3 g @)
n

n

=¢h + (1 -¢€) hﬁi'1) , 0 <€ =1 (2.87)

(0)

Each nominal head h is used for h' .
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2.2.2.6 Possibility of Approximating the Land Surface by a

Series of Straight-Line Elements

In order to examine the possibility of approximating the land
surface by a series of straight-line elements, we simulated nine cases
that are generated from three types of land surface curves and three
kinds of flow conditions.

The three kinds of flow conditions are shown in Table 2.1 and
Figure 2.11. The soils are assumed to be isotropic and homogeneous.
The three types of land surface curves are as follows
3.2

z=1.6641112%10" ~x~-0.031116821x+2.0, 0sx250.078

! z=2.4792419*10_4x2+0.011072280x-1.5551522,50.078§x§100

-3.2

2=1.6185489%10 " x~-0.028835152x+2.0, 05x568.139
S
27 2=o1.634232410 7240, 414447324%-13.102412, 68 . 13955100
2=1.1960000%10>x> +2.0, 0sx568.139
S,
3

2=-7.348626%10%x>+0.263134000x-6. 9648406 , 68.1395x5100

It is easy to show that the three curves have C1-continuity at

any point. The maximum curvatures are, respectively,

C(S,) = 1.498708544 * 1072 (n')
-3, -1

C(SQ) = 2.009461473 * 10 “(m ')
_ -3, -1

C(SB) = 2.392000000 * 10 “(m )

The three types of region of flow with the different land surface
curves are shown in Figure 2.12. Each of them is divided into 342
elements with 232 nodes. Consequently, each land surface is divided

into 57 linear or curved elements.

66



Table 2.1 Soil parameters and Dirichlet
boundary condition

K N I H
Case
W/ M -1738 M/lir M
Case 1 0.6 0.15 0.001 2.5
Case 2 0.7 0.1 0.005 2.5
Case 3 1.5 0.1 0.010 2.5
K :Saturated hydraulic conductivity
N :Roughness
I :Rainfall intensity
H :Water level at outlet
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MOISTURE CONTENT

Figure 2.11 Moisture characteristic curve
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Figure 2.12a Element partition data
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Combining the three types of land surface curves with the three
kinds of flow conditions, we generated nine cases as shown in Table
2.2. For the each case, two kinds of simulation have been made: in the
first case the surface elements are treated as linear triangular
elements, and the second as curved-sided triangular elements. The
results of simulations are shown in Figures 2.13, 2.14, and 2.15.
Figures 2.13 and 2.14 show that both pressure heads and discharges
resulting from the two kinds of simulation agree very well with each
other. The maximum differences of pressure heads and discharges
between the two kinds of simulation for each case are given in Table
2.3, and the relations between the differences and the maximum
curvature of land surface curve are shown in Fig.2.15. Although the
differences show a tendency to increase with curvature, the difference
of heads is less than the allowed error 0.001m of numerical analysis,
and the relative error of discharge( ratio of the difference of
discharge to discharge ) is less than 1% for all of the nine cases.

The above simulation results show that it is possible to use the
linear triangular elements for surface elements if land surface can be
approximately expressed by such a quadratic curve as applied for the
simulation. In the following we shall formulate the matrix equation by
applying linear triangular elements to all elements for the transient

flow problem.
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Table 2.2 Simulation case conditions

= (NewDl) * (Case 1)
= (NewDl) * (Case 2)
= (NewDl) * (Case 3)
= (NewD2) = (Case 1)
= (NewD2) = (Case 2)
= (NewD2) * (Case 3)
= (NewD3) * (Case 1)
= (NewD3) * (Case 2)
= (NewD3) x (Case 3)

|
o B = CO DO = O B
|
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Table 2.3 Pregsure head error and
flow quantity error

Pressure Head Error
(M)

Flow Quantity Error
{M/HOUR)

0.501632690 E-03

0.150179956 E-03

0.587463379 E-03

0.174729852 E-03

0.697135925 E-03

0.187259982 E-03

0.476837158 E-03

0.174477696 E-03

0.569343567 E-03

0.256568193 E-03

0.608444214 E-03

0.319520012 E-03

0.425338745 E-03

0.8372299924 E-03

0.638961792 E-03

0.540561974 E-03

0.707626343 E-03

0.721156597 E-03
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2.2.3 Solution of the Transient Flow Problem

2.2.3.1 Formulation of Matrix Equation

The difference between the transient flow problem and the steady
state flow problem ariées from the existence of the time derivative in
the governing equation. Therefore, the matrix equation of the
transient flow problem can be obtained by adding the term
corresponding to the time derivative into the matrix equation of the
steady state flow problem. The procedures are as follows.

As in the case of steady state flow, applying Galerkin's
criterion to the governing equation (2.18) of transient subsurface

flow, we obtain:

2 2 3 N

I LK =—( % h, ¢, +x,) Jo dx dx, -

D i=1 j=1 133xj K=1 K K 2 n 172
N

W 0

- fo (Cc+ - SS ) Tt ( E hK ¢K )¢n dx1dx2 =0
K=1
n=1, 2, ***, N (2.88)

In nhe preceding section we have shown that the first integral can be
performed analytically by applying Green's theorem. Now we consider

the second integral. Let this integral be 13'

Since the Galerkin method applies only at a given instant of
time, the time derivative , 9h/9t, must be determined independent of
the orthogonalization process. Experience indicates that for the

numerical method to converge in the case of unsaturated flow, 9h/3t

must not be replaced by ahe/at. A much more stable solution is

obtained by defining the nodal values of the time derivatives, Bhn/at,

as weighted averages of 0h/dt over the entire flow region:
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W yoh w
T IDI(C+HSS)§E¢ndx1dx2 / fo(C+;SS)¢ndx1dx2 (2.89)
In addition, it is assumed that the porosity( n ), and the specific
storage( SS ), are constant within each element, while the specific

moisture capacity( C ), and the moisture content( w ), vary linearly

according to

3
c®= 32 C; ¢§ (2.90a)
1=1
e 3 e
w = I wy ¢1 (2.90b)
1=1

in which 1 stands for the corners of the triangle.

By using Eqs.(2.89) and (2.90) the integral I_, can be performed

3
analytically
M 3 3nS 3
KA e e
I,=-12 5 s=—>= L1, (C,+Suw,/n )
B T RS A M !
N BhK
=% R, (2.91)
K=1 nkat
where Ty, = 2 for 1 = n, T, = 1 for 1 # n.
Rnk =0 for n # K.

On the other hand, applying the Galerkin criterion to the
governing equation (2.42) of overland flow, we obtain

- IHB ¢nIcosedS =

3h

d
I ypag(Un/cos6)é dS - [y ¢ ReosBdS + [ pa2(1/cos0)0, dS

(2.92)
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If we apply an approximation similar to Eq.(2.89) for ahn/at, the

third integral in the right-hand side Of Eq.(2.92) can be easily

evaluated.
dh ahn
IHBEE(1/COSQ)¢ndS = SE—IHB¢n/cosedS
; N 3hK
= K£1 T W5t (2.93)
where T . = 0 for K # n.

Combining Eqs.(2.88), (2.76), (2.77), (2.92), and (2.93) we
obtain a set of quasilinear first-order differential equations:

N dh

_K 4 2 1
- F o b +CR e =T g V=F - F

n=1,2,+*,N (2.94)
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2.2.3.2 Integration Over Time

For convenience, we rewrite Eq.(2.94) as
oh
[(D){n} + (G1{5} = (E} (2.95)
To integrate Eq.(2.95), the time domain is discretized into a

sequence of finite intervals, AtT, where T represents time-step

number, and the time derivatives of hn are replaced by finite

differences. Experience indicates that for this problem good results

can be obtained by employing the time-centered scheme.

T+1,, T T+1 . T
I e R It
At

TH/2) (5.96)

where t=tt, AtT=t -t In order to evaluate the coefficient

T+1 'T"
matrices, one must know the values of h at t = tT+AtT/2. At the

beginning of each time step, these values are predicted by linear

extrapolation from previously calculated values according to

h§+1/2 = hz + sl (Tt Ny /aT 2 (2.97)

After incorporating the Dirichlet boundary conditions, the
resulting set of simultaneous linear algebraic equations is solved by

the Gauss-Sediel algorithm for the value of hg+1 at all nodes. Due to

the nonlinear nature of Eq.(2.95) these results must be improved by an

+
iterative process. At each iteration, the most recent values of hz 1

T+1/2

are used to obtain improved estimates of hn from

hT+1/2(i+1) _ Ehz+1/2(i) + %(1 _ E)(hg + hT+1)’ 0<e =1

n n

(2.98)
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where supercript (i) indicates the number of iterations. After
reevaluating the coefficient matrices, the equations are again solved

1

for the improved values of h$+ . The iterative procedure continues as

long as necessary to achieve a satisfactory degree of convergence.
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2.3 The Application to Hillslope Systems

In this section we apply the coupled model of overland flow and
subsurface flow proposed in the foregoing sections to hillslope
systems and simulate the influences of soil hydraulic properties and

rainflux on the runoff characteristics.
v2.3.1 Input Data for the Coupled Model

The input data for the coupled model can be classified as four
kinds:

(1) information about the flow region subdivision,

(2) soil parameters: space-dependent hydraulic conductivity,
functional relationships between relative conductivity and pressure
head as well as moisture content and pressure head, specific storage
and space-dependent Manning's friction factor( roughness ),

(3) boundary conditions: time- and space-dependent distribution
of pressure head along the Dirichlet boundaries, time- and space-
distribution of flux along the Neumann boundaries,

(4) allowed error for the iterative procedure,

(5) time intervals for transient flow case.

25 cases for steady state flow, and 30 cases for transient flow
have been simulated. The input data for all of the cases are given in
Table 2.4 ~ Table 2.7 and Fig.2.16 v Fig.2.21. The following analyses
are based on these simulation results.

Before analyzing the simulation results, we define some key words

for an understanding of hillslope runoff processes( see Figure 2.1 ):
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Table 2.4 Simulation case conditions(Steady flow)

N 3.6 | 11.4 | 36. 114. | 360.
K
1 1-1]2-113-1|4- 5-1
3.16 | 1 -2 2-2|3-2}4- 5-2
10. 1-312-813-3}4- 5-3
31.6 1-4,2-413-4|4- o-4
100. 1-5]2-513-5|4- 5-5

N :Roughness(M—1/38ec)

K :Saturated hydraulic conductivity(M/Hr)
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Table 2.5a Simulation case conditions(Transient flow)

e x| Time | K N M S
Case ’EQE Rainfall
éf ‘; Step pattern
M/Hr| m-1oag 1/M
1 | New|Type| 3. |360. |Type A [0.0001 |3"
pi| 10 g
H
"o 80 160 290
TIME ( hr )
Elo
2 | New | Type | 3.16 | 114. | Type A [ 0.0001 | &
2
D1 T :
o 80 160 240
TIME ( br )
Tie
3 | New | Type | 1. 36. | Type A | 0.0001 | £
DL| T1 i
g gl . .
¥ H 10 15
TIME ( hr )
T2
4 | New | Type | 100. | 36. | Type A | 0.0001 | g
Ny M g
EE . . .
v 5 10 15
TIME ( hr )
TIi2
5 | New|Type | 1.]360. |Type A|0.0001 ] § /
2
1)1 T1 § . \
¢ J '5 l(; 1'5
TIME { hr )
T2
6 | New | Type | 100. | 360. | Type A | 0.0001 | &
DLy T g
E . \ .
v 5 10 15
TIME ( hr )
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Table 2.5b Simulation case conditions(Transient flow)

T | New|Type | 1. | 36.|Type B|0.0001 |5
DL| T g
2ol
TIME ( hr )
iz
8 | New|Type | 1. |360. | Type B |0.0001 |
DLy T H
%o o 5 1\6 15
TIME ( hr )
‘EIZ
9 | New | Type | 50. | 360. | Type B | 0.0001 | §
DL ™ H
2o o 5 1\6 1
TIME ( br )
’Ell
10 | New | Type | 50. [ 360. | Type C [ 0.0001 | §
pI| M g .
%o 0 5 1\5 15
TIME ( hr }
EIZ
11 | New | Type | 100. | 360. | Type A 0.0001 | § [
D1 T1 i
ST 18
TIME ( hr )
'EIZ
12 | New | Type | 50. | 360. | Type B | 0.001 E
DL| T1 :
\
o s 10 1
TIME ( hr )
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Table 2.5¢ Simulation case conditions(Transient flow)

i ¥4
New | Type | 50. [ 360. | Type D | 0.0001 | §
pL| M £
i, —
0 5 10
TIHE ( hr )
=12
New | Type | 20. | 360. | Type C | 0.0001 i
DL| T H
& [ T Y
1] 5 10
TIHE ( br )
New | Type | 50. | 360. | Type C | 0.0001 |5
DI T g
2 0' T T
[ 45 10
TIME { hr )
New | Type | 50. | 360. | Type C | 0.0001 (3
pL| T g
& 0 T
0 s 10
TIME ( hr )
’E'IZ
New | Type | 50. | 360. | Type E {0.0001 | §
DI| T1 g
RN VAR
0 3 10
TIME { br )
’520
New | Type | 50. | 360. | Type C { 0.0001 §
D1|{ T1 g
2 o T T
0 2 5 o
TIHE ( hr)
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Table 2.5d Simulation case conditions(Transient flow)

Kx
12
19 | New | Type | =50. | 360. | Type C | 0.0001 | §
DL T1| Ky g
g oy , AN .
= 1. 0 5 10 15
TIME ( hr )
20 | New | Type | 50. | 360. | Type C | 0.0001 | §°
pL| T g
g o — .
[ 5 10 15
TIME ( hr )
EIZ
21 | New | Type | 50. | 360. | Type E | 0.0001 E
DL| T2 g
2 oLy — .
0 5 10 15
TIME { hr )
Kx 2
22 | New | Type | = 1. | 360. | Type C |0.0001 | §
Dl| Ti| Ky g
& o T ¥ T
=50. : 5 10 s
TIME { hr )
=12 4
23 | New | Type | 50. | 360. | Type C | 0.0001 ;
DLl T g A
2 0t - ¥ T
0 5 10 15
TIME ( br )
T4
24 | New | Type | 50. | 1.08 | Type C | 0.0001 E
DI T *10* i .
E o T T
[1] 5 10 15
TIME ( hr )
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Table 2.5e Simulation case conditions(Transient flow)

=12
25 | New | Type | 50. | 360. { Type C | 0.0001 E
1} T1 g
3 0 rvyp \. T
0 5 10 1}
TIME { hr )
KlK‘ 4
26 | New | Type | = 1. { 360. | Type C | 0.0001 | §
M4 T1 | KzKa ;
-50. ol
TIHE ( br )
EIZJ
97 | New | Type | KiKz | 360. | Type C | 0.0001 E
D5| TI|=50.
& ol T Y T
0 5 10 15
TIME { hr )
KlK‘ =12
98 | New | Type | =50. | 360. | Type C | 0.0001 E
DL| T1|KoKs i
\
= 1. 2 R s 10 1
TIME ( hr )
E)ZJ
29 | New | Type i 50. | 360. | Type C | 0.0001 E
DL| T1 g
2 o - Y T
*05 [} 5 10 15
TIME ( hr )
EB
30 | New|Type | 50. | 360. | Type C | 0.0001 | §
DL| TI H .
£l 0 - - T
0 5 10 15
TIME ( hr )
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Table 2.6 Numbers of Nodes and Elements

Nl NQ N3 N4
New D1-D3 232 342 58 4
New D4 255 400 51 5
New D5 304 450 (] 4
N1 :number of nodes
N2 :number of elements
N3 snumber of surface nodes
N4 snumber of outlet nodes

Table 2.7a Time Step for transient flow
(CASE3-CASE20, CASE22-CASE30)

Time ( From , To ) Time Step (Hour)
0.000 % 0.100 0.050
0.100 é 0.500 0.100
0.500 E 0.750 0.125
0.750 é 1.000 0.250
1.000 é 15.000 0.500
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Table 2.7b Time Step for transient flow

(CASE21)

Time ( From , To) Time Step (Hour)
0.000 E 0.100 0.050
0.100 g 0.500 0.100
0.500 % 0.750 0.125
0.750 % 15.000 0.250

Table 2.7c Time Step for transient flow
(CASE1, CASE2)

Time ( From , To ) Time Step (Hour)
0.000 % 0.100 0.050
0.100 g 0.500 0.100
0.500 g 0.750 0.125
0.750 % 1.000 0.250
1.000 % 2.000 1.000
2.000 é 10.000 2.000
10.000 E 240.000 10.000

91



124

10

0

{ New D1)

il

-

¥ J 1 K

20 40 60 80
X

Figure 2.16 Element Partition Data

100

124

104

( New D4 )

(=20

| 1 1 1

20 40 60 80
X
Figure 2.17 Element Partition Data

92

100




( NEW D4* )

40

=

4._

Figure 2.18 Element Partition Data

FO

124

104

81

6

Figure 2.19 Element Partition Data

93



WATER

h,m

PRESSURE HEAD,

WATER

h.m

PRESSURE HEAD,

AD, h,m WATER

PRESSURE H

-30 T T 1.0
Type A
-20]_ \n K,
-10.5
-tol.
0 e 1 °
0 0.2 0.4 0.6
MOISTURE CONTENT
-15 Y Y Lo
Type B
=10 |- h K¢
-0.5
-5
0 ! o
0 0.15 0.30 0.45 -
MOISTURE CONTENT
1.0
-1.5 ¥ T
Type C
5o M X
~10.5
2.8 1
o 4 ! o]
0 0.1% 0.30 0.45

MOISTURE CONTENT, 0

RELATIVE CONDUCTIVITY, X, RELATIVE CONDUCTIVITY, K,

RELATIVE CONDUCTIVITY, X,

WATER

h,®

PRESSURE HEAD,

WATER

h,m

PRESSURE HEAD,

-15 T 1
Type D
-10 b Xe
-10.5
-5
0 —d | 0
0 0.1 0.2 0.3
MOISTURE CONYENT
1.5 I : 1.0
Type E
-1.0 h- K,
-10.5
-0.5
0 ! 0
‘0 0.15 0.3 0.45

MOISTURE CONTENT

Variation of h and I(_with Moisture Content

Figure 2.20 Moisture characteristic curve

94

RELATIVE CONDUCTIVITY, X,

RELATIVE CONDUCTIVITY, K,



Total Head (M)

1 T
0 R 10 15
Time(hr)

Fi
igure 2.21 The Changing Dirichlet Condition

95



Overland flow is the flow of water over the land surface BH
toward a stream channel which originates from rain and return flow.
Return flow is the infiltrated water which returns to the land surface
BH after flowing in the soil horizon. Overland runoff discharge
indicates the outflow from AB, and Subsurface runoff discharge the
outflow from BC. Total runoff discharge is defined as the summation of

overland and subsurface runoff discharges.

2.3.2 Saturated Hydraulic Conductivity and Roughness

Saturated hydraulic conductivity is one of the most important
parameters that are considered to have great influence on subsurface
runoff, which, in turn, has great influence on the total runoff.
Roughness is the parameter which immediately governs overland flow.
Since we considered the hydraulic interaction of overland flow with
subsurface flow when deriving the governing equations, the runoff
characteristics are considered to be determined by all the
combinations of the parameters.In the following, by applying the
coupled model to hillslope systems the influences of saturated
hydraulic conductivity and roughness on runoff are examined for
steady state flow and transient flow, respectively.

Fig.2.22 shows the relationships between runoff and saturated
hydraulic conductivity as well as roughness of hillslope land surface
in the case where rain of constant intensity, 8mm/hour, falls upon the
hillslope. When the roughness is relatively small, the ratio of
overland runoff to subsurface runoff does not vary widely as the
saturated hydraulic conductivity changes, and the overland runoff
accounts for a very great part of the total runoff. If the roughness

becomes larger, the subsurface runoff increases sharply as the
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Figure 2.22 The runoff discharges change with the
saturated conductivity and roughness
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saturated hydraulic conductivity increases. this can be explained as

follows:

The resistance of soil to subsurface flow decreases as the
hydraulic conductivity becomes greater. Therefore, if the roughness is
small, the water infiltrates into the soil of the upper hillslope,
where the pressure head is lower than in the lower hillslope, does not
flow in the soil of the lower hillslope but returns to the land
surface which has low resistance to the flow. In the case of large
roughness, the return flow is restrained and as a result the
subsurface flow increases.

Figure 2.23 shows the hydrographs in the cases where the
saturated hydraulic conductivity ranges from 1
m/hour(CASE3,CASE5,CASE8) to 100 m/hour(CASE,, CASE6,CASE9) and the

roughness from 0.01 m_1/3hour(CASE3,CASE4) to 0.1

m-1/Bhour(CASES,CASE6,CASE8,CASE9). In the cases where the saturated

hydraulic conductivity is 1 m/hour, the subsurface runoff discharge is
nearly zero, while the saturated hydraulic conductivity becomes 100
m/hour, the subsurface runoff discharges increase so that the total
runoff discharges of CASE,,CASE6 and CASE9Q exceed those of CASE3,CASE5
and CASE8, respectively. However, the increase of CASE4 in the
overland flow is more considerable than those of CASE6 and CASE9. This
results from the difference of roughness between CASE/ and CASE6 or
CASE9, In CASE6 and CASE9 the return flows are restrained by the large
roughness.

Now let us look at the peak-time of the hydrograph. Since
overland flow is generally faster than subsurface flow, the difference
between the ratios of overland runoff or subsurface runoff to total

runoff naturally results in a difference in the peak-time of the
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Figure 2.23 Hydrograph (CASE3.4.5.6.8.9)
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hydrograph. The lag-times of the peak in CASE3, CASE5( with an initial
precipitation, 1mm/hour ) and CASE8( without any initial precipitation
) to the peak of precipitation are about 20 min., 20 min., and 38
min., respectively. However, when the saturated hydraulic conductivity
is 100 m/hour, the lag-times increase to 45 min., 45 min., and 58 min.

Ishihara and Takasao(1963) have pointed out that there is usually
a highly permeable soil layer( known as the A-layer ) in the
hillslope. The most important hydraulic characteristics of the A-layer
are its anisotropy and heterogeneity. The first has been simulated by
CASE10, CASE19 and CASE22, and the results are shown in Figure 2.24
and Figure 2.25. We have also simulated the heterogeneity by
considering a two-layer region of flow( Figure 2.28 ), and the results
are shown in Figure 2.26, Figure 2.27 and Figure 2.29.

Figure 2.30 shows the maximum velocity of overland flow for
CASE4, CASE5, CASE7 and CASE8, where all of the parameters other than
roughness are held constant for all cases. The velocity distributions
are shown in Figure 2.31. It can be seen that when the saturated
hydraulic conductivity is low return flow is promoted and the
influence of roughness on the runoff is little. This is also indicated
by the change in water table( Figure 2.32 ). When the saturated
hydraulic conductivity is so great that the subsurface flow velocity
has the same order to overland flow, return flow( and consequentially
overland flow ) becomes sensitive to the change in roughness. The
distribution of the total runoff among the overland runoff and
subsurface runoff for steady state flow( Figure 2.33 ) can be
explained in the same way.

Based on the above simulation results, the influences of
saturated hydraulic conductivity and roughness on the runoff

characteristics can be summarized as follows:
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Figure 2.27 The water table changes with time and distance
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Figure 2.32 The water table changes with time
and distance(CASE5.6)
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1) In the case of steady state flow, the greater the saturated
hydraulic conductivity is, the higher is the ratio of overland runoff
to total runoff.

2) In the case of transient flow, the short-time runoff
discharges of both overland flow and subsurface flow increase as the
saturated hydraulic conductivity becomes greater.

3) As the roughness becomes larger, the subsurface runoff
increases and the overland runoff decreases. As a result the total
runoff generally decreases.

4) In the case of flow in an anisotropic porous medium, a greater
vertical component of the saturated hydraulic conductivity generally
quickens drainage, and a greater horizontal component results in an
increase in storage.

5) In the case of a two-layer hillslope, the thinner the upper
layer with a greater saturated hydraulic conductivity, the better the

return flow develops and the more the overland runoff discharge.

2.3.3 Moisture Characteristic Curve

The moisture characteristic curve is said to produce strong
influence on runoff process by controlling the storage capacity of
soil. Figure 2.3/ shows the hydrographs of CASE9 and CASE10, which
have different moisture content at the same pressure head( CASE9 is
higher than CASE10 ). Although the initial conditions are the same
static flow, CASE9 has a higher storage than CASE10. The difference in
the initial storage results in the difference in the peak discharge(
CASE9 is 6.5 mm/hour, while CASE10 is only 5.5 mm/hour ) and the

difference in the lag-time( 1 hour and 40 min. respectively ).
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Since CASE9 has a higher storage capacity than CASE10, the
declining slope of the hydrogragh of CASE9 is not so gentle as that of
CASE10. As a result the ratio of total runoff to total precipitation
in the two cases is the same 80% at a point in time five hours after
cessation of the rainfall( Figure 2.35 ).

