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Abstract

Incompressible viscous flow through a straight duct with a square cross section

driven by a constant pressure gradient is believed to be linearly stable as in the

case of pipe flow and plane Couette flow. Therefore, there exists no solution

which bifurcates from the laminar state and the transition to turbulence is

abruptly caused by a finite amplitude disturbance. The turbulent state for

these flows is considered to be represented by the trajectory in the phase space

wandering around unstable nonlinear solutions, which are disconnected to the

laminar state. While a number of nonlinear solutions have been published in

pipe flow and plane Couette flow, only three nonlinear solutions have been

reported so far in square duct flow (Wedin et al., Phys. Rev. E 79, 065305,

2009; Uhlmann et al., Phys. Fluids 22, 084102, 2010; Okino et al., J. Fluid

Mech. 657, 413-429, 2010).

In this thesis, a number of nonlinear travelling wave solutions in square

duct flow are presented. The first solution is discovered by a continuation

approach from internally heated flow. The linear stability shows this solution

is unstable from its onset. The next two solutions emerge from the first one via

symmetry breaking bifurcations. We find one of them seems to be embedded

in the laminar-turbulent boundary. The others are obtained by a continuation

method using artificial body forces, which is invented by Waleffe, Phys. Rev.

Lett. 81, 4140-4143 (1998). The richness of the nonlinear solutions implies

the complexity of the phase space and these solutions are expected to be the

fundamental building blocks of turbulence in a square duct. Moreover, striking

similarity between the solutions in square duct flow and pipe flow is shown

throughout the thesis.
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Chapter 1

Introduction

How do shear flows become turbulent? Transition to turbulence in canoni-

cal unidirectional shear flows is still an unsolved problem in fluid mechanics

since the pioneering experimental study on pipe flow by Osborne Reynolds in

1883. The difficulty consists in extracting relevant information from the Navier-

Stokes equations to describe turbulence, which is unsteady three-dimensional

chaotic motion of viscous fluid. The routes to turbulence are basically divided

into two types, depending on the linear stability of the laminar flow. The

linear stability theory tells us whether the flow is asymptotically stable to in-

finitesimal perturbations. For linearly unstable flows such as Taylor-Couette

flow and Rayleigh-Bénard convection, the onset of transition is predictable by

the linear stability analysis of the laminar state (see e.g. Drazin & Reid 1981)

and transition to turbulence is understood as a sequence of bifurcations of the

nonlinear flow states.

The laminar flow through square duct is asymptotically stable to small

disturbances (Tatsumi & Yoshimura 1990) as well as circular pipe flow (e.g.

Davey & Drazin 1969; Salwen 1972, 1980; Meseguer & Trefethen 2003) and

plane Couette flow (Romanov 1973). Hence to cause a shift from a laminar to

a turbulent state for these flow cases a finite amplitude disturbance is neces-

sary, and the threshold amplitude is a function of the disturbance shape. The

experimental work by Dabyshire & Mullin (1995) on pipe flow demonstrates

that the required finite-amplitude disturbance ϵ to initiate the transition to

turbulence in circular pipe flow, scales like Re−1 - same scaling is reported

in the experiments by Hof et al. (2003) in the range 2000 ≤ Re ≤ 20000.

This has also been theoretically recovered by Gavarini et al. (2005) on the

same flow configuration. Likewise, Chapman (2002) postulates two scenarios

of turbulence breakdown for plane Couette flow and plane Poiseuille flow using

1



2 Chapter 1. Introduction

asymptotic analysis of the Navier-Stokes equations. Therein it is found that ϵ

scales in the interval Re−1.5 ≤ ϵ ≤ Re−1 depending on the postulated transi-

tion scenario and flow configuration. A similar result is obtained by Waleffe &

Wang (2005) on plane Couette flow where the smallest disturbance amplitude

needed to trigger transition scales as Re−1.

The absence of a linear instability mechanisms has prevented the discovery

of nonlinear solutions to linearly stable canonical flows such as plane Couette

flow and circular pipe flow. However, Nagata (1986, 1988, 1990) found time-

independent three-dimensional solutions to plane Couette flow for the first time

by focusing on Taylor-Couette flow between co-rotating cylinders. The solu-

tions to plane Couette flow were obtained by bringing down the system rotation

to zero. His solution was reproduced by Clever & Busse (1992) and Waleffe

(2003). Clever & Busse (1992) studied Rayleigh-Bénard convection subjected

to a constant shear. Vanishing the temperature difference between the walls

leads their three-dimensional solution to the solution in plane Couette flow.

Waleffe (2003) obtained the same solution using the idea of a self-sustaining

process (SSP) of turbulence proposed by Waleffe (1997, 1998). Later, several

nonlinear solutions have been obtained for pipe flow, first by Faisst & Eckhardt

(2003) using a continuation method similar to the one in Waleffe (1998), fol-

lowed by Wedin & Kerswell (2004), Pringle & Kerswell (2007), Duguet, Pringle

& Kerswell (2008), Duguet, Willis & Kerswell (2008) and Pringle et al. (2009).

The turbulent state is thought to be described by trajectories bouncing

around unstable fixed points such as the travelling wave states initially dis-

covered by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) for pipe

flow. In linearly stable flows such equilibrium states, known as exact coherent

structures (ECS), are disconnected from the laminar flow and are unstable in

general (Kerswell & Tutty 2007). The ECS in Waleffe (2001, 2003) and the

isolated unstable time-periodic solution in Kawahara & Kida (2001) in PCF

are characterized by the same statistics as numerical turbulence. The nonlinear

fixed points may thus provide information that could advance the understand-

ing of turbulence, e.g. one could collect and classify these solutions and use

them to describe the mean characteristics of a chaotic state. On the other

hand the direct numerical simulations performed by Willis & Kerswell (2008)

in pipe flow suggest that other types of solutions, of larger amplitude than

those known, are needed in order to describe a fully turbulent flow and that

the existing travelling waves are only related to transitional flows.
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As far as the rectangular duct flow is concerned, the linear stability analysis

performed by Tatsumi & Yoshimura (1990) shows the laminar flow is stable up

to an aspect ratio of A = 3.2 of the rectangular cross section of the duct. It is

only recently that nonlinear solutions for the square duct (A = 1) have been

discovered by Wedin et al. (2009) and Uhlmann et al. (2010) by successfully

adopting the SSP approach used in pipe flow. It is reported that the skin

friction on the lower branch of the nonlinear solution by Wedin et al. (2009)

has a value close to that obtained in direct numerical simulations by Uhlmann et

al. (2007) and Biau & Bottaro (2009) at the transitional conditions. When the

flow speed is sufficiently high, direct numerical simulations of square duct flow

by Gavrilakis (1992), Huser & Biringen (1993), Uhlmann et al. (2007), Biau

et al. (2008) and Pinelli et al. (2010) have all observed an eight-vortex mean

flow with two vortices in each quadrant. For example, the study by Gavrilakis

(1992) suggests that the secondary Reynolds stress terms cause this mean flow.

