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Abstract
We give a necessary and sufficient condition on a Randers space for the existence

of a measure for which Shen’s S-curvature vanishes everywhere. Moreover, if it
exists, such a measure coincides with the Busemann-Hausdorff measure up to a
constant multiplication.
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1 Introduction

This short article is concerned with a characterization of Randers spaces admitting mea-
sures with vanishing S-curvature. A Randers space (due to Randers [Ra]) is a special
kind of Finsler manifold (M,F ) whose Finsler structure F : TM −→ [0,∞) is written
as F (v) = α(v) + β(v), where α is a norm induced from a Riemannian metric on M and
β is a one-form on M . Randers spaces are important in applications and reasonable for
concrete calculations. See [AIM] and [BCS, Chapter 11] for more on Randers spaces.

We equip a Finsler manifold (M,F ) with an arbitrary smooth measure m. Then
the S-curvature S(v) ∈ R of v ∈ TM introduced by Shen (see [Sh, §7.3]) measures the
difference between m and the volume measure of the Riemannian structure induced from
the tangent vector field of the geodesic η with η̇(0) = v (see §2.2 for the precise definition).
The author’s recent work [Oh], [OS] on the weighted Ricci curvature (in connection with
optimal transport theory) shed new light on the importance of this quantity.

A natural and important question arising from the theory of weighted Ricci curvature
is: when does (M,F ) admit a measure m with S ≡ 0? If such a measure exists, then we
can choose it as a good reference measure. Our main result provides a complete answer
to this question for Randers spaces.

Theorem 1.1 A Randers space (M,F ) admits a measure m with S ≡ 0 if and only if
β is a Killing form of constant length. Moreover, then m coincides with the Busemann-
Hausdorff measure up to a constant multiplication.
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It has been observed by Shen [Sh, Example 7.3.1] that a Randers space with the
Busemann-Hausdorff measure satisfies S ≡ 0 if β is a Killing form of constant length.
Our theorem asserts that his condition on β is also necessary for the existence of m with
S ≡ 0, and then it immediately follows that m must be a constant multiplication of the
Busemann-Hausdorff measure.

On the one hand, Shen’s result (the “if” part of Theorem 1.1) ensures that there is
a rich class of non-Riemannian Randers spaces satisfying S ≡ 0. On the other hand,
the “only if” part says that the class of general Randers spaces is much wider and many
Randers spaces have no measures with S ≡ 0. This means that there are no canonical
(reference) measures on such Finsler manifolds (in respect of the weighted Ricci curva-
ture). Therefore, for a general Finsler manifold, it is natural to start with an arbitrary
measure, as was discussed in [Oh] and [OS].

2 Preliminaries for Finsler geometry

We first review the basics of Finsler geometry. Standard references are [BCS] and [Sh].
We will follow the notations in [BCS] with a little change (e.g., we use vi instead of yi).

2.1 Finsler structures

Let M be a connected n-dimensional C∞-manifold with n ≥ 2, and π : TM −→ M
be the natural projection. Given a local coordinate (xi)n

i=1 : U −→ Rn of an open set
U ⊂ M , we will always denote by (xi; vi)n

i=1 the local coordinate of π−1(U) given by
v =

∑
i v

i(∂/∂xi)|π(v).
A C∞-Finsler structure is a function F : TM −→ [0,∞) satisfying the following

conditions:

(I) F is C∞ on TM \ {0};

(II) F (cv) = cF (v) for all v ∈ TM and c ≥ 0;

(III) The n × n matrix

gij(v) :=
1

2

∂(F 2)

∂vi∂vj
(v)

is positive-definite for all v ∈ TM \ {0}.

