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ABSTRACT. We show that any proper rigid analytic surface admits a relatively minimal
regular model. Further, we give a criterion for relative minimality of proper regular rigid
analytic surfaces.
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1. INTRODUCTION

The rigid analytic GAGA theorems [18] connect rigid analytic geometry and algebraic
geometry. One of their consequences is that classifying projective rigid analytic spaces
is equivalent to classifying projective schemes over complete non-Archimedean valuation
fields. However, similar to the complex analytic case, not all the proper rigid analytic
spaces are derived from schemes. The situation naturally leads us to the classification
problem for proper rigid analytic spaces. The first step toward the problem is to develop
their bimeromorphic geometry. The present paper is focused on the two-dimensional case.
In the following introduction, we call rigid analytic surfaces (resp. rigid analytic curves)
surface (resp. curve) for short. Further, since we can always resolve their singularities
(Theorem 3.1), we assume that they are regular.

The main results of the paper are the fundamental theorems on relatively minimal reg-
ular models of proper surfaces: the existence theorem (Theorem 4.2) and the criterion for
relative minimality (Corollary 7.2). We also study the case where surfaces are fibered over
quasi-compact curves. The paper consists of two parts. The first part is devoted to the
study of bimeromorphic morphisms between surfaces and the second part contraction of
divisors on surfaces. The main results follow from these studies.

In the first part, we show the factorization theorem (Theorem 2.2), which asserts that
any bimeromorphic morphism between quasi-compact surfaces is a finite succession of
blowing-downs. Although we can imitate the proof of the classical cases: the complex
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analytic case [12] and the scheme case [26], we also give another proof by a new technique
that is interesting in its own right and useful in many occasions. For example, we use it for
other studies of bimeromorphic morphisms and fibered surfaces. Our technique is based
on the projectivity lemma (Lemma 2.4), which asserts that any proper morphism of relative
dimension one is projective over a neighborhood of any point on the codomain. The lemma
and the relative GAGA theorems [18] imply that the morphism is the analytification of a
projective morphism between schemes whereas the similar lemma implies nothing in the
complex analytic case for lack of relative GAGA theorems. After proving the lemma, the
factorization theorem follows from the corresponding theorem on schemes [26].

Let us explain the proof of the lemma. Fix a point on the codomain and let C be the fiber
over the point. Since relative ampleness of line bundles is an open condition [9], we have
only to construct a line bundle on a neighborhood of C whose restriction to C is ample.
To this end, we prove that any proper rigid analytic space of dimension one is projective.
Then we extend an ample divisor of C to a neighborhood by the topological results [16]
and [29]. The resulting divisor gives a desired line bundle. The projectivity lemma also
plays key role in the second part.

In the second part, we show the contraction theorem (Theorem 7.1), which asserts that
any exceptional curve of the first kind on any surface can be contracted to a regular point.
In the complex analytic case, the similar theorem can be shown in the following way [17].
Choose two distinct points P and Q on the exceptional curve D. Take two disjoint smooth
prime divisors E and F on a small neighborhood U of D such that D∩E =P and D∩F =Q.
Assume that each of the intersection multiplicities is equal to one. Replace U with a smaller
one, we can contract the divisor E to a smooth point. Let V be the resulting space and G be
the image of D. Then the deformation theory of smooth divisors gives a defining function
g of G on V . Let fP be the pull-back of g on U , which is a defining function of D+E.
Repeat the same procedure for Q to obtain a defining function fQ of D+F . Then the two
analytic functions fP and fQ define the morphism φ from U to a two-dimensional polydisk,
which gives a desired contraction.

In the rigid analytic case, Ueno gives the contraction theorem [28] in a particular case
by the above method. However, his proof works only when the base field is algebraically
closed. The following two difficulties arise when we adapt the method for the general case
where the base field is general and the surface is not necessarily smooth but regular. The
first difficulty is that in general we can not contract E to obtain the appropriate divisor
G and space V . Even if possible, we run into the second difficulty, that in general the
morphism φ does not give a desired contraction since it is not necessarily an isomorphism
on the complement of D.

The first difficulty is resolved by the deformation theory of singular divisors. First, we
develop the deformation theory by non-Archimedean analysis. Next, we apply the theory
to obtain the morphism φ in the following way. Take a prime divisor E ′ that intersects D
only at the point P with multiplicity one. Since the obstruction to the deformation of the
singular divisor D+E ′ vanishes, we obtain a defining function fP of D+E ′. Repeat the
same procedure for Q to obtain fQ. Then the two analytic functions fP and fQ define the
morphism φ form U to a two-dimensional polydisk.

The second difficulty is overcome by the projectivity lemma in the first part. Since the
properness criterion (Proposition 7.3, cf. [3, I.(8.2)]) shows that the morphism φ is proper
over a neighborhood of the origin of the polydisk, the lemma is applicable to φ . Therefore,
the lemma and the relative GAGA theorems imply that there exists a neighborhood of D
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that is the analytification of a scheme. Then the contraction theorem follows from the
corresponding theorem on schemes [26].

In the appendix, since we have no appropriate reference, we prove that any proper rigid
analytic space of dimension one is projective, the theorem which is used in the proof of
the projectivity lemma. To prove it, we review and develop the fundamental theory of
finite morphisms, cohomology groups of abelian sheaves, and divisors. The rest of the
appendix is devoted to the foundation of the intersection theory on proper surfaces in
order to characterize exceptional curves by their self-intersection numbers. Further, we
prove the Riemann-Roch theorem for proper smooth surfaces (Theorem 8.23).

Notations and Conventions. We fix a complete non-Archimedean valuation field K with a
non-trivial valuation and assume that rigid analytic spaces are defined over K. We mainly
use the terminologies and notations of [5]. However, we make a modification of the defini-
tion of smoothness. Let X be a rigid analytic space. When the local ring OX ,x is regular for
all x ∈ X , the rigid analytic space X is said to be regular. When the base change X ×K K′

for any extension K′/K of complete valuation fields is regular, the rigid analytic space X is
said to be smooth (or geometrically regular). If the base field K is perfect, then regularity
is equivalent to smoothness (see [14]).

The dimension of a rigid analytic space X is the supremum of the Krull dimension of
the local ring OX ,x for all x ∈ X . When the Krull dimension is constant for all x ∈ X , the
rigid analytic space X is said to be of pure dimension. A curve (resp. surface) is a reduced
separated rigid analytic space of pure dimension one (resp. two).

By K(x) let us denote the residue field at a point x on a rigid analytic space, which is a
finite extension of K. We set a complete valuation on K(x) which is the unique extension
of that on K. By C(D) let us denote the field of constant functions H0(D,OD) on a proper
rigid analytic space D, which is a finite extension of K.

An element of the set
{|a|b ∈ R | a ∈ K×,b ∈Q}

is called a special real number.
Terminology in the divisor theory and intersection theory for rigid analytic spaces is

explained in the appendix.

2. BIMEROMORPHIC MORPHISMS

2.1. Blowing-ups and Blowing-downs. A proper surjective morphism φ : X →Y of rigid
analytic spaces is called a bimeromorphic morphism if there exist nowhere dense analytic
subsets S and T of X and Y respectively such that the restriction φ |X − S → Y −T is an
isomorphism. Note that Corollary 7 in [5, 9.1.4] implies that the subsets X −S and Y −T
are admissible open subsets.

Let φ : X →Y be a bimeromorphic morphism between quasi-compact surfaces with the
analytic subsets S and T in the above definition. Then the analytic subset S is the union
of a finite number of points and proper curves. By Proposition 4.6 in [4], the fiber φ−1(y)
is a point or a proper connected curve for each y ∈ Y . By the same proposition, we may
assume that the analytic subset T is a finite number of points and that the analytic subset
S is equal to the preimage φ−1(T ). An element y of T is called a fundamental point for φ
and the curve φ−1(y) an exceptional curve for φ .

Conrad defined and studied blowing-ups of rigid analytic spaces in [9, 4.1] (see also
[24] for algebraically closed base field cases). The blowing-ups provide examples of
bimeromorphic morphisms since the blowing-ups are proper (Corollary 2.3.9 in [9]). Any
blowing-up of an affinoid space is isomorphic to the analytification of the algebraic one.
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We only treat regular surfaces and their blowing-ups at a point. Let π : X̃ → X be the
blowing-up of a regular surface X at a point p. Then the resulting surface is also regular. In
this case, we say that the morphism π is the blowing-down of X̃ along the divisor π−1(p).
The following extension theorem shows the uniqueness of such contraction of divisors.

Theorem 2.1 (extension theorem). Let T be a nowhere dense analytic subset of a normal
rigid analytic space Y . Assume that a morphism f : Y −T → Z of rigid analytic spaces
satisfies the following condition: There exists an admissible covering {Ui}i∈I of Y such
that each image f (Ui −T ) is contained in an admissible affinoid open subset of Z. Then
there exists a unique morphism g : Y → Z such that the restriction g|Y −T → Z is equal to
f .