The solution found by Uhlmann et al. (2010) also has the eight-vortex mean

flow pattern, which is consistent with that of square duct turbulence. Recently,

a linear stability analysis of vertical rectangular duct flow with an internal

heat source performed by Uhlmann & Nagata (2006) has shown the parameter

region in which the basic flow state becomes unstable for A = 1.

This thesis is organized as follows. In Chapter 2, we adopt an homotopy

approach, alternative to the SSP, by adding the heat equation to the system.

This is an extension of the linear stability analysis by Uhlmann & Nagata

(2006). A new nonlinear solution to isothermal square duct is discovered by

bringing the strength of the heat source to zero. The results in this chapter

is published in Okino et al. (2010). Chapter 3 presents the result of linear

stability of the solution obtained in Chapter 2. We calculate two asymmetric

solutions, which emerge through symmetry breaking bifurcations. A compari-

son between one of the bifurcating solutions and the edge state of square duct

flow is made thoroughly. Chapter 4 gives a various kinds of nonlinear solu-

tions, where we introduce the artificial body forces in order to calculate the

exact solutions in square duct flow. This approach is similar to Waleffe (1998,

2003). The similarity between the solutions in square duct flow and pipe flow

is discussed. Finally, the thesis ends with the conclusion and the outlook for

this study in Chapter 5.





Chapter 2

Nonlinear Analysis of Internally
Heated Duct Flow

A new nonlinear travelling wave solution for a flow through an isothermal

square duct is discovered. The solution is found by a continuation approach

in parameter space, starting from a case where the fluid is heated internally.

The Reynolds number for which the travelling wave emerges is much lower

than that of the solutions discovered recently by an analysis based on the self-

sustaining process (Wedin et al., Phys. Rev. E 79, 065305, 2009; Uhlmann et

al., Phys. Fluids 22, 084102, 2010).

2.1 Mathematical formulation

2.1.1 Configuration and the governing equations

We consider the low speed motion of a fluid with the kinematic viscosity ν∗, the

thermal diffusivity κ∗ and the thermal expansion coefficient αT∗ in a straight

duct placed vertically in the gravity field. The temperature of all the four

vertical walls are kept the same and constant. The cross section of the duct

is a square with the side 2b∗. The fluid is subject to internal heating which

is homogeneously distributed with intensity q∗. We take the Cartesian coordi-

nates with the origin at the centre of the duct. The x∗-axis is directed along

the duct and the y∗ and z∗-axes are parallel to the sides of the cross section, as

shown in figure 2.1. Here, the subscript ∗ denotes dimensional quantity. With

the Boussinesq approximation, the velocity u, the pressure P and the temper-

ature deviation T from the wall temperature are governed by the equation of

continuity,

∇ · u = 0, (2.1)

5
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the equation of momentum conservation,

∂tu+ (u · ∇)u = −∇P +∇2u+ Tex, (2.2)

and the equation of energy conservation,

∂tT + (u · ∇)T = Pr−1(∇2T + 2Gr), (2.3)

where ei (i = x, y, z) is the unit vector in the i-direction and all the variables

have been non-dimensionalized by the length scale b∗, the time scale b2∗/ν∗, the

velocity scale ν∗/b∗ and the temperature scale ν2∗/(g∗αT∗b
3
∗), where g∗ is the

acceleration due to gravity. We have defined the Grashof number as:

Gr =
g∗αT∗q∗b

5
∗

2ν2∗κ∗
, (2.4)

and the Prandtl number as:

Pr =
ν∗
κ∗
. (2.5)

The electrically conducting aqueous solution of ZnCl2 is often used for in-

ternal heating experiments where the heat is released by currents. For 20% in

weight aqueous solution of ZnCl2, Pr = 8.7 at 20◦C and Pr = 6.08 at 40◦C

(Generalis & Nagata 2003). Throughout this study we fix Pr = 7.

The no-slip condition for the velocity and the isothermal condition for the

temperature are imposed on the wall:

u = 0, T = 0 at y = ±1 and z = ±1. (2.6)

For the x-direction we impose periodicity over a wave length of 2π/α.

2.1.2 Laminar solution

The x-independent steady laminar solution, u = UB = UB(y, z)ex, P = PB =

−χx and T = TB(y, z), to the governing equations (2.1)–(2.3) with the bound-

ary condition (2.6) obeys

0 = χ+ TB +△2UB, (2.7)

0 = △2TB + 2Gr, (2.8)

UB = TB = 0 at y = ±1 and z = ±1, (2.9)

where χ is the non-dimensional pressure drop and △2 ≡ ∂2yy + ∂2zz. Let

UBiso(y, z) be the laminar velocity field in the isothermal case (Gr = 0, TB ≡ 0)

and define the Reynolds number using the centerline velocity:

Re = UBiso(0, 0) =
UBiso∗(0, 0)b∗

ν∗
. (2.10)
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Figure 2.1: The configuration of the model with the laminar flow in grey scale
at Re = −3000 and Gr = 23000.