The positive-definite matrix (gij(v)) defines a Riemannian structure gv of TxM through

gv

( ∑
i

ai ∂

∂xi
,
∑

j

bj ∂

∂xj

)
:=

∑
i,j

gij(v)aibj. (2.1)

Note that gv(v, v) = F (v)2. This inner product gv is regarded as the best approximation
of F |TxM in the direction v. Indeed, the unit sphere of gv is tangent to that of F |TxM at
v/F (v) up to the second order. If (M,F ) is Riemannian, then gv always coincides with
the original Riemannian metric. As usual, (gij) will stand for the inverse matrix of (gij).
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We define the Cartan tensor

Aijk(v) :=
F (v)

2

∂gij

∂vk
(v)

for v ∈ TM \ {0}, and remark that Aijk ≡ 0 holds if and only if (M,F ) is Riemannian.
We also define the formal Christoffel symbol

γi
jk(v) :=

1

2

∑
l

gil(v)

{
∂glj

∂xk
(v) +

∂gkl

∂xj
(v) − ∂gjk

∂xl
(v)

}
for v ∈ TM \{0}. Then the geodesic equation is written as η̈+G(η̇) = 0 with the geodesic
spray coefficients

Gi(v) :=
∑
j,k

γi
jk(v)vjvk

for v ∈ TM (Gi(0) := 0 by convention). Using these, we further define the nonlinear
connection

N i
j(v) :=

∑
k

{
γi

jk(v)vk − 1

F (v)
Ai

jk(v)Gk(v)

}
for v ∈ TM (N i

j(0) := 0 by convention), where Ai
jk(v) :=

∑
l g

il(v)Aljk(v). Note that
(see [BCS, Exercise 2.3.3])

N i
j(v) =

1

2

∂Gi

∂vj
(v).

2.2 S-curvature and weighted Ricci curvature

We choose an arbitrary positive C∞-measure m on a Finsler manifold (M,F ). Fix a unit
vector v ∈ F−1(1) and let η : (−ε, ε) −→ M be the geodesic with η̇(0) = v. Along η, the
tangent vector field η̇ defines the Riemannian metric gη̇ via (2.1). Denoting the volume
form of gη̇ by volη̇, we decompose m into m(dx) = e−Ψ(η̇) volη̇(dx) along η. Then we define
the S-curvature of v by

S(v) :=
d(Ψ ◦ η̇)

dt
(0).

We extend this definition to all w = cv with c ≥ 0 by S(w) := cS(v). Clearly S ≡ 0 holds
on Riemannian manifolds with the volume measure.

The weighted Ricci curvature is defined in a similar manner as follows:

(i) Ricn(v) := Ric(v) + (Ψ ◦ η)′′(0) if S(v) = 0, Ricn(v) := −∞ otherwise;

(ii) RicN(v) := Ric(v) + (Ψ ◦ η)′′(0) − S(v)2/(N − n) for N ∈ (n,∞);

(iii) Ric∞(v) := Ric(v) + (Ψ ◦ η)′′(0).

Here Ric(v) is the usual (unweighted) Ricci curvature of v. The author [Oh] shows that
bounding RicN from below by K ∈ R is equivalent to the curvature-dimension condition
CD(K,N), and then there are many analytic and geometric applications. Observe that
the bound Ricn ≥ K > −∞ makes sense only when the S-curvature vanishes everywhere.
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Therefore the class of such special triples (M,F,m) deserves a particular interest. We
remark that, if there are two measures m1,m2 on (M,F ) satisfying S ≡ 0, then m1 = c·m2

holds for some positive constant c.
We rewrite S(v) according to [Sh, §7.3] for ease of later calculation. Recall that η is

the geodesic with η̇(0) = v. Fix a local coordinate (xi)n
i=1 containing η and represent m

along η as

m(dx) = σ(η) dx1dx2 · · · dxn =
σ(η)√
det(gη̇)

volη̇(dx).

We have by definition

S(v) =
d

dt

∣∣∣
t=0

log

(√
det(gη̇(t))

σ(η(t))

)
=

1

2 det(gv)

d

dt

∣∣∣
t=0

[
det(gη̇(t))

]
−

∑
i

vi

σ(x)

∂σ

∂xi
(x).

Since η solves the geodesic equation η̈ + G(η̇) = 0, the first term is equal to

1

2

∑
i,j,k

{
gij(v)

∂gij

∂xk
(v)vk + gij(v)

∂gij

∂vk
(v)η̈k(0)

}
=

∑
i,k

{
γi

ik(v)vk − 1

F (v)
Ai

ik(v)Gk(v)

}
=

∑
i

N i
i(v).