Proof. First, we assume that the rigid analytic spaces Y and Z are affinoid spaces SpA and
SpB respectively. Applying the Riemann extension theorem ([2, §3]) to the pull-backs of
the analytic functions on SpB under f , we obtain the unique K-algebra homomorphism
B → A. The uniqueness follows from the uniqueness in the Riemann extension theorem.
Therefore, we obtain the desired morphism g : SpA → SpB. This construction is compati-
ble with the restriction of SpA to any admissible affinoid open subset. Thus, by assumption,
the general case follows by a gluing argument (Proposition 1 in [5, 9.3.3]). �

In the following subsections, we give two proofs of the following theorem.

Theorem 2.2 (Hopf’s theorem). Any bimeromorphic morphism between quasi-compact
regular surfaces is a finite succession of blowing-downs.

2.2. The First Proof. In this subsection, we prove Hopf’s theorem by the above extension
theorem.

We prove Hopf’s theorem by induction on the number of the irreducible components
of the union of all the exceptional curves. Let y be one of the fundamental points for a
bimeromorphic morphism φ : X → Y . We take an admissible affinoid open subset V and
two analytic functions f ′ and g′ on V that define the point y and generate the maximal ideal
of the local ring OY,y. We may assume that the subset V does not contain the other funda-
mental points. Put U := φ−1(V ). Since the morphism φ is quasi-compact, the admissible
open subset U is quasi-compact. Put f := φ ∗ f ′ and g := φ ∗g′.

Claim. The principal divisors ( f ) and (g) are given by C+E and D+F respectively where
the divisors C, D, E, and F satisfy the following conditions.

(1) The divisors C and D are prime divisors that are not contained in φ−1(y).
(2) The equalities SuppE = SuppF = φ−1(y) hold.

Proof. Since the restriction φ |U −φ−1(y)→V −{y} is an isomorphism, the claim follows
from Corollary 2.2.9 in [7]. �
Claim. Replacing suitable analytic functions f ′ and g′, we may assume E = F in the above
claim.

Proof. Since the admissible open subset U is quasi-compact, by Theorem 8.9, we have a
finite locally principal covering of U for all prime divisors that appear in the finite sum ( f )
or (g). Then the above claim follows from the following lemma. �
Lemma 2.3. Let I be an ideal of an affinoid algebra A. Let f and g be two elements of A.
Assume f 6∈ I or g 6∈ I. Then there exists a positive real number ε satisfying the following
condition. For all two non-zero elements α and β of K such that |α| < ε and |α | < ε ,
neither f +αg nor β f +g is contained in I.
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Proof. Let ψ : B(1)2 → A2 be the continuous map defined by ψ(s, t) = ( f + sg, t f + g).
Assume f ∈ I or g ∈ I. Without loss of generality, we may assume f ∈ I. Then the
condition is fulfilled on an open neighborhood of (0,0) minus {s = 0}. Therefore, there
exists a desired positive real number ε in this case. Assume f 6∈ I and g 6∈ I. By Proposition
2 in [5, 3.7.2], the subset I ×A∪A× I of A2 is closed. Therefore, the complement of
ψ−1(I ×A∪A× I) is an open neighborhood of (0,0). This proves the second case. �

Claim. The ratio ( f : g) defines a morphism from U to P1
V over V .

Proof. We have only to show that the two divisors C and D do not intersect. Suppose
that these two divisors intersected. Let p be one of the intersections. Then the point p is
contained in φ−1(y).

Let π : Dn → D be the normalization of D. The restriction φ ◦π|Dn − (φ ◦π)−1(y)→
{g′ = 0} − {y} is an isomorphism. Since Dn is separated, there exists a finite family
{Wq}q∈π−1(p) of disjoint admissible affinoid open subsets of Dn such that each element
Wq contains q. Put W :=

∪
q∈π−1(p)Wq and h := π∗ f . Taking an admissible affinoid cov-

ering of Dn and applying Lemma 2.3 in [16], we obtain a special real number ε such that
{z ∈ Dn | |h| ≤ ε} ⊂ W . Put G := {x ∈ X | | f ′| ≤ ε, g′ = 0}. Then the preimage of G
under φ is an admissible affinoid open subset of Dn. Thus, Theorem 2.1 shows that the
rigid space G is isomorphic to an admissible affinoid open subset of Dn. Therefore, the
pull-back h is a parameter at the point π−1(p) while the analytic function π∗g vanishes.

We may make the same argument with respect to C. The two results show that the
two analytic functions f and g generate the maximal ideal of the local ring OX ,p This
contradicts the assumption that the point y is a fundamental point for φ . �

Let π : Ỹ → Y be the blowing-up of Y at the point y. The above claim enables us to
define the morphism φ̃ : X → Ỹ of rigid analytic spaces such that φ = π ◦ φ̃ . Then the
number of the irreducible components of the union of all the exceptional curves for φ̃ is
less than that for φ . Therefore, Hopf’s theorem follows by induction on this number.

2.3. The Second Proof. In this subsection, we prove Hopf’s theorem by algebraization.
To algebraize bimeromorphic morphisms locally, we prepare the following lemma.

Lemma 2.4. Let π : X → Y be a proper morphism of rigid analytic spaces. Assume that
the fiber at a point p on Y is of dimension at most one. Then there exists an admissible open
subset U of Y containing p such that the base change π ×Y U : X ×Y U →U is projective.

Proof. Put Xp := π−1(p). By Theorem 8.12, the fiber Xp is a projective rigid analytic
space over K(p). By Chow’s theorem (Theorem 8.3) the rigid analytic space Xp is the
analytification of a projective scheme over K(p). By Proposition 7.1.32 in [21], we have
an effective ample Cartier divisor ∑i∈I aiDi on Xp.

We fix i ∈ I. Since the morphism π is proper, there exists two admissible affinoid open
subsets P and Q of the preimage of an admissible affinoid open subset V of Y under π
such that Di ∈ P and P bV Q. Since Q 6⊂ Xp, there exists an effective Cartier divisor E on
Xp such that SuppE 6⊂ Q. Then, by Corollary 7.3.23 in [21], there exist a meromorphic
function f on Xp and a positive integer b such that the inequality ( f )≥ Di −bE holds.

We may assume P= {x ∈Q | |g1(x)| ≤ ε, . . . , |gn(x)| ≤ ε} where the family {g1, . . . ,gn}
is an affinoid generating family of Q over V and ε is a special real number less than one.
Put R :=

∪
j=1,...,n Q〈g1/ε, . . . ,gn/ε,ε/g j〉. Replacing ε with a larger special real number,

we may assume Xp ∩R∩Supp( f ) = /0.
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We choose an analytic function h on Q whose restriction to the analytic subset Q∩Xp
is equal to the restriction of f to it. Then the relations Xp ∩R ⊂ R−{h = 0} ⊂ R hold.
Applying Lemma 2.3 in [16], we obtain a connected admissible affinoid open subset Wi
of V containing p such that {h = 0}∩π−1(Wi)⊂ (Q−R)∩π−1(Wi). Then we obtain the
Cartier divisor π−1(Wi)∩P∩{h = 0} on Q. Thus, by Lemma 1.1 in [29], we obtain the
Cartier divisor Fi on π−1(Wi) such that Fi|Xp ≥ Di.

Repeating the same procedure for each i ∈ I, we obtain the intersection W ′ of the ad-
missible open subsets Wi and the sum F ′ of the Cartier divisors Fi|π−1(W ′) on π−1(W ′).
By Proposition 7.5.5 in [21], the Cartier divisor F ′|Xp is ample. Applying Theorem 3.2.9
in [9] to the line bundle defined by the Cartier divisor F ′, we conclude the proof of the
lemma. �

Proof of Hopf’s theorem. Let φ : X → Y be a bimeromorphic morphism between quasi-
compact regular rigid analytic spaces of pure dimension two. Since the statement is local
with respect to Y , we may assume that the morphism φ has a single fundamental point y.

By the above lemma and Chow’s theorem (Theorem 8.3), we may algebraize the bimero-
morphic morphism φ over an admissible affinoid open subset containing y. Therefore, the
theorem follows from Hopf’s theorem for two-dimensional Noetherian regular schemes
([26, Chapter 4, p.55]). �

3. RESOLUTION OF SINGULARITIES

Schoutens gives the resolution of singularities of rigid analytic spaces over an arbitrary
algebraically closed base field of characteristic zero in [25]. Here, we give the resolution
of singularities of rigid analytic spaces of dimension two over an arbitrary base field.

Theorem 3.1. For any quasi-compact reduced rigid analytic space X of dimension two,
there exists a quasi-compact regular rigid analytic space Y and a bimeromorphic mor-
phism Y → X.

Proof. First, note that any affinoid algebra is excellent ([7, 1]). Therefore, the regular locus
of any reduced affinoid space is a non-empty Zariski open subset. We normalize X (see [7,
2.1]) and blow up the resulting rigid analytic space alone the singular locus (see Definition
4.1.1 in [9]). We have only to show that we can obtain a regular rigid analytic space in
a finite succession of this procedure. To show this, we may assume that X is an affinoid
space. Then since the analytic normalization and blowing-up of an affinoid space coincide
with the analytification of the algebraic ones, the termination follows from the remark B in
the introduction of [20]. �

4. MINIMAL MODELS

A relatively minimal regular surface (resp. relatively minimal smooth surface) is a
proper regular surface X (resp. proper smooth surface) such that any bimeromorphic mor-
phism from X to a proper regular surface (resp. proper smooth surface) is an isomorphism.
A relatively minimal regular model (resp. relatively minimal smooth model) of a proper
regular surface X (resp. proper smooth surface) is a relatively minimal regular surface Y
(resp. relatively minimal smooth surface) such that there exists a bimeromorphic morphism
from X to Y .