Figure 2.36 shows the hydrographs of CASE9 and CASE13, in which
the porosities are 0.45 and 0.3, respectively. Since CASE9 has a
higher moisture content than CASE13 at a given pressure head, the
water table rises more quickly in CASE9( Figure 2.37 ). This also
causes the difference in maximum velociéy between the two cases(
Figure 2.38 ) and the difference in discharge( five hours after the
rain has stopped, the ratios of discharge to precipitation in CASE9
and CASE13 are 80% and 95%, respectively ).

The above simulation results can be summarized as follows:

1) When all of the other conditions are the same, the lower the
storage capacity is, the gentler are both the increasing and the

declining slopes of the hydrograph.

2) The higher the porosity is, the slower is the drainage.

2.3.4 Specific Storage

Specific storage is a parameter which accounts for the elastic
nature of water and soil. Figure 2.39 shows the simulation results of
two cases with different specific storage. There is little difference
between the two hydrographs. This may be because a) the soil layer
considered is very thin, and b) the range in which the pressure head
varies is narrow. For these reasons, when considering the near-
surface, short-time runoff, we can in general ignore the influence of

specific storage.
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2.3.5 Rainfall Pattern

We have simulated the influences of concentration and dispersion
of rainfall in time on runoff by considering simple rectangular
rainfalls with different intensity and duration.

CASE15, CASE16 and CASE18 have the same total precipitation, 40
mm/hour, but the intensity and duration are 10 mm/hour, 4 hours; 4
mm/hour, 10 hours; and 20 mm/hour, 2 hours; respectively. Figure 2.40
shows the hydrographs, the shapes of which are all similar. However,
the rising heights of seepage point are 0.034m, 0.019m and 0.050,
respectively( Figure 2.41 ). These values show a tendency to increase
as rainfall concentrates. This tendency can also be seen from the
ratio of total discharge to precipitation( Figure 2.42 and Table 2.8
). Based on the simulation results we come to the conclusion that the

drainage becomes quicker as the rainfall concentrates.

2.3.6 Antecedent Precipitation

Figure 2.43 shows the hydrograph for the case in which the
rainfall has two peaks. The difference between the corresponding two
peaks of the hydrograph can be explained by the difference of the
antecedent saturation situation. The second peak is higher and gentler
than the first one. This means that the higher the degree of

saturation of soil, the quicker will be the drainage.
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Table 2.8 The ratio of runoff discharge
to precipitation

V) B & c @
Case 18 86 49 37
Case 15 83 49 34
Case 1B 11 41 30

A :ratio of total discharge to
total precipitation

B :ratio of total surface discharge
to total precipitation

C :ratio of total subsurface discharge
to total precipitation
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2.4 Simulation Analysis of Hillslope Runoff Processes

In the preceding section, the synthesized runoff model has been
applied to hillslope system, and the influences of the main factors
which govern the runoff process have been examined by considering the
runoff process as a " black box " transforming rainfall into
discharge. It is apparent that the analysis was made from a macro
point of view. In this section we shall analyze the runoff process
from a micro point of view. We will try to make clear the mechanism of
the infiltration and runoff process by examining the interior
variables such as moisture content, velocity of flow, interaction of
overland flow with subsurface flow and movements of water table and

seepage point.
2.4.1 Distribution of Moisture Content
2.4.1.1 Changing Moisture Profile

Figure 2.4/ shows the moisture profile of CASE2 in which the flow
changes from static state to steady state due to a constant rainfall,
10 mm/hour. The characteristics of the moisture profile can be
summarized as follows.

1) As the rainfall starts, the unsaturated zone is rapidly
saturated by the infiltrated water. This process continues from the
lower slope towards the upper slope and from the base of the region of
flow towards the land surface. With the passage of time, the rising
speed of the water table becomes gradually slower at the lower slope,
but at the upper slope the rising continues until a steady state is

achieved( Figure 2.45 and Figure 2.46 ).
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2) At the lower slope, since the antecedent moisture content is
higher, the range of variation of moisture content is not so wide as
at the upper slope.

3) At the lower slope, the range variation is wider around the
water table than nearby the land surface, while at the upper slope,
the range nearby the land surface is wider than around the water
table. This is because the right-hand vertical boundary GF( Figure 2.1
) is an impermeable boundary and there is no lateral flow across GF
into the region of flow,

The changing water tables and moisture profiles of CASE8 and
CASE9 are shown in Figure 2.47 and Figure 2.48. Since CASE8 has a
greater hydraulic conductivity, the infiltrated water does not remaiﬁ
in the unsaturated zone, but returns to the land surface or flows down
the slope and consequently, the ranges of both the changing of
moisture content and the rising of water table in CASE8 are not so
wide as in CASE9. The influence of hydraulic conductivity on the
distribution of moisture content can also be seen in CASE26 or CASE28,
in which the soils are heterogeneous( Figure 2.49 ).

Figure 2.50 contains the moisture profiles for CASE7 and CASE8 in
which the roughness assumes different values. It can be seen that
there is little difference between the two cases. This may be because
the influence of roughness on subsurface flow system is indirect. ‘

Figure 2.51 shows the moisture profile of CASE9 and CASE10 which
have different moisture characteristic curves. These profiles are very
similar except that the distributions of antecedent moisture content

are different. This similarity is due to the high conductivity in both

cases.

2.4.1.2 Redistribution of Soil Moisture
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Most of the researchers on the infiltration problem have
primarily focused their attention on the evaluation of basic theory.
By examining a vertical soil column, the nature of the response and
the theoretical moisture profile have been made clear. However,
relatively little has been published on the redistribution of soil
moisture on a natural hillslope.

Hewlett and Hibbert(1963) have shown that while the upper part of
the slope rapidly de-saturates and asymptotically approaches its
equilibrium value, the lower part soon develops a remarkably stable
moisture content value approximating saturation. Figure 2.52 contains
the moisture profile of CASE1 in which the initial condition is a
steady state flow with a rainfall intensity of 10 mm/hour. This case
reproduces the redistribution process of soil moisture when the flow
changes from steady state to static state. The changing pressure head
within the process is shown in Figure 2.53. The simulation results
reveal the following:

1) Drainage is quickest at the land surface and at the lower part
of slope, and becomes progressively slower towards the water table and
the upper part of slope. The moisture content value is thus stable in
the vicinity of the water table for a long time after drainage. This
is supported by the lateral flow from the upper slope.

2) Drainage becomes slower as time passes. The drainage can be

divided into two processes, the first is transient and the second is

near a steady state.
3) Finally the slope will drain towards values determined by the

moisture characteristic curve of the soil.
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2.4.2 Velocity Distributions of Overland Flow

and Subsurface Flow

2.4.2.1 Equations of Motion

As mentioned in Section 2.1, Darcy's law is used for saturated
and unsaturated flows with the provision that the conductivity is a
function of the pressure head. For overland flow, we have assumed that
the kinematic approximation and the Manning equation are valid, and
that the velocity of overland flow can be expressed as a summation of
the velocity of subsurface flow on the land surface and the velocity
of overland flow when there is no infiltration or seepage. According
to Shiiba(1983), if we consider only the overland flow, the velocity
becomes zero as the depth of flow approaches zero. On the other hand,
if the overland flow and subsurface flow are treated as a continuous
system, the velocity of overland flow must be equal to the velocity of
subsurface flow on the land surface. In this study this requirement
has been satisfied by taking into consideration the momentum balance

along the land surface.

2.4.2.2 Distribution of Velocity in Time and Space

Figure 2.5/ shows the distribution of velocity in space at
different times. Since the initial condition is static state the
velocities before the beginning of rainfall are zero. The
characteristics of the velocity distribution can be summarized as
follows:

1) At the beginning of the rainfall, overland flow and

unsaturated subsurface flow occur rapidly due to the direct
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precipitation onto the saturated land surface and the infiltrated
water, respectively.

2) Since the antecedent moisture content is very low in the
vicinity of the land surface, the unsaturated hydraulic conductivity
is low, the infiltrated water therefore cannot flow quickly towards
the base of slope, and a zone with a sharp gradient in moisture
content( and hence in pressure head ) occurs. It is very similar to
the so-called " wetting front " in the generation mechanism. If the
conductivity is very low and the rain is very strong, the land surface
may be saturated and Horton overland flow may occur.

3) The vertical component of the velocity of subsurface flow is
greatest at the top of the upper slope and becomes smaller towards the
base and the lower part of the slope, while the horizontal component
is smallest at the top of the upper slope and becomes greater towards
the base and the lower slope. This is because the base boundary and
the right-hand vertical boundary are impermeable. The infiltrated
water accumulates on the base boundary and then forms lateral flow,
which develops increasingly with flow towards the lower slope.

4) The maximum velocity of subsurface flow occurs at the seepage
face, across which a part of subsurface flow returns to the land
surface with a smaller resistance to flow.

5) Once the rainfall stops, the velocity of subsurface flow
decreases rapidly from the top of slope towards the base and from the
upper part of slope towards the lower part. Relatively to subsurface
flow, the velocity of overland flow decreases gently. This is because
the return flow accounts for a far greater part of overland flow than
the direct precipitation on the saturated land surface.

The distribution of velocity affected by various factors and the

above characteristics may not always been seen. For example, in
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CASE11, since there is antecedent precipitation, the lateral flow
develops very well. Therefore the maximum velocity does not occur at
the seepage face, but on the impermeable base boundary( Figure 2.55 ).
Another exception is CASES8. Since the saturated hydraulic conductivity
is extremely low, the lateral flow does not develop( Figure 2.56 ),
the infiltrated water raises the water table so that the water table
shows a " domelike " shape and water flows locally up the slope(
Figure 2.57 ).

Figure 2.58 shows the maximum velocities of CASE12 and Figure
2.59 the corresponding hydrograph. The peak times for the maximum
velocities of the overland and subsurface flows coinside. They lag
about 1 hour behind the peak of precipitation and 15 min. behind the
peak of hydrograph. From these it can be surmised that the return flow
plays a very important part in runoff processes.

Figure 2.60 shows the distribution of velocity in space in the
case of heterogeneous soil( CASE26 and CASE28 ). It can be seen that
the lateral flow is restrained within the layer with a lower hydraulic

conductivity.

R.4.3 Water Table Level and Seepage Point

2.4.3.1 Water Table of Subsurface Flow

The water table is the zero-pressure surface which separates the
saturated zone from the unsaturated zone. In the classical approaches
the water table is considered to be a moving material boundary and is
usually referred to as a free surface. The rate of advance of the zero

pressure surface 1is strongly affected by antecedent moisture
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Figure 2.57 The water table changes with time and distance(CASE8):
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conditions in the unsaturated zone and therefore this rate cannot
always be correctly predicted with the free surface approach.

Figure 2.61 shows the advance of the water table in various flow
conditions. The main factors which affect the rate of advance of the
water table are as follows:

1) saturated hydraulic conductivity

Comparing CASE3 with CASE4( the saturated hydraulic
conductivities are 1 m/hour and 100 m/hour, respectively ), we find
that the maximum rising of CASE3 in the elevation above the reference
datum is 7.1 times as great as one of CASE4 and in the elevation above
the downslope water level 15 times. In addition, the water table of
CASE3 declines far more gently than that of CASE4. The same tendency
exists in CASE5 and CASE6.

Figure 2.62 shows the time at which the water table reaches the
maximum elevation. It can be seen that in CASE9 the water table
reaches the maximum elevation at the same time at different distances.
However, in CASE8, in which the hydraulic conductivity is only 1/50 of
that in CASE9, there is a great time-lag at the lower part of slope
and at the upper part. This is because the lateral flow is restrained
by the lower conductivity. For this reason the water table shows a "
domed shape "( Figure 2.61 ).

In the case of heterogeneous and anisotropic media, the shape of
the water table becomes more complex. For example, in CASE26 or CASE28
the water table shows a very " unnatural " shape.

2) moisture characteristic curve

The water table in CASE9 and CASE10 have similar shapes, although
the moisture characteristic curves differ. On the other hand, by
comparing CASE9 with CASE13, it can be seen that the lower the

porosity of the soil is, the greater is the rise of the water table.
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Figure 2.61b The water
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2.4.3.2 Free Water Surface of Overland Flow

One of the most important parameters which determine the shape of
the free water surface of overland flow is roughness. Figure 2.63
shows the different shapes for steady flow. When roughness is large,
the free water surface rises along the land surface. As roughness
becomes less, the water surface approaches the horizontal level. This
is because the less the roughness is, the quicker is the overland
flow.

The hydraulic conductivity affects the shape of the free water
surface by changing the amount of return flow. In general, the greater
the conductivity is, the greater is the rise of the free water

surface( Figure 2.6/ and Figure 2.65 ).
2.4.3.3 Seepage Point

The seepage point is the intersection point of the land surface
with the free water surface of overland flow( and hence water table of
subsurface flow ). The elevation of the seepage point is a measure of
the degree of development of overland flow.

Figure 2.66 and Figure 2.67 show the relationship between the
rising elevation of the seepage point and hydraulic conductivity as
well as roughness for steady and transient flows, respectively. The
characteristics can be simply summarized as follows.

1) The lower the hydraulic conductivity is, the quicker is the
rising rate of the seepage point.

2) The larger the roughness is, the slower is the declining rate

of the seepage point.
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3) The time when the seepage point reaches its maximum elevation
is later than the peak time of the hydrograph. This may be because of

the time-lag between the peaks of the hydrograph and the return flow.

2+4.4 Interaction of Overland Flow with Subsurface Flow

It has been recognized that overland flow and subsurface flow
interact with one another in hills;ope hydrologic processes. However,
in most runoff models the interaction has been completely neglected or
only conceptually taken into consideration. The classical approaches
for simulating the interaction may be classified into two kinds: 1)
infiltration is represented by means of some simple expressions( e.g.,
Horton's infiltration-capacity equation ) and then the analyses of
overland flow and subsurface flow are separately carried out; 2) one
of the governing equations of overland flow and subsurface flow is
solved to give the infiltration rate which then is used for the input
data to the remained equation(Smith and Woolhiser, 1971a, 1971b). In
these approaches, the hydraulic relationship between overland flow and
subsurface flow( the balance of momentum ) cannot be reflecfed in
runoff models. In addition, as one can see in the preceding sections,
the return flow plays a very great part in hillslope hydrologic
processes. However, in the classical approaches the interaction is
limited to infiltration, and return flow cannot be satisfactorily
accounted for.

Figure 2.68 shows the ratios of return flow to overland and total
discharges. It is apparent that the curves can be classified into two
types according to whether or not there is antecedent precipitation.

In the case with an antecedent precipitation( CASE3 - CASE6 ), the
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curve assumes a downward convex semi-circular shape; and the lowest
point occurs around the peak of rainfall. In the case without any
antecedent precipitation, the curve is stair-shaped.

Figure 2.69 shows the distribution of the intensity of return
flow along the saturated land surface for steady state flow. When the
roughness is very small, the return flow accumulates at the seepage
point and at the intersection point of the horizontal level with the
land surface. As the roughness becomes larger, the accumulation at the
intersection point of the horizontal level with the land surface
vanishes and the distribution becomes uniform along the seepage face.

Figure 2.70 shows the distribution of the intensity of return
flow for transient flow. It agrees with the results of steady state
flow. However, CASE5 and CASE8 present an interesting feature of the
interaction of overland flow with subsurface flow: the infiltration
occurs nearby the seepage point immediately after the rainfall stops.
This may be because the roughness in CASE8 or CASE5 is very large and

the overland flow drains slower than the subsurface flow.

2.4.5 Hillslope Runoff Processes

In the preceding sections, we have examined hillslope runoff
processes from various angles. In this section we shall try to
summarize all of the results.

Ishihara and Takasao(1962) described the texture of the near-

surface soil of hillslopes as follows:

*+*+*Though the characteristics of structure of surface soil layer

differes in each basin they may be classified into two regions,
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vegetable covered and barren, for practical hydrologic problems.
The former is normally characterized by the surface soil layer
which is several tens centimeters in depth and consists of
organic matters. Water in such a layer has a tendency to flow
laterally as gravity water, for the porosity of soils in the

layer is high.ee*

Ishihara and Takasao termed this layer the A-layer. On the hillslopes
where the A-layer exists, the infiltration capacity is generally high
because of the open soil structure. Under these conditions, rainfall
intensities generally do not exceed infiltration capacities and Horton
overland flow does not occur. At the beginning of rainfall, water
infiltrates into soil. Since the antecedent moisture content is very
low near land surface, the unsaturated hydraulic conductivity is low.
Infiltrated water therefore cannot flow quickly towards the base of
slope. It may become part of the soil's field moisture, or may respond
to gravity and flow downward. As the rainfall continues, infiltrated
water begins to accumulate on the impermeable base boundary and then
flows down the slope responding to gravity. This flow is termed
lateral flow( sometimes interflow or throughflow ). Lateral flow is
recharged by continuous rainfall and develops increasingly. Water
travelling as lateral flow raises the water table( and hence the
seepage point ). Since the land surface has a smaller resistance to
flow than do porous media, a part of the lateral flow may return to
the land surface and is known as return flow. The remaining water
stays in the soil until it discharges as subsurface runoff into a
stream channel. Return flow and direct precipitation upon the
saturated land surface become overland flow and discharge as overland

runoff into a stream channel. After the rain stops, the upper part of
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slope rapidly de-saturates and asymptotically approaches its
equilibrium value. The lower part soon develops a remarkably stable
moisture content value approximating saturation. It is supported by
the lateral flow from the upper slope over a long time. Finally the
slope will drain towards the moisture profile determined by the
moisture characteristic curve of soil.

The distribution of total runoff among overland runoff and
subsurface runoff is determined by hydraulic conductivity, roughness,

the moisture characteristic curve and antecedent moisture content.
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2.5 Summary and Conclusions

In this chapter, we presented a synthesized runoff model of
overland flow and subsurface flow for analyzing comprehensively
hillslope hydrologic processes. The mathematical model consists of
saturated-unsaturated subsurface flow and sheetflow equations. The
equation of saturated-unsaturated subsurface flow is developed on the
basis of the equation of continuity for transient flow through a
porous medium and is put into the pressure head based form with the
aid of Darcy's law. Overland flow is assumed to be one-dimensional
sheetflow. The governing equation is derived from the equation of
continuity and Navier-Stokes equations, and is simplified by using the
kinematic approximation and the Manning equation. Since the equation
of overland flow is strongly non-linear, and sometimes the solution
may diverge, its quasi-linearized form is used. In the synthesized
runoff model, not only the conservation of mass but also the balance
of momentum are reflected. This implies that the interaction of
overland flow with subsurface flow is complete from a hydraulic point
of view.

The mathematical model has been solved by the Galerkin Finite
Element Method. Because the overland flow and subsurface flow have
been treated as a simultaneous system, not only pressure head but also
intensity of return flow are determined as independent variables.
Sequentially, hydrograph, moisture profile, saturation, water table
level, elevation of seepage point, depth of overland flow and velocity
distribution are calculated using pressure head.

We call the model developed here Synthesized Surface and

Subsurface Runoff model(SSSR model).
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From the simulation results, we come to the following
conclusions:

1) The synthesized runoff model is very powerful for analyzing
hillslope runoff processes and the interaction of overland flow with
subsurface flow. It is also effective for forecasting runoff by using
the predicted precipitation as input data.

2) Among all of the parameters, saturated hydraulic conductivity
, roughness and the moisture characteristic curve have the greatest
influence on runoff.

3) On a hillslope where the A-layer of the soil profile develops
very well, rainfall intensities generally do not exceed infiltration
capacities and Horton overland flow does not occur.

4) Return flow plays an important part in the interaction of

overland flow with subsurface flow.
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Chapter 3

LUMPING OF THE SYNTHESIZED RUNOFF MODEL

3.1 Introduction

In Chapter 2, we presented a synthesized runoff model and showed
that it is very powerful for analyzing hillslope runoff processes,
especially for analyzing the interaction of overland flow with
subsurface flow. However, since it is a typical
distributive(conceptual) model(Clarke, 1973), to fully define the
model we need to know:

1) the spatial and temporal distribution of boundary conditions

around the boundaries of the region,

2) the spatial distribution of the initial condition,

3) the spatial distribution of the hydraulic or geohydraulic

parameters that control the flow.
The boundary conditions and initial condition are normally presupposed
from historical records. In this case, even if the temporal

distribution can be known, the spatial distribution is very difficult
to obtain.

The physically-based approach requires complete spatial
specification of the saturated and unsaturated hydrogeological
parameters and surface roughness characteristics. Even when the
distribution of these parameters is relatively even through space,

there is seldom enough data available at field sites to provide the
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necessary input to hillslope hydrologic models. When the hydrologic or
hydrogeologic patterns are highly heterogeneous, as is usually the
case, the data problem is intensified even further.

In addition, the numerical treatment of the distributive model
has a great computational requirement. Sometimes its application may
be limited by the inadequacy of computer capacity.

For these reasons, it is necessary to develop a simpler model for
practical purposes. In this chapter, we shall try to lump the
synthesized runoff model without losing its characteristics. In the
lumped model, overland flow, saturated subsurface flow and unsaturated
subsurface flow will be treated as a simultaneous system, and the
relationships between the three subsystem will be derived from the

simulation results obtained with the synthesized model.
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3.2 Formulation of Lumped Runoff Model

In this section, based on the understanding of hillslope
hydrologic processes in Chapter 2, we develop the continuity equations
for the three subsystems: overland flow, saturated subsurface flow and

unsaturated subsurface flow.

3.2.17 Lumped Model

3.2.1.1 Region of Flow

The two-dimensional vertical cross-section ABCDEFGA shown in
Figure 3.1 is chosen as the region of flow. It is defined by three
parameters, that is, horizontal length of the hillslope, L; vertical
depth, D; and angle of land surface from horizontal land, 6. We shall
assume this section to be in a plane parallel to the delivery
direction of water toward a stream. For the same reason as the case of
the synthesized runoff model, we take the base boundary CDE and the
right-hand side vertical boundary EF as impermeable.

In Chapter 2, we have shown that when the saturated hydraulic
conductivity is relatively great, as is usually the case, the free
water surface of the overland flow and the water table of the
subsurface flow rise so uniformly in space that we can take them as
straight lines. Thus, the region of flow can be divided into three
subregions: ABGA, BCDGB and DEFGD, which correspond respectively to
overland flow, saturated subsurface flow and unsaturated subsurface
flow. These subregions are defined by the following three independent

variables, H: the depth of the overland flow at the lowest point of
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178



slope; B: the angle of the free water surface from horizontal level;

and 7Y: the angle of the water table from horizontal level.

3.2.1.2 Equations of Continuity

Referring to Figure 3.1, for overland flow the equation of
continuity can be written as

ds

—S = .
Tt R l1 + I+ QS (3.1)

where SS is storage in the region of overland flow, R intensity of
rainfall, l1 horizontal distance of saturated land surface, I
intensity of return flow{ or infiltration ), Qs overland runoff

discharge, and t time.
For saturated subsurface flow the equation of continuity can be
written as

o,
dt=E+q_I_Qg (3-2)

where Sg is storage in the region of saturated subsurface flow, &

moisture volume in the zone which changes from unsaturated( or
saturated ) state to saturated( or unsaturated ) state as water table
rises( or declines ), q total amount of lateral flow from unsaturated

zone into saturated zone, and Qg subsurface runoff discharge.

