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Abstract 

Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient 

to induce two genetic alterations in the immunoglobulin loci; class switch 

recombination (CSR) and somatic hypermutation (SHM). However, it is still unknown 

how a single molecule AID differentially regulates CSR and SHM.  Here we 

identified Spt6 as an AID-interacting protein by yeast two-hybrid screening and 

immunoprecipitation followed by mass spectrometry.  Knockdown of Spt6 resulted 

in severe reduction of CSR in both the endogenous Ig locus in B cells and an artificial 

substrate in fibroblast cells. On the contrary, knockdown of Spt6 did not reduce but 

slightly enhanced SHM in an artificial substrate in B cells, indicating that Spt6 is 

required for AID to induce CSR but not SHM. These results suggest that Spt6 is 

involved in differential regulation of CSR and SHM by AID.
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Introduction 

The immunoglobulin (Ig) genes in antigen-stimulated B lymphocytes are 

diversified by two distinct genetic alteration mechanisms, namely somatic 

hypermutation (SHM) and class switch recombination (CSR) (1, 2) . SHM causes the 

accumulation of point mutations in the rearranged variable (V) region genes, leading to 

generation of antibodies with higher affinity after cellular selection by a limited amount 

of antigen (1). CSR replaces the heavy chain constant region (CH) gene proximal to the 

VH gene, namely C with one of the downstream CH genes by recombination between 

the switch (S) regions located 5’ to each CH gene, thereby producing antibodies with 

diverse effector functions without changing their antigen specificity (2).  

Both SHM and CSR require activation-induced cytidine deaminase (AID), 

which is specifically expressed in activated B cells (3). It is well accepted that AID 

initiates single-strand DNA breaks essential for SHM and CSR through its cytidine 

deaminase activity. AID can also introduce mutations in such non-Ig loci as c-myc, 

Pim1, Pax5, bcl-6 and RhoH (4, 5). The number of target loci of AID appears to be 

larger than expected but still limited (5). Although extensive analyses have been done to 

uncover the exact molecular mechanism how AID induces DNA strand breaks at 

restricted loci, it is unknown how a single molecule AID differentially regulates CSR 

and SHM or how the Ig genes and other target loci are preferentially targeted in the 

whole genome. To answer these questions, extensive studies were carried out to identify 
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cofactor(s) that may account for the target specificity of the AID function. Several 

AID-interacting proteins have been reported, including RNA polymerase II (6), 

replication protein A (RPA) (7), protein kinase A (PKA) (8, 9), DNA-PKcs (10), MDM2 

(11), CTNNBL1 (12), Spt5 (13) and PTBP2 (14). Unfortunately, however, none of these 

proteins could show any functional correlation to support the target specificity of AID. 

There is no clear mechanism to limit the number of target loci. Most of the proteins like 

RNA polymerase II, protein kinase A, Spt5 and PTBP2 are rather ubiquitous and 

interact with many proteins other than AID. PTBP2 is a splicing factor and Spt5 is one 

of the transcription elongation factors that associate with RNA polymerase II. RPA, 

DNA-PKcs, and MDM2 are proteins involved in general DNA repair. CTNNBL1 was 

later shown to be dispensable for CSR (15). 

AID has been shown to have the nuclear localization signal (NLS) and 

nuclear export signal (NES) in its N-terminus and C-terminus, respectively (16) (17). 

The deletion of the NLS region of AID results in loss of the AID functions for both 

SHM and CSR (16). A series of mutations at the N-teminus of AID also cause defect in 

CSR as well as SHM (18). While no mutations at the N-terminus of AID have been 

shown to cause CSR-specific loss of the AID function, some AID mutants with point 

mutations in the N-terminal region retain the substantial CSR activity but severely 

damage the SHM activity, which is most likely due to combination of a partial loss of 

DNA cleavage activity and less efficient cleavage of the V region compared with S 

regions (18, 19) (20). Conversely, a S3A mutaiton augments both CSR and SHM (21). 