The equations (2.7)–(2.9) are solved numerically. The proportionality of the

pressure drop to the Reynolds number obeys χ = 3.3935Re (see Tatsumi &

Yoshimura 1990). According to Uhlmann & Nagata (2006), the laminar state

is classified into five groups (M1-M5) depending on the Reynolds number and

the Grashof number for the thermal case as shown in figure 2.2. The regions

are symmetric with respect to the origin. The examples of the laminar flow

in each region are plotted in figure 2.3. These types of the laminar flows

are distinguished by the number of disjoint inflection curves, except for the

distinction between M2 and M3. The inflection curve is defined as the set of

the points in the cross section where the second derivative of the laminar flow

profile in the direction of its gradient is zero:

d2UB

dn2
= 0, (2.11)

where n = ∇UB/|∇UB|. In the region M1, the laminar flow is similar to the

purely pressure driven flow (isothermal case, Gr = 0). The flow has the four

inflection curves, which attach to the corners (see the centre of the first row in

figure 2.3). In the regionM2, the additional nine inflection curves (one circular

curve at the centre and two elongated ones for each quadrant) appear. The

region M2 is also characterized by no reverse flow (see figure 2.1 and the left

frame of the second row in figure 2.3). The inflectional pattern in the region

M3 is same as that of M2. The difference is the flow in M3 has reverse flow:

both positive and negative flow occurs. When entering the region M4, the
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Figure 2.2: The regions in the Re–Gr plane where the laminar flow types Mi

occur. The zone M5 corresponds to the Re = 0 axis. The slopes si of the
dividing lines defined by Gr = siRe are given as follows: s2 = −5.75, s3 =
−7.69 and s4 = −48.40. Note that M1 includes the Gr = 0 axis (isothermal
case).

direction of the flow becomes fully upward and the inflection pattern changes

into a single loop at the centre. In the region M5 (the Re = 0 axis), the flow

is characterized by the four inflection curves near the corners.

2.1.3 Disturbance equations

We superimpose disturbances, û, p̂ and θ̂, on the laminar state, UBex, PB and

TB, respectively. Disturbances are governed by the following equations:

∇ · û = 0, (2.12)

∂tû+ UB∂xû+ (û · ∇)UBex + (û · ∇)û = −∇p̂+ θ̂ex +∇2û, (2.13)

∂tθ̂ + UB∂xθ̂ + (û · ∇)TB + (û · ∇)θ̂ = Pr−1∇2θ̂, (2.14)

û = 0, θ̂ = 0 at y = ±1 and z = ±1. (2.15)

Disturbances û, p̂, θ̂ are decomposed into their mean parts, Û(t, y, z), P̂ (t, y, z),

Θ̂(t, y, z), and the residuals, ǔ, p̌, θ̌, where Û ≡ α/(2π)
∫ 2π/α

0
û dx = (Û , V̂ , Ŵ ),

P̂ ≡ α/(2π)
∫ 2π/α

0
p̂ dx, Θ̂ ≡ α/(2π)

∫ 2π/α

0
θ̂ dx, and ǔ = (ǔ, v̌, w̌). We consider

the fixed pressure gradient constraint so that ∇P̂ = 0.
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Figure 2.3: Figure 2 of Uhlmann & Nagata (2006). The five types of the
laminar flows with Gr = 3000. (Left column) The isocontours of the laminar
flow velocity at values UB/|UB,max| = −1,−0.8, · · · , 0.8, 1. Here, UB,max =
max{UB(y, z)| − 1 ≤ y ≤ +1,−1 ≤ z ≤ +1}. Positive and negative values
are drawn by solid and dashed curves, respectively. (Centre column) The
isocontours of d2UB/dn

2 = 0. As the laminar flow is doubly symmetric in y
and z, only one quadrant is shown. (Right column) The velocity profiles on
the centreline, UB(y, 0)/|UB,max|, are shown by the solid curves. The laminar
flows when A = ∞ are drawn by the dashed curves for comparison.
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First, we take the streamwise average of (2.12):

∂yV̂ + ∂zŴ = 0, (2.16)

from which the stream function φ̂ of the cross sectional mean flow (V̂ , Ŵ ) can

be defined and satisfies

V̂ = ∂zφ̂, Ŵ = −∂yφ̂. (2.17)

Then subtracting (2.16) from (2.12), we obtain ∇ · ǔ = 0. Solving for ǔ we

have

ǔ = −∂−1
x (∂yv̌ + ∂zw̌), (2.18)

where the integrating operator with respect to x, ∂−1
x ≡

∫
dx, is defined.

In the following we obtain equations for Û , φ̂, Θ̂, v̌, w̌ and θ̌. Operation

of the streamwise average on ex·(2.13), ex · ∇×(2.13) and (2.14) followed by

elimination of V̂ , Ŵ by (2.17) leads to

∂tÛ + (∂zφ̂∂y − ∂yφ̂∂z)Ū − Θ̂−△2Û + ∂yǔv̌ + ∂zǔw̌ = 0, (2.19)

−(∂t + ∂zφ̂∂y − ∂yφ̂∂z −△2)△2φ̂+ (∂2yy − ∂2zz)v̌w̌ + ∂2yzw̌
2 − v̌2 = 0, (2.20)

∂tΘ̂ + (∂zφ̂∂y − ∂yφ̂∂z)Θ̄− Pr−1△2Θ̂ + ∂yv̌θ̌ + ∂zw̌θ̌ = 0, (2.21)

where · ≡ α/(2π)
∫ 2π/α

0
· dx and ǔ is given by (2.18). Ū = UB + Û and Θ̄ =

TB +Θ̂ are the streamwise mean flow and the mean temperature, respectively.