For unsaturated subsurface flow the equation of continuity is
expressed as

ds

u
3t “R@-1)-q-¢8 (3.3)

where Su is storage in the region of unsaturated subsurface flow.
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Each of the terms in Egs.(3.1) - (3.3) must be expressed by a
function of the independent variables (H,B,Y). These functions are

derived as follows

Storage in the Region of Overland Flow

Storage in the region of overland flow is equal to the area of

the region, that is,

s, = 0.5 HY/(tgh - tgB) (3.4)

dSS/dt thus can be calculated from

s 1 aH H s
— =0l s+ vl (3.5)
dt ted-teB b~ (0 .8)2c0s28 OF

Storage in the Region of Saturated Subsurface Flow

Storage in the region of saturated subsurface flow is equal to
the product of the area of the region with the porosity of soil, that
is,

sg =n D [ H/(tgb-tgB) + 0.5D/(tgb-tgy) ) (3.6)

where n is porosity of soil. Therefore, ng/dt can be calculated from

Wy 1w, a |
dt tgh-tgB dt (tge-tg8)2c0328 dt
D ay
+ at ] (3.7)

2(tg8—th)2coszY

Storage in the Region of Unsaturated Subsurface Flow

Suppose the moisture characteristic curve of soil can be

expressed approximately by the the following equation{ Tani, 1982, see

Figure 3.2 ):
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w=(n - wo)(1 + h/h )exp(-h/hy) + wg (3.8)
where ub is the lowest moisture content of the soil, h pressure head,
hO known parameter. Here, hO determines the shape of the moisture

characteristic curve. It is easy to prove that h, is equal to the

0
pressure head at which the specific moisture capacity( = dw/dh )
reaches its peak. On the other hand, in Chapter 2 we have shown that
when the A-layer of the soil profile develops very well( Ishihara and
Takasao(1962) have pointed out that this requirement is usually
satisfied for almost all natural hillslopes ), the contours of the
pressure head are approximately parallel to the water table and keep
much the same distance from each other. This means that the pressure
head is directly proportional to the distance from the water table,
Z, namely,

h=az (3.9)
When the saturated hydraulic conductivity is great and the hillslope
is relatively gentle, the proportionality constant @ can be
approximétely taken as -1.0. Under these circumstances, the storage in
the region of unsaturated subsurface flow can be obtained as follows.

Inserting Eq.(3.9) and a = -1.0 into Eq.(3.8) yields

w= (n - ub)(1 + z/zo)exp(-z/zo) tw, (3.10)

where zy = —ho.
The storage in the region of unsaturated subsurface flow is given
by integrating moisture content over the whole region( see Figure 3.1

)

S, = IDEFGD w dA (3.11)

where dA is an elemental control area within the region of unsaturated

flow. Inserting Eq.(3.10) into Eq.(3.11) yields
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1

S, = cosy [O.Swo(h1+h2) + (n—wo)ho( E1+E2+E3)] (3.12)
where

E, = (x-2)exp{x) 8h2

E2 = BE%E? h1(x—2)exp(x) ﬁﬁ?

EB = Dcle ho(x2—3x+3)exp(x) gﬁf

£(0 |2 = £(b) - £(a)
1, = H/(tgB-tgB)
1, = D/(tgb-tgy)

h, = (L—l1—12)(tg8—th)COSY

h2 = h1 + Dcosy
phtl = —h1/ho
phR = —h2/h0

Consequently, dSS/dt is calculated as follows.

EEE = EEE L EE_ B EEE gy (3.13)
dt "3 ‘at T3 at T3y Cat .

where

_u__wu _1 "1
9H ~ ah ol oH
1 1
aS 93 ah al
u_ _u., 1., 1
98 ~ Oh 31 aB
1 1
oY oy! oy" 312 oY ah1 312 Y Y

in which y' stands for the first Yy that occurred explicitly in the

right-hand side of Eq.(3.12) and Y" the second Y.
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Total Volume of Moisture in the Changing Zone

Following the definition of £, it can be written as

£(t) = lim §li£tézl (3.14)
At+0

where At is a time interval during which the configuration of the
three subregions, (H,B,Y), changes into (H+AH,B+AB,Y+AY), where AH=At
dH/dt, AB=At dB/dt, and Ay=At dy/dt; £'(t,At) is the total volume of
moisture in the zone which changes from an unsaturated( or saturated
) state to a saturated( or unsaturated ) state as the configuration
changes from (H,B8,Y) into (H+AH,B+AB,Y+AY), and can be calculated by

integrating the moisture content over the changing zone.

1
1t
g (t,At) = cosy [O-Swo(h3+h5)  (n-wy)hy( F1+F2+F3)]
(3.15)
where
F, = (x-2)exp(x) 8h5
- ph5
F, = h4 h3(x—2)exp(x) ph3
1 2 h
F3 = HZ ho(x -3x+3)exp(x) ihg
~ H+At dH/dt
h3 = cosy At dH/dt+(tge_th)[tge—tg(B+At daB/dt) —11]/cos6
n =D cosy[tg(y+At dy/dt)-tgy]
4 tgb-tg(y+At dy/dt)
hs = hy *hy
ph5 = -hg/hg

Inserting Eq.(3.15) into Eq.(3.14) and performing the limitation,

we obtain
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£ = Hg dH/dt + Bg dB/dt + Yg dy/dt (3.16)
where

tgh-t
=nl
Hg S [ cosy + cosy(tgfB-tgB) ]

H(tgb-tgy)

B, =nL
g cosycos28(tg6—tg8)2

= ( 0.5n ~ wo )Lg

=
1]

D/cosy/(tgb-tgY)

Discharges and Lateral Flow Intensity

The discharges of overland runoff and subsurface runoff and the

intensity of lateral flow are both functions of (H,B,Y), namely,

Q =QS(H,B,Y)
Qg =Qg(H,B,Y) (3.17)
q =q (H,B,Y)

These functions will be derived in the next section from the
simulation results with the synthesized runoff model developed in

Chapter 2.

Putting the above results together reduces the lumped runoff

model to the following form,

211 2 845 T £+l
[a21 8,y 853 ] [ dH/dt dB/dt dy/dt ]1° = {f2—I} (3.18)
331 833 833 f3

All of the coefficients are given in Appendix D.

Solution of the Lumped Model
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As a boundary condition the depth of overland flow at the lowest
point of slope is given, that is,

H = H(t) (3.19)
where H(t) is a prescribed function. Thus, the lumped runoff model can

be rewritten as follows,

a, . .ta a, . +a !
[ 1222 172 gg/at ay/ae 1T = (o) (3.20)
32 33 3

where f' = f1 + f2 - (a11+a21)dH/dt

£4 = £ - a5 dH/dt
Solving Eq.(3.20) for ( dB/dt dy/dt ) gives

dp/dt = FB, dy/dt = FY (3.21)
where

FB = FB(B,Y,t) = [fé(a13+a23)—f'a33] / A

Fy = B (Byst) = [flay-fila ytay,)] / A

A =ajy(agtay)-as (e ta,,)

Eq.(2.21) is solved by the Runge-Kutta method.
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3.3 Derivation of Discharge Expressions

In Section 2, we have formulated the lumped runoff model on the
basis of conservation of mass. However, for making the model soluble,
it is necessary to express overland runoff discharge, subsurface
runoff discharge, and intensity of lateral flow from unsaturated zone
toward saturated zone as functions of (H,8,Y). In this section, we
shall derive the function expressions from the simulation results with

the synthesized runoff model described in Chapter 2.

3.3.1 Subsurface Runoff Discharge

A storage function model is considered for subsurface runoff
discharge. Following Kimura(1961), the relationship between storage

and discharge can be represented by an exponential function, that is,

P
=K .
S Qg (3.22)

where S is water storage, K and P model parameters. Eq.(3.22) also can
be written as

Qg - asP (3.23)

Our purpose is to evaluate the model parameters, A and B, by using the
simulation results with the synthesized runoff model. For water
storage we consider the following two cases,

S=8 -8

and
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where SgO is water storage in the region of saturated subsurface flow
in static state, and SuO water storage in the region of unsaturated

subsurface flow in static state.

ui’ Sgi’ i

Solving the synthesized runoff model, we obtain Qgi’ S
= 1,2, **+, T. where i indicates discrete time. By means of the
regression analysis method, the regression lines can be drawn and the

correlation coefficient of Qg and S as well as the regression

estimates of model parameters A and B are obtained. For some examples(
Table 3.1 ), the results are shown in Figure 3.3 and Figure 3.4. It
can be seen that there is a high correlation between storage and

discharge for both the case S =8 - S _ and the case S=8 - 8 +
g go g g0

Su - SuO' However, In the first case, the parameters A and B vary

widely according to roughness and saturated hydraulic conductivity.
This is undesirable for a runoff model. In the following analyses, we

shall make use of S=8 -8 +S -8
g 80 u

uo*
The relationship between hydraulic conductivity and model

parameters is shown in Figure 3.5.
3.3.2 Intensity of Lateral Flow

Similarly to the subsurface runoff discharge, the intensity of
lateral flow from the region of unsaturated flow into the region of
saturated flow also can be determined from a storage function model.
For water storage the following three cases have been tested,

S=85 -8
g g0

S = Sg - Sgo + Su - SuO
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Table 3.1 Simulation case conditions

Fixed Conditton

Model Parameter

Rainfall Intenslty

L 100.0 (m) -—-—RAINFALL (R)
g 0.17453  (rad) 127 \
D 2.0 (m) L N
3 /

I 0.1 (m) s/ AN
di/dt ] 0.0 (m/hr) R \
Soll Prameter L 1,/ \
N 0.02 (i hr) NG ™
Cs 0.45 _ 2z 4§ & 10 12 1.
wr 0.027 _ TINE (hour)
ho 1.5 (m)
Inltlal Condition
f3o 0.0 (rad)
70 0,00001 (rad)
Case Data
Case|Kn/hr) | A(q) B(q) A(Qg) B(Qg)

1 | 50, 0.09965 | 0,60639 {0,09568 |0,57934

2 (100, 0.14994 [0,54486 | 0,14429 |0,52351

3 {250, 0.26739 0,62729 {0,25880 |0,59047

4 1500, 0.46417 10,78500 | 0,44154 |0,78246
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Figure 3.5 The relationships between model
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The results of some examples are shown in Figure 3.6, Figure 3.7, and
Figure 3.8. Since the model parameters estimated are lacking in

stability, the case S = Sg - SgO is considered to be unsuitable. In

the remaining two cases, S=8 - S +8 - S _ has been selected for
g g0 u u0

our runoff model, since it has a greater correlation coefficient.

3.3.3 Overland Runoff Discharge

In the lumped model, overland flow has been treated as an one-
dimensional sheetflow along land surface in the same way as in the
synthesized runoff model. Therefore, the velocity of overland flow can
be represented by Egq.(2.39), and then the average velocity of overland

flow at the lowest point of slope( outlet ) can be written as

IQ

Vv =
S n

/ Tsin6-aA75575556] u'/> + v (3.24)
0

where n, ¢ roughness of land surface,

S : tangent direction of land surface,

Vg = Qg/D : average velocity of subsurface flow at the outlet,
Qg : subsurface runoff discharge,

@ = 1 if sinB-dH/dS/cond

(1%

0,
@ = -1 if sinB-dH/dS/conb < 0.

dH/dS can be obtained from the geometrical relationship,

dH/as Hcose/(11/cos9—Hsin6)

cosze(tge—th)/[1—sin9cose(tg6—tg8)] (3.25)
The overland runoff discharge is the product of the average
velocity of overland flow in the tangent direction of land surface and

the flow depth in the normal direction, that is,
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QS =H VS cosf (3.26)

3.3.4 Stability of Model Parameters

We have shown the procedure for evaluating model parameters.
However, it is necessary to check whether or not the parameters
determined by the above procedure are suitable for a runoff model. The
criterion of suitability can be stated as follows: If the parameters
are stable, in the other words, if they do not change with rainfall
intensity or patten, they are considered to be suitable for a runoff
model.

For triangular rainfall, the relation between model parameters
and rainfall intensity is shown in Figure 3.9. It is apparent that the
stuitability requirement is satisfied. By this result, we are
Justified in considering the parameters as stable. When rainfall
intensity is weak, the parameter values shift slightly from their
stable values. This may be due to a greater relative error in the
numerical solution.

The relation between the parameters and the rainfall pattern has
been examined by comparing rectangular rainfall with triangular
rainfall. The regression estimates of the model parameters are given
in Figure 3.10 and Figure 3.11. It can be seen that the results of the
two rainfall patterns agree very well.

In summary, there is a high correlation between storage and
discharge, and the relation can be approximately represented by a
storage function model( exponential function ). The parameters of the

storage function model determined by the regression analysis method

are stable.
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Figure 3.9 The relationship between model
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3.4 Analyses of Lumped Runoff Model

In the preceding sections we have formulated the lumped model and
derived the discharge-storage expressions. This section is concerned

with examining the characteristics of the lumped runoff model.

3.4.1 Approximating Water Surface and Water Table by Straight Lines

In the lumped model, we have taken the free water surface of
overland flow and the water table of subsurface flow as straight
lines. However, they are usually curves. Questions thus arise as to
whether or not the approximations are appropriate, and how much the
approximations affect simulation results.

Figure 3.12 shows the changing water table and water surface
obtained by the synthesized runoff model and the lumped runoff model.
Although they differ somewhat, the results are, on the whole, in good
agreement.

The hydrograph of the same case is shown in Figure 3.13. It can
be seen that the hydrograph obtained by the lumped runoff model is in
excellent agreement with the results of the synthesized runoff model.

In summary, when the land surface is gentle, and the
distributions of saturated hydraulic conductivity and roughness are
even, as is usually the case, the agreement between the lumped runoff
model and the synthesized runoff model is quite satisfactory. Thus, we
can say that the straight line approximation of the water surface and
the water table are suitable and acceptable for a runoff model for

practical purposes.

3.4.2 Comparison between the SSSR Model and the Lumped Runoff Model
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We have tested the lumped runoff model under various flow
conditions, and the results are shown in Figure 3.14 - 3.16. For
comparison the results obtained by the synthesized runoff model are
shown together. In general, they are in agreement. However, there are
two problems which must be pointed out.

1) The lumped runoff model tends to overestimate the total runoff
discharge around the peak of the hydrograph. This may be because the
curved water surface and water table are averaged by lumping. It is
believed that further improvement may be achieved by using a more
advanced approximating method for water surface and water table.

2) It can be seen that the rising slopes of the subsurface runoff
discharge and intensity of the lateral flow are in excellent agreement
with the results of the synthesized runoff model, but the declining
slopes occur later by 3 ™~ 15 min.. It is considered to be due to the
same reason as the overestimation of total runoff discharge.

Even though the above conclusions are based on the simulation
results of triangular rainfall, they are also true for rectangular
rainfall. The simulation results for the latter case are shown in

Figure 3.17.

In summary, the lumped runoff model based on the comprehensive
understanding of hillslope runoff processes, even though it has a far
simpler structure than the synthesized runoff model, can give results
as good as the synthesized model. Its strong point is that for fully
defining the model the complete specification of spatial distribution
of model parameters is not necessary. This makes the lumped runoff

model very suitable for a practical purpose.
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3.5 Summary

In this chapter, based on a comprehensive understanding of
hillslope runoff processes we lumped the synthesized runoff model to
construct a new runoff model containing not only overland flow but
also saturated-unsaturated subsurface flow. The mathematical model
consists of continuity equations in three subregions, and equations of
motion based on the kinematic approximation for overland flow and
derived from the storage function model for subsurface flow. The model
parameters have been estimated by using the simulation results of the
synthesized runoff model with the regression analysis method. The
mathematical model is solved by the Runge-Kutta method.

The lumped model treats overland flow, saturated subsurface flow,
and unsaturated subsurface flow as a simultaneous system. The
intensity of return flow can be obtained as an independent variable in
the same way as in the synthesized runoff model.

The lumped runoff model does not require a complete specification
of the spatial distribution of the soil's hydrologic and geohydrologic
parameters such as saturated hydraulic conductivity, surface roughness
characteristics. As mentioned in the beginning of this chapter, even
when the distribution of these parameters is relatively even, there is
seldom enough data available at field sites to provide the necessary
input for the synthesized runoff model. In this meaning, we can say
that the lumped runoff model is far more useful than the synthesized

runoff model for a practical purpose.
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Chapter 4

REAL-TIME CONTROL OF MULTIRESERVOIR SYSTEMS

4.1. Introduction and Overview

During the last 20 years, the reservoir control literature has
grown impressively(Yeh(1985) and Yakowitz(1982) have reviewed the
reservoir control studies in detail.). As pointed by Georgakakos and
Marks(1985), this continuing research effort is not only because of
the many influential, social, and environmental effects each reservoir
system generates, but also because a comprehensive methodology capable
of handling the problem in its general form has not yet been
developed. In essence, the majority of the reservoir control models
published have been developed for and perhaps adequately handle a
particular reservoir system, or a particular class of systems with
common predominant characteristics. However, if these characteristics
were to change, the methods would no longer be adequate. The purpose
of this study is to present a new method able to handle the operation
problem of reservoir systems in its general form. This section will
review representative stochastic reservoir control studies to identify
past deficiencies and to benefit from some successful ideas.

Following Yeh(1985), the reservoir control models can be
classified by the optimization philosophy adopted as follows:

(1) Linear programming(LP) models, including chance-constrained

LP, stochastic LP, and stochastic programming with recourse.
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(2) Dynamic programming(DP) models, including incremental
DP(IDP), discrete differential DP(DDDP), incremental DP with
successive approximation(IDPSA), stochastic DP, reliability-
constrained DP, differential DP(DDP) and the progressive
optimality algorithm.

(3) Nonlinear programming models.

(4) Simulation models.

Linear programming has been one of the most widely used
techniques in water resources management. It is concerned with solving
a special type of problem: one in which all relations among the
variables are linear, both in constraints and in the objective
function to be optimized. LP models which consider uncertainty include
Chance Constraint Programming( ReVelle et al., 1969; Joeres et al.,
1971; Eisel, 1972; Sobel, 1975; Sniedovich, 1980; etc. ) and
Reliability Programming models( Colorni and Fronza, 1976; Simonovic
and Marino, 1980,1982; Marino and Mohammadi, 1983 ). In general, LP
models cannot adequately reproduce the system's stochasticity(
temporal and spatial correlation of the uncertain inputs and the
induced similar probabilistic structure on the system's state
variables ), and a global linear approximation of the system dynamics
is not likely to give a accurate results. Furthermore the Linear
Decision Rules( LDR ) that relate releases to storage, inflow, and
decision parameters are crucial assumptions in the application of
chance constraint LP, but, there is a fatal limitation of the rule:
the solution from an LDR model is not guaranteed to be optimal.
Georgakakos and Marks(1985) have shown that the assumption of LDR is
optimal for unconstrained systems with linear dynamics and quadratic

performance measures, and it performs poorly in situations where the
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above characteristics are absent. For these reasons, the models of
this category are considered appropriate for preliminary design
studies rather than for operation purposes(Loucks and Dorfman, 1975 ).

Nonlinear programming(NLP) has not enjoyed the popularity that LP
and DP have in water resources systems analysis. This is particularly
due to the fact that the optimization process is usually slow and
takes up large amounts of computer storage and time when compared with
other methods. The mathematics involved in the nonlinear models is
much more complicated than in the linear case, and NLP unlike DP
cannot easily accommodate the stochastic nature of inflows to the

systems.

Simulation is a modeling technique that is used to approximate
the behavior of a system on the computer, representing all the
characteristics of the system largely by a mathematical or algebraic
description(Ackoff, 1961; Maass et al., 1962; Yeh, 1985 ). It is
different from a mathematical programming technique. Mathematical
programming techniques find an optimum decision for system operation
meeting all system constraints while maximizing or minimizing some
objective. On the other hand, the simulation model provides the
response of the system to certain inputs, which include decision
rules, so that it enables a decision maker to examine the consequences
of various scenarios of an existing system or a new system without
actually building it. For these reasons, simulation models are
suitable for performance evaluation rather than for optimal policy

identification(Yeh, 1985; Georgakakos and Marks, 1985).
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Of the four categories, the second model category, Dynamic
Programming, is considered to be the most suitable for operation
purposes due to the dynamic nature of a reservoir system. Little(1955)
first applied DP to reservoir optimization, but the general
formulation of DP was completed by Bellman{(1957). DP is a procedure
for optimizing a multistage decision process. The popularity and
success of this technique can be attributed to the fact that the
nonlinear and stochastic features which characterize a large number of
water reservoir systems can be translated into a DP formulation.
Applications of DP to reservoir optimization have been reported by
Hall(1964), Young(1967), Takasao and Seno(1970).

However, in the application of DP models to a multireservoir
system, there are two basic problems. The first problem is the
phenomenon of exponentially increasing computational burden with
inecrease in state dimension. (This problems is popularly known as the
"curse of dimensionality".) The second one is the need to consider the

uncertainty of a water resources system.

The curse of dimensionality is the greatest hindrance to Dynamic
Programming solution of large-scale optimal control problems. To
alleviate it , a number of techniques have been presented such as IDP,
DDDP, IDPSA, and DDP.

The use of IDP for reservoir operation studies was reported by
Hall et al.(1969). The IDP procedure starts with an assumed trial
state trajectory, which is a sequence of feasible state vectors
resulting in a corresponding initial policy, and an initial value of
the objective function. The DP recursive equation is then used to
examine the neighboring states that are just above and below the trial

state trajectory. If any neighboring trajectory is found to give a
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better value of the objective function, then this new trajectory
replace the trial state trajectory. The procedure continues until
convergence takes place.

Heidari et al.(1971) modified IDP to obtain a new state
trajectory in a " corridor " centered about the trial trajectory, and
referred to the algorithm as DDDP. Essentially DDDP is only the
generation of IDP.

IDPSA makes use of Bellman's concept of successive
approximations, which decomposes an original multi-state variable DP
into a series of subproblems each with only one state variable, and
solves the subproblems by IDP.

IDP, DDP, and IDPSA do provide a considerable reduction in the
amount of computation, but they cannot overcome completely the
dimensionality problem. Furthermore, these methods are only suitable
for so-called "invertible system", they need a good initial
policy(sequence of states), and the convergence of the solution to the
global optimum cannot be proved. For these reasons, the DDP method
proposed by Jacobsen and Mayne(1970) is considered to be the most

-promising. If the DP model is an LQP( Linear dynamics and Quadratic
Performance criterion function ) problem, and the objective function
is separable and convex( for minimization problems ), then it can
easily be shown that the decision is a linear function of the current
state, the recurrence relation is a quadratic function of the state
variable for a backward solution, and that recursive formulae
providing the coefficients of the linear decision can be derived.
Therefore, given the initial state of the system, an analytical
solution can be obtained. If the objective function is not quadratic,
or the system dynamics are not linear, some approximation methods can

be used to provide a quadratic approximation for the objective
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function and linear expressions for the system dynamics around an
initial estimate; then an iterative solution procedure can be used for
the non-LQP problem. This process constitutes the so-called DDP.
Murray and Yakowitz(1979) have accomplished the extension of DDP to

problems with linear constraints.

From the above discussion, it can be seen that DDP does overcome
the curse of dimensionality in the case of deterministic problems.
However, the reservoir systems contain uncertainty. The uncertainty
problem has been treated with the chance-constraint type of
formulation or stochastic programming techniques.

Young(1967) introduced the Monte Carlo DP, which is an implicitly
stochastic approach. Similar to this approach is the Alternate
Stochastic Optimization presented by Croley(1974), Takasao, Ikebuchi
and Kojiri(1976, 1980). It is apparent that if possible the approach
that explicitly considers uncertainty is better than implicitly
stochastic approaches. The class of typical DP models that explicitly
consider uncertainty in the optimization procedure includes the models
using Markov chain input process description and backward DP(Schweig
and Cole 1968; Butcher, 1971; Su and Deininger, 1972, 1974; Arunkumar
and Yeh, 1973; Alarcon and Marks, 1979; Buchanan and Bras 1981; etc.).
In general, the models of this class perform satisfactorily in a small
system(of 2 - 3 reservoirs). However, their extension to
multireservoir systems is seriously limited due to dimensionality
problems. The greatest disadvantage of the Markov chain DP formulation
is its inability to explicitly produce policies satisfying
probabilistic constraints. Such a constraint , for example, could be a
reservoir storage requirement not to exceed(or fall below) a certain

level with probability Y(O £ Yy £ 1). Statements like the above are
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very useful in evaluating the performance of control policies for
stochastic reservoir systems. If it is not possible for the
optimization program to meet such specifications, the practice is to
follow a trial-and-error approach.Namely,a certain policy obtained by
the optimization model is modified(certain constraints are tightened,
penalty terms are introduced to or dropped from the objective
function, etc.)with the hope that the new policies will give better
results. Clearly, the approach is not set up in a defined manner and
can be costly.

Wasimi and Kitanidis(1983) modeled the system dynamics by a set
of actual and conceptual(corresponding to the river reaches) linear
reservoirs and employed a quadratic penalty cost functional to force
the system's state trajectory onto a prespecified track. The inputs
were assumed to be Gaussian random variables and the formulation did
not consider state or control constraints. Because of the
characteristics of the LQG( Linear dynamics, Quadratic performance and
Gaussian uncertainty ) problem as mentioned earlier, the DP solution
was obtained in analytical form which minimized the computational
burden.