On the other hand, the deletions and/or mutations in the NES region (residues 183-198) 
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result in loss of the AID function for CSR but not SHM probably because AID with the 

C-terminal deletion has the normal DNA cleavage activity (19, 22). The results suggest 

that AID has at least two functions: DNA cleavage of V and S region associated with the 

N-terminal region and CSR-specific activity associated with the C-terminal region. In 

addition, the C-terminal region was shown to be responsible for interaction with poly 

(A)
+
 RNA(23). We proposed that the C-terminal region of AID might be responsible for 

generation of recombination synapsis factor (19). Therefore, we assumed that co-factors 

interacting with the C-terminal region of AID might be responsible for CSR-specific 

activity rather than DNA cleavage while co-factors interacting with the N-terminal 

region of AID might be responsible for DNA cleavage of both V and S regions.  

In the present study, we screened AID association molecules by yeast two 

hybrid screening and coimmunoprecipitation. We then assessed their functional 

involvement in CSR and SHM. Since AID associates with a numerous molecules, we 

employed AID mutants as negative controls and chose the association molecules 

specific to wild-type AID. Among these molecules we identified Spt6, whose 

interaction was blocked by AID mutations at the N-terminus. Knockdown of Spt6 

resulted in great reduction of CSR in both the endogenous Ig locus in B cells and an 

artificial substrate in fibroblasts. Surprisingly, however, knockdown of Spt6 did not 

reduce but slightly enhanced SHM in an artificial substrate in B cells. These results 

indicate that Spt6 is involved in differential regulation of CSR and SHM by AID.  
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Results and Discussion 

Proteins physically interacting with AID.  

To identify AID-interacting proteins that may account for the target specificity 

of AID function in CSR and SHM, we over-expressed mouse (m) and human (h) AID in 

a mouse B cell line CH12F3-2A, which can switch from IgM to IgA upon stimulation. 

We utilized AID tagged with GFP-Flag (GF) at its C-terminus to avoid masking the 

Flag epitope by putative large AID association proteins. The addition of GF to the 

C-terminus of AID had little effects on the function of AID to induce both CSR and 

SHM. Cytoplasmic extracts of CH12F3-2A with AID-GF were fractionated by 

centrifugation through a glycerol density gradient (10 − 50% (v/v)). Each fraction 

collected was analyzed for the presence of AID-GF by GFP fluorescence 

(supplementary Fig.1A). The distribution of AID-GF was broad. Similar broad 

distribution of endogenous AID was observed in CH12F3-2A extracts using an 

anti-AID antibody (Supplementary Fig. 1B). However, the increase of the NaCl 

concentration from 150 mM to 500 mM reduced the overall size distribution and 

sharpened the distribution profile (Supplementary Fig. 1C). The results indicate that 

AID interacts with a large number of cytoplasmic proteins, some of which can be 

removed at 500 mM NaCl. The complex formation is not due to GFP because GF alone 

forms a small and sharp peak. The RNase A treatment reduced the size of the peak only 

slightly at 150 mM NaCl but hardly at 500 mM NaCl, indicating that there is some AID 

protein complexes containing RNA but the majority of the AID complex is formed 

through the protein-protein interaction.  
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We then immunoprecipitated AID-GF interacting molecules with the anti-Flag 

antibody from the cytoplasmic extracts and fractionated by SDS polyacrylamide gel 

electrophoresis, followed by mass spectrometry (MS). As shown in Fig. 1A, a huge 

variety of proteins were co-immunoprecipitated with AID-GF as compared with 

GFP-Flag (GF). Therefore, we decided to compare co-immunoprecipitates between AID 

and its loss-of-function mutant. We used the human AID mutant P13 (M139V) defective 

in both the SHM and CSR activities (22). Similarly diverse proteins with similar 

intensity were co-immunoprecipitated with the P13 mutant when we used an equal 

number of cells for wild-type and mutant AID (Fig.1A).  

Among co-immunoprecipitates, Spt6, Trim28, Nucleolin, Skiv2l2, Zfp84, 

CRM1, and eEF1 were clearly more abundant in wild-type AID-GF (Fig. 1A). We also 

obtained the following two groups of co-immunoprecipitates from CH12F3-2A cells; 

(a) proteins involved in the nuclear-cytoplasmic transport, including Importin 4 and 

Importin 3 (Ranbp 5); and (b) proteins involved in the translation or degradation of 

proteins, and chaperons, including eEF1, Hsp70, Stip1, TCP1, CCTq and KIAA1967. 