We eliminate p̌ by taking the rotation of (2.13). Operation of ez ·∇×(2.13)

and ey · ∇×(2.13) leads to[
{∂t + (Ū · ∇)−∇2 + ∂yV̂ }∂x − ∂2yyŪ

]
v̌

−
[
{∂t + (Ū · ∇)−∇2 + ∂yV̂ }∂y + ∂yŴ∂z

]
ǔ

+
(
∂yŪ∂z − ∂zŪ∂y − ∂2yzŪ+∂zV̂ ∂x

)
w̌

−(∂t −△2)∂yÛ − ∂y(Û · ∇)Ū

+∂y(Θ̂ + θ̌)+ez · ∇ × {(ǔ · ∇)ǔ} = 0,

(2.22)

[
{∂t + (Ū · ∇)−∇2 + ∂zŴ}∂x − ∂2zzŪ

]
w̌

−
[
{∂t + (Ū · ∇)−∇2 + ∂zŴ}∂z + ∂zV̂ ∂y

]
ǔ

+
(
∂zŪ∂y − ∂yŪ∂z − ∂2yzŪ+∂yŴ∂x

)
v̌

−(∂t −△2)∂zÛ − ∂z(Û · ∇)Ū

+∂z(Θ̂ + θ̌)−ey · ∇ × {(ǔ · ∇)ǔ} = 0,

(2.23)
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where Ū = (Ū , V̂ , Ŵ ). Subtraction of (2.21) from (2.14) gives

∂tθ̌ + (Ū · ∇)θ̌ + (ǔ · ∇)Θ̄ + (ǔ · ∇)θ̌ − ∂yv̌θ̌ − ∂zw̌θ̌ = Pr−1∇2θ̌. (2.24)

In (2.22)–(2.24) V̂ , Ŵ and ǔ are given by (2.17) and (2.18).

The boundary conditions for Û , φ̂, Θ̂, v̌, w̌ and θ̌ are

Û = φ̂ = ∂yφ̂ = ∂zφ̂ = Θ̂ = v̌ = w̌ = ∂yv̌ = θ̌ = 0 at y = ±1, (2.25)

Û = φ̂ = ∂yφ̂ = ∂zφ̂ = Θ̂ = v̌ = w̌ = ∂zw̌ = θ̌ = 0 at z = ±1. (2.26)

2.2 Numerical method

Our method to investigate the linear stability of the flow is exactly the same

as the one used by Uhlmann & Nagata (2006). Therefore, only the method

for the subsequent nonlinear analysis is presented. We seek a finite amplitude

travelling wave solution with the streamwise phase velocity, c, so that the mean

parts, Û , φ̂ and Θ̂, are steady and the residuals, v̌, w̌ and θ̌, of the disturbances

are expanded as follows:
v̌

w̌

θ̌

 (x, y, z, t) =
L∑

l = −L

l ̸= 0


vl(y, z)

wl(y, z)

θl(y, z)

 exp
[
ilα(x− ct)

]
. (2.27)

Substitution of (2.18) and (2.27) into (2.19)–(2.21) gives

(∂zφ̂∂y − ∂yφ̂∂z)Ū − Θ̂−△2Û

+
∑

l1+l2=0

i

l1α

{
(∂yvl1 + ∂zwl1)∂yvl2 + (∂2yyvl1 + ∂2yzwl1)vl2

+(∂yvl1 + ∂zwl1)∂zwl2 + (∂2yzvl1 + ∂2zzwl1)wl2

}
= 0,

(2.28)

−(∂zφ̂∂y−∂yφ̂∂z −△2)△2φ̂

+
∑

l1+l2=0

{
∂2yyvl1wl2 + 2∂yvl1∂ywl2 + vl1∂

2
yywl2

− ∂2zzvl1wl2 − 2∂zvl1∂zwl2 − vl1∂
2
zzwl2

+ 2∂ywl1∂zwl2 + 2∂2yzwl1wl2 − 2∂yvl1∂zvl2 − 2∂2yzvl1vl2
}
= 0,

(2.29)

(∂zφ̂∂y − ∂yφ̂∂z)Θ̄− Pr−1△2Θ̂

+
∑

l1+l2=0

{
∂yvl1θl2 + vl1∂yθl2 + ∂zwl1θl2 + wl1∂zθl2

}
= 0. (2.30)
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By substituting (2.18) and (2.27) into (2.22)–(2.24) and operating∫ 2π/α

0
· exp[−il0αx]dx (l0 = 1, · · · , L), we obtain the equations for vl, wl and

θl as shown below:[{
− c+ Ū − i

l0α
(∂zφ̂∂y − ∂yφ̂∂z + l20α

2 −△2 + ∂2yzφ̂)
}
(−l20α2 + ∂2yy)

− ∂2yyŪ +
i

l0α
∂2yyφ̂∂

2
yz

]
vl0

+
[{

− c+ Ū − i

l0α
(∂zφ̂∂y − ∂yφ̂∂z + l20α

2 −△2 + ∂2yzφ̂)
}
∂2yz

+
i

l0α
∂2yyφ̂∂

2
zz + ∂yŪ∂z − ∂zŪ∂y − ∂2yzŪ + il0α∂

2
zzφ̂
]
wl0 + ∂yθl0

+
∑

l1+l2=l0

{
il0(1−

l1
l2
)αvl1∂yvl2 +

i

l1α
∂yvl1∂

2
yyvl2 −

i

l2α
vl1∂

3
yyyvl2

− il0l1α

l2
vl1∂zwl2 + il0α∂zvl1wl2 + i(

1

l1α
+

1

l2α
)∂2yyvl1∂zwl2

− i

l1α
∂2yzvl1∂ywl2 +

i

l1α
∂yvl1∂

2
yzwl2 −

i

l2α
vl1∂

3
yyzwl2 −

i

l1α
∂3yyzvl1wl2

+ i(
1

l1α
+

1

l2α
)∂zwl1∂

2
yzwl2 −

i

l2α
∂ywl1∂

2
zzwl2 −

i

l2α
wl1∂

3
yzzwl2

}
= 0,

(2.31)

[{
− c+ Ū − i

l0α
(∂zφ̂∂y − ∂yφ̂∂z + l20α

2 −△2 − ∂2yzφ̂)
}
(−l20α2 + ∂2zz)