The model developed by Georgakakos(1983) and Georgakakos and
Marks(1985) also employed the actual-conceptual reservoir systenm
configuration, but it allowed for nonlinear dynamics and general
performance functional. Here the objective was to identify the most
rewarding state and control trajectories and the procedure consisted
of an iterative optimization scheme. At each iteration a quadratic
approximation of the objective function and a local linearization of
the dynamics around the nominal trajectories provided by a Taylor
series expansion were performed to construct a local LQG approximation

of the original problem. The solution obtained in a recursive
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analytical form gave rise to new state and control trajectories until
convergence. The method exhibited a fast convergence rate and had a
provision for probabilistic state constraints. However, since the
Taylor series expansion used is a local approximation technique, the
more the stochastic state variables deviate from the nominal
trajectories, the less the LQG approximation of the original problenm
provided by Taylor series expansion is representative of the original
problem{we shall discuss the nature of Taylor series expansion in the
next section). The validity of the approximation is further
Jeopardized by the presence of system noise for, if intense, the noise
causes frequent departures of the state variable away from the nominal
trajectories.

Both of the previous two models allowed for updating of the
current state estimates via a Kalman(or an extended Kalman) filter

estimator.

The preceding survey of stochastic reservoir control studies
indicated that a comprehensive model efficiently accounting for the
peculiar reservoir system characteristics is still lacking. It also
brought up a variety of properties which such a model should possess.
Based on the many potential advantages of the previous approaches,
this work will continue along these same lines. The intention is to
perfect the control design so as to be efficient in handling most
system idiosyncrasies. Summarily, this study will present a general
reservoir system model including not only river segments and
reservoirs but also hillslope systems. The solution will be obtained
by a method named Statistically Approximated Linear Quadratic
Gaussian(SALQG) controller, which is based on the Open-Loop Feedback

Controller( OLFC ). The statistical second-order approximation
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technique will be applied instead of the Taylor series expansion to

construct the LQG approximation of the original problem.
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4.2 Statistical Second-Order Approximation

When the uncertainty of a reservoir system is considered
explicitly, the state vectors are random variables, and the system
dynamics, objective function and observation equations usually contain
some terms that are nonlinear with respect to the state vectors. Thus,
the problem of how to handle these nonlinear terms arises. The
classical and widely used technique is to approximate them by means of
Taylor series. However, because the Taylor series expansion is a local
approximation technique, generally it cannot give a satisfactory
approximation of a random nonlinear function. In this study we shall
apply the theory of statistical second-order approximation developed
below for handling the nonlinear function of random variable(for the

details see Bierman(1977), Takasao and Shiiba(1984)).

4.2.1 Theory of Statistical Second-Order Approximation

Suppose that an N*1 random vector X ~ N(X,P), P>0,is given, for
which N(X,P) denotes the Gaussian distribution with a mean vector of

X and a variance matrix of P. In practice, often X is merely the

estimate of X, and P is the corresponding estimation error variance
matrix. Therefore, we cannot be sure that X exactly obeys the Gaussian

distribution. However, even for such cases we make the simplifying
assumption that X ~ N(X,P) to obtain the statistical approximation.

*
Now, consider a nonlinear function g(X). Choosing a scalar B , a 1+N

vector H, and an N+N symmetric matrix A so that they minimize

E{|g(x)-[B*+H(x-i)+%(x-X)TA(x-X)]|2} , (4.1)
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we approximate g(X) by
[g(X)], = B +H(X-T) 2 (x-5)Ta(X-X) (4.2)

we call this approximation the statistical second-order approximation

of g(X), denoting it by [g(X)]Z. When g(X) is a vector-valued

“unction, we take the statistical second-order approximation for each

component function.

3t
The values of B , H, and A can be calculated from the following

equations, which are obtained by setting the partial derivatives of

3
Eq.(4.1) with respect to B , H, and A equal zero.

B = Elg(x)} - %tr[AF] (4.3)
BH' = E{(X-X)g(X)) (4.4)
PAPT = E((x-%) (x-0)Tg(X)} - E(g(X)}P (4.5)

in which tr[+] denotes the trace of the matrix in the brackets

The solutions of these equations can be easily obtained if the UDUT

factorization of the variance matrix P

P = ODO° (4.6)

is available, in which U is an upper triangular N+N matrix with unit
diagonals and D is a positive diagonal N°*N matrix. The random vector X

then can expressed as

XxX=X+70z (4.7)
in which 2 v N(0O, D) is an N1 random vector. The expectations in
these equations can be computed from the Hermite-Gauss integration
formula( Abramowitz and Stegun, 1972 ):
N

I 2 exp(-29)f(2)dz = 5w, £(z,) (4.8)
i=1
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in which N is a positive integer, zg is the ith zero of the Hermite

polynomial HN(z) and w; 1is the weight corresponding to z;. If we set

B. =V2 gz, , p. = wi/2 (4.9)

1 1 1

the above formula is rewritten as

It~ =

re —%:exp(-z2/2)f(z)dz =

- p.f(B.) (4.10)
~* /37 i=0 t 1

1

which gives the approximation of the expectation of f(Z) for Z ~ N(0,
T =
1). More generally, for Z=(Z1,-",ZN) ~ N(0, D), we have

N
Be)) = I f(AB, et /38, g tttpy  (4.11)
i 1 N

11,°"1N=1 1 N

in which di denotes the (i,i) element of the diagonal matrix D. For

example, for N=2, (Bi,pi)=(—1,0.5),(1,0.5), and for N=3, (Bi,pi)=(—

V3,1/6),(0,2/3),(/3,1/6).

Note that the number of evaluations of function values for

obtaining the expectation is NN; therefore, the amount of computation

will become explosively large as N increases. Fortunately, however, in

many cases we can reduce the amount of computation considerably due to

the following properties:

(1) The statistical second-order approximation of a first-order
polynomial is equal to the original polynomial itself; i.e., for

constant 8y 8y and a

2 3!

2 )
[a1X +a2X+a3]2 = a1X +a2X+a3 (4.12)

(2) The statistical second-order approximation is a linear operation;
i.e., the property

(g, (N)+g,(0)]1, = [g,(0],+(g,(X)], (4.13)
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holds.
(3) If the function g(X) depends only on a partial vector V of X,

then [g(X)]2=[g(V)]2 can be obtained by considering only the
marginal distribution of V. Thus, denoting the dimension of V by

M, the number of evaluations of function values is reduced to NM

< NN .

As to the proof of these properties, we refer to Takasao and
Shiiba(1984), and Takasao, Shiiba and Tomisawa(1984). From properties
(1) and (2), it is clear that we need to consider only nonlinear terms
that are not second-order polynomials. Such terms are often of type

described in (3); therefore, considerable computation can be

eliminated.

In practical applications, it is usually more convenient to

rewrite Fq.(4.2) as

[g(x)], = B+HX+6 (4.14)
in which
¥ 1 = =
B=2B+ §tr[AP]—HX (4.15)
§ = —;-(x-)‘() A(x_)‘()T_%tr[AP] (4.16)

Then it can be seen that § has a mean of zero and a variance of R5=%

tr[APAP] and is uncorrelated with X. (Note: If the covariance of two
random variables is equal to zero, they are said to be uncorrelated.
Even if two random variables are uncorrelated, they can be dependent.
This is such a case.) We can show that when g(X) is a vector-valued

function, this property also holds. By denoting the dimension of g(X)
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by m, if we take the approximations Eq(4.14) for individual component

functions of g(X)

iy 3 73T 1 5
[g1(X)]2 B1+H1X+61 , 61 = 2(x_x) A1(X-X) —2tr[A1P]

v 3 7T 1 5
[gm(X)]2 Bm+me+<Sm , am = 2(x_x) Am(X—X) —Ztr[AmP]

and concatenate them to the same form as Eq.(4.14), then & is

uncorrelated with X and

E{8} =0 (4.17)
1 = =
Rg = {E{di dj}} = {Etr[AiPAjP]} (4.18)

Here the convention that {xij} denotes a matrix with X; 50

an element
in the i-th row and j-th column, is used.

To obtain theoretical insight into the nature of the statistical
second-order approximation, denote by €, the error in the statistical
second-order approximation of g(X), that is

g(X) = B+HX+8+e (4.19)

Then € has a zero mean and is uncorrelated with X and 8. Based on this
and the fact that the sum of the first two terms, B+HX, on the right-
hand side of Eq(4.18) is obtained by statistical linearization
(defined by omitting the second-order term from the formulation of
statistical second-order approximation) it turns out that the

statistical second-order approximation allows us to evaluate the lower

limit of the variance of the error in the approximation by statistical

linearization.
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4.2.2 Relationships between the Expectation of a Stochastic Function

and the Statistical Second-Order Approximation

Suppose that an N1 random vector X ~ N(X,P), P>0,is given. Now
consider a function of the mean vector X
J(X) = E{g(X)} (4.20)

where g(X) is a given non-linear function and the variance matrix P is

assumed to be constant.

Differentiating J(¥) with respect to the ith component Xi of the

mean vector X yields

B L st yexpl L-0P ()T V@ B ax
o%, O, -
1 1
=(F™1) Bl (x-R)g(X)) (4.21)
and
v = (A BT sl 0yex)) (4.22)
BX1 axN

where (13_1)i is the ith row of the inverse matrix, P_1, of the

variance matrix P.

Differentiating VJ(X) with respect to Xi once again we obtain

3IE) - b7y m (X)) e [P AT (5T R (X))
9%, o%. i J 1J
1)
(4.23)
and
vI(X) = PYE((x-X) x-%) Te ()} (P 11 TP B g (X)) (4.24)
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On the other hand, from Eqs.(4.4) and (4.5) we can obtain

HT

5 TE{ (x-X)g(X)} (4.25)

A= FECE) (-8 Tg00) 15 o TR (1)) (4.26)

]

Comparing Egs.(4.22) and (4.24) with Eqs.(4.25) and (4.26) we find
that

VI(X) = HT (4.27)

v2J(X) = A (4.28)
This means that if the variance matrix is fixed the Gradient vector

and the Hessian matrix of the non-linear function with respect to the

mean vector X, J(X) = E{g(X)}, are equal to the coefficients of the
first- and second-order terms of the statistical second-order
approximation of g(X) respectively.

Now consider the approximation of g(X) by the Taylor series

expansion,

g(x) = g(X) + Ny(X-K) + 2(x-0)" N, (x-) (4.29)

in which

2 1T\ nT AT 2 12\ /aT AT
a g(X)/BXNBX1 ] g(X)/BXNBXN
In general,

N, A H (4.30)

Nyy # A (4.31)

and consequently
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VIR AN, V) ANy (4.32)

From the above discussion, it can be seen that the Taylor

approximation cannot correctly evaluate the Gradient vector and

Hessian matrix of J(X) = E{g(X)} while the statistical second-order
approximation can evaluate them correctly. This nature of the
statistical second-order approximation is expected to result in a
faster convergence rate of the optimization procedure in which the
statistical second-order approximation is used and make the procedure
more reliable.

Figure 4.1 is an example which shows the difference between the
Taylor approximation and the statistical second-order approximation,
where the non-linear function g(X) is

g(X) = (X-a)(X-3a)(X-4a)° , a = 0.9
Comparing #2 or #3 with #4 we find that the Taylor approximation is a
local approximation around the mean. Comparing #2 with #3 it can be
seen that the %;obal approximation characteristic of the statistical

second-order approximation becomes more apparent as the variance of

the random variable X increases.
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Figure 4.1 Approximation of nonliner function of stochastic variable.

41: original function I,(s,).

#2: second-order approximation function by statistical approximation method while
s~N(@3, 1).

23 : second-order approximation function by statistical approximation method while
s~ (3, 10).

#4: second-order approximation function by Taylor approximation method al s,=3.

25: probability density function p(s,) while s~N(@3, 1).

#6: probability density function p(s,) while s,~N (3, 10).
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4.3 Modeling of Multireservoir Systems

The design of a controller is the second basic step of a control
study. Prior to this step a credible and mathematically treatable
system model must be developed. Based on physical considerations, this
section will show how to represent a general reservoir system by a set

of ordinary differential equations.

4.3.1 General Characteristics of a Reservoir System

A typlcal reservoir system consists of the following elements.

a. A set of drainage basins where the lateral flows as the
outputs of the rainfall-runoff processes enter into rivers. Runoff
models are used to describe this subsystem.

b. A set of reservoirs located at various river branches. Each
reservoir accepts an inflow from the upstream system, contains s(t)
water volume, loses or gains additional water due to evaporation
seepage or rainfall at a rate e(t), and releases at the controllable
rate u(t). Each storage variable s(t) is restricted to vary within a

max
(

positive bounded range, s (t)s s(t)ss t). From physical and

. . . - min
operational considerations, similar bounds govern each release: u

(t)gu(t)gumax(

t).

c. A set of river segments providing the hydrologic linkage among
the existing reservoirs as well as among the reservoirs and hillslope
runoff systems. Along the river segments and from the reservoirs, a

number of water diversions (possible generating return flows) may

supply water to municipal, agricultural, or industrial sites.
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d. A set of objectives that the system is expected to serve. A
general set of typically established objectives includes flood
protection, water supply for municipal, agricultural, and industrial
use, energy generation, recreation, navigation, water quality
improvement, and wildlife enhancement.

e. A set of hydrologic inputs (as, for example, precipitation or
the flows from adjacent hillslopes) which enter the system at various

boundary locations.

Loosely speaking, the reservoir control problem is to identify
optimal schedules of the controllable variables which will guide the
system to successfully meet its objectives. This is a rather difficult
task due to the following system idiosyncracies: (1)uncertainty , (2)
non-linearity, (3) high dimensionality, and(4) multiplicity of
conflicting objectives .

In turn, the reservoir system's uncertainty may be due to the
following sources:

a. Hydrological input or natural uncertainty. Once the system is
defined, the inputs are used to represent the real world lying outside
its boundaries. For example, the precipitation is a stochastic
process. Consequently, the uncertainty of the omitted processes (e. g.
atmospheric randomness) will carry over to the inputs. while the
corresponding dynamics will induce temporal and spatial correlation
structure in their behavior (e. g. seasonalities, etc. ).

b. Uncertainty due to imperfect knowledge concerning response of
the reservoirs, of the river segments and of the drainage. This is
known as model uncertainty.

c. Uncertainty due to the objectives (e. g. random demand

fluctuations, or economic uncertainty).
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d. Uncertainty due to observation errors

Nonlinearities in the systen dynamics may be due to the
reservoirs and the river segments as well as the drainage basins. The
reservoir nonlinearities are caused by the evaporation and seepage
processes taking place through the reservoir's irregular surfaces and
also by the various constraints. The river segments and drainage
basins are nonlinear elements due to many reasons: e. g. frictional
effects of bottom and land surface as well as soil, fluid viscosity,

turbulence, channel nonuniformity, seepage, etc.

There are many examples of large reservoir systems all over the
world. For example, the Huang-He river system in China consists of at

least 50 hydroprojects.

Reservoir systems are usually characterized by conflicting
objectives; i. e., a certain control segence which successfully
achieves one objective may be undesirable for another. (Conflicts
arise, for example, between hydroenergy generation and flood
protection, or due to incompatible water use demand patterns. )
Furthermore, if the system is capable of long-term river control (i.
e. if the existing storage capacity gives multiyear management
flexibility of the input process water volumes), then there exist
multiple time scales to which the objectives pertain. Namely, the
system performs successfully if it performs well from short to
considerably longer time periods (e. g. a few hours to a few years)

After this preliminary introduction to the reservoir system

characteristics, we next discuss the development of a representative

system model.
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4.3.2 System Model Development

Following Takasao and Shiiba(1984), by defining "appropriately"
the state variables, most of the existing runoff models can be

rewritten into the state-space runoff model with the following form:

dSi.(t)

——d{— = fij( Sij(t), r(t) ) + wij(t) (4.33)

yij(t) = gij( Sij(t) ) o+ \)ij(t) (4.34)
where

ij: jth subbasin of ith basin
r(t): mean rainfall over ij subbasin

.(t): model noise
f£..(ey¢), g..(s): non-linear function
y..(t): observation
vs:{t): observation noise

t: time

For a reservoir, consider the following quantities at any time t:
ij: jth reservoir of ith river

Sij(t): water volume contained in the ij reservoir

Iij(t): inflow rate to the reservoir from the upstream system

Uij(t): rate of controlled releases

Lij(t): net water loss rate from evaporation, seepage, and

rainfall, etec.

w: . (t): model noise due to the imperfect knowledge concerning the

response of the reservoir
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then the conservation of mass law for the ijth reservoir can be
expressed by

dSi.(t)
—d{;—— = Iij(t) - Uij(t) - Lij(t) + ‘*’ij(t) (4.35)

Consider the loss term Lij(t) and denote the following: (1) eij(t) the

net [(evaporation) - (rainfall)l rate per unit of the reservoir lake's

surface area, (2) Aij(Sij(t)) the reservoir's surface area in terms of

the stored volume, (3) hij a seepage coefficient per unit of water

elevation, and (4) Eij(Sij(t)) the function giving water elevation in

terms of the lake's volume. Then

Lyg(t) = o5 (60A; (8,4 (8)) + by (B, (5, (8)) (4.36)

In reality the relationship yielding the seepage losses is much more

complicated. (The coefficient hij varies spatially and the form of the

seepage term depends on the general groundwater hydrology of the
lake's area.) However, because of the distributed parameter nature of
the underlying phenomena( spatial nonuniformity ), it is most likely
that they will require a lumped parameter representation( as in
Eq.(4.36) ) to be hypothesized and estimated from available input-

output data. The inflow Iij(t) in Eq.(4.35) is the output from the

system lying upstream of the ijth reservoir( e.g., outflow rate from
the upstream river segment and/or the drainage basin. The outflow from
the drainage basin is expressed by Eq.(4.34). Here, the observation
noise can be considered to be contained in the model noise.) If apart

from the release Uij(t) there also exists some other constant water

abstraction(say, in the form of a water supply diversion), it can be
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incorporated into the inflow Iij(t) which should then be reduced by

the corresponding abstraction rate.

Consider now the river segment i shown in Figure 4.2. It can be
thought of as a number of cascaded conceptual(fictitious ) reservoirs
each of which stores and releases water according to the conservation

of mass law:

dSi.(t) w
—-]—-dt = Iij(t) - Qij(t) - Lij(t) + ij(t) (4.37)

where

ij:+ jth conceptual reservoir of ith reach

(t): water volume contained in the ij conceptual reservoir
I,.(t): inflow rate from the upstream system

Q..(t): outflow rate

L,.(t): seepage loss rate from evaporation, seepage, and

rainfall, etec.

W . (t): model noise due to the imperfect knowledge concerning the

response of the river segment

It might be that Lij(t) is negative, implying gains from groundwater.
Iij(t) may be the outflow Qij—1(t) of the previous conceptual

reservoir, or the previous outflow minus the rate of any existing

diversion, or the outflow plus any return flow. If j=1, Ii1(t) may be

the outflow rate from the upstream drainage basin, or an actual
reservoir's release, or the the final outflow of another branch, or

some combination of the above.
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River segment

Conceptual reservoir

Actual reservoir

Figure 4.2 River segment and conceptual reservoir
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From kinematic wave considerations one can deduce a relationship
of the following form for the outflow Qij(t):
mij
=Q
Qij(t) ijsij (t) (4.38)
Under certain uniformity assumptions for the channel geometry and flow

condition, one can express the coefficients ai' and ms . in terms of

physical parameters such as bottom longtitudinal slope, channel length
and width, roughness coefficient, and water depth( Georgakakos and
Bras, 1980 ). However, owing to the distributed parameter nature of
the physical situation, it is suggested that these coefficients be
estimated rather than obtained from the previous relationships. ( In
an estimation scheme the coefficients derived by physical
considerations may serve as initial guesses. )

The seepage( or infiltration ) losses can be represented/(
Burkham, 1970a,b; Granados and Bras, 1983 ) by a similar expression of

the following form

B

_ ij
Lij(t) = kijSij (t) (4.39)

where Bij lies approximately in the range [0.8, 1.2]( Georgakakos and

Marks, 1985 ) and kij is the infiltration coefficient. Typically,

these coefficients are assumed constant over the same river segment or

constant over the whole basin.

The dynamics of the entire system can then be modelled by
combining the previous representations of the individual river
segments with the actual reservoirs and drainage basins. To facilitate

the notation let the system dynamics be expressed by the following

vector differential equation
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das(t)
dt

= F(S(t),r(t)) + L U(t) + w(t) (4.40)
where S(t) is an NS dimensional vector including all drainage basin

state variables and all actual and conceptual reservoir storage

variables, U(t) is an N dimensional vector of the controllable
releases, r(t) is an Nr dimensional vector of the rainfalls, F(*,*) is
an NS dimensional time varying non-linear function, L is an NS * N

dimensional matrix associating the control vector elements with the
appropriate differential equation(Obviously, the elements of this

matrix are 1 or 0.) w(t) is an N  dimensional system noise, it is used

to account for model and other error sources, and usually assumed to

be a white Gaussian process with zero mean and spectral density matrix

Qw(t):

Blu(t)w(s)"} = Q()6(t-s) (4:41)

in which &(t-s) is the dirac delta function which is zero everywhere
except at the origin, t=s, where it goes to infinity.

Under the availability of input-output data records, it is best
to determine the various model parameters by a parameter estimation
scheme. We shall omit the system identification since it does not
affect the controller development in the subsequent sections. For the
detial applications of the system identification theory, the reader is
refered to Kitanidis and Bras(1978), Georgakakos and Bras(1980, 1982),
and Restrepo Posada and Bras(1982).

Finally, the actual reservoir water elevation and hillslope
runoff discharge as well as river discharge measurements will be
grouped into a vector y(t) related to the system's state vector

through
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y(t) = H(S(t)) + v(t) (4.42)
where V(t) is a white Gaussian process added to account for

observation errors and has zero mean and spectral density matrix

Q (t):

Y

B(u(t)v(s)") = Q (t)6(t-s) (4-43)
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4.3.3 Modeling of the System's Objectives

A major difficulty in the development of reservoir control models
is to derive a suitable objective function. This is primarily due to
(1) the stochastic nature of several variables present in any model,
(2) the inadequacy of expected or average performance criteria to
reflect the typical decision maker's aversion to poor outcome of an
adopted set of release policies, (3) the multiobjective nature of
reservoir operation, and (4) the antagonistic nature of the
objectives.

Items (1) and (2) above are closely related. As an alternative to
the expected performance criterion, a utility function can be used to
reflect the risk-averting attitudes of decision makers (Dantzig, 1956,
Davis, 1975, Datta and Burges, 1984, Orlovski et al., 1984, Loaiciga
at el., 1986). In this study , we shall reflect the risk aversion of
decision makers to poor performance of release schedules by a
stringent set of constraints on the reservoir pool.

Typically, a reservoir system is expected to serve several
objectives; water supply for municipal, agricultural, or industrial
use, flood protection, hydropower generation, navigation, water
quality control, recreation, and wildlife enhancement constitute a set
of generally accepted reservoir system objectives.

What complicates the reservoir control problem even more than the
multiplicity of objectives is their antagonistic nature. Take, for
instance, hydropower generation and flood protection. For the purposes
of the former, it is profitable to maintain reservoir storages close
to capacity so that the power turbines are under the highest possible
hydraulic heed. At the same time for the fear of severe flooding

events, one would prefer to operate the system at lower reservoir
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elevations to safely attenuate the flood wave hydrograph. Similar
conflicts also exist between water supply and hydropower generation,
navigation and water supply, as well as among other objectives.

In multiobjective optimization one is interested in solutions
which belong on the problem's Tradeoff Surface otherwise known as
Transformation or Pareto Optimal Surface. A Pareto Optimal solution is
noninferior with respect to any other feasible solution in the sense
that it performs strictly better toward at least one objective. In
deterministic problems, the Pareto Optimal Surface and methods for its
reconstruction have been well studied(Haimes,1977). Stochastic
multiobjective problems have not been as well explored and the Pareto
Optimal Surface still needs to be defined.

Reservoir systems are usually provided by operating priorities
mandated by institutional agreements. The agreements establish a
specific priority ranking on the system objectives and prescribe
mandatory performance levels. A commonly encountered ranking(Yeh,
1982) appoints flood protection, water supply, water quality control
and navigation as the primary objectives and states that the remaining
objectives be met so far as they are consistent with the primary ones. .
From the analyst's point of view, these specifications restrict the
investigation of the problem's Tradeoff Surface to that portion which
meets the set requirements. Including recreation and wildlife
enhancement in the set of primary objectives or assuming that they are
implicitly satisfied when water quality standards are met, the
following approach for multiple objective reservoir operations can be
proposed. Constrain the operation to always meet the primary
objectives and maximize the hydropower production as far as possible.
Conceptually, this transforms the multiobjective problem into a single

objective optimization, but at the same time it allows reconstruction
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of the Tradeoff Surface by varying the constraint levels or changing
the optimized objective. This section will discuss how this general
approach for treating multiple objectives can be quantified in
relation to the system model developed in the previous section. The
intention is to present a modeling framework which can be flexibly
adjusted in specific applications.