To show the existence of relatively minimal regular models and relatively minimal mod-
els, we prove the following proposition.
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Proposition 4.1. Let π : X̃ → X be the blowing-up of a proper regular surface X at a point
p. Then the inequality

dimK H1(X̃ ,Ω1
X̃
)> dimK H1(X ,Ω1

X )

holds. For any line bundle L on X, the equality

dimK Hq(X̃ ,π∗L ) = dimK Hq(X ,L )

holds for all q.

Proof. We take an admissible affinoid open subset U of Y such that two analytic functions
on U define the point p and generate the maximal ideal of the local ring OY,p. Then
the assertion follows from the Mayer-Vietoris sequence (Proposition 8.6) and the local
calculation in [26, Chapter 5, pp.59–65]. �

Proposition 4.1 and Hopf’s theorem (Theorem 2.2) show the existence of relatively
minimal regular models and relatively minimal smooth models.

Theorem 4.2 (existence of relatively minimal regular models). Any proper regular surface
admits a relatively minimal regular model.

Theorem 4.3 (existence of relatively minimal smooth models). Any proper smooth surface
admits a relatively minimal smooth model.

5. MINIMAL MODELS OF FIBERED SURFACES

A (regular) fibered surface with fibers of arithmetic genus g (over a regular curve) is
a triple (X ,S,π) where X is a regular surface, S is a regular curve, and π is a proper flat
morphism from X to S satisfying the following condition. There exists a nowhere dense
analytic subset S0 of S such that for all p ∈ S−S0, the fiber π−1(p) is an irreducible curve
of arithmetic genus g over K(p).

Remark. The flatness of the morphism π is equivalent to the surjectivity of the morphism
π .

We define algebraic fibered surfaces over algebraic regular curves in the same way. An
(algebraic) fibered surface (X ,S,π) is said to be smoothly fibered if the projection π is
smooth. An (algebraic) fibered surface (X ,S,π) is said to be proper if the total space X
and the base space S are proper.

A relatively minimal fibered surface is a fibered surface (X ,S,π) satisfying the follow-
ing condition. For any fibered surface (Y,S,ρ), any bimeromorphic morphism from X to
Y over S is an isomorphism. A relatively minimal model of a fibered surface (X ,S,π) is a
relatively minimal fibered surface (Y,ρ,S) with a bimeromorphic morphism from X to Y
over S. A minimal fibered surface is a relatively minimal fibered surface (X ,S,π) satisfy-
ing the following condition. For any bimeromorphic morphism from Y to X over S, all the
relatively minimal models of Y are isomorphic to X over S. If a relatively minimal model
of a fibered surface is minimal, the relatively minimal model is called the minimal model
of the fibered surface. We also define algebraic (relatively) minimal fibered surfaces in the
same way except for replacing bimeromorphic morphisms by proper birational morphisms.
A prime divisor E on a fibered surface (X ,S,π) is said to be exceptional if there exists a
fibered surface (Y,S,ρ) and a bimeromorphic morphism β : X → Y over S satisfying the
following conditions.

(1) The restriction β |X−E is an isomorphism.
(2) The image β (E) is a point on Y .
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The normal sheaf of an analytic subset D of a rigid analytic space X is coherent OD-module
OX (D)|D. Let us denote this OD-module by ND/X .

Theorem 5.1 (Castelnuovo’s criterion). A prime divisor E on a fibered surface (X ,S,π) is
exceptional if and only if the following conditions are satisfied.

(1) The image π(E) is a point on S.
(2) The cohomology group H1(E,OE) vanishes.
(3) The equality degE NE/X =−dimK C(E) holds where we regard the divisor E as a

curve over K.
In this case, the divisor E is isomorphic to the projective line over C(E).

Proof. For any bimeromorphic morphism φ : X → Y over S between fibered surfaces, the
image of exceptional curves of φ under π is a nowhere dense analytic subset of S. There-
fore, Lemma 2.4, Chow’s theorem (Theorem 8.3), and the GAGA theorems (see [18])
enable us to use algebraic results. Thus, the theorem follows from Castelnuovo’s criterion
for algebraic fibered surfaces (Theorem 9.3.8 in [21], [26, Chapter 6, p.102], Theorem 3.10
in [19]). �

Lemma 5.2. An algebraic fibered surface over an affinoid algebra is relatively minimal
(resp. minimal) if and only if its analytification is relatively minimal (resp. minimal).

Proof. By Hopf’s theorem (Theorem 2.2), we have only to show that the contraction of
an exceptional prime divisor on the analytification of an algebraic fibered surface is the
analytification of the algebraic contraction. Thus, the lemma follows from Castelnuovo’s
criterion (Theorem 5.1), the GAGA theorems, and Castelnuovo’s criterion for algebraic
fibered surfaces. �

The following lemma shows that the analytification commutes with base change.

Lemma 5.3. Let Y be a locally of finite type scheme over an affinoid algebra A. Then, for
a K-algebra homomorphism A → B of affinoid algebras, there exists a canonical isomor-
phism

Y an ×SpA SpB ∼→ (Y ×SpecA SpecB)an

where Y an is the analytification of the A-scheme Y and (Y ×SpecA SpecB)an is the ana-
lytification of the B-scheme Y ×SpecA SpecB.

Proof. We can prove this lemma by the same method as in the proof of Satz 1.9 in [18]. �

Lemma 5.4. The image of any flat morphism of affinoid spaces is a finite union of affinoid
subdomains.

Proof. This lemma is shown in [23, 3.4.8] (see also Proposition 3.1.7 1 in [10]). �

Lemma 5.5. For any fibered surface π : X → S and any étale morphism α : T → S, the
base change π ×S T : X ×S T → T is also a fibered surface. Moreover, if the arithmetic
genus of the fibers of π is at least one and the morphism α is surjective, the fibered surface
X is minimal if and only if the base change π ×S T : X ×S T → T is minimal.

Proof. Since the morphism α is étale, by (21.D) Theorem 51 in [22], the base space T and
the fiber product X ×S T are regular. This implies the first statement.

Let us show the second statement. By Castelnuovo’s criterion (Theorem 5.1) and
Lemma 5.4, it suffices to show the case when the base spaces S and T are affinoid spaces.
Moreover, by Lemma 2.4, we may assume that the projection π is projective. By Chow’s
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theorem (Theorem 8.3), Lemma 5.3, and Lemma 5.2, the second statement follows from
Proposition 9.3.28 in [21]. �

A morphism ρ : Y → T is said to be locally projective if there exists an admissible
covering {Ui}i∈I of T such that each base change ρ ×T Ui : Y ×T Ui →Ui is projective.

Lemma 5.6. For any proper flat surjective morphism ρ : Y → T to a regular curve with
fibers of dimension at most one, there exist two morphisms α1 : T1 → T and α12 : T2 → T1
satisfying the following conditions.

(1) The morphism α1 is an admissible affinoid covering.
(2) The morphism α12 is étale, quasi-compact, and surjective.
(3) The base change ρ ×T T2 is locally projective.

Proof. This lemma is a special case of Theorem 2.1.4 in [8]. �

Theorem 5.7 (existence of minimal models). Any fibered surface with fibers of arithmetic
genus at least one over a quasi-compact regular curve admits a minimal model.

Proof. The last two lemmas and Theorem 9.3.21 in [21] show that the image of the excep-
tional divisors is a finite number of points. Thus, Castelnuovo’s criterion (Theorem 5.1)
implies that there exists a relatively minimal model of the fibered surface. Lemma 2.4 and
Corollary 9.3.24 in [21] show that the relatively minimal model is a minimal model of the
fibered surface. �

6. DEFORMATION OF DIVISORS

In this section, we study deformation of quasi-compact effective Cartier divisors on
paracompact separated rigid analytic spaces.

6.1. Deformation of Divisors on Quasi-Compact Spaces. Let D be an effective Cartier
divisor on a quasi-compact separated rigid analytic space X . Let {Ui}i∈I be a finite admis-
sible affinoid covering of X . Put U := {Ui}i∈I . For each i ∈ I, put Di := D∩Ui. We may
write Di = SpBi and Ui = SpAi. Assume that the kernel of the natural surjective homomor-
phism θi : Ai → Bi is generated by the single non-zero-divisor hi of Ai. For each i, j,k ∈ I,
put Ai j := Ai ⊗̂A j, Ui j := SpAi ∩SpA j, Ui jk := SpAi ∩SpA j ∩SpAk, Bi j := Bi ⊗̂B j, and
Di j := D∩Ui j = SpBi j. Let hi j be the invertible element hi/h j of Ai j.

