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Abstract 

Most of biological cells have microvilli on their surfaces, which significantly influence their dielectric 

properties. The complex permittivity of a cubical system containing a spherical cell model with cylindrical 

projections was calculated over a frequency range of 10 kHz to 100 MHz using three-dimensional 

finite-element method. The spectra of the complex permittivity consisted of low- and high-frequency 

relaxation processes which were respectively attributed to the polarization of the membranes covering the 

projections and the spherical body. Conventional analysis based on the spherical shell model was applied to 

the simulated spectra to discuss effects of cell surface morphology on the electric parameters estimated for 

the plasma membrane and the cytoplasm.  
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1. Introduction 

Biological cells are polarized in electric fields owing to interfacial polarization, which behavior has 

been studied by dielectric spectroscopy (DS) and the electrokinetic methods of dielectrophoresis 

(DEP) and electrorotation (ER). DS measures the complex relative permittivity *
 of a cell 

suspension as a function of the frequency f of the applied ac field. Complex relative permittivity is 

defined as *
=-j/0, where  is relative permittivity,  electric conductivity, =2f, 0 the 

permittivity of vacuum and j
2
=-1. On the other hand, DEP and ER respectively measure the force 

and torque that a single cell experiences in heterogeneous ac fields and rotating fields. The force 

and torque are related to the polarizability or the Clausius-Mossotti factor K of the cell. The spectra 

of *
 and K have been usually analyzed by theories based on the spherical shell model that is a 

sphere covered with a thin shell to estimate the electric parameters of cell components such as 

membrane capacitance Cm and cytoplasmic conductivity i [1-7]. For a spherical cell with a smooth 

surface, Cm is the specific membrane capacitance defined by Cm=m0/d and the values of 6-8 mF 

m
-2

 have been obtained for cells with smooth surfaces like erythrocytes [8-13]. However, larger 

Cm-values have been obtained for many cultured cells, being mainly due to the presence of 
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membrane-bound projections that are extensions of the plasma membrane [14-22]. Irimajiri et al. 

[14] studied dielectric properties of basophil leukaemia cells whose volume was changed by 

osmotic perturbation, and clearly demonstrated that the estimated value of Cm changing with the 

cell radius R correlated to the “microvilation” or the surface roughness of the cells. Similar studies 

were made with mouse myeloma and hybridoma cells [15] and murine erythroleukaemia cells [16] 

by ER, suggesting that the cell total membrane capacitance Ct defined by Ct=4R
2
Cm was kept 

constant during osmotic perturbation, i.e., Ct was independent of R. Further, the correlation between 

the value of Cm and the “microvilation” was found for cells responding to apoptosis-inducers and 

toxicants [17-22]. In contrast to the experimental studies, however, there are few theoretical studies 

about the effects of the cell surface morphology on the dielectric properties of cells. 

 For simple cell models such as spherical and ellipsoidal shell models, we can use analytical 

equations that relate the electric and morphological parameters of the cell components to the 

dielectric properties of cells and cell suspensions. For cells possessing complex structures, however, 

analytical equations are not available, and therefore numerical simulation techniques are required. 

Recently, various numerical techniques have been developed to simulate dielectric properties of 

biological cells, enabling us to deal with more realistic cell models [23-37].
 
 

This paper is concerned with numerical simulation of the dielectric properties of a cell model 

that emulates the morphological changes of microvilli during osmotic perturbation. Microvilli are 

most common membrane-bound projections of a few hundreds nanometers in diameter [38]. The 

length and number of microvilli change in response to environmental stimuli and cellular conditions 

such as osmotic perturbation, apoptosis and differentiation. In the simulation, a microvillous cell is 

modeled as a sphere with cylindrical projections. Electric potential distributions in a cubic box 

containing the cell model in a medium are numerically solved by the three-dimensional 

finite-element method (FEM), providing the *
 of the system as a function of f. Since experimental 

*
 spectra have been commonly analyzed using the spherical shell model irrespective of the 

presence of microvilli, the same analysis is applied to the simulated spectra to discuss relationships 

between the estimated values of Cm and i and the cell surface morphology. 