− ∂2zzŪ − i

l0α
∂2zzφ̂∂

2
yz

]
wl0

+
[{

− c+ Ū − i

l0α
(∂zφ̂∂y − ∂yφ̂∂z + l20α

2 −△2 − ∂2yzφ̂)
}
∂2yz

− i

l0α
∂2zzφ̂∂

2
yy + ∂zŪ∂y − ∂yŪ∂z − ∂2yzŪ − il0α∂

2
yyφ̂
]
vl0 + ∂zθl0

+
∑

l1+l2=l0

{
il0(1−

l1
l2
)αwl1∂zwl2 +

i

l1α
∂zwl1∂

2
zzwl2 −

i

l2α
wl1∂

3
zzzwl2

− il0l2α

l1
∂yvl1wl2 + il0αvl1∂ywl2 + i(

1

l1α
+

1

l2α
)∂yvl1∂

2
zzwl2

− i

l2α
∂zvl1∂

2
yzwl2 +

i

l2α
∂2yzvl1∂zwl2 −

i

l1α
∂3yzzvl1wl2 −

i

l2α
vl1∂

3
yzzwl2

+ i(
1

l1α
+

1

l2α
)∂yvl1∂

2
yzvl2 −

i

l2α
∂zvl1∂

2
yyvl2 −

i

l2α
vl1∂

3
yyzvl2

}
= 0,

(2.32)
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[
− il0αc+ il0αŪ+∂zφ̂∂y − ∂yφ̂∂z − Pr−1(−l20α2 + ∂2yy + ∂2zz)

]
θl0

+vl0∂yΘ̄ + wl0∂zΘ̄ +
∑

l1+l2=l0

− l2
l1
(∂yvl1 + ∂zwl1)θl2 + vl1∂yθl2 + wl1∂zθl2 = 0.

(2.33)

All the variables are expanded onto the basis functions ϕm and ψn as follows:

vl

wl

θl

Û

φ̂

Θ̂


=

M∑
m=2

N∑
n=2



vlmnϕm(y)ψn(z)

wlmnψm(y)ϕn(z)

θlmnψm(y)ψn(z)

Umnψm(y)ψn(z)

φmnϕm(y)ϕn(z)

Θmnψm(y)ψn(z)


, (2.34)

where ϕm and ψn are the combination of the Chebyshev polynomials Tj: ϕ2m = T2m + (m2 − 1)T0 −m2T2,

ϕ2m+1 = T2m+1 +
m2 +m− 2

2
T1 −

m2 +m

2
T3,

(2.35)

{
ψ2n = T2n − T0,
ψ2n+1 = T2n+1 − T1.

(2.36)

Here, ϕm satisfies both the Dirichlet and Neumann conditions, whereas ψn

satisfies the Dirichlet condition. To have a real solution, the amplitude coef-

ficients, vlmn, etc. in (2.34), must satisfy the reality condition, v∗lmn = v−lmn,

etc. , where ∗ denotes complex conjugate. One of the coefficients is fixed as

ℑ[v252] = 0 (2.37)

in order to lock the phase of the travelling waves.

We discretize the governing equations (2.28)–(2.33) by the Galerkin method:

the calculation of

∫ +1

−1

∫ +1

−1



(2.28) ψp(y)ψq(z)

(2.29) ϕp(y)ϕq(z)

(2.30) ψp(y)ψq(z)

(2.31) ϕp(y)ψq(z)

(2.32) ψp(y)ϕq(z)

(2.33) ψp(y)ψq(z)


W (y)W (z) dydz (2.38)
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results in the quadratic equation,

Aijxj +Bijkxjxk = 0, xj = (vlmn, wlmn, θlmn, Umn, φmn,Θmn, c)
T . (2.39)

Here, the weight functionW (y) = 1/
√
1− y2. The properties of the Chebyshev

polynomials are summarized in 2.7.1. We solve the algebraic equation (2.39)

by the Newton-Raphson iterative method. The iteration is continued until the

relative errors of all the components of the vector xj reduce below 10−5.

Following Wedin et al. (2009), we adopt the bulk Reynolds number in order

to measure the magnitude of nonlinearity, to be compared to the laminar case

where Reb = 0.47704Re:

Reb =
1

4

∫ +1

−1

∫ +1

−1

Ū(y, z) dydz. (2.40)

The skin friction λ defined by

λ =
4χ

Re2b
, (2.41)

and the kinetic energy of the flow for one axial period defined by

E =
1

4

∫ +1

−1

∫ +1

−1

|UB + Û |2

2
dydz +

α

8π

∫ 2π/α

0

∫ +1

−1

∫ +1

−1

|ǔ|2

2
dxdydz. (2.42)

also measure the nonlinearity.

2.3 Symmetry

Examination of the governing equations (see (2.28)–(2.33)) reveals the following

four symmetry groups for the variables, vl, wl and θl:

symmetry I : vl

{
(l + ; e, e)
(l++; o, e)

, wl

{
(l + ; o, o)
(l++; e, o)

, θl

{
(l + ; o, e)
(l++; e, e)

, (2.43)

symmetry II : vl

{
(l + ; e, o)
(l++; o, e)

, wl

{
(l + ; o, e)
(l++; e, o)

, θl

{
(l + ; o, o)
(l++; e, e)

, (2.44)

symmetry III : vl

{
(l + ; o, e)
(l++; o, e)

, wl

{
(l + ; e, o)
(l++; e, o)

, θl

{
(l + ; e, e)
(l++; e, e)

, (2.45)

symmetry IV : vl

{
(l + ; o, o)
(l++; o, e)

, wl

{
(l + ; e, e)
(l++; e, o)

, θl

{
(l + ; e, o)
(l++; e, e)

. (2.46)

Here, l+ and l++ denote odd and even integers, respectively, for l in (2.27).

The notation, e or o, implies that the variable is an even or odd function with
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respect to the y- and z-coordinates. Any of the symmetry groups carries the

following symmetry for the mean parts of the disturbance:

Û(e, e), φ̂(o, o), Θ̂(e, e). (2.47)

These symmetries are the extension of the four symmetry groups admitted

by the linear stability analysis considered by Uhlmann & Nagata (2006). We

focus on the symmetry I because it is satisfied by one of the modes which

renders the flow unstable according to Uhlmann & Nagata (2006). Note that

the symmetries I and IV are equivalent as there is no distinction between y

and z in a square duct.

It is easily verified that the symmetry I is composed of the shift-and-reflect

symmetry S and the mirror symmetry Z about the y-axis used by Wedin et al.