Let δ be a special real number. For each i ∈ I, put Viδ := Ui ×SpK〈T/δ 〉. Put Yδ :=
X ×SpK〈T/δ 〉, and Vδ := {Viδ}i∈I .

All complete K-algebra norms on any affinoid algebra is equivalent to each other (Propo-
sition 2 in [5, 6.1.3] and Corollary 3 in [5, 2.1.8]). For each i, j ∈ I, we set complete
K-algebra norms on affinoid algebras Ai, Ai j, Bi, and Bi j.

For a presheaf F of abelian groups on X , let us denote the q-cochain group (resp. q-
cocycle group) of U with coefficient in F by Cq(U ,F ) (resp. Zq(U ,F )).

Theorem 6.1. We use the above notations. Let {ti}i∈I be a section of the normal sheaf
ND/X of D. Assume that the cohomology group H1(D,ND/X ) vanishes. Then there ex-
ist a special real number δ , s = {si}i∈I ∈ C0(Vδ ,OYδ ), and f = { fi j}i, j∈I ∈ C1(Vδ ,OYδ )
satisfying the following conditions:

(1) For all i ∈ I, the first two terms in the expansion of si with respect to T is equal to
hi + si1T where si1 satisfies the equality θi(si1) = ti.

(2) For all i, j,k ∈ I, the two equalities si = fi js j and fik = fi j f jk hold.
(3) For all i, j ∈ I, the analytic function fi j is invertible.
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We prove the above theorem. For each i, j ∈ I, we write

si = hi +
∞

∑
m=1

simT m

and

fi j = hi j +
∞

∑
m=1

fi jmT m.

First, note that it suffices to construct s ∈ C0(V1,OY1) and f ∈ C1(V1,OY1) that satisfy
the conditions (1)–(2). Indeed, if we choose a special real number δ such that the inequality

sup
m≥1

∣∣∣∣ fi jmδ m

hi j

∣∣∣∣
Ai j

< 1

holds for all i, j ∈ I, then the condition (3) is fulfilled.
We construct a formal solution. For formal power series F,G ∈ A[[T ]] over an affinoid

algebra A, if F ≡ G (mod T µ+1), then we write F ≡µ G. Put si0 := hi, si1 := ti, and
fi j0 := hi j. For µ ≥ 0, put

sµ
i :=

µ

∑
m=0

simT m

and

f µ
i j :=

µ

∑
m=0

fi jmT m.

We take a set-theoretical section ıi of the surjective homomorphism θi : Ai → Bi.

Claim. There exist formal power series {si}i∈I and { fi j}i, j∈I such that the equation

(i, j,µ) sµ
i ≡µ f µ

i j sµ
j on Ui j.

holds for all µ ≥ 0 and for all i, j ∈ I. If Eq. (i, j,µ) is satisfied for all i, j ∈ I, then the
congruence

f µ
ik ≡µ f µ

i j f µ
jk on Ui jk

holds for all i, j,k ∈ I.

Proof. We have only to show the first part. Clearly, Eq. (i, j,0) holds for all i, j ∈ I.
For µ > 0, assume that the summations {siµ−1}i∈I and { fi jµ−1}i, j∈I satisfy Eq. (i, j,µ−

1) for all i, j ∈ I. We define sµ and fµ such that Eq. (i, j,µ) is fulfilled for all i, j ∈ I.
Eq. (i, j,µ) is equivalent to the equation

fi jµ h j = siµ −hi js jµ +gi jµ on Ui j

where gi jµ ∈ Ai j is defined by the following congruence:

gi jµ T µ ≡µ sµ−1
i − f µ−1

i j sµ−1
j on Ui j.

The cochain {gi jµ |Di j}i, j∈I satisfies the one-cocycle condition:

gikµ = gi jµ +hi jg jkµ on Di jk.

First, let us show that there exists a solution sµ of the equation:

(1) siµ −hi js jµ +gi jµ = 0 on Di j.
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If µ = 1, then the equality gi jµ = 0 holds. For each i ∈ I, put siµ := ıi(ti). Then, since the
family {ti} is a section of the normal sheaf ND/X , Eq. (1) is fulfilled. If µ > 1, then by the
assumption H1(D,ND/X ) = 0 there exists tiµ ∈ Bi such that the equality

tiµ −hi jt jµ +gi jµ = 0 on Di j

holds. For each i ∈ I, put siµ := ıi(tiµ). Then sµ satisfies Eq. (1).
Since the analytic function siµ −hi js jµ +gi jµ vanishes on Di j and the restriction h j|Ui j

is a defining function of Di j, the analytic function siµ −hi js jµ +gi jµ is divisible by h j. Set

fi jµ := (siµ −hi jµ s jµ +gi jµ)/h j on Ui j.

Then the summations {siµ−1}i∈I and { fi jµ−1}i, j∈I are a solution of the system of the equa-
tions (i, j,µ)i, j∈I . �

Lemma 6.2. Let h be a defining function of an effective Cartier divisor D on an affinoid
space SpA. Then there exists a positive real number α such that if an element f of A
vanishes on D, then the equality | f/h|A ≤ α | f |A holds.

Proof. Since, for all K-linear maps between K-normed spaces, continuity is equivalent to
boundedness (Corollary 3 [5, 2.1.8]), Banach’s theorem (Theorem 1 in [6, I, §3]) shows
that the isomorphism A → hA is homeomorphism. This proves the lemma. �

For each i, j ∈ I, applying the above lemma to the affinoid space SpAi j and the defining
function h j|Ui j of D|Ui j , we obtain the positive real number αi j. Put α := maxi, j∈I αi j.

We introduce K-Banach space norms on cochain groups. Put Aq := Cq(U |D,OX ) and
Cq := Cq(U |D,ND/X ). Since the family U |D is a finite admissible affinoid covering of
D, for each q, we may regard the q-cochain group Aq as an affinoid algebra that is the
finite direct sum of the affinoid algebras. Then the q-cochain group Aq is a K-Banach
algebra, and the q-cochain group Cq is an Aq-Banach space. For each q = 0,1, we define
q-coboundary operator δ q : Cq →Cq+1 as follows. For u = {ui}i∈I ∈C0, put

(δ 0u)i j := hi ju j −ui on Ui j.

For v = {vi j}i, j∈I ∈C1, put

(δ 1v)i jk := hi jv jk − vik + vi j on Ui jk.

By Z1 and B1 let us denote the K-normed subspaces Kerδ 1 and Imδ 0 of C1 respectively.

Claim. There exists a positive real number β satisfying the following condition. For any
v ∈ Z1, there exists a solution u ∈ C0 of the equation v = δ 0u such that the inequality
|u|C0 < β |v|C1 holds.

Proof. Since addition, subtraction, multiplication, and restriction are continuous, the cobound-
ary operators are continuous K-linear maps. Therefore, the kernel Z1 of δ 1 is a K-Banach
space. Put η := δ 0 : C0 → Z1. Since the cohomology group H1(D,ND/X ) vanishes, the
equality Z1 = B1 holds. Then the K-linear map η between K-Banach spaces is surjective
and continuous. Thus, Banach’s theorem (Theorem 1 in [6, I, §3]) shows that the K-linear
map η is open. Therefore, we obtain a desired positive real number β . �

We take β in the above claim. Put tµ := {tiµ}i∈I ∈ C0 and gµ := {gi jµ}i, j∈I ∈ C1. If
µ > 1, then we may assume that |tµ |SpC0 < β |gµ |SpC1 . By Banach’s theorem (Theorem 1
in [6, I, §3]), we may take a special real number γ such that the inequality |ıi(t)|Ai < γ|t|Bi

holds for all i ∈ I and all t ∈ Bi.



12 KENTARO MITSUI

By R let us denote a real number field or an affinoid algebra with a norm. For two formal
power series F = ∑∞

m=0 amT m ∈ R[[T ]] and G = ∑∞
m=0 bmT m ∈ R[[T ]], we write F � G if

|am| ≤ |bm| for all m ≥ 0. We set a formal power series over R

P(T ) :=
b
5c

∞

∑
m=1

cmT m

m2

where b and c is a positive real number. Then the relation

P(T )2 � b
c

P(T ).

holds. We choose four positive real numbers a, b, c, and d satisfying the following inequal-
ities:

(1) max
i∈I

|si1|Ai < b/5;

(2) max
i, j∈I

|hi j|Ai j < d;

(3) α(1+(ab/c)+d)< a;
(4) βγ(1+(ab/c)+d)< c.

Claim. For all i, j ∈ I and all µ ≥ 0, the relations

(i, j,µ) f µ
i j −hi j � aP(T )

and

(i,µ) sµ
i −hi � P(T )

hold.

Proof. Clearly, Rel. (i, j,0) and Rel. (i,1) hold for all i, j ∈ I.
Suppose that µ > 1. Assume that Rel. (i, j,µ −1) and Rel. (i,µ) hold for all i, j ∈ I. Let

us show that Rel. (i, j,µ) and Rel. (i,µ +1) hold for all i, j ∈ I. Eq. (i, j,µ) implies that the
congruence

fi jµ T µ h j ≡µ sµ
i − f µ−1

i j sµ
j

holds. The right side of the above congruence is equal to

sµ
i −hi − ( f µ−1

i j −hi j)(s
µ
j −h j)−hi j(s

µ
j −h j)+hi − ( f µ−1

i j −hi j)h j.