 

2. Methods 

2.1. Cell Models 

A microvillous cell is modeled as a sphere of radius Rs with np cylindrical projections of radius rp 

and length h (Fig. 1). To simplify the morphological change of the cell during osmotic perturbation, 

it is assumed that the projections of a constant value of np increase in h with decreasing the cell 

volume Vc while keeping the total cell surface area Sc constant. Sc and Vc are approximately given 

by Eqs. (1) and (2), respectively, and Sc is equal to that of a sphere of radius R0 without projection. 

  2
0

2 422 RhrnRS ppsc   ,                                               (1) 

hrnRV ppsc
23

3

4
  .                                                     (2) 
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The surface area ratio Sp of the projections to the whole cell becomes    2
0

2 42 RhrrnS pppp   . 

The cell model is placed at the center of a cubic box of L×L×L, whose top (at z=+L/2) and 

bottom (at z=-L/2) correspond to electrodes. Since the cell model is symmetrical about each of the 

vertical planes of x=0 and y=0, the domain subjected to numerical calculation can be confined to a 

quarter of the cubic box (Fig. 1A). The quarter is also symmetrical about the horizontal plane of z=0, 

and therefore, when voltages of +1 V and -1 V are respectively applied to the top and bottom 

electrodes, the middle horizontal plane (at z=0) becomes an equipotential surface of 0 V. This 

further allows us to confine the numerical calculation to a half of the quarter.  

 

Fig. 1 (A) A cell model with cylindrical projections in a cubic box. The eighth part of the cubic box, which is rimmed 

with thick lines, is used for actual numerical simulation because of symmetrical geometry. The illustration corresponds 

to model b with Rs=4 m, rp=0.15 m and np=80 in a cube of L=16 m. (B) A cross-section through points p, q and r in 

the cell model is used for cross-sectional views of the electric potential distributions shown in Fig. 6. Point o is the 

origin of the coordinate, and subdomains pc, i and a indicate the projection core, cytoplasm and external medium, 

respectively. 

 

2.2. Numerical calculation  

Numerical calculation was made by FEM using Comsol Multiphysics with an AC/DC Module 

(COMSOL AB) in quasi electrostatic and time harmonics modes over a frequency range from 1 kHz 

to 1 GHz. Biological cells possess thin plasma membranes, which require extra fine meshes and 

thus considerable computation tasks. To solve the problem, the “thin-layer” approximation that 

deals with the membrane as an interface of zero thickness was adopted in a previous paper [37]. The 

same technique was used for this calculation. We consider subdomains i, a and pc that respectively 

correspond to the cell interior, the external medium and the projection core (see Fig.1)). The 

subdomains i, a and pc have complex relative permittivities i
*
, a

*
 and pc

*
, respectively. Both 

interfaces between the subdomains i and a (interface i-a) and between the subdomains pc and a 

(interface pc-a) have the specific complex capacitance of 0m
*
/d, where d is the membrane 

thickness and m
*
 is the complex relative permittivity of the membrane. As described in section 2.1, 

numerical calculation was performed for the eighth part of the model system, where distributions of 
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electric potential  were solved under the following boundary conditions. (i) For the four sides of 

the cubic domain, electric flux density is zero. (ii) The top and the bottom of the cubic domain have 

potentials of 1 and 0 V, respectively. (iii) The interfaces i-a and pc-a have potential differences and 

respectively have electric flux densities D 

 ia
m

aaaiii
d

nnD 


  0
*

0
*

0
*  ,                              (3) 

and 

 pca
m

aaaipcpc
d

nnD 


  0
*

0
*

0
*  ,                            (4) 

where ni, na and npc are outward normal unit vectors to the boundaries of subdomains i, a and pc, 

and i, a and a are the electric potentials of subdomains i, a and pc at the interfaces.  (iv) The 

interface pc-i has no potential difference and holds for continuity of electric flux density as 

iiipcpcpc nn   0
*

0
* .                                           (5) 

The free charge on the top boundary of the cube is calculated by integrating electric flux 

density over the boundary. The free charge and the potential difference between the top and the 

bottom boundaries provide the complex capacitance C
*
 of the cube of L/2×L/2×L/2, which is simply 

converted to the effective complex relative permittivity *
 as  20

** LC   .  

 