Identification of proteins in the group (a) and CRM1 indicates that the 

co-immunoprecipitations in the current condition is suitable to detect expected 

functional partners of AID because AID has been reported to be actively exported from 

nucleus to cytoplasm in a CRM1-dependent manner (16, 17). The degradation-related 

molecules and chaperons in group (b) were co-immunoprecipitated probably because 

overexpressed wild-type and mutant AID-GF were targets of the degradation or 

inactivation machinery. Although eEF1 also showed a striking difference between 
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wild-type AID and P13 mutant, we suspected that eEF1 was directly associated with 

mRNA to which AID interacts as reported previously (23). In fact the treatment of cell 

extracts with RNase A before immunoprecipitation significantly reduced eEF1 from 

the co-immunoprecipitates with AID-GF (Fig. 1B).  

In separate series of experiments, we expressed hAID-Flag(F), and hAID 

mutants including L172A-F, N10-hAID-F (N-terminal 10 residue truncation) and 

JP8Bdel-F (Supplementary Table 1) in 293T cells and compared proteins 

immunoprecipitated with the anti-Flag antibody by MS. We picked up 7 proteins that 

were specifically co-immunoprecipitated with hAID-F in all 4 repeated experiments. 

The list of such proteins is shown in Supplementary Table 2. Surprisingly, none of them 

overlapped with the above experiments in CH12F3-2A cells. The discrepancy could be 

at least in part due to the difference in tags to AID and cells used. 

 

Spt6 is required for CSR in B cells and fibroblasts 

We first focused on Spt6, Trim28 and Nucleolin because they are involved in 

nucleic acid metabolism and most distinctly associated with wild-type AID. We 

confirmed that Spt6, Trim28 and Nucleolin were co-immunoprecipitated with AID-GF 

but not GF by Western blotting (Fig. 1B). The control IgG did not precipitate any of 

them (Fig 1C). The association of Spt6 and Trim28 with AID-GF was not reduced by 

either RNase A or DNase I treatment of the cell extracts before immunoprecipitation, 

while the association of Nucleolin with AID-GF was almost completely abolished by 

the RNase A treatment, suggesting that RNA bridges AID with Nucleolin (Fig. 1B). In 
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addition, the association between Spt6 and AID was further confirmed by detecting 

AID-GF in immunoprecipitates with an anti-Spt6 antibody (Fig. 1D).  

Interaction of AID with Spt6 was also supported by the yeast two-hybrid 

screening. We screened a human lymph node cDNA library fused to the GAL4 AD with 

hAID fused to the GAL4 DNA-BD as a bait, and a mouse pre B cell cDNA library 

fused to the GAL4 AD with mAID fused to the GAL4 DNA-BD as a bait. The 

C-terminal fragments of hSPT6 (3817-5178 nt) and mSpt6 (4050-5178 nt), which 

contain Src homology 2 domain, were isolated from the human and mouse libraries, 

respectively (Supplementary Fig. 2). This interaction was further confirmed by 

co-immunoprecipitation of hAID with hSPT6 fragments fused with GST. 

We therefore examined the functional involvement of Spt6 in CSR by 

knocking down its expression in CH12F3-2A cells. Knockdown of Spt6 or AID 

significantly reduced the CSR efficiency (Fig. 2A, B). However, 3g of Spt6 siRNA 

decreased AID mRNA and germline transcript (GLT) of C significantly although GLT 

of C was intact (Fig. 2C). Therefore, we further examined the effects of Spt6 

knockdown using the AID-ER system, in which CSR can be induced rapidly upon OHT 

addition without de novo transcription and translation of AID. Knockdown of Spt6 with 

0.6g siRNA reduced the efficiency of CSR almost in parallel with the degrees of Spt6 

protein reduction (Fig.3A−C).  However, Stp6 knockdown did not affect the amounts 

of the AID-ER protein and GLTs (Fig. 3C, D).  The results indicate that Spt6 is 

required for CSR. 
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To further confirm the involvement of Spt6 in CSR, we employed the 

artificial switch substrate in a mouse fibroblast cell line, NIH3T3 (24). We knocked 

down Spt6 using a mixture of siRNAs in NIH3T3 cells expressing the artificial switch 

substrate of CSR and AID-ER. siRNAs against Spt6 significantly reduced the CSR 

efficiency in the artificial switch substrate compared with control siRNAs against LacZ 

(Fig. 4A). Consistently, post-switch transcripts (Post-Tr) were decreased by Spt6 

knockdown, although it did not reduce the amounts of AID-ER mRNA and pre-switch 

transcripts Pre-Tr1 and Pre-Tr2 (equivatent to GLTs) (Fig. 4B). These results further 

confirmed that Spt6 is required for CSR. 

