廃棄物溶融プロセスにおける有害物質 の挙動とライフサイクルアセスメント

長 田 守 弘

目 次

	背景と目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.2 研究内	容 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]
	容融処理技術の役割と開発成果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	における廃棄物溶融処理技術の開発経緯と技術課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	融処理技術開発の背景・・・・・・・・・・・・・・・・・・・・・・・
	融処理技術開発の歴史と普及状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	熱分解・溶融技術開発の揺籃期・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	灰溶融技術の開発・実用化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	ガス化溶融炉の開発ラッシュから本格普及へ・・・・・・・・・・・
	溶融処理技術の普及状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	融処理技術の分類 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8
	灰溶融炉・・・・・・・・・・・・・・・・・・・・・・10
	ガス化溶融炉・・・・・・・・・・・・・・・・・・・・・10
	融処理の技術課題・・・・・・・・・・・・・・・・・・・・16
	溶融炉の基本特性に関する知見・・・・・・・・・・・・・・10
	技術課題・・・・・・・・・・・・・・・・・・・・・・・・1
	溶融処理の制御因子とその効果・・・・・・・・・・・・・・・1
	ラグの有効利用と溶融飛灰の資源化・・・・・・・・・・・・・12
	スラグの有効利用・・・・・・・・・・・・・・・・・・・12
	溶融飛灰の資源化・・・・・・・・・・・・・・・・・・・・・・・14
	融処理の環境的社会的意味・・・・・・・・・・・・・・・・・・・・14
	環境的社会的意味・・・・・・・・・・・・・・・・・・・・・・・14
2.1.6.2	溶融処理に対する評価・・・・・・・・・・・・・・・・・・15
	ト炉式ガス化溶融炉に期待される役割と開発成果・・・・・・・・・・18
2.2.1	ャフト炉式ガス化溶融炉の開発経緯とプロセス概要 ・・・・・・・・・18
2.2.1.1	開発経緯・・・・・・・・・・・・・・・・・・・・・・・18
2.2.1.2	プロセス概要・・・・・・・・・・・・・・・・・18
2.2.2 シ	ャフト炉に期待される役割と課題・・・・・・・・・・・・・・20
2.2.2.1	無害化処理機能と分離・濃縮機能のメカニズム・・・・・・・・20
	シャフト炉による種々の処理ニーズへの対応・・・・・・・・・2
2.2.3	ャフト炉の改善研究成果・・・・・・・・・・・・・・・・・・・22
2.2.3.1	溶融プロセス開発・・・・・・・・・・・・・・・・・・・・2

2.2.3.2 処理対象物の拡大研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 24
2.2.4 溶融副産物の資源化研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 27
2.2.4.1 スラグ・メタルの資源化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 27
2.2.4.2 溶融飛灰の資源化(山元還元) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
2.2.4.3 ごみ発電の高効率化研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
2.2.5 地球温暖化対策について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 30
2.3 第2章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 33
第3章 廃棄物溶融プロセスにおける有害物質の挙動調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 35
3.1 自動車破砕残渣(ASR)の溶融プロセスにおける臭素化難燃剤及びダイオキシン	55
類縁化合物の挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 35
3.1.1 研究の背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 35
3.1.2 試験プラントの概要及び試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 35
3.1.2.1 試験プラント概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 35
3.1.2.2 化学分析方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 36
3.1.3 試験結果および考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 37
3.1.3.1 ASR 処理結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 37
3.1.3.2 ASR の性状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 38
3.1.3.3 ダイオキシン類縁化合物の挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 38
3.1.3.4 重金属類の挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 44
3.1.3.5 有機スズの挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 47
3.1.4 ASR 溶融試験結果のまとめ · · · · · · · · · · · · · · · · · · ·	• 48
3.2 アスベスト廃棄物の溶融プロセスにおけるアスベストの挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	E1
3.2.1 研究の背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.2 試験材料と試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.2.1 試験設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.2.2 試験条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.2.3 アスベスト分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.3 試験結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.3.1 溶融処理結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.3.2 アスベスト分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.3.3 TEM 解析によるスラグと溶融飛灰の無害化評価 · · · · · · · · · · · · · · · · · · ·	
3.2.4 環境影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2.5 アスベスト廃棄物溶融試験結果のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.3 第3章のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 64

第4章	廃棄物液	容融プロセスのライフサイクルアセスメント・・・・・・・					. 65
4.1		資源化・処理に関するライフサイクルアセスメント ・・・・					
		研究に関する背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
4.		査範囲及び評価手法の設定・・・・・・・・・・・・・・					
		機能単位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
		評価対象とするシナリオ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
		システム境界の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
	4.1.2.4	影響領域・対象物質と特性化手法の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					• 67
	4.1.2.5	7 TO TO THE TOTAL OF THE TOTAL					
4.	.1.3 各元	プロセスのモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
	4.1.3.1	収集・運搬プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
	4.1.3.2	焼却プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			•	•	· 71
	4.1.3.3	ガス化溶融プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•				· 71
	4.1.3.4	埋立プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			•	•	· 71
	4.1.3.5	溶融飛灰資源化(山元還元)プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			•	•	• 73
	4.1.3.6	砂供給プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			•	•	• 73
	4.1.3.7	非鉄原料供給プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			•	•	• 73
	4.1.3.8	電力供給プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					
4.	.1.4 評信	西結果と考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				•	• 73
	4.1.4.1	各影響領域内の特性化結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 76
	4.1.4.2	被害化評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 79
	4.1.4.3	統合化結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					· 82
	4.1.4.4	総合評価····································					. 83
4.	.1.5 AS	m R の資源化・処理に関する LCA 評価結果まとめ・・・・・・	 				. 85
4.2	アスベ	スト廃棄物の無害化処理に関するライフサイクルアセスメント					· 87
4.	.2.1 本荷	研究に関する背景と目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 87
4.	.2.2 調査	査範囲及び評価手法の設定・・・・・・・・・・・・・					. 87
	4.2.2.1	機能単位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 87
	4.2.2.2	評価対象とするシナリオ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 87
	4.2.2.3	システム境界の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 87
	4.2.2.4	影響領域と対象物質の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
	4.2.2.5	被害評価と統合化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
4.	.2.3 各に	プロセスのモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
	4.2.3.1	ガス化溶融プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
	4.2.3.2	埋立プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
	4.2.3.3	砂供給プロセス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 88
	1931	雷力供給プロヤス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・					. 20

4.2.4	各:	ンナリオ	別のイ	イン	べ、	ン	トリ	_	算	出	•	•	 •	٠	•	٠	•	٠	•	•		•	•	•	•	•	•	•	•	. 86
4.5	2.4.1	アスベ	スト曝	霧																										. 86
4.5	2.4.2	廃棄物																												. 90
4.2	2.4.3	地球温暖	爰化·																											. 90
4.2.5	被被	害評価																												. 90
4.2	2.5.1	アスベ	スト曝	霧																										. 90
4.5	2.5.2	廃棄物																												. 92
4.5	2.5.3	地球温明	爰化・																											. 92
4.2.6	3 統治	合化・・																												. 92
4.2.7	7 総合	合評価·																												. 94
4.2.8	3 まる	とめ・・							•						•			•			•					•				. 94
4.3 箩	育4章	のまとめ) · ·	•			•	•	•					•			•				•	•				•		•		. 96
第5章 結	論																													. 97
5.1 7	卜研究	の総括・																												. 97
5.2	冷後の	課題··			•	•			•				٠											•	•	•				. 98
謝辞・・・																														100
研究業績リ	スト・																													101

第1章 緒 論

1.1 研究の背景と目的

ばいじんの適正処理とダイオキシン対策を背景に、日本では 1997 年以降、一般廃棄物の焼却施設には原則として焼却残さの溶融固化設備を併設することが国庫補助の要件とされ、従来の焼却処理率の高さに加え、溶融処理の急速な普及が進んできた。特にダイオキシン対策の規制強化がなされる 2002 年に向けて、それまでの灰溶融炉併設型の焼却施設と競う形で多くの企業にて技術導入または開発されたガス化溶融施設が一気に実用化された。

しかしながら溶融処理は焼却灰のスラグ化・再資源化により最終処分量を大幅に減らし土木建築材料が得られるというメリットはある一方で、中間処理だけをみれば処理コストが高く、エネルギー消費も多いというディメリットもあることから、最近では溶融処理推進の原則は絶対的なものでなくなり、処分場が十分確保されているような場合には焼却単独処理も容認されるようになってきた。

一方で 2005 年 1 月に施行された自動車リサイクル法によってリサイクルが求められる自動車破砕残渣 (ASR) の資源化技術として溶融処理は位置づけられている。さらに同年夏に再度顕在化したアスベスト問題では、埋立処分だけでは対策に限界があるとして溶融処理による無害化の有効性が再認識されてきている。これらのことは ASR 中に含まれる臭素系難燃剤やアスベスト等の有害物質の無害化機能として溶融プロセスの高温処理が期待されていることを示している。

また溶融スラグの安全性で議論になった廃棄物に含まれる鉛等の重金属の挙動についても溶融 温度や雰囲気によって制御できることが示されている。このことは無機化合物の融点、沸点ある いは酸素分圧に応じた種々の気相生成物や溶融生成物を得ることができるということで、溶融処 理は微量金属の分離精製手段になりうることを意味している。

そこで本研究では、まず最初にガス化溶融施設で最も実績の多い、シャフト炉式ガス化溶融炉(シャフト炉)に期待される役割と技術課題をあげ、その課題克服に向け実施した改善研究成果の意義を明確にした。その上で、多様化する廃棄物の処理方法において、それぞれの利害得失を評価し、溶融プロセスの意義と方向性を展望することを目的に、ライフサイクルアセスメント(LCA)評価を実施した。第一ステップとしては、処理対象に上記 ASR とアスベスト廃棄物を取り上げ、それぞれの溶融処理時における有害物質の挙動を詳細に調査した。第二ステップでは、その結果等に基づき、LCAの手法を用いて埋立処分や焼却処理と比較評価を実施した。影響領域としては地球温暖化、酸性雨、有害化学物質、生態毒性、廃棄物等を設定した。こうした検討を通じて、循環型社会形成に向けた廃棄物処理技術を環境、資源、社会等の視点から総合的に考察するものである。 以下に本論文の内容を簡単に述べる。

1.2 研究内容

本論文の構成を図 1.2-1 に示す。

各章及び各節の概要は以下の通りである。

第2章 廃棄物溶融処理技術の役割と開発成果

本章では、溶融処理技術の開発経緯と期待される役割をまとめるとともに、期待に応えるためのシャフト炉式ガス化溶融炉における改善研究成果を報告する。



図 1.2-1 本論文の構成

第1節 わが国における廃棄物溶融処理技術の開発経緯と技術課題

本節ではわが国における各種廃棄物溶融処理技術の開発経緯と普及状況を概説する。さらに溶融処理技術の基本特性と課題とそれへの対処状況、さらに社会的に果たしてきた役割を整理する。

第2節 シャフト炉式ガス化溶融炉に期待される役割と開発成果

本節では特に溶融処理方式として最も実績の多いシャフト炉式ガス化溶融炉を取り上げ、その特徴から期待される役割を整理するとともに、その役割を果たすために必要な技術獲得に向けた改善研究への取組み状況と開発成果について述べる。

第3節 第2章のまとめ

第3章 廃棄物溶融プロセスにおける有害物質の挙動調査

本章は、ASR とアスベスト廃棄物の溶融処理試験結果を整理し、次章で検討する LCA のインベントリーデータを提供するものである。特に有害物質の挙動を詳細に調査し、環境影響評価を行う、基礎データを整備する。

第1節 ASR の溶融プロセスにおける臭素化難燃剤及びダイオキシン類縁化合物の挙動

10 トン/日規模の試験設備による ASR 溶融処理試験を実施した結果をもとに溶融プロセス内

での臭素系難燃剤、ダイオキシン類縁化合物及び重金属類等有害物質等の挙動を調査した結果を報告する。

第2節 アスベスト廃棄物の溶融プロセスにおけるアスベストの挙動

試験設備での研究を経て120トン/日規模の実機設備による溶融処理試験結果をもとに溶融プロセスにおけるアスベストの無害化処理状況の確認と、透過電顕による詳細な観察・評価実施した結果を報告するとともに、施設周辺の環境影響調査結果を報告する。

第3節 第3章のまとめ

第4章. 廃棄物溶融プロセスのライフサイクルアセスメント

前章で実施した ASR とアスベスト廃棄物の溶融処理プロセスにおける有害物質の挙動調査結果を活用し、本章では LCA により、他の処理プロセスとの総合的かつ定量的な比較評価を実施し、評価項目別及び統合的な指標での優劣を確認する。その検討手順は以下の通りである。

第1節 ASR 資源化・処理に関するライフサイクルアセスメント

本節では 3.1 節で試験した ASR 1 トンの処理を機能単位として、下記の 4 つのシナリオを LCA 手法にて比較評価する。

- (1) 直接埋立
- (2) 焼却+焼却灰埋立
- (3) ガス化溶融+スラグ・メタル資源化+溶融飛灰埋立
- (4) ガス化溶融+スラグ・メタル資源化+溶融飛灰資源化(山元還元)

評価対象とするライフサイクルはごみの収集から最終処分までとする。またシステムの運用段階のみを対象とし、施設建設段階は対象外とし、影響領域としては、埋立、焼却、溶融それぞれに関係が深くその特徴が明確に現われ、メリットとディメリットが評価しやすいと考えられる下記の5項目を設定する。

- (1) 地球温暖化(CO₂、CH₄、N₂O)
- (2) 酸性化 (NO₂、SO₂)
- (3) 有害化学物質(ダイオキシン類、臭素系難燃剤、重金属類)による人間健康影響
- (4) 生態毒性 (ダイオキシン類、臭素系難燃剤、重金属類) による生態影響
- (5) 廃棄物 (埋立地占有スペース)

上記(1)~(5)の影響領域内での特性化を行うとともに、被害評価、統合化を行うことで、比較評価を実施する。その実施に当たっては日本版被害算定型環境影響評価手法(LIME)の更新版 LIME2 が提供する係数を活用するとともに、不十分なところは既往の環境運命、暴露評価モデル検討の成果にて補完する。

第2節 アスベスト廃棄物の無害化処理に関するライフサイクルアセスメント

本節では3.2節で試験したアスベスト廃棄物1トンの処理を機能単位として、下記の2つのシナリオを比較評価する。

(1) 埋立シナリオ

(2) ガス化溶融+スラグ・メタル資源化+溶融飛灰埋立

評価対象とするライフサイクルは、アスベスト含有廃棄物 (建材) の処理・処分段階のみとする。またシステムの運用段階のみを対象とし、施設建設段階は対象外とし、影響領域としては、埋立、溶融それぞれに関係が深くその特徴が明確に現われ、メリットとディメリットが評価しやすいと考えられる下記の3項目を設定する。

- (1) 有害化学物質(アスベスト暴露)による健康影響
- (2) 廃棄物 (埋立地占有スペース)
- (3) 地球温暖化 (CO₂)

上記 1) \sim 3) の評価項目での、被害評価、統合化を行うことで、比較評価を実施する。その実施に当たっては LIME2 が提供する係数を活用するとともに、LIME2 で不足しているところはリスク評価に関する既往の研究成果を活用する。

第3節 第4章のまとめ

第5章 結論

本研究の総合的なまとめを行うとともに、今後の課題を整理する。

第2章 廃棄物溶融処理技術の役割と開発成果

2.1 わが国における廃棄物溶融処理技術の開発経緯と技術課題

2.1.1 溶融処理技術開発の背景

日本の廃棄物処理政策においては、ばいじんの適正処理、ダイオキシン対策及び最終処分量削減を図ることを意図して、1997年以降、原則溶融固化設備を有していることを国庫補助の要件とし、溶融処理の導入を推進 ¹⁻⁴⁾ してきた。その結果、世界の中でも最も焼却率が高いことに加え、溶融処理に関しても普及率が高いことが日本のごみ処理の特徴となっている。

溶融処理には、焼却灰を対象とする灰溶融とごみを対象とする直接溶融がある。灰溶融炉は 1980 年代から本格的に開発、実用化された。一般に、焼却炉に併設される事が多く、焼却+灰溶融として扱う。一方、ごみを直接溶融する事を狙ったガス化溶融は 1970 年代から開発が試みられたものの、一時期中断され、その後 1990 年代のダイオキシン問題をきっかけに再開され、実用化が進んだ。溶融の推進により、発注される施設は「焼却+灰溶融」と「ガス化溶融」に二分される状況に至った。現在は、急速に増加する溶融スラグの有効利用が次の課題となっており、2006年7月には道路用溶融スラグ及びコンクリート用溶融スラグ骨材のJISが制定された。

しかしながら、2003 年 12 月には溶融推進の原則に例外(処分場が 15 年以上ある場合や焼却灰をセメントや各種土木材料に再生利用する場合)が示され、5) その後 2005 年度の循環型社会推進交付金への制度変更に伴い、灰溶融設備付設の義務付けがなくなった。さらに、2010 年 3 月には灰溶融炉の財産処分ができる条件まで示された。6) このように溶融によらない方式も選択できるようになってきた中で、溶融処理は処理コストが高くエネルギー消費も多いという指摘もある。今後、溶融処理が有用な方策として再認識され、さらに広く普及するかどうかは、稼働実績を踏まえた溶融処理の有効性の再評価や循環型社会形成における位置付けの検証等により見極めていく必要があると言えよう。また、温暖化防止対策との整合性を考えていくことも重要である。本節では溶融処理技術開発の経緯と溶融処理技術の抱えている課題を整理する。

2.1.2 溶融処理技術開発の歴史と普及状況

日本における溶融炉開発・実用化の歴史を振り返ると3つのステージに分けられる。

2.1.2.1 熱分解・溶融技術開発の揺籃期(第一期ガス化溶融開発ブーム: '70~'80)

中都市以上に焼却炉が整備されつつある時期であったが、石油危機 (0il crisis) が勃発し、 廃棄物の資源化 (燃料化) に関する世論が高まりを見せ、廃棄物の熱分解ガス化・溶融ガス化技 術開発が開始された。その方法は、下記に示す 2 通りのアプローチがあった。

- ①国家プロ又は民間企業による純国産技術としての開発
- ②海外から技術導入して日本のごみ質に合うようにモディファイ

その当時の開発状況は、平山が「廃棄物のガス化溶融技術の現状と問題点」⁷⁾ に詳しく記載している。その中で紹介されている熱分解・溶融技術を表 2.1-1 に示すが、これは通産省工業技術院の資源再生利用技術システムに関する大型プロジェクトの最終報告書 8)からの引用とされている。また、これらの技術のうち、実用化に至った事例を表 2.1-2 に示す。但し、当時は経済性の理由等から廃止された炉もあり、熱分解・溶融技術はそれ以上普及には至らなかった。

表 2.1-1 70 年代の熱分解・溶融技術開発状況

プロセス		熱 分 解	ガス化	
企業・機関 (技術提携先)	工業技術院 · 荏原製作所	月島機械(パイロックス)	日立プラント建設(デストラ) (Pollution Control Ltd)	日立造船
炉 型 式	二塔流動層炉	二塔流動層炉	垂直レトルト炉	堅型ガス化炉
炉 略 図	排ガス がスパーナ 空気 熱分解ガス 原料 空気 熱分解 ガス	熱分解ガス原料スチーム残渣	原料 - 排ガス - ガスバーナ - 熱分解ガス - 残渣	原料 熱分解ガス 空気 火格子 残渣

プロセス		溶融	ガ ス 化	
企業・機関 (技術提携先)	タクマ(トラックス) (Carborundum)	昭和電工(ビュロックス) (Union Carbide Co)	新日本製鐵	川崎重工(ランドカード) (Moneanlo Enviro-Chem Systems)
炉型式	堅型シャフト炉	堅型シャフト炉	堅型シャフト炉	ロータリーキルン炉
炉略図	原料一熱分解力力	熱分解ガス原料O2スラグ	原料 熱分解ガス 空気 スラグ	原熱分解ガス料

表 2.1-2 主要な熱分解・溶融技術実用化状況

	方 式	メーカー	実証規模、技術導入先	実機:稼働年、向先、規模
1	二塔流動層			
	パイロックス	月島機械	40 t / d	,79千葉県船橋市 450t/d
25	竪型シャフト炉 ニューニー			
	i)直接溶融方式	新日鉄	20 t / d	'79岩手県釜石市 100t/d
			40 t / d	, 80大阪府茨木市 450t/d
	ii)ピュロックス方式	昭和電工	(米) Union Carbide社	'81埼玉県秩父市 150t/d
			より技術導入	
	iii)トラックス方式	タクマ	(米) Carborundum社	'80静岡県浜松市 75t/d
			より技術導入	

2.1.2.2 灰溶融技術の開発・実用化('80~'90)

1980年頃より欧州では、ばいじん処理が厳格化、そのままでの処分が禁止された。日本においてもばいじんの処理・処分方式が検討され、4つの方法の一つとして溶融処理が指定された。

こうした中で、焼却灰の減容・無害化ニーズともあわせて、ばいじん(飛灰)の単独溶融、焼却灰との混合溶融が本格的に開発研究され実用化された。当初は特定メーカーが灰溶融炉を開発し焼却炉メーカーに供給していたが、多くの焼却炉メーカーが自ら電気灰溶融炉を商品化し、焼却+灰溶融を一括対応するようになったことで一気に普及するに至っている。表 2.1-3 に小島が整理した当時の灰溶融炉の実証及び実機の稼働状況を示す。⁹⁾

表 2.1-3 灰溶融炉の実証・実機化状況

溶融方式	原理		技術レベル	施設名	規模	メーカー	稼動年月
表面溶融方式	バーナー加熱		実証	タクマ自社内	12. 0t/d	タクマ	1977年12月
(フィルム溶融方式)		(灯油)	実施設	茨城県鹿島町	6.5t/d×1基 休止		1981年6月
			"	埼玉県東部衛生組合第二	14.4t/d×2基		1985年3月
			"	埼玉県東部衛生組合第一			1986年3月
			"	徳島県阿南市外二町衛組			1991年3月
			"	埼玉県坂戸市清掃センタ	-9.6t/d×1基		1994年3月
	バーナー加熱						
		(灯油)	実証	静岡県沼津市	20.0t/d	クボタ	1977年8月
			実施設	長崎県諫早市環境センタ	-12.3t/d×1基		1987年3月
			"	埼玉県狭山市清掃センタ			1991年3月
			11	新潟県白根衛生センター	7.0t/16h×1基		1994年10月
電気溶融炉	アーク加熱		実験	大同自社内 大同自社内	3.6t/d	大同特殊	1978年
		(電気)	実証		25.0t/d		1985年10月
			実施設	東京都大田清掃工場	250.0t/d×2基		1991年4月
			"	埼玉県大宮市西部工場	75.0t/d×1基		1993年3月
			11	埼玉県埼玉東部清掃組合			1995年9月
	プラズマ加熱		実証	愛知県半田市	24. 0t/d		1992年11月
		(電気)	実施設	愛媛県松山市南清掃工場	52.0t/d×1基		1994年3月
	アーク加熱		実験	電気溶融炉を用いた実験	溶融能力 1.2t/d	日本鋼管	1978年12月
		(電気)	実証	電気溶融炉を用いた実証	溶融能力 30.0t/d		1980年12月
	抵抗加熱	(電気)	実証	自社内 電気溶融炉	溶融能力 12.0t/d		1992年7月
	プラズマ加熱		実証	千葉県千葉市(北谷津)	30.0t/d	川崎重工	1992年11月
	プラズマ加熱	(T L)	実証	自社内	6. 0t/d		1991年12月
2	低周波誘導炉	(電気)	実験プ		/ツボ型)	住友重機	1991年3月
コークスベッド炉	24 7111 Z	2	実証	自社内	10.0t/d	新日鉄	1990年1月
		ークス)	実施設	愛知県東海市清掃センタ		7 11 日 40	1995年11月
自己燃焼内部溶融	焼却未熱分による	燃燃焼	実証	柳泉園組合	150t/d炉の後段に設置	石川島播	1988年8月
	電気ヒーター加熱		実施設	衣浦衛生組合	溶融炉 15.0t/d×2基		1995年10月
旋回流溶融炉	バーナー加熱	0 . 12 .	実証	自社内 (飛灰用)	1. 2t/d	神戸製鋼	1991年12月
表面溶融方式	バーナー加熱(プ	ロハ゜ンカ゛ス)	実証	兵庫県柏原町	3. 0t/d	東洋燃焼	1991年

2.1.2.3 ガス化溶融炉の開発ラッシュから本格普及へ(第2期ガス化溶融開発ブーム: '90~)

廃棄物量の増大、処分場不足、不法投棄の顕在化から 1991 年のリサイクル法の施行により、廃棄物の減量化と再生利用の推進が図られるとともに、1992 年の廃掃法改正により、ばいじんが特別管理廃棄物の指定を受け、溶融等の適正処理が義務付けられた。さらに 1996 年には厚生省よりの通知で溶融固化設備の併設が、廃棄物焼却施設整備の補助要件とされたことから、「焼却炉+灰溶融炉」が、本格普及することになった。

一方、ダイオキシン問題に対応して、1990年にはダイオキシン類発生削減のための旧ガイドライン、1997年には新ガイドラインが提示され、特別措置法の制定に至った。この中で排ガス、ばいじん中のダイオキシン濃度規制値が定められたが、1年後までに達成すべき緊急対策としての暫定基準と5年後(2002年)までに達成すべき恒久対策としての基準が2段階で設定された。この時期、象徴的な事象として、①ガス化溶融炉の開発揺籃期にシャフト炉(新日鉄の直接溶融方式)を採用していた茨木市が第2工場建設を決定('93着工、'96竣工)したこと キルン式の熱分解溶融炉を三井造船が(独)シーメンス社より技術導入し、1996年には開廃棄物研究財団より技術評価書を取得したことが挙げられる。これを契機に、次世代の処理技術の在り方についての議論が活発化し、新たなごみ処理技術として1プロセスで溶融機能を有し、ダイオキシン排出抑制面でも優れた性能が期待される「ガス化溶融炉」が、注目を浴びることとなった。

その後、(財) 廃棄物研究財団において「ガス化溶融技術開発」が次世代ごみ焼却処理技術の共同研究テーマに取り上げられ「開発研究委員会」を設置する中、12 社と 3 グループが参加して、開発競争が行なわれることとなった。('96~'98) この開発、実証炉研究を推進する中、前述のダイオキシン規制強化のタイムリミットである 2002 年に間に合わせるようとする自治体のごみ処理施設発注が 2000 年にピークを迎えた。これに呼応して従来の「焼却炉+灰溶融炉」に加え、

「ガス化溶融炉」の発注が急速に伸びることになった。

日本でこうしたガス化溶融ブームが起こる前に、欧州でも先に述べたシーメンス社の他にもサ ーモセレクト社、Pyrolyse kraft Anlagen (PKA)社、ノエル社等多くのガス化またはガス化溶融技 術が開発されており100、こうした技術を導入した日本企業も多かった。しかし結果的には、ガス 化溶融技術は、欧州では根づかず、むしろ日本において広く普及することとなった。

2.1.2.4 溶融処理技術の普及状況

環境省の調査 11) によれば、2008 年度のごみの総処理量は 4,514 万トンであり。そのうち、焼 却、破砕、選別等により中間処理された量は4,197万トンとなっている。中間処理のうち、直接 焼却処理された量は3,574万トンであり、焼却率は79.2%である。直接最終処分された量と中間 処理後に最終処分された量を合計した最終処分量は553万トンとなっている。一方、溶融処理は、 (社)日本産業機械工業会の調査 12 によれば、2008 年度末で溶融施設が約 211 カ所(図 2.1-1)、溶 融スラグ量は約85万トン(図2.1-2)と増加している。

1000

900

800

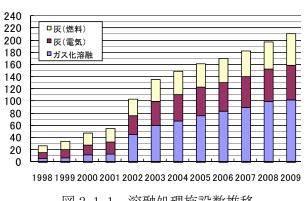


図 2.1-1 溶融処理施設数推移

700 **正**乙 600 500 400 300 200 100 n 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 図 2.1-2 スラグ生産量推移

■灰(電気+燃料)

■ガス化溶融

2.1.3 溶融処理技術の分類 (図 2.1-3)

焼却残渣溶融炉は、その熱源によって電気 式と燃料燃焼式に分けられ、さらに電気式は 電気から熱を得る方法により、また燃料燃焼 方式は炉の形状等により分けられる。ガス化 溶融炉は熱分解と溶融が一体もしくは分離、 さらに熱分解が直接加熱もしくは間接加熱で 分けることができ、一般には熱分解ガス化部 分の炉形式で3方式に区分できる。現状、性 能指針等で知られる方法を以下に示す。13)

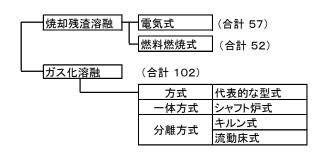


図 2.1-3 溶融処理形式分類と施設数

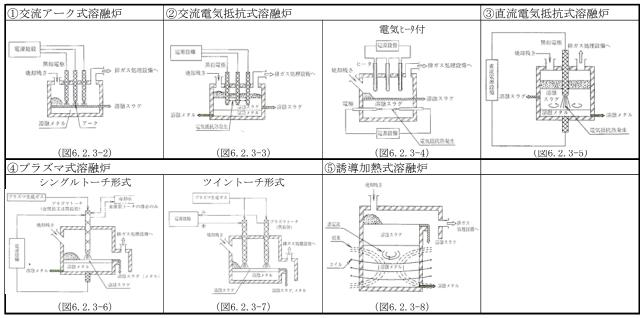


図 2.1-4 電気式灰溶融炉

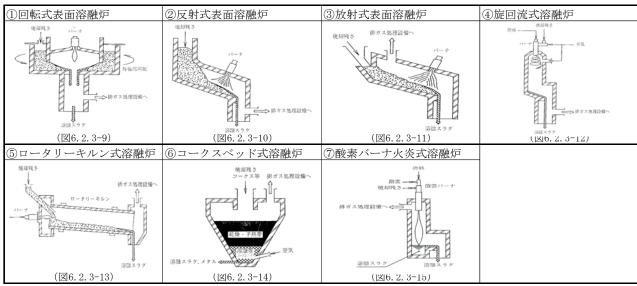


図 2.1-5 燃料燃焼式灰溶融炉

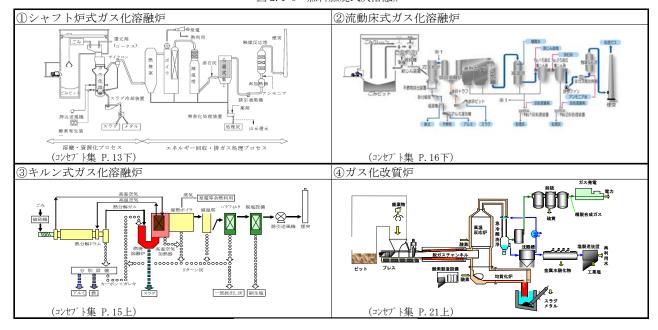


図 2.1-6 ガス化溶融炉

2.1.3.1 灰溶融炉

- 1) 電気式(図 2.1.4): ①交流アーク式溶融炉、②交流電気抵抗式溶融炉、③直流電気抵抗 式溶融炉、④プラズマ式溶融炉、⑤誘導加熱式溶融炉
- 2) 燃料燃焼式(図 2.1-5): ①回転式表面溶融炉、②反射式表面溶融炉、③放射式表面溶融 炉 ④旋回流式溶融炉、⑤ロータリーキルン式溶融炉、⑥コークスベッド式溶融炉、⑦酸素バーナ火炎式溶融炉

2.1.3.2 ガス化溶融炉 (図 2.1-6)

- ①シャフト炉式ガス化溶融炉、②流動床式ガス化溶融炉、③キルン式ガス化溶融炉、
- ④ガス化改質炉

2.1.4 溶融処理の技術課題

灰溶融の技術課題は、1994年~1996年にかけて実施された東京都とプラントメーカーの共同研究によって得られた成果と残された技術課題として、古角は以下のように整理している。^{14) 15)}これらの知見及び課題は、現在でも多くの示唆を与えるものである。

2.1.4.1 溶融炉の基本特性に関する知見

- (1) 排ガス
- ・排ガス量は投入エネルギーに比例:「電気=ガス量少」、「燃料=ガス量多」の傾向
- ・飛灰の混合処理:排ガス量増加、HC1 や SOx の排出増加要因 特に、消石灰を含むバグフィルタ捕集灰は、ごみ処理過程における HC1 の二重処理という矛 盾を内包
- ・酸化雰囲気では高濃度のサーマル NOx が発生
- (2) スラグ
- ・スラグの発生率:投入量の80%程度(飛灰の混入割合、水洗浄の有無により70~90%で変動)
- ・主成分: SiO₂、Al₂O₃、CaO および Fe₂O₃(飛灰混合の影響なし)
- ・CaCl₂がクラスター状態でスラグに残るとスラグ性状が悪化
- ・Pb や Zn の濃度は被溶融物の含有レベルと操炉条件に依存 酸化雰囲気: Pb 濃度は 100mg/kg を超えることが多く変動幅も大きい 還元雰囲気: Pb 濃度は確実に 100mg/kg を下回り、50mg/kg 程度ないしはそれ以下
- ・スラグからの重金属の溶出:未溶融物や溶融塩の混入、排ガスの溶解による水砕水の汚染とスラグ付着水としての排出が主要因(飛灰の混合処理が原因ではない)
- (3) 溶融飛灰
- ・溶融飛灰の発生量:灰中の塩類含有量に依存 飛灰の混入割合、水洗浄の有無により1~10%程度の範囲で変化
- ・溶融飛灰の主成分: Na、K、C1 およびSが70~80%を占め、Pb、Znは10~20%程度 資源としての品位を高め、溶融飛灰の資源化を推進するには、スラグの主成分である高沸点 物質の混入を抑制する必要あり(溶融炉からの原料飛散対策、Siの揮散抑制が不可欠)
- ・ダイオキシン類の濃度: 概ね焼却飛灰の 1/100 程度 中には焼却飛灰のそれに近いものもあり、対策が必要
- (4) 設備の運転保守

- ・飛灰は密度が小さく融点が高いため、飛灰の混合率に応じて処理能力は低下
- ・ダクト閉塞、耐火物保護等への慎重な対応が不可欠
- ・湿灰の前処理として乾燥設備を設置する場合は、乾燥排ガスのダイオキシン類への配慮が重要

2.1.4.2 技術課題

- (1) ダイオキシン対策の向上
- ・溶融炉は固形廃棄物のダイオキシン対策として有効 (99%程度の分解効率) ただし、その排ガス挙動は敏感であり要注意
- ・溶融炉出口のダイオキシン濃度:新ガイドラインを満足できるレベルではない
- ・ガス冷却過程において再合成(集じん装置入口で約5倍、集じん装置出口で約9倍に増加、 バグフィルタ前後で、平均1.62倍に増加)
- ・飛灰性状の吸着能の差が影響

焼却飛灰:炭物質を含み、非晶質かつ多孔体 溶融飛灰:炭素物質が乏しく、しかも結晶質

- (2) スラグ性状の評価と再利用の推進
- ・主要元素の溶出率:、Si、Al が 10⁻³、Ca は 10⁻²(強アルカリ条件下では、Si、Al が 10⁻²、Ca は 10⁻³と逆転)
- ・Pb 溶出率: 実スラグでは 10^{-4} を下回る。ただし、平均粒径 2μ 程度の粉砕試料では母材と同様 10^{-2} (Pb 含有率 30%近い鉛ガラスと同一レベル)

両性金属であり、高アルカリないしは低 pH でのみ出現(高アルカリでは加水分解によるガラス構造の崩壊が、低 pH ではイオン交換による溶出)

- ・溶出機構の定量化と、再利用促進の視点からの尺度作りが課題
- (3) 溶融飛灰資源化の必要性
- ・溶融飛灰の処理を告示 4 法のうち溶融固化以外に依ることは、系内循環濃縮という技術矛盾の 回避としてのみ意味あり
- ・薬剤処理法は、最終処分後の再溶出への懸念が残り、加えて溶融飛灰の主成分である塩類の溶 出には無力、また処理コストも膨大
- ・山元還元を指向する以外に選択肢は無い

2.1.4.3 溶融処理の制御因子とその効果

一般に焼却灰の溶融はガラスネットワーク中に各種有害重金属を封じ込め、物理的に均質化すると理解される事が多いが、上記共同研究で明らかになったように溶融温度、組成及び溶融環境における雰囲気等を制御することにより、種々の気相分離物や溶融生成物を得ることができる。即ち、無機化合物の融点、沸点あるいは酸素分圧に応じた分離精製が可能である。例えば、スラグ中の鉛含有量は、高温還元雰囲気で溶融すれば、鉛が揮発分離し、スラグ中の鉛含有量が低減することになる。

このように溶融処理は、減容化を達成するのみならず、溶融生成物から揮発成分の分離と均質 化が可能であり、2次生成物であるスラグ、溶融飛灰の再資源化にまで目的を拡げた処理方法と 位置付けることができる。さらに条件によっては溶融物の持つ有用特性を付与できる可能性も持 っている。溶融物の有効利用から見た溶融処理の制御因子とその効果について徳田らは以下のよ うに整理している。¹⁶⁾

(1) 溶融温度

- ・均一な溶融物を生成するには、溶融炉内の操業温度は融点以上にする必要あり
- ・融点は溶融対象物の組成に支配され、主成分(CaO、 SiO_2 、 Al_2O_3 、FeO)の状態図から推定可能 (2) 組成
- ・スラグ主成分(CaO、SiO₂、Al₂O₃)以外の成分は、炉内雰囲気や塩素などの含有量等に依存
- Fe0、Zn0、Pb0 などは還元性雰囲気では激減する。(Fe0 は還元されてメタル相を形成し、Zn や Pb は揮発してガス側へ移行)
- ・還元雰囲気下で塩素が大量に存在すれば、塩化物としての揮発が促進され、 Na_20 や K_20 などのアルカリ成分も低下
- ・硫黄は酸化性雰囲気で濃度が低下
- (3) 溶融炉内の酸素分圧
- ・炉内の酸化性、還元性の尺度は酸素分圧で表現できる
- ・溶融炉内の酸素分圧は採用する炉形式に大きく依存
 - コークスベッド溶融炉: 炉内は強還元性雰囲気で酸素分圧は低い。また、赤熱コークスの温度は 1700℃以上になる。このような高温還元雰囲気では、装入物中に持ち込まれた重金属化合物類は還元作用を受け、金属単体でガス化し易くなる。
 - 電気炉等:高温反応帯の雰囲気は中性もしくは酸化性となり、重金属類の還元は進まず、多くが酸化物の形態で存在。酸化物は 1600℃以上の高温状態で比較的高い蒸気圧を有し、揮発する確率も高まるが、金属単体と比較すれば蒸気圧は小さく、スラグ中の残存濃度が高まる。

(4) 溶融炉内の塩素分圧

- ・廃棄物の焼却処理では、灰中(特に飛灰)に塩素およびアルカリ成分が濃縮
- ・塩化物を含んだまま灰溶融炉に装入されるため、灰溶融炉内の塩素分圧は極めて高い
- ・金属塩化物の蒸気圧は一般に非常に高く、還元性の条件では塩化物形態が安定なため、アルカ リ元素に対する塩素の量比が過剰であれば低温で塩化物が揮発
- ・還元雰囲気で安定な塩化物も、2次燃焼以降で還元雰囲気から酸化雰囲気に移行すると、金属元素が酸化物となると同時に塩素がHC1に変化するので、バグで消石灰を吹込んで捕捉が必要

2.1.5 スラグの有効利用と溶融飛灰の資源化

溶融スラグを JIS 等の品質規格に適合させ、道路用材、コンクリート用骨材等に有効利用することは、最終処分量を削減するとともに、採石等による環境破壊、資源枯渇防止の点からも重要である。また通常、溶融飛灰は薬剤で無害化処理後に最終処分されるが、折角濃縮分離した重金属は、本来リサイクルされるべきとの観点から、重金属の山元還元による資源化が望まれる。

2.1.5.1 スラグの有効利用

(1) スラグ有効利用状況

スラグで有効利用されているものは、図 2.1-7 から全発生量の 6~8 割程度と推定されるが、主な有効利用先は、表 2.1-4 に示すように、①道路用材料、②コンクリート二次製品の骨材、③砂利,砂の代替品(埋め戻し材、処分場覆土)である。¹²⁾ この取引は有償の場合と無償の場合があるが、有償の場合は1トン当り 250 円程度となっている。有効利用率が上がらない原因としては、季節毎需要変動に見合う供給量を確保しにくい、需給バランスの問題や輸送費の問題がある。輸

送費から見て距離が 20km 以内の需要先を見つける必要があるとされている。

図 2.1-7 スラグ (ごみ+下水) の有効利用状況

表 2 1-4	スラグ有効利用先	(ごみ+下水)	2007	2008 年度

摘要	200	7 年度	2008 年度					
品目	利用総量 t	利用の内訳%	利用総量 t	利用の内訳%				
道路用骨材	182,900	26.2	239,000	33.3				
コンクリート用骨材〈ブロックを含む〉	146,200	20.9	139,200	19.4				
地盤·土質改良材	95,200	13.6	109,700	15.3				
最終処分場の覆土	106,900	15.3	88,700	12.3				
管渠基礎材等土木基礎材	38,800	5.6	43,100	6.0				
埋戻、盛土など	82,100	11.8	57,200	8.0				
凍上抑制材	5,200	0.7	5,300	0.7				
その他	40,800	5.8	36,400	5.1				
合計	698,100	100	718,600	100				

(2) スラグのJIS化状況

利用普及に向けて、溶融スラグの標準化(JIS 化)が急務との認識から 2001 年 9 月に TR 原案作成委員会が設立されて以降、2002 年 5 月 21 日に「日本工業標準調査会標準化部会土木技術専門委員会」における審議を経て、同年 7 月 20 日に道路用溶融スラグ骨材の TR A 0017 が公示された。同時期にコンクリート工学協会を中心としてコンクリート用溶融スラグ細骨材についての標準化も進められ、TR A 0016 が公表された。これらのTR公表後の 2002 年 2 月土壌汚染対策法が施行になり、鉛等の含有量基準が設定されたため、溶融スラグの JIS 化においても含有量基準を取り入れるかどうかが長く議論されてきた。結果的には JIS においても含有量基準は採用されることとなったが、これら環境安全性の問題のほかに産業廃棄物由来のスラグの取扱いやロット管理とサンプリング頻度等も検討され、ようやく 2006 年 7 月 20 日に道路用溶融スラグ(JIS A 5032)とコンクリート用溶融スラグ骨材(JIS A 5031)が制定された。本 JIS が、従来の品質規格と異