Consider, for example, that a system's manager agreed to supply a
user with q(t) volume of water per unit of time for a specified time

period [o, T] at reliability not less than [1- Y?llcn(t)]. Assume

further that the diversion is located downstream of conceptual
reservoir jk. An equivalent probabilistic statement can be written

(t):

with respect to the corresponding reservoir storage variable Sj

k
Sr;li(n(t) min
J o p(Sjk(t),t)dek(t) S Yk (t) (4o4d)
. 1/m.k
in which S?llcn(t) = [q(t)/ajk] J (c.f. Eq.(4.38)), p(+,*) is the

probability density function(p.d.f.) of Sjk(t) at time t, and the

(t)

lower limit of the integral represents the value below which sjk

cannot lie with probabilistic significance. Thus the requirement to

meet the water supply demand at [ 1- Yl;ltn(t) ] reliability level is

mathematically equivalent to constraining the p.d.f. of the storage

variable Sjk(t) in a region above a certain bound. This bound is
min

characterized by two parameters: (1) Sjk (t) which is specified by the

min

demand level through Eq.(4.38) and (2) ij (t) which gives the

probability of failing to satisfy this demand. It is noted that as the

demanded level becomes greater and /or the probability of violation
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becomes smaller, constraint Eq.(4.44) increasingly confines the
p.d.f.'s feasible region.

The previous example was presented to illustrate the claim that
the requirement to satisfy system objectives at prespecified
reliability levels implies probabilistic constraints on the system
state variables.

As a second case, consider flood protection. The associated
probabilitic constraints can be easily derived after specifying two

characteristic parameters per storage variable: That is, the flood
level S?ix(t) which the storage is not allowed to exceed and the

probability of exceedance Y?ix(t). For an actual reservoir, S?ix(t)

can be taken equal to reservoir's capacity( above which water flows

down the spillway ), while for a conceptual reservoir ghax

ik (t) can be

defined by the flood discharge level qmax(t) and the relationship

1/m,

man _ max jk
Sk (t) = I[q (t)/ajk] (4.45)

The flood protection reliability constraint can then be stated by

40 min
e PO (1088, () 5 13 C0) (4-46)
jk

This constraint restricts the state's p.d.f. to lie below some upper
bound and becomes more restrictive for smaller Y?ix(t) and/or as less

severe flood condition levels established.

The navigation objective calls for water level fluctuations
within a certain range determined by the adjustability of the port
structures and the navigability of the river branches. These ranges
together with the reliabilities assigned to navigation by the system

manager imply two more probability constraints per storage variable.
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Water quality control can similarly be treated by requiring river
flows to be greater than a critical level above which adequate
effluent diffusion takes place.

Similar bounds on the system's storage variables can be imposed
by the recreation objective after specifying the operating range of
the recreational facilities along with the desirable reliability
level.

Thus, it is generally valid that the system objectives can be
quantified by a set of reliability constraints on each actual and
conceptual storage variable.( As explained, hydropower production will
not be treated by a constraint, but rather it will be maximized given
that all other system objectives are satisfied at the prespecified
levels. ) The constraints are categorized into upper and lower types
and the most severe one can be determined from each group. (Note that
both the storage thresholds and the probabilities of violation
determine which are the most severe constraints. Figure 4.3
illustrates a case where flood protection is more binding than water
quality control.) It is evident that if the p.d.f. of a storage
variable meets the most severe constraints from the upper and lower

group, it also meets all others. Below these two constraints will be

denoted by
Srinin(t) min
I & p(S, (t),t)ds; (t) s vj (t) (4.47)
f;:ax(t)p(si (t),t)as; (t) s i“’i“(t) (4.48)
i

where i scans the storage variables: i=1,2,°'°,NS.( For notational

convenience, from here on the state varibales will be refered to by

one index i rather than by two jk. )

242



p(Sij)

Figure 4.3 The most severe probability constraint
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A Pareto optimal point corresponding to the previous reliability
constraints can now be obtained by optimizing hydroelectric energy
generation. This objective can be represented by the following

performance index:

min E{Ig[G - £g.(U.(%),8. ()%t} (4.49)

where E{+} denotes expectation with respect to all random quantities,

U(t) is a vector including all Uj(t), G is the total power demand

assigned to hydroelectric units or the system's installed power

capacity. gj(°,') is the power production function for reservoir j.

Performance index (4.49) maximizes energy generation by quadratically
penalizing energy deficits from the total power demand of the maximal
possible production.

Note that we can represent the index (4.49) by

min  E(JTg(0(t),5(t))at) (4.50)
u(t)

where g(U(t),S(t)) = [G - Zg.(U.(t),S.(t))]2
j J J J

In order to compare the statistical second-order approximation
with the Taylor approximation and make the explanation easier, in this
study the following function with a special form will be used for
gl*,*):

g(U(t),s(t)) = 1(U(t)) + m(s(t)) (4.51)

As discussed in the beginning of this section, our objective has
been to identify release( control ) trajectories corresponding to

points on the problem's Pareto Optimal Surface. A Pareto Optimal

3
release trajectory U (t) is defined here as the one which achieves the
minimum value of performance index Eq.(4.50) given that it produces a

probabilistic state trajectory satisfying the reliability constraints
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imposed by all other system objectives. Other Pareto Optimal
trajectories can be obtained by varying the probabilistic constraint
levels and the entire Pareto Optimal surface can be generated and
explored. Notice that the priority ranking of the system's objectives
can be conveniently reflected by the allowable levels of probabilistic
constraint violation. Between two objectives, the one of higher

priority should have smaller Y(t).
Having discussed the modeling of the system's dynamics and its

objectives, we shall next proceed to formulate and consider the

associated optimization problem.
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4.4 Operation Problem of Multireservoir Systems

Based on the discussions of Section 4.3, we constructed the

following mathematical system model:

a. System Dynamics:

B - p(s(e),r(e)) + L (L) + w(t) (4.52)

b. Objective Function:

3 = B L(U(L)) + m(s(t)) lat) (4.53)
¢. Constraints of Control Variables:

U?in(t) S U (t) s U'J'.‘ax(t) y 551,200, N, te(0,T) (4.54)

d. Chance Constraints of State Variables

Swin(t) min

o p(85(8),0)a8,(8) s ¥I(t) (4.55)
too < Jmin

IsTax(t)p(Sj(t)'t)dsj(t) s v ) (4.56)
J

§=1,2,%%,N, tel0,T]
e. Continuing Operations After T
f. Observation Equation:
y(t) = H(s(t)) + v(t) , telo0,T] (4.57)

where S(t) is the NS dimensional state vector, S(0) is assumed to be a

Gaussian random vector with mean S_. and covariance P

0 s} U(t) is the N,

dimensional control vector; w(t) is the Ns dimensional random

disturbance vector assumed to be Gaussian white noise( not
autocorrelated in time ) with zero mean and positive semidefinite

spectral density matrix Qw(t)’ w(t) is also assumed uncorrelated with
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S(0); F(+,*) is the NS dimensional time varying nonlinear function of

the state and rainfall; 1(*) is the nonlinear function of control
vector; r(t) is rainfall vector; m(*) is the nonlinear function of

state vector; L is the NS . Nu constant control coefficient matrix;
E{+} denotes expectation with respect to all random quantities, namely

(w(t), tel0,T]}, {v(t), tel0,T]) and $(0); UF™™(t), UT™(t) are’
control thresholds, which may reflect phyéical or operational
considerations(e.g., low flow requirements, etc. ); p(*,*) is the
probabilistic density function of state variable and conditioned on

all available measurements and all previously applied controls;

?ln(t), S?ax(t) are storage thresholds, Y?ln(t), Y?ax(t) are the

probabilities of violation; y(t) is the Nm dimensional measurements of
actual reservoir elevations as well as discharge at gauged channel
sections; H(*) is the nonlinear function of state vector and describes
the relationships between reservoir elevation and storage as well as

relationships between discharge and conceptual storage; v(t) is the Nm

dimensional random disturbance vector assumed to be Gaussian white
noise( not autocorrelated in time ) with zero mean and positive

semidefinite spectral density matrix Qv(t)’ v(t) is also assumed

uncorrelated with S(0) and w(t).

The objective of the reservoir operation problem is to identify

3*
the release trajectory {U (t), t€[0,T]} which minimizes the objective
function J subject to the constraints c.“ve. given the reservoir system

transits in Eq.(4.52) with which the observation Eq.(4.57) is

associated. We call this problem PBO.
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Clearly, it is necessary to forecast input rainfall intensity for
identifying the future releases. We assume that a rainfall-forecasting
system exists which provides the information of future inputs to us.
Thus, if the rainfall vector at time t=0 is represented in a discrete

time form:
T
X(0) = [ X,(0), =+ =, X, (0) ] (4.58)

the rainfall-forecasting system provides the forecast vector of

|
rainfall:

— - = T

%(0) = [ Xy(0), * =+, X, .(0) ] (4.59)
and the forecast error variance matrix:

v{ X(0) - X(0) } = PX(O) (4.60)

where M is the number of lead time steps, t =0, t =T, T is control

m=0 m=M

horizon, Xt(O),ta[tm,t 1, are constant.

m+1

Like most interesting real world problems, the solution of the
reservoir operation problem will involve a digital computer.
Consequently, we find it appropriate to convert the previous
formulation to the discrete time representation and work with
difference rather than differential equations. This conversion is also
justified because in a real application solutions of the operation

problem are desired in monthly, weekly, daily, etc., time intervals.

Consider a deterministic, nominal control trajectory which is

constant within each interval [tk, 1, k=0,1,+°+,K-1:

tk+1

t ], k=0,1,++,K-1} (4.61)

nom — nom
{U (t) - U (tk)’ tE[tk! k+-|
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where tO:O, tK=T, and Atk:tk+1—tk' This form of the nominal control

trajectory is due to the operational requirement.

Under these circumstances, we now convert the previous reservoir
model in continuous time into a discrete-time, linear system in the

time step Atl=tl+1_tl’ tl=0=0, tl=L:T' t1 must contain both the

discrete points for rainfall forecasting, tm’ and the discrete points

|
for nominal control trajectory, tk. Furthermore, in order to guarantee

that the difference scheme to be used is convergent, the time steps

Atl have to be taken very finely. Hereon, we assume:

4m. -
1 mk 1

t -t.= I At (4.62)
l+mk 1 i=1 i

At =t

K gt

k:
The rainfall in the time interval [tl,tl+1], ry, now can be expressed
by

r. = elx(0) (4.63)

1 1 _
where el is an M dimensional column vector and its mth element, ®1n?

can be calculated from

elm = { (4064)

0, otherwise

From Eq.(4.63) we obtain

- T= - - T
ry = Elr)} = eX(0), r = [ Tgr**tTp 4] (4.65)
- _ T
V{r-r} = E PX(O)E = [ PrO’...’PrL—1] (4.66)
where E = [eo,"',eL_1]T
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We now show the discretizing procedure of the systenm dynamics

Eq.(4.52). Suppose that the initial state vector S(0)™ N(§O,PSO) and

= AN(r i i
that r(t,tE[tO,tl=1]) r(0) N(rO,PrO). We first approximate the

vector function F(S(0),r(t)) by the statistical second-order

approximation,

Fi(s<o),r(t))=B§+Hsi[s(o)_s<o)]+Hri[r(t)_50]+ai (4.67)

where

T

3(0)-5(0) S(0)-5(0)

Then, in the interval [tl’tl+1)’ 1=0, F(S(t),r(t)) can be
approximately represented by

Fi(S(t),r(t))=B§+Hsi[s(t)—§(0)]+Hri[rO—Fo]+Gi (4.68)

Inserting Eq.(4.68) into Eq.(4.52) reduces the system dynamics to

das(t) _
I FSS(t) + LU(t) + Frro + C!' + €'(t) (4.69)
where
= o8 e T
Fs =1 Hs1’ ’HsN J
s
T
Fr = Hr1’.."HrN ]
s
. # * _T — - E
c' = [ B1,---,BNS] - FSS(O) - Frro + E{&8}

T
§ =1 61,--°,6N ]
s

e'(t) = 8§ + w(t) -E{§}
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Note that U(t) is constant over the interval [tl ] and equal to

'E14g

Ul' In addition we assume that the random disturbance £€'(t) is equal

to E'(0)=€6. If, for example, we use the Pade difference formula, the

transition equation from tO to t1 of the form

S1 = ¢OSO + BOUO + Goro + CO + EO (4.70)

is obtained. where

Sy = S(=ty)y 8= 44t

_ 2.2 -1
Yo = [ I - At F /2 + At F /12 ]

8 =¥y [ I+ 86,F /2 + At§F§/12 ]
By = ¥, Aty L
Gy = Yo Aty F_
Gy = ¥y Aty C
€y = ?0 Ato eé

The mean and covariance of the state vector S1 corresponding to the

nominal control trajectory then can be calculated from

=nom o= nom -
§7(t,) = 908, + ByUy + GgTy + C (4.71)
PROM(4 ) = 6P (0)0. + GLP_G. + covie.) (4.72)
s 1 0's 0 0'r070 0 )
Set 1=1+1, and assume s(tl)mN(Enom(tl),onm(tl)), Repetitive use

of the above procedure to Eg.(4.52) results in the following discrete
time system dynamics:

Sl+1 = ¢lsl + B1U1 + Glrl + C1 + sl : (4.73)

251



However, since Eq.(4.73) has been obtained by means of time step

Atl, it can not be directly used for operation problem. It is

necessary to reconstruct it on the basis of time step Atk. The

following is the reconstruction procedure.

81427 ®1415141 * Ui * OpgTrag * Cpuq * By

= 0498 + O ByUy 9 Gpe X(O) * 900t 08
+ B .U + G eT X(0) + ¢C + €
1+1°1+1 1+1°1+1 1+1 1+1
....l.........(4.74)
Notice that U1=U1+1, tIE[tk’tk+1]' We obtain
= ¢ ' ' 1 1
sl+2 ¢1sl + BlUl + Glx(o) + cl t el (4.75)

t = ! =
0 =%y By =% 0B) B,

T T
' =
G = 0349618y * Gypqeqpqs

1 =
C1 = 9498 * Cppqs
= g! = € £ =
Ele]) =] = &) ,46) +€1,, =0
P =0T .  + P

P
1
El 1+1 El 141 €l+1

Repeating the above procedure m times we obtain the following
discrete time system dynamics in time step Atk

(4.76)

Sk+1 = @ksk + BkUk + ka(o) + ck + €

As mentioned in the beginning of this section, the information
about the future rainfall, mean vector and covariance, can be obtained

from the rainfall-forecasting system. In order to efficiently use this
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information, we incorporate the rainfall vector into the state vector
by augmenting the state vector as follows.

We first factor the covariance matrix P so that

X(0)

T
PY(0) = 5x(0)%x(0) (4.77)

in which, denoting the rank of the matrix P by NX’ S isan M *

X(0) X(0)

NX dimensional matrix, then define a random vector d as

4= (Sg(0) Sy(0)) Sy(o) (K(0)-X(0)) (4.78)

where d is an NX dimensional column vector. Because X(0) is the

forecast of X(0), the mean vector of d is zero, and the variance of

forecast error

E(dd'} = I (4.79)

where I is an NX . Nx dimensional identity matrix. Using d we can now
represent X(0) as
X(0) = X(0) + Sy(0)d d ~ N(0,I) (4.80)

At the stage of identifying the future releases, the time is
fixed. Therefore, the random vector d can be treated as time-

invariant( i.e., dk+1=dk ). Thus, we augment the state vector Sk as

Sk
Si ={ 7} (4.81)
d
the mean vector of S& and the estimate error variance matrix are given
by
= Sk
Si = { } (4.82)
0
P 0
pLo= %% ] (4.83)
sk To g
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The system dynamics for the augmented state vector Si then can be

expressed as

S T UL Bt O e (4-84)
where

B ()
o = [ ]

0 I

B
Bl =( )

0

C. +G X(0
o - A
k 0

Q 0
¢ Ek

ep v N(O’Qe'k)’ Qi = f . . 1

In order to simplify the notation, we remove the constant term C&

from the system dynamics by redefining the state vector. Consider a

deterministic vector §i that satisfies

1 — &r1at 1 1t = G
S eis! + CL, Si =8} (4.85)

Using §i we define a random vector

n o~ qt _ gt

Sk =S¢ - Sp (4.86)
Inserting Egs.{(4.85), (4.86) into Eq.(4.84) reduces the system
dynamics to

1 — $ran 1 €1
Sk 41 WSp + ByU + €4 (4.87)

On our way to the discrete time control problem, we now need to
discretize the performance index and the constraints.

Integral Eq.(4.53) can be rewritten as follows:
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t
J=E % ftk+1[ 1(U(t)) + m(S(t)) ] at ) (4.88)
K

Approximating the terms of the above summation by

ftk+1
t
k

[1(U(t))+m(S(t))]1at = [l(U(tk))+m(S(tk))](t t

k+1” k)

k:O,‘],-oo’K_1 noo-oo-coo-.co--o(4.89)

one obtains

K-1
J=E I

U ))m(8(50)) (b -,)) (4-90)

The constraints will be rewritten as follows:

mi x .
Ujkn S Ujy s U?i b §=1,2,0 00 N, k=0,1, %00 K1 (4.91)
min
Ry )
S ICR DL E Ve (4.92)
+oo min
jk

j:1’2’ocn’NS’ k:O,']’.ol’K_‘]

where fk denotes f(tk).

The influence of the continuing operation after T can be handled

by introducing the terminal cost( a function of the terminal state

vector ) into the objective function. On the other hand, since the

initial state vector( its probabilistic distribution ) is known,

E{m(SO)} is constant and then can be removed from the objective

function.
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In summary, the discrete time reservoir control problem which we

shall refer to as PB1, is of the following form:

PB1: The Reservoir Operation Problem in Discrete Time:

K-1
minigi:e {J =k£0 E{ 1k+1(sk+1)+mk(Uk) }} (4.94)
{Uk}k=0
where E{°+} denotes expectation with respect to Sps {gk}i;g,
K
ot
subject to
8. 8, = &8 + BU_+E ,k=0,1,%% K-1 (4.95)
b. U?in S Up 8 U 591,2,0 00 N0, 1,00 K1 (4.96)
min
jk min
c. wa p(Sjk,k)dek s ij (4.97)
+0 < Min
Smaxp(sjk.k)dsjk S Yik (4.98)
jk
J= )2)“')NS! k=0,1,¢°*,K-1
d. y, = H(Sk) * Vv ,k=0,1,°** K-1 (4.99)

This section has formulated the optimization problem associated
with a multireservoir system. We shall next solve this problem to

obtain the optimal control trajectories.
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4.5 Solution of Optimization Problem by the Open-Loop Feedback

Controller
4.5.1 Open-Loop Feedback Controller

In order to obtain the optimal control trajectories, the
reservoir operation problem formulated in the previous section should
be solved by a closed-loop methodology. Unfortunately, since the
problem is both nonquadratic and constrained( non-linear ), the
optimal feedback laws are practically inaccessible. Consequently,
certain suboptimal techniques are of great practical interest. Some of
the widely known suboptimal control techniques are the Open-Loop
Controller and the Naive Feedback or Certainty Equivalence Controller
as well as the Open-Loop Feedback Controller. The first is based on
the assumption of no information gathering. The second arbitrarily

assumes that the problem possesses the Certainty Equivalence

Property1), solves the associated deterministic problem and applies

1)If a control problem with imperfect state information takes on the
same solution as the corresponding problem with perfect state
information and the deterministic problem resulting when all random
quantities are replaced by their expected values, we say that the
problem possesses the Certainty Equivalence( C.E. ) property. Thus,
the C.E. property, if valid, reduces the stochastic control problem
into an easier deterministic one. However, one must note that the more
the characteristics of a certain problem diverge from the LQG problem,

the less likely it is that the C.E. property will hold.
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the resulting feedback laws on the stochastic system. In the general
case, both have been found to be less reliable as compared to the

Open-Loop Feedback Controller( Bertsekas, 1976 ).

At any time k of the control horizon, the Open-Loop Feedback
Controller( OLFC )} performs the following operations:

a. Estimates the conditional density p(Sk/Ik) using the
information set Ik = { Yyaoe

’yk’UO’... ’Uk—1 by

b. Assuming that no measurements will be made in the future,

finds the open-loop trajectory {Uk,-o-,UT__1}OLFC which minimizes
T-1
Te = AL T 01y (8, + my(U)) ) V1)
1=k
T-1
= 1Z=k( 11+1(51+1) + ml(Ul) )] (4.100)

) . T-1
where E{+} denotes expectation with respect to S, and {7} 1=x" The

second equality sign is because the p.d.f. of Sk is conditioned on IK(

see Step a. ),

OLFC

c. Applies Uk ’

d. Redefines the information set at time k+1

i OLFC -
IkH—Ik[_I{Uk WYy q) 1 TE(0) (empty set) (4.101)

e. Repeats the previous steps.

The above is an open-loop procedure because at each decision time
the entire future control trajectory is determined assuming no

information gathering. It is also a feedback procedure because the
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OLF
applied controls UkL ¢ are functions of all currently available

information, The advantage of the OLFC idea is that the computations

OLFC

required to obtain Uk are considerably simpler than those of the

true optimal controls. The OLFC procedure is generally suboptimal
because in the specification of the feedback OLFC controls it is not
taken into account that measurement information will be gathered in

the future and used.

After this subsection's introduction to the OLFC, we next begin
to apply the OLFC to our reservoir operation problem. It will be
completed in four main steps. In the first three steps, we shall
consider the optimization problem obtained at the step b of the OLFC
procedure. In the first step, a procedure capable of efficiently
solving the unconstrained nonquadratic optimization problem will be
developed. In the second and third steps, the basic procedure will be
modified to account respectively for possible control or state
constraint violations. In the fourth, the design of the OLFC will be
completed for the solution of the real-time reservoir operation
problem. Care is taken to maintain coherency in the presentation and
for this reason lengthy mathematical derivation and background

material are relegated to the appendices.
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4.5.2 Solution of the Unconstrained Reservoir Optimization Problem

4.5.2.1 The Unconstrained Reservoir Optimization Problem

Neglecting all control and state constraints, the unconstrained
reservoir optimization problem obtained at step b of the OLFC
procedure can be stated as follows( c.f., PB1 and Section 4.5.1 ), For

convenience, the current time k is assumed to be zero.

PB2: The Unconstrained Reservoir Optimization Problem

T-1
minimize{J = E{ § [1k+1(sk+1)+mk(uk)]}} (4.102)
(g 3T k=0
k' k=0
subject to
SN ¢ksk + B U+ &, k=0,1,°%¢,T-1 (4.103)

where E{*} denotes the expectation with respect to SO and {Ek,

k=0,1,°**,T-1}.
The various quantities in Eq.(4.102), (4.103) have been defined

in Section 4.4. The p.d.f. of the initial state S0 has been obtained

at step a of the OLFC procedure by using all available information. It

is Gaussian with

E(Sy)} = §O (4.104)

- T,

E{(SO-SO)(SO—SO) } = PSO (4.105)
The random disturbances {Ek, k=0,1,*+*,T-1} are also Gaussian
independent of SO and have zero mean vector and covariance

_ (0 s ifk#1
1

T
E(g £} . r (4.106)
k’1 Qo if k =
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ng has been defined in PB1.

This section will be concerned with developing a computationally
efficient procedure to solve PB2. PB2 involves linear state dynamics,
Gaussian statistics, and nonlinear performance index. Due to the
nature of the performance index the solution cannot be obtained in

analytical form.

nom}T-1

k k=0’ the

Consider a nominal control trajectory {U

corresponding nominal state trajectory is defined as

nom snom a

shom _ . =nom _

Seeq = 05" + BUL » 5 5, (4.107)
If we define

88, =5, - Sﬁom ,k=0,1,++,T (4.108)

§U, = U, - Uﬁom ,k=0,1, %%+, 71 (4.109)

the system dynamics then can be rewritten as the following (GSk,GUk)

based form

éS = ¢k68k + Bk(SUk + Ek, k=0,1,c¢¢,T-1 (4.110)

k+1
The objective function can be rewritten as

T-1

minimize (J = E( 3 [1, (65, )+m (6U,)1)) (4.111)

{su }T-1 k=0
k" k=0
where

® _ shom, _
1k(dsk) = 1k(d>‘sk+sk ) = 1k(sk)

* _ nom, _
mk(ﬁUk) = mk(GUk+Uk ) = mk(Uk) (4.112)
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Equivalently, we can transform the above problem into a
deterministic problem by taking advantage of the assumption of no
future measurements.