Thus we obtain

S(v) =
∑

i

{
N i

i(v) − vi

σ(x)

∂σ

∂xi
(x)

}
. (2.2)

Observe that S(cv) = cS(v) indeed holds for c ≥ 0 in this form.

2.3 Busemann-Hausdorff measure and Berwald spaces

Different from the Riemannian case, there are several constructive measures on a Finsler
manifold, each of them is canonical in some sense and coincides with the volume measure
for Riemannian manifolds. Among them, here we treat only the Busemann-Hausdorff
measure which is actually the Hausdorff measure associated with the suitable distance
structure if F is symmetric in the sense that F (−v) = F (v) holds for all v ∈ TM .

Roughly speaking, the Busemann-Hausdorff measure is the measure such that the
volume of the unit ball of each tangent space equals the volume of the unit ball in Rn.
Precisely, using a basis w1, w2, . . . , wn ∈ TxM and its dual basis θ1, θ2, . . . , θn ∈ T ∗

xM , the
Busemann-Hausdorff measure mBH(dx) = σBH(x) θ1 ∧ θ2 ∧ · · · ∧ θn is defined as

ωn

σBH(x)
= voln

({
(ci) ∈ Rn

∣∣∣ F

( ∑
i

ciwi

)
< 1

})
,

where voln is the Lebesgue measure and ωn is the volume of the unit ball in Rn.
Let (M,F ) be a Berwald space (see [BCS, Chapter 10] for the precise definition).

Then it is well known that S ≡ 0 holds for the Busemann-Hausdorff measure (see [Sh,
Proposition 7.3.1]). In fact, along any geodesic η : [0, l] −→ M , the parallel transport
T0,t : Tη(0)M −→ Tη(t)M with respect to gη̇ preserves F . Therefore choosing parallel
vector fields along η as a basis yields that σBH is constant on η, which yields S ≡ 0.
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3 Proof of Theorem 1.1

Let (M,F ) be a Randers space, i.e., F (v) = α(v) + β(v) such that α is a norm induced
from a Riemannian metric and that β is a one-form. In a local coordinate (xi)n

i=1, we can
write

α(v) =

√∑
i,j

aij(x)vivj, β(v) =
∑

i

bi(x)vi

for v ∈ TxM . The length of β at x is defined by ‖β‖(x) :=
√∑

i,j aij(x)bi(x)bj(x), which

is necessarily less than 1 in order to guarantee F > 0 on TM \ {0}.
We denote the Christoffel symbol of (aij) by γ̃i

jk. We also define

bi(x) :=
∑

j

aij(x)bj(x), bi|j(x) :=
∂bi

∂xj
(x) −

∑
k

bk(x)γ̃k
ij(x).

Note that bi|j is the coefficient of the covariant derivative ∇̃ of β with respect to α, namely

∇̃∂/∂xjβ =
∑

i bi|jdxi. We find by calculation that

∂(‖β‖2)

∂xi
(x) = 2

∑
j

bj|i(x)bj(x). (3.1)

We say that β is a Killing form if bi|j +bj|i ≡ 0 holds on M . The geodesic spray coefficients
of F are given by (see [BCS, (11.3.11)])

Gi(v) =
∑
j,k

γi
jk(v)vjvk

=
∑
j,k

[
γ̃i

jk(x)vjvk + bj|k(x)
(
aij(x)vk − aik(x)vj

)
α(v)

+ bj|k(x)
vi

F (v)

{
vjvk +

(
bk(x)vj − bj(x)vk

)
α(v)

}]
=:

∑
j,k

γ̃i
jk(x)vjvk + X i(v) + Y i(v). (3.2)

If S ≡ 0 on TxM , then we deduce from (2.2) that
∑

i N
i
i(v) is linear in v ∈ TxM .

We shall see that only this infinitesimal constraint is enough to imply the condition on
β stated in Theorem 1.1. To see this, we calculate 2N i

i = ∂Gi/∂vi using (3.2). As the
first term

∑
j,k γ̃i

jk(x)vjvk comes from a Riemannian structure, it suffices to consider only

the linearly of
∑

i{∂X i/∂vi(v) + ∂Y i/∂vi(v)}. For the sake of simplicity, we will omit
evaluations at x and v in the following calculations.