なるのは、溶融スラグの有効利用における環境安全品質とその管理の方法までを規格として取り込んでいる点である。言い換えれば、溶融スラグの品質管理によって使用後も含めたライフサイクルでのリスク制御を行おうとしており、このことはその後のリサイクル製品のライフサイクルにおける安全保証を考える上での先例になったと言えよう。現在、鉄鋼スラグや非鉄スラグを含めたスラグ類の環境安全性に関する化学物質評価方法について、統一的な指針作成に向けて関係者で議論がなされているところである。¹⁷⁾

2.1.5.2 溶融飛灰の資源化

中間処理で溶融処理を進めた結果、特に高温還元雰囲気では溶融飛灰に重金属が揮発分離し高 濃度に濃縮している。これを無害化処理後に最終処分するには薬剤処理にもコストがかかる上、 資源循環の観点からも重金属は本来回収されるべきであり、下記のように既存の精錬プロセス等 を利用した重金属の山元還元が推進されている。

(1) 光和精鉱 塩化揮発法

製鉄ダストから銅・亜鉛を除去して高炉原料用ペレットを製造する塩化揮発プロセス(北九州市戸畑区)がある。溶融飛灰中のNa, Kを事前に抽出除去する事により、溶融飛灰を製鉄ダストと混合して、塩化揮発処理することが可能となる。その結果、溶融飛灰の鉛、亜鉛、銅は水酸化物ケーキ等として濃縮回収でき、非鉄精錬所原料としてリサイクルできる。尚、スラグ成分は高炉水砕スラグとなり、セメント原料化される。¹⁸⁾

(2) 三池製錬㈱ MF炉、八戸製錬㈱ I S P溶鉱炉

MF炉(三井式亜鉛半溶鉱炉:大牟田)は、低品位の亜鉛を含む廃棄物(電炉ダスト等)から 亜鉛を回収する目的で開発された溶鉱炉である。溶融飛灰については、塩素を事前に洗浄除去し、 残渣を他の廃棄物・石炭と混合し、溶融することにより、粗酸化亜鉛(鉛・亜鉛・カドミニウム の酸化物)とマット(銅・銀・ニッケルの硫化物)を生成する。粗酸化亜鉛は鉛・亜鉛精錬の原料、マットは銅精錬の原料として、有価物として外販されている。

八戸製錬㈱は、海外の鉱山で採掘した亜鉛精鉱・鉛精鉱を輸入し、ISP溶鉱炉を使用して亜鉛・鉛を精練している。ISP溶鉱炉はイギリスのインペリアル社から技術導入した同時精錬できる特殊なコークスベッド型溶鉱炉である。八戸製錬では、近年、亜鉛精鉱・鉛精鉱以外に粗酸化亜鉛等のリサイクル原料の供用が増えている。溶融飛灰についても、ごく少量であるが、塩素を洗浄除去した後、粗酸化亜鉛に混合して、供用している。なお、亜鉛については、最終製品の地金(蒸留亜鉛・精留亜鉛)を製造しているが、鉛については、銅等の不純物を含むため、三井金属鉱業㈱竹原製煉所で更に電解精製等を行い、最終製品の地金(電気鉛)にしている。19)

山元還元では特管物の広域移動を伴う為、プロセス技術の実証や自治体間ルールの確立が重要であり、国レベルでの制度化が望まれる。こうした課題認識のもと現在、北九州市溶融飛灰資源化研究会、早稲田大学溶融飛灰資源化研究会が普及啓蒙活動を推進している。²⁰⁾

2.1.6 溶融処理の環境的社会的意味

2.1.6.1 環境的社会的意味

このように普及してきた溶融処理の環境的、社会的意味を問い直す試みも行われている。安井は今後10年間程度、日本の環境を支配するであろう各種事項を6項目1責任とし、それに沿って

焼却灰を溶融して作られるスラグの環境的社会的意味を述べ(表 2.1-5)、我が国の今後達成すべき指標を中心とした議論により、スラグの積極的利用は望ましいと、結論づけている。²¹⁾

表 2.1-5 スラグの環境的社会的意味

\bigcirc	六項目	
	(1)循環利用率	自然界から砂礫類を採取するには大規模な自然破壊を伴う。優 良資源は枯渇気味であり、スラグを、土木分野の細骨材などに 利用すれば、循環利用率は向上できる。
	(2)最終処分量の大幅削減	スラグを活用すれば達成できる。万一、有効活用されずに廃棄 された場合でも焼却灰の体積が減少することが有効。
	(3)二酸化炭素排出量の削減	かなり難しい課題、環境対策(3R)とはトレードオフの関係。日本全体でどの程度の割合まで溶融処理が許容できるかやエコセメントを含めたLCA評価が必要。
	(4)有害物質削減への適切な対応	ダイオキシンの害が過大に宣伝され、溶融の普及を後押しした 印象がある。ダイオキシンだけでなく、その他の重金属の放出 量なども勘案して、再度公正な検討が必要。住民にとって安 心、安全であるのは間違いないが、その安心を買うためにどこ まで費用・エネルギー・資源の投入が許容されるのか、社会全
		なで養論、決定すべき。 体で議論、決定すべき。
	(5)生態系の保全	不適正な最終処分地が生態系保全に影響してきた。今後、新た に最終処分場が造れないとするならば、焼却灰のスラグ化は正 当と結論せざるを得ない。
	(6)資源生産性 (=GDP/天然資源使用量)の向上	01年度は、1トン当り27万5,000円。平成22年までの10年間で4割向上を目指している。溶融処理に費用投入すればGDPアップし、エネルギー投入すれば資源使用量もアップするので、解析しないと結論できない。溶融スラグの販売で28万円/tレベルの資源生産性は期待できない。
0-	一責任	
	「拡大製造者責任」 「排出者責任」	ライフサイクルの最後までのコスト負担によって、投入資源の 削減を目指すのは正当と思うので、溶融スラグを後押しする原 則になるだろう。

2.1.6.2 溶融処理に対する評価

2004年の三位一体改革で、廃棄物処理施設の国庫補助金が廃止され、それに変わって、循環型社会形成推進交付金が制度化された。その目的は、国と地方が協働して循環型社会の形成に向けた3Rを推進するものであり、2005年度からその運用が開始された。再資源化施設(リサイクルセンター)や熱回収施設は交付対象となる一方、熱回収を行わない単純焼却や可燃性廃棄物の直接埋立ては循環型に相応しくないとされ補助が廃止された。この考えによれば、3Rを優先推進しつつも、それでも発生するごみの処理については、十分に熱回収をした後に、その残渣を安定化した形で最終処分する事が求められる。その処分法としての灰溶融とスラグの有効利用促進は、有効な選択肢と見なされていると考えられる。

その後、2005 年度からは交付金制度の見直しにより、交付対象施設が、「マテリアルリサイクル推進施設」、「エネルギー回収推進施設」、「有機性廃棄物リサイクル推進施設」の3つに集約された。この中で灰溶融施設はマテリアルリサイクル推進施設、ガス化溶融施設はエネルギー回収推進施設に位置付けられている。

さらに 2007 年度以降の環境省予算においては、バイオガス化施設整備や、エネルギー回収能力 向上等に力点が置かれてきている。特に 2009 年度には高効率ごみ発電への交付の重点化、さらに 2010 年度からは CO₂削減に資する施設改造への交付金制度の創設がなされた。一方、溶融処理の 将来像としては溶融スラグの有効利用と溶融飛灰の山元還元システムを構築することが資源循環・環境保全の両面から合理的であるが、最終処分量削減や最終処分場のリスク低減等の効果を勘案して、そのコストが社会的に許容できるレベルに納まるかが課題とされている。

今後、効率改善・コスト削減に向けた技術開発や広域化を進めるとともに、アスベスト無害化処理のように新たな社会ニーズに的確に対応していくことが、溶融処理の位置付け・重要性を高めるものと考えられる。さらに熱回収の向上や他システムとの組合せ等によって、温暖化防止対策との整合をとって行くことも重要である。

なお、今後溶融処理に関連して、注目すべき技術動向としては、

- ○生ごみのバイオガス化と焼却(高効率発電)+灰溶融統合システム
- ○焼却灰のエージングにより安定化、鉱物化を図り、有効利用を目指す方法
- ○次世代ストーカによる高温焼成灰の生成や灰溶融炉との一体化
- ○焼却灰・飛灰のセメント原料化

等が挙げられる。

[第2章 第1節の参考文献]

- 1)環境省:衛環第249号課長通知「平成9年度廃棄物処理施設整備計画書の提出について」(平成8年9月11日)
- 2) 環境省: 衛環第21号部長通知 「ごみ処理に係るダイオキシン類の削減対策について」(平成9年1月28日)
- 3) 環境省: 衛発第508 号部長通知 「一般廃棄物の溶融固化物の再生利用の実施の促進について」 (平成10年3月26日)
- 4) 瀬川道信:一般廃棄物の溶融スラグ化に向けた環境省のこれまでの取組と今後について、 都市清掃、Vol. 57、No. 260、pp. . 341-345 (2004)
- 5)環境省:事務連絡「ごみ焼却施設新設時における灰溶融設備の設置について」(平成 15 年 12 月 16 日)
- 6)環境省:環衛対発第100319001号「環境省所管の補助金等に係る財産処分承認基準の運用(焼 却施設に附帯されている灰溶融固化設備の財産処分)について」(平成22年3月19日)
- 7) 平山 直道: 廃棄物のガス化溶融技術の現状と問題点、都市と廃棄物、Vol. 29、No10、pp. 47-65 (1999)
- 8) (財) 日本産業技術振興協会:昭和57年度工業技術院委託調査報告書、資源再生利用システムの評価研究(2/2分冊) 資源再生利用システムの総合評価WG-,pp.56-112(1983)
- 9) 小島一郎: 焼却残渣の溶融技術の現状と課題、都市と廃棄物、Vol. 23、No. 5、pp. 92-105 (1993)
- 10) Juniper Consultancy Services Limited: Technology & Business Review, The Market for Pyrolysis & Gasification of Waste in Europe (1997)
- 11) 環境省ホームページ:廃棄物処理技術情報/一般廃棄物の排出及び処理状況等(平成 20 年度 実績)について http://www.env.go.jp/recycle/waste_tech/ippan/h20/index.html
- 12) (社) 日本産業機械工業会:エコスラグ有効利用の現状とデータ集 2009 年度版 (2010)
- 13) (社)全国都市清掃会議:ごみ処理施設整備の計画・設計要領 2006 改訂版(2006)
- 14) 古角雅行: 灰溶融技術開発の現状と残された課題、第8回廃棄物学会研究発表会講演論文集、pp680-682 (1997)
- 15) 古角雅行:廃棄物処理とパイロメタラジー、ふぇらむ Vol. 4、No6、 pp. 384-390 (1999)
- 16) 徳田昌則、長田昭一、小野創、長田守弘: 廃棄物処理における溶融法の位置づけ、第2回 エ

コバランス国際会議講演論文集、pp. 352-357 (1996)

- 17) 大迫政浩、肴倉宏史:都市ごみ焼却残さの処理およびリサイクルの行方、都市清掃、Vol. 63、No297、pp. 8-12 (2010)
- 18) 光和精鉱株式会社ホームページ:溶融飛灰資源化処理の概要 http://www.kowa-seiko.co.jp/business/index.html
- 19) 三井金属鉱業株式会社ホームページ: 廃棄物処理 (亜鉛・鉛リサイクル/溶融飛灰) http://www.mitsui-kinzoku.co.jp/project/kankyo/waster/waster_y.html
- 20) 早稲田大環境総合研究センター 溶融飛灰資源化研究会:平成20年度研究報告書(2009)
- 21) 安井至:循環型社会実現と溶融スラグの位置付け、都市清掃、Vo. 157、No260、pp. 3-8、(2004)

2.2 シャフト炉式ガス化溶融炉に期待される役割と開発成果

2.2.1 シャフト炉式ガス化溶融炉の開発経緯とプロセス概要

2.2.1.1 開発経緯

1970年台前半に高炉技術をベースとして開発された廃棄物のシャフト炉式ガス化溶融炉(以下シャフト炉と呼ぶ。)は、可燃ごみのみならず不燃ごみも一括処理可能で、有機物はガス化・燃焼し、無機物は溶融によりスラグ・メタルとして資源化することで、従来の焼却方式に比べ、最終処分量を大幅に低減できるという特徴を有している。しかし 1979年に釜石市、1980年に茨木市で実機稼動したものの、そのコークスや酸素を多量に使用することに起因する処理コスト高などにより、当時の社会環境では受け入れられず普及に至らなかった。

その後、シャフト炉の弱点であるコークスと酸素の使用量の大幅削減にトライするとともに、高温溶融のメリットを活かした処理対象物の拡大と溶融物の品質向上を図ることとした。このために再び試験プラントを建設し、コークスベッドによる溶融プロセスの反応メカニズムを解明することから始め、溶融に必要最小限のコークス使用での処理プロセス成立を目指した研究を継続し、着実に成果を上げ実用化してきた。一方処理対象物の拡大としては、処分場確保のため一般ごみと焼却残渣や埋立ごみとの混合処理を実現してきた。さらに溶融炉の使命でもある溶融物の確実な資源化に向け、品質の安定性と安全性確保に根ざした溶融スラグのJIS化に取組み、10年近い歳月をかけ2006年にようやく道路用溶融スラグおよびコンクリート用溶融スラグ骨材としてのJIS制定に至った。さらに溶融飛灰からの重金属回収による資源化(山元還元)にも取り組んでいる。

2.2.1.2 プロセス概要

ガス化溶融炉本体は竪型シャフト炉であり、 炉の中央上部から廃棄物、コークス及び石灰 石を投入する。炉内は上部から乾燥・予熱帯、 熱分解ガス化帯、燃焼帯、溶融帯に区分され る。(図 2.2-1) 乾燥・予熱帯では廃棄物が熱 せられ、水分が蒸発する。こうして乾燥した 廃棄物は次第に下降し、熱分解ガス化帯にお いて可燃分がガス化される。この熱分解ガス は、炉上部から排出され、発電設備のガス燃 焼室にて完全に燃焼される。その後、ボイラ で熱回収された過熱蒸気を用いて発電される。 ガス化されずに残ったごみ中の炭素は燃焼 帯で上段羽口から供給される空気で燃焼し、 乾燥や熱分解ガス化のための熱源となる。 一方ごみ中の灰分と不燃物はコークスとと もに溶融帯に降下する。コークスは羽口か ら供給される酸素富化空気により高温燃焼

図 2.2-1 シャフト炉本体の処理プロセス

して高熱を発し、この熱によって灰分と不燃物が完全に溶融される。溶融物は投入された石灰石中の CaO によって塩基度を調整され、流動性を高めた後出湯口より炉外へ排出され水槽に投入急冷することで、独立した粒状のスラグとメタルになり、磁力選別機により分離回収される。

本プロセスでは従来の焼却炉のように廃棄物を直接燃やすのではなく、熱分解・ガス化してから燃焼させるため燃焼性に優れていることが大きな利点である。ガス化溶融一体型であるシャフト炉式ガス化溶融炉は、乾燥、熱分解ガス化から溶融までを一つの炉の中で一気に昇温するため熱効率が極めて高いことと、1,000℃以上の領域も含め高温下でガス化するため極めてガス化率が高いことが特徴で、上記ガス化燃焼性をより高めるのに役立っている。図 2.2-2 に全体フローを示すが、後段に設置された燃焼室ではダイオキシン対策に有効とされる温度、滞留時間、攪拌が十分確保され、完全燃焼によりダイオキシン発生が極めて低レベル抑制されている。1)

このように、シャフト炉では、若干のコークスや石灰石を活用することで、幅広い廃棄物を環境に配慮しながら確実にリサイクルできる点で、優れた特徴を持っている。その中でコークスはその燃焼により炉下部を均一かつ広範囲に高温状態に保持し、鉄分等の高融点物質も含む廃棄物を完全に溶融するとともに、炉内を高温還元雰囲気に保つ役割を果たす。高温還元雰囲気は鉛等の低沸点重金属の揮散を促進し、溶融飛灰中に濃縮するとともに、スラグ中への移行を抑制する効果がある。一方、石灰石は溶融物の塩基度($=Ca0/Si0_2$)を適正化することによって、溶融物の流動性を高め溶融物の安定出湯を確実にするとともに、溶融物を水砕処理した時にスラグとメタルを独立した粒として分離凝固させ、磁選効果を高める役割がある。さらに、中和反応により排ガス中の塩化水素、硫黄酸化物等の酸性ガス成分を低減させる効果もある。このことはボイラ

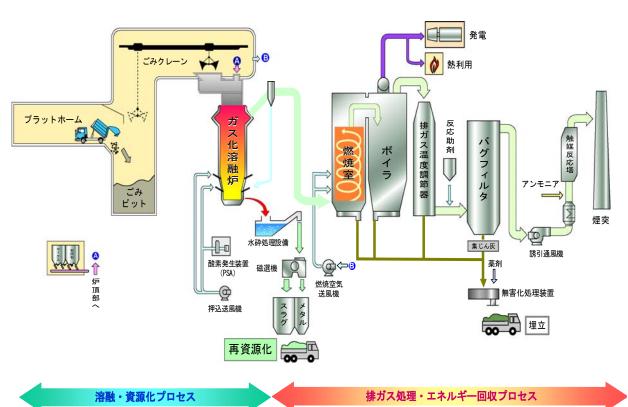


図 2.2-2 シャフト炉処理プロセス全体フロー

内での過熱器管の高温腐食性を緩和することになり、蒸気条件の高温・高圧化が図れ、高効率発電を実現できる要因の一つでもある。

2.2.2 シャフト炉に期待される役割と課題

ばいじんの処理・処分の手段として普及を始めた溶融処理技術は、ダイオキシン類規制の強化に対応してガス化溶融技術という形で大きく進展した。こうした中で溶融処理システムは有害物の無害化・安定化のための手段としてその役割を果たしてきた訳であるが、溶融処理の持つもう一つの機能である「分離・濃縮・均質化」の機能を活用して、廃棄物の再資源化を進めつつ、当初の目的でもあった減容化により最終処分場の延命化を図ることで、循環型社会構築にも貢献することが期待される。²⁾

すなわち溶融処理システムは、無害化・減溶化を達成するのみならず、溶融生成物から揮発成 分の分離と均質化が可能であり、二次生成物であるスラグ、メタル、溶融飛灰の再資源化にまで 目的を拡げた処理方法と位置づけられる。

以下にシャフト炉の有害物質の無害化処理機能と金属資源の分離・濃縮機能のメカニズムについて整理するともに、シャフト炉に期待される役割について述べる。

2.2.2.1 無害化処理機能と分離・濃縮機能のメカニズム

図 2.2-3 にシャフト炉における無害化機能と重金属の分離・濃縮機能を模式的に示す。

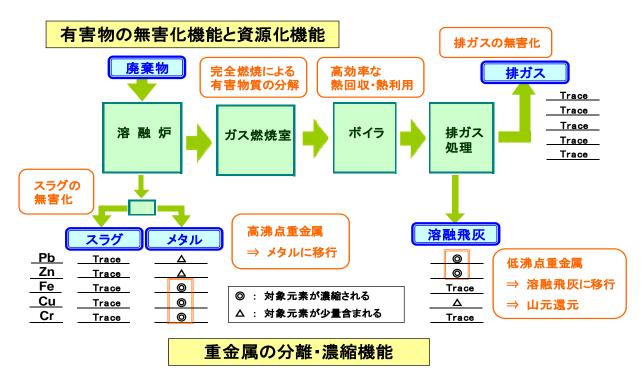


図 2.2-3 シャフト炉における無害化・資源化機能

シャフト炉は、ガス化溶融炉と燃焼室の二か所の高温域を有するため、処理困難な有機物、無機物を、安定的に分解・無害化できる。また残渣は溶融処理することで減溶化と均質化が可能で

ある。さらに高温かつ還元雰囲気での溶融処理であるため、低沸点重金属類の揮発・分離が促進される。従って Pb、Zn など低沸点重金属類は溶融スラグ中にはほとんど移行せず、揮発した低沸点重金属類は溶融飛灰へと濃縮され、ろ過式集じん器にて捕集・回収される。

高温溶融および塩基度調整を行うことで溶融物の流動性を高めることができ、水砕処理工程において Fe、Cu、Cr といった高沸点の金属類はスラグから独立した粒として分離凝固する。このため磁力選別機により、高精度に分離・濃縮されたメタル分の回収が可能となる。従って、シャフト炉のもつ無害化処理機能、および資源の分離・濃縮機能により、重金属類を含有しない安全で高品質なスラグ、Fe、Cu、Cr など高沸点金属類が濃縮されたメタル、および Pb、Zn など低沸点重金属が濃縮された溶融飛灰が得ることが期待できる。これは後述する山元還元方式による溶融飛灰の再資源化を図る上でも有効な特性となるはずである。

燃焼室では、微細な可燃性ダスト(チャー)と熱分解ガスの旋回燃焼を行っているため、燃焼制御性に優れるとともに 900℃以上の高温が保たれ、ダイオキシン類の発生を抑制するのみならず、廃棄物に含まれ、ガス側に移行した主に有機性の有害物質の分解にも有効である。

2.2.2.2 シャフト炉 による種々の処理ニーズへの対応

前項で述べたようにシャフト炉の処理特性を活かすと、従来の焼却方式や他のガス化溶融方式では処理困難な廃棄物の適正処理が可能となる。都市ごみにおいても可燃ごみのみならず、不燃ごみやリサイクルセンターの残渣も一括処理できる。また他焼却施設で発生する焼却残渣、最終処分場の掘り起こしごみやフロンも処理できるとともに、さらに家電や自動車のリサイクル残渣、アスベスト廃棄物等の無害化・資源化処理ニーズに対応することが期待できる。これらはいずれも従来は埋立処分されてきたものであるが、最終処分場の残容量や今後の建設見通しを考慮したとき、また、処理の確実性を勘案するとシャフト炉が果たすべき役割は大きいと考えられる。一方、副産物の確実な資源化を果たすことにより資源循環社会構築への貢献が求められる。これらの技術検証については、これまで試験設備や実機設備を用いて実証試験を実施してたので、以降に詳しく述べることとする。

2.2.3 シャフト炉の改善研究成果

2.2.3.1 溶融プロセス開発

(1) コークスベッドでの挙動研究

シャフト炉の炉下部のコークスベッド 部分のみを焼却灰専用の溶融炉として商 品化したコークスベッド式焼却灰溶融炉 (以下、灰溶融炉と呼ぶ。)の試験設備を 用いて、多段羽口を用いた送風条件の適 正化により、コークス消費のミニマム化 を追求した。その過程で東京都との共同 研究において溶融処理過程での重金属類 の挙動を詳細に調査した。

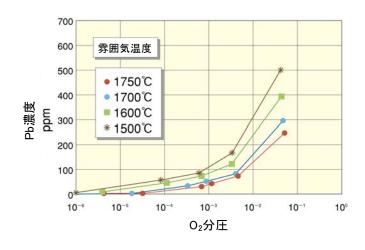


図 2.2-4 溶融スラグ中 Pb 濃度と炉内雰囲気の関係

その結果、灰溶融試験時において Pb、Zn 等の低沸点重金属類の大半が揮発し、溶融スラグ中の含有量を低く抑えていることを確認した。 $^{3)}$ この現象の要因を解明するために、熱力学平衡論に基づくシミュレーションを実施した。解析結果の一例を図 2.2.4 に示すが、溶融スラグ中の Pb 濃度は酸素分圧が高くなるほど、また溶融温度が低くなるほど増加する傾向があり、この結果は灰溶融試験結果ともよく一致している。特に 10^{-2} atm 以上で急激に増加するので、溶融スラグ中の Pb 濃度を安定的に低く抑えるには 10^{-3} atm 以下に保つ必要があることが示された。こうした実証試験及び熱力学的シミュレーションの両面よりコークスによる高温還元雰囲気が低沸点重金属類の揮発を促進していることを明らかにした。 $^{4),5}$

(2) シャフト炉におけるガス化特性

ガス化溶融技術においてはガス化特性が、システム全体の成立性に大きな影響を与えることになる。シャフト炉においては、ごみ中の可燃分は一つの炉内で、①乾燥・熱分解、②ソルーション反応、③コークスとごみの高温燃焼という異なる3つのプロセスによりガス化される。このうちソルーション反応によるガス化については、コークスとごみ物中の炭素が、下方の高温燃焼域から上昇する高温の CO_2 ガスとの反応でCOガスに転換するものである。本反応は羽口から供給した酸素が燃焼で消費され、温度が1800 で超となって以降、吸熱によりガス温度が約1000 で低下するまでの範囲で進む。この反応は本システムにおけるシャフト炉の高温ガス化を特徴付ける反応であり、廃棄物のガス化効率向上に寄与する。

こうしたシャフト炉のガス化燃焼特性を明らかにするために、20t/日の試験設備での都市ごみ溶融試験結果を解析したので以下に紹介する。<math>6 コークス使用量は 4.9%であった。図 2.2-5 に 炉内に投入された炭素がいかにガスに転換されるかを示す。炉内投入炭素はごみとコークスからなり、合計 $271 \log - C/t$ である。

このうち炉底では 102 kg-C/t、ごみの炭素が燃焼し高温の CO_2 として溶融に寄与したあとにソルーション反応 $(\text{C}+\text{CO}_2\rightarrow 2\text{CO})$ によってその顕熱の一部を CO 潜熱として回収される。その結果炉出口のガスとしては熱分解ガス化に 127 kg-C/t・ごみ、ソルーション反応 (CO) に 86 kg-C/t、燃焼反応 (CO_2) に 58 kg-C/t となる。また炉内投入炭素からみた炭素のガス転換効率は、可燃性ガスへ 66.2% $(\text{CO} \sim 40.3\%$ 、その他の可燃性ガスへは 25,9%)であり、残り 33.8%が燃焼、熱分

解による CO。で 300 (kgC/ごみt) あった。 250 以上により、 熱分解 200 シャフト炉は、 [ソリューション反応] ガス化 C+CO2→2CO ごみ 溶融機能を果 炭素のガス化量 150 ごみ中炭素 たしつつ、ガス 100 リリューション 化効率も高い [燃焼反応] 反応 CO2 C+O2 50 ことが示され →CO2 コークス 燃焼反応 燃焼反応 0 た。 入側 炉底部 出側

図 2.2-5 炭素のガス化量

(3) 羽口の多段化技術開発

当初、シャフト炉は酸素を富化した空気を溶融炉下部から単段で送風し、コークスを高温燃焼させて不燃物や灰分の溶融熱源に供するとともに、炉上部でのごみの乾燥や熱分解に必対しいのでごみの乾燥・熱分解のためにより上部に設けられた羽口でごみの一部を燃やし、ごみの乾燥・熱分解のためにこれまで無駄に燃えていたコークスの代替を図ろうとする開発を実施した。(図 2. 2-6 参照)

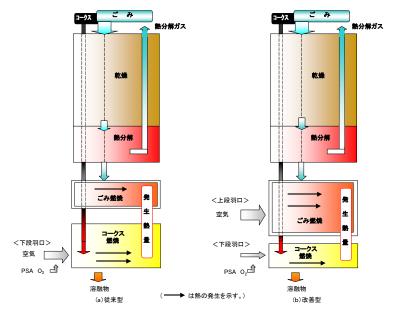


図 2.2-6 羽口多段化の効果概念図

この結果、コークスの使用量

はごみに対し $5\sim6\%$ 程度にまで削減でき、合わせて富化酸素量も比例して削減できた。この技術は灰溶融炉開発で得られた知見を活用したものである。 7

(4) 可燃物羽口吹き込み技術開発

上記羽口多段化のもとでそのままコークス使用量を削減していくと溶融物温度が低下し、溶融スラグ中のPbの含有量が上昇する傾向が見られた。このため炉底部における炭素減を確保しつつコークス使用量を低減するため、可燃物を下段羽口から吹き込むこととした。可燃物としては廃プラスチックと溶融炉上部から飛散した可燃ダスト(チャー)を検討しいずれも良好な結果を得た。899

廃プラスチックは炉上部から投入すれば 熱分解ガス化後、燃焼室で熱回収されるサ ーマルリサイクルのみとなるが、羽口から 吹き込めばコークスの還元剤としての代替

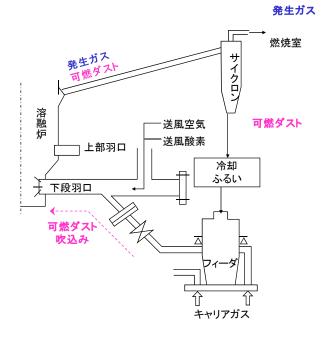


図 2.2-7 可燃ダスト捕集・吹込み技術

によるケミカルリサイクルを合わせて実現できると言う意味をもつ。 一方、可燃ダストは溶炉 上部より飛散したものを燃焼室の前でサイクロンにより捕集し、羽口から吹き込むことでコーク ス代替と飛灰発生量の低減を図るものである。(図 2.2-7 参照) 燃焼室出口排ガスダイオキシン類 (DXN) 濃度と煙突未燃 CO 濃度との関係を図 2.2.8 に示すが、燃焼室出口 DXN 濃度が低いと煙突未燃 CO 濃度も低下する傾向がみられる。可燃ダスト捕集無し時(改善前条件)では煙突未燃 CO 濃度が10~30ppm の範囲で推移し、平均 20ppm程度であった。一方、可燃ダスト捕集有り時(改善後条件)では、煙突未燃 CO 濃度が 0~15ppm の範囲で推移し平均10ppm以下を達成している。10)

このように可燃ダスト捕集・吹き込み 技術は、コークス使用料低減、飛灰発生 量低減とともにダイオキシン類発 生抑制の効果がある。

2.2.3.2 処理対象物の拡大研究

(1) 焼却施設焼却残さの混合処理

焼却残渣と都市ごみ混合溶融処理の 事例として、名古屋市の例を示す。名古屋市では、市内の他焼却施設から発生する焼却残渣と破砕残渣(可燃・不燃)を平成21(2009)年7月より稼働開始したシャフト炉にて都市ごみと混合溶融することで、従来最終処分していた焼却残渣をスラグ・メタルとして再資源化し、最終処分量の削減が可能となった。¹¹⁾

図 2.2-9 に名古屋市におけるごみ処理のフローを示す。名古屋市においてシャフト炉の導入により、最終処分量は約85%削減すると試算されている。(図2.2-10参照) このことは灰溶融炉の付設されていない既設焼却施設との組み合わせによって、シャフト炉の機能がより効果的に発揮できることが示されたと言える。

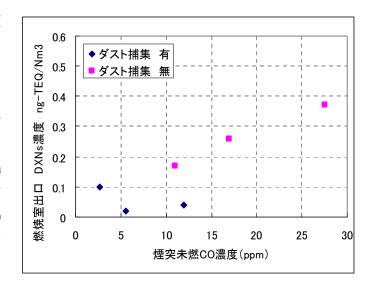


図 2.2.8. 燃焼室出口排ガス DXN 濃度と煙突未燃 CO 濃度

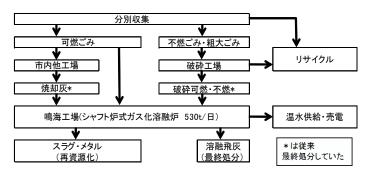
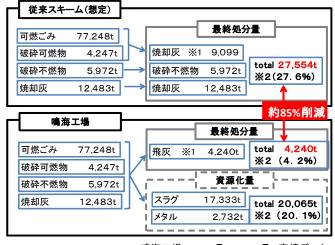



図 2.2-9 名古屋市における一般廃棄物処理フロー

鳴海工場 H21.7月~H22.3月 実績データ ※1 湿重量ベース、※2 総処理量に対する割合

図 2.2-10 名古屋市における最終処分量削減効果

(2) 掘り起こしごみ処理による最終処分場の再生

最終処分場の残余容量が逼迫していることから、既存の処分場の延命化や再生ニーズが高まっている。そこで、シャフト炉は簡易な前処理のみで処理不適物も殆ど無いことから、低コストで効率よく処分場の延命化が図れると考え、シャフト炉の試験設備を用いて、一般ごみに掘り起こしごみを $10\sim20\%$ 混合処理することが可能であることを実証した。12)

試験評価期間中のガス化・溶融炉における処理対象物量及びスラグ・メタル発生量、無害化処理集じん灰量を各々の比重を基に容積換算し、処理対象物容積に対する最終処分容積として減容化率を算出した(図 2.2–11)。 K市一般ごみ単独処理時においては、スラグ・メタルは資源化されるため、容積比としてみれば、1時間当たり $4.1 \,\mathrm{m}^3$ のごみは、無害化処理集じん灰 $0.020 \,\mathrm{m}^3$ へと 1/205 に減容化されたことになる。一方、同様に掘り起こし混合ごみ処理時には、 $0.079 \,\mathrm{m}^3$ (掘り起こしごみの比重は $1.0/\,\mathrm{m}^3$ とした)の掘り起こしごみを含む $3.6 \,\mathrm{m}^3$ のごみが、最終的に無害化処理集じん灰 $0.021 \,\mathrm{m}^3$ まで減容化されており、減容化率は 1/170 となる。なお、一般

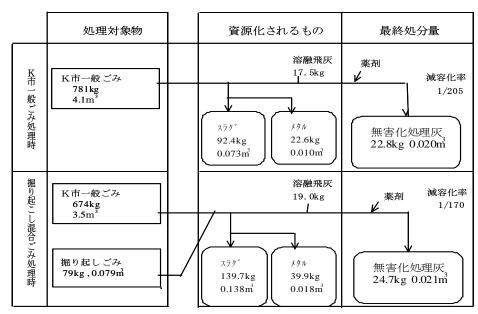


図 2.2-11 掘り起こしごみ処理時の減容効果

の掘り起こしごみ混合処理でも十分 処分場の延命に有効と考えられる。

表2.2-1にPbの濃度と移行率を示すが、単独処理、混合処理に係わらず、ごみ起因のPb等の重金属はスラグには殆ど移行せず、溶融飛灰側へ移行することが確認された。

	一般ごみ	処理時	掘り起こし混合ごみ処理時					
	濃度	移行率(%)	濃度	移行率(%)				
スラグ	11.7ppm	0.5	20ppm	0.7				
メタル	0.0247%	2.7	0.0452%	4.8				
集じん灰	1.27%	96.8	1.94%	94.5				

表 2.2-1 Pb 濃度と移行率

最終処分場に埋め立てた廃棄物を

掘削し、シャフト炉を活用して都市ごみとともに溶融処理することで、最終処分場の延命化を図る取り組みについて、その処理フローを図 2.2-12 に示す。この取り組みにより,低コストで効率よく最終処分場延命化が図れるため,新たな最終処分場を確保できない自治体にとって,有効な手段となっている。 $^{13),14)}$

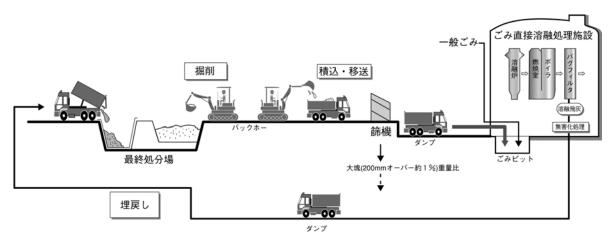


図 2.2-12 埋立地再生システムの処理フロー

(3) フロンの分解処理

フロン (CFC-12) の分解反応は下式に示すように、高温下での加水分解により二酸化炭素、塩化水素、フッ化水素を生成するものである。

 $CC1_2F_2 + 2H_2O \rightarrow CO_2 + 2HC1 + 2HF$

シャフト炉においては、溶融炉本体下部と燃焼室の二つの高温域が存在することから、フロン 分解法としても下記の二つの方法が考えられる。

- ①溶融炉羽口吹込みによるフロン分解
- ②ごみ装入口への投入によるフロン分解
- ①はボンベ回収された冷媒フロンを対象とした処理方法であり、溶融炉の高温帯で分解されるとともに燃焼室でもフロンが分解される。一方、②は断熱材や発泡スチロール等のごみに含まれる発泡剤フロンを対象とした処理方法である。ごみ装入口から投入された断熱材等は溶融炉上部で熱分解されるため、中に含まれるフロンは放出され、燃焼室内の高温雰囲気で分解される。

		一次試験		二次試験				
フロン供給位置	ブランク	羽口	燃焼室	ブランク	羽口	燃焼室		
使用フロン	CFC-12	CFC-12	CFC-12	CFC-12	CFC-12	CFC-12		
フロン供給量	_	3. 1	3. 1	_	3. 1	3. 2		
(kg/h)								
排ガス中フロン	1. 1	< 0.5	0.7	< 0.5	< 0.5	< 0.5		
濃度 (ppb)								
煙突乾き排ガス量	26, 900	25, 800	30,000	26, 100	27, 500	31, 400		
(Nm3/h)								
フロン分解率	_	99. 998	99. 996	_	99. 998	99. 997		
(%)								

表 2.2-2 フロン分解試験結果

これら二つのフロン分解特性を評価するために①の溶融炉羽口(以下、羽口と略す。)にフロンを吹込むケースと燃焼室にフロンを吹き込むケースの2ケースについて、実機を用いて実証試験を行った。^{15)、16)}

回収ボンベ中のフロンはフロン発生装置によってガス状フロンになり、羽口または燃焼室に供給される。溶融炉及び燃焼室でフロンを分解した排ガス中のフロン濃度を測定しプラント全体でのフロン分解率を算出した結果を表 2.2-2 に示すが、いずれも高い分解率を示した。こうした試験結果に基づき、釜石清掃工場ではフロン破壊施設の認定を取得した。

2.2.4 溶融副産物の資源化研究

2.2.4.1 スラグ・メタルの資源化

溶融物の品質を確保するためにシャフト炉では、溶融温度の維持と塩基度調整により流動性を高めており、水砕時にスラグとメタルが独立して凝固する。これを独自開発の磁選機を用いることでスラグにメタルが混入しないよう分離回収している。さらに軽破砕することで粒度調整する。長年すべての納入施設から排出されるスラグの品質データを取り続けてきており 17)、その利用先とも協力し使用状況を確実にフォローしてきた。この実績をスラグの JIS 化検討過程で提供し、JIS 化実現に貢献した。また新たな用途開拓も継続実施している。例えば、埋立地の地盤改良材が不足していることからその代替材としてスラグの適用性に関する基礎試験を海洋土木の専門家と共同で実施した。特に施工時のスラグ粒子の破砕程度を評価する突き固め試験やすりへり試験等を行った結果、サンドコンパクションパイル材やサンドドレーン材の品質基準に適合し、地盤改良材として適用可能との評価を得た。18)

表 2.2-3 溶融スラグの環境安全品質分析結果

			A市		B市			C市			D市			E市			F市			基準値	
施設規	!模		200t/d×2炉		65t/d×2炉			85t/d×2炉			129t/d×3炉			60t/d×2炉			100t/d×2炉		2炉		
処理対	象物		一般ごみ 焼却灰、汚泥		一般ごみ 焼却灰、飛灰			一般ごみ 汚泥			一般ごみ 資源残渣、汚泥			一般ごみ 汚泥、堀起ごみ			一般ごみ 飛灰				
スラグ	性状																				
	Pb	mg/kg	4.7 ~ 15.6		15.6	3.1	~	6.3	6.5	~	16.6	7.2	~	18.8	11.4	~	39	5.8	~	30	150以下
	Cd	mg/kg	<0.1		<0.1			<0.1			<0.1			<0.1			<0.1			150以下	
	Cr6+	mg/kg	<5		<5			<5			<5			<5			<5			250以下	
含有	As	mg/kg	<0.2			<0.2			<0.2			<0.2			<0.2			<0.2			150以下
量	Hg	mg/kg	<0.05		<0.05			<0.05			<0.05			<0.05			<0.05		i	15以下	
	Se	mg/kg	<0.2		<0.2			<0.2			<0.2			<0.2			<0.2			150以下	
	F	mg/kg	100	~	230	120	~	190	50	~	130	110	~	160	50	~	70	140	~	190	4000以下
	В	mg/kg	185	~	246	136	~	177	162	~	262	182	~	259	80	~	176	248	~	316	4000以下
	Cd	mg/l	<	<0.001		<0.001			<0.001		<0.001		<0.001			<0.001		1	0.01以下		
	Pb	mg/l	<0.001	~ (0.002	<0	<0.001		<0.001 ~ 0.004			<0.001			<0.001 ~ 0.003			<0.001 ~ 0.002			0,01以下
	Cr6+	mg/l		<0.01		<0.01			<0.01			<0.01			<0.01			<0.01			0.05以下
溶出	As	mg/l	<0.001		<0.001			<0.001			<0.001 ~ 0.002			<0.001			<0.001		1	0.01以下	
量	Hg	mg/l	<(<0.0005		<0.0005			<0.0005			<0.0005			<0.0005			<0.0005		5	0.0005以下
	Se	mg/l	<	0.001		<0.001		<0.001			<0.001			<0.001			<0.001			0.01以下	
	F	mg/l	0.1	~	0.2	0.1	~_	0.2	<0.1	~	0.3	0.1	~	0.3	0.1	~	0.5	<0.1	~	0.3	0.8以下
	В	mg/l	0.01	~	0.14	0.02	~	0.17	0.02	~	0.17	0.02	~	0.07	0.02	~	0.08	0.02	~	0.08	1以下

プロセス改善や処理対象物の拡大研究においても、常にスラグ品質維持確保を指標としている。 特に安全性で問題となる Pb 等の溶出量と含有量については、高温還元雰囲気の管理により安定して低レベルに維持できている。(表 2.2-3 参照)

メタルについては処理対象で成分がばらつくので、その性状に応じた用途開発により、建設用機械のカウンターウェイト材や製鉄原料、非鉄原料等として有効利用している。こうしてスラグ、メタルともに継続して100%資源化を達成している。¹⁹⁾

2.2.4.2 溶融飛灰の資源化(山元還元)

