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1 Introduction

Gaussian and Poisson noises can be discussed not only in parallel,
but we can see dissimilarities between them, which are more inter-
esting. In addition, dualities between the two noises are particularly
significant and important. We are going to discuss the duality, in
question, between Gaussian noise and Poisson noise which is real-
ized in terms of unitary representations of the groups associated
with them, respectively. To establish those unitary representations
we use the space of quadratic Hida distributions. As is well known,
Gaussian noise (white noise) can be characterized by the infinite di-
mensional rotation group. In reality, it plays an important roles in
white noise analysis. In this note, we use a unitary representation
of the symmetric group that characterises Poisson noise in order to
show a relationship, that is a duality. Our idea will be reviewed
quickly in Section 2 (see [13] for details) together with some notes.

In the paper [13] one of the realizations of duality appears in con-
nection with the L\’evy Laplacian. Now we shall focus our attention
from another side, although we use spaces of quadratic generalized
white noise functionals, i.e. quadratic Hida distributions.

Again we emphasize the significance of the Levy construction
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(infact, it is nothing but an approximation) of Brownian motion
and importance of the quadratic Hida distributions in Section 3.

In the last section we shall see a new recognition of the subgroup
$G_{\infty}$ which characterizes the white noise measure. It seems good to
give a unitary representation of the group on the space of quadratic
Hida distributions. Thus, we shall see some connection with the
representation of the symmetric group; in this sense we can recognize
a relationship between two noises, white noise and Poisson noise.

2 Review on Poison noise and quadratic forms
of $\dot{B}(t)$ ’s

When we have discussed the characterization of Poisson noise in [11],
we have defned the infinite symmetric group $S(\infty)$ , as the projective
limit of $S(n)$ .

There we define a unitary representation $U_{\pi}^{(n)}$ of $S(n)$ on $R^{n}$

for each $\pi\in S(n)$ , in the following manner. We take $\{e_{k},$ $k=$
$l,$ $\cdots,$ $n\}$ as a base of $R^{n}$ , then a simplest irreducible factor of the
representation is formed by taking a subset $R_{1}^{n}$ of $R^{n}$ , and we obtain
an irreducible unitary reprsentation $\tilde{U}_{\pi}^{(n)}$ of $S(n)$ on $R_{1}^{n}$ .

We now have a family of pairs $\{(S(n),\tilde{U}^{(n)})\}$ . Following Bochner’s
method (see [1]), the projective limit of $\{(S(n),\tilde{U}^{(n)})\}$ is obtained.
The limit is denoted by $\{(S(\infty),\tilde{U}^{(\infty)})\}$ .

There is a big freedom to choose a base $\{e_{n}\}$ , we choose a base
that is formed by quadratic Hida distributions. k,ilp@: We choose
the base $\{: \Delta_{k}X_{n}(t)^{2}:\}$ as for $\{e_{n}\}$ , where the $X_{n}(t)$ is the process
appearing in the L\’evy’s construction of Brownian motion, which we
are going to show in what follows.

Prepare a sequence $Y_{n},$ $n\geq 1$ , of independent identically dis-
tributed $N(0,1)$ random variables. $(N(0,1)$ stands for the standard
Gaussian distribution.)
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Defiiie $X_{1}(t),$ $t\in[0,1]$ by

$X_{1}(t)=tY_{1}$ .

The sequence $\lambda_{n}^{\nearrow}(t)$ can be defined inductivelyas follows:,

$X_{n+1}(t)=\{\begin{array}{l}\lambda_{n}^{r}(t), t\in T_{n},\frac{X_{n}(t+2^{-n})+X_{n}(t-2^{-n})}{2}+2^{-(n+1)/2}Y_{k}, t\in T_{n+1}-T_{n},k=k(t)=2^{n-1}+\frac{2^{n}t+1}{2},(k+1-2^{n}t)X_{n+1}(k2^{-n})+(2^{n}t-k)X_{n+1}((k+1)2^{-n}),t\in[k2^{-n}, (k+1)2^{-n}],\end{array}$

(2.1)
where $k=k(t)=2^{n-1}+ \frac{1}{2}(2^{n}t+1),t\in T_{n+1}-T_{n}$ .

There $2^{n}$ independent random variables $Y_{1},$ $\cdots,$
$Y_{2^{n}}$ are involved

to define $X_{n}(t)$ . Note that $X.(t)$ approximates $B(t)$ uniformly in $t$

and the interpolations by $Y_{k}$ ’s are done independently in different
intervals. The conditional expectations under the conditions $B_{n}(Y)$

define the projections which are consistent, where

$B_{n}(Y)=\sigma$-field generated by $Y(k),$ $1\leq k\leq 2^{n}$ .