We first obtain∑
i

∂X i

∂vi
=

∑
i,j

(bj|i − bi|j)a
ijα +

∑
i,j,k,l

bj|k(a
ijvk − aikvj)

ailv
l

α

=
∑
i,j

bj|i(a
ij − aji)α +

∑
j,k

bj|k(v
kvj − vjvk)α−1 = 0.
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As Euler’s theorem [BCS, Theorem 1.2.1] ensures∑
i

∂

∂vi

(
vi

F

)
=

1

F 2

∑
i

(
F − vi ∂F

∂vi

)
=

n − 1

F
,

we next observe∑
i

∂Y i

∂vi
=

∑
i,j

vi

F

{
(bi|j + bj|i)v

j + (bi|j − bj|i)b
jα +

∑
k,l

bj|k(b
kvj − bjvk)

ailv
l

α

}
+

n − 1

F

∑
j,k

bj|k
{
vjvk + (bkvj − bjvk)α

}
=

n + 1

2

∑
i,j

(bi|j + bj|i)
vivj

F
+ (n + 1)

∑
i,j

(bi|j − bj|i)b
j αvi

F
.

By comparing the evaluations at v and −v, the coefficients bi|j + bj|i in the first term
must vanish for all i, j, and hence β is a Killing form. For the second term, we find that
(α/F )

∑
j(bi|j − bj|i)b

j must be constant on each TxM . If α/F is not constant on some

TxM (i.e., ‖β‖(x) 6= 0), then it holds that
∑

j(bi|j − bj|i)b
j = 0. Since β is a Killing form,

we deduce from (3.1) that

0 =
∑

j

(bi|j − bj|i)b
j = −2

∑
j

bj|ib
j = −∂(‖β‖2)

∂xi
.

Therefore β has a constant length as required, for ‖β‖ 6= 0 is an open condition. If α/F is
constant on some TxM , then the above argument yields that β ≡ 0 on M . This completes
the proof of the “only if” part of Theorem 1.1.

For the “if” part, it is sufficient to show that the Busemann-Hausdorff measure satisfies
S ≡ 0, that can be found in [Sh, Example 7.3.1]. We briefly repeat his discussion for
completeness. We first observe from [Sh, (2.10)] that

mBH(dx) =
(
1 − ‖β‖(x)2

)(n+1)/2
√

det(aij(x)) dx1 · · · dxn =: σBH(x) dx1 · · · dxn.

Since β has a constant length, we have∑
k

vk

σBH(x)

∂σBH

∂xk
(x) =

1

2

∑
i,j,k

vkaij(x)
∂aij

∂xk
(x) =

∑
i,j

γ̃i
ij(x)vj.

Therefore we conclude, by (2.2),

S(v) =
1

2

∑
i,j,k

∂

∂vi

[
γ̃i

jk(x)vjvk
]
−

∑
k

vk

σBH(x)

∂σBH

∂xk
(x) = 0.

2

We finally remark related known results and several consequences of Theorem 1.1.
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Remark 3.1 (a) A Randers space is a Berwald space if and only if β is parallel in the
sense that bi|j ≡ 0 for all i, j (see [BCS, Theorem 11.5.1]). Thanks to [Sh, Example 7.3.2],
we know that a Killing form of constant length is not necessarily parallel.

(b) In [De], Deng gives a characterization of vanishing S-curvature for homogeneous
Randers spaces endowed with the Busemann-Hausdorff measure.

(c) It is easy to construct a Randers space whose β does not have a constant length.
Hence many Finsler manifolds do not admit measures with S ≡ 0 (in other words, with
Ricn ≥ K > −∞).

(d) Another consequence of Theorem 1.1 is that only (constant multiplications of)
the Busemann-Hausdorff measures can satisfy S ≡ 0 on Randers spaces. Then a natural
question is the following:

Question Is there a Finsler manifold (M,F ) on which some measure m other than (a
constant multiplication of) the Busemann-Hausdorff measure satisfies S ≡ 0? If yes, what
kind of measure is m?

If such a measure exists, then it is more natural than the Busemann-Hausdorff measure
in respect of the weighted Ricci curvature.
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