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1 Introduction and Main Theorem

In this short note, we make a survey of the recent work [5] concerning with global
weak solution in time for a barotropic model system of compressible viscous fluid, which
is described by the following conservation laws of mass and momentum:

pt + div(pu) = 0, (1.1)
(pu): + div(pu ® u) — pAu — (p + A)V(divu) + Vp(p) = pf, (1.2)

where z € R3,t > 0 and p, u, p = p(p) represent the fluid density, velocity, and pressure
respectively, f = V¢ is the external force given by a potential ¢, and the viscosity
coefficients u, A are assumed to be constants and satisfy 4 > 0 and 3\ 4+ 2u > 0.

As for the global strong solutions in time, Matsumura-Nishida [7] considered the
Cauchy problem without external forces and proved the global existence in a small H3
neighborhood of a constant state (p,u) = (poo,0) (poo > 0). Although this result was
extended by several works to the cases where the external force is small, there have
been no remarkable results in the case with large external forces except for that of
Matsumura-Padula [8], who proved the asymptotic stability in H3 of the stationary
state for the interior problems.

On the other hand, as for the weak global solutions in time, Hoff [2, 3] extended
the result of [7] (for the Cauchy problem without external forces) to a weaker space
including discontinuous functions, and proved the global existence of weak solutions
for p = ap”(y > 1) in a small neighborhood of a constant state (poo,0) (poo > 0). In
the cases of ‘large data’ and weak solutions in an ‘energy finite class’, big progress has
been made (for example, see Lions [6], Feireisl [1]), but these results are not applicable
to the case around a constant state (poo,0) (poo > 0).

Under these backgrounds, placing emphasis on large external forces and weak so-
lutions around a constant state (poo,0) (poo > 0), we consider the Cauchy problem of
(1.1)(1.2) with the initial data

(p,u)(z,0) = (po, ug)(z), infpy >0, |T1,iiﬂoo Po(Z) = poo. (1.3)
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For this Cauchy problem, under the conditions ¢ € H*(R?) and
N2Vl + ||l2* | D?¢]] o < o0, (1.4)

with D?¢ = {(0/0x)*¢| |a| = 2}, Matsumura-Yamagata [9] considered the isentropic
model, i.e., the pressure p = ap” with a > 0, > 1. When the initial perturbation is
suitably small in L2 N L™ for density and in H! for velocity, they obtained the global
existence of weak solutions under an additional condition that v — 1 is suitably small,
which, however, excludes many significant physical models.

In our recent paper [5], we supposed that ¢ € H*(R3) and p satisfy
p = p(p) € C?((0, 00)) with p(p) >0, p'(p) >0 (p >0) (1.5)
which includes the typical polytropic model
p=ap’,y>0,a>0,

and showed the global existence of weak solutions when there exists a unique steady
state away from vacuum and the initial perturbation is suitably small in L? N L* for
density and in H! for velocity. Thus, we succeeded in relaxing the conditions on p and
removing the essential conditions, smallness of v — 1 and (1.4) in [9].

To state the main theorem, we first give the definition of weak solutions.

Definition 1.1 We say that (p,u) is a weak solution to Cauchy problem (1.1)-(1.3)
provided that p € L2 (0, 00; L®(R3)),u € LX.(0,00; H(R?)) and for all test functions

loc loc

1 € D(R3 x (—o00,00)),

/R pod(-, 0)de + A /R (o + pu- V) dad = 0,

and folrj =1,2,3,
/123 POU{)"/)(': 0)dz + A /m (pujtpt + pulu - Vi + p(p)v,sz) dxdt
— / / (uVuj VY + (g + A)(dive)s, ) dedt = / / pfz;hdxdt.
0 R3 0 R3

We next consider a steady solution (ps,u,) for ¢ € H? satisfying the condition

(Ps;us)(-’li) - (poo, 0) as |’17| — 00.

