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Abstract
We give a necessary and sufficient condition on a Randers space for the existence
of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, if it
exists, such a measure coincides with the Busemann-Hausdorff measure up to a
constant multiplication.
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1 Introduction

This short article is concerned with a characterization of Randers spaces admitting mea-
sures with vanishing S-curvature. A Randers space (due to Randers [Ra]) is a special
kind of Finsler manifold (M, F') whose Finsler structure £ : TM — [0,00) is written
as F'(v) = a(v) + B(v), where « is a norm induced from a Riemannian metric on M and
[ is a one-form on M. Randers spaces are important in applications and reasonable for
concrete calculations. See [AIM] and [BCS, Chapter 11] for more on Randers spaces.

We equip a Finsler manifold (M, F') with an arbitrary smooth measure m. Then
the S-curvature S(v) € R of v € TM introduced by Shen (see [Sh, §7.3]) measures the
difference between m and the volume measure of the Riemannian structure induced from
the tangent vector field of the geodesic n with n(0) = v (see §2.2 for the precise definition).
The author’s recent work [Oh], [OS] on the weighted Ricci curvature (in connection with
optimal transport theory) shed new light on the importance of this quantity.

A natural and important question arising from the theory of weighted Ricci curvature
is: when does (M, F') admit a measure m with S = 07 If such a measure exists, then we
can choose it as a good reference measure. Our main result provides a complete answer
to this question for Randers spaces.

Theorem 1.1 A Randers space (M, F) admits a measure m with S = 0 if and only if
0B is a Killing form of constant length. Moreover, then m coincides with the Busemann-
Hausdorff measure up to a constant multiplication.
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It has been observed by Shen [Sh, Example 7.3.1] that a Randers space with the
Busemann-Hausdorff measure satisfies S = 0 if § is a Killing form of constant length.
Our theorem asserts that his condition on 3 is also necessary for the existence of m with
S = 0, and then it immediately follows that m must be a constant multiplication of the
Busemann-Hausdorff measure.

On the one hand, Shen’s result (the “if” part of Theorem 1.1) ensures that there is
a rich class of non-Riemannian Randers spaces satisfying S = 0. On the other hand,
the “only if” part says that the class of general Randers spaces is much wider and many
Randers spaces have no measures with S = 0. This means that there are no canonical
(reference) measures on such Finsler manifolds (in respect of the weighted Ricci curva-
ture). Therefore, for a general Finsler manifold, it is natural to start with an arbitrary
measure, as was discussed in [Oh] and [OS].

2 Preliminaries for Finsler geometry

We first review the basics of Finsler geometry. Standard references are [BCS] and [Sh].
We will follow the notations in [BCS] with a little change (e.g., we use v’ instead of y*).

2.1 Finsler structures

Let M be a connected n-dimensional C'*°-manifold with n > 2, and 7 : TM — M
be the natural projection. Given a local coordinate ()", : U — R™ of an open set
U C M, we will always denote by (z%;v*)"; the local coordinate of 7=!(U) given by

v =", 0"(0/0x") | x(u)-
A C>™-Finsler structure is a function F' : TM — [0,00) satisfying the following
conditions:

(I) FisC*®onTM \ {0};
(II) F(cv) = cF(v) for allv € TM and ¢ > 0;

(III) The n x n matrix
O(F?)

vtOvI

gij(v) = (v)

is positive-definite for all v € TM \ {0}.

DN | —
Q

The positive-definite matrix (g;;(v)) defines a Riemannian structure g, of 7, M through
; 0 .0 y
9o Za 8xi’zbj% ::Zgzj(v)a b (2.1)
i J ]

Note that g,(v,v) = F(v)?. This inner product g, is regarded as the best approximation
of F|r,a in the direction v. Indeed, the unit sphere of g, is tangent to that of F|r s at
v/F(v) up to the second order. If (M, F') is Riemannian, then g, always coincides with
the original Riemannian metric. As usual, (¢"/) will stand for the inverse matrix of (g;;).




We define the Cartan tensor

Agu(v) = T D

for v € TM \ {0}, and remark that A;j; = 0 holds if and only if (M, F') is Riemannian.
We also define the formal Christoffel symbol

o) = 3 S0 G50 + 2 w) - Pk

forv € TM\{0}. Then the geodesic equation is written as 77+ G(7) = 0 with the geodesic
spray coefficients

G'(v) := Z v ik (v)vi ok
J,k

for v € TM (G*(0) := 0 by convention). Using these, we further define the nonlinear
connection .