 

The other candidates are not required for CSR 

We then examined involvement of other AID-binding proteins in CSR by 

knockdown assay. Knockdown of Trim28 also reduced CSR but simultaneously 

decreased AID mRNA in CH12F3-2A cells (Supplementary Fig. 3A, B). We thus 

examined the effect of Trim28 knockdown in the AID-ER system. Trim28 knockdown 

in the AID-ER system did not affect CSR, suggesting that Trim28 blocked CSR by 

inhibiting AID transcription (Supplementary Fig. 3C, D). Involvement of Trim28 in the 

transcriptional regulation of AID was further confirmed by the fact that both AID 

transcription and CSR are drastically reduced in Trim28 deficient B cells 

(Supplementary Fig. 3E, F). We concluded that the association of Trim28 with AID is 

not related with the AID function. Knockdown of Trim28 did not show any significant 

effects on CSR in NIH3T3 cells either (Fig.4A, B). 
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Knockdown of Nucleolin did not significantly affect the CSR efficiency both 

in CH12F3-2A cells and in NIH3T3 cells although Nucleolin protein was dramatically 

reduced by knockdown. Knockdown of Skiv212 only slightly reduced the CSR 

efficiency both in CH12F3-2A cells and NIH3T3 cells, while knockdown of Zfp84 did 

not significantly affect CSR in CH12F3-2A cells. Therefore, we concluded that 

Nucleolin, Skiv2l2, and Zfp84 do not play major roles in CSR although we could not 

exclude the possibility that residual amounts of target proteins were still sufficient to 

support CSR. We then examined whether candidates identified from 293T cells by 

specific co-immunoprecipitation with hAID-F are involved in CSR (Supplementary 

Table 2). Knockdown of these candidates was carried out in CH12F3-2A cells, but none 

of them affected CSR significantly except for hnRNPA1 which we could not 

knockdown. We could therefore identify only Spt6 that has functional relevance for the 

CSR activity of AID among all candidates detected by physical association with AID. 

 

Spt6 is dispensable for SHM in B cells 

We next examined the effect of Spt6 knockdown on SHM in a human B cell 

line BL2. To assess the SHM efficiency sensitively and quickly, we took advantages of 

a modified GFP substrate of SHM (Fig. 5A). In addition, we used a C-terminal 

truncation mutant of AID, JP8Bdel, which has a stronger SHM activity but marginal 

CSR activity (19, 22). In this system, OHT-activated JP8Bdel-ER protein caused loss of 

GFP fluorescence due to the accumulation of deleterious mutations in the GFP gene. 

Excessive mutations induced by JP8Bdel caused cell death. AID knockdown by three 
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different siRNA oligos inhibited loss of GFP fluorescence, as well as the accumulation 

of point mutations in the GFP gene and cell death, confirming that these events were 

dependent on AID function and thus useful indicators for SHM (Supplementary Table 3, 

Fig. 5B and C).  

 Surprisingly, SPT6 knockdown did not inhibit but rather slightly augmented 

the frequency of GFP-negative cells as well as actual mutation frequency in the GFP 

gene and cell death without affecting the amount of JP8Bdel-ER protein 

(Supplementary Table 3, Fig. 5C and D). Although the difference was modest, the 

relative increase of mutation frequencies correlated well with the knockdown efficiency 

of each oligo against SPT6. It should be noted that both fluorescence and point 

mutations in the GFP gene were not reduced by SPT6 knockdown in the absence of 

OHT, indicating that SPT6 knockdown did not affect transcription of the SHM target. 

These results clearly showed that Spt6 is not required for SHM but rather inhibitory to 

SHM.  

 

Spt6 interacts with AID through its N-terminus. 