Note that $X_{n}(t)$ is $B_{2^{n}}(Y)$ measurable. Also note that for bi-
nary point $t$ we may identify $X_{n}(t)=B(t),$ $B(t)$ being a Brownian
motion. So, in what follows we shall use these two notations.

Let

$\mathcal{D}_{n}=\{\Delta_{k}^{n};\Delta_{k}^{n}=[\frac{k-1}{2^{n}},$ $\frac{k}{2^{n}}],$ $k=0,1,$ $\cdots,$ $2^{n}\}$ .

be the sequence of partitions of the unit time interval $I=[0,1]$ .

Let $L_{2^{n}}$ denote a linear space spanned by the $Y_{k}^{p},$ $0\leq p\leq 2,1\leq$

$k\leq 2^{n}$ , and let $P(\cdot|L_{2^{n}})$ denote the projection down to the sub-
space $L_{2^{n}}$ .
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Proposition 2.1 $Tf\iota e$ following relation holds.

$P(:\Delta_{2k}X_{n+1}(t)^{2}:+:\Delta_{2k+1}X_{n+1}(t)^{2};|L_{2^{n}})=:\Delta_{k}X_{n}(t)^{2}$ :
(2.2)

This is the key proposition that guarantees the possibility of
defining the projections $f_{n+l,n}:L_{2^{n+1}}arrow L_{2^{n}}$ and the consistency of
gthe family $\{f_{n+1,n}\}$ .

Theorem 2.1 The sequence $\{(S(2^{n}),\tilde{U}^{2^{n}})\}$ defines a projective limit
$(S(\infty),\tilde{U}^{(\infty)})$ .

Space of quadratic Hida distributions.

Let us remind the Gel’fand triple to form (see [13]).

$H_{2}^{(2)}\subset H_{2}\subset H_{2}^{(-2)}$ ,

where

$H_{2}^{(2)}=\{//I^{2}F(u, v) : \dot{B}(u)\dot{B}(v) : dudv, F\in\hat{K}^{3}\tilde{2}(I^{2})\}$ ,

$H_{2}=\{//I^{2}F(u, v):\dot{B}(u)\dot{B}(v):dudv, F\in\hat{K}^{2}(I^{2})\}$ ,

and

$H_{2}^{(-2)}=\{//I^{2}F(u, v) : \dot{B}(u)\dot{B}(v):dudv, F\in\hat{K}^{-\frac{3}{2}}(I^{2})\}$ ,

(the quadratic Hida distribution space)
where $K^{\frac{3}{2}}(I^{2})$ is a Sobolev space over $I^{2}$ of order $\frac{3}{2},$ $K^{-\frac{3}{2}}(I^{2})$ is the
dual space of $K^{\frac{3}{2}}(I^{2})$ and $\wedge$ means symmetric.

It can be seen that the space $H_{2}^{(-2)}$ is the space of quadratic
functionals $\dot{B}(t),$ $t\in I=[0,1|$ .

Define the new subspace of $H^{(-2)}$ :

$H_{2}^{(-2,1)}=\{/If(u) : \dot{B}(u)^{2} : du, F\in L^{2}(I)\}$ .
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The function $f$ is viewed as $f( \frac{u+v}{2})\delta(u-v)\equiv\tilde{f}(u, v)$ .

$\langle/If(u):\dot{B}(u)^{2}:du,$ $/I^{g(u):\dot{B}(u)^{2}:du\rangle}=(\tilde{f},\tilde{g})_{K^{-\S}}$. $\cdot$

Note that the null space of $H_{2}^{(-2,1)}$ is $\{0\}$ . The Hilbert space
$H_{2}^{(-2,1)}$ involves only diagonal elements of degree 2 and is defined as
a subspace (in the ordinary sense) of $H_{2}^{(-2)}$

It is surprising that the dual space $H^{(-2,2)}$ of $H_{2}^{(-2,1)}$ can be
introduced, where the bilinear form that connects two spaces can
come from the integral with respect to the white noise measure.
Actually the new space is given by

$H_{2}^{(-2,2)}=\{/I^{g(u):\dot{B}(u)^{2}:du^{2},g}\in L^{2}(I)\}$ .

can be defined in the same stage of approximation of Brownian
motion due to P. L\’evy.

We would like to note that both spaces $H_{2}^{(-2,1)}$ and $H_{2}^{(-2,2)}$ involve
only quadratic, diagonal elements of the $B(t)$ , and they have clear
identity as the spaces of Hida distributions. They are defined by
using the L\’evy approximation of Brownian nmotion.