Since the last two terms do not contribute to the term containing T ν for each ν ≥ µ , the
relation

sµ
i − f µ−1

i j sµ
j � (1+(ab/c)+d)P(T )

holds. Thus, the relation

fi jµ T µ h j � (1+(ab/c)+d)P(T )

holds. By the choice of α , the relation

fi jµ T µ � α(1+(ab/c)+d)P(T )

holds. Therefore, we obtain Rel. (i, j,µ). By the definition of gi jµ+1, the congruence

gi jµ+1T µ+1 ≡µ+1 sµ
i − f µ

i j sµ
j

holds. The right side of the above congruence is equal to

sµ
i −hi − ( f µ

i j −hi j)(s
µ
j −h j)−hi j(s

µ
j −h j)+hi − ( f µ

i j −hi j)h j.
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Since the last two terms do not contribute to the term containing T ν for each ν ≥ µ , the
relation

sµ
i − f µ

i j sµ
j � (1+(ab/c)+d)P(T )

holds. Thus, the relation

gi jµ+1T µ+1 � (1+(ab/c)+d)P(T )

holds. Since the inequality |siµ+1|Ai < γ|tiµ+1|Bi holds, by the choice of β , the relation

siµ+1T µ+1 � βγ(1+(ab/c)+d)P(T )

holds. Therefore, we obtain Rel. (i,µ +1). �

Since the power series P(T ) converges on a neighborhood of the origin, the formal solu-
tions converge for some special real number δ , i.e., s ∈C0(Vδ ,OYδ ) and f ∈C1(Vδ ,OYδ ).
This proves Theorem 6.1.

Lemma 6.3. Assume that an analytic subset Y of a rigid analytic space X is defined by ana-
lytic functions f1, . . . , fn on X. Let U be an admissible open subset of X containing Y . Then
there exists a special real number ε such that the affinoid subdomain X( f1/ε, . . . , fn/ε) is
contained in U.

Proof. This lemma is shown in Lemma 2.3 in [16]. See also Lemma 1.1.4 in [7]. �

We say that a Cartier divisor D admits a global defining function if there exist an admis-
sible open subset P of X containing D and a defining function of D on P.

Theorem 6.4. Let D be an effective Cartier divisor on a quasi-compact separated rigid
analytic space X. Assume that the following conditions are satisfied.

(i) The cohomology group H1(D,ND/X ) vanishes.
(ii) The normal sheaf ND/X admits a nowhere vanishing section.

Then the divisor D admits a global defining function.

Proof. By assumption, there exist δ , s, and f satisfying the conditions in Theorem 6.1. By
the conditions (2)–(3) in the same theorem, we obtain the divisor Eδ on Yδ . By Lemma
6.3, for all sufficiently small special real number η , the section si1 is nowhere vanishing
on the affinoid subdomain SpA′

i for all i ∈ I where A′
i := Ai〈hi/η〉. Choose a special real

number δ such that the inequality

sup
m≥2

∣∣∣∣ simδ m−1

si1

∣∣∣∣
A′

i

< 1

holds for all i ∈ I. Take a special real number µ that is less than one. For each i ∈ I, put
U ′

i := SpA′
i〈si0/si1δ µ〉. Since the condition (1) in Theorem 6.1 is satisfied, the restriction

of the projection π : Eδ → X to the preimage π−1(U ′
i ) is an isomorphism. Put P :=

∪
i∈I U ′

i .
Then, by Lemma 6.5, the union P is an admissible open subset of X . Thus, the composite
P → B(δ ) of the restriction of the inverse π−1|P and the second projection Yδ → B(δ ) is a
global defining function of D. �
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6.2. Deformation of Quasi-Compact Divisors. For two coverings U and V of a rigid
analytic space X and a subset W of X , let us denote {U ∩V |U ∈U ,V ∈ V } and {U ∩W |
U ∈ U } by U ∩V and U ∩W respectively.

Lemma 6.5. Let U be a family of admissible affinoid open subsets of a quasi-separated
rigid analytic space X. Assume that the rigid analytic space X admits an admissible affi-
noid covering V all of whose covering elements intersect at most finite number of elements
of U . Then the family U ∩V is an admissible covering of an admissible open subset

∪
U

of X. Therefore, the family U is an admissible covering of
∪

U .

Proof. Put U :=
∪

U . Let V be an element of V . Since the intersection U ∩V is a finite
union of an admissible affinoid open subsets of V , Corollary 4 in [5, 9.1.4] shows that the
intersection U ∩V is an admissible open subset of V . Thus, the union U is an admissible
open subset of X . The same corollary shows that the family U ∩V is an admissible cover-
ing of U ∩V . Therefore, since the family V ∩U is an admissible covering of U , the family
U ∩V is an admissible covering of U . This proves the first assertion. Since the admissible
covering U ∩V is finer than the covering U , the last assertion follows. �
Proposition 6.6. Let D be a quasi-compact analytic subset on a paracompact quasi-
separated rigid analytic space X. Then there exists a finite admissible covering {Ui}i∈I ∪
{U0} of X satisfying the following three conditions.

(1) For all i ∈ I, the covering element Ui is an affinoid open subset of X.
(2) The covering element U0 is disjoint from D.

We take a family { fi j} j∈Ji of defining functions of D on each Ui. Put Uiε := {x ∈U | ∀ j ∈
Ji, | fi j(x)| ≤ ε}.

(3) There exists a special real number ε such that the restriction Uiε is disjoint from
U0 for all i ∈ I.

Proof. Take an admissible affinoid covering {Vj} j∈J that is locally of finite type. Put I :=
{ j ∈ J |U j∩D 6= /0} and U :=

∪
j∈J−I Ui. Then, by Lemma 6.5, the family {Ui}i∈I ∪{U0} is

an admissible covering of X satisfying the conditions (1) and (2). By the maximal modulus
principle (Lemma 6 in [5, 9.1.4]), we obtain a special real number ε in the condition
(3). �

The supremum semi-norm on an affinoid algebra A is the K-algebra semi-norm | ·
|SpA : A → R≥0 defined by the equality:

| f |SpA := sup
x∈SpA

| f (x)|, f ∈ A.

Corollary 2 in [5, 3.8.2] shows the following lemma.

Lemma 6.7. For an affinoid algebra A, the inequality | f |SpA ≤ | f |A holds for all f ∈ A.

Let D be a quasi-compact effective Cartier divisor on a paracompact separated rigid
analytic space X . Assume that the divisor D admits a locally principal covering. By
Proposition 6.6, we obtain the admissible covering of U ∪ {U0} of X and the special
real number ε such that the family U is an admissible covering in Theorem 6.1. Put
V0δ :=U0 ×SpK〈T/δ 〉.

Theorem 6.8. We use the above notations. Assume that the cohomology group H1(D,ND/X )
vanishes. Then we may take a special real number δ in Theorem 6.1 satisfying the follow-
ing additional condition.

(4) For all i ∈ I, the analytic function si dose not vanish on Viδ ∩V0δ .
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Proof. There exist δ , s, and f satisfying the conditions in Theorem 6.1. By the above
lemma, we may take a special real number δ such that the inequality

sup
m≥1

|simδ m|SpAi < ε

holds for all i ∈ I. This proves the theorem. �

The last two theorems show the following theorem.

Theorem 6.9. Let D be a quasi-compact effective Cartier divisor on a paracompact sepa-
rated rigid analytic space X satisfying the following conditions.

(i) The cohomology group H1(D,ND/X ) vanishes.
(ii) The normal sheaf ND/X admits a nowhere vanishing section.

Then the divisor D admits a global defining function.

7. BLOWING-DOWN OF EXCEPTIONAL CURVES OF THE FIRST KIND

In this section, we show that we can blow down exceptional curves of the first kind on
regular surfaces.

An exceptional curve of the first kind is a prime divisor D on a regular surface X satis-
fying the following conditions.

(1) The cohomology group H1(D,OD) vanishes.
(2) The equality degD OD(D)|D = −degK C(D) holds where we regard the divisor D

as a curve over K.
In this case, the divisor D is isomorphic to the projective line over C(D). When the surface
X is proper, by Proposition 8.15, the last condition is equivalent to that the self-intersection
number D ·D is equal to the integer −dimK C(D) (see Appendix). A local calculation
shows that the center of the blowing-up is an exceptional curve of the first kind. In this
section, we show the converse.

Theorem 7.1 (Castelnuovo’s criterion). Let D be an exceptional curve of the first kind on
a regular surface X. Then we can blow down X along D to a regular surface.

Hopf’s theorem (Theorem 2.2) and the above theorem give a necessary and sufficient
condition for relative minimality.

Corollary 7.2 (criterion for relative minimality). A proper regular surface is relatively
minimal if and only if the surface does not contain any exceptional curves of the first kind.