Since the C-terminal region of Spt6 interacts with AID, we then examined 

whether a specific region of AID is responsible for the association with Spt6. Deletion 

of the N-terminal residues 2-26 of AID abolished the association with Spt6, suggesting 

that this region contains residues involved in the interaction with Spt6 (Supplementary 

Table 1, Fig. 6A, B). We further tested AID mutants that carry deletion or mutation(s) in 

the N-terminal region and found that the deletion of residues 2-10 but not residues 2-5 
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of AID abolished the association with Spt6, suggesting that residues 6-10 may be 

responsible for the association with Spt6. Amino acid substitution experiments showed 

that only M6 was critical within the residues 6-10 to the association with Spt6. Other 

mutations in the N-terminal region (G23S, V18S-R19V, W20K, and P7 (R24W)), which 

have been shown to reduce SHM more drastically than CSR or to abolish both, did not 

affect the association with Spt6 (Supplementary Table 1, Fig. 6B). In agreement with 

Fig.1, P13-GF actually lost the binding capacity with Spt6. 

Next, we tried to examine the involvement of the C-terminal region (residues 

183-198) of AID in the association with Spt6. To avoid insolubility of the C-terminally 

deleted (C) AID by the spontaneous accumulation in the nucleus, we combined the 

deletion or mutation(s) in the N-terminal region with the deletion of the C-terminal 

region because most of N-terminal mutants (P7, V18S-R19V, and W20K) did not 

accumulate in the nucleus even when nuclear export was blocked by leptomycin B (16, 

18). Such N-terminal mutants that additionally lacked the C-terminal region (P7-C, 

V18S-R19V-C, and W20K-C) still associated with Spt6, indicating that the 

C-terminal region of AID is not involved in the association with Spt6. A human AID 

mutant P20 carrying a 34-amino acid insertion after residue 182 did not show any 

reduction in the association with Spt6, although P20 has severe defect in CSR but little 

effect on SHM (22). 

 

Dissociation of AID mutant activities from their Spt6 binding 
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Studies on series of AID mutants clearly demonstrated that the C-terminal 

region of AID is required for CSR specific function other than DNA cleavage. This 

function is assumed to be related with synapsis formation of cleaved ends (19). On the 

other hand, the N-terminal region of AID is required for DNA cleavage of both V and S 

regions. Since Spt6 is required only for CSR, the interaction of Spt6 with the N-terminal 

residues 6-10 of AID was puzzling. To monitor the function of the mutants at the 

residues 6-10, each was fused with GFP in the retroviral expression vector and 

introduced to AID deficient spleen cells (Fig. 6C). We also tested the SHM activities of 

these mutants in a GFP substrate expressed in NIH3T3 cells (Fig. 6D and 

Supplementary Table 4). The point mutation at the residue 6 (M6A) was totally 

defective for both CSR and SHM. The mutations at the residue 7, 9, and 10 reduced 

SHM as well as CSR albeit to a less extent. By contrast, the R8A mutant rather 

augmented CSR and SHM activities.  

Although all of R8A, R9A, and K10R mutants had significant modification of 

their activities, none of them changed the interaction with Spt6 (Fig. 6B). On the 

contrary, N7A augmented interaction with Spt6 although N7A reduced both CSR and 

SHM activities. M6A that abolished Spt6 interaction lost both SHM and CSR although 

Spt6 is involved in only CSR. Human AID mutation M6T also lost both CSR and SHM 

(25). It is possible that M6A mutation altered the gross structure of AID to abolish the 

DNA cleavage function, resulting in the loss of both CSR and SHM. Although the 

N-terminal region of AID appears to be responsible for its interaction with the 
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C-terminal region of Spt6, it is not clear whether this interaction is essential for DNA 

cleavage function of AID. 

 

How does Spt6 differentially regulate CSR and SHM? 

The target specificity of known specific recombination is determined by 

combination of the cis elements (the DNA sequence/structure) and the trans elements 

(DNA binding proteins and the chromatin modification mark of the target locus). In 

VDJ recombination, the recombination signal sequence is widely distributed in the 

genome but the chromatin modification i.e., histone3 lysine4 trimethylation (H3K4me3) 

recognized by RAG2 is essential to cleave the accurate target (26, 27). In meiotic 

recombination, Spo11 (topoisomerase II) cleaves at loosely conserved DNA target 

sequences which are also recognized by zinc finger-histone methyltransferase (PRDM9) 

to generate H3K4me3 at the target chromatin (28-31). Without PRDM9, meiotic 

recombination is abortive. We have also shown that H3K4me3 at the target S region is 

essential for CSR (32). The FACT complex composed of SSRP1 and Spt16 is a histone 

chaperone and modulates the histone transmodification cascade. We have shown that 

the FACT complex is essential for CSR (32). In the absence of FACT, H3K4 trimethyl 

modifications are reduced at the S and S regions, which is associated with S region 

cleavage defect. 