N'j(v) = zk: {Viﬂc(v)vk - WAijk(U)Gk(U)}
for v € TM (N';(0) := 0 by convention), where A;x(v) := >, g"(v)Ajx(v). Note that
(see [BCS, Exercise 2.3.3])
_10G"

Nj(0) = 555 (0)

2.2  S-curvature and weighted Ricci curvature

We choose an arbitrary positive C*°-measure m on a Finsler manifold (M, F'). Fix a unit
vector v € F7(1) and let n : (—&,e) — M be the geodesic with 77(0) = v. Along 7, the
tangent vector field 7 defines the Riemannian metric g, via (2.1). Denoting the volume
form of g; by vol;, we decompose m into m(dr) = =Y vol,(dx) along 1. Then we define
the S-curvature of v by : )

d(Won

S(v) := I (0).
We extend this definition to all w = cv with ¢ > 0 by S(w) := ¢S(v). Clearly S = 0 holds
on Riemannian manifolds with the volume measure.
The weighted Ricci curvature is defined in a similar manner as follows:

(i) Ricy(v) := Ric(v) + (¥ on)”(0) if S(v) = 0, Ric,(v) := —oo otherwise;
(i) Ricy(v) := Ric(v) + (¥ on)”(0) — S(v)?/(N —n) for N € (n,00);
(iii) Riceo(v) := Ric(v) + (¥ on)”(0).

Here Ric(v) is the usual (unweighted) Ricci curvature of v. The author [Oh] shows that
bounding Ricy from below by K € R is equivalent to the curvature-dimension condition
CD(K,N), and then there are many analytic and geometric applications. Observe that
the bound Ric,, > K > —oo makes sense only when the S-curvature vanishes everywhere.
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Therefore the class of such special triples (M, F,m) deserves a particular interest. We
remark that, if there are two measures my, mq on (M, F) satisfying S = 0, then m; = ¢-my
holds for some positive constant c.

We rewrite S(v) according to [Sh, §7.3] for ease of later calculation. Recall that 7 is
the geodesic with 77(0) = v. Fix a local coordinate (z')"_; containing 1 and represent m
along 7 as

_ 17,2 n_ O (n)
m(dx) = o(n)de dz® - - - da™ = ——===vol,(dz).
det(g;)

We have by definition

d det(gay)y = 1 d ct(a] v do .
g( o(n(t)) )‘2det<gv> ol detome)] = 2 i i ()

S(v) =—
Since 7 solves the geodesic equation 7j + G(7) = 0, the first term is equal to

> {0 Lot 0 wito)

4,5,k

i-vvk—Li~v Fo) p = (v
ZZ{%k() R G0 = SN

i,k

Thus we obtain

S() =" {Nz(v) - 0?(’;) 3; (x)}. (2.2)

Observe that S(cv) = ¢S(v) indeed holds for ¢ > 0 in this form.

2.3 Busemann-Hausdorff measure and Berwald spaces

Different from the Riemannian case, there are several constructive measures on a Finsler
manifold, each of them is canonical in some sense and coincides with the volume measure
for Riemannian manifolds. Among them, here we treat only the Busemann-Hausdorff
measure which is actually the Hausdorff measure associated with the suitable distance
structure if F' is symmetric in the sense that F'(—v) = F(v) holds for all v € TM.
Roughly speaking, the Busemann-Hausdorff measure is the measure such that the
volume of the unit ball of each tangent space equals the volume of the unit ball in R"™.
Precisely, using a basis wy, wo, . .., w, € T, M and its dual basis 0,62, ... 0" € T M, the
Busemann-Hausdorff measure mpy(dz) = opp(x) 0 ANO* A -+ A O™ is defined as

i = ([0 <R [P(Sem) 1)

where vol,, is the Lebesgue measure and w,, is the volume of the unit ball in R".

Let (M, F) be a Berwald space (see [BCS, Chapter 10] for the precise definition).
Then it is well known that S = 0 holds for the Busemann-Hausdorff measure (see [Sh,
Proposition 7.3.1]). In fact, along any geodesic n : [0,I]] — M, the parallel transport
Tos : ThoyM — T,uM with respect to g, preserves F'. Therefore choosing parallel
vector fields along 1 as a basis yields that ogpy is constant on 7, which yields S = 0.
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3 Proof of Theorem 1.1

Let (M, F) be a Randers space, i.e., F(v) = a(v) + 5(v) such that « is a norm induced
from a Riemannian metric and that 3 is a one-form. In a local coordinate (z*)";, we can

write
/Zaw x)vivd B(v) = Z bi(x)v

for v € T,M. The length of § at x is defined by ||3]|(x) := \/Z” a¥(z)b;(x)b;(x), which

is necessarily less than 1 in order to guarantee F' > 0 on 7'M \ {0}.
We denote the Christoffel symbol of (a;;) by i" jk- We also define

x) :Zaij(x)bj(q:), bij(x) := 8mi Zbk ”