Since the steady solution turns out to be unique and us be zero, it suffices to look for
the steady solution in the form (ps,0). Then by (1.2)

Vp(ps) = psV o, (1.6)

which implies

Pap'(p) ,
/ p W= ¢

(o o)

Therefore, in order to have uniformly positive ps, we assume
Poo o/ oo ./
- / 3% dp < inf ¢(z) < sup ¢(z) < / 5’—%’2 dp. (1.7)
0 oo

Then we have
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Lemma 1.1 Assume that p ..Gatvlsﬁes (1.5) and f € H3(R3) satisfies (1.7). Then there
exists a unique solution p, of (1.6) satisfying ps — poo € H*(R3). Moreover, there exist
constants p, p > 0 depending on || f||gs such that

p < inf ps < sup p, < p. (1.8)
Now it is ready to state our main theorem.

Theorem 1.2 Fiz a positive constant po.,. Assume that the pressure p satisfying (1.5)
and the potential ¢ € H3(R3) satisfying (1.7) are given. Then, there exists a positive
constant g, depending only on ||¢||gs and pso such that: if

lpo — psllLe + lpo — psllLz + lluoll g < €0,

then the Cauchy problem (1.1)-(1.3) has a global weak solution (p,u) satisfying

p—ps € C([0,00); H1(R3)),p(-,t) — ps € (L2N L*>) (R?), a.e. t >0,
uecC ([O,oo);LQ(R3)) ;

0 < inf p <supp < oo.

Moreover, (p,u) — (ps,0) as t — oo in the sense that, for all g € (2, 00],
lim (&) = ey, )10 = 0.
—00

The basic strategy of the proof is due to Hoff [2, 3], and the key step to have the
a priori estimates is that to derive the uniform time-independent LZ2-estimate of the
gradients of the velocity. However, due to the arbitrariness of both the external force f
and the pressure p, we cannot directly generalize the approaches in [3,9]. To overcome
these difficulties, we use an idea due to Huang-Li-Xin [4] (that is, we first normalize
the momentum equation (1.2) by dividing it by ps), and modify the “effective viscous
flux” which played essential roles in [2,3] to

F = p;' (A + 2p)dive — (p(p) — p(ps))) - (1.9)

Then combining the arguments on the a priori estimates in [3,9] and a compactness
argument in Feireisl [1] carefully, we can prove the theorem.

In what follows, we denote the usual norm L? in the spatial direction by || - ||, in
particular the L? norm by || - || for simplicity.

2 A Prior: estimates

In this section, we show a rough sketch of how to show the desired a priori estimates.
Let (p,u) be a smooth solution of (1.1)(1.2) defined up to a positive time 7', where
“(p,u) is smooth” means (p — poo,u) € C1N HA(R3 x [0,T]). We set

v(T) = ”n”i‘”(R:‘x[(),T])’ =P~ Ps,

and
D(t) = @1(t) + Pa(t) + 23(t)
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where
. T
(T) = sup ([u®)? + @) + / IVu(t)]?dt,
0<t<T 0
T
OyT) = sup | Vu(®)|? + / la(e)]2dt,
o<t<T 0
T
B4T) = sup o))l + / o ()| Va(t)||dt,
0<t<T 0

for o(t) = min{1,¢}, and u is the material derivative of u given by

f=pf=ftfs, (= fa)

Moreover we set

Co = ||po — psllLe + |lpo — psliz2 + |luoll g1
In what follows, we assume that p € [p, p], and @+ ¥ < 1, Cy < 1, and use C as generic
positive constants which may depend on || f|| g3 and ps but not on 7T

Then, our goal is to obtain the following a priori estimate:

Proposition 2.1 (a priori estimate) There exist positive constants €9 and C inde-
pendent of T such that, if ®(T) + VU (T) < gg, then &(T) + ¥(T') < CC&M.

Once we obtain Proposition 2.1, the remaining arguments to obtain the global weak
solution and its asymptotic behavior, that is Theorem 1.2, are almost the same as that
of the previous works [1,3,9]. The Proposition 2.1 is proved by the following series of
lemmas. Let us start with the most basic energy estimate.