From these studies, it is likely that Spt6 can determine the target specificity of 

CSR at least by two strategies: (a) recognition of DNA sequence or (b) modification of 

chromatin. Since Spt6 does not bind DNA directly, it is unlikely that Spt6 directly 
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recruits a DNA cleaving enzyme to any DNA region. In addition, Spt6 associates with 

RNA polymerase II which binds both V and S regions. Spt6 is thus unlikely to guide 

AID specifically to S regions. Since Spt6 is another histone chaperone protein, it is 

important to examine whether Spt6 also affects the histone modification cascade and 

thus causes defect in CSR. It is also interesting to analyze why Spt6 is slightly 

inhibitory to SHM. The histone modification cascade in the S region and V region may 

be different, which triggers interesting possibilities for differential regulation of SHM 

versus CSR.  

There are several other possible mechanisms whereby Spt6 differentially 

regulates CSR and SHM. Because Spt6 has also been reported to direct Iws1-dependent 

mRNA splicing and export (33, 34), CSR-related function of Spt6 could involve mRNA 

splicing and export. Stp6 is also involved in transcriptional regulation of a large number 

of genes, some of which may be responsible only for CSR. Further analyses are 

required to uncover the precise role of Spt6 in regulation of CSR but not SHM. 
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Materials and Methods 

RNA interference 

Diced siRNA (d-siRNA) pool was prepared using BLOCK-iT
TM

 Complete Dicer RNAi 

Kit according to the manufacture’s instructions (Invitrogen). Primers used to amplify 

template cDNAs for AID, Trim28, and Spt6 of mouse origin were as follows: mAID-F; 

5’- CAA GGG ACG GCA TGA GAC CTA CCT -3’, mAID-R; 5’- TCT CGC AAG 

TCA TCG ACT TCG TAC -3’, mTrim28-F; 5’- CCA AGG AGG TTC GAA GCT CGA 

TCC -3’, mTrim28-R; 5’- GGA CCT TCA GTC AGA GGC ATC AAC -3’, mSpt6-F; 

5’-CAG CAG TTC CTC TAC GTG CAA ATG -3’, and mSpt6-R; 5’- ACT GGA TCA 

AGG CCT GGC TGT AAG -3’. Stealth
TM

 siRNAs were introduced into CH12F3-2A or 

BL2 cells using Amaxa Nucleofector
TM

 (Amaxa Biosystems). Stealth
TM

 siRNAs were 

purchased from Invitrogen; mSpt6-1, 2, 3, and 4 (MSS209819, 209820, 209821, 

NM_009297_stealth_3806), AID (MSS235859), hSPT6-1, 2, and 3 (HSS110374, 

110375, 110376), hAID-1, 2 and 3 (HSS126211, 126212, 126213), mTrim28-1, 2, 3, 

and 4 (MSS211796, 211797 211798, NM_011588_stealth_1165), and hTRIM28-1, 2, 3, 

and 4 (HSS115468, 115470, NM_005762_stealth_883, NM_005762_stealth_2386). The 

efficiency of nucleofection was confirmed to be more than 90% by introducing 

fluorescein-labeled siRAN oligo. 

 

CSR assay 

CH12F3-2A cells were stimulated for 24 hrs with CD40L, TGF, and IL-4 24 hrs after 

introducing siRNA. The surface expression of IgM and IgA was analyzed by staining 
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cells with FITC-conjugated anti-mouse IgM (Southern Biotechnology Associates) and 

PE-conjugated anti-mouse IgA (Southern Biotechnology Associates). Flow cytometric 

analyses were performed with a FACSCalibur, and data were analyzed by CellQuest 

software (BD Biosciences). Live cells were selected for the analyses by forward- and 

side-scatter intensity and PI gatings. CH12F3-2A cells expressing AID-ER were 

stimulated with OHT and TGF for 24 hrs after introducing siRNA and the surface 

expression of IgM and IgA was analyzed by flow cytometry as described above. 

NIH3T3 cells expressing the artificial switch substrate SCI(, ) and mAID-ER were 

introduced with d-siRNA and a DsRed-expressing plasmid as a transfection indicator 

using Lipofectamine 2000 (Invitrogen). Twenty-four hours after transfection, cells were 

stimulated with OHT 24 for 36 hrs, and stained with APC-conjugated anti-mouse CD8 

(eBioscience). The amounts of GLT and GLT were evaluated by quantitative PCR as 

described previously. 