Note that b;); is the coefficient of the covariant derivative V of 3 with respect to a, namely

VojowiB =Y, byjdr’. We find by calculation that

(g@' - 22% (3.1)

We say that (3 is a Killing form if b;;+0;; = 0 holds on M. The geodesic spray coefficients
of F are given by (see [BCS, (11.3.11)])

) = et
= Z {&ijk(x)vjvk + bjji(z) (¥ (z)0" — a™(2)v") a(v)

i
F(v)
=: Z ' ip(z)v?0P + X (v) + Y(v). (3.2)

j.k
If S =0 on T,M, then we deduce from (2.2) that >, N%;(v) is linear in v € T, M.
We shall see that only this infinitesimal constraint is enough to imply the condition on

3 stated in Theorem 1.1. To see this, we calculate 2N%; = 0G*/v® using (3.2). As the
first term Y 5% (2)v/v" comes from a Riemannian structure, it suffices to consider only
the linearly of >~ {9X"/ov'(v) + dY"/Ov'(v)}. For the sake of simplicity, we will omit
evaluations at = and v in the following calculations.

We first obtain

+ bjjk(2) {vIoF + (bF(z)v? — ¥ (2)v")a(v)}

0X? a; vt
- = Z(bm —by)ao+ Y bj(aToF — a*ol) =~
ovt b «
= Zbﬂz —aa + Zbﬂk(v v — v]vk)oz_l = 0.
ik



As Euler’s theorem [BCS, Theorem 1.2.1] ensures

d (v 1 O\ n—1
Zavi<F>:ﬁZ<F_U81ﬂ>— F 7

7 %

we next observe

oy Ve , : , o agvt
50 = > f{(bz'lj + ;)07 + (b — by o+ by (e’ — ijk)T}
i irj k1
1 A : :
+ nF Z b { v 0" + (V) — boh)a}
gk
n+1 R vt
= 5 Z(bﬂj + bj“)T + (n+1) Z(bi‘j — bj‘i)b]?.
i,J 4,3

By comparing the evaluations at v and —wv, the coefficients b;; + b;; in the first term
must vanish for all 7, j, and hence 3 is a Killing form. For the second term, we find that
(a/F) 3=, (bijj — bjji)’ must be constant on each T, M. If a/F is not constant on some
T, M (ie., [|B|/(z) # 0), then it holds that > .(by; — b;;)b/ = 0. Since f is a Killing form,
we deduce from (3.1) that

_ i _odlsIP)
0="> (b — by’ = —2;%# ==

J

Therefore 3 has a constant length as required, for ||3]| # 0 is an open condition. If a/F is
constant on some T, M, then the above argument yields that 4 = 0 on M. This completes
the proof of the “only if” part of Theorem 1.1.

For the “if” part, it is sufficient to show that the Busemann-Hausdorff measure satisfies
S = 0, that can be found in [Sh, Example 7.3.1]. We briefly repeat his discussion for
completeness. We first observe from [Sh, (2.10)] that

mpn(dr) = (1—[|8](z)?) "% /det(ai;(x)) dz* - - da™ =: opp(x) dx* - - - da™.

Since (§ has a constant length, we have
v* dopp 1 K ijo o O00ij i j
S o B P = g DGR ) = (e
Therefore we conclude, by (2.2),

S) = 3 3 [ lepiet] =30 O ) g

i?j7k

O
We finally remark related known results and several consequences of Theorem 1.1.



Remark 3.1 (a) A Randers space is a Berwald space if and only if 5 is parallel in the
sense that b;; = 0 for all ¢, j (see [BCS, Theorem 11.5.1]). Thanks to [Sh, Example 7.3.2],
we know that a Killing form of constant length is not necessarily parallel.

(b) In [De], Deng gives a characterization of vanishing S-curvature for homogeneous
Randers spaces endowed with the Busemann-Hausdorff measure.

(c) It is easy to construct a Randers space whose [ does not have a constant length.
Hence many Finsler manifolds do not admit measures with S = 0 (in other words, with
Ric, > K > —0).

(d) Another consequence of Theorem 1.1 is that only (constant multiplications of)
the Busemann-Hausdorff measures can satisfy S = 0 on Randers spaces. Then a natural
question is the following:

Question Is there a Finsler manifold (M, F) on which some measure m other than (a
constant multiplication of) the Busemann-Hausdorff measure satisfies S = 07 If yes, what
kind of measure is m?

If such a measure exists, then it is more natural than the Busemann-Hausdorff measure
in respect of the weighted Ricci curvature.
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