In the rest of this section, we prove the above theorem. For the next proposition, we start
with preparing terminologies and notations. Let V be an affinoid subdomain of an affinoid
space U . When V is relatively compact in U (over K), we write V b U . Let {Ui}i∈I and
{Vi}i∈I be two finite families of admissible affinoid open subsets of a rigid analytic space
X . When Vi bUi for all i, and the family {Vi}i∈I covers a subset S of X , the family {Ui}i∈I
is called a relatively big covering of S, and the family {Vi}i∈I a relatively small covering
of S associated to the relatively big covering {Ui}i∈I .

Let {Vi}i∈I be a relatively small covering of a subset S of a rigid analytic space X
associated to the relatively big covering {Ui}i∈I . When X is quasi-separated, for any subset
J of I, the family {U j} j∈J is an admissible covering of an admissible open subset

∪
j∈J U j

of X by Lemma 6.5. When X is separated, the family {
∪

i∈I Ui} ∪ {X −
∪

i∈I Vi} is an
admissible covering of X by Lemma 1.1 in [29].
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Proposition 7.3 (properness criterion). Let π : X → Y be a morphism of rigid analytic
spaces. Assume that the rigid analytic space X is quasi-separated. Suppose that the preim-
age of a point p on Y under π admits a relatively big covering. Then there exists an ad-
missible open subset V of Y containing p such that the restriction π|π−1(V ) : π−1(V )→ V
is proper.

Proof. Put D := π−1(p). We choose an admissible affinoid open subset W of Y containing
p and a family {gi}i∈I of defining functions of p on W . For a special real number ε , we
put Wε := {y ∈ Y | ∀i ∈ I, |gi(x)| ≤ ε}.

We take a relatively small covering {Vi}i∈I of D associated to the relatively big cov-
ering {Ui}i∈I . Since the family {π∗gi}i∈I is a family of defining functions of D on the
preimage π−1(W ), by Lemma 6.3, we obtain a special real number ε such that the relation
π−1(Wε)⊂

∪
i∈I Vi holds. Put Z := π−1(Wε). Since the relation Vi ∩Z bWε Ui ∩Z holds for

all i ∈ I, the restriction π to Z is proper. Thus, Lemma 6.5 implies that the admissible open
subset Wε is a desired one. �

For a special real number r, by B(r) let us denote a one-dimensional closed disk with
the radius r.

Proof of Castelnuovo’s criterion. We have only to show that the divisor D contracts to a
regular point. We choose two distinct C(D)-rational points 0 and ∞ on D. We take an
admissible affinoid open subset U and two analytic functions f and g on U satisfying the
following conditions.

(1) The subset U contains 0.
(2) The analytic function f defines the divisor D on U .
(3) The two analytic functions f and g define the point 0.
(4) The two analytic functions f and g generate the maximal ideal of the local ring

OX ,0.

Since the rigid space X is regular and the divisor D is quasi-compact, Lemma 8.9 implies
that the divisor D is covered by a finite number of admissible open subsets to whose el-
ement the restriction of the divisor D is defined by a single analytic function. We add U
to the covering. Since the rigid space X is separated, by Lemma 6.5, the union Y of the
covering elements is an admissible open subset of X . Take a covering element V and put
W := U ∩V . Applying Lemma 6.3 to the intersection W and the restriction of defining
functions of 0 on V to W , we may assume that the single element U of the covering con-
tains 0. Then, by the same method, we may assume that the divisor (g) dose not intersect
the other covering elements. We define a divisor E on Y by D+(g). Since the normal
bundle of the divisor E is trivial, by Theorem 6.4, we obtain a global defining function φ
of E on a quasi-compact admissible open subset of X . Repeating the same procedure for
the point ∞, we obtain two analytic functions φ and ψ on a quasi-compact admissible open
subset W of X satisfying the following conditions.

(1) A divisor (φ)−D intersects D at the single point 0.
(2) A divisor (ψ)−D intersects D at the single point ∞.

Then the two analytic functions φ and ψ define the divisor D. We may define a mor-
phism π : W → B(r)×B(r) for a sufficiently large special real number r. By Proposition
7.3 and Lemma 2.4, for a sufficiently small special real number ε , the restriction of π to
π−1(B(ε)×B(ε)) is projective. Chow’s theorem (Theorem 8.3) shows that the preimage
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of B(ε)×B(ε) under π is the analytification of a regular Noetherian scheme of pure dimen-
sion two. Therefore, the theorem follows from Castelnuovo’s criterion for such schemes
[26, Chapter 6, p102]. �

8. APPENDIX

8.1. Coherent Algebras and Finite Rigid Analytic Spaces. In this subsection, we study
relationship between coherent OX -algebras on a rigid analytic space X and finite rigid
analytic spaces over X . By CohAlg(X) let us denote the category of coherent OX -algebras
on a rigid analytic space X . By Fin(X) let us denote the category of finite rigid analytic
spaces over X . We give an equivalence between the two categories that is compatible with
base change. Then we prove that we can algebraize finite rigid analytic spaces over a
projective rigid analytic space over an affinoid space.

First, recall that for any K-homomorphism A → B between affinoid algebras and any
finite A-module M, the completion tensor product M ⊗̂A B is isomorphic to a finite B-
module M⊗A B (Proposition 6 in [5, 3.7.3]). Therefore, for an arbitrary morphism f : X →
Y of rigid analytic spaces and an arbitrary coherent OY -module F , we may define the pull-
back f ∗F of F under f , which is a coherent OX -module. In particular, we obtain a functor
f ∗CohAlg : CohAlg(Y )→ CohAlg(X). We also obtain a functor f ∗Fin : Fin(Y )→ Fin(X) by
the base change of finite rigid analytic spaces over X under f .

A local calculation shows the following projection formula.

Proposition 8.1 (projection formula). Let π : X →Y be a finite morphism of rigid analytic
spaces. Then, for any coherent OX -module F and any coherent OY -module G , there exists
a canonical isomorphism π∗(F ⊗OX π∗G )∼= π∗F ⊗OY G .

For a finite rigid analytic space X ′ over X , the push-forward of the structure sheaf of
X ′ is a coherent OX -algebra (Proposition 5 in [5, 9.4.2]). This correspondence gives a
functor φX : Fin(X)→ CohAlg(X). Since any finite algebra over an affinoid algebra is an
affinoid algebra (Proposition 5 in [5, 6.1.1]), from a coherent OX -algebra we obtain a finite
rigid analytic space over X by pasting spaces and morphisms (Proposition 1 in [5, 9.3.2]
and Proposition 1 in [5, 9.3.3]). This correspondence gives a functor ψX : CohAlg(X)→
Fin(X). Then we obtain the following theorem.

Theorem 8.2. We use the above notations. For an arbitrary rigid analytic space X,
the functors φX and ψX give an equivalence between the two categories CohAlg(X) and
Fin(X). The equivalence commutes with base change in the following sense. For an arbi-
trary morphism f : X → Y of rigid analytic spaces, the diagram

CohAlg(Y ) ∼

f ∗CohAlg
��

Fin(Y )

f ∗Fin
��

CohAlg(X)
∼ Fin(X)

is commutative.

In the rest of this subsection, we prove that we can algebraize finite rigid spaces over a
projective rigid analytic space over an affinoid space. We fix an affinoid algebra A. Köpf
gives the analytification functor from the category of locally of finite type schemes over
the affine scheme SpecA to the category of rigid analytic spaces over the affinoid space
SpA in [18, §1]. Let us denote analytification of a locally of finite type scheme X over
SpecA, a morphism f over SpecA between such schemes, and a coherent OX -module F
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by X an, f an, and F an respectively. When the morphism f : X → Y is proper, there
exists a canonical isomorphism

(2) (Rq f∗F )an ∼= Rq f an
∗ F an

for any coherent OX -module F and all q (Folgerung 3.13 in [18]). First, note that the
following analogue of Chow’s theorem follows from the GAGA theorems (Satz 5.1 in
[18], Satz 4.11 in [18]).

Theorem 8.3 (Chow’s theorem). The analytification functor gives an equivalence between
the category of projective schemes over the affine scheme SpecA, where A is an affinoid
algebra, and the category of projective rigid analytic spaces over the affinoid space SpA.

By Fin(X ) let us denote the category of finite schemes over a scheme X .

Theorem 8.4. For any projective scheme X over an affinoid algebra, the analytification
functor gives an equivalence between the category Fin(X ) and the category Fin(X an).
In particular, any finite rigid analytic space over a projective rigid analytic space over an
affinoid space is projective.

Proof. Let F be the composite of functors

Fin(X ) ∼→ CohAlg(X ) ∼→ CohAlg(X an) ∼→ Fin(X an),

where the second functor gives an equivalence by the GAGA theorems. We have only to
show that there exists a natural transformation from the functor F to the analytification
functor of finite schemes over X . This follows from Theorem 8.2 and Isom. (2) for q = 0.
The last statement follows from Corollaire 6.1.11 in [11]. �

8.2. Cohomology Groups. We review the theory of cohomology groups and give Mayer-
Vietoris sequences of cohomology groups of abelian sheaves.