(2009):

S :


u

v

w

T

 (ξ, y, z) →


u

−v
w

T

 (ξ +
π

α
,−y, z), (2.48)

Z :


u

v

w

T

 (ξ, y, z) →


u

v

−w
T

 (ξ, y,−z), (2.49)

where ξ = x−ct. The symmetry of the flow in the cross section is schematically

represented in figure 2.4.

y

z

+1

−1 +1 y

z

+1

−1 +1

L L

F F

F F

L L

Figure 2.4: The schematic flow pattern with the symmetry I in the cross section
at (left) ξ = ξ0 and (right) ξ = ξ0 + π/α, where ξ0 is an arbitrary constant.
The letters “F” and “L” show some different flow patterns in the cross section.
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2.4 Continuation to the isothermal solution

The linear stability analysis shows that the laminar flow becomes unstable to a

perturbation with the streamwise wavenumber α = 1.0 inside the dashed curve

in the Re–Gr plane (see figure 2.5). This region overlaps the region M2 for the

laminar flow. In order to establish the continuation of a nonlinear solution in

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-3000 -2000 -1000  0  1000

G
r

Re

M2

Figure 2.5: The path taken from the linear critical point of the internally heated
duct flow to the isothermal solution indicated by the arrows. The dashed curve
represents the neutral curve with α = 1.0. The region M2 is bounded by the
two thin lines, Gr/Re = −7.69 and −5.75.

the Re–Gr plane we first obtain a nonlinear solution with α = 1.0 bifurcating

from the neutral curve. Our goal is to bring the solution to the isothermal case

(Gr = 0); one successful continuation path was accomplished by following the

arrows, as shown in figure 2.5. This path is composed of three sections: (a)

varying Gr from 17470 to 30000 by fixing Re = −3000, (b) increasing Re from

−3000 to 1000 by fixing Gr = 30000 and (c) decreasing Gr from 30000 down

to zero by fixing Re = 1000. The amplitude of the solution at each section

varies. Accordingly Reb changes along the path. We plot Reb at each section

in figure 2.6. In the section (a) the path, which starts from the point (black

triangle) on the laminar state (dotted curve), experiences several turning points

before it reaches the point (Gr,Reb) = (30000, 4.11) (open triangle in figure

2.6a). The path in the section (b) continues from the point (open triangle)

at (Gr,Reb) = (30000, 4.11) in the section (a). Along the path Reb increases
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monotonically as Re is increased and the path ends at (Re,Reb) = (1000, 1481)

(open circle in figure 2.6b). As shown in figure 2.6(c), reducing the Grashof

number from 30,000 brings the solution to the isothermal case Gr = 0 (closed

circle on the branch indicated by ‘lower’ in the figure). The solution exists even

when the Grashof number is decreased further down to −2369, where the path

experiences a turning point. After going around the turning point the path

crosses the line, Gr = 0, again (another closed circle on the branch indicated

by ‘upper’ in the figure) as Gr is increased. We refer to the solution branch

closer to the laminar state as the lower branch solution and the solution further

away as the upper branch solution as shown in figure 2.6(c).

2.5 Mirror-symmetric travelling wave

The two isothermal solutions (closed circles in figure 2.6c) are continued in

the Re-axis. The nature of the saddle-node bifurcation of these new travelling

wave solution is shown in terms of the phase velocity c in figure 2.7. The

accuracy of the solution close to the saddle-node point with respect to the

truncation level is listed in table 2.1. The solution is seen to converge well at

(L,M,N) = (6, 33, 33), which we adopt in the following analysis unless stated

otherwise. Also shown in figure 2.7 is the bifurcation of the travelling wave

solution, referred to as WBN hereafter, obtained by the SSP approach of Wedin

et al. (2009). The particular wavenumbers indicated in the figure, α = 1.14 and

0.85, correspond to those which give their lowest bulk Reynolds numbers for the

present solution and WBN, respectively. These wavenumbers are determined

by tracing the existence domain of the solutions in (α,Reb)-space. The domain

shrinks as Re is decreased (see figure 2.8) and we pinpoint the wavenumbers at

the saddle-node with the accuracy of the wavenumber increment ∆α = 0.01.

The domain of our new travelling wave solution disappears at Re = 827.5.

Table 2.1: The phase velocity c, the bulk Reynolds number Reb and the skin
friction λ of the upper branch solution with α = 1.14 at Re = 836 as a function
of the truncation level (L,M,N).

(L,M,N) c Reb λ
( 4, 29, 29) 451.34 331.86 0.10304
( 6, 33, 33) 450.54 331.57 0.10322
( 8, 37, 37) 450.62 331.60 0.10320
(10, 41, 41) 450.60 331.59 0.10320
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Figure 2.6: The variation of Reb along the path in figure 2.5. (a) Re = −3000,
(b) Gr = 30000, (c) Re = 1000. Two closed circles correspond to the isother-
mal solutions. The dotted line shows the laminar state, Reb = 0.47704Re +
0.054480Gr.
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Figure 2.7: The phase velocity c. Solid curve: the new solution, dotted curve:
WBN. The truncation level (L,M,N) = (6, 33, 33) is used to draw the curve,
whereas isolated points with (L,M,N) = (10, 41, 41) are plotted with open
circles.

The kinetic energy E of the flow for one axial period is plotted against Re

in figure 2.9(a), highlighting the proximity of the lower branch state to the

laminar solution. A similar effect can be ascertained by inspection of figure

2.9(b), which shows the bulk Reynolds number versus the Reynolds number.

The mean velocity distribution of the upper branch solution is more deformed

by the nonlinear interaction between the disturbances than that of the lower

branch. It is also clear that the lower branch of WBN is further away from the

laminar state at all values of Re.

Figure 2.10 shows the skin friction λ against the bulk Reynolds number. In

addition to the result of our solution, WBN, the laminar solution and the exper-

imental data of the fully developed turbulence, which obeys λ = 28.45/Reb and

λ−1/2 = 2 log10(2.25Rebλ
1/2)− 0.8 (Jones 1976), respectively, are also plotted.

The upper and lower branches of our solution approach the curves given by the

experimental data and the laminar flow, respectively, as Reb is increased. Our

solution takes its minimum bulk Reynolds number, 332, at α = 1.14, which is

substantially smaller than that of WBN (minReb = 598 at α = 0.85).

The iso-surfaces of the streamwise vorticity and the streamwise velocity of

the upper branch solution with α = 1.0 at Re = 1500 are shown in figure 2.11.