溶融炉から揮発した鉛、亜鉛等の低沸点重金属類はガス冷却過程で凝縮し、バグフィルターで溶融飛灰に分離濃縮される。従来はこの溶融飛灰は薬剤で無害処理され埋め立て処分されていた。従って溶融飛灰はガス化溶融では唯一の埋め立てられる対象であった。これを非鉄精錬プロセスに戻す、いわゆる山元還元することによりシャフト炉プロセス排出される全ての生成物が有効資源として活用され、最終処分場を必要としないゼロエミッションシステムが完成する。

北九州市内にある光和精鉱株式会社では、シャフト炉より排出された溶融飛灰の一部を受け入れ、山元還元による溶融飛灰の再資源化を開始している。図 2.2-13 に光和精鉱株式会社における溶融飛灰資源化プロセスを示す。²⁰⁾

溶融飛灰は水抽出、酸抽出、及び塩化揮発処理により塩、重金属類、鉄成分(含むスラグ分)に分離される。鉄成分(Fe_2O_3)及びスラグ成分(SiO_2 、 AL_2O_3 、CaO)は製鉄原料として製鉄所にて資源利用され、その他重金属類は非鉄原料として再資源化される。埋立と比較してコストはやや高いものの実用化段階に入っている。

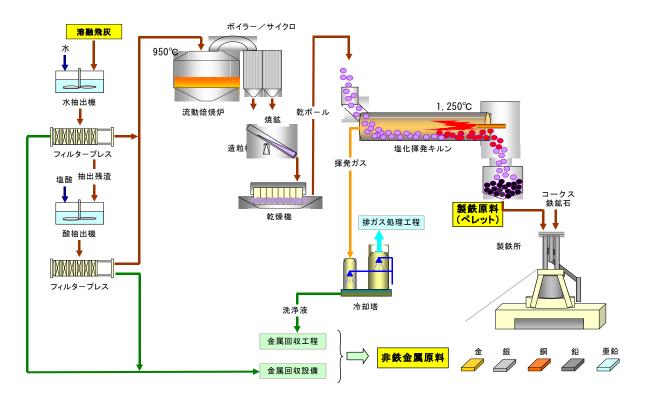


図 2.2-13 光和精鉱㈱における溶融飛灰資源化プロセス

2.2.4.3 ごみ発電の高効率化研究

ガス化溶融炉で溶融物や溶融飛灰の資源化によるマテリアルリサイクルと同様に重要な要素は廃棄物の有するエネルギーを回収するごみ発電によるサーマルリサイクルである。この発電を高効率化するために、回収蒸気の高温・高圧化やタービン排気圧力の低下等に取組んできており、高温腐食環境下で耐えるボイラチューブ材料の開発も製鉄部門と共同開発した。

特にシャフト炉では、前述の通り石灰石による中和反応で排ガス中 HC1 濃度が低く、高温腐食が軽減されるため、過熱器管の耐久性が向上する特長を持っている。この特長を活かし、蒸気温度 450℃のボイラを持つ施設を平成 12(2000)年 4 月に亀山市に納入し、現在まで安定稼動を継続している。 この国内トップレベルの高温ボイラの実現に際しては、以下の対策・検討を行った。21)

(1) 高温腐食に対する耐性の高い過熱器管材料の選定

廃棄物処理施設におけるボイラの過熱器管は、高温腐食に対する耐性の高い材料選定が必要である。そこで、本施設における過熱器管材料の選定に当たっては、実用施設から採取した灰を利用した模擬試験にて材料の絞り込みを行った上で、実缶試験を経て、経済性を考慮して SUS 系材料を母材に選定した。

(2) ボイラ構造の最適化(過熱器表面での局部的な温度上昇を抑制する構造的対策)

ボイラ構造(水管配列など)の最適化に当たっては、排ガスの熱を蒸気エネルギーに変換する 熱交換効率を上げつつ、いかにして過熱器付近の高温環境を緩和していくかが重要である。この 課題の解決にあたり、以下のような構造的な配慮を行った。

- ① 腐食環境緩和のため、最終の3次過熱器を1次過熱器の下流側に配し、3次過熱器付近の温度環境を緩和。
- ② 過熱器へ導入されるガス流れを均一化して局所的な過熱器高温化 (による高温腐食進行)を防止する目的で、ガス反転部にスクリーン管と呼ばれる蒸発器を設置。
- ③ 適切なダスト除去機能の活用による灰の堆積防止
- ④ 過熱器の入口部には耐食性の向上などを図るため高 Ni の耐食性合金の溶接肉盛を施工 以上の対策を施した亀山市総合環境センターでは、都市ごみに加え、最終処分場から掘り起こ

した埋立ごみを併せて処理する過酷な 使用条件にもかかわらず,適切な過熱 器の材料選定およびボイラ構造の最適 化により稼働後5年目においても1mm 以下という,極めて少ない減肉量であった。

さらに、2007年4月に稼働開始した 北九州市新門司工場では①水冷式復水 器の採用(図 2.2-14)、②低温触媒方式 の採用等の技術を組み合わせることで、 発電効率向上を図った。²²⁾

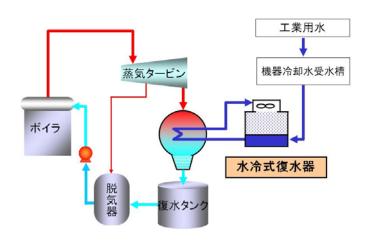


図 2.2-14 水冷式復水器の採用例

以上のようにコークスを投入していることによる増分エネルギーを少しでも有効に回収するため、高効率発電に向けた技術メニューを増やす努力をしてきており、図2.2-15にこうした各要素技術を組み合わせることで達成できる発電効率を示す。

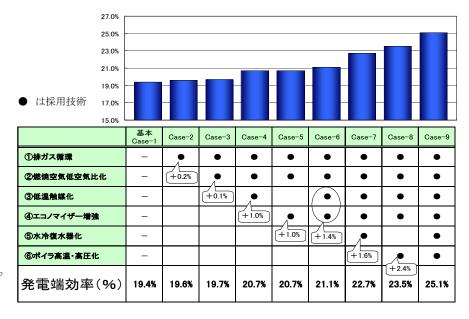


図 2.2-15 改善技術の組合せによる発電効率の効率向上

2.2.5 地球温暖化対策について

シャフト炉式ガス化溶融炉が有害物質の無害化機能および資源分離・濃縮機能において優れた特性を有する一方で、他の焼却処理や埋立処分と比較してコークスを使用する分、温室効果ガスの排出量が多いという一面がある。確かに溶融のための高温状態を維持確保することと還元雰囲気として、低沸点重金属類の揮発を促進するためにコークス等の副資材を必要とする

ことは避けられない。従って、シャフト炉においては、エネ 図 2.2-16 バイオマスコークス ルギー起因 CO₂の発生抑制が求められる。

この課題に対し、2.2.3.1 項に示した一連のプロセス改善開発によりコークス消費量を削減し、 CO_2 排出量削減を図ることに鋭意取り組んできた。それでも必要最小限残されたコークスについて

は、化石燃料を原料としたコークスから カーボンニュートラルなバイオマスを原 料とした「バイオマスコークス」に置き 換える技術開発に取り組み、既に技術見 通しを得ている。図 2.2-16 に製材工場廃 棄物であるおが屑を成型後に乾留して製 造したバイオマスコークスの外観を、表 2.2-4 にその分析値の一例を高炉コーク

		バイオマス	高炉
		コークス	コークス
水分	wt%	4.6	0.8
灰分	dry wt%	3.0	10.4
固定炭素	dry wt%	92.6	89.0
低位発熱量	kJ/kg	29,570	29,456

表 2.2-4 バイオマスコークスの性状

スと比較して示す。バイオマスコークス適用技術は、実用施設での実証試験を完了し、表 2.2-5 に示すように高炉コークスと遜色なく使用可能であることを確認できたことから、本格的実機適用に向けて準備を進めているところである。²⁴⁾

なお、現状の化石燃料を原料としたコークスを使用している状況においても、温室効果ガス排 出量の増分と他のメリットをと比較すればどういった損得勘定になるのか評価しておくことも重 要と考え、第4章においてはコークスを使用した条件で、ライフサイクルアセスメントの手法を 用いて他の処理方式との総合的比較評価を実施する。

		コークス	バイ	オマスコー	·クス
	データNo.	1	2	3	4
	コークス比	5.0%	5. 0%	4. 0%	3. 5%
	データ期間	3/31-4/1	4/2-3	4/4-7	4/8-9
一般ごみ処理量	t	52. 1	59. 7	62. 6	57. 5
コークス比	%	5. 1	4. 9	3. 7	3. 2
溶融物温度低下(※)	°C	_	▲ 6	▲ 49	▲ 23
溶融物比	kg/t-waste	79	77	71	116
ごみカロリ	kcal/kg	2289	2276	2235	2462
重油原単位	L/t-waste	4. 5	2. 9	2. 8	3.0
主蒸気流量変動率(※)	_	1.00	0.58	0.78	0.69

表 2.2-5 バイオマスコークス適用試験データ

【第2章 第2節の参考文献】

- 1) Morihiro Osada, Kazuki Murahashi, Hideharu Shibaike: Characteristics of Gasifying Combustion in MSW Direct Melting System, Proceedings of 1st i-CIPEC, pp. 101-107 (2000)
- 2) 長田守弘:ガス化溶融炉を活用した資源循環への取組み、 環境浄化技術、Vol. 5、No. 11、pp. 23-28 (2006)
- 3) 長田守弘、小野創、古角雅行、徳田昌則:焼却飛灰の溶融処理に関する実証試験と熱力学的 考察(第一報)、第6回廃棄物学会研究発表会講演論文集、pp. 381-383 (1995)
- 4) 長田昭一、長田守弘、古角雅行、徳田昌則:焼却飛灰の溶融処理に関する実証試験と熱力学 的考察(第2報)、第7回廃棄物学会研究発表会講演論文集、pp. 467-469 (1996)
- 5) 長田昭一,長田守弘、古角雅行、徳田昌則:溶融処理過程における低沸点重金属類の挙動に関する熱力学的考察,廃棄物学会論文誌, Vol, 15, No. 5, pp. 353-362 (2004)
- 6) 俵洋一、長田守弘、芝池秀治、村橋一毅:直接溶融炉のガス化特性、日本機械学会 1999 年度 年次大会講演論文集、pp. 409-410 (1999)
- 7) 俵洋一、加藤也寸彦、白石光彦、村橋一毅、小野創、原尻八郎、石田吉浩、西原信義:廃棄物の直接溶融処理技術の改善研究:新日鉄技報第360号、pp.25-31 (1996)
- 8) 上野義治, 芝池秀治他: 直接溶融炉における可燃ダスト羽口吹込み技術の開発、第12回廃棄物学会研究発表会講演論文集、pp.813-815 (2001)
- 9) 芝池秀治、長田守弘、田中宏和、高宮健:直接溶融炉における廃プラスチック羽口吹込み技術の開発、第11回廃棄物学会研究発表会講演論文集、pp. 460-462 (2001)
- 10) M. Osada, K. Takamiya, S. Sakai: Bromine Behavior and Metal Control in MSW Direct Melting

[※]データ①を基準とした相対値

- System, Proceedings of 3rd i-CIPEC, pp. 343-348 (2004)
- 11) 俵洋一、佐藤哲、泉屋亨、真名子一隆:名古屋市におけるごみ処理 PFI 事業の運営報告(シャフト炉式ガス化溶融施設における他工場高灰分ごみ処理)、第31回全国都市清掃研究・事例発表会講演論文集、pp. 187-189 (2010)
- 12) 藤吉秀昭、長田守弘、高宮健: 埋立地再生へのガス化溶融処理技術の適用、第 14 回廃棄物学会研究発表会講演論文集、pp. 789-791 (2003)
- 13) 阿部昭、佐藤和美、真名子一隆、高宮健、長田守弘:直接溶融炉における掘り起こし埋立ご みの溶融処理システム、第 14 回廃棄物学会研究発表会講演論文集、pp. 792-794 (2003)
- 14) 長田守弘、藤吉秀昭: 埋立地再生技術と経済性評価、廃棄物学会誌、Vo1、16、No. 3、pp. 142-149 (2005)
- 15) 仲川義一、長田守弘、小林淳志、平岡正勝:都市ごみ高温溶融炉によるフロン分解試験結果、 第7回廃棄物学会研究発表会講演論文集、pp. 939-941 (1996)
- 16) 上野義治, 小阪良平, 長田守弘, 吹中範生, 平岡正勝:都市ごみ高温溶融炉によるフロン分解試験結果(第2報), 第8回廃棄物学会研究発表会講演論文集, pp. 901-903 (1997)
- 17) 長田昭一、長田守弘、西原信義、伊能泰夫:都市ごみ溶融スラグの性状と品質の安定性について、第25回全国都市清掃研究・事例発表会講演論文集、pp. 197-199 (2004)
- 18) 長田守弘、西原信義、長田昭一、三浦仁、森田悠紀夫、諏訪朝夫:都市ごみ直接溶融スラグの地盤改良材としての適用性に関する基礎試験、材料、Vo49、No.1、pp.34-37 (2000)
- 19) 西原信義、伊能泰男夫、長田昭一、長田守弘:溶融スラグ・メタル再利用技術,新日鉄技報第 376 号、pp. 51-56 (2002)
- 20) 光和精鉱株式会社ホームページ:溶融飛灰資源化処理の概要 http://www.kowa-seiko.co.jp/business/index.html
- 21) 木下弘志、峯武、松村家寿栄、竹田雅文、瀬戸俊之、林和幸、栗田雅也、藤田源治、加藤敏郎、森浩一郎:高効率廃棄物発電ボイラー過熱器の技術開発と稼働実績、 第 16 回廃棄物学会研究発表会講演論文集、pp. 790-792 (2005)
- 22) Manako. K, Kashiwabara. T, Kobata. H, Osada. M, Takeuti. S, Mishima. T: Dioxins Control and High-Efficiency Power Gereation in a Large-Scale Gasification and Melting Facility, Proceedings of 27th International Symposium on Halogenated Persistent Organic Pollutants, pp. 940-943 (2007)
- 23) 永田俊美、馬場健志、長田守弘:シャフト炉式ガス化溶融炉の特長を活かした高効率発電への取り組み~発電効率 23%を目指して~、新日鉄エンジニアリン技報、Vol.1、ppa. 23-28 (2010)
- 24) 西猛、柏原友、星沢康介、小林淳志、長田守弘:シャフト炉式ガス化溶融炉におけるバイオマスコークスの適用,第 20 回廃棄物学会研究発表会講演論文集,pp. 333-334 (2009)

2.3 第2章のまとめ

第2章では、日本における溶融処理技術の開発経緯と技術課題を整理し、その中でシャフト炉に関して、その特徴を整理するとともに技術課題解決に向けた一連の技術開発への取り組み状況と開発成果について取りまとめた。

第1節では、溶融処理技術の開発の経緯を振り返ることにより溶融処理技術の本来果たすべき 役割を再点検し、それに向けて解決すべき技術課題を整理した。

溶融処理技術は、ばいじんの適正処理、ダイオキシン問題や処分場枯渇等の課題を解決すべく 開発され、焼却残渣を溶融する灰溶融とごみから直接溶融するガス化溶融に大別される。環境省 の政策誘導の後押しもあり、2000年代に急速に普及し全国で200施設を超えるに至った。

副産物の溶融スラグは JIS 化も達成し有効利用が進められているが、環境安全性の確保は当然のことながら、その利用率はまだ十分でないといった指摘がある。一方でエネルギー消費が大きく、耐火物の補修費がかさむ等、溶融処理はコストがかかる割にそれに見合った効果が実現されていないということも言われている。また、溶融飛灰については、その中に重金属類を濃縮し、山元還元にて資源回収することを目指すべきとされているが、重金属類の挙動は、溶融炉内の雰囲気(酸素分圧)や温度により制御できるとされている。

今後、アスベスト処理等の新たな社会ニーズに応えるとともに、地球温暖化対策との整合も求められる。

第2節ではシャフト炉の技術的特徴を確認するともに、前節で指摘された課題解決や期待される役割に応えるべく技術改善に取り組んできた成果を以下の通り取りまとめた。

シャフト炉は、若干のコークスを添加することで幅広い廃棄物を確実にリサイクルできる点と 炉内を高温還元雰囲気に保つことで、Pb、Zn 等の低沸点重金属の揮散を促進し、溶融飛灰中に 濃縮するとともに、スラグ中への移行を抑制する効果がある.

こうした特徴を活かすべく、以下にあげる開発テーマに取り組み、プロセス解明に基づいて技 術改善を遂行し、当初目的とする成果を得ることができた。

- (1) 溶融プロセス開発
 - ① 溶融炉内での重金属類の挙動、ガス化特性解明
 - ② 羽口多段化及び可燃物吹き込み技術
- (2) 処理対象物の拡大研究
 - ① 焼却残渣や掘り起こしごみ処理技術開発
 - ② フロン分解
- (3) 溶融副産物の資源化研究
 - ① スラグ・メタル及び溶融飛灰の資源化
 - ② ごみ発電の高効率化研究
- (4) 地球温暖化対策
 - ① バイオマスコークスの適用

これまでは順調に施設数を伸ばしてきた廃棄物の溶融処理技術であるが、その期待に応え今後

も普及を図るには、確実に無害化を果たし、資源化・減容化を達成しつつ、エネルギー消費を抑えることが必要である。

こうした中で、シャフト炉に関する一連の改善研究を通して、その特徴を活かしつつ、適用拡大を図るとともに、コークスの使用量の削減やカーボンニュートラルなバイオマスコークスへの転換にも目途を得ている。また高効率発電を積極的に推進し、低炭素化社会にも着実に対応できていることを示した。

第3章 廃棄物溶融プロセスにおける有害物質の挙動調査

3.1 自動車破砕残渣 (ASR) の溶融処理プロセスにおける臭素化難燃剤およびダイオキシン類縁化合物の挙動

3.1.1 研究の背景

日本における廃車数は年間約500万台にのぼり、このうち中古車として輸出されるものを除き、約400万台がリサイクルまたは廃棄物として処理され、1)廃車のリサイクル率は75~80%となっている。このリサイクルと廃棄の過程で、廃車のボディは破砕されるが、素材回収された後に残る自動車破砕残渣(ASR)は、主として埋め立て処分されてきた。しかしながら産業廃棄物の埋立地は非常に枯渇してきており、埋立を前提とした従来のリサイクリングシステムが機能しなくなった結果、不法投棄や不適正な産業廃棄物処理が社会問題化してきた。2)

こうした状況のもと 2005 年 1 月 1 日に自動車リサイクル法が施行され、「フロン類」「エアバッグ」とともに「ASR」の適正処理が義務づけられた。このことにより、特に ASR の適正処理およびリサイクルに関するニーズはさらに高まった。ASR は、1) 高灰分かつ高カロリーである、2) 粒径 5mm以下の微細成分が多い一方で、粒径 50mm以上の粗破砕物が多く、かさ比重は小さい、3) 重金属類、難燃剤、塩素分を多く含有している、といった特徴及び性状から、適正処理の困難な廃棄物である。

欧州や韓国においては、将来の ASR 埋立規制に向けて、熱処理を含むリサイクル方法に関する研究がなされてきている。 $^{3)-5)}$ 一方、日本では ASR リサイクル技術の中で、非鉄精錬設備を活用した熱処理が主流となる $^{6)}$ とともにガス化溶融処理技術が注目を浴びている。ASR リサイクル率向上のためにはサーマルリサイクル(発電)だけではなく、溶融スラグの有効利用や飛灰の山元還元による重金属類の再利用が重要である。 $^{7)}$ また、難燃性プラスチック類に含まれる臭素化難燃剤や臭素化ダイオキシン類に関する問題も注目されており、 $^{8)-12)}$ ASR 処理時にはこれら物質の分解・発生抑制技術としての評価も重要である。

高温溶融技術を活用した廃棄物の処理、リサイクル施設は 1990 年代から普及し始め、最近では 200 か所を超える施設が稼働している。¹³⁾¹⁴⁾この間シャフト炉式、キルン式及び流動床式を含めた種々のガス化溶融技術も開発されてきた。¹⁵⁾⁻¹⁷⁾特にシャフト炉は、都市ごみ処理において多くの実績があるが、このシステムでは、可燃物はガス化された後、後段の燃焼室で完全燃焼するとともに、不燃物は高温のコークスベッドで完全溶融し、スラグやメタルとして有効利用される。

本研究では、シャフト炉において ASR 溶融処理試験を行い、臭素化ダイオキシン類や臭素化難燃剤の 挙動および重金属類のスラグおよび溶融飛灰への分配挙動について調査を行った。以下に調査結果を 報告する。

3.1.2. 試験プラントの概要及び試験方法

3.1.2.1 試験プラント概要

図 3.1-1 に試験設備の処理フローを示す。設備は溶融炉、燃焼室、温度調節器、バグフィルタ、誘引通風機および触媒反応塔からなっており、施設処理能力は 10t/d(ASR100%処理時)である。ASR はガス 化溶融炉上部より投入され、降下するにつれて徐々に乾燥・予熱され、可燃物は熱分解される。熱分解

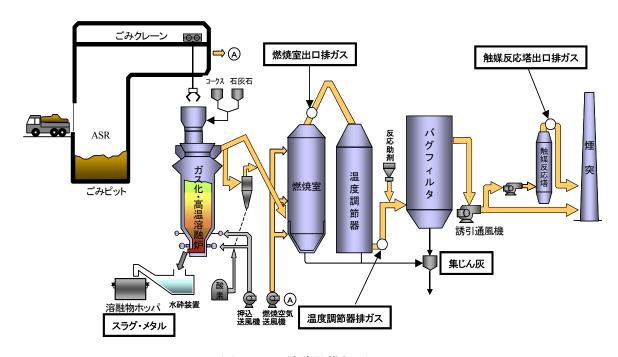


図 3.1-1 試験設備処理フロー

ガスが炉上部より排出され、燃焼室で完全燃焼される。一方、不燃物及び残さは炉下部に降下し、コークスの燃焼熱により完全溶融される。溶融物は出湯口から排出され、水槽に投入し急冷後、磁選によりスラグとメタルに分離される。本研究ではサイクロンダスト羽口吹込み技術を活用した。この技術は溶融炉と燃焼室との間に設置した除塵器(サイクロン)により熱分解ガス中から可燃性ダストを分離・捕集した後、冷却・篩処理し、羽口を介して最も高温のコークスベッド層へ吹込、燃焼・スラグ化させるもので、燃焼室での燃焼性の向上、可燃性ダストのスラグ化による最終処分量の低減に大きな効果がある。8)18)19)

ASR100%試験のデータ評価期間は24時間とし、各種操業データを採取するとともに、スラグ・メタル、飛灰および排ガスのサンプリングを行った。排ガスについては図1に示した燃焼室出口、温度調節器出口および触媒反応塔出口の3箇所より採取した。ASR 試料はシュレッダー処理業者から自動車の廃車ガラのみを処理した際のASR約15トンを入手した。入手したASRから性状調査及び微量分析用に約107kgの試料を採取した。性状調査用ASRサンプリングについてはJIS K0060の「産業廃棄物のサンプリング法」に従い、インクリメント採取用スコップ(150番、約35L)を用いて、ASR保管ヤード内の水平方向5箇所において垂直方向に上・中・下の3箇所の計15箇所の異なる場所から採取した。採取したASR試料は5mm篩にかけ、篩上試料は目視選別により、プラスチック類、ゴム類、ウレタン類、繊維類、紙類、木類、金属類、ガラス類、電線等に分けた。各成分毎に秤量した後、1mm以下に粉砕し、もとの成分比率に合わせて混合し、混合試料をさらに0.25mm以下に粉砕し、化学分析に供した。なお、金属類は王水により溶解処理を実施した。²⁰⁾

3.1.2.2 化学分析方法

ASR の物理特性に関しては、かさ比重、種類組成、低位発熱量を分析した。

C1、Br、S、Si、A1、Na 及び K 等の主成分とPb、Cd、As、Se、Fe、Cu、Zn 及び Sb 類等の重金属類についての分析は Bomb combustion-ion chromatography (Dionex, DXAQ, CA, United States)、ICP atomic emission spectrophotometer (SII Nanotechnology, SPS-5000, Tokyo, Japan) 及 び ICP mass

spectrometer (SII Nanotechnology, SPS-9000, Tokyo, Japan)を用いて実施した。この分析は ASR、スラグ、溶融飛灰、触媒反応塔出側排ガスにおいて実施された。水銀の分析は Reduction-vaporization atomic absorption spectrometry (AAS) (Nippon Instruments, RA-1, Tokyo Japan)を用いて行われ、Cr(VI)の分析は Absorption spectrometry (Hitachi, U-1500, Tokyo, Japan)を用いて行われた。サンプリングについては、JIS Z 8808 に従って行われ、Pb、Cd、As、SeとCrの分析は JIS K 0083 に従って実施された。Fe、Cu、Zn 及び Sb のように JIS による特殊な処理に従わない重金属類もまた JIS K 0083 によって分析した。水銀は JIS K 0222 に従って分析された。

重金属類のダスト中の濃度に加え、触媒反応塔出側において HC1、SOx、NOx、 Cl_2 、HBr、CO 及び HCN がそれぞれ JIS K 0107、JIS K 0103 JIS K 0104、JIS K 0106、JIS K 0085、JIS K 0098 及び JIS K 0109 に従って分析された。

ポリ臭素化ジフェニルエーテル類 (PBDEs)、テトラブロモビスフェノール A (TBBP-A) のような臭素系難燃 剤及びポリ塩素化ダイオキシン類 (PCDD/DFs)、ポリ臭素化ダイオキシン類 (PBDD/DFs) 及び1臭素・ポリ塩素化ダイオキシン類 (MoBrPCDD/DFs) 及びPCB類を含むダイオキシン類縁化合物の分析は、ASR、スラグ、溶融飛灰、排ガスにおいて実施された。²¹⁾ これらの分析には、GC-MS (Micromass MS, Autospec-ULTIMA. MA, United States and JEOL, JMS-700, Tokyo, Japan) が用いられた。

ブチルスズ化合物 3 種[モノブチルスズ (MBT)、シブチルスズ (DBT)、トリブチルスズ (TBT)]、オクチルスズ化合物 3 種[モノオクチルスズ (MOT)、シブカチルスズ (DOT)、トリオクチルスズ (TOT)]及びフェニルスズ 化合物 3 種[モノフェニルスズ (MPT)、シブフェニルスズ (DPT)、トリフェニルスズ (TPT)]についても ASR、スラグ、溶融飛灰、排ガスにおいて実施された。 $^{22)}$ これらの分析には、GC-MS (Agilent Technojogies, Agilent HP-5973, CA, United States) が用いられた。

さらにスラグについては JIS K 0058 に従って、重金属類の溶出量試験と含有量試験が実施された。

3.1.3 試験結果および考察

3.1.3.1 ASR 処理結果

表 3.1-1 操業データ

データ項目	24hデータ	
ごみ処理量	t/24h	9.4
溶融物発生量	kg/tごみ	390
スラグ発生量	kg/tごみ	260
メタル発生量	kg/tごみ	120
集じん灰発生量	kg/tごみ	44
溶融物温度	$^{\circ}\!\mathbb{C}$	1700
燃燒室温度	$^{\circ}$	960
排ガスCO濃度	ppm	0.0

3.1.3.2 ASR の性状

表3.1-2に本研究で用いたASR分析結果を示す。水分は1.2%と少なく、可燃分が68%、灰分も31%含まれていた。低位発熱量は21500kJ/kgと高く、かさ比重は0.164t/m³であった。物理組成の内訳としては、プラスチック類、ゴム類の割合が多く、合わせて約38%を占めていた。また、5mm 篩下に分類されるような微細粒物が30%含まれており、紙や木などはほとんど含まれていなかった。

(財)日本環境衛生センターの報告 ²³⁾によれば、日本の ASR の組成はばら つきがあり、水分、可燃分、灰分はそ れぞれ、9.7%(3.5%-27.1%)、59.8% (41.4%-73.4%)、30.5% (22.6%-38.1%)であった。この値と比

表 3.1-2 ASR 分析結果

	分析項目	単位	測定値
Ξ	水分*	%-wet	1.2
三成	可燃分*	%-wet	68.1
分	灰分*	%-wet	30.7
	5mm篩下	%-dry	30.07
	プラスチック	%-dry	29.09
	ゴム	%-dry	9.35
	ウレタン	%-dry	4.96
	繊維	%-dry	3.65
物	紙	%-dry	0.94
理 組	木	%-dry	0.02
成	金属類	%-dry	2.22
	ガラス類	%-dry	N.D.
	電線	%-dry	3.52
	その他 (分離不能物)	%-dry	14.59
	その他 (発砲スチロール等)	%-dry	0.19
	雑物	%-dry	1.4
	真発熱量	kJ/kg	21500
	かさ比重	t/m3	0.164

*のついている項目については金属類以外の分析結果を示す。

較すると今回の研究で用いた ASR は水分はやや低いが、灰分はほぼ同程度であった。一般に ASR 選別 方法には湿式と乾式があるが、今回の研究で用いた ASR は乾式方法によるもので、しかも選別後直ちに 分析したことから水分が低かったと考えられる。また同報告によれば、日本の ASR 中のプラスチック類、ゴム類、5mm 篩下に分類されるような微細粒物はそれぞれ、34.2%(24.1%-44.0%)、9.7%(5.2%-16.8%)、20.75%(10.4%-36.6%)であり、今回の研究で用いた ASR はこれらの値と比較して微細粒分はやや高めであったが、全体的にばらつきの範囲内であった。

キムらの調査によれば、韓国における ASR のかさ比重は $0.142-0.258~t/m^3$ で、プラスチック類は 20%-24%、ゴム類は 6%-8%であり、ほぼ同様であった。

3.1.3.3 ダイオキシン類縁化合物の挙動

ASR 中に含まれる塩化ビニルや触媒成分が、ASR の熱処理過程においてダイオキシン類やダイオキシン類縁化合物の生成に影響すると言われている。⁵⁾ この研究ではASRの溶融処理過程におけるダイオキシン類のみでなく、ダイオキシン類縁化合物や臭素系難燃剤について調査した。表 3.1-3 に、ASR、スラグ、メタル及び飛灰中のまた表 3.1-4 には燃焼排ガス中のこれらダイオキシン類縁化合物等の分析結果を示す。

ASR には 0.97 ng/g の PCDD/DFs、30 ng/g の Co-PCBs、270 o PCB 類とともに 30 ng/g の PBDD/DFs が含まれていたが、MoBrPCDD/DFs は検出されなかった。また ASR には PBDEs が 310,000 ng/g、 TBBP-A が 15,000 ng/g というように臭素系難燃剤も多く含まれていた。表 3.1-5、表 3.1-6 に検出された PBDEs や PBDD/DFs の同族体分布を示すが、同族体の中で、DePBDEs や OBDFs はそれぞれ 94%、60% と高い比率を示しており、こうした同族体分布は廃テレビケーシングプラスチックに含まれる PBDEs や PBDD/DFs と同様のパターンを示している。 $^{8)12}$

表 3.1-3 ASR、スラグ、メタルおよび集じん灰中ダイオキシン類縁化合物等測定結果(乾ベース)

	ASR	スラグ	メタル	集じん灰
DCDDa/DEa[na/a] vt 1	0.97	0.27	1.1	99
PCDDs/DFs[ng/g]*1	(0.0043)	(0.00086)	(0.0038)	(1.6)
Co DCDo[ng/g]	30	0.027	0.030	4.6
Co-PCBs[ng/g]	(0.023)	(0.00023)	(0.00019)	(0.070)
PCDDs/DFs+Co-PCBs[ngTEQ/g]	(0.027)	(0.0011)	(0.0040)	(1.7)
PBDDs/DFs[ng/g] *2	30	N.D.	N.D.	0.26
MoBrPCDDs/DFs[ng/g] *3	N.D.	N.D.	0.03	44
臭素化ジフェニルエーテル類[ng/g] *4	310000	0.1	0.2	2.8
テトラフ゛ロモヒ゛スフェノール A [ng/g]	15000	0.07	0.05	0.29
PCBs[ng/g] *5	270	0.091	0.15	22

()内は WHO-TEF(1998)換算濃度

*5:1~10Cl 化物 N.D:not detected

表 3.1-4 排ガス中ダイオキシン類縁化合物測定結果

7,100							
ASR 処理時 (O ₂ 12%換算值)							
	燃焼室	温度調節器	触媒反応塔				
	然焼玉	出口	出口				
PCDDs/DFs[ng/m ³ N] * 1	0.28(0.0016)	_	0.15(0.0014)				
Co-PCBs[ng/m ³ N]	0.17(0.000019)	_	0.16(0.000026)				
PCDDs/DFs+Co-PCBs [ngTEQ/m ³ N]	(0.0017)		(0.0014)				
PBDDs/DFs[ng/m ³ N] *2	0.12	N.D. (0.09) *6	0.20				
MoBrPCDDs/DFs[ng/m ³ N] *3	N.D.	-	N.D.				
臭素化ジフェニルエーテル類[ng/m³N] *4	2.0	24	N.D.				
テトラフ゛ロモヒ゛スフェノール A [ng/m³N]	14	13	28				
PCBs[ng/m ³ N] *5	1.5	_	2.6				

()内は WHO-TEF(1998)換算濃度

*5: $1 \sim \! 10Cl$ 化物 *6: 定量下限値以下、検出限界以上のものを含む N.D: not detected

表 3.1-5 ASR・スラグ・メタル・集じん灰中 PBDDs/DFs の同族体分布

サンプル名	ASR	スラグ	メタル	集じん灰
サンプル量	2g	25g	25g	25g
単位	ng/g	ng/g	ng/g	ng/g
TeBDDs	0.94	N.D.	N.D.	0.025
PeBDDs	N.D.	N.D.	N.D.	N.D.
HxBDDs	N.D.	N.D.	N.D.	N.D.
HpBDDs *1	N.D.	N.D.	N.D.	N.D.
OBDD	N.D.	N.D.	N.D.	N.D.
Total PBDDs	0.94	N.D.	N.D.	0.025
TeBDFs	2	N.D.	N.D.	0.20
PeBDFs	3.2	N.D.	N.D.	0.04
HxBDFs	5.6	N.D.	N.D.	N.D.
HpBDFs	5.7	N.D.	N.D.	N.D.
OBDF *2	12	N.D.	N.D.	N.D.
Total PBDFs	29	N.D.	N.D.	0.23
Total PBDDs + PBDFs	30	N.D.	N.D.	0.26

ASR定量下限值 : 4臭化物= 0.07, 5臭化物= 0.2, 6~8臭化物= 0.7

スラグ・メタル・集じん灰定量下限値 : 4臭素化物= 0.005, 5臭素化物= 0.01, $6\sim8$ 臭素化物= 0.05

*1 標準が無いためHpBDFで定量 *2 標準がないためOBDDで定量

表 3.1-6 ASR・スラグ・メタル・集じん灰中 PBDEs の同族体分布

試料名	ASR	スラグ	メタル	集じん灰
試料量	2g	25g	25g	25g
単位	ng/g	ng/g	ng/g	ng/g
MoBDEs	N.D.	N.D.	N.D.	0.95
DiBDEs	N.D.	N.D.	N.D.	1.4
TrBDEs	56	N.D.	N.D.	0.15
TeBDEs	470	N.D.	N.D.	0.06
PeBDEs	440	N.D.	N.D.	N.D.
HxBDEs	140	N.D.	N.D.	N.D.
HpBDEs	140	N.D.	N.D.	N.D.
OBDEs	970	N.D.	N.D.	N.D.
NoBDEs	16000	N.D.	N.D.	N.D.
DeBDE	290000	0.1	0.2	0.2
Total PBDEs	310000	0.1	0.2	2.8

ASR下限值: 1~5臭素化物=8,6~9臭素化物=20,10臭素化物=40

スラグ・メタル・集じん灰定量下限値 : 1~5臭素化物= 0.03, 6~9臭素化物= 0.05,

10臭素化物= 0.1

表 3.1-7 ASR・スラグ・メタル・集じん灰中 PCBs 同族体分布

サンプル名	ASR	スラグ	メタル	集じん灰
サンプル量	2g	25g	25g	25g
単位	ng/g	ng/g	ng/g	ng/g
MoCBs	N.D.	N.D.	0.011	3.1
DiCBs	9	N.D.	0.024	2.5
TrCBs	33	0.019	0.037	2.5
TeCBs	75	0.063	0.060	1.7
PeCBs	95	0.008	0.009	2.0
HxCBs	56	N.D.	N.D.	2.8
HpCBs	4	N.D.	N.D.	2.4
OCBs	N.D.	N.D.	N.D.	2.8
NoCBs	N.D.	N.D.	N.D.	1.9
DeCBs	N.D.	N.D.	0.011	0.75
Total PCBs	270	0.091	0.15	22

ASR定量下限值:3

スラグ・メタル・集じん灰定量下限値:0.008

さらに ASR 中の PCBs の含有量が比較的高く、表 3.1-7 に示すように、その同族体分布の特徴(すなわち Tetra-and Pentachlorobiphenyl が高い比率を占めること。) からコンデンサーのような電子部品に使用されている工業的 PCB 混合物 (KC-400、KC-500) がその起源と推定された。またこれまでに調査した都市ごみや廃テレビのケーシングと比較すると ASR 中の PBDD/DFs、PBDEs、TBBP-A 等の濃度は都市ごみよりは多く、廃テレビケーシングよりは低かった。8)

燃焼室出口、温度調節器出口で採取した燃焼排ガスにはダイオキシン類縁化合物と臭素系難燃剤はほとんど含まれていなかったが、触媒反応塔出口で採取した燃焼排ガスには 0.15ng/m³N の PCDD/DFs、0.20 ng/m³N の PBDD/DFs、28 ng/m³N の TBBP-A が検出されたが、MoBrPCDD/DFs と PBDEs は検出されなかった。表 3.1-8 に PBDD/DFs の異性体分布を示すが、2,3,7,8-TeBDD は ND であった。表 3.1-9 に PBDEs の同族体分布を示す。

溶融炉から排出されたスラグやメタルにはダイオキシン類縁化合物と臭素系難燃剤はほとんど含まれていなかった。また、溶融飛灰中には $99 \, \text{ng/g}$ (1.6 $\, \text{ng-TEQ/g}$) の PCDD/DFs、 $99 \, \text{ng/g}$ 0.26 $\, \text{ng/g}$ の PBDD/DFs 、 $44 \, \text{ng/g}$ の MoBrPCDD/DFs が含まれていた。 また PBDEs が 2.8 $\, \text{ng/g}$ 、TBBP-A が 0.29 $\, \text{ng/g}$ が含まれていたが、いずれも ASR 中の濃度と比較するとはるかに低い値であった。

表 3.1-8 排ガス中の PBDDs/DFs の異性体分布

サンプル名	燃焼室出口	温度調節器出口	触媒反応塔出口
サンプル量	3.0796m ³ _N	1.8020m ³ _N	4.3954m ³ _N
酸素濃度	10.7%	12.0%	13.7%
単位	ng/m ³ _N	ng/m ³ _N	ng/m ³ _N
2,3,7,8-TeBDD	N.D.	N.D.	N.D.
TeBDDs	0.12	N.D.	0.20
1,2,3,7,8-PeBDD	N.D.	N.D.	N.D.
PeBDDs	N.D.	N.D.	N.D.
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	N.D.	N.D.	N.D.
1,2,3,7,8,9-HxBDD	N.D.	N.D.	N.D.
HxBDDs	N.D.	N.D.	N.D.
HpBDDs *1	N.D.	N.D.	N.D.
OBDD	N.D.	N.D.	N.D.
Total PBDDs	0.12	N.D.	0.20
2,3,7,8-TeBDF	N.D.	N.D.	N.D.
TeBDFs	N.D.	N.D.	N.D.
1,2,3,7,8-PeBDF	N.D.	N.D.	N.D.
2,3,4,7,8-PeBDF	N.D.	N.D.	N.D.
PeBDFs	N.D.	N.D.	N.D.
1,2,3,4,7,8-HxBDF	N.D.	N.D.	N.D.
HxBDFs	N.D.	N.D.	N.D.
1,2,3,4,6,7,8-HpBDF	N.D.	N.D.	N.D.
HpBDFs	N.D.	N.D.	N.D.
OBDF *2	N.D.	N.D.	N.D.
Total PBDFs	N.D.	N.D.	N.D.
Total PBDDs + PBDFs	0.12	N.D.	0.20

燃焼室出口定量下限値 : 4臭素化物 = 0.04, 5臭素化物 = 0.1, $6\sim8$ 臭素化物 = 0.4

温度調節器出口定量下限値 : 4臭素化物 = 0.07, 5臭素化物 = 0.2, $6\sim8$ 臭素化物 = 0.7

触媒反応塔出口定量下限值 : 4臭素化物 = 0.03, 5臭素化物 = 0.08, $6\sim8$ 臭素化物 = 0.3

*1 標準が無いためHpBDFで定量 *2 標準がないためOBDDで定量

表 3.1-9 排ガス中の PBDEs の同族体分布

サンプル名	燃燒室出口	温度調節器出口	触媒反応塔出口
サンプル量	$3.0796 m_N^3$	1.8020m ³ _N	4.3954m ³ _N
酸素濃度	10.7%	12.0%	13.7%
単位	ng/m_{N}^{3}	ng/m_{N}^{3}	ng/m ³ _N
MoBDEs	N.D.	N.D.	N.D.
DiBDEs	N.D.	N.D.	N.D.
TrBDEs	N.D.	N.D.	N.D.
TeBDEs	N.D.	N.D.	N.D.
PeBDEs	N.D.	N.D.	N.D.
HxBDEs	N.D.	N.D.	N.D.
HpBDEs	N.D.	N.D.	N.D.
OBDEs	N.D.	N.D.	N.D.
NoBDEs	N.D.	0.8	N.D.
DeBDE	2.0	23	N.D.
Total PBDEs	2.0	24	N.D.