 

SHM assay 

The hygromycin phosphotransferase and EGFP cDNA were fused in-frame in pFB to 

generate an artificial SHM substrate pFB-HyGFP. BL2 cells were introduced with AID 

JP8Bdel-ER and pFB-HyGFP by retroviral infection. A clone expressing AID JP8Bdel 

and pFB-HyGFP was chosen after selection with puromycin and hygromycin. The clone 

was stimulated for 24 hrs with OHT 24 hrs after introducing siRNA, and incubated 

additional 48 hrs in the absence of OHT. The expression of GFP and the survival were 

evaluated by flow cytometry. Live cells were selected for the analyses by forward- and 
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side-scatter intensity and PI gatings. Genomic DNA was extracted and GFP sequence 

was amplified and analyzed. NIH3T3 cells harboring a SHM substrate pI were infected 

with retroviruses expressing wild-type and mutant AID-GFs and cultured for 7 days. 

Genomic DNA was extracted and GFP sequence was amplified and analyzed. 
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Figure legends 

Figure 1 

Identification of AID-interacting proteins. (A) Silver staining of proteins 

co-immunoprecipitated with mouse AID-GFP-FLAG (mAID-GF), human AID-GF 

(hAID-GF), GF, and P13-GF from cytosolic extracts prepared from CH12F3-2A cells 

expressing either of the AID-GFs. Bands were excised and analyzed by mass 

spectrometry. Proteins that appeared to be obviously more abundant in mAID-GF and 

hAID-GF are indicated. Nucleolin appears at two positions due to possible modification. 

(B) Western blot analyses of immunoprecipitates with anti-FLAG M2 antibody from 

mAID-EF-expressing CH12F3-2A extracts treated with DNase I (lane 2) or RNase A 

(lane 3). Immunoprecipitates from untreated extracts are shown in lane 1. (C) Western 

blot analyses of immunoprecipitates either with anti-FLAG M2 antibody or with mouse 

IgG from cytosolic extracts prepared from CH12F3-2A cells expressing mAID-GF (lane 

1) or GF (lane 2). Arrows indicate mAID-GF or GF. (D) Western blot analyses of 

immunoprecipitates with anti-Spt6 mAb from cytosolic extracts prepared from 

CH12F3-2A cells expressing mAID-GF (lane 1) hAID-GF (lane 2), or GF (lane 3). Two 

non-specific bands appeared in input by FLAG western blot. 

 

Figure 2 

CSR is inhibited by Spt6 knockdown in CH12F3-2A cells. (A and B) Spt6 knockdown 

severely reduced the CSR efficiency. CH12F3-2A cells (1.5 x 10
6
) were introduced with 

1.5 g of siRNAs against mSpt6, scrambled siRNA for them, an siRNA against mAID, 
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a scrambled siRNA for it, or negative control siRNAs with a low (36%) and medium 

(48%) GC contents (Ctrl-L and Ctrl-M, respectively). The GC contents of oligos 

mSpt6-1, 2, and 4 are medium (45 to 55%) and those of oligos mSpt6-3 and AID are 

low (35 to 45%). Twenty-four hours after siRNA introduction, cells were stimulated 

with CD40L, IL-4, and TGF for 24 hrs. The percentages of IgA
+
 cells in the live 

population are indicated. Representative FACS profiles are shown (A). The mean ± 

SD values were obtained from triplicate experiments (B). (C) siRNAs against Spt6 

reduced the amount of GLT and AID transcripts. Q-PCR analyses for GLT, GLT 

and AID transcripts in Spt6-knocked down cells. Values were normalized by cyclophilin 

(CYPH). Unstimulated and stimulated cells were analyzed for GLT and for GLT and 

AID transcripts, respectively. 