Notice the low-speed streak manifested as a wrinkle on the iso-surface of the
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Figure 2.8: The domains of existence of the new travelling wave solutions (solid
curves) and those by WBN (dotted curves).

streamwise velocity in the bottom figure near the wall at z = −1. As can

be seen the low-speed streak is flanked by staggered quasi-streamwise vortices

near the walls at z = ±1. This structure is often identified as the coherent

structure of the near-wall turbulence. The top-left frames of figures 2.12 and

2.13 show the mean flow field, (UB + Û , V̂ , Ŵ ). Both the lower and upper

branches display outflow from the wall towards the centre of the duct along

y = 0. We can also notice three stagnation points in terms of the velocity field

(V̂ , Ŵ ) on y = 0: one at the origin of the axes and the other two approximately

half way between the origin and the side walls z = ±1. Also noticeable is the

eight-vortex structure (four dominant vortices and four minor vortices): one

dominant and one minor vortex in each quadrant. This structure is different

from the eight-vortex structure with diagonal symmetry observed in the fully

developed turbulence at higher Re (Gavrilakis 1992; Uhlmann et al. 2007).

The instantaneous total flow fields are displayed also in figures 2.12 and 2.13.

The dominant vortices near the walls z = ±1 oscillate in the y-direction as they

propagate in the x-direction (see also figure 2.11). The minor vortices observed

in the mean flow field are not captured at the vorticity level plotted in figure

2.11. While the oscillatory motion of the lower branch solution is gentle, that

of the upper branch solution is more active with a vortex oscillating along each

of the walls at z = ±1. According to the DNS result by Uhlmann et al. (2007),
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Figure 2.9: (a) Kinetic energy E of the new solution versus Re (solid
curve). The dotted curve indicates the energy for the laminar flow given

by 1/4
∫ 1

−1

∫ 1

−1
UB

2/2 dydz = 0.1568Re2. (b) Bulk Reynolds number ver-
sus Re. The truncation level (L,M,N) = (6, 33, 33) is used to draw the
curves, and the circles represent isolated solutions with higher truncation,
(L,M,N) = (10, 41, 41).
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Figure 2.10: The skin friction against the bulk Reynolds number. The current
solution: solid curve and WBN: dashed curve. (L,M,N) = (6, 33, 33) except
for the open circles of the current solution for which (L,M,N) = (10, 41, 41).
The laminar flow: dotted line. The experimental data by Jones (1976): thin
dashed curve.

the marginally turbulent flow (Reb ∼ 1100) has a four-vortex structure: two

near one of the walls and two more near the wall opposite to it (see figure 2.15).

A similar four-vortex structure has been reported in the DNS by Wedin et al.

(2008) (see their figure 12). The four-vortex patterns of Uhlmann et al. (2007)

have two different orientations, vortices located near z = ±1 and y = ±1,

that alternate (see figure 2.15a, b). Biau et al. (2008) also observed similar

alternating patterns with two pairs of vortices near opposing walls before the

flow eventually relaminarises (see their figure 4). In our system, in addition

to the solution with four dominant vortices near z = ±1 displayed in figures

2.12 and 2.13, the flow with four vortices near y = ±1 is also a solution by

symmetry.

Figure 2.14 shows the disturbance velocity field of the lower branch solution.

Both the mean part Û , V̂ and Ŵ (left figure) and the instantaneous state of the

disturbance û, v̂ and ŵ surprisingly resemble those of the mirror-symmetric so-

lution M1 in pipe flow found by Pringle & Kerswell (2007) (see figure 2.16). The

travelling wave M1 with the axial wavenumber α possesses the shift-and-reflect

symmetry, S: (u, v, w)(s, ϕ, z) → (u,−v, w)(s,−ϕ, z + π/α), where (u, v, w) is

the velocity components in the cylindrical coordinates (s, ϕ, z), and the shift-
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and-rotate symmetry, Ωm: (u, v, w)(s, ϕ, z) → (u, v, w)(s, ϕ + π/m, z + π/α)

with m = 1 (Pringle et al. 2009). Coupled with the symmetry S, the sym-

metry Ω1 implies the mirror symmetry, i.e. invariance under reflection in the

line ϕ = ±π/2. For square duct flow the combined symmetry S(Z), where S

and Z are given in (2.49), implies the shift-and-rotate symmetry by the an-

gle π since S(Z): (u, v, w)(ξ, y, z) → S : (u, v,−w)(ξ, y,−z) → (u,−v,−w)
(ξ + π/α,−y,−z). Therefore, the solution in square duct and M1 in pipe flow

belong to the same symmetry group. Furthermore, the minimum bulk Reynolds

number of our solution, 332 (defined by using the half width of the side as the

length scale), is comparable to their 773 (defined by using the diameter of the

pipe as the length scale).

2.6 Conclusion

The linear stability analysis of internally heated rectangular duct flow by

Uhlmann & Nagata (2006) has been extended to the nonlinear case with the

special focus on seeking a nonlinear solution in an isothermal case. We have

presented a path to achieve this goal in the Re–Gr plane, starting from the trav-

elling wave solution bifurcating from the linear critical point of the internally

heated flow. The examination of the flow structures and the statistics such as

the skin friction obtained so far experimentally (Jones 1976) and numerically

(Gavrilakis 1992; Wedin et al. 2009; Uhlmann et al. 2010) has revealed that

our isothermal travelling wave solution is a new solution. The present distur-

bance velocity fields exhibit a reflective symmetry about the (mirror) plane

z = 0. This symmetry also holds for the SSP solution by Wedin et al. (2009).

However, in contrast to the one low-speed streak located near the duct centre

in Wedin et al. (2009) (see figure 4.7a), the present solution has two low-speed

streaks, one near the wall at z = 1 and the other at z = −1 (see figure 2.11).