燃焼室出口定量下限値: $1\sim5$ 臭素化物= 0.2, $6\sim9$ 臭素化物= 0.4, 10臭素化物= 1 温度調節器出口定量下限値: $1\sim5$ 臭素化物= 0.4, $6\sim9$ 臭素化物= 0.7, 10臭素化物= 2 触媒反応塔出口定量下限値: $1\sim5$ 臭素化物= 20.2, 109臭素化物= 109.3, 109臭素化物= 109.3

表 3.1-10 ダイオキシン類、臭素化ダイオキシン類

および臭素化難燃剤成分の挙動

単位; μg/t-ごみ

	投入物	各部通過量		排出物				
			A	В	С	D	Е	B+C+D+E
	ASR	燃焼室出口 排ガス	温度調節器 出口排ガス	触媒反応塔 出口排ガス	集じん灰	溶融炉排出 スラグ	溶融炉排出 メタル	総排出量
PCDD/DFs	970	3.1	_	1.7	4,300	71	140	4,500
Co-PCBs	30,000	1.9	_	1.8	200	7.1	3.7	210
PBDDs/DFs	30,000	1.3	N.D.	2.2	11	N.D.	N.D.	14
MoBrPCDDs/DFs	N.D.	N.D.	_	N.D.	1,900	N.D.	4.0	1,900
PBDEs	310,000,000	22	270	N.D.	120	26	25	170
TBBPA	15,000,000	156	150	310	13	18	6.1	350

N.D.: not detected

表 3.1-10 に処理プロセス全体でのダイオキシン類縁化合物の収支を示す。PCDD/DFs および MoBrPCDD/DFs は再合成によって排出量が増加した。一方、PBDD/DFs、PBDEs および TBBPA については 総排出量の方が投入量よりも少なく、分解系であった。

PBDD/DFs は ASR 中には 30,000 μ g/t 含まれていたのに対し、燃焼室出口で 1.3 μ g/t とガス化燃焼によって 99.99%以上が燃焼分解した。徐冷工程での再合成はほとんど見られず、PCDD/DFs とは異なる挙動を示した。総排出量は 14 μ g/t とインプットの 99.9%が分解され、排出の約 79%が飛灰として排出され、スラグ、メタルからは検出されなかった。MoBrPCDD/DFs は排ガス、スラグからは検出されず、メタルからもほとんど検出されなかった。飛灰中から検出されていることから徐冷工程での再合成が考えられた。PBDEs は燃焼室出口では 22 μ g/t とインプットの 99.9999%以上がガス化燃焼で分解した。総排出量は 170 μ g/t とインプットの 99.9999%が分解され、71%が飛灰として排出された。TBBP-A は燃焼室出口では 160 μ g/t とインプットの 99.99%以上がガス化燃焼で分解された。総排出量は 350 μ g/t でインプットの 99.99%以上が分解され、約 89%が排ガスとして排出された。

燃焼室出口で全ての化合物の濃度が低いのは、溶融炉出口から排出されるチャーをサイクロンで取り

除いていることで燃焼室の燃焼性が向上していることによると考えられる。さらに燃焼室出口温度を900℃以上とし、滞留時間も2秒以上を確保していることが、ダイオキシン類縁化合物の生成抑制に寄与している。ASRに含まれていた化合物との比較においてPCDD/DFs およびMoBrPCDD/DFs の排出量が増加しているが、燃焼室出口ではほとんど検出されないので、ガス冷却過程でデノヴォ合成されたと考えられる。このことはシャフト炉を用いた都市ごみや廃テレビケーシングの処理においても同じ傾向を示していた。⁸⁾ TBBP-A のみが他の化合物と比べて溶融飛灰より燃焼排ガス側への分配率が高いことは、TBBP-A の活性炭への吸着抑制が異なるか蒸気圧が異なることによると推定される。ただしこのことはまだまだ解明されていない。

以上の結果より、シャフト炉による高温処理は、PBDEs、TBBP-A、PBDD/DFs や PCBs のような POPs の分解に有効であることが実証された。

3.1.3.4 重金属類の挙動

表 3.1-11 に ASR、スラグ、メタル、集じん灰中の主要成分と重金属等の濃度を示す。

表 3.1-11 ASR、スラグ、メタルおよび集じん灰中重金属類等測定結果(乾ベース)

	ASR	スラグ	メタル	集じん灰
全塩素(mg/kg)	29000	5600	920	360000
全臭素(mg/kg)	300	<20	<20	4100
全硫黄(mg/kg)	3600	4500	2200	15000
カルシウム(%)	12.4	21.8	2.98	16.1
ケイ素(%)	12.9	16.2	7.64	3.44
アルミニウム(%)	5.37	12.5	1.86	0.65
ナトリウム(%)	1.89	0.07	< 0.01	8.23
カリウム(%)	0.53	< 0.01	< 0.01	1.97
鉛(mg/g)	1700	19	550	16200
水銀(mg/g)	0.08	< 0.01	< 0.01	0.1
カドミウム(mg/g)	6.2	< 0.5	< 0.5	18
ヒ素(mg/g)	3.5	<1	10	13
セレン(mg/g)	0.2	0.5	<0.1	5.1
六価クロム(mg/g)	<1	<1	<1	<1
鉄(%)	2.83	0.73	33.5	1.69
銅(%)	3.4	0.51	41.2	1.03
亜鉛(%)	0.88	0.01	0.06	8.00
アンチモン(%)	0.04	< 0.01	0.27	0.18

^{*} ASR については n=2 の平均値を示す

表 3.1-12 に排ガス中の重金属類等の測定結果を示す。

表 3.1-12 排ガス中の重金属類等の測定結果

ASR 処理時(O ₂ 1	2%換算値)
	触媒反応塔出口
给(mg/m³ _N)	<0.01
水銀(mg/m³N)	<0.01
カドミウム(mg/m³N)	<0.01
ヒ素(mg/m³ _N)	<0.01
セレン(mg/m³N)	<0.01
六価クロム(mg/m³N)	<0.01
鉄(mg/m³ _N)	0.060
銅(mg/m³ _N)	<0.01
亜鉛(mg/m³ _N)	<0.01
アンチモン (mg/m^3_N)	<0.01
ダスト濃度(g/m³ _N)	<0.001
硫黄酸化物濃度(ppm)	<2
塩化水素濃度(ppm)	13
塩素濃度(ppm)	<0.2
臭化水素濃度(ppm)	<2
窒素酸化物(ppm)	111
一酸化炭素濃度(ppm)	4
シアン化水素(ppm)	<2

図 3.1-2 に塩素、臭素及び重金 属類の分配率を表3.1-13に重金 属類の挙動を整理して示す。分 配率は総排出量に対する比率を 求めて各要素への分配率とした。 C1は90%以上が、Brは80%以上が 飛灰へ分配された。低沸点化合 物である Pb、Zn および Cd はほと んどが集じん灰へ分配された。Pb の 集 じ ん 灰 中 濃 度 は 16,000mg/kg であり、集じん灰へ の分配率は 91%と高かった。一方、 スラグ中濃度は 19mg/kg と低く、 Pb のほとんどは集じん灰に分配さ れ、スラグ中にはほとんど分配さ

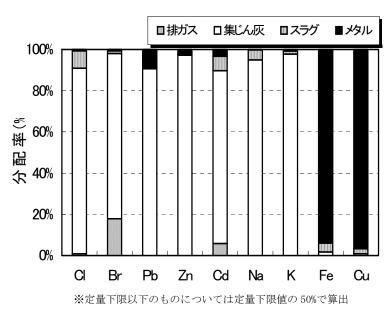


図 3.1-2 重金属類の分配率

表 3.1-13 重金属類の挙動

g/t-ごみ

	ASR	触媒反応塔 出口排ガス	バグフィルタ 集じん灰	溶融炉排出 スラグ	溶融炉排出 メタル	計
鉛	1,700	< 0.11	710	5.0	68	780
水銀	0.08	< 0.11	0.0044	< 0.0026	< 0.0012	0.0044
カドミウム	6.20	< 0.11	0.78	< 0.13	< 0.061	0.78
ヒ素	3.50	< 0.11	0.57	< 0.26	1.2	1.8
セレン	0.20	< 0.11	0.22	0.13	< 0.012	0.35
六価クロム	<1	< 0.11	< 0.044	< 0.26	< 0.12	N.D.
鉄	28,000	0.67	740	1,900	41,000	44,000
銅	34,000	< 0.11	450	1,300	51,000	52,000
亜鉛	8,800	< 0.11	3,500	26	74	3,600
アンチモン	400	< 0.11	78	<2.6	330	410

N.D.: not detected

れないことが確認された。Zn についても総排出量の 97%が集じん灰へ分配された。Na や K についても約 95%が集じん灰へ分配された。一方、高沸点重金属類である Fe や Cu はほとんどがメタルに分配され、分配率はそれぞれ 94%、97%であった。 長田らの実施した熱力学モデルによるシミュレーション結果によれば、Pb や Zn は酸化物や硫化物の形態をとるとスラグに移行しやすいが、高温還元雰囲気では酸化物や硫化物の形をとらず金属蒸気の形でガス相に移行することを示している。²⁴⁾ シャフト炉式ガス化溶融炉ではコークスを投入し炉内を高温還元雰囲気に維持しているが、このことが、Pb や Zn 等の低沸点重金属をスラグに移行させずに集じん灰側に濃縮させる役割を果たしていることになる。

表 3.1-14 にスラグ溶出試験および含有量試験結果を示す。ばらつきを見るために、サンプルは3時間毎に採取した。溶出試験については、全時間帯において、いずれの項目においても目標基準値を下回った。Pb については ASR 中に 1,700g/t-ASR 含まれていたにも関わらず、スラグの溶出試験結果は

<0.001~0.005mg/L と目標基準値を大きく下回った。含有量試験結果についても全項目、全時間帯において目標基準値を大きく下回った。また、各検体についても分析結果に大きな変化が無いことから、スラグ成分に時間変化はほとんどないものと考えられる。</p>

表 3.1-14 スラグ性状経時変化

単位:mg/L

		スラグ溶出試験結果								
	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	24:00	目標基準値
水銀およびその化合物	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
カドミウムおよびその化合物	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01
鉛およびその化合物	0.001	0.005	0.002	0.002	< 0.001	0.001	0.003	0.001	< 0.001	< 0.01
六価クロム化合物	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05
ヒ素およびその化合物	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01
セレンおよびその化合物	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.01
フッ素	< 0.1	< 0.1	< 0.1	< 0.1	0.27	0.10	0.26	0.14	0.14	0.8
ホウ素	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1

単位: mg/kg

										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				スラク	'含有量試	験結果				
	0:00	3:00	6:00	9:00	12:00	15:00	18:00	21:00	24:00	参考基準値*1
水銀およびその化合物	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	15
カドミウムおよびその化合物	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	150
鉛およびその化合物	4.3	4.64	3.45	7.9	7.51	6.02	5.48	5.41	23.5	150
六価クロム化合物	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	250
ヒ素およびその化合物	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	150
セレンおよびその化合物	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	150
フッ素	7.7	6.75	8.71	7.99	7.13	7.92	6.10	7.32	4.94	4000
ホウ素	592	937	862	564	600	422	522	620	495	4000
シアン	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	50

3.1.3.5 有機スズの挙動

表 3.1-15 に有機スズの挙動を示す。ASR からはブチルスズ化合物 3 種(MBT、DBT、TBT)およびオクチルスズ化合物 3 種(MOT、DOT、TOT)が検出された。排ガスでは燃焼室出口や温度調節器出口では二置換体のDBT、DOTが検出されたが、触媒反応塔出口では一置換体のMBT、MOTのみが検出された。このことから集じんによるDBT、DOTの除去や一置換体アルキルスズへの分解が考えられた。一方、飛灰、スラグ、メタルからは検出されなかった。また、有機スズの除去率は99.996%以上となり、シャフト炉によるガス化溶融処理は有機スズの除去に有効であることが示された。特に、生物への毒性が確認されている二~三置換体の有機スズ化合物はガス化溶融処理によって完全に除去された。

表 3.1-15 有機スズの挙動

単位; μg/t-ごみ

	投入物	各部道	通過量		排出物			
			A	В	С	D	Е	B+C+D+E
	ASR	燃焼室出口 排ガス	温度調節器 出口排ガス	触媒反応塔 出口排ガス	バグフィルタ 集じん灰	溶融炉排出 スラグ	溶融炉排出 メタル	総排出量
MBT	51,000,000	520	350	1500	N.D.	N.D.	N.D.	1,500
DBT	25,000,000	4,500	3,200	N.D.	N.D.	N.D.	N.D.	N.D.
TBT	140,000	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MPT	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
DPT	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
TPT	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
MOT	54,000,000	850	750	2300	N.D.	N.D.	N.D.	2300
DOT	8,000,000	2,500	8,100	N.D.	N.D.	N.D.	N.D.	N.D.
TOT	640,000	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Total OTs	140,000,000	8,400	12,000	3900	N.D.	N.D.	N.D.	3,900

N.D.: not detected

3.1.4 ASR 溶融試験結果のまとめ

シャフト炉における ASR 溶融処理試験において以下の結論を得た。

- 1) ASR 中には、ダイオキシン類縁化合物が多く含まれており、特に臭素化ジフェニルエーテル類は 310.000,000ng/g、テトラブロモビスフェノール A は 15.000,000ng/g と非常に含有量が高かった。
- 2)ガス化溶融処理は上記ダイオキシン類縁化合物や臭素化難燃剤の分解技術として有効であった。 臭素化ジフェニルエーテル類ではインプットに対し、99.9999%、テトラブロモビスフェノール A ではインプット、に対し、99.99%以上の分解率が得られた。
- 3) ガス化溶融処理により C1 は 90%以上が飛灰に分配された。Pb および Zn といった低沸点重金属類は それぞれ 91%、97%が飛灰へ分配され、Fe、Cu といった高沸点重金属類はともに 94%以上がメタルへ 分配された。Na、K も約 95%が飛灰へ分配された。
- 4) 溶融スラグは溶出試験、含有量試験のいずれにおいても、溶融スラグの JIS に定められた環境安全 品質の基準値を大きく下回った。また、試験期間中の変動もほとんど見られず、スラグの循環利用技術として有効であった。
- 5) 有機スズの分解に対しても有効で、インプットの99.996%以上が分解された。

本方式による ASR 溶融処理は、北九州エコタウン内の北九州エコエナジー(株)(160t/d×2炉)にて 2005 年 4 月から営業運転を開始し、また、新日本製鐵名古屋製鉄所内(120t/d×1炉)でも 2006 年 2 月から稼働開始している。

[第3章 第1節の参考文献]

- 1) 坂川勉:使用済自動車の再資源化等に関する法律案(自動車リサイクル法案)の概要、廃棄物学会誌、Vol. 13、No. 4、pp. 183-192 (2002)
- 2) 細田衛士:使用済み自動車のリサイクルの諸問題と法整備に向けての課題、廃棄物学会誌、 Vol. 12、No. 5、pp. 292-302 (2001)
- 3) Nourreddine, M. : Recycling of auto shredder residue. Journal of Hazardous Materials, Vol. 139, pp. 481-490 (2006)
- 4) Kim, K-H., Joung, H-T., Nam, H., Seo, Y-C., Hong, J-H., Yoo, T-W., Lim, B-S., Park, J-H.: Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Management Vol. 24, pp. 533-540 (2004)
- 5) Joung, H-T., Seo, Y-C., Kim, K-H., Seo, Y-C.: Effects of oxygen, catalyst and PVC on the formation of PCDDs, PCDFs and dioxin-like PCBs in pyrolysis products of automobile residues. Chemosphere Vol. 65:pp. 1481-1489 (2006)
- 6) 小名浜製錬㈱: 小名浜製錬所における ASR 処理、鉱山、Vol. 58、No. 4、pp. 5-8 (2005)
- 7) 益田清: 自動車のリサイクルへの取り組みと課題、廃棄物学会誌、Vol. 13、No. 4、pp. 200-209 (2002)
- 8) Osada M., Takamiya K., Sakai S.: Bromine Behavior and Metal Control in MSW Direct Melting System. Proc. of the 3rd International Conference on Combustion, Incineration /Pyrolysis and Emission Control: pp. 355-359 (2004)

- 9) Vehlow J., Bergfeldt B., Jay K., Seifert H., Wanke T., Mark F.E.: Thermal treatment of E+E plastic waste. Waste Management and Research, Vol. 18, pp. 131-140 (2000)
- 10) Watanabe I., Sakai S.: Environmental release and behavior of brominated flame retardants. Environmental International, Vol. 29, pp. 665-682 (2003)
- 11) Sakai S., Honda Y., Takatsuki H., Watanabe J., Aoki I., Nakamura K., Shiozaki K.: Polybrominated substances in waste electrical & electronic plastics and their behavior in the incineration plants. Organohalogen Compounds, Vol. 52, pp. 35-38 (2001)
- 12) Sakai S., Osada M., Miyazaki T.: High-Temperature Melting of Waste Brominated Flame Retardants and Behaviors of Organic Brominated Compounds. Book of Abstracts in BFR2004 workshop, Toronto, Canada (2004)
- 13) Sakai S., Hiraoka M.: Municipal solid waste incinerator residue recycling by thermal processes. Waste Management, Vol. 20, pp. 249-258 (2000)
- 14) Sakai S.: "High-temperature melting of municipal solid waste, 241-256, in Ludwig. C., Hellweg. S., Stucki. S. (ed.): Municipal Solid Waste Management, Strategies and Technologies for Sustainable Solutions, Springer (2002)
- 15) Kawai Y., Taguchi A.: Pyrolysis Gas Melting System. Proc. of International Conference on Combustion, Incineration/Pyrolysis and Emission Control, pp. 127-137 (2000)
- 16) Watanabe J., Matsudaira T., Nakamura S., Suzuki Y., Yoshida T., Sudo M., Yamakawa Y.: High Temperature Gasifying & Direct Melting Furnace of Solid Waste. Proc. of International Conference on Combustion, Incineration/Pyrolysis and Emission Control, pp. 93-100 (2000)
- 17) Hosoda H., Ito T.: Development of fluidized-bed pyrolysis and melting system for municipal solid waste. Proc. of International Conference on Combustion, Incineration /Pyrolysis and Emission Control, pp. 269-278 (2000)
- 18) 芝池秀治、田中宏和、内藤誠章、西田義信、碓井建夫:都市ごみ直接溶融炉における可燃性 ダスト吹込み技術、鉄と鋼、Vol.91、No.5、pp.457-464 (2005)
- 19) 芝池秀治、高宮健、星沢康介、加藤也寸彦、田中宏和、小谷和彦、西猛、高田純一:都市ご み直接溶融プロセスにおける高機能化技術開発、新日鉄技報、No. 382、pp. 21-27 (2005)
- 20) 高橋 真、酒井伸一、長田守弘、高宮健、宮崎徹第:シャフト炉式ガス化溶融炉における自動車破砕残さ(ASR)の処理と臭素系難燃剤およびダイオキシン類縁化合物の挙動、15 回廃棄物学会研究発表会講演論文集、pp. 987-989 (2004)
- 21) Sakai S., Watanabe J., Honda Y., Takatsuki H., Aoki I., Futamatsu M., Shiozaki K.: Combustion of brominated frame retardants and behavior of its byproducts, Chemosphere, 42:519-531 (2001)
- 22) 岩村幸美、門上希和夫、陣矢大助、棚田幸子: エチル誘導体化/ガスクロマトグラフィ/質量 分析法による生物試料中の有機スズ化合物の一斉分析、分析化学、Vol. 49、No. 7、pp. 523-528 (2000)
- 23) 財団法人 日本環境衛生センター: 平成 16 年度環境省請負業務 ASR の再資源化・スラグの有効利用に関する技術検討調査報告書 (2005)

- 24) 長田昭一、長田守弘、古角雅行、徳田昌則:溶融処理過程における低沸点重金属類の挙動に 関する熱力学的考察、 廃棄物学会論文誌、Vol,15、 No.5、pp.353-362 (2004)
- 25) Kawamura Y., Maehara T., Suzuki T., Yamada T.: Determination of Organotin Compounds in Kitchen Utensils, Food Packages and Toys by Gas Chromatography / Atomic Emission detection Method (in Japanese), Shokueishi, Vol. 4, pp. 246-253 (2000)
- 26) Fromme H., Mattulat A., Lahrz T., Ruden H. : Occurrence of Organotin compounds in house dust in Berlin (Germany). Chemosphere, Vol. 58, pp. 1377-1383 (2005)

3.2 アスベスト廃棄物の溶融プロセスにおけるアスベストの挙動

3.2.1 研究の背景

アスベストは工業的に優れた材料として、種々の用途に用いられてきたが、その使用量は、1930年頃から徐々に増加し 1970年頃にピークを迎え、1970年~1990年頃は高原状態を続けた後、以降は急激に減少した。この間の累積輸入量は約 1000万トンに達するが、アスベストの用途としては建材が最も多く、8~9割を占める。アスベスト含有建材はビルや住宅等の屋根、内外壁、天井、床、ダクト等に広く使われており、耐火被覆や防音、結露防止として吹付け石綿等が使われている。そのほかにも各種プラント配管や自動車、船等のエンジン周り等の保温材、シール材、断熱材等に使われていたが、メンテナンス時にアスベストを含まない代替品への交換が進められてきたため、いずれも建材に比べ製品寿命が短く残存量は比較的少ないと推定されている。(社)日本石綿協会による予測によれば、アスベスト含有建材の解体量は当面は年間 120万トン程度の排出が続き、2020年頃に 170 万トンのピークを迎え、以降減少していき、その総量は 4000 万トンに達するとされている。 1) 2)

日本においては 1980 年代後半より種々のアスベスト使用規制、汚染防止対策がとられてきたが、 2005 年夏にアスベストによる健康被害が工場従業員にとどまらず周辺住民にも広がっていることが公表されて以降再び社会問題化している。これまで曝露防止の観点からは、使用過程や吹き付けアスベストの除去等に伴って発生する飛散性アスベストが主たる管理対象であった。しかし耐用年数経過につれて大量に排出されることが見込まれるビルや住宅等に使用されたアスベスト 建材の解体や廃棄にも大きな関心が寄せられることとなった。

アスベストは、その耐熱性や耐腐食性、耐薬品性等がゆえに無害化処理は困難とされ、適切な梱包と埋立による隔離が基本的な処理の考え方であった。しかし、これではアスベストは変質せず、埋立地内にそのまま残存するため、跡地利用は困難になるとともに将来の再飛散のリスクが残ることになる。そこでアスベストの耐熱性をも考慮した上で、アスベストそのものを分解する方法として開発、検証されてきたのが高温溶融方式であり、飛散性アスベスト廃棄物の処理方法としては既に認められている。 $^{3)}$ 4) アスベストで最も融点の高いものはクリソタイルであり、1500℃前後とされており、非飛散性アスベスト廃棄物の溶融処理施設に関する技術上の指針としても概ね 1500℃以上での溶融ができることとされている。 $^{5)}$

こうした背景の中、環境省は無害化処理認定制度を創設し、非飛散性アスベスト廃棄物を含めた適正処理を推進する方針を示した。すなわち従来から飛散性のアスベスト含有廃棄物の処理技術として認められていた溶融処理技術を非飛散性アスベスト廃棄物へも適用拡大することと、実証試験等により一定の技術要件を満たす新たな無害化処理技術を認定していくスキーム作りがなされた。 $^{6)}$ 非飛散性アスベスト廃棄物の無害化処理技術確立を目指すこの一連の取組みでは、シャフト炉をはじめ、表面溶融炉方式やジオメルト方式、マイクロ波照射方式等の実証試験が実施されている。 $^{7-9)}$ 海外でもキルンを用いた焼成により磁器タイルや煉瓦用材料への再利用を検討している事例も見られる。 $^{10,11)}$

本研究ではこうした要請に応えるべく、シャフト炉の試験プラントによる試験を踏まえて、実 機施設を用いた非飛散性アスベスト廃棄物の溶融処理の実証試験を実施した。^{12、13)} シャフト炉は 溶融熱源にコークスを用いていることから、1500℃を十分に超える溶融温度を確保できる上、袋 詰めしたアスベスト廃棄物をそのまま炉の上部より投入でき、環境への影響を最小限に抑えられることが期待できる。以下に、アスベスト廃棄物処理試験時における無害化処理状況について一般分析に加え、透過型電子顕微鏡(TEM)による詳細な観察・評価を実施した結果を報告するとともに、溶融処理時の施設周辺への環境影響についての評価結果を示す。

3.2.2 試験材料と試験方法

3.2.2.1 試験設備

図3.2-1にシャフト炉の実機施設の処理フロー及びアスベスト測定箇所を示す。

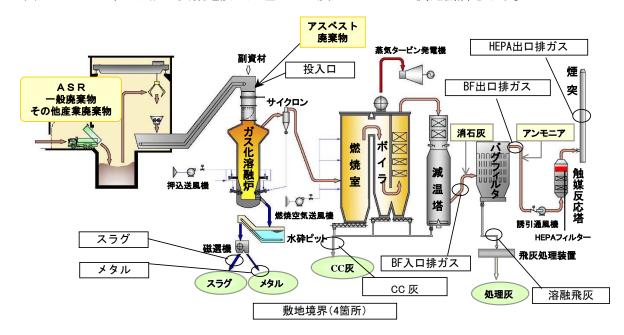


図 3.2-1 実機施設処理フロー及び測定箇所

施設はガス化溶融炉、燃焼室(Conbustion Chamber:CC)、ボイラ、減温塔、バグフィルタ、触媒反応塔からなっており、本試験では周辺環境への配慮からセーフティネットとして煙突前に HEPA フィルタを設置した。アスベストの測定は、排ガスに関してはバグフィルタ入口・出口、HEPA フィルタ出口の3箇所にて実施し、排出物に関しては溶融スラグ・メタル、溶融飛灰、CC 灰の4種の固体排出物について測定を実施した。また、周辺環境への影響として施設敷地境界での測定に加え、現場作業時の発じん状況を把握するために投入口付近、溶融飛灰処理装置付近、CC 灰排出部付近にて測定を実施

した。さらに施設から
1.5km離れた地点におい
ても大気中濃度を測定し
た。

3.2.2.2 試験条件

表 3.2-1 に試験条件 を示す。ベースの処理対 象物は一般廃棄物(事業

表 3.2-1 試験条件

둞	験水準	条件1	条件2	条件3	条件4	条件5			
処	ベース*1	一般廃	一般廃棄物(事業系)+ASR+その他産廃 混合廃棄物						
理	アスベスト		スレート材	成型保温材	スレート材	成型保温材			
対	廃棄物		約7t	約4t	約4t	約11t			
象	(内数)	_			成型保温材				
物					約8t				
処理	三 里			約120t/日					
試験	譋		;	各条件18時間	1				
データ期間		í	各条件12時間(最初の6時間は移行期間)						
溶融	温度	1,500℃ 程度目標							
燃焼	室温度		85	0 ~ 900°C目	標				

系)、ASR(自動車シュレッダーダスト) 及びその他産廃の混合廃棄物とし、条 件1~5の5水準にてアスベスト廃棄 物の混合処理試験を実施した。アスベ スト廃棄物の投入方法は、投入割合の 管理及び安全性確保の観点から通常の 投入ルートと区別し、厚手のビニル袋 で二重に梱包したアスベスト含有廃棄

物を仮設コンベアによる専用ライ ンから投入することとした。今回 混合処理したスレート材中のアス ベスト含有割合はクリソタイル 7.3%、成型保温材中のアスベスト 含有割合はアモサイト 2.7%であ った。(表 3.2-2、図 3.2-2、図 3.2-3) 試験は連続4日間で実施し、

表 3.2-2 アスベスト廃棄物の分析結果

	石	綿含有割合(%)
	クリソタイル	アモサイト	クロシト・ライト
スレート材 (n=2)	7.3	<0.1	<0.1
成型保温材 (n=2)	<0.1	2.7	<0.1

図 3.2-2 スレート材の外観 図 3.2-3 成型保温材の外観

データ評価は試験水準を変更してから溶融炉内の内容物が全て置換されるまでの移行期間を除い て、定常状態と想定される12時間を対象とした。

3.2.2.3 アスベスト分析

アスベスト分析についてそれぞれの対象物ごとに用いた分析法を示す。() 内は使用した機器 名称、メーカ名、形式である。アスベスト廃棄物中の石綿濃度はX線回折法(X-ray diffractometer, Panalytical, X' Peat PRO MPD) により分析した。燃焼ガス中の石綿濃度はバグフィルタ入口は 水分散-位相差顕微鏡(PCM)法 (Phase contrast microscope, Nikon, ECLIPSE80i) により、バグフ イルタ出口と HEPA 出口は PCM 法 (Phase contrast microscope, Nikon, ECLIPSE80i) により分析 した。この中で、燃焼ガスはダストを多く含むためそのサンプリング法としては2連のインピン ジャの後段にメンブランフィルタを設置して採取する方式を用いている。14) 溶融スラグ、溶融 メタル、溶融飛灰、CC灰については PCM を用いた分散染色法 (Phase contrast microscope, Nikon, ECLIPSE80i) と X 線回折法(X-ray diffractometer, Panalytical, X' Peat PRO MPD) により分析した。施設周辺大気石綿濃度、敷地境界及び発じん箇所の石綿濃度については PCM 法 (Phase contrast microscope, Nikon, ECLIPSE80i) により分析した。

特に溶融スラグと溶融飛灰については TEM 法 (Transmission electronmicroscope, HITACHI, H-7650 and H-8100) による分析も実施している。溶融スラグと溶融飛灰の TEM 観察試料作製は以 下の手順で行った。

〈スラグ〉

- ① メノウ乳鉢で粉砕する(粒径約 0.5mm まで)。
- ② 粉砕した試料 5g を採取し、無じん水 50mL に添加し、15 分間超音波分散する。
- ③ 目開き 0.075mm の篩で篩い分ける(50mL の無じん水で洗浄)。
- ④ 溶出液から 1mL 分取し、無じん水 50mL を添加する。

- ⑤ $47\text{mm}\,\phi$ (孔径 $0.2\,\mu\text{ m}$)の P C フィルタで吸引濾過する。
- ⑥ PCフィルタを 1/4 に切りスライドガラス上に両面テープで固定した後、カーボン蒸着。
- ⑦約3mm口に切り出し、Niグリッド(200メッシュ)にのせる。
- ⑧ クロロホルムで PC フィルタを溶解する。

〈飛灰〉

- ① 試料 0.5g を採取し、無じん水 50mL に添加し、15 分間超音波分散する。
- ② 分散後の試料(分散液)について、スラグ試料作製手順の③~⑧と同様の操作を行う。

TEM 観察で確認された繊維状粒子から繊維形態が明らかに石綿繊維とは異なる繊維を除外し、石綿繊維の可能性のある繊維状粒子について電子線回折測定を実施し結晶性を示す明確な回折スポットが観察されたものについて、TEM-EDX による元素分析を実施し、その組成から石綿繊維か否かを判定している。

なお、観察及び電子線回折には H-7650 (加速電圧; 100Kv) を使用し、元素分析には H-8100 (加速電圧: 200kV) を用いている。また、観察および計数倍率については、各試料の目開き全体の写真倍率は 2,000 倍、繊維状粒子計数用は 5,000 倍、ピックアップした繊維状粒子の写真倍率は 20,000 倍で測定しており、元素分析時には、各繊維状粒子の大きさに応じて 100,000~200,000 倍で測定した。

3.2.3 試験結果と考察

3.2.3.1 溶融処理結果

表 3.2-3 にアスベスト廃棄物混合処理結果を示す。アスベスト含有廃棄物は水分や可燃物をほとんど含まないため、条件 1 とその他条件を比較すると、アスベスト含有廃棄物混合割合の高い条件において、溶融物量が増加傾向を示している。溶融物温度に関しては、ガス化溶融炉から排出される際に非接触式温度計にて間欠的に測定した結果、いずれの条件においても 1500 C以上を確保しており、アスベスト含有廃棄物の最も高い条件 4 においても 1600 C以上を確保できていた。また排ガスに関しては、データ期間の各平均値で燃焼室温度 900 C前後、HEPA 入口温度 185 C前後で安定していた。アスベスト含有廃棄物を含めた総処理量については、ほぼ計画通りの

条件5 材 ASR等
材 ASR等
+保温材
8
ASR等
4800
材 保温材
580
10.9
367
1,693
899
185
83039

表 3.2-3 試験結果

5000kg/h(120t/日)レベルを確保し、スレート材 10.7t、成型保温材 22.8t の計 33.5t のアスベスト含有廃棄物を全量溶融処理した。以上より、実機施設においてスレート材及び成型保温材のアスベスト含有廃棄物の高温溶融処理が可能であり、条件4においてはアスベスト含有廃棄物混合割合として最大 14.2%にて安定処理可能であることを確認した。

3.2.3.2 アスベスト分析結果

(1) 排ガス

表 3.2-4 燃焼ガス中石綿濃度測定結果

燃焼ガス中の石綿濃 度測定結果を表 3.2-4 に示す。条件毎にバグ フィルタ入口・出口、 HEPA フィルタ出口の 3 箇所にて同時測定を実 施した。バグフィルタ 入口では、全ての条件

		燃焼ガス (f/L)								
	水分散-PCM法	散-PCM法 PCM法								
	BF入口	BF出口	HEPA 出口							
条件 1	< 1,600	< 0.38	< 0.35							
条件 2	< 2,100	< 0.32	< 0.31							
条件3	< 1,400	< 0.34	< 0.31							
条件 4	< 3,800	< 0.31	< 0.31							
条件 5	< 4,600	< 0.31	< 0.31							

で定量下限値未満(下限値 1400~4600 f/L)であった。なお、バグフィルタ入口のようにダスト 濃度が高い検体においては、ダストが繊維状物質の検鏡を妨害するため、排ガス採取量を少なく する必要があった。このことと水分散抽出液を分取して無じん水で希釈しろ過した後分析に供していることの影響で、高い濃度の検出下限となっている。また、バグフィルタ出口において全ての条件で定量下限値未満(下限値 $0.31\sim0.38 f/L$)、HEPA フィルタ出口においても全ての条件で定量下限値未満(下限値 $0.31\sim0.35 f/L$)であった。バグフィルタ出口及び HEPA フィルタ出口の測定結果は、いずれも大気汚染防止法における敷地境界基準値 (10 本/L) と比較しても極めて低く、施設周辺(施設から 1.5 km 離れた地点)大気中濃度とほぼ同等であった。

(2) スラグ、メタル、溶融飛灰、CC灰

スラグ、メタル、溶融飛灰及びCC灰の石綿濃度測定結果を表3.2-5に示す。定性分析(JIS A 1481)を実施した結果、全ての条件にて分散染色法及び X 線回折法のいずれの分析においても、石綿は検出されなかった。

		スラグ、メタル、溶融飛灰、CC灰										
		分散	染色法		X線	回折法/石綿回折ヒ	ピークの有無(石綿)	農度)				
	スラグ メタル 溶融飛灰 CC灰				スラグ	メタル	溶融飛灰	CC 灰				
条件 1	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)				
条件 2	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)				
条件 3	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)				
条件 4	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)				
条件 5	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	0 本/3,000粒子	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)	無 (<0.1%)				

表 3.2-5 スラグ、メタル、溶融飛灰、CC 灰の石綿濃度分析結果

(3) 敷地境界及び発じん箇所

発じん箇所及び敷地境界における石綿濃度測定結果を表 3.2-6、表 3.2-7 に示す。発じん箇所については、アスベスト含有廃棄物投入専用ラインの投入口付近、CC 灰排出部付近、溶融飛灰処理

表 3.2-6 発じん箇所石綿濃度測定結果

	発じん箇所における石綿濃度 (f/L) [PCM法]							
	投入口付近 CC 灰排出部付近 飛灰処理装置付近							
条件1	< 4.8	-	-					
条件2	< 4.8	-	-					
条件3	< 4.8	-	-					
条件4	< 4.8	< 2.4	< 9.6					
条件 5	< 4.8	< 2.4	-					

表 3.2-7 敷地境界石綿濃度測定結果

		敷地境界空気	(f/L) [PCM法]		施設周辺大気 (f/L)
	敷地境界 (i) (風上)	敷地境界 (ii)	敷地境界 (iii) (風下)	敷地境界 (iv)	ル設局近大気(I/L) [PCM法]
条件 1	0.14	-	< 0.13	-	< 0.3
条件 2	0.14	0.19	0.19	< 0.13	< 0.3
条件 3	< 0.13	-	< 0.13	-	< 0.3
条件 4	0.14	-	< 0.13	-	< 0.3
条件 5	0.19	< 0.13	0.24	0.14	< 0.3

装置付近の3箇所にて測定を実施した。

全ての条件にて石綿濃度は定量下限値未満であり、アスベスト含有廃棄物処理前との差異はなく、屋外の管理濃度である 150f/L を十分下回った。敷地境界については、風上・風下の 2 箇所をベースに測定し、条件 2,5 についてはそれ以外の地点も加えて計 4 箇所測定した。最大濃度は 0.24f/L (条件 5 風下)となり、大気汚染防止法におけるアスベストに係る敷地境界基準値である 10 本/L を下回った。また、アスベスト含有廃棄物未処理時の条件 1 とその他条件を比較しても差異はなかった。

また施設から 1.5km 離れた地点において各条件下で大気中濃度を測定したが、何れも 0.3f/L 未満であった。この値は本試験を実施した時期に調査された環境省の平成 19 年度アスベスト大気 濃度調査結果に報告されているバックグラウンド(住宅地域) 0.33f/L と比較しても、ほぼ同じ レベルか、低い値である。 $^{15)}$

以上より、敷地境界及び発じん箇所におけるアスベストの飛散は極めて少なく、施設周辺への 影響はほとんどなかったと考えられる。

3.2.3.3 TEM 解析によるスラグと溶融飛灰の無害化評価

無害化処理認定に係る無害化処理生成物の評価方法としては、上述のように JIS A 1481 に準拠して分散染色法及び X 線回折法によって行うこととされている。しかし無害化処理生成物が環境中に放置された場合、将来的に風化して内包されている繊維状物質が再飛散することが危惧されることから微細なアスベスト繊維を高倍率、高分解能で観察が可能な TEM により同定・計数することが提案されている。 ¹⁶⁾ TEM 法は微小繊維を高感度に検出するのみでなく、電子線回折(ED)やエネルギー分散 X 線分析 (EDS) によって結晶構造や元素組成の情報が得られることから、アスベス繊維の同定に極めて有効であると考えられている。

TEM は大気や水中の微細アスベストの分析法としては一般的に使用されており、公定法として定められている。 $^{17-20)}$ 一方、固体中アスベストの分析への TEM の適用については、報告例は少なかったものの 1985 年に Bishop らが汚泥 $^{21)}$ に、1988 年には Pitt が都市域の堆積粉塵 $^{22)}$ に対して用いており、米国 EPA が 1993 年に発表した「建築材料中のアスベスト測定方法(試験方法)」においても立体顕微鏡、偏向顕微鏡(PLM)を補う方法として X 線回折法と重量分析法とともに TEMが推奨されている。 $^{23)}$ 最近では、イタリアで熱処理したスレート材中のアスベストの変質を TEMを用いて調査している例もある。 10

今回、高温溶融処理によるアスベスト無害化の程度を確認するため、TEM を用いて条件2のスラグ及び溶融飛灰の石綿繊維の有無判定を実施した。以下に手順に従って分析結果を報告する。

(1) アスベスト繊維の判定基準

表 3.2-8 に今回実施した TEM 分析における石綿繊維有無の判定基準を示す。スラグと溶融飛灰における繊維状粒子のアスベスト判定は、繊維形状観察、電子線回折、成分分析によって実施した。

(2) 繊維形状観察結果と電子線回折結果

試料の石綿繊維有無の判定は、まず前項の判定基準により、主に「石綿ではない繊維」に合致の判定要素により消去法で実施した。スラグ、飛灰それぞれ総繊維数 183 本、22 本から(1)繊維形状、(2)電子線回折の順に消去法により判定し、スラグ、飛灰ともに 11 本ずつが、石綿繊維の可能性のある繊維状粒子として残った。

(3) TEM-EDX による成分分析結果

前項の判定結果で石綿繊維の可能性のあるとして残ったスラグ 11 本、溶融飛灰 11 本の繊維状 粒子について TEM-EDX による元素分析を実施した。元素分析の結果を表 3.2-9 に示す。各元素の 組成比は原子数%である(ピーク面積から元素ごとに補正を行っている)。

元素分析の結果、スラグでは繊維状粒子 11 本すべてから Si が検出され、うち 6 本から Mg が検出されたが、Mg が検出されたすべての繊維状粒子から Al が検出されたため、非石綿、非フォルステライト繊維と判定した。残りの 5 本の繊維状粒子については Mg も Na も検出されていないため非石綿繊維であり、非フォルステライト繊維と判定した。上記 4 種については非石綿繊維であり、非フォルステライト繊維と判定した。

次に溶融飛灰についても同様に11本の全繊維状粒子からSiが検出され、うち3本の繊維状粒子からMgが検出されたが、Alが同時に検出されているため、非石綿繊維、非フォルステライト繊維と判定した。残りの8本の繊維状粒子についてはMgもNaも検出されていないため非石綿繊維であり、非フォルステライト繊維と判定した。なお、Feは判定基準としては使用していない。

表 3.2-8 TEM による石綿の判定基準

繊維		(1) 繊維形状	(2) 電子線回折パターン	(3) 元素分析 (TEM-EDX)
石綿	クリソタイル アモサイト クロシト・ライト アンソフィライト トレモライト アクチニライト	中空状	ii) 結晶軸の周期の相違によるクリソタイルと角閃石の 識別	Mg, Si Mg, Si, Fe Na, Si, Fe Mg, Si, Fe Mg, Si, Ca, Fe Mg, Si, Ca, Fe
フォレストラ	7 1			Mg, Si
石綿でない繊維		i) 繊維の先端が尖っているii) 繊維の幅が不均一iii) コントラストに不自然な斑	非晶性を示すハロー状の回折パターン、または回折 強度が弱い	Al, K, Ti, S 等の石綿構成元素以外の検出