2.3. Determination of dielectric relaxation parameters

 The frequency dependence of the *
 obtained by numerical simulation was represented by 

    0

*

2/1/1 


  fjfjffjf

l

cl

l

ch

h
h lh












,

                          (6) 

where h is the high-frequency limit of relative permittivity, the relaxation intensity, fc the 

characteristic frequency,  the Cole-Cole parameter (0<≤1), l the low-frequency limit of 

conductivity, and subscripts h and l of , fc and  are referred to the high- and low-frequency 

relaxation processes. The relaxation parameters hh, fch, h, l, fcl, l and l were determined by 

fitting Eq. (6) to the simulated *
 spectra.  

 

3. Results and discussion 

3.1. Dielectric spectra of suspensions of cells with projections 

Numerical simulation has been carried out using a cell model that is a sphere with cylindrical 

projections. To emulate dielectric behavior of microvillous cells in osmotic perturbation, the 

following conditions and geometric parameter values were adopted. (i) The cell surface area Sc is 

constant irrespective of changes in cell volume Vc and is equal to that of a sphere of R0=5 m in 

radius (Sc= 314.2 m
2
). (ii) The number np and radius rp of the projections are respectively fixed at 
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80 and 0.15 m. (iii) The radius Rs of the spherical body and the length h of the projections are both 

changed with Vc. The geometric parameters of representative cell models are listed in Table 1. The 

volume fraction Pg of the cell model occupied in a cubic box of L=16 m is calculated by Pg=Vc/L
3
. 

The equivalent cell radius Req was calculated from the cell volume Vc assuming a corresponding 

sphere as Req=(3Vc/4)
1/3

.  

 

Table 1 Geometric parameters of representative cell models. 

Models Rs/m h/m Vc/ m
3
 Pg Req/m 

a 5.0 0 523.6 0.1278 5.00 

b 4.4 0.94 362.1 0.0884 4.42 

c 4.0 1.50 276.6 0.0675 4.04 

d 3.5 2.13 191.6 0.0468 3.58 

 

For sake of simplicity, numerical simulation was first carried out for the case of i
*
=pc

*
, using 

the following parameter values relevant to mammalian cells as: a=i=pc=80, a=1 S m
-1

, 

i=pc=0.5 S m
-1

, m=5, m=0 S m
-1

 and d=5 nm. Simulation for the case of i
*
≠pc

*
 will be 

discussed in section 3.2. Figure 2 shows frequency dependence of the relative permittivity ' (′=) 

and loss factor ″ of a cubic system containing one of cell models a-d. The value of ″ was 

calculated by subtracting the low-frequency limit of conductivity l as ″=(-l)/(2f0). The 

dielectric spectra for a spherical model without projection (model a) showed dielectric relaxation 

with a single relaxation time, being in good agreement with those calculated from the 

Pauly-Schwan (PS) theory based on the spherical shell model [6]. On the other hand, cell models 

with projections (models b-d) showed broader spectra containing two relaxation processes, which 

were well represented by Eq. (6) to provide the dielectric relaxation parameters of the 

low-frequency (LF) relaxation (l, fcl, l) and the high-frequency (HF) relaxation (h, fch, h).    
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Fig. 2 The relative permittivity ' and loss factor ″ of a cubic system containing a cell model as a function of frequency 

f. Data points (●), (○), (▲) and (◊) respectively correspond to models a-d given in Table 1. Curves are the best-fit ones 

calculated from Eq. (6).  

 

The dielectric relaxation parameters were plotted for the equivalent cell radius Req in Figs. 3-5. 