Since the system is linear and the uncertainties are Gaussian, it

can be shown that GSk will also be Gaussian with mean vector and

covariance given by

<Ssk+1 = ¢kdsk + BkGUk, Gso = 0, k=0,1,**+,T-1 {4.113)

T
P =P =9 P, 0 + Q. , k=0,1,%¢,T-1 (4.114)
85,4 Sy KSkk & CEk

if the nominal control trajectory is optimal, ng =0, GSKM N(O,PSk)
Consider now the reformulation of the cost functional. Since gk

enters in the cost functional through the state vector (SSk+1 and does

not affect the cost terms at previous time, we can write

J = [ E {1

* #*
2 14168y 1)) + m, (80, ) ] (4.115)
k=0 85,

The expectation in Eq.(4.105) is taken with respect to the Gaussian

density. The equivalence of Eq.(4.115) and Eq.(4.102) can be seen by

#*
the fact that the randomness of each cost term 1k(68k) is solely due

* -
to the randomness of 8S, . Since E {1k(dsk)} is a function of GSk and

k
6Sk

PSk’ the reformulated problem represented by Egs.(4.113), (4.114), and

(4.115) is a deterministic problem. In general, the analytical

specification of

% — 3#
1k(5sk,PSk) = E {1k(6sk)}
885,
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3#
is not readily possible. One can expand lk(ésk) in a power series and

3
obtain as accurate analytical approximation of 1k(-,') as desired by

using a property of Gaussian random variables known as Gaussian moment

factoring( Georgakakos and Marks, 1985 ). In this study we shall first
*
approximate lk(5Sk) by a second-order function and then take the

expectation with respect to dSk.

The question now is how to efficiently solve the reformulated
deterministic problem. Since this is a general nonlinear programming
problem where analytical solutions are not likely to exist, one must
employ some minimization procedure. The design of a suitable such

procedure is taken up in the following section.
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4.5.2.2 Newton's Method

There are two major concerns about a mimimization method:
reliability and efficiency. A method is reliable if it is guaranteed
to converge to optimal (in some sense) points, and it is efficient if
it exhibits a fast convergence rate. As can be seen in
Luenberger(1973), Lasdon(1970), Bertsekas(1976, 1982), there exist
many minimization algorthms. Perhaps the most important class of.
minimization algorithms is the class of the Generalized Gradient
methods. When minimizing a scalar real valued function f(x) with

respect to the n dimensional real vector x, a method of this class at

the ith iteration "moves" from a point Xy to another Xy according to

+1
(Bertsekas, 1976)
=x +ta, d (4.116)
where for all i we have ai; 0 and
[V £(x,)17d, <0, if V.£(x.) # 0
| i ' x i !
(4.117)
d, =0 , if V_£(x,) = 0,
fo(xi) denotes the Gradient vector of f(¢) at x;» d; is the descent

direction, and ai is the stepsize of the iteration. The conditions in

(4.117) guarantee that a reduction of the objective function value
will be realized as a result of the iteration and that the method will
stop at a stationary point of f(+) where the gradient is zero. If f(+)
is a convex function, this point is the global minimum; otherwise, may
be a local minimum or some other stationary point (e.g., an inflection

point}.
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A method of this class is completely defined once the rules for

selecting the diretion di and the stepsize a; are established, these

rules exclusively determine whether the method is reliable and
efficient.

Concerning the di selection rule, the best, yet not always

possible, choice is to use the Newton's direction:

a, = - [vixf(xi)]“vxf(xi) (4.118)

where Vixf(xi) is the Hessian matrix of f(+) evaluated at X - At each

iteration, the Newton's direction is specified using first and second
order derivative information concerning the shape of the objective
function, this being both its strenth and weakness. The additional
information can realize a faster convergence rate, yet it also
requires a heavier computational load. Our objective is to design an
implementation of Newton's method which is computationally efficient.

Despite our problem's large dimensionality (the vector X5 includes now

T
,"',U

T—1]) this will be

all control vectors at all times: xz = [ Ug

accomplished by taking advantage of its special dynamic structure.
In general, the Newton's direction (4.118) is obtained by

minimizing the second order Taylor series expansion of f(*) around X5

or the statistical second-order approximation of f(°*) in the case

where £{*) = Elg(z)}, z\W(x,P):

aroy T 1 T
f(x) = NX0+Nx(x—xi) + 2(x—xi) Nxx(x-xi) (4.119)
if T(x) is the second order Taylor series expansion of f(*) around X5,

2 o = . s s
Nog= f(xi), N = fo(xi), New = Vxxf(xi), if f(x) is the statistical
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3#
second-order approximation of f(*), NxO =B + tr[AP], N, = fo(xi) =

- - ; . .
H, Nxx = Vxxf(xi) = A( see Section 4.2 ). This can be easily seen by

differentiating (4.119) with respect to x, setting the resulting

expression equal to zero, and solving for the minimizing vector Xi41°

(It is assumed that the Hessian is nonsingular.) Then the Newton's

direction is given by
d, = x,,.-x. = -N_N (4.120)

Notice, furthermore, that the same direction would result if in place

of f(x) we had minimized some other quadratic function q(x) such that

Vixq(xi) = Vixf(xi) y Valx;) =9 £(x;) (4.121)

namely,

Ty2

a(x) = aq + [9,a0x)] " Gexy) + 30emx,) V2 alx,) (xx;)

......-......(4,122)
This observation can be very useful in optimal control problems
where the dimensionality of the vector x is very large and a direct
evaluation of the Gradient and Hessian is impractical.

Returning to our problem, consider a second-order Taylor
*
expansion of mk(GUk) around the nomical control trajectory( i.e.,

around dUk = 0 ) and a statistical second-order approximation of

3
lk(GSk) by making use of the assumption that GSk a N(O’PSk)( i.e., aUk

=0 ):
% 1T T _ oA
m (60, = S6U N 68U+ N80+ N = om (SU) + N
* 1.7 T _ A
lk(GSk) = EdSkNSSkGSk + Nsk(SSk + NSOk = lk(GSk) + N

cecsccrascscne (/) 123)

266



where Nuuk’ NSsk are NU . NU’ N, * N, real symmetric matrices

S S
respectively, Nuk’ NSk are NU’ NS dimensional real vectors

respectively, NuOk’ NSok are constant.

Now consider the following problem:

T-1
N A A 1
minimizeJ= XL [ E {lk+1(6Sk+1)}+mk(6Uk)—2tr[NSSk+1PSk+1]]
K’ k=0
T oot - T oo 1T T
:kio[§6sstskdsk + NG 08 + SOUN U+ N, 68U ]

...............(4,124)
subject to the dynamical equation (4.7113).
Based on the comment concerning the Newton's method, if it were
true that problems (4.115) and (4.124) had equal Gradients and

T
k=0’

nom

_ mI-1 snhom
k - O}k=01 {6

Hessians along the nominal sequences {&U Sk

= 0}

then we could obtain the Newton's direction for the former by solving
% (s

the latter. If this direction is denoted by &U (l), a Newton's

iteration could then be performed to identify a more rewarding nominal

control trajectory U(l+1):

(1+1) _ o (341) ., (i+1),T
v = [ SRL W
= {Uéi),---,uéfz]T + ai[aug(i),---,éuzfi)]T (4.125)

The equality of the two problems!' Gradients and Hessians Has been
shown by Georgakakos and Marks(1985) via direct evaluation along the
nominal control and state trajectories. The final expressions do not
recomment straightward implementation of the Newton's method.

Comparatively, implementation through solution of problem (4.126) is
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much more advantageous. The computation of the Gradient

VJ(6U0=0,"°,6UT_1=O) and especially of the Hessian
V2J(6UO:O,°--,6UT_1=O) and its inverse is bypassed and the Newton's

direction:
GU* = [ V2J(6U =0,+e+,8U, .=0) ]_1VJ(6U =0,e00,8U, .=0)
o’ L | o i

(4.126)
is obtained from the solution of a deterministic optimal control
problem with linear dynamics and a general quadratic cost functional.
This solution is derived by Georgakakos and Marks(1985) via Dynamic
Programming and is reproduced below. It has the advantage of being

analytical and, therefore, computationally efficient.

Computation of the Newton's Direction for the

Unconstrained Reservoir Optimization Problem

For k=0,1,***T-1

3

#* -
6Uk = - Dk[ chssk + A ] (4.127)

_ T -
Dy = [ By K qB + Ny ]

T
' Bk Kk+1¢k

T
k= B My Y N

1

=
|

=
|

_% 3 %* 3
65,,, = ®, 85, + BSU , 85, =0, k=1,e¢,T-1

where the positive semidefinite matrices {Kk}§=0 are obtained
recursively by the following matrix Riccati equation:

KT - NssT

T
K = Nogre * O By® -

1l

268



T T T -1 T
- DB K T DB K B+ N 1o By K0 )
k=T-1,T-2,%**,0 (4.128)
and the vectors (k }T result from
k™ k=0

k, =N

T sT
~ T
e = N ¥ O Ty -
T T T 1T
~ U By Ky 10 By KB+ N 170D By dg ]
k=T-1,T-2,%¢+,0 (4.129)

The optimal " cost to go " are given for k=T,T-1,«+,1
65.K 63, + K 65, + C (4.130)
k'k "k kk k k

where C, = 0O

'[BkKk+1Bk+Nuuk]'[Bk + N ]

k=T-1,T-2,°**,0

Lastly, the optimal value of the problem is

min _ = _ 1 T T
J = J’O(GSO) =3 65 K 865 + k06§O +C

oKo%5, (4.131)

0

Essentially, implementation of this solution is completed in two
steps: (1) the matrices {K }T and the vectors {k }T are computed
ps: k' k=0 k’ k=0 P
by a backward pass of the corresponding equations from time T to time

* T
0, and (2) the controls {6Uk}§:g) are computed by the previous

N O
quantities and the sequence {Gsk}iJ obtained from a foreward pass of

the dynamics. The computational requirements are mainly associated
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. . T T . ca s .
with the computation of {Kk}k=0’ {kk}k=0 and involve multiplications

and inversions of NS'NS, NU'NU matrices. Compared to a straight-

forward implementation of Newton's method requiring the computation

and inversion of a (TNU)-(TNU) Hessian, where T could be of the order

of several hundreds, substantial computational savings should be

realized.

The second factor influenring the success of a minimization
method is the stepsize selection rule. As can be seen in
Bertsekas(1982), there are many good choices available: the
minimization rule, the limited minimization rule, the Goldstein rule,
the Armijo rule, and many others. Here we shall present the Armijo
stepsize selection rule because it is easily implemented and because
it conveniently generalizes for a problem with control constraints.
For the general problem of minimizing f(x) with respect to x, this

rule can be stated as follows:

The Armijo Stepsize Selection Rule:

Let B and ¢ be scalars satisfying
0<B<1,0<0<1/2 (4.132)

Given a nonstationary point Xy and a direction di’ the stepsize oy is

obtained from

where m. is the first non-negative integer m for which

£(x,)-£(x,8",) 2 -0 Bm[VXf(xi)]Tdi (4.133)

If x; is a stationary point of f(x), we set ai=0.
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The logic behind this rule is to guarantee that each iteration
will reduce the objective function's value by an amount proportional
to the Gradient and will thus prohibit convergence to a nonstationary

point.

In the case of our problem Eq.(4.133) becomes:
J ) U My

= see = -— o-o >

(GuO o, ,6U T—1 =0 J(B S B GUT_1) 2

-0 8" [ 93(8uy=0,+=+,8U,_,=0) 17sU" (4.134)

%
where dUk is the Newton's direction obtained from Eq.{(4.129).

T-1
J(6uo=0,"-,GUT_1=0)=k§O[GSE {1k+1(6 k+1)} tom (GU =0}]
- k+1
in which 85, N(O,Psk)
8 meg® )3 (1 ) 5
J(8" U ,B UT_1)—k=O[6SE lk+1( St t m, (B U )]
k+1

3
in which 5Sk N N(GSk,Psk)

dsk+ ¢késk+BkB GU GSO—O

The expectations can be computed with the Hermite-Gauss integration

discussed in Section 4.2. The Gradient VJ(5uO=O,"',6UT_1=O) can be

efficiently computed by the following procedure(Geogakakos and

Marks(1985)):

Computation of the Gradient

Consider the sequence of vectors {Pk}T

k=0 obtained recursively by

Pp = Nop
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= T = -ee
P, = ®P o+ N , k=T-1,7-2,%+2,0

then

VM%M&%%p'UM%4=m
0)= { .

v J(8U _=0,¢*+,8U
8U, ~0

VI(Suy=0,°**,8Uy_ .=

7179

T
Nyr-1"Br_1Fp

Using the above results the Amijo stepsize selection rule can be

stated as follows: Select the stepsize:

where my is the first non-negative integer m for which

6 _ _ m(S 3¥* m6 it Y
J(uy=0,°++,8Uy_.=0) - J(B"SUy,=*+,B"8U, ) 2

T-1
8™ £ [N +P _B ]6U

(4.136)
x=0 k

When the problem is characterized by a convex structure (as, for

. . T-1

example, the case of linear dynamics and convex cost terms {lk(’)}kzo
, {mk(-)}§=1) the method will converge to the global minimum.

Otherwise, the minimization process should be restarted from different
initial trajectories and the global minimum should be determined by
comparing the cost functional values at the indentified stationary

points. In order to prohibit movements opposite to the direction of
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. . T T-1
descent, one will have to ensure that the matrices {Kk}k=0’ {Nuuk}kzo

are positive (semi)definite. A procedure that enforces these
properties has been proposed by Georgakakos and Marks(1985).

If the unconstrained global minimum violates no control or state
constraints, it also solves the constrained problem. In the opposite
event, a constrained minimization scheme should be adopted. The
development of a control constrained minimization algorithm is the

following section's topic. State constraaints will be accouted for in

Section 4.5.4.
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4.5.3 Solution of the Problem with Control Constraints

4.5.3.1 The Reservoir Optimization Problem with Control Constraints

Towards reconstructing and solving the reservoir operation

problem PB1, in this section we consider the following constrained

formulation:

PB3. The Reservoir Optimization Problem with

Control Constraints

T-1 3 3#
minimize{J = £ [ E {lk+1(dsk+1)}+mk(duk) 1} (4.137)
(gl 0 %S
k’ k=0
subject to

a. 63, ,, = ¢ 65 +BSU, 65 =0, k=0,1,+,T-1  (4.138)

b. U?in Uy, S U?ix, j=1,2,%+,N _,k=0,1,°+*, T

Ul
or equivalently:

min max

SUTPS6U 5 SUTLY, §=1,2, 000 Ny k=0, 000 T (4.139)
where 6Umin = U?in - grom
Jk jk Jjk
max _ . max nom
GUjk = Ujk - Ujk

We wish to develop a procedure accounting for control magnitude
constraints within the framework of the Open-Loop Feekback Controller.
Selected classes of constrained minimization methods are now briefly

reviewed to find a suitable procedure.

4.5.3.2 Constrained Minimization Methods
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Three broad classes of constrained minimization methods are (1)
the Feasible Direction methods, (2) the Manifold Suboptimization

methods, and (3) the Projection Newton methods.

The Feasible Direction methods are natural extensions of the
uncontrained Generalized Gradient methods where the descent direction

di is such that the iteration

X, . =x, +a, d, (4.140)
yields feasible points X;s i=1,2,-°-(oz.l being the stepize parameter).
At each iteration‘the feasible descent direction di is determined by

solving a linear or a quadraatic minimization problem. This
requirement imposes considerable computational overhead and makes
these methods unattractive for problems with many variables (such as

PB3).

The Manifold Suboptimization methods are also based on (4.140)

type iterations where the descent direction di is obtained by

minimizing the objective function over the subspace defined by the
active constraints. If feasibility is violated, the minimization is
reperted over a new subspace defined by the currently active
constraint set, and the process is reperted until a point satisfying
the necessary conditions for optimality is reached. Methods of this
class perform quite well for problems of relatively small dimension,
but are not efficient for problems with many binding constraints. The
reason is that not more than one constraint can be added to the active

set at each iteration.
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For the problem of minimizing f(x) subject to x > 0, a Projected
Newton method will perform the following iteration (Bertsekas, 1982):

+
Xiyq = [xi tay di] (4.141)

+
where [+] denotes the projection operator:
+ T+ T
[z] = [z ,,***,2 ] = [max(O,z1),"',max(O,zn)]

sscsecnccvennnna(/ 142)

and di is the descent direction given by

o
1]

- DifoQXi) (4.143)

D. is a positive definite matrix of the following form.

Hi 0
h * o o 0
b, = ', - ] (4.144)
0 6 L] . .' h
n

where Hi is a positive definite matrix, {hl,l=ri+1,-~-,n} are positive

nunbers, and the set of indices

Bf(xi)
' T3y > 0} (4.145)

1 14

A+(xi) = {ri+1,"',n} = {1/ Osx, , s€

correspond to the binding and nearly binding constraints. The
specification Oéxliéei is employed rather that xli =0, to avert
possible "zigzagging" behavior of the method. Ei can be chosen from

€ = min(e,wi) y Wy = |xi - [xi—VXf(xi)]+| (4.146)

with € a small positive scalar.

The stepsigze ai can be obtained by an Armijo-like stepsigze

selection rule as follows:

(4.147)
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where m, is the first non-negative integer m for which

£(x,) - f([xi+aidi]+) 2 -0

e (x) jen' (x;) 9

af(x,) af(xi)

1
L ax.. %1 " f .. it

]+

)]

sesveccescnsese(/,148)

and o € (0,1/2), B € (0,1)

(Notice that if none of the constraints are binding, the previous

stepsize selection rule becomes identical to the one given in Section

4.5.2)

Under assumptions which are usually valid in actual problems, an

algorithm of the above type is guaranteed to identify constrained

critical points in a finite number of iterations, a constrained

3
critical point being any point x such that

9f(x )
ox

*
af(x )

0X,
J

If in

3
0, if x; > 0,

v

0, if x;f =0, j=1,2,***,n (4.149)

addition f(+) is convex and Hi’ {hl,l=ri+1,---,n} are

chosen equal to

2 2 -1

ory) ey

9%, ;9% 5 9%y 9%,

azf(xi) a2f<xi)l ] (4.150)

ox  .9oX. . TR 9x
r.i "1i r.i r.i

82f(xi) -1

P S (4-151)
117711
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#
then the sequence {xi} converges to the global minimum x faster that

than superlinearly of an order at least two.

These convergence properties make the Projected Newton's Method
quite efficient for problems with simple constraints.

The previous algorithm easily generalizes to the case where x is

constrained by upper and lower bounds:

A
A

b, S x £ b, (4.152)

Now, the iteration takes the form

X =[xy vy di]++ (4.153)

where

sz, if bj2= 7
z if b.. 2z, £ b,
o i? 3T j2
({z1"7) = | b.., if 7. 2 b, (4.154)
i1 J J1

j = ‘]’---,n

and the set of active constraints is given by

o af(xi)
A (xi) = {1/ bl1§x1i§b11+si, axli >0 or
Bf(xi)
Dy =€y %%) 10155 Taxy, <ol (4.155)

With these definitions replacing the ones given above, the Projected
Newton method previously stated is also valid here.

It is a method of the third type that we shall employ in the
solution of Problem PB3. The main difficulty is again related to the

computation of the direction di'
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4.5.3.3 A Projected Newton Method in Optimal Control

The direction di of a Projected Newton method consists of two
parts: The first corresponds to the nonbinding constraints
. s tt . . . .
J:1,2,"',ri, JEA (xi) and is obtained by a Newton iteration

af(xi) Bf(xi)

i it 9x,. °? ' ox_
i 1i r.i

T

(4.156)

assuming that the remaining variables are fixed at the respective
bounds. The other is a scaled version of a Gradient method
(Luenberger, 1973) where the scaling factor is equal to the inverse of

the corresponding diagonal element of the Hessian at point Xt

azf(xi) -1 af(x,)

1i 8xli3x1i ox

d , 1 =ri+1, see, n (4.157)

1i

The question is how to efficiently compute these two direction
parts for the control Problem PB3. Regarding the computation of the
first, the approach employed for the uncontratined control problem in
Section 4.5.2 is also applicable here. The difference is that now, due
to the constraints, some control vectors cannot be adjusted towards
the unconstrained minimum. Instead they must be fixed at their
currently nominal values. Georgakakos and Marks(1985) have proposed an
analytical procedure for computing the nonbinding direction part given
the above requirement.

The scaled Gradient part of the direction can be conveniently
obtained from the procedures derived by Georgakakos and Marks(1985).
These concern the evaluation of the Gradient and the diagonal

submatrices of the Hessian at the nominal sequences.

279



Putting all these results together, we construct the following

control constrained minimization algorithm:

In a typical iteration, a Projected Newton method performs the
following sequence of operations:

a. Compute the Gradient vectors VJ(6U0=O,-",6UT_1=O) from

oy - T
Up_,=0) =N  + BP (4.158)

Vs k+1

J(8U_=0,%++,8
Uk 0

where

P=<I>TP + N

k= “kPker ¥ Mgy o K5T-1,T-2,000,0

b. Calculate

++
l

0)]

w, = o ) VI (80=0,+*+,6U (4.159)

i T-1"

If w, 0, then stop; a stationary (or critical) control trajectry is

reachzd. This is true because when wi=0, any control element Ujk for

all j% satifies one of the following first order necessary conditions

for optimality:

ming _mex 3J(6U0=0,"',6UT_1=0) -6
jk
U™ g 3J(80=0,°+*,8Uy_4=0) <0
ik ik 90U,y
i . 9J(8U=0,*++,6U; ,=0) -
Je ik 90U 5y
j =1,2,***,N, k =0,1,***,T-1 (4.160)

U)
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(Under convexity assumptions U(l) is then a global minimum.)

Otherwise, determine the set A++(U(l)) of binding control constratins

from
A++( (i )) ~(ik/ ghing (1)<Umin+E . 13J(6UO=O,...,5UT_1:0) .
R X
. aJ(GU =), e (SU =0>
max (i) max 0 ! 1Ol 4
or Ujk —EiéUjk ngk and 36Ujk <0
j =1,2,0--’NU’ k =0,1,"',T—1 (4.161)

where €. =min {g,w.},
i i

with € being a small positive scalar.

¢. Compute the Newton direction for the nonbinding control

elements as follows:

. T T
Calculate the matrices {Kk]k=0 and the vectors {kk}kzo from the

following matrix Riccati equation:

KT = NssT’

B T
Ke = Nogie O K -

T r reo-1 T r
-[(B K 1% N [(BkKk+1Bk N 1 LB K 907 ]
k=T-1,T-2,+++,0
kT - NST’

T
ke =N ¥ O Ky -

T r,T T )Ty -1,
(B %) 1 LB K By Ny ) (B

k=T-1,T-2,%+*,0 (4.162)

where the notation (z)° or (z)"° implies that the rows or the rows and

the columns of the matrix z corresponding to all control elements GUjk

with jk€A++(U(l)) have been deleted.
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Then determine the Newton direction GU* from
6Uk = - Dk[ Lkésk + Ak ] (4.163)

where

_ T rc,-1
Dy = [(By KBy + Ny !

_ (ol T
Ly = (B Kpy®y)
_ ol T
he = (B Jypq + Ny
and
% 3 ¥* -
<Ssk+1 = ¢kdsk + Bkéuk , ng =0, k=1,***,T-1 (4.164)

In Eq.(4.164) the binding control are set equal to zero, namely,

5U§k -0, ir jk e attw()y (4.165)

d. Compute the scaled Gradient direction for the binding
constraints: Having computed the Gradient in Step a, we additionally
need to calculate the diagonal elements of the Hessian which can be
accomplished as follows

2 . o) = T
VGUk6UkJ(6UO—O, y8Up_4=0) = N_ .+ BG, B (4.166)

where the matrices {Gk}£= are given by

1

GT = NssT’

T
G = QG 4%+ Nog

k=T-1,T-2,°**,1 (4.167)

Then the directin for the binding controls is obtained from
3%5(8U =0,+++,6U, .=0) ' 3J(8U.,=0,+++ &U
GU* _ o’ T . o’ T-1

ik 38U 380 38T

=0)

ke attlt)y (4.168)
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Determine a stepsize ai such that

o, =B (4.169)
where m, is the first non-negative integer m for which

++

T(8U=0,+++,80; . =0) - J((B"6U,)"",+++, 18Uy 1) 2 ol

T-1

: 3J(8U=0,+++,8U,_,=0) o
o, (1) 36Ujk Jk
jkga (UT7)

m

=0)
T-1 me %
(8 8V

BJ(6U0=O,-°°,GU
(i)) adU

++

1]

+ z

jkeatt(u Jk

(4.170)
where Be(0,1), 0£(0,1/2)

and

min (i) (1) min
Ui Uy s 38 U548 GU 0%

me, ¥ L+ me * .. min_ (i) m pmax
(8 éujk] ={8 GUJ 1f Uy Uy +376U kg ik (4.171)

(i)

ir ul max
Jk

jk

max (1)

Ui Ui s

m >
+ 6UJk U

f. Perform the iteration

(i+1) (1) *_ 44

U =0 + [aiGU ] (4.172)

(i+1)

obtain the new nominal control trajectory U

and continue the

3
iterations until a stationary control trajectory U is found with

respect to Problem PB3.