表 3.2-9 スラグ及び溶融飛灰中の繊維状粒子の判定結果

		石綿繊維判定基準と判定結果					1		
	繊維No.	(1) 繊維形状	(2) 電子線回折パ	(3) 元素分析 (TEM-EDX)			判定結果	石綿繊維数濃度	定量下限 値
	利以不EINO.	(1) 科以ボモバシ4人	ターン	石綿、フォレストライトの元素	その他の元素		刊足相朱		(Mf/g)
	1	0	0	M g,Si,Ca	Al, S	×	石綿繊維でない		
	2	0	0	Si	Al	×	石綿繊維でない		
	3	0	0	Si	Al	×	石綿繊維でない		
	4	0	0	M g,Si,Ca	Al	×	石綿繊維でない		
	5	0	0	M g,Si,Ca	Al	×	石綿繊維でない		
	6	0	0	Si	-	×	石綿繊維でない		2.52
スラグ	7	0	0	M g,Si,Ca	Al, S	×	石綿繊維でない	不検出	
	8	0	0	Si	-	×	石綿繊維でない		
	9	0	0	Si	Al	×	石綿繊維でない		
	10	0	0	Na,Mg,Si,Ca	Al, S	×	石綿繊維でない		
	11	0	0	M g,Si,Ca	Al, S, Ti	×	石綿繊維でない		
	12~25	0	×	_	_		石綿繊維でない		
	26~183	×	_	_	_	_	石綿繊維でない		
	1	0	0	Si,Ca	Al, S, K	×	石綿繊維でない		
	2	0	0	Si,Ca	Al, S, Ti	×	石綿繊維でない		
	3	0	0	Si	-	×	石綿繊維でない		
	4	0	0	M g,Si,Ca	Al, Ti, Zn	×	石綿繊維でない		
	5	0	0	M g,Si,Ca	Al, Ti, Zn	×	石綿繊維でない		
	6	0	0	Si,Ca	Al, S	×	石綿繊維でない		
溶融飛灰	7	0	0	Si,Ca	Zn	×	石綿繊維でない	不検出	25.2
	8	0	0	Si,Ca	Al, S, Cl	×	石綿繊維でない		
	9	0	0	M g,Si,Ca	Al, S, Cl, Zn	×	石綿繊維でない		
	10	0	0	Si,Ca	S	×	石綿繊維でない	_	
	11	0	0	Si,Ca	Al, S	×	石綿繊維でない		
	12~17	0	×	_		_	石綿繊維でない		
	18~22	×	_	_	_	_	石綿繊維でない		

^{○:} 石綿繊維の可能性があると判定された繊維状粒子

^{×:} 石綿繊維でないと判定された繊維状粒子

一:分析対象外

(4) 判定結果

TEM を用いた一連の分析による判定の結果、二つの分析試料(①スラグ、②溶融飛灰)から石綿 6 種(クリソタイル、アモサイト、クロシドライト、アンソフィライト、トレモライト、アクチノラ イト)は検出されなかった。また、フォルステライトについても検出されなかった。(表 3.2-9 参 照)

なお、定量下限は以下の計算式で算出した。

<スラグ> <飛灰>

> $-2.52 \, (Mf/g)$ $A_g \times n \times w \times 10^6$

 $\frac{1}{A_g \times n \times w \times 10^6} = 25.2 \text{ (Mf/g)}$ S: 定量下限(Mf/g) S: 定量下限 (Mf/g)

A_f: フィルターの有効面積 (1074.7mm²) A_f: フィルターの有効面積 (1074.7mm² Ag: 1目開きの面積 (0.0064mm²) Ag: 1目開きの面積 (0.0064mm²) n: 計数した目開きの数 (4) n: 計数した目開きの数 (4)

w:試料量(0.05g) w:試料量(0.005g)

3.2.4 環境影響評価

試験結果をもとにアスベスト含有廃棄物処理時における施設周辺への環境影響の有無を以下のとお り評価した。

表 14 に示すように敷地境界での最大濃度は 0.24f/L(条件 5 風下)となり、大気汚染防止法におけ るアスベストに係る敷地境界基準値である 10 本/L を大きく下回っていた。また、アスベスト含有廃 棄物処理前の条件1とその他条件を比較しても差異はなかった。

また施設から 1.5km 離れた地点において各条件下で大気中濃度を測定したが、何れも 0.3f/L 未満で あった。この値は本試験を実施した時期に調査された環境省の平成19年度アスベスト大気濃度調査結 果に報告されているバックグラウンド(住宅地域)0.33f/Lと比較しても、ほぼ同じレベルか、低い 値である。15)

今回の試験は1 炉処理であったことから、2 炉同時処理することを想定し、煙突から発生する排ガ スの拡散シミュレーションを実施することによりその影響度を検証した。予測計算には「経済産業省 一低煙源工場拡散モデル METI-LIS モデル ver. 2.03」²⁴⁾を用いた。 なお、拡散計算式は下記に示す 定常一様のガウス型プルームモデルを使用した。

$$C_{(x,y,z)} = \frac{QV}{2\pi u_s \sigma_y \sigma_z} exp \left[-0.5 \left(\frac{y}{\sigma_y} \right)^2 \right]$$

x,y,zにおける濃度 (m³/m³:ppb、ppm など)

汚染物質の排出強度(m³_N/s)

鉛直項

放出高度での平均風速(m/s)

水平方向、鉛直方向の拡散パラメータ(m)

鉛直項はガウス型プルームの鉛直方向の分布を表すもので、この項には、計算点の高さ、排出された プルームが上昇することによる高さの効果(これを有効上昇高さとする)を含んでいる。

$$V = exp \left[-0.5 \left(\frac{z_{\rm r} - h_{\rm e}}{\sigma_{\rm z}} \right)^2 \right] + exp \left[-0.5 \left(\frac{z_{\rm r} + h_{\rm e}}{\sigma_{\rm z}} \right)^2 \right]$$

z_r : 計算点の高さ (m) h_o : 有効上昇高さ (m)

計算の対象とする各排出源及び各時刻について、計算座標の原点は煙源の地上位置に置き、xー軸は風下方向を正として、yー軸はxー軸と水平方向(横風方向)に直角とし、さらにzー軸は鉛直方向に直角とする。 各時刻の濃度計算においては設定した計算点を排出源毎の計算座標系に変換する。 各排出源による各計算点に対する個々の影響を合計して、その時間における全排出源からの影響濃度とする。

計算に用いた施設の煙源データを表 3.2-10 に示す。排出ガス中のアスベスト濃度は、安全側で評価するためにバグフィルタ出口での定量下限値の最大値 0.38 f/L を採用して計算した。

項目	単位	値			
煙突高さ	m	50			
煙突本数	本	2 (煙突間距離 30m)			
湿り排出ガス量	m^3N/h	112,000			
排出ガス温度	$^{\circ}$ C	173			
アスベスト濃度	f /L	0.38 未満			

表 3.2-10 煙源データ

予測の条件としては、長期予測と短期予測の2ケースを想定している。すなわち長期予測とは施設近くにある観測所の1年間の気象データを用いて計算した各計算点における影響濃度の1年間の平均値である。短期予測は風向を北東に固定し、風速と大気安定度は周辺への影響が最大になるような組合せに設定し、1時間値の影響濃度を算出した。予測結果をまとめ現況濃度と比較した結果を表3.2-11に示すが、最大着地濃度は長期予測(年平均)、短期予測(1時間値)ともに現況濃度と比べると、非常に小さいレベルであった。以上の結果より、施設稼働に伴い発生する排ガスによる環境大気中のアスベスト濃度への影響はほとんどないと評価できる。

表 3.2-11	予測結果と現況濃度の比較
	最大着地地点濃度

		最大着地		
物質	単位	長期予測	短期予測	現況濃度
		(年平均値)	(1 時間値)	
アスベスト	f /L	0.20×10^{-5}	0.49×10^{-4}	0.3 未満

3.2.5 アスベスト廃棄物溶融試験結果のまとめ

シャフト炉の実機施設において、ASR等をベースとしてスレート材及び成型保温材を単独または混合処理した結果、溶融物温度は1500℃以上を維持し、排ガス中及び固体排出物中のアスベストはいずれも検出されなかった。特に溶融スラグと溶融飛灰についてはTEMを用いた観察においてもアスベスト繊維は検出されないことを確認した。排ガスに関しては、バグフィルタ出口にてアスベスト濃度は一般環境レベルであることを確認した。従って投入されたアスベストは溶融炉内にて十分に分解されていると評価した。またアスベスト含有廃棄物処理時における実機施設周辺への影響も未処理時とほとんど差がないことが確認された。

本成果をもとに、2010年1月より北九州エコエナジー(株)にて実処理を開始している。

なお、試験プラントでの試験は 2005Fy 廃棄物処理等科学研究費補助金研究として、また実機試験は 2006Fy 次世代廃棄物処理技術基盤整備事業として実施した。

[第3章 第2節の参考文献]

- 1) (社)日本石綿協会:石綿含有建築材料廃棄物量の予測調査結果報告書(2003)
- 2) 浅見琢也:アスベスト使用の現状と排出量、都市清掃, Vol. 60, No. 275, pp. 21-23 (2007)
- 3) 酒井伸一、高月紘、平岡正勝: アスベスト廃棄物の溶融処理に関する基礎的研究, 環境技術, Vol. 18, No. 7, pp. 397-405 (1989)
- 4) 横川明 1,川口義博、奥田正美(1997) アスベスト廃棄物溶融処理技術の開発,日本機械学会創立 100 周年記念中国四国支部記念式典・講演論文集,pp. 99-100
- 5) 環境省: 廃石綿処理マニュアル、pp. 31-32 (2005.8)
- 6) 由田秀人,秦康之: アスベスト廃棄物対策の動向について, 廃棄物学会誌, Vol. 17, No. 5, pp. 255-262 (2006)
- 7) 山本貴士、貴田晶子、野馬幸生、寺園淳、酒井伸一:石綿含有廃棄物の無害化処理とその評価、都市清掃、Vol.60、No.275、pp.47-53 (2007)
- 8) 環境省;次世代廃棄物処理技術基盤整備事業に係る終了時の事後評価について (HP; http://www.env.go.jp/recycle/waste_tech/kagaku/h18/jisedai/index.html)
- 9) 梶山博久、高宮健、長田守弘:シャフト炉式ガス化溶融炉による非飛散性アスベストの無害 化処理,第17回廃棄物学会研究発表会講演論文集,pp.1146-1148 (2006)
- 10) A. F. Gualtieri, C. Cavenati, I. Zanatto, M. Meloni, G. Elmi, M. Lassinantti Gualtieri: The transformation sequence of cement-asbestos slate up to 1200°C and safe recycling of thr eaction production in stoneware tile mixture, Journal of Hazardous Materials, Vol. 152, pp. 563-570 (2008)
- 11) Alessandro F. Gualtieri, Carlotta Giacobbe, Lorenza Sardisco, Michele Saraceno, Magdalena Lassinantti Gualtieri, Gigliola Lusvardi, Cinzia Cavenati, Ivano Zanatto: Recycling of the product of thermal inertization of cement-asbestos for various industrial applications, Waste Management, Vol. 31, Issuel, pp. 91-100 (2011)

- 12) 長田守弘、高宮健, 真名子一隆(2008)シャフト炉式ガス化溶融炉実機におけるアスベスト 無害化処理,第19回廃棄物学会研究発表会講演論文集,pp.842-844
- 13) Morihiro Osada, Ken Takamiya, Kazutaka Mnanako, Shin-ichi Sakai: Asbestos-containing Waste Treatment by High Temperature Melting, Proc. of the 5th International Conference on Combustion, Incineration / Pyrolysis and Emission Control, pp. 519-524 (2008)
- 14) 永塚栄登、河邊安男、藤吉秀昭: 一般廃棄物処理施設における石綿飛散の現状等, 廃棄物 学会誌、Vol. 17、No. 5、pp. 271-279 (2006)
- 15) 環境省報道発表資料: 平成19年度アスベスト大気濃度調査結果について(2008.5.27)
- 16) 山本貴士他:アスベスト廃棄物溶融処理物の透過電子顕微鏡による試験方法の検討,第 17 回 廃棄物学会研究発表会講演論文集,pp. 1113-1115 (2006)
- 17) 日本工業規格: JIS K 3850-2:2006 「空気中の繊維状粒子測定方法―第2部:直接変換―透過型電子顕微鏡法」、日本規格協会 (2006)
- 18) 日本工業規格: JIS K 3850-3:2006 「空気中の繊維状粒子測定方法一第3部:間接変換—透過型電子顕微鏡法」、日本規格協会 (2006)
- 19) 厚生省生活衛生局水道環境部水道整備課監修:水道とアスベスト、日本水道協会(1989)
- 20) US EPA: Method 100.1, Analytical method for determination of asbestos fibers in water , EPA-600/4-83-043 (1983)
- 21) Bishop K, Ring, S J, Zoltai T, Manos C G, Ahrens V D, Lisk D J: Identification of asbestos and glass fibers in municipal sewage slidges, Bull, Environ. Contam, Toxicol., Vol. 34, pp. 301-308 (1985)
- 22) Pitt R: Asbestos as an urban area pollutant, WPCF, Vol. 60, No. 11, pp. 1993-2001 (1988)
- 23) Perkins R L , Harvey B W: Method for determination of asbestos fibers in bulk building materials (test method) , EPA-600/R-93/116, PB93-218576, 99pp (1993)
- 24) 産業環境管理協会:プログラム「経済産業省―低煙源工場拡散モデル METI-LIS モデル ver. 2.03」 www. jemai. or. jp/ems/meti-lis. htm

3.3 第3章のまとめ

第3章では、シャフト炉の高温溶融による無害化、資源化、減容化性能が有効に活かせると考えられる処理対象として、他方式では処理困難な ASR とアスベストを取り上げ、溶融処理実験に基づくシャフト炉の処理性能の評価結果を取りまとめた。合わせてその処理過程で重金属類、臭素系難燃剤やアスベスト等の有害物質の挙動調査を実施したのでその結果を整理し、次章で実施する環境影響評価の基礎データに供することとした。

第 1 節では、シャフト炉の 10 トン/日規模の試験設備を用いて ASR 溶融処理試験を実施し ASR 中に多く含まれる臭素化ジフェニルエーテル類やテトラブロモビスフェノール A 等の有害物質の分解技術として有効であることを実証した。それぞれのインプットに対する分解率は、99.999%以上、99.99%以上であった。

また低沸点重金属類は溶融飛灰へ、高沸点重金属類は溶融メタルへ分離濃縮していること、その結果、溶融スラグ中には有害な重金属類はほとんど残らず、環境安全性を担保できることを示した。具体的には代表的な低沸点重金属類の Pb 及び Zn はそれぞれ 91%、97%が溶融飛灰へ分配され、高沸点重金属類の Fe、Cu はともに 94%以上がメタルへ分配されていた。

第2節では、シャフト炉の120トン/日規模の実機設備を用いて、アスベストを含有するスレート材及び成型保温材の溶融処理試験を実施した。その結果、排ガスに関しては、バグフィルタ出口にてアスベスト濃度は一般環境レベルであることを確認でき、特に透過電顕等による詳細な観察・評価実施した結果でも溶融スラグや溶融飛灰に石綿繊維が残存していないことを確認し、アスベストの無害化が達成されていることを実証した。また、施設周辺の大気中アスベスト濃度も処理時と未処理時でほとんど差がなく、周辺環境にもほとんど影響を与えていないことを確認した。

本章では、シャフト炉による有害物質の高温分解、重金属類の分離濃縮及び回収性能を活かすことで ASR やアスベストの無害化及び・資源化が可能なことが示された。このためには有害廃棄物の処理においても安全、高品質で有効利用可能なスラグを産出できることが必須であり、コークスによる高温還元雰囲気での溶融処理が効果的である。

本方式による ASR 溶融処理は、北九州エコタウン内の北九州エコエナジー(株) $(160t/d \times 2 \%)$ にて 2005 年 4 月からまた、新日本製鐵名古屋製鉄所内 $(120t/d \times 1 \%)$ で 2006 年 2 月から運転を開始した。 また、アスベスト廃棄物処理についても 2010 年 1 月より北九州エコエナジー(株)にて実処理を開始している。

第4章 廃棄物溶融プロセスのライフサイクルアセスメント

4.1 ASR の資源化・処理に関するライフサイクルアセスメント

4.1.1 本研究に関する背景と目的

自動車破砕残渣 (ASR) の処理については、これまでは埋め立て処分が主流とされてきたが、2005年に自動車リサイクル法が制定され資源化が求められたことから溶融処理も進められるようになってきた。1) ASR は高カロリーで焼却発電に適している一方、無機物が多くあり、かつ重金属類、難燃剤、塩素分等を多く含んでおり、処理困難な対象物である。3.1 節では ASR の溶融処理時における臭素化難燃剤、臭素化ダイオキシン類や重金属類等の挙動について調査し、これらの有害物質が溶融処理により適正に処理または資源化できることを確認した。2) 一方で、溶融処理は温室効果ガスの排出量が多い点や、処理費用が高いといった指摘もなされている。そこでこの章では、これまでの試験データ等を基に ASR の溶融処理の他に埋立処分や焼却方処理などの各処理方式を対象としてライフサイクルアセスメント (LCA) を実施したのでその評価結果を報告する。LCAを用いた廃棄物処理方式の比較評価はこれまでにも種々の手法で検討が進められてきており3-5)、最近では ASR の処理を対象にした検討事例も見られる。6) ただし、ただし、臭素系難燃剤や重金属類を多く含む ASR について、それらの挙動や環境影響、被害評価に焦点を当てた検討はなされていない。本研究ではこうした有害物質の影響を定量的に評価することを念頭に置き、LCA の実施に当たっては、産業技術総合研究所ライフサイクルアセスメント研究センターが中心となって開発されたLIME(日本版被害算定型環境影響評価手法)の更新版 LIME2 が提供する各種評価係数を

各資源化・処理方式の特性を十分把握できるように CO₂による地球温暖化問題のみならず、酸性化寄与物質の影響やダイオキシン類縁化合物、重金属類等による人間への健康影響や生態系への影響、さらには埋立地の逼迫なども考慮した。

活用している。⁷⁾⁸⁾その評価に当たっては、

4.1.2 調査範囲及び評価手法の設定

4.1.2.1 機能単位

本研究では、ASR 1 ton の処理を機能単位とする。ここでいう ASR とは、シュレッダー事業者から排出される廃車ダストを言い、その性状は表 4.1-1 に示す通りとした。表 4.1-1 は、溶融処理試験で用いた ASR の分析結果であり、日本の平均的な ASR のばらつきの範囲内にある。 $^{1)}$

表 4.1-1 ASR の分析結果

	分析項目	単位	測定値	
Ξ	水分	%-wet	1.2	
成	可燃分	%-wet	68.1	
分	灰分	%-wet	30.7	
物	5mm篩下	%-dry	30.1	
	プラスチック	%-dry	29.1	
	ゴム	%-dry	9.4	
	ウレタン	%-dry	5.0	
	繊維	%-dry	3.7	
理	紙	%-dry	0.94	
組	木	%-dry	0.02	
成	金属類	%-dry	2.2	
八	ガラス類	%-dry	N.D.	
	電線	%-dry	3.5	
	その他(分離不能物)	%-dry	14.6	
	その他(発泡スチロール等)	%-dry	0.19	
	雑物	%-dry	1.4	
	全塩素	mg/kg-dry	29000	
	全臭素	mg/kg-dry	300	
	全硫黄	mg/kg-dry	3600	
	カルシウム	%-dry	12.4	
	ケイ素	%-dry	12.9	
	アルミニウム	%-dry	5.4	
重	ナトリウム	%-dry	1.9	
金	カリウム	%-dry	0.53	
属	鉛	mg/kg-dry	1700	
類	水銀	mg/kg-dry	0.08	
等	カドミウム	mg/kg-dry	6.2	
ਚ	ヒ素	mg/kg-dry	3.5	
	セレン	mg/kg-dry	0.2	
	六価クロム	mg/kg-dry	<1	
	鉄	%-dry	2.8	
	銅	%-dry	3.4	
	亜鉛	%-dry	0.88	
	アンチモン	%-dry	0.04	
真発熱		kJ/kg	21500	
かさ比	重	t/m3	0.164	

4.1.2.2 評価対象とするシナリオ

評価対象とするシナリオを(1)埋立シナリオ(以下「埋立」という)、(2)焼却+焼却残渣埋立シナ リオ(以下、「焼却+埋立」という)、(3)ガス化溶融+スラグ・メタル資源化+溶融飛灰埋立シナリ オ(以下、「溶融+埋立」という) (4)ガス化溶融+スラグ・メタル資源化+溶融飛灰山元還元(以下、 「溶融+山元還元」という)の4種類とした。(図4.1.1)

評価対象とするライフサイクルは、ASR の収集から最終処分までとした。また、システムの運 用段階のみを対象とし、施設建設段階は対象外とした。

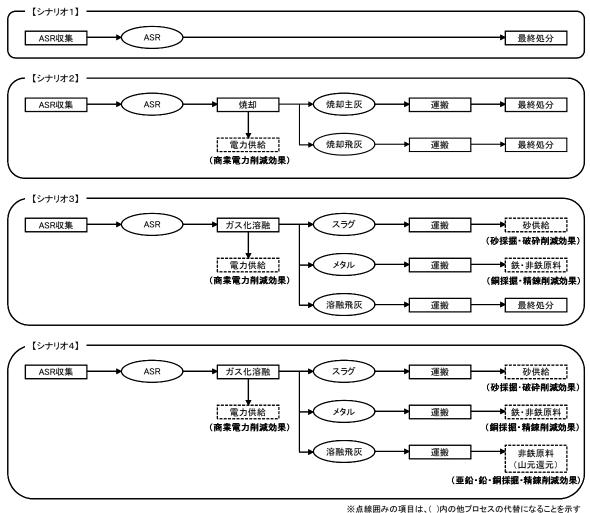


図 4.1-1 ASR 資源化・処理の 4 つのシナリオのシステム境界

4.1.2.3 システム境界の設定

評価対象としたシステムは、ASR の処理のほかに、回収エネルギー、資源化物(スラグ・メタ ル等)の副産物を提供する機能も有する。これら副産物が提供する機能にシナリオ間で差異のな いよう、副産物と同等の機能を提供するサブシステムを用いて、機能単位を「ASR 1 ton の処理」 に揃えた。つまり、副産物を有するシナリオからは、同等の機能を提供するサブシステムの環境 負荷を差し引くこととした。

焼却またはガス化溶融によって得られる電力は、発電所等から供給される電力と同等であると

した、電力供給サブシステムは、日本における商業電力を代替するものとした。スラグやメタル については、砂の採掘や非鉄原料の生産に関するサブシステムを代替するとした。

4.1.2.4 影響領域・対象物質と特性化手法の選定

影響領域の選定に当たっては、1) 廃棄物発電による高効率なエネルギー回収への期待、2) 埋立地逼迫問題への対応の重要さ、3) 高温溶融による難燃剤を含むダイオキシン類縁化合物削減への期待、4) スラグ・メタル資源化や山元還元による資源代替、重金属分離回収等を考慮する。また有害物質については人間健康影響と生態系への影響を評価対象とした。

上記を勘案し、以下の項目を影響領域、対象物質とした。

(1) 地球温暖化 (CO₂、CH₄、N₂O: GWP100years)

(2) 酸性化 (NO₂、SO₂: DAP)

(3) 有害化学物質 (PCDDs/DFs、Co-PCBs、PBDDs/DFs、PBDEs、重金属類:HTP)

(4) 生態毒性 (PCDDs/DFs、Co-PCBs、PBDDs/DFs、PBDEs、重金属類:AETP、TETP)

(5) 廃棄物 (Occupied space: 重量体積換算係数)

なお、PCDDs/DFs は塩素化ダイオキシン類、Co-PCBs はダイオキシン様のコプラナ PCB 類をさすが、本研究では毒性等価係数(TEF)の定められた異性体のみを評価対象とした。PBDDs/DFs は臭素化ダイオキシン類をさし、塩素化ダイオキシンと同じ置換位置の異性体のみを評価対象とした。PBDEs はポリ臭素化ジフェニルエーテル類をさし、毒性データが利用可能な DecaBD、OctaBDE、PentaBDE のみを評価対象とした。

また、重金属類では、Pb、Zn、Cd、T-Cr、Cu、As、T-Hg を対象とした。

上記の中で、有害化学物質の項目は人の健康影響のみを、また生態毒性の項目では水生生物と 陸生生物への有害性の評価を行うものである。また、廃棄物の項目では、埋立処分による土地利 用のみを評価するものであり、埋立地からの重金属の溶出等は他の影響領域で扱われ、これには 含まれない。

各影響領域内での特性化手法としては、地球温暖化には GWP (Global Warming Potential) 100 年値、酸性化には DAP (Deposition-oriented Acidification Potential: 沈着面からの酸性化ポテンシャル)を特性化係数として用いた。基準物質はそれぞれ CO_2 と SO_2 である。有害化学物質については、HTP (Human Toxicity Potential: 人間毒性ポテンシャル) を特性化係数として用い、発がんと慢性疾患のハザード比で特性化した。また生態毒性に関しては、AETP (Aquatic Eco-Toxicity Potential: 水生生物毒性ポテンシャル) と TETP (Terrestrial Eco-Toxicity Potential: 陸生生物毒性ポテンシャル) を特性化係数として用い、それぞれ水生生物への有害性、陸生生物への有害性を評価し特性化した。基準物質はそれぞれ、ベンゼンの水域排出、土壌排出である。廃棄物については、廃棄物重量を埋立容積に換算する係数を特性化係数として用いた。これらの特性化係数は、LIME2 特性化係数リスト 4)にて提供されているものを活用することを基本とした。

なお、塩素化ダイオキシン類とコプラナ PCB 類については、LIME2 には 2378-テトラクロロジベンゾジオキシン (2378-TeCDD) のみの特性化係数が定められているので、それ以外の異性体は TEFで 2378-TeCDD に等価毒性換算して特性化した。また臭素化ダイオキシン類については 1 mol の

2378-TeBDD が 1 mol の 2378-TeCDD と毒性が等価として塩素化ダイオキシン類の TEF を準用し、2378-TeCDD に等価毒性換算してから特性化することとした。

PBDEs に関しては研究例が少なく、ダイオキシン類とは毒性発現機構が異なるため TEF が存在しない うえ、LIME2 ではデカブロモジフェニルエーテル (DecaBDE) のみの特性化係数が示されている。 そこで、 DecaBDE 以外で毒性が確認されている OctaBDE、PentaBDE を評価するには、DecaBDEとの毒性及び環境排出後の挙動の相対的な比較を定量化し、DecaBDE に換算する必要がある。

毒性の評価係数である HTP に替わる係数としては、摂取比率 (Intake Fraction: iF) があげられるが、HTP が毒性と環境挙動を合わせもつのに対し、iF は有害物質の発生源からの排出を人への曝露すなわち摂取量へと定量的に結びつけるもので、環境挙動のみを扱っており、その中に毒性に関する評価は含まれていない。従って iF を用いて、有害物質の健康影響を評価するには、別途毒性データを用意し、これと組み合わせる必要がある。

そこで、PBDEs の NOAEL の逆数にて毒性評価することと摂取比率比を考慮して DecaBDE に等価毒性換算してから DecaBDE の特性化係数を用いて下式により特性化した。⁹⁾¹⁰⁾

- ・ OctaBDE 換算排出量=OctaBDE 実排出量× (OctaBDE 摂取比率/ DecaBDE 摂取比率)
 - × (DecaBDE NOAEL/OctaBDE NOAEL)
- PentaBDE 換算排出量=PentaBDE 実排出量×(PentaBDEE 摂取比率/ DecaBDE 摂取比率)×
 (DecaBDE•NOAEL/PentaBDE•NOAEL)

なお、PBDEs の毒性に関しては、(独)産業技術総合研究所 化学物質リスク管理研究所の調査によれば、ヒトへの BDEs 曝露による皮膚及び眼刺激性、短期及び長期投与毒性についての情報に基づく有害性評価値は見あたらないが、PBDEs の動物での長期投与試験によって、肝臓、甲状腺、腎臓、脾臓、リンパ器官に有害影響がみられた。この中で DecaBDE、OctaBDE、PentaBDE に共通して影響がみられた肝臓への影響を共通指標として NOAEL がまとめられている。DecaBDE では、肝臓の血栓症と変性を、OctaBDE に関しては、肝酵素誘導・肝臓の病理組織学的変化を、PentaBDE に関しては、肝細胞肥大をとりあげ、NOAEL として、DecaBDE で 1,120mg/kg/日、OctaBDE で 0.77mg/kg/日、PentaBDE で 0.1mg/kg/日が推定されている。9)なお、OctaBDE と PentaBDE の NOAEL はそれぞれ実験が行われた PBDEs の純度 30.7%、50%を乗じた数値を当該物質に由来する NOAEL としたものである。(表 4.1-2 参照)

また、PBDEs を大気に排出したときの各物質の摂取比率については平井らの研究データを活用

		リスク評価									
	エンドポイント	純度	投与期間	NOAEL	UF	参考値					
	エントルイント	祀及	投 分别间	(mg/kg/日)	Ur	(mg/kg/日)					
DecaBDE	肝臓	94-97%	103 週	1,120	100	11.2					
OctaBDE	肝臓	30.7%	90 日	2.51	1,000	0.00251					
OctaBDE	肝臓	100%	90 日	0.77	1,000	0.00077					
PentaBDE	肝臓	50-62%	13 週	0.2	1,000	0.0002					
PentaBDE	肝臓	100%	13 週	0.1	1,000	0.0001					

表 4.1-2 肝臓への影響で採用した NOAEL(mg/kg/日)

した。 $^{10)}$ 平井らの研究では PBDEs の環境中での脱臭素化反応及び PBDFs の生成を考慮しているため、排出時の物質のみならずそれらが低臭素化した物質の摂取比率も示しているが、ここではモデルの精度も考慮して低臭素化反応は考慮しないこととし、DecaBDE 摂取比率は 3.29×10^{-5} を、OctaBDE 摂取比率は 2.32×10^{-3} を、PentaBDE 摂取比率は 7.53×10^{-3} を採用した。

IF DeBDE Substitution Substitu		from									
NoBDE 5.55E-07 2.02E-04 0		DeBDE	NoBDE	OBDE	HpBDE	HxBDE	PeBDE	TeBDE	TrBDE	DiBDE	MoBDE
OBDE 1.15E-08 4.08E-06 2.32E-03 0 <td>iF DeBDE</td> <td>3.29E-05</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	iF DeBDE	3.29E-05	0	0	0	0	0	0	0	0	0
HpBDE 4.54E=11 1.35E=08 6.84E=06 4.61E=03 0	NoBDE	5.55E-07	2.02E-04	0	0	0	0	0	0	0	0
HxBDE 4.10E-13 7.54E-11 2.01E-08 1.08E-05 4.18E-03 0 0 0 0 0 PeBDE 2.43E-14 3.57E-12 3.93E-10 7.06E-08 2.08E-05 7.53E-03 0 0 0 0 TeBDE 3.30E-15 4.74E-13 4.33E-11 2.65E-09 2.00E-07 4.93E-05 1.31E-02 0 0 0 DiBDE 2.57E-16 3.69E-14 3.34E-12 1.86E-10 8.19E-09 1.25E-06 2.84E-04 1.27E-02 0 0 DiBDE 2.96E-17 4.25E-15 3.83E-13 2.02E-11 5.56E-10 2.16E-08 3.81E-06 1.39E-04 6.18E-03 0 MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0 0 0 0 0 0 0 0 0 HpBDD 0 0 0 0 0 <td>OBDE</td> <td>1.15E-08</td> <td>4.08E-06</td> <td>2.32E-03</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	OBDE	1.15E-08	4.08E-06	2.32E-03	0	0	0	0	0	0	0
PeBDE 2.43E-14 3.57E-12 3.93E-10 7.06E-08 2.08E-05 7.53E-03 0 0 0 0 TeBDE 3.30E-15 4.74E-13 4.33E-11 2.65E-09 2.00E-07 4.93E-05 1.31E-02 0 0 0 TrBDE 2.57E-16 3.69E-14 3.34E-12 1.86E-10 8.19E-09 1.25E-06 2.84E-04 1.27E-02 0 0 DiBDE 2.96E-17 4.25E-15 3.83E-13 2.02E-11 5.56E-10 2.16E-08 3.81E-06 1.39E-04 6.18E-03 0 MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0 0 0 0 0 0 0 0 0 HyBDD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HpBDE	4.54E-11	1.35E-08	6.84E-06	4.61E-03	0	0	0	0	0	0
TeBDE 3.30E-15 4.74E-13 4.33E-11 2.65E-09 2.00E-07 4.93E-05 1.31E-02 0 0 0 TrBDE 2.57E-16 3.69E-14 3.34E-12 1.86E-10 8.19E-09 1.25E-06 2.84E-04 1.27E-02 0 0 DiBDE 2.96E-17 4.25E-15 3.83E-13 2.02E-11 5.56E-10 2.16E-08 3.81E-06 1.39E-04 6.18E-03 0 MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0 <td< td=""><td>HxBDE</td><td>4.10E-13</td><td>7.54E-11</td><td>2.01E-08</td><td>1.08E-05</td><td>4.18E-03</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	HxBDE	4.10E-13	7.54E-11	2.01E-08	1.08E-05	4.18E-03	0	0	0	0	0
TrBDE 2.57E-16 3.69E-14 3.34E-12 1.86E-10 8.19E-09 1.25E-06 2.84E-04 1.27E-02 0 0 DIBDE 2.96E-17 4.25E-15 3.83E-13 2.02E-11 5.56E-10 2.16E-08 3.81E-06 1.39E-04 6.18E-03 0 MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0	PeBDE	2.43E-14	3.57E-12	3.93E-10	7.06E-08	2.08E-05	7.53E-03	0	0	0	0
DIBDE MoBDE 2.96E-17 4.25E-15 3.83E-13 2.02E-11 5.56E-10 2.16E-08 3.81E-06 1.39E-04 6.18E-03 0 MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0 0 0 0 0 0 0 0 0 HpBDD 0	TeBDE	3.30E-15	4.74E-13	4.33E-11	2.65E-09	2.00E-07	4.93E-05	1.31E-02	0	0	0
MoBDE 3.64E-18 5.23E-16 4.71E-14 2.47E-12 6.21E-11 7.09E-10 2.68E-08 8.37E-07 3.07E-05 2.12E-03 OBDD 0	TrBDE	2.57E-16	3.69E-14	3.34E-12	1.86E-10	8.19E-09	1.25E-06	2.84E-04	1.27E-02	0	0
OBDD 0	DiBDE	2.96E-17	4.25E-15	3.83E-13	2.02E-11	5.56E-10	2.16E-08	3.81E-06	1.39E-04	6.18E-03	0
HpBDD 0 <td>MoBDE</td> <td>3.64E-18</td> <td>5.23E-16</td> <td>4.71E-14</td> <td>2.47E-12</td> <td>6.21E-11</td> <td>7.09E-10</td> <td>2.68E-08</td> <td>8.37E-07</td> <td>3.07E-05</td> <td>2.12E-03</td>	MoBDE	3.64E-18	5.23E-16	4.71E-14	2.47E-12	6.21E-11	7.09E-10	2.68E-08	8.37E-07	3.07E-05	2.12E-03
HxBDD 0 <td>OBDD</td> <td>0</td>	OBDD	0	0	0	0	0	0	0	0	0	0
PeBDD 0 <td>HpBDD</td> <td>0</td>	HpBDD	0	0	0	0	0	0	0	0	0	0
TeBDD 0 <td>HxBDD</td> <td>0</td>	HxBDD	0	0	0	0	0	0	0	0	0	0
OBDF 3.63E-13 7.43E-11 2.47E-08 0 0 0 0 0 0 0 HpBDF 1.50E-14 2.34E-12 3.55E-10 1.27E-07 0 0 0 0 0 0 HxBDF 1.91E-15 2.76E-13 2.62E-11 2.34E-09 4.36E-07 0 0 0 0 0 PeBDF 3.17E-16 4.56E-14 4.13E-12 2.31E-10 1.09E-08 1.98E-06 0 0 0 0	PeBDD	0	0	0	0	0	0	0	0	0	0
HpBDF 1.50E-14 2.34E-12 3.55E-10 1.27E-07 0 0 0 0 0 0 HxBDF 1.91E-15 2.76E-13 2.62E-11 2.34E-09 4.36E-07 0 0 0 0 0 0 PeBDF 3.17E-16 4.56E-14 4.13E-12 2.31E-10 1.09E-08 1.98E-06 0 0 0 0	TeBDD	0	0	0	0	0	0	0	0	0	0
HxBDF 1.91E-15 2.76E-13 2.62E-11 2.34E-09 4.36E-07 0 0 0 0 0 PeBDF 3.17E-16 4.56E-14 4.13E-12 2.31E-10 1.09E-08 1.98E-06 0 0 0 0	OBDF	3.63E-13	7.43E-11	2.47E-08	0	0	0	0	0	0	0
PeBDF 3.17E-16 4.56E-14 4.13E-12 2.31E-10 1.09E-08 1.98E-06 0 0 0	HpBDF	1.50E-14	2.34E-12	3.55E-10	1.27E-07	0	0	0	0	0	0
	HxBDF	1.91E-15	2.76E-13	2.62E-11	2.34E-09	4.36E-07	0	0	0	0	0
TeBDF 6.65E-17 9.55E-15 8.60E-13 4.52E-11 1.16E-09 2.15E-08 2.75E-06 0 0	PeBDF	3.17E-16	4.56E-14	4.13E-12	2.31E-10	1.09E-08	1.98E-06	0	0	0	0
	TeBDF	6.65E-17	9.55E-15	8.60E-13	4.52E-11	1.16E-09	2.15E-08	2.75E-06	0	0	0

表 4.1-3 PBDEs の大気排出による各物質の摂取比率

4.1.2.5 被害評価と統合化

単一の指標に向けた統合化を行うための前段階として、LIME2 では「人間健康」、「社会資産」、「生物多様性」「一次生産」の4つの保護対象ごとに被害量を評価する。人間健康では障害調整生存年 DALY (Disability Adjusted Life Year) を、社会資産では資源や農産物、水産物等が受ける影響を包括的に計量する経済指標(円)を、生物多様性では生物種絶滅リスクを算定する EINES (Expected Increase in Number of Extinct Species) を、一次生産では生態系の豊かさを表わす指標としてNPP (Net Primary Production) を被害指標として定義している。

影響領域の中で、地球温暖化は人間健康と社会資産被害として、酸性化は社会資産と一次生産被害として、有害物質は人間健康被害として、生態毒性は生物多様性被害として、廃棄物は社会資産、生物多様性と一次生産被害としてそれぞれ算定される。

なお、有害化学物質の中で重金属類は各々の被害評価係数を用いて被害量を算出した。塩素化ダイオキシン類、コプラナ PCB 類及び臭素化ダイオキシン類については、2378-テトラクロロジベンゾジオキシン (2378-TeCDD) のみの被害評価係数が LIME2 に掲載されているので、それ以外の異性体は2378-TeCDD に特性化してから 2378-TeCDD の被害評価係数を用いて被害評価を実施した。PBDEs もデカブロモジフェニルエーテル (DecaBDE) のみの被害評価係数が示されているので、OctaBDE、PentaBDE は DecaBDE に特性化してから DecaBDE の被害評価係数を用いて被害評価を行った。また、廃棄物に関する社会資産被害は、土地を埋立地に使用したことで将来他に利用する機会を失ったことへの損失評価額を意味している。

こうして得られた4つの保護対象間に重み付けを行い、単一指標に統合化するためにLIME2では日本国民を対象としたアンケート調査を実施している。全国で1000件の訪問面接調査が行われ、

その回答を統計解析することで個人の支払い意思額の代表値を算出している。これを基に人間健康、社会資産、生物多様性、一次生産の各保護対象ごとにその経済換算係数を定め、それぞれの被害量と積和することにより単一指標が算出できる。

4.1.3 各プロセスのモデル化

各プロセスの主要パラメータを表 4.1-4 に示す

表 4.1-4 各プロセスの主要パラメータ一覧表

プロセス		項目	単位	数値
収集	ASR収集車(10t)軽油燃	然費	km/L	3.5
	軽油中硫黄含有量		%	0.398
	窒素酸化物排出量		g-NO ₂ /km	2.29
焼却	電力原単位		kWh/ton-ASR	100
	重油原単位		L/ton-ASR	0.34
	発電効率		%	15.5
溶融	電力原単位		kWh/ton-ASR	320
	コークス原単位		kg/ton-ASR	170
	石灰石原単位		kg/ton-ASR	75
	LPG原単位		Nm³/ton-ASR	7.6
	発電効率		%	15.5
運搬	最終処分場及び資源化	物運搬車(4t)軽油燃費	km/L	6.5
	軽油中硫黄含有量		%	0.398
	窒素酸化物排出量		g-NO ₂ /km	1.45
埋立	電力原単位		kWh/ton-埋立物	64.5
	重機使用による軽油原	単位	L/ton-埋立物	0.62
	重機使用によるNOx排出	出原単位	g-NO ₂ /L	0.88
	埋立地での炭素ガス化	率	%	0
	埋立地でのメタン比率		%	0
	埋立地での窒素→亜酸	化窒素変換率	%	1.25
山元還元	抽出工程	塩酸消費量	t/t飛灰	0.83
	塩化揮発工程	焙焼消費電力	kWh/t飛灰	47.9
		塩化揮発消費電力	kWh/t飛灰	28.6
		転炉ガス(CO30%)消費量	Nm ³ /t飛灰	13.4
	再資源化物	Zn	kg/t飛灰	17.7
		Pb	kg/t飛灰	5.2
		Cu	kg/t飛灰	3.8
商業電力	CO₂排出原単位		g-CO ₂ /kWh	561
	NO₂排出原単位		g-NO ₂ /kWh	0.45
	SO₂排出原単位		g-SO ₂ /kWh	0.40
	重金属類排出原単位	Cd	μg/kWh	0.15
		Cr	μg/kWh	2.95
		Pb	μg/kWh	2.95
		Hg	μg∕kWh	2.43
		As	μg/kWh	2.66

4.1.3.1 収集・運搬プロセス

収集プロセスは、ASR を発生地 (シュレッダー事業者) から処理施設まで運搬するものとした。 運搬プロセスは、ASR または焼却残渣、溶融飛灰を最終処分場へ運搬するものと、スラグ・メタルを利用先へ運搬するものとした。なお、溶融飛灰を山元還元するときは還元先まで運搬するものとした。 ASR の収集・運搬には、10 トンダンプ車(ディーゼルエンジン、NOx 原単位: $2.29g-NO_2/km$ 、軽油中硫黄:0.398%、燃費 3.5km/L)を用い、焼却残渣、溶融飛灰、スラグ・メタルの運搬には、4 トンダンプ車(ディーゼルエンジン、NOx 原単位: $1.45g-NO_2/km$ 、軽油中硫黄:0.398%、燃費 6.5km/L)を用いると想定し、軽油燃焼に伴う CO_2 、 NO_2 、 SO_2 の排出量を求めた。 $^{11)}$ $^{12)}$