It should be noted that data points at Req= 4.42 and 4.71 m included large errors because the values 

of fcl and fch were close to each other. In Fig. 3,  (=l+h) and h decrease with decreasing 

Req while l slightly changes. The ratio l/ is, however, proportional to the surface area ratio Sp 

of the projections to the whole cell (see the inset of Fig. 3), suggesting the contribution of the 

projections to the LF relaxation. The fcl and fch are separated by one decade at Req of about 3 m, 

and approach to each other with increasing Req and merges into the characteristic frequency of the 

model without projection at Req=5 m (Fig. 4). The Cole-Cole parameter  determines the shape of 

dielectric relaxation. The decrease in h with decreasing Req indicates broadening of the HF 

relaxation, while the values of l are almost unity, i.e., the Debye type relaxation for the LF 

relaxation (Fig. 5). At low Req, in addition to the broadening of the HF relaxation, a large difference 

between fcl and fch results in broadening of the whole spectrum.  

 

Fig. 3 Dielectric relaxation intensities l◊ h▲ and  (●) as a function of equivalent cell radius Req. Inset: 

l/ plotted against the relative surface area Sp of the projections to the whole cell. Curves are a guide to eye. 

 

 

Fig. 4 Characteristic frequencies fcl ◊ and fch ▲ as a function of equivalent cell radius Req. The point (●) at Req=5 m 

refers to the model without projection (model a). Curves are a guide to eye. 
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Fig. 5 Cole-Cole parameters l ◊ and h ▲ as a function of equivalent cell radius Req. The point (●) at Req=5 m 

refers to the model without projection. Curves are a guide to eye. 

 

The LF and HF relaxation processes might be due to the membrane polarization of the 

projections and the spherical body, respectively. To assign the two relaxation processes, we examine 

electric potential distributions in the system at different frequencies. Figure 6 shows the 

distributions of the real part of electric potential for model d. The insides of the projections and the 

spherical body both have a constant potential below 100 kHz and are clearly distinguished from the 

surroundings, indicating that the membranes of the projections and the spherical body are both fully 

polarized. At 1 MHz, where the LF relaxation diminishes, the projections become invisible and the 

projection membrane is less polarized. Finally the spherical body disappears at 10 MHz, where the 

HF relaxation almost diminishes. This behavior suggests that the LF and HF relaxation processes 

are related to the membrane polarization of the projections and the spherical body, respectively.   

 

Fig. 6 Distributions of the real part of electric potential at the cross-section through points p, q and r shown in Fig. 1. 

The data are the same as those used for the dielectric spectra of model d in Fig. 2. The frequency of the applied ac field 

is shown at the top of each panel. 

 

3.2. Effects of the electric properties of the projection core 

The core of a microvillus contains actin filaments that run in parallel bundle along its length. Thus, 

the electric properties of the projection core could be different from the cytoplasm. Here, we 

examine the effects of the electric properties of the projection core on the dielectric spectra of the 

cell suspension. Figure 7 shows the dielectric spectra obtained by changing the conductivity pc of 

the projection core while the relative permittivity pc of the projection core is fixed at 80. The LF 
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relaxation shifted to a lower frequency side with decreasing pc, whereas the HF relaxation was not 

influenced by pc. When the value of pc was changed between 160 and 40, there was little influence 

on the dielectric spectra (data are not shown). The results also support the assignment that the LF 

and HF relaxation processes are attributed to the polarization of the projections and the spherical 

body, respectively.  

 

Fig. 7 The relative permittivity ' and loss factor ″ as a function of frequency f, which have been simulated for model b 

when the projection core has different conductivites in S m
-1

: 1 (○), 0.5 (●), 0.1 (▲) and 0.05 (◊). The other parameter 

values are the same as in Fig. 2 

 

3.3. Apparent membrane capacitance and cytoplasmic conductivity 

Dielectric spectra of spherical cell suspensions have been analyzed using the spherical shell model 

irrespective of cell surface morphology. In the analysis, the volume fraction P of cells (or the 

relative volume occupied by cells in a cell suspension), the membrane capacitance Cm and the 

cytoplasmic conductivity i are determined from the dielectric relaxation parameters of the 

dielectric spectra. The Cm of a spherical cell with a smooth surface is the specific membrane 

capacitance defined by Cm=m0/d, while an apparent value of Cm is obtained for a cell with a rough 

surface. The relationship between the value of Cm and the degree of membrane folding has not been 

clearly understood. In addition, the question is raised whether the surface morphology influences 

the estimations of P and i. To answer the questions, the same analysis was applied to the simulated 

dielectric spectra. 