Lemma 2.1 It holds that

T
&1(T) = sup (Il + In@®)I2) + [ [Vu(@)|?dt < CCo.
0<t<T 0

Proof. Using the mass equation (1.1) and (1.6) we rewrite the momentum equation
(1.2) in the form

Vp(p) . Vp(ps)
p Ps

pu+p ( ) — pAu — (A + p)V(divu) = 0. (2.1)

Multiplying (2.1) by u and integrating the resultant equation, we obtain after integra-

tion by parts,
¢ t
/ /pu_m_/ /pu_ (Vp(p) _ Vp(ps))
0 0 p Ps

- /0 / (1l Vul? + (A + p)(divu)®) =0. (2.2)

Here and in what follows we omit the symbols of integral variables, e.g. ‘dzdt’, ‘dx’
and so on, in integral notation unless we are confused. Now noting that

/pfd-r= g—t/pfdx
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holds in general, the first term on the left hand side of (2.2) is

D |u|2 1
P o = plul?
0
The second one is

/ /pu V/ppis)ds = —/Ot/div(pu)/p:)I%s)-ds
= ./Ot/[)t/:)p,is)ds

t

0

where

p oot
G(p) := / / i ig) dsdr.
Ps 7 Ps ¢

Thus, we obtain the energy equality

/ (%plulz +G(p)) ; +

An easy observation that

/:/ (1|Vul® + (X + p)(divu)?) = 0.

C~'n? < G(p) < Cn?
which follows by use of G(ps) = G'(ps) = 0 and p € [p,p], completes the proof.

Next, we proceed to the most important estimates for ®5(7") and ®3(T") which es-
sentily differ from that in [9].

Lemma 2.2 It holds that
2,(T) < C (Co+ W/H(T)Ri(T) + Ra(T) ), (2.3)
By(T) < C (Co + W/A(T)Ry(T) + Ra(T) + Ra(T)) (2.4)

where

T

T ) T '
RD) = [ Inligfade, Ry = [ 19u@lide, RyT) = [ @I Vu(Olde.

Proof. The key step to prove (2.3) is the following observation on the density and
pressure deviation due to [4]. Noticing that

p; 1 (V (p(p) — p(ps)) — np; " Vp(ps))
=V (p; 1 (p(p) — p(ps))) — (P(p) — p(Ps))Vp; ' — p;*nVp(ps)
=V (p; 1 (p(p) — p(ps))) + (P(p) — p(ps) — P'(ps)n) P32V ps

1 1
=V (p; 1 (p(p) — p(ps))) +n°p52Vps A /0 p"(ps + adn)dad), (2.5)
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we rewrite the momentum equation (2.1) as
pis — pAu — (A + p)V(divu) + psV (o5 (p(p) — p(ps)))

1 1
+10°p; ' Vs / / P’ (ps + oAn)dod: = 0. (2.6)
0 0

Multiplying (2.6) by % and integrating, we thus get

/Ot/pw _M/Ot/u-m— (A+u)/0t/u-wdivu)
=~ [ [ otic:Spart [ [ 100+ ormioar
- t [ 049 (57 0(0) = 5(02))
— /0 t / ool - Vpn? /0 1 /O 1 (ps + oAm)dodA
+ [ [ avatoto) = po + [ [ divia Vu)ele) - lp)
+f t [ e o i) = o) + [ t [ V- Voo o0) - p(02)
_ Zl L (2.7)

First, after integration by parts, we can estimate the second term on the left of (2.7)
as follows:

t L t ) t . t . .
—/1,/0 /u{u{l —,u_/o /u’ufufl = p/ /u{lufﬁ—u/o /(u{ufuf+u’u§luf)
0
p Lo ,
= 2 [1v?| + [ [oqvur).
2 0 0

By similar calculations, the third one on the left of (2.7) is

“_—_;_é /(divu)2 :) + /Ot/O (IVul®) .