4.1.3.2 焼却プロセス

焼却プロセスは、処理対象物の焼却・減容化を行い、回収熱を用いた発電を行う。排ガス処理は、バグフィルター+消石灰吹込み、触媒反応塔の組合せとした。またエネルギー回収は発電のみで行われることとした。

焼却プロセスでは、廃棄物燃焼による CO_2 、 CH_4 、 N_2O 、 NO_2 、 SO_2 、ダイオキシン類とその類縁化合物、重金属類の大気への排出、施設の電力消費 (発電) による CO_2 、 NO_2 、 SO_2 の排出を計上した。助燃剤燃焼による CO_2 、 NO_2 、 SO_2 の大気への排出も計上した。

ASR そのものの焼却時における臭素化難燃剤、臭素化ダイオキシン類や重金属類等の有害物質の挙動に関する情報を収集できなかったため、下記の方法により求めた。すなわち PCDDs/DFs、Co-PCBs、PBDDs/DFs、PBDEs に関しては PBDEs を ASR と同程度含有した可燃ごみと廃テレビケーシング破砕物(1%)の混合ごみをダイオキシン対策後の小型焼却炉(15 t /8h×2 系列)で焼却した時の試験結果報告の文献値 $^{13)}$ を用いて推計した。また、重金属類については、ASR 中の含有量と文献値 $^{4)}$ $^{14-16)}$ を参考にして求めた重金属別の移行率を用いて算出した。(表 4. 1-5) 特に排ガスへの移行率は、乾式処理でのデータが収集できなかったためダイオシン対策後の湿式処理での値を用いた。

産廃焼却時の発電効率については環境省の委託調査 ¹⁷⁾ によれば、ほとんど 0 に近いものから 17%程度までばらつき、一廃との混焼を含めた全国平均でも約7%と低いが、この検討では次に 示すガス化溶融炉の実績値(16%)と同じレベルに合わせた。

4.1.3.3 ガス化溶融プロセス

ガス化溶融プロセスは、処理対象物の溶融・資源化を行い、回収熱を用いた発電を行う。排ガス処理は、バグフィルター+消石灰吹込み、触媒反応塔の組合せとした。エネルギー回収は発電のみで行われることとした。

ASR の溶融処理試験において有害物質の挙動を詳細に調査した結果 $^{2)}$ を基にガス化溶融プロセスにおける PCDDs/DFs、Co-PCBs、PBDDs/DFs、PBDEs 及び重金属類の排ガス、スラグ、メタル、溶融飛灰への移行率を算出し、インベントリーを定めた。また、ASR の溶融処理において使用するコークスや石灰石等の副資材や助燃剤を含め ASR の燃焼に伴って排出される CO_2 、NOx、SOx 等についても試験結果に基づき算出した。

ただし、溶融試験では把握できない、ガス化溶融施設全体の発電効率や消費電力については、 ASR を溶融処理している実機施設のデータを用いた。

4.1.3.4 埋立プロセス

埋立プロセスは、ASR を直接、または焼却残渣、溶融飛灰を最終処分場に埋め立て、浸出水処理を行うものとし、重機使用による CO_2 、 NO_2 、 SO_2 の排出、浸出水経由で水系に排出される重金属

表 4.1-5 焼却・溶融における重金属類の移行率 表 4.1-6 埋立における重金属類浸出率

		単位	焼却移行率	溶融移行率
Cd	排ガス	%	1.3	1.7
	主灰	%	44.0	_
	飛灰	%	54.8	98.3
	スラグ	%	-	0
	メタル	%	_	0
Cr	排ガス	%	0.12	9.9
	主灰	%	79.0	_
	飛灰	%	20.9	0
	スラグ	%	_	0
	メタル	%	-	90.1
Cu	排ガス	%	0.060	0.00032
	主灰	%	86.0	_
	飛灰	%	13.9	0.85
	スラグ	%	_	2.4
	メタル	%	_	96.8
Pb	排ガス	%	0.050	0.0065
	主灰	%	62.0	_
	飛灰	%	38.0	90.6
	スラグ	%	-	0.60
	メタル	%	_	8.7
Hg	排ガス	%	3.3	57.9
	主灰	%	0	_
	飛灰	%	96.7	42.1
	スラグ	%	-	0
	メタル	%	_	0
Zn	排ガス	%	0.010	0.0013
	主灰	%	50.0	-
	飛灰	%	50.0	97.2
	スラグ	%	_	0.69
	メタル	%	_	2.1
As	排ガス	%	0.40	3.0
	主灰	%	40.0	-
	飛灰	%	59.6	30.4
	スラグ	%	-	0
	メタル	%	-	66.5

		単位	埋立浸出率
ASR	Cd	%	1.4
	Cr	%	0.052
	Cu	%	0.010
	Pb	%	0.56
	Hg	%	3.6
	Zn	%	0.74
	As	%	4.0
焼却主灰	Cd	%	0.40
	Cr	%	0.052
	Cu	%	0.010
	Pb	%	0.11
	Hg	%	3.6
	Zn	%	0.74
	As	%	4.0
焼却飛灰	Cd	%	0.18
	Cr	%	0.97
	Cu	%	0.00010
	Pb	%	0.033
	Hg	%	3.3
	Zn	%	0.19
	As	%	0.063
溶融飛灰	Cd	%	0.019
	Cr	%	0.97
	Cu	%	0.00010
	Pb	%	0.00010
	Hg	%	3.3
	Zn	%	0.19
	As	%	0.063

類を計上した。

ASR からの重金属類の浸出量に関しては、ASR の溶出試験結果と含有量試験結果 1) をもとに下 式により浸出率を求め、ASR中の重金属含有量に乗じて算出した。

浸出率(%)=溶出量試験結果 $(mg/L) \times L/S$ ÷含有量試験結果 $(mg/kg) \times 100$

深さが 10m の最終処分場で降水量が 1500mm/年のケースを想定してみる。降水量の 2/3 が浸透 して浸出水になるとし、廃棄物の比重を1t/m³とおくと、1年間で廃棄物層厚10m(10t)に対し 浸出水が1t出ることになり、L/S(液固比)は0.1になる。溶出試験はL/S=10で実施されている ので、上記浸出率を用いて算出された重金属類の浸出量は、100年分の総浸出量に相当する。

ASR 焼却残渣の浸出率に関しては実測値が入手できないので、影響が大きいと想定される Pb、

Cd について、焼却灰及びキレートで無害化した焼却飛灰に関する溶出試験及び含有量試験結果の文献値 ¹⁸⁾ を用い浸出率を算出した。他の重金属類については焼却灰は ASR の浸出率を準用、焼却飛灰は溶融飛灰の浸出率を準用し、それぞれ焼却灰及び焼却飛灰中の重金属含有量に乗じて浸出量を算出した。(表 4.1-6) 特に ASR 溶融処理時の溶融飛灰については、実機での無害化処理飛灰が入手できたので、溶出試験と含有量試験を実施した。この結果を表 4.1-7 に示すが、これをもとに上式

表 4.1-7 溶融飛灰の浸出率算出結果

溶出量	含有量	浸出率
(mg/L)	(mg/kg)	(%)
0.001 *	52	0.019
0.30	310	0.97
0.001 *	7000	0.0001
0.001 *	11000	0.0001
0.0001 *	0.03	3.3
8.0	42000	0.19
0.001 *	16	0.063
	0.001 * 0.30 0.001 * 0.001 * 0.0001 * 8.0	(mg/L) (mg/kg) 0.001 ** 52 0.30 310 0.001 ** 7000 0.001 ** 11000 0.0001 ** 0.03 8.0 42000

※印の数値は定量下限値を示す

により浸出率を求め、ASR 中の重金属含有量に乗じて浸出量を算出した。なお、浸出水の重金属 濃度が管理型処分場の排水基準を超えないよう、浸出水処理装置で処理されるものとする。

4.1.3.5 溶融飛灰資源化(山元還元)プロセス

本プロセスは、溶融飛灰を塩化揮発処理により、精錬プロセスに供給できる品位に非鉄金属類 を濃縮して回収することとした。

本プロセスの実機調査 $^{19)}$ における調査を基に塩化揮発処理に伴う CO_2 、 NO_2 、 SO_2 、ダイオキシン類の大気への排出及び沈殿ろ過水経由で水系に排出される重金属類及びダイオキシン類を算出した。また施設の電力消費による CO_2 、 NO_2 、 SO_2 の排出を算出した。

4.1.3.6 砂供給プロセス

本プロセスでは、砂採掘工場における掘削、破砕、整粒時の重機使用、電力消費に伴う CO_2 、 NO_2 、 SO_2 の大気への排出を計上した。原単位は年間 222 万トンの生産規模の砕石工場をヒアリング調査した結果に基づく。

4.1.3.7 非鉄原料供給プロセス

本プロセスでは、非鉄精錬工場における非鉄原料のうち比較的代替量の多い銅の生産に伴う CO_2 、 NO_2 、 SO_2 の大気への排出を計上した。 $^{20)}$

4.1.3.8 電力供給プロセス

本プロセスでは、CO₂、NO₂、SO₂及び重金属類の大気への排出を計上した。

電気の CO_2 換算係数は、経産省及び環境省が確認して電気事業者別の CO_2 排出係数とともに公表している代替値を用いた。 $^{21)}$ これは、廃棄物処理施設の基幹的設備改良事業においてごみ発電による CO_2 排出削減量を算出するときに地域間格差を生じないよう全国一律の CO_2 排出係数として使用することが定められたものである。 $^{22)}$ なお、重金属類の大気への排出は石炭火力に由来するものとした。

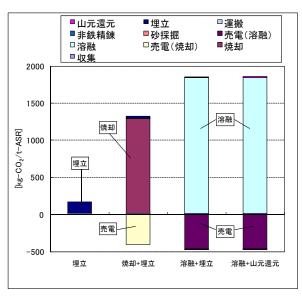
4.1.4. 評価結果と考察

各シナリオ別の全プロセスのインベントリー評価結果を表 4.1-8 に示した。

表 4.1-8 シナリオ別のインベントリー評価結果

収集	インパクトカテゴリ	サブカテゴリ	単位	シナリオ1 埋立	シナリオ2 焼却+埋立	シナリオ3 溶融+埋立	シナリオ4 溶融+山元還元
	地球温暖化 酸性化	CO ₂ 排出量(軽油) SO ₂ 排出量(軽油)	kg-CO ₂ g-SO ₂		1.95E+01 4.62E+01	1.95E+01 4.62E+01	1.95E+0 4.62E+0
	no incide	NO₂排出量(軽油)	g-NO ₂		5.60E+01	5.60E+01	5.60E+0
尭却・溶融	地球温暖化	CO ₂ 排出量(ASR燒却·溶融)	kg-CO ₂		1.24E+03	1.24E+03	1.24E+0
		CO ₂ 排出量(重油) CO ₂ 排出量(コークス)	kg-CO ₂ kg-CO ₂		8.41E+00	5.29E+02	5.29E+0
		CO₂排出量(石灰石)	kg-CO ₂			3.30E+01	3.30E+0
		CO2排出量(LPG)	kg-CO ₂	İ	İ	2.21E+01	2.21E+0
		CH4排出量(ASR焼却·溶融)	kg-CH ₄		2.94E-02	1.97E-03	1.97E-0
		N ₂ O排出量(ASR燒却·溶融) CO ₂ 排出量(売電)	kg-N ₂ O kg-CO ₂	1	9.10E-02 -4.06E+02	5.87E-03 -4.69E+02	5.87E-0 -4.69E+0
	酸性化	SOx排出量(ASR燒却·溶融)	g-SO ₂		2.52E+03	0.00E+00	0.00E+0
		NOx排出量(ASR燒却·溶融)	g-NO ₂		3.50E+03	3.50E+03	3.50E+0
		SOx排出量(重油)	g-SO ₂		2.84E+01		
		NOx排出量(重油) SOx排出量(コークス)	g-NO ₂ g-SO ₂		0.00E+00	1.70E+03	1.70E+0
		SOx排出量(コーノス)	g-SO ₂	1		-1.50E+00	-1.50E+0
		NOx排出量(LPG)	g-NO ₂	1		0.00E+00	0.00E+0
		SOx排出量(売電)	g-SO ₂	İ	-2.92E+02	-3.40E+02	-3.40E+0
	ダイオキシン類排出量	NOx排出量(売電) PCDD/DFs排出量(排ガス)	g-NO ₂ μ g-TEQ	+	-3.28E+02 3.51E-01	-3.80E+02 1.67E-02	-3.80E+0
	アイガインン級所出里	PCDD/DFs排出量(排水)	μg-TEQ	1	4.50E-04	0.00E+00	0.00E+0
		PBDDs/DFs排出量(排ガス)	μg-TEQ		0.00E+00	0.00E+00	0.00E+0
		MoBPCDD/DFs排出量(排ガス) PBDEs排出量(排ガス)	μg μg		1.36E-01 2.71E+02	2.86E-01 1.79E+01	2.86E-0 1.79E+0
	重金属類排出量	Cd排出量(排ガス)	mg		2.50E+01	1.10E+02	1.10E+0
		Cr排出量(排ガス) Cu排出量(排ガス)	mg mg		2.30E+01 2.51E+01	1.08E+02 1.10E+02	1.08E+0 1.10E+0
		Pb排出量(排ガス)	mg mg		2.30E+01	1.08E+02	1.08E+0
		Hg排出量(排ガス)	mg		1.08E+01	1.08E+02	1.08E+0
		Zn排出量(排ガス) As排出量(排ガス)	mg mg		2.51E+01 -6.72E-01	1.10E+02 1.08E+02	1.10E+0 1.08E+0
避搬	地球温暖化	CO ₂ 排出量(軽油)	kg-CO ₂	1.39E+01	8.24E-01	9.27E-01	9.27E-0
	酸性化	SOx排出量(軽油)	g-SO ₂	3.28E+01	1.95E+00	2.19E+00	2.19E+0
_	Lik mis till get 11	NOx排出量(軽油)	g-NO ₂	3.98E+01	2.78E+00	8.82E+00	8.82E+0
立	地球温暖化	N₂O排出量(ASR) CO₂排出量(電力)	kg-N ₂ O kg-CO ₂	2.95E-01 7.24E+01	3.24E-03 2.77E+01	0.00E+00 3.28E+00	
		CO ₂ 排出量(軽油)	kg-CO ₂	1.73E+00	6.64E-01	7.85E-02	
	酸性化	SOx排出量(電力)	g-SO ₂	5.20E+01	1.99E+01	2.36E+00	
		NOx排出量(電力)	g-NO ₂	5.86E+01	2.24E+01	2.65E+00	
		SOx排出量(軽油) NOx排出量(軽油)	g-SO ₂ g-NO ₂	4.10E+00 5.46E-01	1.57E+00 2.09E-01	1.86E-01 2.47E-02	
	ダイオキシン類排出量	PCDD/DFs排出量(排水)	μg-TEQ	1.28E-04	4.90E-05	5.79E-06	
	重金属類排出量	Cd排出量(排ガス)	mg	1.96E-02	7.53E-03	8.90E-04	
		Cr排出量(排ガス) Cu排出量(排ガス)	mg mg	3.81E-01 0.00E+00	1.46E-01 0.00E+00	1.72E-02 0.00E+00	
		Pb排出量(排ガス)	mg	3.81E-01	1.46E-01	1.72E-02	
		Hg排出量(排ガス)	mg	3.13E-01	1.20E-01	1.42E-02	
		Zn排出量(排ガス) As排出量(排ガス)	mg mg	0.00E+00 3.44E-01	0.00E+00 1.32E-01	0.00E+00 1.56E-02	
		Cd排出量(排水)	mg	8.86E+01	3.45E+01	1.53E+00	
		Cr排出量(排水) Cu排出量(排水)	mg mg	6.17E-01 3.32E+03	3.12E+00 2.86E+03	0.00E+00 3.76E-01	
		Pb排出量(排水)	mg	9.44E+02	3.90E+02	2.00E+00	
		Hg排出量(排水) Zn排出量(排水)	mg	2.86E+00 1.93E+04	3.32E+00 7.59E+03	3.43E+00 1.11E+03	
		As排出量(排水)	mg mg	1.40E+02	5.77E+01	9.00E-01	
. — . — —	埋立地消費		m ³	1.00E+00	2.25E-01	2.67E-02	
元還元	地球温暖化	CO ₂ 排出量(焙焼炉) CO ₂ 排出量(塩化揮発)	kg-CO ₂ kg-CO ₂				1.10E+0 2.40E+0
		CO2排出量(電力)	kg-CO ₂				6.16E+0
		CO ₂ 排出量(塩酸製造)	kg-CO ₂	1			8.44E-0
		CO2排出量(転炉ガス製造)	kg-CO ₂				1.70E-0
		CO ₂ 排出量(Zn再資源化)	kg-CO ₂				
		OO	100			į.	
		CO ₂ 排出量(Pb再資源化) CO ₂ 排出量(Cu再資源化)	kg-CO ₂				-3.00E-0
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(焙焼炉)	kg-CO ₂ kg-CO ₂ g-NO ₂				-3.00E-0 -2.63E-0 1.07E+0
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(焙焼炉) NOx排出量(塩化揮発)	kg-CO ₂ g-NO ₂ g-NO ₂				-3.00E-0 -2.63E-0 1.07E+0 4.28E+0
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(焙焼炉) NOx排出量(塩化揮発) NOx排出量(電力)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-t -2.63E-t 1.07E+t 4.28E+t 4.99E+t
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(焙焼炉) NOx排出量(塩化揮発) NOx排出量(電化 NOx排出量(電力) NOx排出量(塩酸製造)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-t -2.63E-t 1.07E+t 4.28E+t 4.99E+t 6.83E-t
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(焙焼炉) NOx排出量(塩化揮発) NOx排出量(電力)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-I -2.63E-I 1.07E+I 4.28E+I 4.99E+I 6.83E-I 0.00E+I
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(塔烷炉) NOx排出量(塩化揮発) NOx排出量(電力) NOx排出量(塩酸製造) NOx排出量(転炉力入製造) NOx排出量(気炉力入製造) NOx排出量(Pb再資源化) NOx排出量(Pb再資源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-(-2.63E-(1.07E+(4.28E+(4.99E+(6.83E-(0.00E+(-1.43E+(-7.96E-(
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(塔烷炉) NOx排出量(塩化揮発) NOx排出量(電力) NOx排出量(塩酸製造) NOx排出量(塩胶型流) NOx排出量(起水型流) NOx排出量(Zn再資源化) NOx排出量(Zn再資源化) NOx排出量(Cu再資源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-I -2.63E-I 1.07E+I 4.28E+I 4.99E+I 6.83E-I 0.00E+I -1.43E+I -7.96E-I -1.53E-I
	酸性化	CO2排出量(Cu再資源化) NOX排出量(培漿炉) NOX排出量(塩化揮発) NOX排出量(電力) NOX排出量(塩酸製造) NOX排出量(塩酸製造) NOX排出量(Zn再資源化) NOX排出量(Pn再資源化) NOX排出量(Cn再资源化) SOX排出量(dn再资源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-I -2.63E-I 1.07E+I 4.28E+I 4.99E+I 6.83E-I 0.00E+I -7.43E+I -7.96E-I -1.53E-I
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(塔烷炉) NOx排出量(塩化揮発) NOx排出量(電力) NOx排出量(塩酸製造) NOx排出量(塩胶型流) NOx排出量(起水型流) NOx排出量(Zn再資源化) NOx排出量(Zn再資源化) NOx排出量(Cu再資源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂				-3.00E-1 -2.63E-1 1.07E-1 4.29E+1 4.99E+1 6.83E-1 0.00E+1 -1.43E+1 -7.96E-1 1.53E-1 3.88E+1 6.47E-1
	酸性化	CO2排出量(Cu再資源化) NOX排出量(培焼炉) NOX排出量(塩化揮発) NOX排出量(電力) NOX排出量(塩酸製造) NOX排出量(塩酸製造) NOX排出量(Zn再資源化) NOX排出量(Cu再資源化) NOX排出量(Cu再資源化) SOX排出量(Gu再资源化) SOX排出量(塩化揮発) SOX排出量(塩化揮発) SOX排出量(塩酸製造)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-SO ₂				-3.00E- -2.63E-H 1.07E-H 4.28E+H 4.99E+H 6.38E-1 -1.43E+H -7.96E-1 1.53E-H 3.88E+H 6.47E-H 4.43E+H 6.06E-H
	酸性化	CO ₂ 排出量(Cu再資源化) NOx排出量(培焼炉) NOx排出量(塩化増発) NOx排出量(電力) NOx排出量(塩酸製造) NOx排出量(転炉力入製造) NOx排出量(本再資源化) NOx排出量(こu再資源化) NOx排出量(Cu再資源化) SOx排出量(医性療炉) SOx排出量(塩酸製造) SOx排出量(塩酸製造) SOx排出量(転鞭が力、製造)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂				-3.00E- -2.63E-1 1.07E+ 4.28E+ 4.99E+ 6.83E-1 -1.43E+ -7.96E-1 -1.53E-1 3.88E+ 6.47E-1 4.43E+ 6.06E- 4.75E-1
	酸性化	CO2排出量(Cu再資源化) NOX排出量(烙塊炉) NOX排出量(塩化揮発) NOX排出量(塩化揮発) NOX排出量(塩配製造) NOX排出量(塩配製造) NOX排出量(空和資源化) NOX排出量(Pb再資源化) NOX排出量(Cu再資源化) SOX排出量(培焼炉) SOX排出量(塩化揮発) SOX排出量(塩化類発) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(名再資源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂				-3.00E-(-2.63E-1 1.97E-1 4.28E-4 4.99E-1 6.83E-0 0.00E-4 -1.43E-1 -7.96E-1 3.88E-4 6.47E-1 4.43E-1 6.06E-4 4.75E-4
	酸性化	CO2排出量(Cu再資源化) NOX排出量(培焼炉) NOX排出量(塩化揮発) NOX排出量(塩化揮発) NOX排出量(塩酸製造) NOX排出量(塩酸製造) NOX排出量(Cn再資源化) NOX排出量(Cn再資源化) SOX排出量(Cn再资源化) SOX排出量(塩化揮発) SOX排出量(塩化揮発) SOX排出量(塩砂製造) SOX排出量(塩砂製造) SOX排出量(塩砂製造) SOX排出量(塩砂製造) SOX排出量(塩砂製造) SOX排出量(医可資源化) SOX排出量(医可效配)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂				-3.00E-(-2.63E-(1.07E+(4.28E+(4.99E+(6.83E-(0.00E+(-1.43E+(-7.96E-(-1.53E-(3.88E+(6.47E-(4.43E+(6.06E-(4.75E-(-2.56E+(-8.66E-(
	酸性化	CO2排出量(Cu再資源化) NOX排出量(焙焼炉) NOX排出量(塩化揮発) NOX排出量(塩化揮発) NOX排出量(塩面力) NOX排出量(塩酸製造) NOX排出量(塩酸製造) NOX排出量(Pb再資源化) NOX排出量(Cu再資源化) NOX排出量(Gu再資源化) SOX排出量(塩化揮発) SOX排出量(塩化揮発) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(Epp再資源化) SOX排出量(Epp再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再资源化) PCDD/DFS排出量(Gu再资源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂				-3.00E-(-2.63E-(1.07E-(4.28E-(4.99E-(4.99E-(6.83E-(0.00E-(-1.43E-(-1.53E-(-1.53E-(4.43E-(4.75E-(4.43E-(-2.56E-(-3.73E-(-3.
		CO2排出量(Cu再資源化) NO2排出量(培規炉) NO2排出量(塩化揮発) NO2排出量(塩化揮発) NO2排出量(塩酸製造) NO2排出量(塩酸製造) NO2排出量(2n再資源化) NO2排出量(2n再資源化) SO3排出量(均再度) SO3排出量(塩化揮発) SO3排出量(塩化揮発) SO3排出量(塩化運発) SO3排出量(塩原砂製造) SO3排出量(塩原砂料量) PCDDO/DF等排出量(塩化揮発)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂				-3.00E- -2.63E- 1.07E+ 4.28E+ 4.99E+ 6.38E- 1.43E+ -7.96E- 1.53E- 4.37E- 4.43E+ 6.06E- 4.75E- -2.56E+ -8.66E- -3.73E- 1.37E- 1.37E- 1.37E- 3.02E-
		CO2排出量(Cu再資源化) NOX排出量(焙焼炉) NOX排出量(塩化揮発) NOX排出量(塩化揮発) NOX排出量(塩面力) NOX排出量(塩酸製造) NOX排出量(塩酸製造) NOX排出量(Pb再資源化) NOX排出量(Cu再資源化) NOX排出量(Gu再資源化) SOX排出量(塩化揮発) SOX排出量(塩化揮発) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(Epp再資源化) SOX排出量(Epp再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再資源化) SOX排出量(Cu再资源化) PCDD/DFS排出量(Gu再资源化)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂				-3.00E- -2.63E-l 1.07E+ 4.28E+l 4.99E+l 6.83E-l -1.53E-l -1.53E-l 3.88E+l 6.47E-l 4.43E+l -2.56E+l -8.66E-l -3.73E-l 1.37E-l 3.02E-l 1.37E-l 1.37E-l
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培規炉) NO2排出量(塩化揮発) NO2排出量(電力) NO2排出量(電散) NO2排出量(塩酸製造) NO2排出量(転停力) NO2排出量(互再資源化) NO2排出量(区n再資源化) NO2排出量(区n再資源化) SO2排出量(区n再資源化) SO3排出量(電散製造) SO3排出量(室、NO2排出量(多) SO3排出量(区n再資源化) SO3排出量(区n再資源化) SO3排出量(区n再資源化) SO3排出量(区n再資源化) SO3排出量(区n再资源化) SO3排出量(区n再资源化) SO3排出量(区n再资源化) SO3排出量(方n再资源化) SO3排出量(方n再资源化) SO3排出量(方n再资源化) SO3排出量(产n再资源化) SO3排出量(产n再产n用产n用产n用产n用产n用产n用产n用产n用产n用产n用产n用产n用产n用产	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂				-3.00E- -2.63E-l 1.07E+ 4.28E+l 4.99E+l 6.38E-l -1.43E+l -7.96E-l -1.53E- 3.88E+l 6.47E-l 4.43E+l -2.56E+l -2.56E-l 1.37E-l -3.73E-l 1.37E-l 3.9E-l -1.53E-l -1.53E-l -1.53E-l -1.53E-l -1.53E-l -1.53E-l -1.54E-l
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NOX排出量(培焼炉) NOX排出量(塩化揮発) NOX排出量(塩化類発) NOX排出量(塩酸到造) NOX排出量(塩酸到造) NOX排出量(塩酸到造) NOX排出量(Pb再資源化) NOX排出量(Cu再資源化) NOX排出量(管焼炉) SOX排出量(電力) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(塩酸製造) SOX排出量(型の再資源化) SOX排出量(互の再資源化) SOX排出量(互の再資源化) SOX排出量(互の再資源化) PCDD/DFS排出量(指統炉) PCDD/DFS排出量(指統炉) PCDD/DFS排出量(指水) Cd排出量(排ガス) Cd排出量(排ガス) Cd排出量(排ガス)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ mg-TEQ mg mg				-3.00E2.63E- 1.07E+ 4.28E+ 4.99E+ 6.83E- 0.00E+ -1.43E+ -7.96E1.53E- 3.88E+ 6.47E- 4.43E+ 6.06E3.73E2.56E+ -8.66E3.73E- 1.37E- 3.02E- 1.17E0.00E+
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培焼炉) NO2排出量(塩化揮発) NO2排出量(塩化揮発) NO2排出量(塩散製造) NO2排出量(塩散製造) NO2排出量(取得方限) NO2排出量(区内再資源化) NO2排出量(区内再资源化) NO2排出量(区内再资源化) SO3排出量(塩酸製造) SO3排出量(塩酸製造) SO3排出量(塩酸製造) SO3排出量(区内再资源化) SO3排出量(区内再资源化) SO3排出量(区内再资源化) SO3排出量(日本资源化) SO3排出度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本资源化) SO3排度(日本产格度) SO3排度	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂				-3.00E2.63E- 1.07E+ 4.28E+ 4.99E+ 6.38E- 0.00E+ -1.43E+ -1.53E- 3.88E+ 6.47E- 4.43E+ -2.56E+ -3.73E- 1.37E3.02E- 1.81E5.52E1.07E- 0.00E+ -1.07E8.80E-
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(焙焼炉) NO2排出量(塩代増発) NO2排出量(塩化増発) NO2排出量(塩化増発) NO2排出量(塩削製造) NO2排出量(塩削型) NO2排出量(内再資源化) NO2排出量(配用資源化) NO2排出量(管理) SO2排出量(電力) SO2排出量(電力) SO2排出量(電力) SO3排出量(電力) SO3排出量(配例資源化) SO3排出量(配例資源化) SO3排出量(配例資源化) SO3排出量(配例資源化) SO3排出量(基限が入製造) SO3排出量(四再資源化) SO3排出量(四再資源化) SO3排出量(場所) SO3排出量(場所) CO4排出量(場所) CO4排出量(排水) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入) Cd排出量(排が入)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-				-3.00E- -2.63E- 1.07E+ 4.28E+ 4.99E+ 6.83E- -1.43E+ -7.96E- -1.53E- 4.43E+ 6.06E- 4.75E- -3.73E- 1.37E- 3.02E- -1.07E- -1.07E- 0.00E+ -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E- -1.07E-
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培規炉) NO2排出量(塩化揮発) NO2排出量(塩化類差) NO2排出量(塩酸製造) NO2排出量(塩酸製造) NO2排出量(塩酸製造) NO2排出量(2u再資源化) NO2排出量(2u再資源化) NO2排出量(2u再資源化) SO3排出量(2u再資源化) SO3排出量(塩酸製造) SO3排出量(塩酸製造) SO3排出量(塩化揮発) SO3排出量(2n再資源化) SO3排出量(2n再資源化) SO3排出量(2n再資源化) SO3排出量(2n再資源化) SO3排出量(2n再資源化) SO3排出量(2n再資源化) SO3排出量(4排型高排出高) Co4排出量(4排7之) Cd排出量(排方之) Cd排出量(排方之) Cd排出量(排方之) LB排出量(排方之) LB排出至(排方之) LB排出至(排方之) LB排出至(排方之) LB排出至(排方之) LB排出至(排方之) LB排出至(排方之)	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-SO ₂ g-TEQ μg-TEQ				-3.00E- -2.63E- 1.07E+ 4.28E+ 4.99E+ 6.38E- 0.00E+ -1.43E+ -7.96E- -1.53E- 4.37E- 4.37E- -2.56E+ -3.73E- 1.37E- 1.37E- 1.37E- 1.37E- 1.91E- -5.52E- -1.07E- 0.00E+ 1.107E- 0.00E+ -1.07E- 0.00E+
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培焼炉) NO2排出量(塩化揮発) NO2排出量(塩化揮発) NO2排出量(塩化類差) NO2排出量(塩酸製造) NO2排出量(塩酸製造) NO2排出量(2n再資源化) NO2排出量(2n再資源化) SO2排出量(2d) SO2排出量(塩化揮発) SO2排出量(塩化揮発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(各排分之) C以非出量(排力之) C以非出量(排力之) C以非出量(排力之) L以非出量(排力之) L以非出量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-				-3.00E-C -2.63E-C 1.07E-C 4.28E+C 4.99E+C 6.83E-C 0.00E+C -1.43E+C -7.96E-C 3.88E+C 6.47E-C 4.43E+C 6.06E-C 4.75E-C -3.73E-C 3.02E-C 1.37E-C 1.37E-C -5.52E-C -1.07E-C -8.80E-C -0.00E+
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培規炉) NO2排出量(塩化揮発) NO2排出量(塩化揮発) NO2排出量(塩酸型塩) NO2排出量(塩酸型塩) NO2排出量(塩酸型塩) NO2排出量(四再資源化) NO2排出量(四再資源化) NO2排出量(四再資源化) NO2排出量(位理發) SO2排出量(位理發) SO3排出量(位理發) SO3排出量(至 電前) SO3排出量(至 電前) SO3排出量(正の再資源化) SO3排出量(正の再資源化) SO3排出量(正の再資源化) SO3排出量(日本資源化) SO3排出量(排入1) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力ス) 「持出量(排力、1) 「持出量(排力、1) 「持出量(排力、1) 「持出量(排力、1) 「持出量(排力、1) 「持出量(排力、1) 「持加量(排力、1) 「持出量(排力、1) 「持加量(排力、1) 「持加量(加量(加量(加量(加量(加量(加量(加量(加量(加量(加量(加量(加量(加	kg-CO ₂ g-NO ₂ g-				-3.00E-(-2.63E-(1.07E+(4.28E+(4.99E+(6.38E-(0.00E+(-1.43E+(-7.96E-(-1.53E-(3.88E+(6.47E-(4.43E+(6.47E-(4.75E-(-2.56E+(3.73E-(1.37E-(3.32E-(1.37E-(3.32E-(1.37E-(0.00E+(-1.07E-(0.00E+(
	ダイオキシン類様出量	CO2排出量(Cu再資源化) NO2排出量(培焼炉) NO2排出量(塩化揮発) NO2排出量(塩化揮発) NO2排出量(塩化類差) NO2排出量(塩酸製造) NO2排出量(塩酸製造) NO2排出量(2n再資源化) NO2排出量(2n再資源化) SO2排出量(2d) SO2排出量(塩化揮発) SO2排出量(塩化揮発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(塩化運発) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(容易複源化) SO3排出量(各排分之) C以非出量(排力之) C以非出量(排力之) C以非出量(排力之) L以非出量(排力之) L以非出量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知量(非知	kg-CO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-NO ₂ g-SO ₂ g-				-1.99E+f -3.00E-f -2.63E-f -1.07E+f 4.28E+f 4.99E+f 6.83E-f 0.00E+f -1.43E+f -7.96E-f -1.53E-f -2.56E+f -3.73E-f -3.73E-f -3.73E-f -3.73E-f -3.02E-f -1.07E-f -0.00E+

表 4.1-9 特性化後のインベントリーデータ


		地球温暖化	酸性化	23, 4, 1	有害化	<u> </u>			上 能	 毒性	1	廃棄物
		心外無吸旧	దΧΙΙΙΟ	 発力		<u>于初县</u> 慢性	 疾患	—————————————————————————————————————		水生	生物	元本7 0
				大気	水域	大気	水域	大気	水域	大気	水域	
シナリオ	プロセス	kg-CO₂eq	kg-SO₂eq	kg-C ₆ H ₆ eq	kg-C ₆ H ₆ eq	kg-C ₆ H ₆ eq	kg-C ₆ H ₆ eq	kg-C ₆ H6 _e q	kg-C ₆ H ₆ eq	kg-C ₆ H ₆ eq	kg-C ₆ H ₆ eq	m^3
埋立	収集	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	焼却	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	溶融	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	運搬	1.39E+01	6.13E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	埋立	1.62E+02	9.84E-02	1.27E-02	5.19E+00	1.46E-05	1.38E-02	8.11E-01	3.39E-15	2.64E-02	9.42E+01	1.00E+00
	山元還元	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	合計	1.76E+02	1.60E-01	1.27E-02	5.19E+00	1.46E-05	1.38E-02	8.11E-01	3.39E-15	2.64E-02	9.42E+01	1.00E+00
焼却+埋立	収集	1.95E+01	8.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	焼却	1.27E+03	5.05E+00	5.72E-01	7.03E-04	5.70E-01	0.00E+00	2.28E+01	0.00E+00	7.69E+00	0.00E+00	0.00E+00
	売電(焼却)	-4.06E+02	−5.27E−01	-7.10E-02	0.00E+00	-8.21E-05	0.00E+00	−4.55E+00	0.00E+00	-1.48E-01	0.00E+00	0.00E+00
	溶融	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	運搬	8.24E-01	3.94E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	埋立	2.94E+01	3.77E-02	4.85E-03	2.23E+00	5.61E-06	7.40E-03	3.11E-01	1.76E-15	1.01E-02	4.15E+01	2.25E-01
	山元還元	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	合計	9.17E+02	4.66E+00	5.05E-01	2.23E+00	5.70E-01	7.40E-03	1.86E+01	1.76E-15	7.55E+00	4.15E+01	2.25E-01
溶融+埋立	収集	1.95E+01	8.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	焼却	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	溶融	1.82E+03	4.20E+00	4.26E+00	0.00E+00	4.69E-01	0.00E+00	2.81E+02	0.00E+00	3.66E+01	0.00E+00	0.00E+00
	売電(溶融)	-4.67E+02	-6.06E-01	-8.17E-02	0.00E+00	-9.44E-05	0.00E+00	−5.23E+00	0.00E+00	-1.70E-01	0.00E+00	0.00E+00
	砂採掘	-1.44E+00	-2.54E-03	-1.41E-04	0.00E+00	-1.62E-07	0.00E+00	-9.00E-03	0.00E+00	-2.93E-04	0.00E+00	0.00E+00
	非鉄精錬	-9.35E-01	-1.32E-03	-1.17E-04	0.00E+00	-1.35E-07	0.00E+00	-7.51E-03	0.00E+00	-2.44E-04	0.00E+00	0.00E+00
	運搬	9.27E-01	8.51E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	埋立	3.36E+00	4.46E-03	5.74E-04	4.00E-02	6.63E-07	2.92E-03	3.67E-02	5.83E-16	1.20E-03	7.92E+00	2.67E-02
	山元還元	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	合計	1.38E+03	3.69E+00	4.18E+00	4.00E-02	4.69E-01	2.92E-03	2.76E+02	5.83E-16	3.65E+01	7.92E+00	2.67E-02
溶融+山元還元	収集	1.95E+01	8.64E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	焼却	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	溶融	1.82E+03	4.20E+00	4.26E+00	0.00E+00	4.69E-01	0.00E+00	2.81E+02	0.00E+00	3.66E+01	0.00E+00	0.00E+00
	売電(溶融)	-4.67E+02	-6.06E-01	-8.17E-02	0.00E+00	-9.44E-05	0.00E+00	-5.23E+00	0.00E+00	-1.70E-01	0.00E+00	0.00E+00
	砂採掘	-1.44E+00	-2.54E-03	-1.41E-04	0.00E+00	-1.62E-07	0.00E+00	-9.00E-03	0.00E+00	-2.93E-04	0.00E+00	0.00E+00
	非鉄精錬	-9.35E-01	-1.32E-03	-1.17E-04	0.00E+00	-1.35E-07	0.00E+00	-7.51E-03	0.00E+00	-2.44E-04	0.00E+00	0.00E+00
	運搬	9.27E-01	8.51E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	埋立	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	山元還元	1.48E+01	1.88E-02	2.25E-03	9.76E-04	-4.11E-07	4.43E-05	-2.28E-02	1.81E-17	-7.42E-04	1.04E-01	0.00E+00
	合計	1.39E+03	3.70E+00	4.18E+00	9.76E-04	4.69E-01	4.43E-05	2.76E+02	1.81E-17	3.65E+01	1.04E-01	0.00E+00

4.1.4.1 各影響領域内の特性化結果

各影響領域内での特性化結果を表 4.1-9 に示した。

(1) 地球温暖化

地球温暖化に関する特性化結果を図 4.1-2(a) (b) に示した。地球温暖化においては、埋立で最も影響が小さく、次いで焼却+埋立、溶融+埋立と溶融+山元還元がほぼ同じでこれに続く結果となった。ASR 中のプラスチック等の比率が高く、焼却起因の CO_2 が多いため、余剰電力売却による削減効果はあるもののこれを打ち消すには至らなかったことが、他の3つのシナリオが埋立より高かった主たる要因と考えられる。溶融ではコークス使用分さらに CO_2 が多くなった。

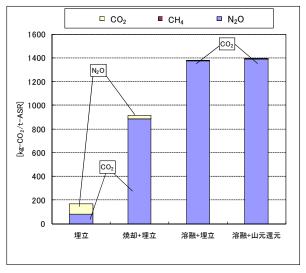


図 4.1-2(a) 地球温暖化特性化結果(プロセス別)

図 4.1-2(b) 地球温暖化特性化結果(構成要素別)

(2) 酸性化

酸性化に関する特性化結果を図 4.1-3(a)(b)に示した。酸性化においては、埋立が最も小さく、 次いで溶融+埋立と溶融+山元還元がほぼ同程度、焼却+埋立が最も大きい結果となった。溶融では 石灰石を添加しているため、SOx が焼却より低くなっている。

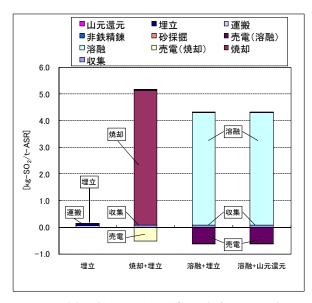


図 4.1-3(a) 酸性化特性化結果 (プロセス別)

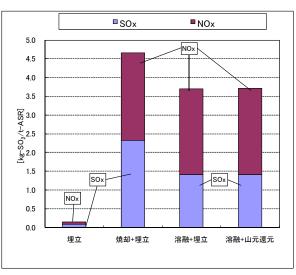
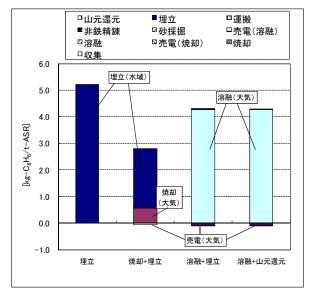
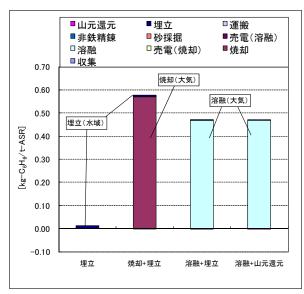



図 4.1-3(b) 酸性化特性化結果(構成要素別)

(3) 有害化学物質

1) 発がん (図 4.1-4(a)(b))

大気への排出では埋立が最も小さく、次いで焼却+残渣埋立が大きく、さらに溶融+山元還元と溶融+埋立がほぼ同じで最も大きい結果となった。水域への排出では逆に、溶融+山元還元と溶融+埋立が非常に少なく、焼却+埋立、埋立の順で大きくなった。なお、大気への重金属類の排出は焼却と溶融いずれも定量下限値以下であったが、異なる定量下限値であったものをそのまま定量下限値で評価したため値に差が生じた。