The above algorithm is the core of the control design. As will be

seen in the next section, the modification which is needed to account

for the probabilistic state constraints only involves addition of some

more quadratic terms in the present perfomance index. Now we note the

following comments:
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1. In Step d, the computation of diagonal Hessian submatrices
can be avoided by using an ordinary Gradient direction where the
scaling factor is unit or some other positive number. The resulting
method is still reliable, yet it may take more iterations to converge.

2. In the absence of convexity assumptions, one must assure that

a descending direction is obtained. This can be accomplished by

enforcing positive definiteness properties on the matrices {Kk}izo,

{Nuuk}i;; :

3. If no control constraints are found binding (i.e., if the
set A++(U(i)) is empty), then the algorthm conveniently becomes the
Newton method for unconstrained minimization presented in Section
4.5.2.2.

4. Under convexity assumptions, every point of the sequence

(1)

{U""7} generated by this algorithm is a stationary control trajectory.
*
If the method converges to a local minimum U , it identifies the set

#*
of active constraints at U in a finite number of iterations. Then it

becomes the unconstrained Newton method.

(i+1)

5. After a new nominal control sequence U has been
obtained, one can continue the iterations by reconstructing the
corresponding Problem PB3 from PBO as has been presented in Sections
4.3, 4.4, and 4.5. Concerning the continuous time nonlinear dynamics,
this iteration is an ordinary Gradient method iteration. However, the
milder tae nonlinearity of the dynamics, the more Newtonlike the
procedure becomes. With respect to the reservoir system, if the

releases cannot effect drastic storage changes, then linearization of
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the dynamics is a good approximation for a wide release range and the

procedure will exhibit a fast convergence rate.

The above algorithm is a well defined minimization procedure
capable of efficiently handling large numbers of control constraints.
Next we shall modify it to account for the probabilistic state

constraints.
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4+.5.4 Solution of the Operation Problem with Both Control

and State Constraints

4.5.4.1 The Reservoir Optimization Problem with Both

Control and State Constraints

In this section, all state constraints are restored and the

following control problem is considered:

PB4. The Reservoir Operation Problem With

Control and State Constraints

T-1 3* *

mlnlm%ze{J = { [ E {lk+1(dsk+1)}+mk(duk) 1 (4.173)

(su." -1 k=0 6Sk+1
k k=0

subject 1o

a. OSk+1 = @késk + Bkduk, 650 = 0, k=0,1,**,T~1 (4.174)
somin max .

b. onk gdujkg 6Ujk y 35152,0 00, Ny k=0,1, 00, T-1 (4.175)
Smin
ik min ,

c. . p(SJk)dekﬁij 13=1,2,°7 % Ng,k=0,1,"**, -1
r+°° _max 1= LN ) = ane -
.Smaxp(Sjk)dekSYjk yj=1,2, ,NS,k 0,1, y T=1

jk
or equivalently:
6Smin
g 3K p(dsjk)ddsjkgy?;n,j=1,2,---,Ns,k=o,1,---,T-1
(4.176)
oo max ._ LX) = LN -
IGSmaxp(dsjk)désjkéyjk »j=1,2, ,NS,k 0,1, » T-1
jk

cecennnsesssenns(4.177)
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For consistency with the Open Loop Feedback control philosophy,
the probability densities of the states at all times k=0,*++,T are
conditioned on all information available at time k. Namely, the
possibility of future information gathering is ignored. Under this
assumption, in Section 4.5.2 it was shown that all probability
densities are Gaussian with mean vectors obtained by Eq.(4,174) and

covariance matrices resulting from (c.f., Eq.(4.114))

P =¢ P @ + Q

sk+1 k sk 'k Po =P

£k Tso 0’ k=0,1,¢+,T-1 (4.178)

It follows that p(éSjk) is given by

1 (83, —GS )
p(88,,) = ————— exp( -—(%*)L ) (4.179)
J /fﬂ(PSijj sk’jj

sk* It is now

where (Psk)jj denotes the jth diagonal element of P
possible to substitute the probabilistic constraints (4.176) (4.177)
by equivalent deterministic constrainsts on the mean value of the
state. This is facilitated by the following two facts: First, the

density (4.179)is completely charactrized by its mean and variance.

Second, the covariance Eq.{4.178) does not depend on the controls 5Uk,
k=0,°**,T-1. As a result, we can change the position of p(éS ) along
the dsjk axis but we cannot alter its shape. The equivalent

constraints on the mean value can be easily derived as follows:
Consider the constraint
min

;K p(8S,, )ads, <Yr;]i(n (4.180)

and the standard Gaussian variate z ™~ N(0,1). The level z2"" can be

jk

found (from standard normal variate tables) for which
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min
Zik 1 2 min
fJi ;:: exp(-27/2)dz = ij (4.181)
2m

Then, as long as

Z'J{‘li(n VTPTTJTT + 63, 2 6s™i°

sk’ jji jk jk
or 68, 2 as';li{“ - z;.'}i(n /TP (4.182)

holds true, the probabilitic constraint (4.176) is also satisfied and

vice versa. Now we can call

d—min =5 min _ min /75-—v—- .
Sik Sik 25k T Sijj (4.183)
and in place of (4.180) consider the inequality
§5™" < 63, (4.184)

For example, if the reliability paramter Y?in is equal to 0.025 (i.e.,

if the state stk is allowed to violate its lower bound GS?in at most

2.5% of the time), the level z?in equals -1.96. Then the constraint

(4.184) implies that the mean value ngk should be kept a distance of

min

1.96 standard deviations above stk .

Similarly the upper probability constraints can be transformed to

constraints of the following type

= =max
5sjk s asjk (4.185)
=max _ max max fo=m=———-—
where stk = dsjk - Zyy (Psk7jJ (4.186)
with z?ix such that
0 axp(=z2/2)dz = Y™ 5=, 000 N k=1, 00, T(4.187)
Smax /zﬁ pl-2 z = jk 1.]‘ ? ) S’ L } ’ .
jk
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Thus, we have shown how to convert the probabilistic constraints

(4.176) (4.177) into equivalent constraints on the state's mean:

=Min = =max s 1 e 21 e
6sjk < dsjk S stk pJ=1, 000y Ng k=1, 02, T (4.188)
or 53‘;{‘”’ s 65, s 6§Eax , k=1,°°+,T (4.189)

in vector notation.

Although these constraints are similar to the ones imposed on the
controls, they cannot be handled by the Projected Newton developed in
the previous section. The reason is that the states are functionally
related to the controls through the system dynamies, and is either the
controls or the states that serve as an independent set of varibles
for the minimization of J. Optimal control problems with state
constraints are best handled by Penalty Function of Multiplier methods

a discussion of which will be offered in the following section.

A last comment refers to the proposed treatment of the
probabilistic constraints in relation to the Open Loop Feedback
contrel procedure. According to the discussion in Section 4.5.1 at

each time k the OLF controller determines the entire control
#y T2 . :
trajectory {Uk}k=0 assuming that no other decision specifications take

place over the period [k, T-1]. In reality only the first member from
each optimal trajetory is used and the process is repeated at the next

decision time. Thus, owing to this sequential set-up, the applied
3 * o _
controls are of a feedback nature Uk = uk(Sk), k=0,1,*++, although

Open Loop controls are being determined. The OLF control structure
relates to this section's developments through the covaiance
propagation Eq.(4.178). The covariance is propated under the
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assumption of Open Loop control sequences. For a certain class of
systems this may result in covariance matrices with diagonal elements
growing unbounder over time. On the other hand, if the feedback laws
were taken into account, the above elements be either stabilized at a
finite level or they would grow at a lower rate. It is evident that
the Open Loop approach could result in suboptimal control policies in
the sense that the applied controls would meet the probabilistic
constraints at greater percentages of time that the one required.
However, the feedback control functions cannot be obtained explicitly

and therefore cannot be used in the covariance calculations.
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4.5.4.2 A Penalty Function Method

The idea of the Penalty Function method is to obtain the solution
of a constrained problem by solving a sequence of unconstrained ones.
Its validity is based on the fact that for well-posed problems the
sequence of the unconstrained solutions converges to the solution of

the constrained problem.

For Problem PB4 a Penalty Funtion method can derived as follows:
Each two-sided state inequality constraint (4.188) can be broken

up into two one-sided constraints:

smin = .
Gsr;k =855 50 35,00 Ng k=T, 00, T (4.190)
6sjk - 6§?ix £0 y3=1,0 0 Ng k=1, 00, T (4.191)

and these can be converted into equality constraints by introducing

min max

the non-negative variables yjk ’yjk
shin = min _ min
stk - 5Sjk + yjk = 0, yjk z 0,
,j=1,"°,NS,k=1,°",T (4.192)
5 _ gghax max _ max
ésjk Sjk + y‘],k 0, yjk o,
)j=1"..’Nsyk:1!..'rT (4.193)
Now define the Lagrangian function
min min _max max
LC.(6U07.“’6UT_1’Y1 ’...’yT 1Y ;'",YT ) =
i

_ tee 1 shin & min,2
= J(8Uy,*=,6U, ) + I 3 ci(dsjk - 6sjk * Yy )T+

jk

1 =max max,2
?k 5 Ci(dﬁjk - stk + yjk )
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ssescccssessas(/ 19))

where Ci is a positive penalty paramenter and consider the follwing

sequence of problems:

. min min max max
Minimize LC (GUO,"',(SUT_1,y1 R G A
{8y} i
{ymln,ymaX} (4.195)

subject to

a. Gsk+1 = ¢kdsk + Bkduk, dso =0, k=0,1,***,T-1 (4.196)

b. GU?in§5Ujk§ du?ix, 35152500 Ny k=0,1,0*, 71 (4.197)

min

2
c. yjk z 0,

max
Yik 2 0, (4.198)

where 1=0,71,00¢cee, Ci+1 > Ci > 0, and Ci +> oo,

3* ¥*
Ir (8U ,y )i is a global minimum of the above problem, then it can be

3*
shown that every limit point of the sequence {8U }i is a global

minimum of problem PB4. (For a proof in a general nonlinear
programming context, see Luenberger, 1973, or Bertsekas, 1982,)

Intuitively, this result is expected to hold because for large Ci

sgmax max, 2

values the penalty terms Ci((SSjk Sjk + Yk )" are minimized when

(ngk - Gg?ix + y?ix) approaches zero or equivalently when the

constraint ngk - Gg?ix £ 0 is satisfied. (Similar argument holds for

the lower bound penalties as well.)

It is still questionable why one should choose to solve the

sequence of the above problems rather than the original one. Notice,
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however, that for a particular state and control trajectry the

minimization with respect to ym1rl and ymax can be éxplicitly

performed. Consider for instance, minimizing the Lagrangian in
Eq.(4.194) with respect to y?in subject to y?;n 2 0. This is

equivalent to

RN 1 smin a min,2
minimize {2Ci(6sjk - 6Sjk + y.].k )<} (4.199)
min

subject to y?in 2 0. Since (4.199) is a convex quadratic function with

respect to y?in the solution is

_(G-min

_ && . =min < &8
i Sjk GSjk) y if stk GSjk
(yjk = { . i (4.200)
0 , if dsjk > GSjk

Similarly the optimal value of any y?ix variable can be seen to be

sMmax a

& =Mmax
- - i >
( max)* { (6Sjk stk ), if stk ésjk ( |
Y. = 4.201
jk
. =max a
0 , if stk < stk

Substituting these results into the Lagrangian function we find

L. (8U SUp_,) = J(8Uy,* 68U, 1) +

c. %% """ %%y 2% _1
1
+ I L. [max{0,(63™" _ 65, )}1° +
2V 11995k jk
jk
S C.[max{0,(88., - dgmax)}]2
© 2 Vi 11095y ik
jk
(4.202)

and our problem becomes one of minimizing (4.202)with respect to
{GUk}E;; subject to the dynamics (4.196) and the control magnitude

constraints (4.197).The penalty terms in (4.202) are zero when the
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corresponding constraints are not violated while they prescribe
quadratic costs whenever there is a violation. Notice, however, that
this problem can be solved by the Projected Newton Algorithm presented
in Section 4.5.3. The only adjustment needed at each iteration is to
determine which of the state constraints (4.190) or (4.191) are
currently violated and include in the objective function

J(6UO,'°-,6UT_1) the corresponding quadratic and linear penalty terms.

The procedure involves the following sequence of operations: For a

level Ci of the penalty parameter use the Projected Newton Method to
#*
find the minimnizing control trajectory U (Ci); then increase Ci to

C.+

3
i 1>Ci and repeat the previous step until the sequence {u (C,)}

i’7i
3#*
converges to the solution U . For convex problems the method can also

be operated by increasing Ci at erch Projected Newton iteration, but

in the general case this may cause failures.

The rate at which Ci should be increased can be determined by

preliminary experimentation. Slow increment will result in slow
convergence while an extremely fast rate will render the problem ill-
conditioned. In the latter case a solution at some iteration may not
exist or it may become increasingly difficult to obtain. However, our
computational experience with the Penalty Function method in relation
to reservoir operation problems shows that the method is quite
reliable and that a penalty increment formula (see also Bertsekas,
1982, Chapter 2)

ci+1 = Bci, Bel 4,701 (4.203)

performs well.
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4.5.5 Completing the OLFC Procedure

4.5.5.17 Observation Information

According to the OLFC procedure, after the optimal control

trajectory {UELFC}E;;O have been obtained, we need to apply the
control UiLFC at the current time k0 to the reservoir system, and make
0
the measurements of observation vector yk0+1. The information set will
then be updated as follows:
Iko+1 = IKO U {ngFC,kaH} (4.204)
where yko+1 = H(Sko+1) + vko+1 (4.205)

On the other hand, the input rainfall vector X(ko+1) is provided

by the rainfall-forecasting system, we have no need to augment the

state vector. After the control UQLFC have been applied, the system
0
dynamics become:
OLFC z
S =¢ s +B U + G, X(k.+1) + & (4.206)
ko+1 ko ko k0 ko ko 0 ko
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4.5.5.2 Statistically Approximated Second-Order Filter

The question is how to obtain the conditional contribution

density functions p(Sk +1 /Ik +1). These conditional statisticals are
0 0

provided by the following procedures which constitute the

Statistically Approximated Second-Order Filter( SASOF )(Takasao and

Shiiba, 1984).

a. Initialization:

S =35
O/IO

0’ Pso/I0 = Pgor

S

il

O/Io sO ~ N(SO,PSO) (4.207)

b. Propagation Step:

g = E{s /I }
ko*t1/1, kot ' kg
0
= OLFC
=¢ § + B U + G, X(k.+1) + C
k, kO/IkO Ky ko ko O K,
Pac+1/r, = B 78y a8y 78y )T/Ik )
SKoTH 1y 0 0 k 0 0 K 0
0 0 0
=0 P o Qe (4.208)
0 %0’k “o 0
Since the system is linear,
S vyt VG w1 Py yyr )
0"k, 0" kg 0"k,

c. Update Step:

Approximate first H(S ) with the Statistical Second-order

k0+1

Approximation:
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H*

Hi(sko+1) = By + H,(

S S

ko+1/Ik )+ 61 (4.209)

0

k0+1

- T —
S )T A, (8 -3
k0+1/IkO i kgt ko+1/1k0

]
where di =3 (Sk "o )

0

Calculating the mean vector E{8} and variance V{8}, and replacing

H(Sk +1) by its statistical second-order approximation we can rewrite
0

the observation equation as

-{B - HsSk +1/1 + E(8) )} = Hssk mt vnew
0 ko 0

y
ko+1

(4.210)

<
1

ey = 0 F vko+1 - E{6}

E{vnew} = O’ V{Vnew} - V{é} * QVkO+1

M: dimension of i +1
0

Noting that v is uncorrelated with S and using the
new ko+1

conventional Kalman filtering algorithm, we obtain the posteriori

estimate of Sk +1 and the corresponding estimate error variance matrix

0
by
a = * 1
g =3 + K(y - B - =tr[AP 1)
k0+1/Ik 1 ko+1/Ik ko+1 2 sk0+1/Ik
0 0 0
P =P - KH P (4.211)
sko+1/Iko+1 sko+1/IkO s sk0+1/IkO
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T T
Ho(HePax w171, B * Qu 4
o 0"tk 0

+
sko+1/Ik

%tr[AP ])'1 (4.212)

AP
sk0+1/IkO sk0+1/Iko

If the observation is missing we set:

Sko+1/I =S

(4.213)
kgt kg*t1/1y

0

P =P

Kk +1 sk0+1/Ik (4.214)

sk +1/1
0 0 0

As mentioned in Section 4.2, the statistical second-order

approximation is performed with ease when the UDUT factorization of

the variance matrix P is available. By the Bierman's U-D

sk +1/I
0 ko

filter(1977), the UDUT of P can be obtained directly.
sk0+1/Ik .
0

The previous discussion completes the design of the Open-Loop
Feedback Controller for the solution of the reservoir operation
problem. The method developed here can be employed to non-linear,
constrained, and unquadratic problems. The method developed here will
be called Statistically Approximated Linear Quadratic Gaussian control
(SALQG). The following chapter will apply this method to reservoir
systems and verify the method's reliability and computational

efficiency as well as potential in real-time decision making.

298



Chapter %

SIMULATION ANALYSIS ON REAL-TIME CONTROL OF

MULTIRESERVOIR SYSTEMS

5.1 Introduction

The control method developed in Chapter 4 was theoretically
designed to exhibit reliability and computational efficiency for
handling dimensionally large reservoir system control problems in
their general form. The simulations presented in this chapter will be
a verification and test of the method's potential in real-time
decision making.

In Section 2, an example of an optimization problem ( e.i. off-
line control problem ) is presented for comparison of the statistical
approximation second-order method with the Taylor approximation. The
efficiency of the statistical approximation for updating system state
vectors has been shown by Takasao and Shiiba(1984) with an on-line
runoff forecasting model. Therefore, if the statistical approximation
is proven to be efficient in the optimization process of an
uncertainty problem, we can say it is also efficient for a real-time
control problem.

In Section 3, the control method discussed in Chapter 4 is
applied to a two-reservoir system. According to the Open-Loop Feedback
controller, the method will first be applied to an off-line control

problem, and then to a real-time control problem.
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5.2 Efficiency of the Statistical Second-Order Approximation

Consider a function

J(x) = E{g(x)}

in which x is an N * 1 dimensional random vector, x ™ N(x,P), and P >
0 is given. In Section 4.2, we have shown that when g(x) is

approximated by the statistical second-order approximation, the

Gradient vector and the Hessian matrix of J(X) can be evaluated
correctly, and that if the Taylor approximation is applied to g(x) the
Gradient vector and Hessian matrix generally cannot be evaluated
correctly. This means that the statistical second-order approximation
may result in a faster convergence rate of optimization process. In
this section we shall verify it with an practical example.

The example problem is shown in Figure 5.1. The biquadratic
function used in section 4.2 for showing the difference between the
statistical second-order and Taylor approximations is employed for

lK(SK). The problem has been selected in such a way so that
1) the expectation E{lK(SK)} exists, and the problem can be

solved analytically( to compare the numerical results with the correct
results and thus check the accuracy of the numerical results ),

2) the objective function has a global minimum and has no local
minimum,

3) it is a non-linear function and has at least a local minimum,

4) it is two times continuously differentiable and its
statistical second-order approximation and Taylor approximation are

different.
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Dimension of state vector n,=1
Dimension of control vector n,-=1
Control horizon T=2
System dynamics
Seer=8,—w,+5.04¢, k=0, -, T-1
o~N(Sp, pio), $§5=3.0, p=1.0
§i~N(0, Qes), QenlLO
Objective function
]*E{-‘—‘n:u. -1 (e ) + m.(ll.))}
lnl(snl);(5A+x_a»+1)(SAH“B”N\(SAH“Aanﬂ)z
a,=0.9 2,=0.9
my () =1/10¢ (0, — b,)?
bo=1.0 5:==1.0
Constraints of control variables
4.072,57.0, k=0,..., T—1
Figure 5.1 Problem 1 for comparing the Taylor
Aproximation with the Statistical
Second-Order Approximation.
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The simulation results are shown in Table 5.1, and the value of
the objective function at each iteration is given in Figure 5.2. It
can be seen that the numerical results using the statistical second-
order approximation are in excellent agreement with the analytical(
correct ) results without reference to the nominal control trajectory.
However, when the Taylor approximation is used, the numerical results
varied following the numerical control and did not converge to the

correct results.
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Table 5.7 Computational result of problem 1
—value of objective function and control series

SLA 19 | TaE 17 | SLA. 290 | Ta E 24 | An Sor
value of J w0t | 51722 | s0.242 | 66998 | 30242
control wy | | 5.372 4.419 5.372 6. 506 5.372
control 1, 4.950 4.858 4,950 4.960 4.950

#1: L(s,) is approximated by statistical second-order method and the initial nominal
control is the upper constraints of control.

#2: 1,(s,) is approximated by Taylor second-order approximation method and the
initial nominal control is the upper constraints of control.

#3: I,(s,) is approximated by statistical second-order method and the initial nominal
control is the lower constraints of control.

#4: 1,(s,) is approximated by Taylor second-order approximation method and the
initial nominal control is the lower constraints of control.

#5: analytical solution.

600+
—o0— St.A1*
—O0— stA.2"?
51, .
g ----O--=- TaB2t
< 4004
2
&
8
6 2004
)
EEEE NG
o-----8
0 P=—=q a o

Iteration

Figure 5.2 Computational result of problem 1.
—decreasing vatue of objective
function with iteration.
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5.3 A Two-Reservoir Case Study

The configuration of a two-reservoir system is shown in Figure
5.3. We have assumed that the time in which the released water from
the upstream reservoir reaches to the downstream reservoir is too
short to be ignored as compared with the control time step.

We first consider an off-line control problem, which is shown in
Figure 5.4. When the chance constraints of state vectors are removed,
the problem can be solved analytically. The numerical results and
analytical results have been shown in Table 5.2 and Figure 5.5. It can
be seen that the numerical‘results converged quickly to the correct
results of the problem.

The results of the problem with chance constraints of state
vectors are shown in Table 5.3. The value of the penalty function
corresponding to the optimal control trajectory at each iteration has
been calculated; the results are shown in Figure 5.6. The values of
the objective function and the extended objective function are shown
in Figure 5.7. It can be seen that the value of the penalty function
converged to zero within very few iterations and the chance
constraints are satisfied.

Figure 5.8 shows & real-time control problem. The observations

are given by

yiK iK + R(wiK) ’ i=1,2,‘--,NS; K=1,2,°**,T-1
where R(w, ) is a random number of ., which has been generated in

the following way. Suppose x v N(m,P),

1) factor the variance matrix P as

P = UDUT
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Figure 5.3 Two-reservoir
problem con-
figuration.

305



Dimension of state vector n,=2
Dimension of control vector n,=2
Control horizon T=6
System dynamics

sSsar=Psy By A-Co+ ¢y k=0, -, T—1

L] ] 2]

0.3 0.0 )
§i~N(0, Qe)), Qe.=[0.0 0.3 k=0, -, T-1

~ ) 0.7
se~N(So Py), So= 0.7

0.3 0.0
Py=
[0.0 0. 3:'
Obijective function
J=E{Q2. .., ro1(Las1 (Sanr) +m, (u,)}
lnl(snl)=505h(51.A.+1_a|.A+1)+505h(52.nn‘az.n|)
my(u,) =cosh(uy,—b,,) +cosh(uy,—b,,)
ay, a3 Qy Gy Ay5 Ay 0.8 0.85 0.9 0.95 1.0 1.05
[ ]:[0.6 0.7 0.8 0.9 1.0 1.1 J
big by Bz by by, bys 0.5 0.55 0.6 0.65 0.7 0.75
[b,o bu ba by bt b,s]:[o.a 0.4 0506 0.7 o.s]
Constraints of control variables
0.0 u, 3.0 i=1, -, n, k=0,--, T—1
Chance constraints of state variables
spr=0.0,  spe=3.0, j=1 - n, k=1, -, T
rre=0.2, ree=0.2, j=1, .-, n, k=1, -, T
Figure 5./ Problem 2 for testing the optimization method.