3 Note on $L\acute{e}vy$ ’s approximation of Brownian
motion

There are many ways to define a Brownian motion. We claim that
L\’evy’s method is most powerful and convenient for stochastic cal-
culus, as we have seen so far. His way of construction is at the
same time a method of approximation. From these viewpoints, we
summarize the characteristics of the L\’evy’s method.

1 $)$ Approximation by $X_{n}(t)$ is uniform in $t$ , that runs through the
unit time interval.
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2 $)$ The time variable $t$ is always involved and never changes as $n$

is getting large.

3$)$ White noise can be approximated only by taking the time
derivative $\dot{X}_{n}(t)$ uniformly in $t$ .

4$)$ The renormalized squares (may be denoted by: $\dot{B}(t)^{2}$ : can be
approximated by those of $X(t)$ . This enables us to define projections
depending on $n$ the step of approximation.

5 $)$ The limits $\dot{X}(t)$ or $\dot{B}(t)$ , obtained by projective limit, form an
independent system, so that they can be chosen as basic variable
system of Brownian functionals (white noise functionals). Hence
the partial derivative $\partial_{t}=\frac{\partial}{\partial B(t)}$ can be defined. This operator cor-
responds to the Fr\’echet derivative in functional analysis. It can be
apprfoximated in line with the L\’evy method.

6 $)$ Those properties mentioned above enable us to consider certain
limit of rotation group $SO(n)$ through the unitary representation.

We have only thought of advantages from thr viewpoint of white
npoise analysis, so one may think of favorable properties from aother
side.

4 Motion group $A/I_{\infty}$

Take a nuclear space $E$ which is dense in $L^{2}(R)$ . The infinite di-
mensional rotation group $O(E)$ is a collection of such $g$ ’s as

i$)$ $g$ is a linear homeomorphism of $E$ ,

ii) 11 $g\xi\Vert=\Vert\xi||$ for every $\xi\in E$ , where $\Vert\cdot\Vert$ is the $L^{2}(R)$-norm.

Each $g$ is a rotation of $E$ and the $O(E)$ is often called an infinite
dimensional rotation group if $E$ is not specified.

There are two classes of rotations of $E$ ; Class I and Class II (see
[5] Chapter 5, for detail). We are now concerned with a subgroup of

219



$O(E)$ involving members in Class I. Roughly speaking those mem-
bers in Class I are determined by fixing a complete orthonormal
system $\{_{\zeta n}^{c}\}$ in $L^{2}(R)$ such that each $\xi_{\tau\iota}$ belongs to $E$ .

Take finitely many members, say $\xi_{1},$
$\cdots,$

$\xi_{n}$ from $E$ . They span an
$n$ dimensional space denoted by $E_{n}$ . Then, we can consider $g$ such
that the restriction of $g$ to $E_{n}$ is a rotation of $E_{n}$ and the restriction
to $E_{n}^{\perp}$ is the identity. The collection of all such $g$ ’s form a subgroup
$G_{n}$ of $O(E)$ .

In [5] we define the projective limit $G_{\infty}$ :

$G_{\infty}= proj\lim_{narrow\infty}G_{n}$ .

We now consider the motion group $M_{n}$ which is generated by
rotations and translations. To concretize the theorv, we take the
space

$E_{n}=$ span$\{: (\Delta_{k}X_{n}(t))^{2} :, 1\leq k\leq 2^{n}\}$ .

The rotation group $SO(2^{n})$ determines a subgroup $G_{2^{n}}$ , now simply
denoted by $G_{n}$ . Combine translations by members of $E_{n}$ with $G_{n}$ to
define a motion group $M_{n}$ , which acts on $E_{n}$ . In the usual manner
we can define a unitary representation of $M_{n}$ given on $E_{n}$ .

We know the projective limit of $E_{n}$ defines the Hilbert space
$H_{2}^{(-2,2)}$ with a modification of the coefficients $(\Delta^{n})^{2}$ . We can finally
conlude

Theorem 4.1 The projective limit $M_{\infty}$ of the motion group $hI_{n}$ can
be defined together with that of $E_{n}$ .

As a consequence of this theorem we have

Proposition 4.1 Unitary representation of motion group $M_{\infty}$ is
given on the space $H_{2}^{(-2,2)}$ of quadratic Hida distribution.

The motion group $M_{\infty}$ is related to Gaussian (See Hida [3] Sec-
tion 5.7). On the other hand symmetric group is related to Poisson.

220



We have obtained the representation of the symmetric group by
using the space $H_{2}^{(-2_{y}2)}$ of quadratic Hida distribution. The repre-
sentation of motion group also uses the space $H_{2}^{(-2,2)}$ of quadratic
Hida distribution. In this sense we can see a kind of duality.

Further discussions will appear in the forthcoming paper.
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