When cells hold for the conditions of d/R<<1 and m<<a≈i, the PS theory based on the 

spherical shell model predicts dielectric relaxation of a single relaxation time. The dielectric 

relaxation parameters l, , fc and h (the high-frequency limit of conductivity) are related to P, Cm 

and i [3, 6] as: 
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Analysis with Eqs. (7)-(10) was carried out for the dielectric spectra simulated for the case of 

i
*
=pc

*
 described in section 3.1. Figure 8 shows the values of P calculated from Eq. (7) plotted 

against those of Pg calculated from the geometry of the cell model. The values of P were in good 

agreement with those of Pg, suggesting that Eq. (7) is applicable to microvillous cells at volume 

fractions below at least 0.13 and that the estimation of P is insensitive to the cell surface 

morphology.   

 

Fig. 8 The volume fraction P calculated from Eq. (7) as a function of the volume fraction Pg that is the relative volume 

occupied by the cell model in the cubical system. A line with a slope of unity is shown.  

 

The values of Cm were calculated from Eq. (8) with the values of R and P. The choice of the 

value of R is, however, arbitrary, although, in experiment, the value of R is determined by optical 

microscopy. Here, the values of Req and Rs were used for R. Figure 9 shows double logarithmic plots 

of the estimated values of Cm against R. Linear relations were found, whose slopes were -2.27 with 

R=Req and -2.16 with R=Rs. As a fist approximation, therefore, Cm is inversely proportional to R
2
 as 

 200 RRCC mm  , where Cm0 is the specific membrane capacitance of the spherical cell (without 

projection) of radius R0. Using this relation, the cell total membrane capacitance Ct becomes 

0
2
0

2 44 mmt CRCRC   . Hence, Ct is independent of R, which relation accounts for the 

experimental results that Ct remained constant irrespective of changes in R with the medium 

osmolality [15, 16]. In other words, if the value of Cm0 is given, the value of Ct provides the total 

surface area of the cell. For the value of Cm0, we may adopt a value of 6-8 mF m
-2

 obtained for 

erythrocyte membranes with smooth surfaces.  
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Fig. 9 The membrane capacitance Cm estimated by Eq. (8) as a function of the cell radius R. Data points (○) and (●) are 

calculated with R=Req and Rs, respectively. Solid lines are regression lines. 

 

The cytoplasmic conductivity i was estimated from the values of fc and h using Eqs. (9) and 

(10), respectively (Fig. 10). The value of fc was approximately determined assuming a single 

relaxation process, although the simulated dielectric spectra contained two relaxation processes. 

The value of h was obtained at 100 MHz, where the conductivity almost leveled off. The values of 

i estimated from those of fc seriously deviated from the true value (0.5 S m
-1

) at low Req, whereas 

the estimation of i from h provided reasonable values over the whole range of Req. The results 

suggest that the estimation of i from fc includes serious errors for microvillous cells in contrast to 

that from h.  

 

Fig. 10 Cytoplasmic conductivity i as a function of effective cell radius Req. Data points (○) and (●) are calculated 

from Eqs. (9) and (10), respectively. 

 

4. Conclusion 

A microvillous cell was modeled as a sphere with projections and its dielectric properties were 

numerically simulated by 3D-FEM. The *
 of the cell suspension showed dielectric dispersion 

consisting of LF and HF relaxation processes, which were respectively attributed to the polarization 

of the membranes covering the projections and the spherical body. The values of Cm were obtained 

from the simulated spectra of *
 by the conventional analysis based on the spherical shell model. 

When leaving the surface area of the cell model constant, the Cm was inversely proportional to the 
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square of the apparent cell radius and the cell total membrane capacitance remained constant, which 

was consistent with previous experimental results. The estimation of i from the value of fc in *
 

spectra included errors, and consistent values of i were obtained from the value of h.  

The present simulation has demonstrated that the dielectric properties of cells are seriously 

influenced by their surface morphology. When applying the conventional spherical shell model to 

microvillous cells, careful considerations are required in interpreting the estimated values of electric 

parameters of the plasma membrane and the cytoplasm.  
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