First, we review some facts on cohomology groups of abelian sheaves on rigid analytic
spaces. The category of abelian sheaves on a rigid analytic space is enough injective (see
[30]). For a quasi-separated paracohmpact rigid analytic space, Čech cohomology agrees
with cohomology (Lemma 2.5.7 in [10] and Remark 2.5.5 in [10]). If a quasi-separated
paracompact rigid analytic space is of pure dimension d, then the q-th cohomology group
of any abelian sheaf vanishes for q > d (Corollary 2.5.10 in [10]). The q-th cohomology
group of any coherent module on an affinoid space vanishes for q > 0 (Theorem 8,7 in
[27], Satz 2.4 in [15]). Therefore, using Leray-Cartan spectral sequence (Corollaire 3.3
[1]) with respect to an admissible affinoid covering, we can calculate cohomology groups
of any coherent module on a separated paracompact rigid analytic space. The q-th coho-
mology groups of any OX -coherent module F on a proper rigid analytic space X is a finite
dimensional K-vector space (Theorem 3.3 in [13]). Let us denote the dimension of this
K-vector space by hq(F ). In this case, we define the Euler characteristic χ(F ) of F in
the following way:

χ(F ) :=
∞

∑
q=0

(−1)q dimK Hq(X ,F ).

Since the pull-back of an admissible affinoid covering by a finite morphism is again an
admissible affinoid covering (Proposition 1 in [5, 9.4.4]), we obtain the following proposi-
tion.

Proposition 8.5. Let π : X →Y be a finite morphism between separated paracompact rigid
analytic spaces X and Y . Then, for a coherent OX -module F , there exists a canonical



BIMEROMORPHIC GEOMETRY OF RIGID ANALYTIC SURFACES 19

isomorphism
Hq(X ,F )∼= Hq(Y,π∗F )

for all q≥ 0. In particular, if the rigid analytic spaces X and Y are proper, then the equality
χ(F ) = χ(π∗F ) holds.

Proposition 8.6 (Mayer-Vietoris sequence). Let {U1,U2} be an admissible covering of an
admissible open subset of a rigid analytic space X. Then, for any abelian sheaf F , there
exists a canonical exact sequence:

0 −→ H0(U1 ∪U2,F |U1∪U2)−→ H0(U1,F |U1)⊕H0(U2,F |U2)−→

−→ H0(U1 ∩U2,F |U1∩U2)−→ H1(U1 ∪U2,F |U1∪U2)−→ ·· · .

Proof. We use geometric points on rigid analytic spaces (see [30]). Let ı0 : U1 ∪U2 → X ,
ı1 : U1 → X , ı2 : U2 → X , and ı3 : U1 ∩U2 → X be the inclusion morphisms. Theorem 1 in
[30, 4] implies that the sheaf sequence

0 −→ ı0!(F |U1∪U2)−→ ı1!(F |U1)⊕ ı2!(F |U2)−→ ı3!(F |U1∩U2)−→ 0.

is exact. Therefore, we obtain the long exact sequence:

0 −→ H0(X , ı0!(F |U1∪U2))−→ H0(X , ı1!(F |U1))⊕H0(X , ı2!(F |U2))−→

−→ H0(X , ı3!(F |U1∩U2))−→ H1(X , ı0!(F |U1∪U2))−→ ·· · .

For an admissible open subset U of X ,let ı : U → X be the inclusion morphism. Then, for
any abelian sheaf G on U and any geometric point x on X , we have the isomorphism:

ı!Gx ∼=

{
Gx, x ∈U,

0, otherwise.

Therefore, when a sheaf sequence G → I • is the canonical injective resolution, so is the
extension ı!G → ı!I • of the sheaf sequence. Thus, we obtain the isomorphism

Hq(U,G )∼= Hq(X , ı!G )

for all q. This proves the proposition. �

For a rigid analytic space X , by O×
X let us denote the abelian sheaf of units in the sheaf

of the ring OX . Then there exists a canonical isomorphism PicX ∼= H1(X ,O×
X ).

Lemma 8.7. Let I be a coherent OX -ideal on a paracompact quasi-separated rigid ana-
lytic space X. Assume that I 2 = 0. Put X0 := (X ,OX/I ). Let π : X0 → X be the natural
closed immersion. Then the sheaf sequence

0 −→ I −→ O×
X −→ π−1O×

X0
−→ 0

is exact where, on an admissible affinoid open subset U of X, the morphism I → O×
X

is given by a 7→ 1+ a and the the morphism O×
X → π−1O×

X0
is induced by the natural

projection OX (U)→ OX (U)/I (U). Therefore, we obtain the long exact sequence:

· · · −→ H1(X ,I )−→ PicX −→ PicX0 −→ H2(X ,I )−→ ·· · .

In particular, if the rigid analytic space X is of dimension one, the morphism π∗ : PicX →
PicX0 is surjective.

Proof. Since the sheaf sequence is exact on any affinoid open subset, it is exact at any
geometric point on X . Therefore, the sheaf sequence is exact. �
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8.3. Weil Divisors and Cartier Divisors. We define Weil divisors and Cartier divisors on
rigid analytic spaces. Then we prove that these are the same notion on regular rigid analytic
spaces. We refer to [4] and [7] for the definition and fundamental results of Weil divisors
on normal rigid analytic spaces. We refer to [4] for these of meromorphic functions on
rigid analytic spaces.

By MX let us denote the sheaf of meromorphic functions on a rigid analytic space X
(see [4]). A Cartier divisor on X is a global section of the abelian sheaf M×

X /O×
X . We

may represent a Cartier divisor by the family {(Ui, fi)}i∈I where the family {Ui}i∈I is
an admissible covering of X and fi is a meromorphic function on Ui. The meromorphic
function fi is called a defining function of D on Ui. A Cartier divisor D is said to be effective
if the Cartier divisor D is represented by the family {(Ui, fi)}i∈I where each meromorphic
function fi is an analytic function on Ui. An effective Cartier divisor defines the closed
subspace. We sometimes identify a closed subspace with the Cartier divisor. By OX (D) let
us denote the line bundle defined by a Cartier divisor D.

When the rigid analytic space X is normal, we may describe Cartier divisors in the
following way. A locally principal covering for a Weil divisor D on a normal rigid analytic
space X is an admissible covering {Ui}i∈I of X such that the restriction of D|Ui is a principal
divisor ( fi) on Ui. Using this terminology, we may say that a Cartier divisor on X is a Weil
divisor on X that admits a locally principal covering. Note that we may assume that a
locally principal covering is an admissible affinoid covering if exists.

Lemma 8.8. Any prime Weil divisor D on a regular affinoid space SpA admits a finite
locally principal Zariski covering.

Proof. Let I be the ideal of A corresponding to D. We take a point x on SpA. Let m be the
corresponding maximal ideal. Then the localization Am is a unique factorization domain
since it is a regular local ring. Therefore, we may write Im = fxAm where fx ∈ Am. Put
Ux := SpA−Supp(D− ( fx)). By Corollary 7 in [5, 9.1.4], the subset Ux is an admissible
open subset of SpA. We take such an admissible open subset for each point x on SpA. Since
x ∈Ux, the family {Ux}x∈SpA is a Zariski covering of SpA. We take a finite subcovering U
of this covering. By Corollary 7 in [5, 9.1.4], the covering U is an admissible covering of
SpA. Since D|Ux = ( fx), the covering U is locally principal for D. �

The above lemma implies the global case.

Theorem 8.9. Any Weil divisor on a regular rigid analytic space X is a Cartier divisor on
X.

8.4. Proper Rigid Analytic Spaces of Dimension One. In this subsection, we show that
any proper rigid analytic space of dimension one is projective.

Since any affinoid algebra is excellent (see [7, 1.1]) and Jacobson (Theorem 3 in [5,
5.2.1]), the singular locus of quasi-compact curve is the union of a finite number of points.
A regular divisor on a proper curve C is a formal finite sum of regular points. A prime
regular divisor is a regular divisor which is defined by a single regular point. The degree
of a regular divisor ∑P aPP is the sum ∑P aP dimK K(P). Let us denote this integer by
degC D. Since we may regard a regular divisor as a Cartier divisor, a regular divisor D on
C defines the line bundle OC(D) on C.

To calculate the dimensions of cohomology groups of line bundles, let us show the
following lemma.

Lemma 8.10. Let P be a prime regular divisor on a proper curve C. Then, for any line
bundle L , the following inequalities and equality hold:
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(1) 0 ≤ h0(L ⊗OC(P))−h0(L )≤ dimK K(P);
(2) 0 ≤ h1(L )−h1(L ⊗OC(P))≤ dimK K(P);
(3) χ(L ⊗OC(P)) = χ(L )+dimK K(P).

Proof. We define the coherent OC-module F by the following sheaf exact sequence:

0 −→ OC(−P)−→ OC −→ F −→ 0.

Tensoring the line bundle L ⊗OC(P), since the support of cokernel F is the point P, we
obtain the sheaf exact sequence:

0 −→ L −→ L ⊗OC(P)−→ F −→ 0.

Since, by Proposition 8.5, the equality

hi(C,F ) =

{
dimK K(P), i = 0,
0, i ≥ 1

holds, the lemma follows from the long exact sequence induced by the above exact se-
quence. �

Lemma 8.11. For any regular divisor D on a proper curve C, the equality

χ(OC(D)) = χ(OC)+degC D

holds.