Next, we can estimate the terms I;(i = 1,--- ,5) as follows:

t
n<s [ [P+ ciw R
0
It follows from (1.1) that

(p(p)): = —div(p(p)u) — (pp'(p) — p(p)) divu, (2.8)

which yields that

L = / divu(p(p) ~p(pa))| + /O / (o7 (0) — p(p) (diver)?

—/Ot/p(p)u - Vdivu. (2.9)
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Integration by parts leads to

¢ t t
I3 = / /P(P)aiu - V' + / /P(P)u - Vdivu + / /u -Vu - Vp(ps),
0 0 0

which together with (2.9) yields that

L+Li+l; < / diva(p(p) — p(ps))

t t
+ [ (1vul® + IVullluls|Vp.la)
0

t t
ivu — s ul|?.
< /d (n(p) ”(”-”0+C/0 2

We use (2.8) again to estimate I as follows:

t t
- / /pQIP(P)u -Vu - Vp,
0 0

~/ot/ p(p)u'u -V (o5 9ips) + A t / u - Vpsp; ' (pp' (p) — p(p))divu

Iy = / u - Vpsp; L (p(p) — p(ps))

t t
+ C/ ||Vu||2,
0 0
where we have used the following simple fact:
t
- /0 / p(p)uin - V (p;10;ps)
t . t o
=— A / (p(p) — p(ps))uiu - V (p; 1 Bips) + /0 / P51 Bipsdiv (p(ps)ui)
t t t
<C [l Vedwes +C [ 1ulEIVali+C [ IVullulol Vs

t
< c/ V2.
0

Substituting these estimates back into (2.7) and applying the previous bound in the
Lemma 2.1, we then obtain (2.3) after choosing § suitably small. To show (2.4), noticing
that

< /u-Vpsp.Zl(p(p) —p(ps))

o . ]
7+ ()| (o) = oo
and (1.2) is equivalent to

pi — pAu — (A + p)V(divu) = —V(p(p) — p(ps)) +nV f, (2.10)
we operate o’ [0/0t + div(u-)] to (2.10)7 and integrate it. Then we get

[ B8 - fio [ (3 samaw)
—(O+ p) /:J/,',/j (divuj, + div(udivu;))
_ _/Ota/aj((p(p))jﬁdiv (u(p(p) — p(ps));))
+ ["/ @ (fp0 + div (unfy). (211)
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Estimating each term carefully in the same way as the above proof of (2.3), we can get
the desired inequality (2.4). We omit the details.

In order to complete the estimate for (T )., we need to estimate Ry (T), R2(T) and
R3(T).

Lemma 2.3 If gg ts suitably small, then it holds

R(T) < C (c°/3 + qr’/d(:r)) (2.12)
Ry(T) < C (Co +@¥(T)), (2.13)
R3(T) < C(Co+ @*(T)). (2.14)

To prove Lemma, 2.3, we shall at first state important estimates based on singular
integral operator theory, with a formal proof. For more details, see Hoff [2].

Lemma 2.4 For p,q € (1,00),t > 0, it holds that

V(@) llp < Cp (IF @)l + lleurlu(@)l, + [n(2)]) (2.15)
IVF@)llg + [ Veurtu(®)lly < C (la(@)llg + [Vu@llq + [72@)],) - (216)

where F = p; ' (A + 2p)dive — (p(p) — p(ps))) as in (1.9).
Proof. The estimate (2.15) follows easily from the following well-known inequality:
IVéllp < Cp (ldivellp + [lcurldllp), ¢ € whe,
To prove (2.16), we rewrite the equation (2.6) using the definition of F' as in the form
VF — peurl (p; 'curlu) = p; ' pi + O (|Vu| + 7°) . (2.17)

Operating VA~!div, we get the desired estimate for VF which, together with (2.17)
and the estimate

| Veurlull, < C||curl(p; curlu)|, + C||Vullq,
yields the the desired estimate for Vcurlu.
Proof of Lemma 2.3. We only give the proof of (2.12), and omit the details for
(2.13) and (2.14). We rewrite equation (1.1) as :