■重金属類 ■PCDD/DFs 6.0 重金属(水域) 重金属(大気) 5.0 -ASR] °C₆H₆∕t √3.0 PCDD/DFs (大気) 2.0 1.0 0.0 埋立 焼却+埋立 溶融+埋立 溶融+山元環元

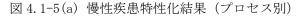
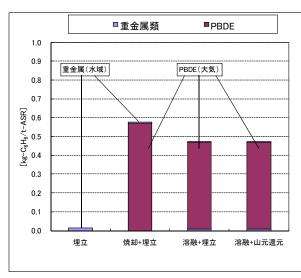
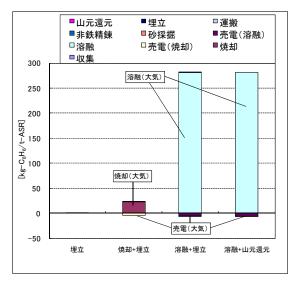

図 4.1-4(a) 発がん特性化結果 (プロセス別)

図 4.1-4(b) 発がん特性化結果(構成要素別)

2)慢性疾患(図4.1-5(a)(b))

大気への排出では埋立が最も小さく、次いで溶融+山元還元と溶融+埋立が同程度で大きく、焼却+埋立が最も大きい結果となった。水域への排出では溶融+山元還元が最も小さく、それに次いで溶融+埋立が少なく、次いで、焼却+埋立、埋立の順に大きくなった。



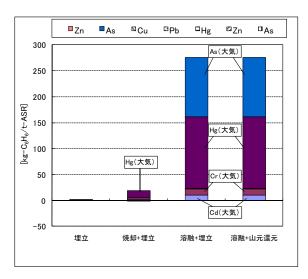
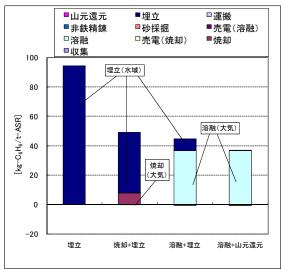

図 4.1-5(b) 慢性疾患特性化結果(構成要素別)

有害化学物質全体を通じては、慢性疾患に及ぼす大気への排出で PBDEs が影響していること以外には、重金属類の排出の影響があった。

(4) 生態毒性

1) 陸生生物への有害性(図 4.1-6(a)(b))

大気への排出では埋立が最も小さく、次いで焼却+埋立が大きく、溶融+山元還元、溶融+埋立が 同程度でこれに次いで大きいという結果となった。水域への排出では、絶対値はいずれも非常に 小さい値であるが、その中で溶融+山元還元で最も小さく、次いで溶融+埋立が続き、焼却+埋立、 埋立の順で大きくなった。

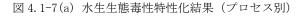

図 4.1-6(a) 陸生生態毒性特性化結果 (プロセス別)

図 4.1-6(b) 陸生生態毒性特性化結果(構成要素別)

2) 水生生物への有害性(図 4.1-7(a)(b))

大気への排出では埋立が最も小さく、次いで焼却+埋立が大きく、溶融+山元還元、溶融+埋立が同程度でこれに次いで大きいという結果となった。水域への排出では溶融+山元還元が最も低く、次いで溶融+埋立、さらに焼却+埋立、埋立の順で大きくなった。

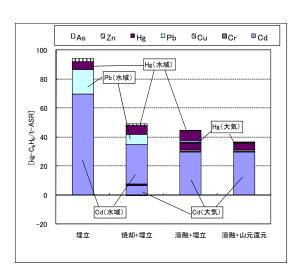
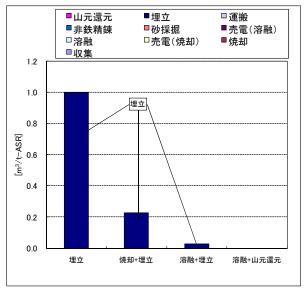



図 4.1-7(b) 水生生態毒性特性化結果(構成要素別)

いずれも重金属の排出が主たる影響因子である。大気への重金属の排出は焼却と溶融ともに定量 下限値以下であったが、異なる定量下限値であったものをそのまま定量下限値で評価したため値 に差が生じた。

(5) 廃棄物 (図 4.1-8(a)(b))

廃棄物量を埋立容積に変換して特性化した。溶融+山元還元、溶融+埋立、焼却+埋立、埋立の順に大きくなるという結果となった。各方式の減容効果の差がそのまま現れた。

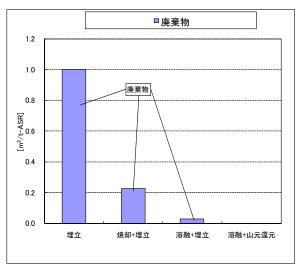


図 4.1-8(a) 埋立容積特性化結果(プロセス別)

図 4.1-8(b) 埋立容積特性化結果(構成要素別)

4.1.4.2 被害評価結果

影響領域ごと、保護対象ごとに各排出量により直接、被害量を算出した結果を表 4.1-8 に示した。

(1) 地球温暖化

地球温暖化は人間健康被害(DALY)と社会資産被害(円)として評価されるが、評価結果はどちらも同じ傾向を示し、特性化結果と同様であった。なお、3 つの温室効果ガスの中では埋立では CH_4 は 0 であり、 CO_2 と N_2 0 は同程度でやや N_2 0 の被害量が大きく、焼却+埋立、溶融+埋立、溶融+山元還元では CH_4 、 N_2 0、 CO_2 の順に被害量は大きくなった。

(2) 酸性化

酸性化は社会資産被害(円)と一次生産被害(NPP)として評価されるが、評価結果は同じ傾向を示し、特性化結果と同様であった。なお、酸性ガス間の比較では、埋立は SOx の方が、NOx より被害量がやや大きく、焼却+埋立、溶融+埋立、溶融+山元還元では NOx の方が、SOx より被害量がやや大きかった。

(3) 有害化学物質

有害化学物質は人間健康被害(DALY)として評価される。

表 4.1-10 被害評価結果

			地球温暖化	4.1	酸性	比	:	有害化学物質		生態	 畫性	 廃棄物
		CO ₂	CH ₄	N ₂ O	SO ₂	NO ₂	重金属類	塩素化D	PBDE	重金属類	塩素化D	76 X 17
シナリオ												
埋立	人間健康被害(DALY)	1.15E-05	0.00E+00	1.15E-05	-	-	5.65E-05	1.43E-10	0.00E+00	-	-	-
	社会資産被害(円)	2.84E+01	0.00E+00	4.27E+01	9.64E+00	8.48E+00	_	-	-	_	_	1.52E+04
	一次生産被害(NPP)	-	-	-	2.68E-02	2.35E-02	_	-	_	-	_	2.85E+01
	生物多様性被害(EINES)	-	-	_	-	-	_	-	_	2.98E-09	6.12E-19	9.18E-11
焼却+埋立	人間健康被害(DALY)	1.16E-04	9.62E-08	3.68E-06	-	_	2.43E-05	4.70E-08	6.75E-05	-	_	_
	社会資産被害(円)	2.87E+02	3.57E-01	1.37E+01	2.52E+02	2.79E+02	-	-	-	-	_	3.42E+03
	一次生産被害(NPP)	-	-	-	7.01E-01	7.73E-01	-	-	-	-	-	6.42E+00
	生物多様性被害(EINES)	-	-	_	-	_	_	-	-	2.11E-09	5.75E-17	2.07E-11
溶融+埋立	人間健康被害(DALY)	1.80E-04	6.44E-09	2.29E-07	-	-	6.21E-06	2.21E-09	5.48E-05	-	_	-
	社会資産被害(円)	4.44E+02	2.39E-02	8.51E-01	1.53E+02	2.73E+02	-	-	-	-	-	4.05E+02
	一次生産被害(NPP)	-	- <u>i</u>	-	4.25E-01	7.58E-01	-	-	-	-	-	7.59E-01
	生物多様性被害(EINES)	-	-	_	-	_	_	-	-	1.55E-10	2.65E-18	2.45E-12
溶融+山元還元	人間健康被害(DALY)	1.82E-04	6.44E-09	2.29E-07	-	-	6.07E-06	4.26E-09	5.48E-05	-	-	-
	社会資産被害(円)	4.48E+02	2.39E-02	8.51E-01	1.53E+02	2.74E+02	_	-	-	-	_	0.00E+00
	一次生産被害(NPP)	-	-	-	4.25E-01	7.61E-01	-	-	-	-	_	0.00E+00
	生物多様性被害(EINES)	-	-	_	-	-	_	_	_	8.40E-11	5.69E-18	0.00E+00

表 4.1-11 統合化結果

					17 1. 1		口口加入							
			地球温暖化		酸性	化	-	<u>有害化学物質</u>		生態	毒性	廃棄物	合計	合計
		CO ₂	CH₄	N ₂ O	SO ₂	NO ₂	重金属類	塩素化D	PBDE	重金属類	塩素化D			生物多様性
			i											し 除く 丿
シナリオ		(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)	(円)
埋立	人間健康被害	1.69E+02	0.00E+00	1.69E+02	-	-	8.29E+02	2.10E-03	0.00E+00	_	-	-	1.17E+03	1.17E+03
	社会資産被害	2.84E+01	0.00E+00	4.27E+01	9.64E+00	8.48E+00	_	-	-	-	-	1.52E+04	1.53E+04	1.53E+04
	一次生産被害	-	-	-	1.24E+00	1.09E+00	_	-	-	-	-	1.32E+03	1.32E+03	1.32E+03
	生物多様性被害	-	-	_	-			_		4.22E+04	8.68E-06	1.30E+03	4.35E+04	1.30E+03
	合計	1.98E+02	0.00E+00	2.11E+02	1.09E+01	9.57E+00	8.29E+02	2.10E-03	0.00E+00	4.22E+04	8.68E-06	1.78E+04	6.13E+04	1.91E+04
焼却+埋立	人間健康被害	1.71E+03	1.41E+00	5.40E+01	-	-	3.57E+02	6.89E-01	9.90E+02	-	-	-	3.11E+03	3.11E+03
	社会資産被害	2.87E+02	3.57E-01	1.37E+01	2.52E+02	2.79E+02	_	-	-	-	-	3.42E+03	4.26E+03	4.26E+03
	一次生産被害	-	-	-	3.24E+01	3.57E+01	_	-	-	-	-	2.97E+02	3.65E+02	3.65E+02
	生物多様性被害	-	-	-	-	-	-	-	_	2.99E+04	8.15E-04	2.93E+02	3.01E+04	2.93E+02
	合計	1.99E+03	1.77E+00	6.76E+01	2.85E+02	3.14E+02	3.57E+02	6.89E-01	9.90E+02	2.99E+04	8.15E-04	4.01E+03	3.79E+04	8.02E+03
溶融+埋立	人間健康被害	2.64E+03	9.44E-02	3.36E+00	-1	-	9.10E+01	3.24E-02	8.04E+02	-	-	-	3.54E+03	3.54E+03
	社会資産被害	4.44E+02	2.39E-02	8.51E-01	1.53E+02	2.73E+02	_	-	_	-	-	4.05E+02	1.28E+03	1.28E+03
	一次生産被害	-	-[-	1.96E+01	3.50E+01	_	-	-	-	-	3.51E+01	8.96E+01	8.96E+01
	生物多様性被害	-	-	-	-	-	-	-	_	2.20E+03	3.75E-05	3.47E+01	2.23E+03	3.47E+01
	合計	3.09E+03	1.18E-01	4.21E+00	1.72E+02	3.08E+02	9.10E+01	3.24E-02	8.04E+02	2.20E+03	3.75E-05	4.75E+02	7.14E+03	4.94E+03
溶融+山元還元	人間健康被害	2.67E+03	9.44E-02	3.36E+00	-	-	8.90E+01	6.25E-02	8.04E+02	_	-	-	3.56E+03	3.56E+03
	社会資産被害	4.48E+02	2.39E-02	8.51E-01	1.53E+02	2.74E+02	-	-	-	-	-	0.00E+00	8.77E+02	8.77E+02
	一次生産被害	-	-[_	1.96E+01	3.52E+01	_	-	-	_	-	0.00E+00	5.48E+01	5.48E+01
	生物多様性被害	-	-	-	-	-	_	-	-	1.19E+03	8.06E-05	0.00E+00	1.19E+03	0.00E+00
	合計	3.11E+03	1.18E-01	4.21E+00	1.73E+02	3.10E+02	8.90E+01	6.25E-02	8.04E+02	1.19E+03	8.06E-05	0.00E+00	5.69E+03	4.49E+03

1) 塩素化ダイオキシン類

埋立で最も小さく、次いで溶融+埋立、溶融+山元還元と続き、焼却+埋立が最も大きい結果となった。

2) 臭素化ダイオキシン類

排出される臭素化ダイオキシンの中に TEF に対応する異性体が存在しないため、等価毒性換算 ベースではすべての値が 0 となった。

3) ポリ臭素化ジフェニルエーテル類

評価結果は、埋立は被害量が 0 で、次いで溶融+埋立、溶融+山元還元が同程度、焼却+埋立がや や大きい結果となった。

4) 重金属類

溶融+山元還元が最も小さく、次いで溶融+埋立と続き、焼却+埋立、埋立の順で大きくなるという結果となった。山元還元の重金属の分離回収効果が現れている。

(4) 生態毒性

生態毒性は生物多様性被害として評価される。生態毒性の被害評価結果は、有害化学物質に対する被害評価結果と同様であった。

(5) 廃棄物

廃棄物は社会資産被害(円)、一次生産被害(NPP)、生物多様性被害(EINES)で評価される。 いずれの被害評価結果も特性化結果と同様であった。

(6) 保護対象ごとの被害集約と各々の影響因子

保護対象ごとに各シナリオの被害量を集約したものを図 4.1-9~12 に示した。人間健康被害では CO₂の排出による影響が最も大きく、重金属類と PBDEs がそれにつぐ影響因子となっていた。 社会資産被害と一次生産被害では廃棄物(埋立地消費)が主たる影響因子となっていた。生物多様性被害では重金属類の排出による影響が大きかった。従って影響の大きな因子としては、廃棄物、重金属類、CO₂の3つがあげられる。

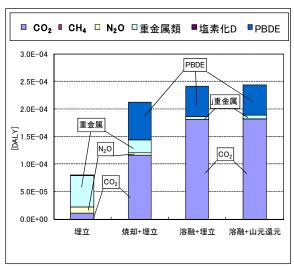


図 4.1-9 人間健康被害評価結果

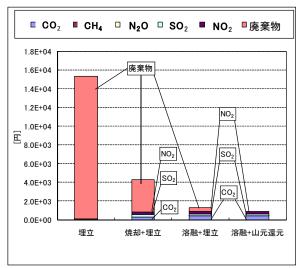
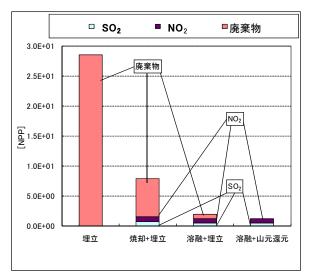
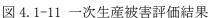




図 4.1-10 社会資産被害評価結果

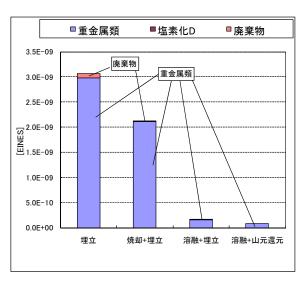


図 4.1-12 生物多様性被害評価結果

4.1.4.3 統合化結果

人間健康、社会資産、一次生産量、生物多様性の 4 つの保護対象ごとの被害量の合計に、それぞれの統合化係数を乗じて足し合わせることで、項目間の重み付けを行い、単一指標を導いた。 (表 4.1-9) なお、統合化係数としては人間健康には 1.47×10^7 円/DALY、社会資産には 1 円/円、一次生産には 1.40×10^{13} 円/種を用いた。 1.40×10^{13} 円/租

4つの保護対象で評価した場合の統合化結果を、図 4.1-13(a)(b)に示すが、いずれも溶融+山元還元が最も被害量が少なく、次いで溶融+埋立が続き、焼却+埋立、埋立の順に大きくなるという結果となった。

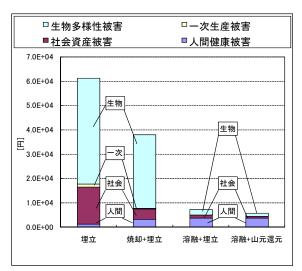


図 4.1-13(a) 統合化結果(保護対象別)

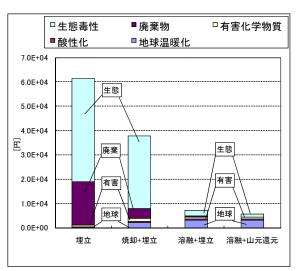


図 4.1-13(b) 統合化結果(影響領域別)

図 4.1-13(a)(b)から分かるように、生物多様性(=生態毒性)の影響が最も大きく、それ以外の影響を見るために生物多様性の影響を除いた統合化結果を、図 4.1-14(a)(b)に示す。

特に、図 4.1-14 (b) を見ると、溶融は埋立や焼却に比べ温室効果ガスの排出が多く地球温暖 化の影響が多いものの、埋立地削減効果がこれを上回り、有害化学物質による人間健康影響はほ ぼ同等という結果になった。

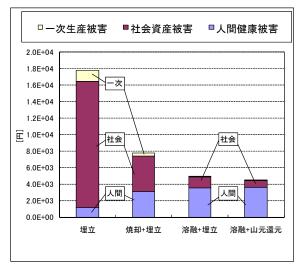


図 4.1-14(a) 統合化結果 (生物多様性除く、保護対象別)

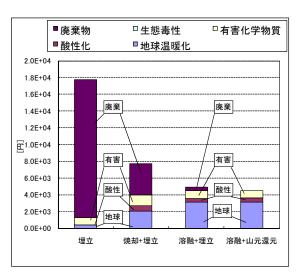


図 4.1-14(b) 統合化結果 (生物多様性除く、影響領域別)

溶融処理における埋立処分容積削減価値を CO_2 排出削減価値とともに評価することの重要性については財団法人地球環境産業技術研究機構システム研究グループの調査報告においても指摘されている。 $^{22)}$ なお、同調査報告で用いられている埋立地削減価値(処分場建設費単価 1.5 万円/ m^3 $^{23)}$) と CO_2 排出削減価値(EU 域内排出権取引制度 EU-ETS や CDM における CO_2 取引価格水準 $1000\sim 2000$ 円/ $t-CO_2$) は、本検討における廃棄物の社会資産被害評価係数 1.52×10^4 円/ m^3 及び CO_2 による人間健康被害評価係数 1.31×10^{-7} DALY/ $kg-CO_2\times1.47\times10^7$ 円/DALY=1.93 円/ $kg-CO_2=1930$ 円/ $t-CO_2$ とそのもつ意味合いは異なるものの数値の上ではよく一致している。

現状の ASR 処理費用として定まったものはないが、溶融に対し、焼却は ASR1 トン当たり 5 千円程度安価、埋立は 1~1万5 千円程度安価といわれている。この差分が被害評価と見合っているかを評価した。上記 4 つの保護対象での統合化を行う過程で、それぞれの被害量を経済価値換算しているが、全被害評価額、溶融に対し焼却が 3 万 1 千円程度高く、埋立は 5 万 4 千円程度高いという結果となっており、その処理費用の差分を被害評価額削減効果が大幅に上回っていると言える。生物多様性被害を除いた評価額で、処理費用の差額がほぼ見合うという結果になった。

4.1.4.4 総合評価

4つの保護対象で比較すると、シナリオの順位付けに影響しているのは、生物多様性被害が最も影響が大きく、次いで社会資産被害、人間健康被害と続き、一次生産被害が最も影響が小さかった。生物多様性被害への主たる影響因子は、埋立プロセスでの重金属排出であり、特に、Cu、Zn、Pb があげられる。いずれも ASR に多く含まれ溶出しやすい元素であり、平成 16 年度に実施された 11 事業所からのサンプルでの調査結果に基づくものである。もし今後、Pb 使用の低減努力がなされ 250、この 10 分の 1 程度に ASR 中の Pb 濃度が低減したとすれば埋立の被害額は約 2 千円程度下がることになるが、シナリオの順位づけを変えることにはならない。

次の社会資産被害の影響因子は廃棄物であり、埋立量の大小が影響している。これは各シナリオの減容効果がそのまま現れているということができる。なお、廃棄物の社会資産被害評価係数 1.52×10^4 円/m³が、 $3\sim5\times10^4$ 円/m³へと上昇すれば、埋立>焼却+埋立>溶融+埋立の被害額の

差はより広がっていく。

人間健康被害に影響する地球温暖化については、余剰電力売却の効果を評価しておく必要がある。溶融では実用施設での実績から発電効率 16%としているが、焼却でも実用施設調査結果で発電効率が $0\sim17\%$ にばらつく中で溶融と同じ 16%を採用したので、ここでの差はないとみてよい。また将来 CO_2 の被害評価係数が上昇した場合、例えば排出権取引価格が2000 円/ $t-CO_2$ から、10、000 円/ $t-CO_2$ レベルに 5 倍上がるようなことが反映されたとすると溶融の被害評価額は $6\sim7000$ 円から $16\sim17$,000 円程度になるが、これも

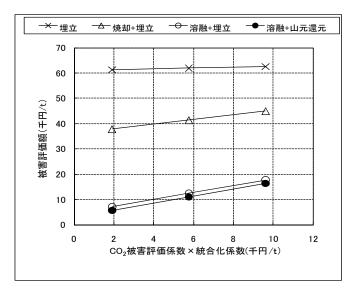


図 4.1-15 CO2 被害評価係数に関する感度分析

シナリオの順位を変えるほどのインパクトはない。(図 4.1-15 参照)

以上より4つのシナリオの評価においては、埋立物からの重金属の溶出特性、減容積効果、CO₂排出量等が優劣を決める要因となっているが、重金属の溶出特性と減容効果で溶融が焼却、埋立に勝っており、CO₂排出量でのマイナス分を大きく上回っている。また溶融の中では、山元還元を行うことがこのメリットを高める効果がある。

なお、本検討では、化石燃料等の資源消費に関しては、これに伴う CO₂ 排出として地球温暖化の影響領域で扱っていることから、評価対象に含めなかった。ただし、溶融において使用されるコークス分について、石炭に置き換え「資源消費」の被害評価額を試算すると一次生産被害、社会資産被害、生物多様性被害を合計しても約 200 円にしかならず、影響は小さなものであった。

ョーロッパにおいても ASR 処理方法に関する Eco-Indicator 99 を用いた LCA 評価⁶⁾ が実施されており、イタリア国内で稼働しているプロセスの中では「埋立」、「非鉄回収強化+埋立」、「エネルギー回収焼却(参考事例は都市ごみとの 5%混合焼却)」の順に環境影響が小さいことが示されている。さらに将来技術(Post-shredder technology)として、「プラスチックの素材別選別回収+エネルギー回収焼却」と「非鉄回収強化+ガス化メタノール変換」が評価されており、いずれもマテリアルとサーマルリサイクルの組合せにより 2015 年の欧州の廃車リサイクル目標をクリアーできるとともに、環境にベネフィットを与えるプロセスであるとされている。Eco-Indicator 99では、保護対象として「人間の健康」、「生態系の質」、「資源」の 3 項目を設定し、それぞれの重み付けを 40%、40%、20%において統合化しているが、人間の健康と生態系の質に重きをおいている点で、LIME2 とも似通った手法である。ASR の処理方法の評価結果としても埋立処分量を減らし、エネルギー回収、マテリアル回収の高度化を目指すべきという点で、類似の結果を得ている。

また永田の提唱する統合化指標 ELP (Environmental Load Point) においては、異なるインパクトカテゴリー間の重要度(重み付け)は、パネル法にて統合化の係数が定められている。通常採用される化学系 A 学会一般会員へのアンケートに基づく設定では、地球温暖化、廃棄物処理問題(固形廃棄物の排出量)、生態系への影響の各係数は、それぞれ 0.082、0.197、0.107 となっており、概ね 1:2:1 で、廃棄物の排出量に重きが置かれる結果となっている。 26

4.1.5 ASR の資源化・処理に関する LCA 評価結果まとめ

本研究では、ASR の資源化・処理方式に関する 4 つのシナリオ(埋立、焼却+埋立、溶融+埋立、溶融+山元還元)を対象に地球温暖化、酸性化、有害物質、生態毒性、廃棄物(埋立地消費)の観点から LCA を行い、比較評価し以下の結論を得た。

- (1) 地球温暖化、酸性化、有害物質、生態毒性、廃棄物の観点で評価すると溶融+山元還元が最も 影響が少なく、次いで溶融+埋立が続き、焼却+埋立、埋立の順に大きくなるという結果となった。
- (2) 以上より溶融は埋立や焼却に比べ温室効果ガスの排出が多いものの、重金属類等の排出抑制により健康影響や生態系への影響が小さいことと埋立地削減効果がこれを上回るという評価になった。
- (3) 溶融と埋立や焼却との比較において人間健康、社会資産、一次生産量、生物多様性の4つ被害評価額の合計として算出した経済効果が溶融の処理費用増分を大幅に上回るという結果になった。
- (4) 山元還元は溶融による重金属の分離回収機能を活かし、健康影響、生態系へ影響をさらに低減する有効な手段であるといえる。

【第4章 第1節の参考文献】

- 1)(財)日本環境衛生センター:平成16年度環境省請負業務ASRの資源化・スラグの有効利用に関する技術検討調査報告書(2005)
- 2) Morihiro Osada, Nobuhiro Tanigaki, Shin Takahashi, Shin-ichi Sakai: Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process, J Mater Cycles Waste Manag, Vol. 10, No. 2, pp. 93-101 (2008)
- 3) 永田勝也、藤井美文、伊藤悦子、出口昭浩、武藤寛也:廃棄物焼却発電システムの LCA 評価、 日本機械学会第8回環境工学総合シンポジウム講演論文集、pp. 156-159 (1998)
- 4) Arnold Tukker: Life Cycle Assessment for Waste, Part II, A Comparison of Thermal Treatment Processes for Hazardous Waste, Int J Life Cycle Assess, Vol.4, No.6, pp. 341-351 (1999)
- 5) 松藤敏彦:都市ごみ処理システムの分析・計画・評価-マテリアルフロー・LCA 評価プログラム、技報堂出版(2005)
- 6) Luca Ciacci, Luciano Morselli, Fabrizio Passarini, Alessandro Santini, Ivano Vassura:
 A Comparison among different automobile shredder residue treatment prosess, Int J Life
 Cycle Assess, Vol. 15, No. 9, pp. 896-906 (2010)
- 7) 伊坪徳宏、稲葉敦:ライフサイクル環境影響評価手法、(社)産業環境管理協会 (2005)
- 8) (社) 産業環境管理協会: LIME2 係数リスト (2010年7月1日公開、同7月20日修正版) http://www.jemai.or.jp/lcaforum/db/01_06.cfm
- 9)独立行政法人 産業技術総合研究所 化学物質リスク管理研究センター:詳細リスク評価書 デカブロモジフェニルエーテル外部レビュー版 (2007)

- 10) 平井康宏、佐藤俊一、酒井伸一: 臭素系難燃剤 (BFRs) の環境動態モデルの開発と検証、酒井伸一、平井康宏、浅利美鈴、滝上英孝: 平成 18~20 年度科学研究費基盤研究(B)研究報告書、残留性化学物質の物質循環モデルの開発と検証、第2章、pp. XX-XX (2009)
- 11)(社)産業環境管理協会:輸送データ、ライフサイクルアセスメント実施支援ソフトウエア JEMAI –LCA Pro 用オプションデータパック 手引きと解説、pp. 160
- 12) 本藤祐樹、外岡豊、内山洋司:産業連関表を用いた我が国の生産活動に伴う環境負荷の実機 分析、電力中央研究所報告、研究報告 Y97017(1998)
- 13)(財)廃棄物研究財団:廃棄物処理過程におけるダイオキシン類縁化合物の挙動と制御に関する研究、平成13年度廃棄物処理等科学研究報告書、pp. 280-308 (2002)
- 14) 中村一夫: 製品のライフサイクルからみた飛灰の性状、廃棄物学会誌、Vol. 5、No. 1、pp. 60-68 (1994)
- 15) P.R. White, M. Franke and P. Hindle: Integrated Solid Waste Management: A Lifecycle Inventory, Blackie Academic & Professional (1996)
- 16) 貴田晶子、酒井伸一、芝川重博、松本暁洋:一般廃棄物焼却炉のダイオキシン類対策に伴う 重金属類の排出抑制効果に関する研究、環境化学、Vol. 13、No. 1、pp51-67 (2003)
- 17) ㈱エックス都市研究所: 平成 21 年度環境省委託業務 廃棄物熱回収施設の設置促進方策に関する調査業務報告書(2010)
- 18) 島岡隆行、於久弘治、宮脇健太郎、花嶋正孝、堀好弘、松本克美、古川清治、内田敏仁:廃棄物埋立地における薬剤処理飛灰の有害重金属安定性に関する研究、廃棄物学会論文誌、 Vol. 9、No. 6、pp. 264-273 (1998)
- 19) 早稲田大学環境総合研究センター溶融飛灰資源化研究会: 平成 20 年度「溶融飛灰資源化事業のシステム評価および情報開示のあり方」に関する調査研究報告書 (2009)
- 20) (社) 産業環境管理協会:銅精錬データ、ライフサイクルアセスメント実施支援ソフトウエア JEMAI-LCA Pro 用オプションデータパック 手引きと解説、pp. 142-143
- 21) 環境省報道発表資料 (2009.12.28): 平成 20 年度の電気事業者別排出係数・調整後排出係数等の公表について (お知らせ)
 - http://www.env.go.jp/press/press.php?serial=11956
- 22) 環境省:廃棄物処理施設の基幹的設備改良マニュアル、pp. I-9 (2010) http://www.env.go.jp/recycle/misc/facility_improve/manual.pdf
- 23) 財団法人地球環境産業技術研究機構 システム研究グループ: 都市ごみ処理の環境影響とコストの総合的評価(2010)
 - http://www.rite.or.jp/Japanese/labo/sysken/systemken.html
- 24) 長田守弘:埋立地再生事業の経済性評価、環境技術会誌、Vol. 122、pp. 10-21 (2005)
- 25) 酒井伸一:自動車リサイクルと化学物質管理、廃棄物資源循環学会誌、Vol. 21、pp. 103-110 (2010)
- 26) 永田勝也、服部君弥、横田隆一郎、嬉野通弥生: LCA におけるインパクトアセスメント手法 の開発(その1) -指標統合化のためのカテゴリー重要度の推定について-、日本機械学会第 5回環境工学シンポジウム'95講演論文集、pp. 151-154 (1995)

4.2 アスベスト廃棄物の無害化処理に関するライフサイクルアセスメント

4.2.1 本研究に関する背景と目的

今後、アスベスト含有建材を使用した建物の老朽化が進み、その解体の必要性が高まると考えられる。こうした建物の使用段階から解体、処理・処分まで含めた曝露リスクと除去工事費用を分析し、リスク対コストの評価がなされている。アスベスト除去シナリオとしては、「即時除去」、「解体時除去」、「非除去解体」の3種類で評価されているが、リスク面からは、即時除去が最もリスクが小さく、解体時除去、非除去解体の順でリスクが大きくなるが、使用段階、解体工事段階のリスクが比較的高いとされている。1)また、非除去解体をベースに即時除去及び解体時除去で削減されたリスクとそれに要した対策費用から費用対効果を評価すると、即時除去の方がリスクに対する費用が安く、対策として優位性という評価結果になっている。一方、処理・処分段階については、リスクは相対的に低いとはいわれているものの、これまで情報が少なく十分な評価ができていない状況である。現状、費用的には安価な埋立処分が主流であるが、処分場の枯渇問題等も考慮して、溶融処理との比較において、総合的に評価する必要がある。

3.2 節では、アスベスト廃棄物の溶融処理時における無害化処理レベルの確認と周辺環境影響について調査した結果を報告した。そこでこの節では、これらのデータをもとに、アスベスト廃棄物の処理・処分方法として埋立処分と溶融処理を人間健康リスク、廃棄物(埋立地消費)、地球温暖化問題等の視点から総合的に環境影響を比較評価したので、その結果を報告する。

4.2.2 調査範囲及び評価手法の設定

4.2.2.1 機能単位

本研究では、アスベスト廃棄物 1 ton の処理・処分を機能単位とした。ここでいうアスベスト 廃棄物とは、建物等の解体によって排出される非飛散性アスベスト含有建材を言う。

4.2.2.2 評価対象とするシナリオ

評価対象とするシナリオを1)埋立シナリオ(以下、「埋立」という)、2)ガス化溶融+スラグ・メタル資源化+溶融飛灰埋立シナリオ(以下、「溶融」という)の2種類とした。

評価対象とするライフサイクルは、アスベスト含有廃棄物(建材)の処理・処分段階のみとした。また、システムの運用段階のみを対象とし、施設建設段階は対象外とした。なお、解体はいずれにおいても石綿則に則って適正な管理下で実施され、アスベスト含有廃棄物は二重袋梱包され持ち込まるものとした。

4.2.2.3 システム境界の設定

評価対象としたシステムの中で、ガス化溶融はアスベスト廃棄物を ASR に混合して処理することを前提とした。(アスベスト廃棄物の混合比率 10%)

またガス化溶融はアスベスト廃棄物の処理のほかに、回収エネルギー、資源化物(スラグ・メタル等)の副産物を提供する機能も有する。これら副産物が提供する機能にシナリオ間で差異のないよう、副産物と同等の機能を提供するサブシステムを用いて、機能単位を「非飛散性アスベスト含有建材1tonの処理」に揃えることとした。ただし、副産物に関するアスベスト廃棄物と

ASR の配分については、ASR とアスベスト廃棄物と混合処理結果から ASR 単独処理結果を差し引いてアスベスト廃棄物寄与分を求めることとした。 すなわち ASR 9 ton+アスベスト廃棄物 1ton の処理結果から ASR 9 ton の処理結果を差し引いた。

その結果アスベスト起因の副産物を有するシナリオからは、その副産物と同等の機能を提供するサブシステムの環境負荷を差し引くこととした。なお、ガス化溶融によって得られる電力は、発電所から供給される電力と同等であるとし、電力供給サブシステムは、日本における平均的な電源構成を持つと設定した。ただし、アスベスト廃棄物は熱量を持たないので、アスベスト廃棄物を溶融するために添加したコークス分の寄与した発電のみを考慮した。

4.2.2.4 影響領域と対象物質の選定

影響領域の選定に当たっては、1)アスベスト被害の深刻さ、2)埋立地逼迫問題への対応の重要さ、3)スラグ資源化による資源代替への期待、4)地球温暖化問題の深刻さ等を考慮した。また有害物質についてはヒトへの健康影響を評価対象とした。

上記を勘案し、以下の項目を影響領域、対象物質とした。

- (1) 有害化学物質 (アスベスト)
- (2) 廃棄物 (Occupied space)
- (3) 地球温暖化 (CO₂)

4.2.2.5 被害評価と統合化

LIME2 等を参考に、被害評価と統合化を実施した。

4.2.3 プロセスのモデル化

4.2.3.1 埋立プロセス

埋立プロセスは、アスベスト廃棄物を直接または溶融飛灰を最終処分場に埋立て、覆土して管理する。埋立プロセスでは、埋立対象物の占有スペースを算出した。また重機使用による CO_2 、の排出を計上した。なお、長期間保管時のリスクとして不適正な処理処分時の飛散リスクについても推定した。

4.2.3.2 溶融プロセス

溶融プロセスは、アスベスト含有廃棄物をASRと混合して、溶融・資源化を行い、回収熱を用いた発電を行うものとした。排ガス処理は、バグフィルター+消石灰吹込み、触媒反応塔の組合せとした。エネルギー回収は廃棄物発電のみで行われるものとした。

溶融プロセスでは、アスベスト溶融に必要なコークスの燃焼による CO₂ の大気への排出、施設の電力消費(発電)による CO₂ の排出を計上した。なお、他のプロセスでの計算に用いるため、スラグ発生量、スラグ性状の算出も行った。副資材の石灰石はアスベストが代替するので削減効果を考慮した。

4.2.3.3 砂供給プロセス

本プロセスでは、砂採掘工場における掘削、破砕、整粒時の重機使用、電力消費に伴う CO_2 の大気への排出を計上した。

4.2.3.4 電力供給プロセス

本プロセスでは、 CO_2 の大気への排出を計上した。電源構成は日本における平均的な商業電力のものを想定した。

4.2.4 各シナリオ別のインベントリー算出

4.2.4.1 アスベスト曝露量

(1) 埋立プロセス

解体工事で発生したアスベスト含有廃棄物が埋立処分されるときの、周辺住民の曝露量を以下 の式で推算した。なお、作業員の曝露量は対象外とした。

総曝露量 $(f) = アスベスト量 (kg) ×3.0×10^{13} (f/kg) × 飛散係数 <math>(-)$ × 曝露係数 (-) 飛散係数については、EPA によって試算された解体廃棄物の不適正な処理処分に関わるアスベスト飛散係数を基にして仮定した $0.02\% (2×10^{-4})$ を用いることとした。 $^{2)}$ また曝露係数については、埋立処分場の位置が都市圏外にある場合を想定して 10^{-5} を用いることとした。 $^{3)}$

アスベスト廃棄物は表 3.2-2 に示すスレート材とし、クリソタイルのみを考慮した。 以上よりアスベスト廃棄物 1 トン当たりの総曝露量は、以下のように求められる。

総曝露量 (f) = $10^3 \times 0.073$ (kg) $\times 3.0 \times 10^{13}$ (f/kg) $\times 2 \times 10^{-4} \times 10^{-5}$

 $= 4.38 \times 10^6$ (f)

なお kg 換算すると 4.38×10^6 (f) ÷ 3.0×10^{13} (f/kg) = 1.46×10^{-7} (kg)

(2) 溶融プロセス

3.2 節で報告したスレート材の溶融処理試験結果(条件2)から、溶融炉に投入されたアスベスト廃棄物中のアスベストの排出係数(分解率)が下記のように求められる。

アスベスト排出係数=排ガス中のアスベスト繊維数÷投入廃棄物中のアスベスト繊維数

=80730×10³ (L/h) ×0.32(f/L)/{420(kg/h)×0.073×3.0×10¹³ (f/kg) } =2.82×10⁻⁸

なお、上記の算出に当たっては、排ガス中のアスベスト濃度として、安全側を見てバグフィル タ出口の定量下限値を用いた。

この結果をもとにアスベスト含有廃棄物が溶融処理されるときの、周辺住民の曝露量を以下の式で推算した。なお、作業員の曝露量は対象外とした。

総曝露量 $(f) = アスベスト量 (kg) ×3.0×10^{13} (f/kg) ×排出係数 <math>(-)$ ×曝露係数 (-) また曝露係数については、溶融処理施設の位置が都市部にある場合を想定して 10^{-4} を用いることとした。 $^{3)}$

アスベスト廃棄物は表 3.2-2 に示すスレート材とし、クリソタイルのみを考慮した。 以上よりアスベスト廃棄物 1 トン当たりの総曝露量は、以下のように求められる。

総曝露量 (f) = $10^3 \times 0.073$ (kg) $\times 3.0 \times 10^{13}$ (f/kg) $\times 2.82 \times 10^{-8} \times 10^{-4}$

 $= 6.18 \times 10^3$ (f)

なお kg 換算すると 6.18×10^3 (f) $\div 3.0\times10^{13}$ (f/kg) $=2.06\times10^{-10}$ (kg)

4.2.4.2 廃棄物(埋立地消費)

(1) 埋立プロセス

LIME2 の特性化係数リストにある「がれき類」の埋立時かさ密度: $1.8 \text{ (m}^3/\text{t)}$ を用いてアスベスト廃棄物 1 トン埋立時の廃棄物量を算出すると

廃棄物
$$(m^3) = 1 (t) \div 1.8 (m^3/t)$$

= 0.556 (m^3)

(2) 溶融プロセス

溶融処理では埋立は溶融飛灰のみとなる。

ASR との混合処理で、特に溶融飛灰量は増えなかったことから、ASR 処理時の溶融飛灰の排出原単位: 4.53%を用い、セメント固化を考慮して 1.3 倍する。LIME2 の特性化係数リストにある「セメント固化物」の埋立時かさ密度: 1.7 (m^3/t) を用いてアスベスト廃棄物 1 トン埋立時の廃棄物量を算出すると

廃棄物
$$(m^3)$$
 = 1 $(t) \times 0.0453 \times 1.3 \div 1.7$ (m^3/t) = 0.0346 (m^3)

4.2.4.3 地球温暖化

(1) 埋立プロセス

浸出水処理に伴う電力消費等により $CO_2(kg) = 67.4(kg)$

(2) 溶融プロセス

溶融に使用するコークス起因 CO_2 に電力消費起因 CO_2 を加え、コークス寄与分の発電起因 CO_2 を減じる。ASR 単独処理時とアスベスト混合処理時でコークス原単位(170kg/t-ASR)は変わらなかったことを考慮すると

C02 (kg) = 648 (kg)

4.2.5 被害評価

4.2.5.1 アスベスト曝露

寺園は、米国研究協議会 (National Research Council) が示したリスク評価の手順に沿って、アスベスト粉じん曝露リスクの評価方法を以下のように提案している。⁶⁾

- 1) 有害性について、致命度や報告例などからアスベストリスク評価に考慮すべき疾患は、肺がんと中皮腫である。
- 2) 量一反応関係については、一般環境のような低濃度アスベスト曝露におけるリスク評価のためのモデル開発が高濃度曝露の影響を外挿することで試みられているとしている。肺がんについては曝露濃度と曝露時間の籍、すなわち曝露累積量が肺がんの発生率の上昇に比例するという次式が用いられている。

$I_A = I_U \times K_L \times f \times d_{t-10}$

I A: 肺がん発生率 (人/yr)

I U: 平均の肺がん発生率 (人/yr)

 K_L : 定数 (/(f-yr/mL))

f : 曝露濃度 (f/mL)

t: 曝露開始からの期間(yr)

d_{t-io}: 曝露期間(yr)

(曝露開始時点から t-10 の時点までの間に曝露された年数)

また、中皮腫については、曝露濃度に対しては直線的に、曝露期間と初回曝露からの経過年数に対して指数関数的に増大する次式が一般に認知されている。

$I = K_{M} \times f \times (t-10)^{k}$

I: 中皮腫発生率(人/yr)

 K_M : 定数(人/(f/mL))

f: 曝露濃度(f/mL)

t: 曝露開始からの期間(yr)

k: 定数(-)