Proof. We write D = ∑P aPP. By induction on |∑P aP|, the theorem follows from the
equality of the above lemma. �

Theorem 8.12. Any proper rigid analytic space of dimension one is projective.

Remark. If the base field K is separably closed, the theorem follows from Theorem 2.1.4
in [8].

Proof. It suffices to show that any proper rigid analytic space of pure dimension one is
projective. Moreover, by Lemma 8.7 and Corollary 3.1.6 [9], we have only to show that
any proper curve is projective. Let

∪
i∈I Ci be the irreducible decomposition of a proper

curve C. Choose a regular point Pi on each Ci. By the above two lemmas, there exists a
positive integer ni such that the line bundle OC(niPi) admits a section that is not a section
of OC((ni −1)Pi). The section gives the meromorphic function fi, which is analytic except
for the pole at the point Pi. Let f be the summation of all the meromorphic functions fi.
Then the restriction of f to each Ci is non-constant. The meromorphic function f gives the
morphism φ : C → P1

K of rigid analytic spaces.
Proposition 4 in [5, 9.6.2] and the following sentences show that the morphism φ is

proper. Therefore, the proper mapping theorem (Proposition 3 in [5, 9.6.3]) shows that the
image φ(C) is an analytic subset of P1

K . We put the reduced structure on φ(C). Since the
morphism φ is proper, we have the Stein factorization µ ◦λ : C → S → φ(C) (Proposition
5 in [5, 9.6.3]). By Lemma 4 in [5, 9.6.3], the morphism λ is surjective and for any point
s on S, the preimage λ−1(s) is a connected analytic subset of C. If the preimage λ−1(s)
is not a point, then the meromorphic function f is constant on a irreducible component of
C. This is absurd. Therefore, the preimage λ−1(s) is a point on C. Thus, Lemma 4 in
[5, 9.6.4] shows that the morphism λ is an isomorphism. Since the morphism µ is finite,
Theorem 8.4 implies that the rigid analytic space S is projective. Therefore, the proper
curve C is projective. �
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8.5. Intersection Theory. In this subsection, we develop the intersection theory of Cartier
divisors and line bundles on proper surfaces. Then we prove the Riemann-Roch theorem
for proper smooth surfaces.

For two line bundles L1 and L2 on a proper surface X , we define the intersection
number of L1 and L2 by the integer:

χ(OX )−χ(L ∨
1 )−χ(L ∨

2 )+χ(L ∨
1 ⊗L ∨

2 ).

Let us denote this integer by L1 ·L2. For Cartier divisors D1 and D2 on X and a line bundle
L on X , we abbreviate D1 ·D2, D1 ·L , and L ·D1 to OX (D1) ·OX (D2), OX (D1) ·L ,
and L ·OX (D1) respectively. The following proposition is immediate consequence of the
definition.

Proposition 8.13. For any two line bundles L1 and L2 on a proper surface X, the follow-
ing equalities hold:

(1) L1 ·OX = OX ·L1 = 0;
(2) L1 ·L2 = L2 ·L1.

Lemma 8.14. For any effective Cartier divisor D and any line bundle L on a proper
surface, the following equality holds:

D ·L = χ(OD)−χ(OD ⊗L ∨).

Proof. Let X be the given surface. Since we have the sheaf exact sequence

0 −→ OX (−D)−→ OX −→ OD −→ 0,

tensoring L ∨, we obtain the sheaf exact sequence:

0 −→ OX (−D)⊗L ∨ −→ L ∨ −→ OD ⊗L ∨ −→ 0.

These sequences give the equalities

χ(OD) = χ(OX )−χ(OX (−D))

and
χ(OD ⊗L ∨) = χ(L ∨)−χ(OX (−D)⊗L ∨).

Subtracting the second equality from the first equality, we obtain the desired equality. �
The fundamental calculation methods are given by the following proposition.

Proposition 8.15. Let π : Dn → D be a normalization of an effective Cartier divisor D on
a proper surface. Then, for any two line bundles L1 and L2 on the surface, the following
equalities hold:

(1) D ·L = degDn π∗L ;
(2) D ·L1 ⊗L2 = D ·L1 +D ·L2.

Proof. The first equality follows from the previous lemma, Proposition 7.1.32 in [21], and
Proposition 7.3.8 in [21]. Therefore, the second equality holds since the equality

degDn π∗(L1 ⊗L2) = degDn π∗L1 +degDn π∗L2

holds. �
A direct calculation of intersection numbers shows the following lemma.

Lemma 8.16. For any three line bundles L1, L2, and L3 on a proper surface, the follow-
ing equations are equivalent:

(1) L1 ·L2 ⊗L3 = L1 ·L2 +L1 ·L3;
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(2) χ(OX )−χ(L ∨
1 )−χ(L ∨

2 )−χ(L ∨
3 )+χ(L ∨

1 ⊗L ∨
2 )+χ(L ∨

2 ⊗L ∨
3 )+χ(L ∨

3 ⊗
L ∨

1 )−χ(L ∨
1 ⊗L ∨

2 ⊗L ∨
3 ) = 0.

Lemma 8.17. Let L1, L2, and L3 be line bundles on a proper surface X. Assume that
one of these line bundles is isomorphic to OX (D) where D is an effective Cartier divisor.
Then the following equality holds:

L1 ·L2 ⊗L3 = L1 ·L2 +L1 ·L3.

Proof. By Lemma 8.16, it suffices to show that the following equality holds:

D ·L1 ⊗L2 = D ·L1 +D ·L2.

This equality follows from Proposition 8.15. �

Proposition 8.18. Let L1, L2 and L3 be three line bundles on a proper surface X. Assume
that one of these line bundles is isomorphic to OX (D) where D is a Cartier divisor. Then
the following equality holds:

L1 ·L2 ⊗L3 = L1 ·L2 +L1 ·L3.

Proof. By Lemma 8.16, it suffices to show that the equality

D ·L1 ⊗L2 = D ·L1 +D ·L2.

holds. We may write D = D1 −D2 where D1 and D2 are effective Cartier divisors. Lemma
8.17 shows that, for any line bundle L , the equalities

D ·L = D1 ·L +(−D2) ·L

and
0 = D2 ·L +(−D2) ·L

hold. Subtracting the second equality from the first equation, we obtain the equality:

D ·L = D1 ·L −D2 ·L .

Thus, the desired equality follows from Lemma 8.17. �

Corollary 8.19. Let D be a Cartier divisor ∑i∈I aiDi on a proper surface. Let πi : Dn
i → Di

be a normalization of an effective Cartier divisor Di. Then, for any line bundle L on the
surface, the following equality holds:

D ·L = ∑
i∈I

ai degDn
i

π∗
i L .

Corollary 8.20. For any Cartier divisor ∑i∈I aiDi and any line bundle L on a proper
surface, the following equality holds:(

∑
i∈I

aiDi

)
·L = ∑

i∈I
aiDi ·L .

Corollary 8.21. For any two Cartier divisors ∑i∈I aiDi and ∑ j∈J b jD j on a proper surface,
the following equality holds:(

∑
i∈I

aiDi

)
·

(
∑
j∈J

b jD j

)
= ∑

i∈I, j∈J
aib jDi ·D j.
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We show that local calculations yield the intersection number of two effective Cartier
divisors. Let D1 and D2 be the effective Cartier divisors on a proper surface X . Assume that
the intersection D1∩D2 consists of a finite number of points. The local intersection number
of the divisors D1 and D2 at a point p on D1 ∩D2 is the integer dimK(OX/OX (−D1)+
OX (−D2))p. Let us denote this number by I(p,D1,D2). Since the intersection D1 ∩D2 is
a finite number of points, the sum ∑p∈D1∩D2

I(p,D1,D2) is finite.

Proposition 8.22. We use the above notations. Then the following equality holds:

D1 ·D2 = ∑
p∈D1∩D2

I(p,D1,D2).

Proof. Put
F := OX/OX (−D1)+OX (−D2).

By definition, the equality

χ(F ) = ∑
p∈D1∩D2

I(p,D1,D2)

holds. Since we have the exact sequence

0 −→ OX (−D1 −D2)−→ OX (−D1)⊕OX (−D2)−→ OX −→ F −→ 0,

we obtain the equality:

χ(F ) = χ(OX )−χ(OX (−D1))−χ(OX (−D2))+χ(OX (−D1 −D2)).

Since the right side is equal to D1 ·D2, we obtain the desired equality. �

Theorem 8.23 (Riemann-Roch theorem for proper smooth surfaces). For any line bundle
L on a proper smooth surface X, the equality

χ(L ) =
L ·K ∨

X −L ·L ∨

2
+χ(OX ).

holds where KX is the canonical line bundle Ω2
X on X.

Proof. The Serre duality theorem (Theorem in [29, 5.1]) gives the equality:

L ·K ∨
X = χ(L )−χ(L ∨).

Adding the above equality to the equality

−L ·L ∨ = χ(L )+χ(L ∨)−2χ(OX ),

we obtain the desired equality. �
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