 

Figure 3 

CSR is inhibited by Spt6 knockdown in mAID-ER-expressing CH12F3-2A cells 

without affecting the amount of AID. (A and B) Spt6 knockdown reduced the CSR 

efficiency. CH12F3-2A cells expressing mAID-ER (1.5 x 10
6
) were introduced with 0.6 

g of siRNAs against mSpt6, scrambled siRNA for them, an siRNA against mAID, a 

scrambled siRNA for it, or negative control siRNAs with a low and medium GC 

contents (Ctrl-L and Ctrl-M, respectively). Twenty-four hours after siRNA introduction, 

cells were stimulated with OHT and TGF for 24 hrs. The percentages of IgA
+
 cells in 

the live population are indicated. Representative FACS profiles are shown (A). The 

mean ± SD values were obtained from triplicate experiments (B). (C) siRNAs against 
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Spt6 efficiently reduced the amount of Spt6 protein but did not affect the amount of 

AID-ER protein. (D) Q-PCR analyses for GLT and GLT in Spt6-knocked down cells. 

Stimulated cells were analyzed. 

 

Figure 4 

Spt6 knockdown inhibited CSR in the artificial switch substrate SCI (, ) in NIH3T3 

cells. (A) NIH3T3 cells expressing mAID-ER and SCI (, ) were introduced with 

d-siRNAs against mSpt6, mTrim28, mAID, and LacZ together with a DsRed-expressing 

plasmid as a transfection indicator. Twenty-four hours after transfection, cells were 

stimulated with OHT for 36 hrs. The percentages of switched CD8+ cells in the live 

and DsRed+ population are indicated. The mean ± SD values were obtained from 

triplicate experiments. (B) Q-PCR analyses for pre- (Pre-Tr1 and Pre-Tr2) and 

post-switch transcripts (Post-Tr), AID-ER, Spt6, and Trim28 transcripts. 

 

Figure 5 

Spt6 knockdown augmented SHM in BL2 cells. (A) Schematic representation of the 

artificial SHM substrate and the SHM assay procedure. BL2 cells expressing 

JP8Bdel-ER and the artificial SHM assay substrate were introduced with siRNAs, 

stimulated for 24 hrs with OHT, and incubated additional 48 hrs in the absence of OHT. 

Then, cells were harvested for flow cytometry (FCM) and genomic DNA extraction. (B, 

C) SPT6 knockdown augmented the SHM efficiency in the artificial substrate. BL2 

cells expressing JP8Bdel-ER and the artificial SHM assay substrate (1.5 x 10
6
) were 
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introduced with 3.0 g of siRNAs against hSPT6, siRNAs against hAID, or negative 

control siRNAs with a low (36%) and medium (48%) GC contents (Ctrl-L and Ctrl-M, 

respectively). The GC contents of oligos hAID-1, 2, 3, and hSPT6-3 are medium (45 to 

55%) and those of oligos hSPT6-1 and 2 are low (35 to 45%).  The percentages of 

GFP
–
 cells are indicated (B). Graphical summary of the percentages of GFP

–
 cells, 

viability, and mutation frequencies in the GFP sequence (C). Statistical significance was 

evaluated against the corresponding control oligo by the chi-square test. *p < 0.05. Data 

are representative of three independent experiments. (D) Two siRNA oligos against 

SPT6 (1 and 2) reduced the amount of SPT6 protein but did not affect the amount of 

JP8Bdel-ER protein. Note that the other siRNA oligos against SPT6 (3) did not 

substantially reduce the amount of SPT6 protein. 

 

Figure 6 

AID interacts with Spt6 through its N-terminus. (A) Schematic representation of 

wild-type and mutant AID-GF constructs. (B) Western blot analyses of 

immunoprecipitates with anti-FLAG from cytosolic extracts of CH12F3-2A cells 

expressing wild-type AID-GF or mutant AID-GFs. All AID constructs are of human 

origin except for mWT and mG23S. An equal amount of wild-type and mutant AID-GF 

proteins was analyzed by adjusting the loading amounts of immunoprecipitates. (C) 

AID-deficient splenocytes were stimulated with LPS for 48 hrs, and infected with 

retroviruses expressing mutant AID-GFs. Cells were stimulated for additional 48 hrs in 

the presence of LPS and IL-4. The percentages of IgG1
+
 cells in the GFP

+
 population 
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are indicated. The mean ± SD values were obtained from triplicate experiments. (D) 

NIH3T3 cells harboring a SHM substrate pI were infected with retroviruses expressing 

wild-type and mutant AID-GFs, and cultures for 7 days. Genomic DNA was extracted 

for sequencing analysis. GF was used as mock. Statistical significance was evaluated 

against WT by the chi-square test. *p < 0.001, **p < 0.05. 

 

 

 

 