これらのモデルを用いて、アスベスト濃度1 f/L あたりのユニットリスクを次式で算出できる。

$$P = \{ \Sigma_i (A_i \times B_i) \} /10^{10}$$

P:生涯過剰死亡リスク(人)

A: 年齢層iの10万人あたり生存数(人/10万人-yr)

B_i: 年齢層 i の 10 万人あたりアスベスト由来肺がん過剰死亡数(人/10 万人_yr)

また、リスク指標としては過剰死亡の他に損失余命と呼ばれるものもあり、有害物質曝露のリスク評価において多く用いられている。としている。

水嶋は、以上の寺園による検討を踏襲し、これらの式を用いてアスベストによる生涯過剰死亡 リスクと 1 f/L あたりの損失余命を計算している。 7)

以上のユニットリスクは、一定の濃度(1 f/L)を吸入し続けることによる ものであるが、以後 のリスク計算を計算しやすくするため、一人一日の呼吸量を $15m^3$ としてアスベスト曝露量 1 f あたりに換算している。表 2.3-4 に、生涯過剰死亡リスク、損失余命、ユニットリスクの算出 結果を示した。

表 4.2-1 アスベスト曝露のユニットリスク

	生涯過剰死亡	Jスク(人/(f/L))	損失余命	i(yr/(f/L))
	1990年	2006年	1990年	2006年
肺がん・男性(1f/Lあたり)	7.17E-05	6.66E-05	1.05E-03	1.12E-03
肺がん・女性 (1f/Lあたり)	2.01E-05	1.98E-05	3.74E-04	4.40E-04
肺がん平均(1f/Lあたり)	4.59E-05	4.32E-05	7.14E-04	7.82E-04
中皮腫・男性(1f/Lあたり)	1.58E-04	1.65E-04	3.11E-03	3.59E-03
中皮腫・女性(1f/Lあたり)	1.75E-04	1.79E-04	4.03E-03	4.73E-03
中皮腫平均(1f/Lあたり)	1.66E-04	1.72E-04	3.57E-03	4.16E-03
合計 (1f/Lあたり)	2.12E-04	2.16E-04	4.28E-03	4.95E-03
ユニットリスク(1fあたり)	5.39E-13	5.40E-13	1.09E-11	1.24E-11

上記の既往研究成果より、1 (f) 当たりの損失余命、ユニットリスク: 1.24×10^{-11} (年/f) を用いて被害量を試算する。

埋立 人間健康 4.38×10^6 (f) $\times1.24\times10^{-11}$ =5.43×10⁻⁵ (年)

溶融 人間健康 6.18×10³ (f) ×1.24×10⁻¹¹ =7.66×10⁻⁸ (年)

DALY と異なり、障害調整が含まれていないことに留意する必要がある。

4.2.5.2 廃棄物

LIME2 の被害評価係数を用いて被害量を算出する。

埋立 社会資産 : $0.556 \, (\text{m}^3) \times 1.52 \times 10^4 \, (\text{円/m}^3) = 8.45 \times 10^3 \, (\text{円})$

一次生產 : $0.556 \, (\text{m}^3) \times 2.85 \times 10 \, (\text{kg/m}^3) = 1.58 \times 10 \, (\text{kg})$

生物多様性: $0.556 \, (\text{m}^3) \times 9.18 \times 10^{-11} \, (\text{EINES/m}^3) = 5.10 \times 10^{-11} \, (\text{EINES})$

溶融 社会資産 : $0.0346 \, (\text{m}^3) \times 1.52 \times 10^4 \, (\text{円/m}^3) = 5.34 \times 10^2 \, (\text{円})$

一次生產 : $0.0346 \, (\text{m}^3) \times 2.85 \times 10 \, (\text{kg/m}^3) = 9.86 \times 10^{-1} \, \text{kg}$

生物多様性: 0.0346(m³) ×9.18×10⁻¹¹ (EINES/m³) = 3.17×10⁻¹² (EINES)

4.2.5.3 地球温暖化

埋立 人間健康 : 67.4 (kg) ×1.31×10⁻⁷ (DALY/kg) = 8.83×10⁻⁶ (DALY)

社会資產 : 67.4 (kg) ×3.23×10⁻¹ (円/kg)=2.18×10 (円)

溶融 人間健康 : 648 (kg) ×1.31×10⁻⁷ (DALY/kg) =8.49×10⁻⁵ (DALY)

社会資産 : 648 (kg) $\times 3.23 \times 10^{-1}$ (円/ kg) = 2.09×10^{2} (円)

4.2.6 統合化

アスベスト被害の損失余命を DALY と仮において統合化する。

統合化係数としては人間健康には 1.47E+7 円/DALY、社会資産には 1 円/円、一次生産には 46.2 円/kg、生物多様性には 1.42E+13 円/種を用いた。

埋立 人間健康 : $6.31 \times 10^{-5} \times 1.47E + 7 \, \text{P/DALY} = 9.28 \times 10^{2}$ (円)

社会資産 : 8.47×10^3 (円) \times 1 (円/円) = 8.47×10^3 (円) 一次生産 : 1.58×10 (kg) \times 46.2 (円/kg) = 7.30×10^2 (円)

生物多様性: 5.10×10^{-11} (EINES) $\times 1.42E+13$ 円/種= 7.24×10^{2} (円)

統合化後 1.09×10⁴ (円)

このうち、アスベスト曝露の影響は約800円

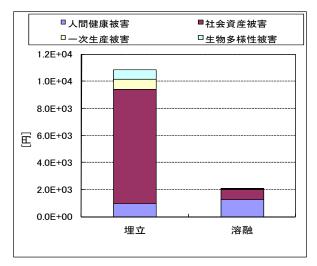
残りの約10000円は埋立地消費の影響。

溶融 人間健康 : (8.49×10⁻⁵+7.66×10⁻⁸) ×1.47E+7 円/DALY=1.25×10³ (円)

社会資産 : $(5.34 \times 10^2 + 2.09 \times 10^2)$ (円) × 1 (円/円) = 7.43×10^2 (円)

一次生產 : $9.86 \times 10^{-1} \times (kg) \times 46.2 (円/kg) = 4.56 \times 10 (円)$

生物多様性: 3.17×10^{-12} (EINES) $\times 1.42E+13$ 円/種= 4.50×10 (円)


統合化後 2.08×103 (円)

このうち、アスベスト曝露の影響は1円

地球温暖化の効果は約 1500 円

表 4.2-2 統合化結果

	評価項目	人間健康被害 (円)	社会資産被害I (円)	一次生産被害 (円)	生物多様性被害 (円)	合 計 (円)
埋立	アスベスト暴露 廃棄物 地球温暖化 合 計	7.98E+02 0.00E+00 1.30E+02	8.45E+03 2.18E+01	7.30E+02	7.24E+02	7.98E+02 9.90E+03 1.52E+02 1.09E+04
溶融	アスベスト暴露 廃棄物 地球温暖化 合 計	1.13E+00 0.00E+00 1.25E+03	5.34E+02 2.09E+02	4.56E+01	4.50E+01	1.13E+00 6.25E+02 1.46E+03 2.08E+03

□アスベスト暴露 ■廃棄物 □地球温暖化

1.2E+04
1.0E+04
8.0E+03
4.0E+03
2.0E+03
0.0E+00
埋立 溶融

図 4.2-1(a) 統合化結果(保護対象別)

図 4.2-1(b) 統合化結果(影響領域別)

上記試算結果を表 4.2-2、図 4.2-1(a)(b)に示すが、人間健康、社会資産、一次生産、生物多様性の 4 つの保護対象で評価した場合には、溶融が、埋立より被害評価額がアスベスト廃棄物 1 トンあたり約8千円小さいという結果になった。被害評価で支配的な項目は廃棄物(埋立地消費)である。

この中で、アスベストの曝露リスクは損失余命だけで評価しており、障害調整が含まれていないことを考慮して、仮に障害調整を含めて2倍とみても、埋立に約1千円が加わるのみである。

一方、廃棄物の社会資産被害については土地を埋立地に使用したことで将来他に利用する機会を失ったことへの損失評価額を意味しているが、アスベスト廃棄物を埋め立てたことにより、未 来永劫管理していくことになる被害についてはもう少し大きく評価すべきではないかとの見方も ある。仮にこの社会資産被害評価係数を現状の 1.52×10^4 円/ m^3 が、 $3\sim5\times10^4$ 円/ m^3 に上昇した場合、溶融は埋立よりも被害評価額が小さく、その差は、アスベスト廃棄物 1 トンあたり 8 千円から $16\sim26$ 千円程度に広がることになる。

4.2.7 総合評価

アスベスト廃棄物の処理・処分段階の総合的な環境影響評価を実施したが、この段階ではアスベスト曝露の影響は小さく、社会資産被害で埋立が溶融より被害額が大きいという評価結果になった。このことは、処理・処分段階においては埋立地の枯渇問題にどう対処すべきか、また将来の土地利用といった面で、このまま埋立てを続けてよいのかいった観点から考えるべき問題ということを示唆している。

寺園は、埋立処分に対して溶融処理が健康リスクを削減するがエネルギーをより多く消費するトレードオフの関係に関して、正規化を行うことで相対的な重要度評価を行っている。すなわち、国内における年間の健康リスクとエネルギー消費が同じ重要度をもつとしたときに溶融することでの人の健康リスクの削減量とそれに必要なエネルギー消費がそれぞれ国の総量に対する相対値でどちらが大きいかを比較するという意味である。その結果、埋立の場合で不適正処分が最大の20%とした場合は、健康リスクの低減の相対値が、エネルギー消費の相対値を若干上回ることが示唆された。ただまだ不確実性の高い比較であるので、更なる検討が必要とされている。3)

また、藤長らは、建築物の解体時の飛散アスベストの曝露による健康リスクを低減させるための対策シナリオとして、「対策なし」、「手ばらしによる解体」、「溶融処理による無害化」を比較評価している。その結果、対策なしとの比較において手ばらしによる解体で2割、溶融処理は3割のリスク低減が見込めるとしている。今後、費用対効果の吟味が必要としながらもまずは手ばらしの完全実施を目指し、次善の策として費用のかかる溶融を推奨している。4)

一方で、溶融まで温度を上げずに、非石綿化してリサイクルの道を模索する研究も国内外で行われている。橋本らは、アスベスト単体を 600℃まで昇温し、脱水により強度低下させて機械的に破砕することで石綿の繊維状組織が破壊できることを確認し、さらにアスベストを含有するスレート材を用いた粉砕試験でもセメント板中のアスベスト繊維が破壊できたと報告している。⁵⁾⁶⁾ Gualtieri らはスレート材を用いたキルンによる焼成試験において、1200℃までの昇温過程でアスベスト組織がどのように変化するかを詳細に調査し、1200℃での焼成品が非アスベスト化できていることを各種分析で確認している。また磁器タイルや煉瓦用材料への再利用を検討している。7)8)

4.2.8 まとめ

アスベスト廃棄物処理については、本研究では処理処分段階に限定した評価ではあるが、、埋立より溶融が優位との結果になった。しかしアスベスト問題は、使用段階から解体工事、輸送を含めたライフサイクルの中で、対策シナリオを評価することが求められる。今回の成果を包含した形でのより幅広い検討が今後、必要である。

【第4章 第2節の参考文献】

- 1) 水嶋周一、平井康宏、酒井伸一:吹付けアスベストの除去工事実績に基づく費用及びリスク の推定、第20回廃棄物資源学会研究発表会講演論文集、pp. 537-538
- 2) U. S. EPA: Asbestos emission estimate for milling, manufacturing, fabricating, demolition, renovation, and waste disposal, Docket No. A-88-28 (1988)
- 3) 寺園淳:アスベストによる環境汚染の防止対策と評価手法に関する研究、京都大学博士論文 (2000)
- 4) 藤長愛一郎、笹本譲、吉田幸司:アスベスト曝露による健康リスクの低減対策の比較検討
- 5) 橋本忍、山口明良:アスベストの機械的粉砕とその焼結性、日本セラミックス協会学術論文誌、Vol. 113、No. 4、pp. 312-316 (2005)
- 6) 橋本忍、山口明良、本多沢雄、淡路英夫、福田功一郎:アスベスト含有セメント板中のアスベストの機械的粉砕、日本セラミックス協会学術論文誌、Vol. 113、No. 12、pp. 804-807 (2005)
- 7) A.F. Gualtieri, C. Cavenati, I. Zanatto, M. Meloni, G. Elmi, M. Lassinantti Gualtieri: The transformation sequence of cement-asbestos slate up to 1200°C and safe recycling of thr eaction production in stoneware tile mixture, Journal of Hazardous Materials, Vol. 152, pp. 563-570 (2008)
- 8) Alessandro F. Gualtieri, Carlotta Giacobbe, Lorenza Sardisco, Michele Saraceno, Magdalena Lassinantti Gualtieri, Gigliola Lusvardi, Cinzia Cavenati, Ivano Zanatto: Recycling of the product of thermal inertization of cement-asbestos for various industrial applications, Waste Management, Vol. 31, Issuel, pp. 91-100 (2011)

4.3 第4章のまとめ

第4章では、前章で実施したASRとアスベスト廃棄物の溶融処理プロセスにおける有害物質の 挙動調査結果を活用し、LCA手法により、他の処理プロセスと評価項目別及び統合的な指標での 優劣比較を実施した。

第1節では、ASR の資源化・処理方式に関する4つのシナリオ(埋立、焼却+埋立、溶融+埋立、溶融+山元還元)を対象に地球温暖化、酸性化、有害物質、生態毒性、廃棄物(埋立地消費)の各影響領域への被害評価の観点からLCAを行った。その結果、統合化後の比較では、溶融+山元還元が最も影響が少なく、次いで溶融+埋立が続き、焼却+埋立、埋立の順に大きくなった。このことは、埋立物からの重金属の溶出特性、減容積効果、CO2排出量等が優劣を決める要因となっているが、重金属の溶出特性と減容効果で溶融が焼却、埋立に勝っており、CO2排出量でのマイナス分を大きく上回っていることを示している。また溶融の中では、山元還元を行うことがこのメリットをより高める結果となった。

また、 溶融を埋立や焼却と比較した場合、人間健康、社会資産、一次生産量、生物多様性の 4 つ被害評価額の合計として算出した経済効果が、溶融の処理費用増分を大幅に上回るという結果になった。 さらに溶融の中では、山元還元(重金属類回収)による生物多様性の被害評価額の低減効果はその費用増分を十分カバーできるオーダーであった。

第2節では、アスベスト廃棄物の処理・処分に関して埋立と溶融の2つのシナリオを有害化学物質、廃棄物、地球温暖化の観点から、比較評価した結果、アスベスト曝露の影響や地球温暖化の影響は小さく、埋立地消費での社会資産被害で、埋立が溶融より被害額が大きいという評価結果になった。ただし、アスベスト問題は、使用段階から解体工事、輸送を含めたライフサイクルを考慮した対策シナリオを検討することが求められる。

以上により、溶融処理技術をLCA評価により焼却や埋立と比較したところ、 CO_2 排出量が多いことに伴い地球温暖化の影響領域では劣位にあるものの、重金属の水域への排出抑制効果や埋立処分地消費のミニマム化の効果がそのマイナス分を上回り、総合的には溶融が焼却、埋立に勝っていることを示した。また溶融の中では、山元還元で重金属類を回収することがこのメリットを高めることが明らかとなった。また、これらの被害評価額ベースでの差分は処理費用差を十分カバーするオーダーであることを示した。

第5章 結論

5.1 本研究の総括

本研究では、多様化する廃棄物処理方式の中で、溶融処理の果たすべき役割や有効性を整理するとともに、溶融処理過程における有害物質の挙動を調査した。また、これらのデータに基づき LCA 手法を用いて、多面的な視点から溶融処理と他方式との比較評価を実施した。以下に各章及 び各節の概要と結論についてまとめる。

第2章第1節では、わが国における廃棄物溶融処理技術の開発経緯を振り返り、技術課題と社会的意味を整理した。溶融処理技術は、焼却残さを溶融する灰溶融とごみから直接溶融するガス化溶融に大別されるが、ダイオキシン問題や処分場枯渇を解決すべく、環境省の後押しもあって両者が競い合いながら2000年代に急速に普及し、200施設を超えるに至った。副産物の溶融スラグはJIS化も達成し、有効利用が進められているが、重金属の濃縮した溶融飛灰は、一部山元還元にて資源回収されるものの、大半は溶出防止を図って埋立てられている。こうした重金属の挙動は溶融炉内の雰囲気(酸素分圧)や温度により制御されることが明らかとなっている。ただし溶融処理はエネルギー消費が大きいという指摘もある一方で、有害廃棄物処理に力を発揮することを期待されてもいることから、その利害得失を評価することが求められる。

第2章第2節では特に溶融処理方式として最も実績の多いシャフト炉式ガス化溶融炉を取り上げ、その特徴と期待される役割を整理し、その達成に向けて改善研究の成果と実用化状況をまとめた。特にシャフト炉では、若干のコークスを添加することで幅広い廃棄物を確実にリサイクルできる点と炉内を高温還元雰囲気に保つことで、鉛、亜鉛等の低沸点重金属の揮散を促進し、溶融飛灰中に濃縮するとともに、スラグ中への移行を抑制する効果があるとしている。一方で、こうした特徴を維持しつつコークスの使用量を削減するプロセス開発を継続し、最終的にはカーボンニュートラルなバイオマスコークスに置き替える開発にも目途を得たとしている。また、燃焼排ガスより回収する蒸気の高温・高圧化を図り、高効率発電も実現していることを示した。

第3章第1節では、シャフト炉による ASR 溶融処理試験を実施し、溶融プロセス内での臭素系 難燃剤、ダイオキシン類縁化合物及び重金属類等有害物質等の挙動を調査した結果を整理した。 臭素系難燃剤、ダイオキシン類縁化合物が十分分解され、低沸点重金属類は溶融飛灰へ、高沸点 重金属類は溶融メタルへ分離濃縮していることを確認した。そして溶融スラグ中には有害な重金 属類はほとんど残らず、環境安全性を担保できることを示した。またここで得られたインベント リーは次章での LCA 評価の基礎データとして活用された。

第3章第2節では、シャフト炉の実機設備によるアスベスト廃棄物溶融処理試験結果をまとめた。高温溶融処理によってアスベストの無害化が達成されていることを確認した。特に透過電顕等による詳細な観察・評価実施した結果でも副産物の溶融スラグや溶融飛灰に石綿繊維が残存していないことを検証し、施設周辺の環境にもほとんど影響を与えていないことを確認した。

第4章第1節では、ASRの資源化・処理方式に関する4つのシナリオ(埋立、焼却+埋立、溶融+埋立、溶融+山元還元)を対象に実施したLCA結果をまとめた。影響領域としては地球温暖化、酸性化、有害物質、生態毒性、廃棄物(埋立地消費)を取り上げてLIME2の提供する評価係数等を活用し、被害評価の観点からLCAを行った結果以下の結論を得た。すなわち、溶融+山元還元が最も

影響が少なく、次いで溶融+埋立が続き、焼却+埋立、埋立の順に大きくなるという結果となり、溶融は埋立や焼却に比べ温室効果ガスの排出が多いものの、重金属類等の排出抑制により人間健康影響、生態毒性が少ないことと埋立地削減効果がこれを上回るという評価になった。また、溶融と埋立や焼却との比較において人間健康、社会資産、一次生産量、生物多様性の4つ被害評価額の合計として算出した経済効果が溶融の処理費用増分を大幅に上回るという結果になった。特に、山元還元は溶融による重金属の分離回収機能を活かし、健康影響、生態系へ影響をさらに低減する有効な手段であるとの結論を得た。

第4章第2節では、アスベスト廃棄物の処理・処分に関して埋立と溶融の2つのシナリオを有害化学物質、廃棄物、地球温暖化の観点から、比較評価した。その結果、アスベスト曝露の影響や地球温暖化の影響は小さく、埋立地消費での社会資産被害で、埋立が溶融より被害額が大きいという評価結果になった。

以上により、今後廃棄物処理技術を評価する上で、地球温暖化問題や減容効果のみならず、人間健康や生態系への影響をも加味した総合的な評価を行うことが重要であることが示された。こうした観点で溶融処理を評価すると、特に有害物質を含む廃棄物処理においてその有効性が顕著であることが明らかとなった。

5.2 今後の課題

本研究では、溶融処理に対する評価を行う上で、ASR やアスベストに代表される有害物質を多く含む廃棄物の処理を取り上げ評価対象としたため、有害物質の影響が大きく現れ、溶融方式の優位性を強調する結果となった。ただし、埋立地消費の影響もそれに次いで大きなインパクトファクターとなっており、もう少し有害性の低い一般廃棄物を対象としたとしても、全体的に環境負荷は低下するが、各シナリオの比較結果は大きく変わらないことが想定される。とはいえごみ質の影響を定量的に把握することが重要であり、その検証は今後の検討に委ねたい。また溶融処理技術には更なる改善改良が加えられていくが、比較対象の処理方式についても埋立や焼却といった従来型のものに限らず、他の方式や新技術を組み合わせた方式を取り上げ、評価を実施する必要がある。その実施にあたってはこの研究で用いた LIME 2 のデータベースを活用した LCA の手法を適用することが可能である。

一方で、今回の検討では、廃棄物中の重金属類や臭素系難燃剤等が水域に排出されることでの生態毒性の影響が相当大きいことが示された。ただしその数値的意味合いには、まだ多くの不確定さが残っているのも事実である。しかし、2010年10月には名古屋で生物多様性条約第10回締約国会議(COP10)が開催され、生物多様性の保全についても愛知ターゲットが採択された。名古屋はかって藤前干潟を埋め立て処分場にすることを生態系への影響を懸念して断念し、その対策として最終処分量を削減するため、ごみ処理施設に溶融方式が採用されたという経緯もある。1)生物多様性問題において、名古屋でのCOP10開催のもつ意味合いは、1997年に京都で開催された気候変動枠組条約第3回締約国会議(COP3)が地球温暖化問題にとって大きなトリガーとなった時期に相当するも言えよう。地球温暖化問題に取り組むと同様あるいはそれ以上に、今後、生物多様性についても定量的な評価とその対策について検討を進めることが求められる。

アスベスト廃棄物処理については、本研究では処理処分段階に限定した評価ではあるが、埋立

より溶融が優位との結果になった。しかしアスベスト問題は、使用段階から解体工事、輸送を含めたライフサイクルの中で、対策シナリオを評価することが求められる。今回の検討結果はその一部を構成するが、これを包含した形でのより幅広いスパンでの検討が今後必要であろう。

環境省が基本コンセプトとして掲げている循環型社会形成と低炭素化社会実現さらにこれに自然との共生という軸を加えた異なる視点からの課題提起に対して、将来の廃棄物処理技術はどうあるべきかを考えたとき、こうした LCA 評価で示す指針が大いに参考になる。今後の廃棄物処理技術開発の方向性について、今回の研究の成果を参考にして見定めていきたい。また本研究で習得した LCA による評価手法をさらにブラッシュアップしていくとともに、積み残した課題についても継続して検討を進めていく所存である。

[第5章 第2節の参考文献]

1) 松原武久:一周遅れのトップランナー―名古屋市民のごみ革命ー、KTC 中央出版 (2001)

謝辞

本論文は、新日鉄エンジニアリング株式会社において行った研究を基に、京都大学大学院工学研究科都市環境工学専攻博士後期課程での研究成果を加えたものです。

京都大学での研究に際しては、京都大学環境保全センター教授酒井伸一博士、京都大学環境保全センター准教授平井康宏博士に、本論文の構想段階から、技術検討、考察、取りまとめに至るまで懇切丁寧にご指導いただきました。深く感謝の意を表します。

また、調査委員として査読いただき、貴重な助言をいただいた京都大学大学院工学研究科都市環境工学専攻教授松岡譲博士ならびに都市環境工学専攻教授米田稔博士にお礼申し上げます。

第3章のASR 処理実験に関しては、財団法人廃棄物研究財団の「廃棄物処理過程におけるダイ オキシン類縁化合物の挙動と制御に関する研究」の一環として研究を遂行するに際して、京都大 学環境保全センター教授酒井伸一博士と愛媛大学教授高橋真博士のご指導をいただきました。ま た分析にあたっては㈱ニッテクリサーチの宮崎徹氏に精力的に取り組んでいただきましたこと深 く感謝します。共同研究者の高宮健氏、谷垣信宏氏には実験の実施から解析、取りまとめまで大 いに尽力いただきました。アスベスト処理実験につきましては、環境省の廃棄物処理等科学研究 費補助金研究並びに次世代廃棄物処理技術基盤整備事業として実施するに際し、環境省様並びに 北九州市様のご支援・ご指導をいただきました。また京都大学環境保全センター教授酒井伸一博 士にもご指導をいただきました。分析に際しては㈱ニッテクリサーチの大村元志氏、野口雅人氏 に大変お世話になりました。共同研究者の梶山博久氏、高宮健氏、田中宏和氏、真名子一隆氏に は実験の遂行及び解析に関して多大なご協力をいただきました。ご指導・ご協力いただいた多く の皆様にここに厚くお礼申しあげます。第4章のライフサイクルアセスメントに関しては、平井 康宏博士の緻密な思考過程をなかなかフォローできないときもありましたが、丁寧にご指導をい ただき何とかゴールまで辿り着きました。本当に有難うございました。また共同研究者の真名子 一隆氏の粘り強く労を惜しまぬ協力なくしてはこの煩雑な計算を最後まで遂行できませんでした。 心より感謝いたします。国立環境研究所の貴田晶子博士には、困った時にはいつも気軽に相談に のっていただき直ちに適切な助言をいただき本当に助かりました。深く感謝いたします。

私が溶融炉の開発企画からその実用化・普及まで取り組んで約20年がたちました。本論文はその間の成果を私なりに集大成すべく取りまとめたものです。溶融炉開発に携わるようになった当初から、今は亡き京都大学名誉教授平岡正勝博士に大所高所からご指導をいただきました。平岡博士を囲む研究会で多くの素晴らしい諸先輩に知り合うことができたことは、その後の私の人生において大きな財産となりました。深く感謝しております。そして博士論文をまとめるように薦めていただいたのは京都大学名誉教授武田信生博士でした。武田博士の後押しがなければこの苦難の道に乗り出す決断をすることはできなかったと思います。有難うございました。

新日鉄エンジニアリング株式会社 環境ソリューション事業部の山田事業部長をはじめとする 多くの上司、同僚のご配慮とサポートにより、長く溶融炉開発業務に関わることができ、このた び博士課程に入学し論文をまとめることができました。これまでご指導いただいた上司の皆様並 びに一緒に開発に取り組んだ同僚の皆様に厚くお礼申しあげます。

最後に、妻美智子と二人の娘真由美、絵美の励ましの言葉により、挫折寸前のところを乗り越 えて、何とか論文を最期まで書き上げることができましたことに心より感謝します。

	区分	タイトル	著者	学会名	頁	年
	論文 (査読付)	都市ごみ直接溶融スラグの地盤改良材としての適用性に関する基礎 試験	長田守弘、西原信義、長田昭一、三浦仁、 森田悠紀夫、諏訪朝夫	日本材料学会	34-37	2000
2	論文 (査読付)	溶融処理過程における低沸点重金属類の挙動に関する熱力学的考察	長田昭一、長田守弘、古角雅行、徳田昌則	廃棄物学会論文誌Vol.15,No.5	353-362	2004
	論文 (査読付)	Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting	Morihiro Osada, Nobuhiro Tanigaki, Shin Takahashi, Shin-ichi Sakai	Journal of Material Cycles and Waste Management	93-101	2008
4	論文 (査読付)		Morihiro Osada, Ken Takamiya, Kazutaka Manakao, Shin-ichi Sakai	Journal of Material Cycles and Waste Management		査読中
	論文 (査読付)	自動車破砕残渣(ASR)の資源化・処理に関するライフサイクルアセスメント	長田守弘、真名子一隆、平井康宏、酒井 伸一	廃棄物資源循環学会論文誌		査読中
6	論文	焼却灰溶融技術の適用拡大と再資源化技術の開発	長田守弘、長田昭一、小野創、小佐野秀 実	新日鉄技報360号	32-37	1996
	論文	Shredder Dust Recycling wuth Direct Melting Process	S.Shibaike,M.Osada,K.Takamiya,M.Naito	ISIJ International.,Vol.40	252-259	2000
8	論文	溶融炉スラグ・メタル再利用技術	西原信義、伊能泰夫、長田昭一、長田守 弘	新日鉄技報376号	51-56	2002
9	論文	溶融炉スラグの再利用技術	長田守弘、長田昭一	無機マテリアル学会誌,Vol.9	317-326	2002
10	論文	直接溶融・資源化システムの稼働状況	長田守弘	環境浄化技術, Vol.3, No.1	6-10	2004
	論文	埋立地再生技術と経済性評価	長田守弘、藤吉秀昭	廃棄物学会誌,Vol,16,No.3	142-149	2005
	論文	埋立地再生事業の経済性評価	長田守弘	環境技術会誌 第122号	10-21	2005
13	論文	シャフト炉式がス化溶融炉の燃焼・溶融制御について	長田守弘	環境システム計測制御学会誌 EICA,Vol.10,No.4	15-19	2006
	論文	シャフト炉式ガス化溶融炉による無害化処理と資源循環への取り組み	長田守弘	都市と廃棄物Vol.36.No.9	38-44	2006
	論文	ガス化溶融炉を活用した資源循環への取組み	長田守弘	環境浄化技術, Vol.5, No.11	23-28	2006
16	論文	シャフト炉式ガス化溶融炉の改善の経緯と今後の展望	長田守弘、星沢康介、高田純一、吉本雄 一、柏原友、西猛	新日鉄エンジニアリング技報、 Vol.1	15-22	2010
	論文	シャフト炉式ガス化溶融炉の特長を活かした高効率発電への取り組み		新日鉄エンジニアリング技報、 Vol.1	23-28	2010
18	国際学会	廃棄物処理における溶融法の位置づけ(日本語版)	徳田昌則、長田昭一、小野創、長田守弘	第2回エコバランス国際会議	352-357	1996
19	国際学会	DIRECT MELTING PROCESS FOR MSW RECYCLING	Morihiro OSADA	WASCON'97 Houthem, Netherland	73-78	1997
		Characteristics of Gasifying Combustion in MSW Direct Melting System	Morihiro Osada, Kazuki Murahashi, Hideharu Shibaike	1st ICIPEC, Seoul. Korea	101-107	2000
		Direct Melting Process for MSW Recycling	S.Shibaike,M.Osada,.Y.Tawara	International Conference on S teel and Society, Osaka	191-194	2000
		Study on Behavior of Heavy Metals in MSW Direct Melting Process and Utilization of Melt-Solidified Products	Shohichi Osada, Morihiro Osada	2nd ICIPEC,Jeju, Korea	153-162	2002
		DIRECT MELTING SYSTEM for MSW Recycling	Morihiro Osada	WASTE SYMPOSIUM 2003,SHEFFIELD,UK	1-10	2003
24	国際学会	Bromine Behavior and Metal Contorol in MSW Direct Melting System	M.Osada, K.Takamiya, S.Sakai	3rd i-CIPEC,Hangzhou,Chaina	343-348	2004

	区分	タイトル	著者	学会名	頁	年
		ITS ECONOMIC EVALUATION	Hideaki Fujiyoshi, Morihiro Osada	APLAS Kitakyushu 2004	620-627	2004
		Recent Progress in Waste Management and Technology in Japan	Hitoshi Hagihara, Morihiro Osada	1st International Conference on Thermal Treatment and Resource Utilization of Wastes,	44–59	2005
27		Thermodynamic Calculatations of Heavy Metal Behavior in Municipal Waste Incinerator and ASR Melting Furnace	Etsuro Shibata,Takashi Nakamura,Masaki Takaoka,Nobuo Takeda,Fumihiro Miyoshi,Yoshiaki Matsuzawa,Takashi Nagayama, Morihiro Osada	4th i-CIPEC,Kyoto,Japan	323-326	2006
28	国際学会	PLASMA MELTING TECHNOLOGY OF PCB-CONTAMINATED WASTES	Shigeyoshi Tagashira, Masamitsu Takahashi, Morihiro Osada, Mitsuya Murata	4th i-CIPEC,Kyoto,Japan	519-522	2006
			M.Osada, N.Tanigaki, S.Takahashi, S.Sakai	4th i-CIPEC,Kyoto,Japan	551-554	2006
30	国際学会	PLASMA MELTING TECHNOLOGY OF PCB-CONTAMINATED WASTES	Tagashira S, Takahashi M, Shimizu Y, Osada M, Mikata N, Yamazaki R	DIOXIN 2007 International Symposium	662-665	2007
		Dioxins Control and High-Efficiency Power Gereation in a Large-Scale Gasification and Melting Facility	Manako.K, Kashiwabara.T Kobata.H, Osada.M, Takeuti.S, Mishima.T .	DIOXIN 2007 International Symposium	940-943	2007
32	国際学会	RECLAMATION WAST TREATMENT USING A GASIFICATION AND MELTING SYSTEM	KEN Takamiya , MORIHIRO Osada, HIDEHARU SHIBAIKE, HIROHISA KAJIYAMA	11th International Waste Management and Landfill Symposium (SARDINIA 2007)	95-96	2007
33	国際学会	Asbestos-containing waste treatment by high temparature melting	Morihiro Osada, Ken Takamiya, Kazutaka Manakao, Shin-ichi Sakai	5th i-CIPEC,Chiang Mai,Thailand	519-524	2008
34	国内学会	焼却飛灰の溶融処理に関する実証実験と熱力学的考察(第一報)	長田守弘、小野創、古角雅之、徳田昌則	第6回廃棄物学会研究発表会 講演論文集	381-383	1995
		焼却飛灰の溶融処理に関する熱力学的考察(第2報)	長田昭一、小野創、長田守弘、古角雅之、 徳田昌則	第7回廃棄物学会研究発表会 講演論文集	467-469	1996
36	国内学会	都市ごみ高温溶融炉によるフロン分解試験結果	仲川義一、長田守弘、小林淳志、平岡正勝	第7回廃棄物学会研究発表会 講演論文集	939-941	1996
		コークスベッド溶融方式による廃棄物の再資源化	長田守弘、俵洋一、西原信義	日本機械学会第6回環境工学 総合シンポジウム'96講演論文	202-205	1996
		直接溶融処理技術によるシュレッダーダストの再資源化研究	芝池秀治、高宮健、長田守弘、小野創	第8回廃棄物学会研究発表会 講演論文集	729-731	1997
39	国内学会	都市ごみ高温溶融炉によるフロン分解試験結果(第2報)	上野義治、小阪良平、長田守弘、吹中範 生、平岡正勝	第8回廃棄物学会研究発表会 講演論文集	901-903	1997
40	国内学会	高カロリーごみを混合した焼却残渣溶融処理に関する一考察	長田昭一、小野創、長田守弘、古角雅之、 徳田昌則	第8回廃棄物学会研究発表会 講演論文集	661-663	1997
		溶融飛灰の資源化に係わる社会的課題と対応について	長田守弘、神保元、深田能伸、坂本雄三、 河合志郎	第9回廃棄物学会研究発表会 講演論文集	490-492	1998
42	国内学会	直接溶融・資源化システムによる都市ごみ広域処理	高宮健、長田守弘、古賀正実知	第19回全国都市清掃研究·事 例発表会講演論文集	154-156	1998

	区分	タイトル	著者	学会名	頁	年
43	国内学会	ガス化・高温溶融炉によるダイオキシン類の抑制	小野義広、長田守弘、村橋一毅	第19回全国都市清掃研究·事 例発表会講演論文集	157-159	1998
44	国内学会	直接溶融による廃棄物の資源化	長田守弘	日本機械学会熱工学講演会講 演論文集	136-138	1998
		直接溶融炉のガス化特性	· 人。 俵洋一、長田守弘、芝池秀治、村橋一毅 大村橋一毅	日本機械学会1999年度年次大 会講演論文集	409-410	1999
		直接溶融炉における廃プラスチック羽口吹込み技術の開発	芝池秀治、長田守弘、田中宏和、高宮健	第11回廃棄物学会研究会	460-462	2000
		廃棄物新処理技術に関するLCA評価について 新処理技術を組み合わせたごみ処理の評価	永田勝也、貝塚亮平、押尾智英、長田守 弘	日本機械学会第10回環境工学 総合シンポジウム2000講演論 文集	188–191	2000
		LCAとLCCの統合による廃棄物処理技術の導入評価	永田勝也、納富 信、押尾智英、湯浅和 寿、古藤田剛彰、長田守弘	第12回廃棄物学会研究発表会 講演論文集	146-148	2001
49	国内学会	溶融スラグの再生利用に関する調査結果	長田守弘、中川美利	第22回全国都市清掃研究·事 例発表会講演論文集	115-117	2001
		LCAとLCCの統合による廃棄物処理技術の導入評価	永田勝也、納富信、古藤田 剛彰、関合治 朗、長田守弘	講演論文集	113-115	2002
51	国内学会	廃棄物処理に関するLCA評価ソフトの作成と排ガス処理の高度化	永田勝也、納富 信、古藤田 剛彰、関合 治朗、長田守弘	日本機械学会第12回環境工学 総合シンポジウム2002講演論 文集	405-408	2002
52	国内学会	LCAによる廃棄物処理における広域的収集体系の評価	永田勝也、納富信 、関合治朗、大橋功典、岡地 徹、長田守弘	第14回廃棄物学会研究発表会 講演論文集	122-124	2003
53	国内学会	廃棄物資源有効利用技術のLCA評価	永田勝也、長田守弘、納冨信、関合治朗、 岡地 徹、大橋功典	第14回廃棄物学会研究発表会 講演論文集	125-127	2003
54		埋立地再生へのガス化溶融処理技術の適用	藤吉秀昭、長田守弘、高宮健	第14回廃棄物学会研究発表会 講演論文集	789-791	2003
		直接溶融炉における掘り起こし埋立ごみの溶融処理システム	阿部昭、佐藤和美、真名子一隆、高宮健、 長田守弘	講演論文集	792-794	2003
		都市ごみ溶融スラグの性状と品質の安定性について	長田昭一、長田守弘、西原信義、伊能泰 夫	第25回全国都市清掃研究·事 例発表会講演論文集	197-199	2004
		技術のライフサイクルアセスメント(LCA)に関する検討	朗、大橋功典、風間硝吾、塚本陽介、長田 守弘		181–183	2004
		シャフト炉式ガス化溶融炉による自動車破砕残渣(ASR)の処理と 臭素化難燃剤およびダイオキシン類縁化合物の挙動	高橋真、酒井伸一、長田守弘、高宮健、宮 崎徹	講演論文集	987-989	2004
		LCA的手法による廃棄物処理システムの評価	裕、風間硝吾、金子正、長田守弘	第16回廃棄物学会研究発表会 講演論文集	83-85	2005
		シャフト炉式ガス化溶融炉による自動車破砕残渣(ASR)の処理と 臭素化難燃剤およびダイオキシン類縁化合物の挙動(第2報)	谷垣信宏、高宮健、長田守弘、高橋真、酒 井伸一	講演論文集	787–789	2005
61	国内学会	廃棄物処理システムにおけるBASの提案を目的としたソフトウェアの開発	永田勝也、小野田弘士、片野光裕、風間 硝吾、小清水勇、長田守弘	第17回廃棄物学会研究発表会 講演論文集	266-268	2006

	区分	タイトル	著者	学会名	頁	年
62	国内学会	シャフト炉式ガス化溶融炉による非飛散性アスベストの無害化処理	梶山博久、高宮健、長田守弘	第17回廃棄物学会研究発表会 講演論文集	1146-1148	2006
63	国内学会	一般廃棄物処理システムにおけるBASの提案を目的としたソフトウェアの開発	小清水勇、小沢俊明、小野田弘士、永田 勝也、長田守弘	第18回廃棄物学会研究発表会 講演論文集	216-218	2007
64	国内学会	大型ガス化溶融施設におけるダイオキシン類抑制と高効率発電	柏原友、真名子一隆、小畑弘之、長田守 弘、竹内眞介、三島達哉	第18回廃棄物学会研究発表会 講演論文集	582-584	2007
65	国内学会	シャフト炉式ガス化溶融炉によるアスベスト無害化処理	田中宏和、梶山博久、高宮健、長田守弘	第28回全国都市清掃研究·事 例発表会講演論文集	147-149	2007
66	国内学会	シャフト炉式ガス化溶融炉実機におけるアスベスト無害化処理	長田守弘、高宮健、真名子一隆	第19回廃棄物学会研究発表会 講演論文集	842-844	2008
67	国内学会	シャフト炉式ガス化溶融炉におけるバイオマスコークスの適用	西猛、柏原友、星沢康介、小林淳志、長田 守弘	第20回廃棄物資源循環学会研究発表会講演論文集	333-334	2009
68	国内学会	埋立地再生事業における環境負荷評価	皆川雅志、小西洋紀、小沢俊明、胡浩、小 野田弘士、永田勝也、藤吉秀昭、長田守 弘、秩父薫雅、石川知義	第20回廃棄物資源循環学会研究発表会講演論文集	117–118	2009
69	国内学会	ガス化溶融炉併設型エタノール化施設の環境負荷評価	皆川雅志、胡浩、小野田弘士、永田勝也、 石橋洋一、長田守弘	第21回廃棄物資源循環学会研究発表会講演論文集	117-118	2010
70	執筆	最新廃棄物処理技術	長田守弘(分担執筆)	工業技術会(株)	287-298	1997
		廃棄物の熱分解・ガス化灰溶融システムの開発動向	長田守弘(分担執筆)	(株)エヌ・ティ・エス	215-234	1998
	執筆	都市ごみ処理技術	長田守弘(分担執筆)	(株)シーエムシー出版	151-167	1998
		ゼロエミッション型産業をめざして	長田守弘(分担執筆)	(株)シーエムシー出版	279-286	2001
74	執筆	循環型社会形成に向けたごみ焼却施設の改良・改造に関する手引書	長田守弘(分担執筆)	財団法人日本環境衛生セン	231-273	2004
75	執筆	廃棄物埋立地再生技術ハンドブック	長田守弘(分担執筆)	鹿島出版会	95-105,	2005
					112-134,	
					152-156,	
					289-292	
76	執筆	ごみ処理施設整備の計画・設計要領2006改訂版	長田守弘(分担執筆)	全国都市清掃会議	453-485	2006