(2p+ /\) 21+ p(p(p) = pps)) = —ppsF — 20+ Au - Vp,. (2.18)

Multiplying (2.18) by p17/3, we then obtain

3(2p + ) 10/3 7/3
30 thn + p*n"3(p(p) — p(ps))

= —ppsn"PF — (2u+ N pn"Pu - Vps,

which implies that there exists a positive constant v such that

pﬁnlom + 1/7710/3 < CF9/3 4 Clulm/3-
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Integrating (2.19), we have by use of (2.16) that

t t
/pnm/s +1// /7]10/3
0 0

t
<C [ (1P IVFI + Jull)ul?)

t .
< 0o/ (1) / IVF|? + cCl/
0
i .
< o3 () / (lall? + [l + lalld) + cc3
0

“ 5 L3 « t «
< CCg/J + C(I)S/J(t) + C(I)Z/J(t)\lll/d(t)/ ‘/,',’1()/3.
0

Thus, if ®(T) + ¥(T) < g¢ and ¢ is suitably small, (2.12) holds. This completes the
proof.

Combining the above Lemma 2.1, 2.2 and 2.3, we easily can reach at the desired
estimate for ®(T).

Lemma 2.5 If g is suitably small, then it holds that
®(T) < CCy. (2.19)
Finally, we need to provide the desired point-wise estimate for the density.
Lemma 2.6 If gy is suitably small, then it holds that
1/4
U(T) = [l eoqroxpozyy < OG- (2.20)

Once the Lemma 2.6 is proved, the proof of Proposition 2.1 easily follows from the
Lemma 2.5 and Lemma 2.6.

Proof of Lemma 2.6 When T < 1, integrating (2.18) along each particle path z(t),
we obtain that, for ¢t € (0, T],

t t
nl(z@),t) < C [ Ca?+ | (IFlloo + llulloo) + [ Inl(z(s),s)ds ).
0 [¢]

Applying Gronwall’s inequality in light of ¢ < 1, and taking appropriate supremums,
we then get

W(1)? < ¢ (Cy* + A)),
where
T
A(T) = / (1 Flloo + l1elloo)
T
< c / (el + IF1 + [|ulls + |V F )
0

T
s O (lull + [|Fll + [[Vulls + [Inlla + llulla)

T
< ccll*+c / (IVulle + lmlla + lalle)
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It follows from (2.14) and (2.19) that

T T ' 3/4 T
JR T (/ 0_1/3) ( / o—nwni)
0 0 0

(e + ®U/2(T))

1/4

IA

< ccyt.

Similarly, we can get the same bound for 7. For the term for 1, we have

T T .
/ lals < © [ Jlal4) v
0 0

T 1/2 T 1/8 T 3/8
< ([oe)y ([ ) (] arvar)
0 0 0
< ccyt.

When T > 1, we multiply (2.18) by opn? to get
D
apl—)—t'r]4 +Clon* < Co (F4 + |u|4) i (2.21)
Then, we integrate (2.21) (divided by p on both sides) along particle trajectories to
obtain that, for ¢t € [1,T],

t
In®IL < a4 +C /1 (lulls + I1F114,)
t t . .
< ¥V(1)+C /1 (Il Vull® + | Vull}) + C / IFIE IV FILs

t .
< cc?yc / IVEI3 |V FI23

t
1/2 1/3 10/3
< ccl?y ooV /1 IVEILYR, (2.22)
where we used (2.14) and (2.19). It follows from (2.16) that
t ¢
10/3 . 110/ 10/3 20/3
/1 IVF)s < C /1 (Halljors + Ivulliors + Imlizers )
t
. 110/3
< o [ (I3e/3 -+ 1vul? + Ivulf + i)
which together with the Lemma 2.3, (2.22) and
t ¢
.110/3 14/3 11
/1 ““‘”13;3 < C/1 |lu||4/d||Vu“2
T
< C sup [l [ vi?
1<t<T 1
< CO¥¥(T),
yields the desired estimate (2.20). This completes the proof of the Lemma 2.6.
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