A2 Ay Ay 8y Qs Gy
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Figure 5.5 The results of problem 2 without the
probabilitic constraints
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Table 5.2 The resulting control trajectories of
problem 2 without the probabilitic

constraints.

NUMERICAL METHOD | ANALYTICAL METHOD
J 37.165 37.165

control’ Utk U2k Uk uzx

k=0 0.147 0.167 0.117 0.167
k=1 0.231 0.159 0.231 0.159
k=2 0.262 0.177 0.262 0.177
k=3 0.285 0.207 0.285 0.207
k=14 0.326 0.272 0.326 0.272
k=5 0.436 0.437 0.436 0.437
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Table 5.3 Computational result of problem 2
—value of objective function, control and state series

value of objective function (J) 37.705
value of penalty function (h) 0. 000
J+h 37.705
contro} ‘ state
time Ui Uan ‘ §|.n1(5|.n1'"- Siae™?) (Sza1 S 2™ Szae™)
k=0 0.138 | 0.145 0.862 (0.652, 2.348) 0.693 (0.652, 2.202)
k=1 0.227 | 0.122 0.936 (0.798, 2.202) 0.798 (0.798, 2.202)
k=2 0.247 | 0.124 0.988 (0.922, 2.078) 0.922 (0.922, 2.078)
k=3 0.241 | 0.132 1.048 (1.031, 1.969) 1.031 (1.031, 1.969)
k=4 0.219 § 0.120 1.129 (1.129, 1.871) 1.129 (1.129, 1.871)
k=5 0.210 | 0.119 1.220 (1.220, 1.780) 1.220 (1.220, 1.780)
Gothic: chance constraint of state variable is active
0%
§ 37764 ——a—— Value of cbjective fuction
s YT p e O-- Value of aumented cblective function 0,121
EE Y . Rt e - § § Cl\
8% 2= g N
2% S ll.l]lj N
Eé‘ 3760+ z \\\
28 5 0,04 AN
Bg k1 N\
8 3 el
LT * 900 o o o
g9 . . ,
1 2 3 H H 1 2 3 H 5
Iterotion Iteratton
Figure 5.7 Computation'al result of prob.lem. 2. Figure 5.6 Computational result of problem 2.
—(?onver.gm;.; va)}Je of objective —decreasing value of penaity
fonction with iteration. function with iteration.
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Dimension of state vector n=2
Dimension of control vector n,=2
Control horizon T=6
System dynamics

=05+ B+ Cy+ &, k=0, -, T-1

10 -1 0 5.0
¢, = :l B,= Ci=
01 1 -1 0.0

E~NQ, Q L R
51“’ (- h), Qh— 0.0 4.0j|, =Y, =4

NG P, § 10.0}
so~N (S0, L)y o=
! o fels 20T 80,0

b _[1.0 0.0}
*710.0 1.0

Objective function
J=E {2 o oor ra1{lini(send) +m, ()}
bsi(s04y) =cosh {0.01 (S1.441~@ras1)} Fcosh {0. 01 (53041~ G2.441)}
g () =cosh{0. 01 (ny,— b)) +cosh{0. 01 (uzu—b20)}
a,=20.0, i=1, -, n, k=1, .-, T
b,=10.0, i=1, -, n,, k=0, ---, T—1
Constraints of control variables
0.0 %, <50.0 i=1, -, n, k=0, .-, T—1
Chance constraints of state variables
stiv=5.0, ster=95.0, i=1, <, m, k=1, -, T
p=0.05, = 0.05, =1, - om, k=l T
Observation equations

ya=sdtw,, i=1 o, k=0, -, T—1
NGO, Q . 1.0 0.01
Wiy , Qud)y Q= 0.0l 1.0

Figure 5,8 Problem 3 for testing the real-time operation algorithm.
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where U is an upper triangular matrix with unit diagonals and D is a
positive diagonal matrix. It can be shown that random vector x = Uz,
where z v N(m,D).

2) generate the random numbers of the independent random vector z
“~ N(m,D).

The value of state variable SiK is calculated from the system dynamics

and the random number of system noise are obtained in the same way as
above.

The control trajectories obtained from the real-time control
model are shown in Figure 5.9 and the corresponding state trajectories
in Figure 5.10. Since the influence of initial conditions becomes less
as time passes, the control vector and state vector should
asymptotically approach some equilibrium values if the inflows into

the system are stable. Notice that the value of the objective function
is minimum when the control vectors are [ 10 10 ]T and the state

vectors are [ 20 20 ]T. Since the inflow from the upstream is only 5(

less than 10 ), the equilibrium values of the control vector and the

state vector are less than [ 10 10 ]T and [ 20 20 ]T, respectively.

Since S11 is only 9.6, much less than 20, no water is released from

the upstream reservoir at time steps O and 1. On the other hand, the
releases from the downstream reservoir at time steps O and 1 are very
large due to the large initial storage( 78.5 ) in the downstream

reservoir.
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5.4 Summary

In this chapter we applied the control model developed in Chapter
4 to reservoir systems and verified that the control model is very
powerful for real-time decision making. From the simulation results we
come to the following conclusions.

1) The statistical second-order approximation is more efficient
and reliable than the Taylor approximation for a real-time control
problem in which the uncertainties of a reservoir system are
explicitly taken into consideration. This is because the Taylor
approximation is a local approximation technique while the statistical
second-order approximation is a global approximation technique.

2) The control method is very stable and has quite a fast
convergence rate.

3) The " curse of dimensionality " has been completely overcome.

4) The control model can be employed for all non-linear,

constrained and non-quadratic problems.
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Chapter 6

SUMMARY OF RESULTS AND FUTURE WORK

6.1 Summary of Results

This work is composed of two parts: a hillslope hydrological

model and real-time control of multireservoir systems.

A physically-based, synthesized hillslope runoff model of
overland flow and saturated-unsaturated subsurface flow was developed
in Chapter 2. The mathematical model consisted of the simultaneous
solution of the kinematic equations of overland flow and the two-
dimensional form of the saturated-unsaturated subsurface flow. The
only input to the flow system was rainfall. The intensity of return
flow( or seepage ), which conventionally has been treated as an input
to the flow system, was treated as another independent variable in
addition to pressure head. This was made possible by the governing
equations, which were derived by consideration of both the
conservation of mass and the balance of momentum along land surface.
The model was solved by the Galerkin Finite Element Method. The
straight line approximation of land surface was proven to be possible,
which means that it is very easy to extend the model to a three-
dimensional system.

The synthesized runoff model was applied to hillslope systems

under various flow conditions and performed impressively even for the
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case with extremely heterogeneous and anisotropic soil. From the
spatial distribution of pressure head, the hydrograph, moisture
profile, water table level, elevation of seepage point, depth of
overland flow and distribution of flow velocity were calculated. Based
on the simulation results, we tried to examine the influences of the
hydrological and geohydrological parameters on runoff. It was found
that the characteristics of hillslope runoff are mainly determined by
the combination of saturated hydraulic conductivity, land surface
roughness and moisture characteristic curve. Analysis of internal
variables such as moisture profile, distribution of velocity and
interaction of overland flow and subsurface flow, has shown that on
the hillslope where the A-layer of soil profile develops{ Ishihara and
Takasao(1963) have pointed out that this is the case for almost all
natural hillslopes) rainfall intensities generally do not exceed
infiltration capacities and Horton overland flow does not occur.
Further, it has been shown that return flow usually plays a very
important part in the interaction of overland flow with subsurface
flow.

In Chapter 3, the synthesized hillslope runoff model was lumped
to form a simpler empirical runoff model. The lumped model consisted
of three ordinary differential equations corresponding to overland
flow, saturated subsurface flow and unsaturated subsurface flow. The
storage function model was used for the subsurface runoff discharge
and the intensity of lateral flow from an unsaturated zone into a
saturated zone across the water table. The model parameters were
derived from simulation results with the synthesized runoff model
(when the model is applied to an actual hillslope they must be
identified by the input-output record data). In the lumped model, the

water table of subsurface flow and the free water surface of overland
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flow were both assumed to be linear. The resulting mathematical model
was solved by the Runge-Kutta method. The simulation results shown
that the lumped model can reproduce very well the hydrograph obtained
by the synthesized runoff model. Since there is seldom enough data
available at field sites to provide the necessary input to the
synthesized runoff model, we can say that the lumped model is more
useful for practical purposes. Howerve, the lumped model cannot be

employed to analyze hillslope runoff processes instead of the

synthesized model.

Based on the comprehensive understanding of hillslope runoff
processes obtained in the previous chapters, in Chapter 4 we used
stochastic control theory to design a method for the operational
management of existing multireservoir systems. The actual reservoir,
river segment and hillslope response was modelled by a set of coupled
non-linear ordinary differential equations in continuous time. It was
assumed that a rainfall forecasting system exists which provides the
information of future inputs to the reservoir system. The system model
was linearized around nominal control and state trajectories by means
of the statistical second-order approximation method and subsequently
converted into a discrete time linear perturbation model where the
discretization interval can be selected arbitrarily according to
user's purpose. The various system objectives and operational
characteristics were formulated as control and probabilistic state
constraints. The goal assigned to the control procedure was to
generate points on the properly defined tradeoff surface.

According to the Open-Loop Feedback Control philosophy. the
stochastic control problem was seen to be equivalent to a

deterministic problem in the space of the state's probability density.
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Since the system was linearized, this function was approximated by a
Gaussian density. It was updated by the statistically approximated
second-order filter. The algorithm to solve this problem was designed
on the basis of the Linear Quadratic Gaussian(LQG) controller, which
is of the trajectory iteration type. It successively treats the
unconstrained problem, the problem with control constraints and the
problem with both control and probabilistic state constraints. For
these operations, it uses a Newton, a Projected Newton and a Penalty
Function method, respectively. The algorithm is repeated along
directions obtained via analytical considerations to account for the
non-linear nature of the system model. When the problem is
characterized by a convex structure, it will converge to the global
optimum, Otherwise, it only identifies local optimal trajectories. In
this case, the method should be restarted from different initial
trajectories and the global optimum should be determined by comparing
the objective functional values at the identified stationary points.
By its analytical structure, the method does not suffer from
dimensionality limitation and it is expected to display reliability
and a fast convergence rate.

The method was tested in two cases. The first case concerned the
comparison between the statistical second-order approximation and the
Taylor approximation. It was shown that the statistical second-order
approximation is more efficient and reliable than the Taylor
approximation. The control method using the statistical second-order
approximation can give the optimal trajectories regardless of the
nominal control trajectories. The second case concerned the control of
a two-reservoir system. It was shown that both the control and the
probabilistic state constraints were satisfactorily accounted for

within very few iterations( 5 or 6 ). For a simple problem that can be
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solved analytically, the results obtained via the method were in

excellent agreement with the correct results.
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6.2 Areas for Future Work

Future research work can be outlined as follows.

1) The synthesized runoff model is two-dimensional in vertical
plane, the possibility of extending it to a three-dimensional model
can be investigated to account for detailed spatial variations.

2) Both the synthesized and the lumped runoff models are
deterministic. However, runoff processes generally characterized by
uncertainty. Thus, the incorporation of uncertainty into the models is
a very meaningful problem.

3) The parameters of both the runoff models and the reservoir
system model should be identified by the input-output data records,
parameter estimation techniques should be studied.

4) When the control method developed here is applied to a real
reservoir system, the problems such as how to decide the control
horizon, how to divide the river segments, etc. should be studied.

5) According to the optimal control theory, the Open-Loop
Feedback controller applied in this study belongs to the class of
suboptimal techniques. The application of a optimal technique to

reservoir systems remains to be studied.
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Appendix A

EQUATION OF MOTION FOR SATURATED-UNSATURATED FLOW

When the physical properties of a medium are dependent on
direction, the medium is said to be anisotropic. Darcy's law was given
in Eq.(2.7) for the case of an isotropic medium. In this appendix
Darcy's law is generalized to a two-dimentional anisotropic medium.

In a coordinate system the off-diagonal components of the
hydraulic conductivity tensor are zero, the coordinate axes direction
are called the principal directions. In Figure A.1, £ and n are the
principal directions; x axis is horizontal and z axis is vertical.
Suppose that the hydraulic conductivity components in the principal

directions are Kg and Kﬂ’ then in the coordinate system (&, N), the

generalized form of Darcy's law is

V = ng + Vﬂh = - KEBH/Béf - KnaH/Bnh (A.1)

where V denotes the Darcy velocity, VE and Vn are the components of

Darcy velocity in the coordinate system (&, N), f and h are the unit
vectors in &~direction and N-direction, respectively, H is the
hydraulic head.

Let o be the counterclockwise rotation angle of the coordinate
system (£, n) relative to the coordinate system (x, z). The following

relation exists between the two coordinate systems:

f cosai + sinaj

h = -sinai + conaj (A.2)

326



where 1 and j are the unit vectors in x-direction and z-direction,

respectively.
Substituting Eq.(A.2) into Eq.(A.1) gives

V=~-[ KEBH/QECOSQ - KnaH/anina 1i -
[ KEBH/Bgsina + KnaH/ancosa 1j (A.3)

From the rotation relation Eq.(A.2) we can obtain

£ cosgx + singz
n = -sinax + conaz (A.4)
and consequently
d /3¢ = cosad /3x + sinad /9z
3 /9n = -sinad /9x + conad /dz (A.5)
Substituting Eq.(A.5) into Eq.(A.3) yields
cosd -sind K. 0O dH/0E

V=-(i j)I 11 11 ]
sinc  cosa 0O K oH/9on

n
cosd -gind Kg 0 cos® sino  9H/9x
=-(i 3) I 10 11 11 ]
sin@d cosd O Kﬂ -sin® cos@  JH/9z
(A.6)
or
K xz oH/0x
V=-(1i §) I 11 ] (A7)
Kex %z oH/dz
where

2 R
Kxx = K€ cos o + Kns1n a
. 2 2
KZz = Kg sin a + Kncos o
K =K = (K. - K ) cona sina
Xz ZX £ n

In general, the Darcy velocity in direction n = (nx, nz), V), can

be expressed as
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K . Kx oH/ 9x
=- (o, n) 0% ) (4.8)

K K oH/9z
zx 22

The velocity in a triangular element can be calculated as

follows:

If the pressure head h = H - z is represented by

3
h= I ha (4.9)
k=1 KK
in which ak are basis functions, then
3
dH/9x = ‘Z hiaai/ax
i=1
3
9H/3z = L h.3a,/3z + 1 (A.10)
= b7

Substituting Eq.(A.10) into Eq.(A.8) yields:

h
]
K da,/d9x 9, /9x da./9x O h
Vn - (nx nz) [ XX xz] [ 1 2 3 ] [h2]
KZx Kzz 3a1/az 8&2/32 3a3/az 1 13
(A.8)
AZ

Figure A.1 Coordinate System Rotation
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Appendix B

THE TRANSFORMATION OF CARTESIAN COORDINATE SYSTEM

TO A NATURAL COORDINATE SYSTEM

As shown in Figure B.1, by dividing the region of subsurface
flow, land surface becomes a series of curves defined over the
discrete intervals

.= Sy > see = .
12 X3, >XM—1>XM L1 (B.1)

where M is the number of the nodes on the saturated surface. Because S

. . g . 1 Lo .
is & axis of the curvilinear coordinate system, c -continuity is

required, therefore we approximate it by

2,(x) = 2, (x) + o (xx) 4 Bi(x—xi)2 . x.2x2x

i=1, 2, cor, M- (B.2)

where ai and Bi are constants, these constants are determined by such

a way that the following conditions are satisfied

)=z (xg )

) =z L (x.,.)

i+ 7141
i=1,2, «oo, M1 (B.3)
The length of the curved side of the surface element can be

calculated by

8,(x) = fxi/ 14 [dzi(x)/dx]2 dx
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Figure B.1 The division of land surface.
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= ﬁ[ri(xv 1+r§(x) +1n | r GO+ 1+r§(x) 1

1

where ri(x) =, + ZBi(x-xi)

Referring to Figure B.2, The Cartesian coordinate system (x, z)
can be transformed into a natural coordinate system (£, n) by
€ = PQ/L, n = Qs/0S (B.5)

or equivalently

£ =8;(x.)(1-n)/L (B.6)
n = (X—xs)/(x3—xs) (B.7)
n = (Z_ZS)/(ZB_ZS) (B.8)

Eqs.(B.6) v (B.8) can be rewritten as

£ = 5, (x,) (1)L (8.9)
X = (1—n)xS + nx3 (B.10)
z = (1—n)zs + nz3 (B.11)

On the other hand, for the element i Eq.(B.2) becomes

2 =2, * ai(xs-x1) + Bi(xs—x1)2 (B.12)
Eqs.(B.9) ~ (B.12) are the relationship between the natural and
Cartesian coordinate systems.

The Jacobian matrix can be obtained as follows:

Differentiating Eq.(B.9) with respect to £ and n gives

1

Si(xs) BXS/BE (1-n)/L

(@]
1]

S1(x) ¥x_/8n (1-)/L - 8, (x_)/L (B.13)

3



>

Figure B.2 The natural coordinate system for
sureface curved-sided elements.
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where S!{x ) = -V 1+r?(x )
i‘Ts i‘Ts

I‘:'L(Xs) @; + 2Bi(xs—x1)

On the other hand, differentiating Eq.(B.12) with respect to £ and n

gives

3zs/8€ dzs/dxS . axs/ag

3zs/an dzs/dxS . axs/an (B.14)
where dz /dx = r, (x )
s’ s i7s

Similarly, from Eqs.(B.10), (B.11) we can obtain

9x/3E = (1—n)3xs/3€
92/3¢ = (1—n)azs/8£

ax/on = =X + (1—ﬂ)3xs/3ﬂ + X

3
dz/on = -z + (1—n)8zs/an + 2, (B.15)
Substituting Eqs.(B.13), (B.14) into Eq.(B.15) yields
9x/8€ = L/S)(x_)
92/9€ = L r,(x,)/8)(x,)
x/9n = Xy = X + si(xs)/si(xs)
dz/an = 2y - 2t ri(xs) Si(xs)/si(xs) (B.16)

From the above equations we can compute the Jacobian matrix by

_ 3(x, 2) i ax/3&  3x/9n (B.17)
98, n) 9,/ B2/
and then we have
dxdz = |J|d&dn (B.18)

The dirivatives of the basis functions then can be calculated

easily as follows:
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Differentiating the basis functions with respect to £ and 1

yields:
e e e
a¢i/ag = 8¢i/8x * 9x/3¢ + 8¢i/3z * 3z/3¢
8¢§/8n = a¢§/ax + 9x/9n + 3¢i/3z * 9z/9n ,i=1,2,3. (B.19)

Solving the above equations for 3¢i/8x and 3¢§/Bz we obtain

305/38  3z/3€
a¢>§/ax = / 3]
365/3n  3z/3n
ox/3¢  805/3¢
a¢§/az = / 13|, i=1,2,3. (B.20)
9x/an 8¢§/8n

Finally, we shall show the computation procedure of Xg and zZg

from Eq.(B.9). For convenince' sake, we rewrite Eq.(B.9) as

F(M) =0 (B.20)
where
F(M) =8, (M) - 1&/(1-n)
—— —_———— w:a .
s; (M) = Z%— [ W VAW + 1n |W + V1407 ] +
i W=M
M=oy + 28 (xg-x)
According to the Newton method, we have
= - 1
Mn Mn—1 F(Mn—1) / F (Mn—1) (B.21)

where

) - ar -1 2
F'(M} = Si(M) = 28" V1+M

1

334



In order to guarantee that the following conditions of convergence are

satisfacted
F(MP)F"(MO) >0
F(M)F'(M)/F"(M) s k < 1
we take

My = + 281(x2—x1) £ /(1-n)

(B.22)

(B.23§

The iteration procedure is repeated until the difference between

successive iterations is within a specified error a, i. e.

M -M | <a
n

n-1

then x  can be obtained by

X = (Mn - ai)/2Bi + x

s 1
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Appendix C

NUMERICAL INTEGRATION

In our problem the integrals of the following two types are

encountered
1 1-n .
I1 = | G(g, n) d&dn (c.1)
0 0
£(1)
12 = I G(&g) dg (C.2)
g(2) :

With the transformation

oy
il

[ 1-(1+0)/2 1(1+E)/2

(1+n)/2 (C.3)

o |
]

we can rewrite the integral (C.1) as

1 1
1, = Jai G, n) % (1-(1+7)/2] aE (C.4)
-1 -1

Similarly, with the transformation

£ =£&(1) + [g(2)-8(1)]1(1+E)/2 (C.5)

we can rewrite the integral (C.2) as
1 j _
I, = JG6(g) 5 [£(2)-£(1)) aE (c.6)
-1

Now the integrals can be evaluated in conjunction with the tabulated

Gauss point locations and weighting factors in Table C.1.
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Table C.1 One-Dimensional Gauss-Legendre
Points and Weights.

1 m
I f(x) dx= I W. £(x.)

-1 =1 1
*x, m W,

1 1
0.5773502691896 2 1.0
0.7745966692415 3 0.5555555555556
0.0000000000000 0.8888888888889
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Appendix D

COEFFICIENTS OF THE LUMPING RUNOFF MODEL

All of the coefficients of the lumping runoff model are as

follows:
ajq = H/(tgb-tgR) (D.1)
a1, = 0.5 H/[(tgh-tgB) cos B) (D.2)
a3 = 0 (D.3)

®
]

o CSD[ 1/(tgb-tgB)-1/(tgb-tgy)-

1/ (tgb-tgB)cos Y] ] (D.4)
8,5 = CS H D (cosY 00828—1)/[(tge—th)ZCOS3Y 00328] (D.5)
8,y = 0.5 Cs D2/[(tg9—th)2cos2Y] -
- (CS/2 - wo) D/[(tgb-tgy) cosY] (D.6)
83y = 35,/0h +3h /81 +31 /3H + C_*D 1/(tgb-tgy) -
- 1/[(tg9—tg8)cos2y] (D.7)
a32 = BSu/3h1'3h1/311'3l1/38 +
+C.+ H D/[(tge-th)chSBY coszB] (D.8)
a33 = asu/3h1[3h1/812'812/3Y + 3h1/3Y] +

3* * 3¢
8Su/312-812/3y + BSu/ay + BSu/ay +
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+ CS- H D/[(tge—tg8)2c053Y 00526] (D.9)
where
38 /8h, = 9S,/9ph,0ph,/3h,,+3h,/3h, +
BSu/Bph1~8ph1/3h1 +
35, /3h, + 35 /dh,*3h,/3h,
in which h: stands for the h1 that occurred explicitly in the
expression of Su'
asu/aphz'aph2/8h2°8h2/8h1 =
= —D(Cs—wo)[(ph2—1)exp(ph2) +
+ (hy*hyeph,) (phy=1)exp(ph,)/(Deosy) 1/

/ [(tgB-tgy)cosy]

35,/3ph, +3ph, /3h, =
= (Cs—wo)(h1+ho-ph2)(ph2—1)eXp(ph2)/
/[ (tgB-tgy)cosy]
3s /o, = ho (€ ~90) [ (phy=2)exp(phy,)-(ph,-2)exp(ph, )1/
/U(tgb-tgy)cos®y] + 0.5 D w /[ (tgh-tgy)cosy]
98 /8h,+dh,/3h, = 0.5 w,/[(tgb-tgy)cosy]

h, = cosY(tgb-tgy)[ L - H/(tgb-tgB)- D/(tgbh-tgy) ]

phy = - h/h,
ph2 = - ( D cosy + h1)/h0
8h1/311 = - cosy (tgb-tgy)

91, /0H = 1/(tg0-tgB)
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311/88 = H/[(tge-th)chSZB]

1]

3h1/812 -(tgb-tgY)cosy

81,/3Y = -(tgdsiny + cosY)[ L - H/(tgB-tgB)- D/(tgd-tgY) ]

3h/3Y = (tgh-tgy)S /D
2 2
BSu/Z)l2 = D/[(tgb-tgy) cosy]
85,/8Y = tgy * S,
- ph
asu/ay = ho.(cs"“o){ h1[(X—2)eXP(X)] oh, +
2 phy 2
+ ho[(x -3x+3)exp(x)] }/[(tgb-tgy)cos™y]
ph,
ph,
su = D[O.Swo(h.|+h2)+ho(CS—wO){[(x—2)exp(x)] o *
ph 2 phy
+ [h1[(x—2)eXp(X)] ph, + ho[(x -3x+3)exp(x)] ph, 1/

/(Dcosy) 1}

(01X = £(x(2)) - £(x(1)
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