Uhlmann et al. (2010) use the symmetry II, and therefore their flow structure

with four low-speed streaks, each on the side of the duct cross section (see

figure 4.10a), is clearly different from ours which uses the symmetry I. The

minimum bulk Reynolds number for the existence of our solution is found to

be 332, which is substantially lower than that of the solution found by Wedin et

al. (2009). The skin frictions of our upper and lower solution branch approach

the curves given by the experimental data and the laminar flow, respectively,

as Reb is increased. Comparison with the DNS results of Biau et al. (2008)

for the flow which lives near the boundary between the laminar and turbulent

states seems to suggest that the new solution is embedded in the edge state of
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(a)

(b)

Figure 2.11: The iso-surfaces of the streamwise vorticity and the streamwise
velocity of the upper branch solution with α = 1.0 at Re = 1500 (Reb = 506).
Black (dark grey) represents +70% (-70%) of the maximum vorticity and light
grey represents 40% of the maximum velocity. (a) The full flow domain and
(b) the close-up of z < 0. The flow is from left to right.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 2.12: Mean flow Ū (top-left) and images of the total flows u along ξ
of the lower branch solution with α = 1.0 at Re = 1500 (Reb = 664). The
velocity components are shown on the y-z plane (arrows) and along the x-
direction (grey scale). ξ = x− ct.

the system (for more details about the edge state, see 3.2.1). The new solution

is path independent. However, we could not exclude the possibility of yet other

solutions that may exist at the Reynolds number lower than this new solution.

Seeking a nonlinear solution which can exist at a smaller Reynolds number is

meaningful as it might approach the critical Reynolds number for the globally

stability of the flow, below which any disturbance eventually decays.

The flow states presented here is the counterpart of the mirror-symmetric

solution in pipe flow obtained by Pringle & Kerswell (2007), although the

geometries are very different: the rotational symmetry with an arbitrary angle

for pipe flow allows for generalisation of solutions into larger families than the

rotational symmetry with only 90 degrees for square duct flow. We expect that

the mirror-symmetric solution in pipe flow found by Pringle & Kerswell (2007)

will be reproduced by applying the same approach as shown in this chapter to

internally heated pipe flow.



26 Chapter 2. Nonlinear Analysis of Internally Heated Duct Flow

mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 2.13: Same as figure 2.12 for the upper branch solution. Here, Reb =
506.

(a) (b)

Figure 2.14: The disturbance velocity of the lower branch solution with α = 1.0
at Re = 1500 (Reb = 664). (a) The mean part Û , (b) the disturbance û at
αξ = 0. For the meanings of arrows and grey scale see the legend of figure
2.12.
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Figure 2.15: Figure 3 of Uhlmann et al. (2007). The contours of the streamwise
mean flow and the vectors of the secondary mean flow for Reb = 1205 and
α = 1.0. (a) The average over the time interval with length 771h/ub. (b)
The average over the different time interval with length 482h/ub. (c) The long
time integration including both previous intervals. Here, h and ub are the
dimensional quantities, and indicate the half width of the duct and the bulk
velocity.

(a) (b)

Figure 2.16: The bottom frames of figure 1 of Pringle & Kerswell (2007).
Velocity fields of the disturbance for the mirror-symmetric travelling wave in
a pipe. (a) The mean part. (b) The instantaneous field.
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2.7 Appendix

2.7.1 Properties of the Chebyshev polynomials

The Chebyshev polynomials Tm are defined by

Tm(y) = cos(m cos−1 y). (2.50)

Applying the orthogonality of the Chebyshev polynomials, we discretize the

governing equations in this study. Here, we summarize the frequently-used

properties of the Chebyshev polynomials.

The derivatives of the Chebyshev polynomials are given as follows:

T ′
m = 2m

m−1∑
k = 0

m+ k: odd

Tk
ck
, (2.51)

T ′′
m = m

m−2∑
k = 0

m+ k: even

(m2 − k2)
Tk
ck
, (2.52)

T ′′′
m =

1

4
m

m−3∑
k = 0

m+ k: odd

(m+ k+1)(m+ k− 1)(m− k+1)(m− k− 1)
Tk
ck
, (2.53)

T (4)
m =

1

24
m

m−4∑
k = 0

m+ k: even

(m+k)(m−k)(m+k+2)(m+k−2)(m−k+2)(m−k−2)
Tk
ck
,

(2.54)

where the coefficient ck is defined as

ck =

{
2 (if k = 0),
1 (if k ̸= 0).

(2.55)

The Chebyshev polynomials has the orthogonality:∫ +1

−1

Tm(y)Tp(y)√
1− y2

dy =
cpπ

2
δmp, (2.56)

where δmp is the Kronecker delta. The combinations of (2.51)–(2.54) and (2.56)

lead to∫ +1

−1

T ′
m(y)Tp(y)√
1− y2

dy =

{
mπ (if m+ p: odd, and p ≤ m− 1),
0 (else),

(2.57)
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∫ +1

−1

T ′′
m(y)Tp(y)√
1− y2

dy =


1

2
m(m2 − p2)π (if m+ p: even, and p ≤ m− 2),

0 (else),
(2.58)∫ +1

−1

T ′′′
m (y)Tp(y)√

1− y2
dy =


1

8
m(m+ p+ 1)(m+ p− 1)(m− p+ 1)(m− p− 1)π

(if m+ p: odd, and p ≤ m− 3),
0 (else),

(2.59)∫ +1

−1

T
(4)
m (y)Tp(y)√

1− y2
dy

=


1

48
m(m+ p)(m− p)(m+ p+ 2)(m+ p− 2)(m− p+ 2)(m− p− 2)π

(if m+ p: even, and p ≤ m− 4),
0 (else).

(2.60)

Also, the following relation is necessary to calculate the nonlinear term:

Tm1Tm2 =
1

2
(Tm1+m2 + T|m1−m2|). (2.61)

2.7.2 Convergence criterion of the nonlinear solution

As mentioned in section 2.2, we end the Newton iteration when the relative

errors of all of the coefficients become below 10−5:

|x(n+1)
j − x

(n)
j |

|x(n)j |
< 10−5 for all j (2.62)

where the superscript indicates the number of the iterations. It is shown that

the tolerance level 10−5 is sufficient to guarantee the numerical convergence.

The following examples shows the variations of the values (table 2.2) and the

relative errors (figure 2.17) for the phase velocity c and some typical coefficients

of the our isothermal solution at Re = 2000, α = 1.14 with the truncation

level (L,M,N) = (6, 33, 33) as a function of the number of the iterations. The

dimension of the system is 6242.

The solution is judged to be converged after the 6th iteration and the values

of the elements in xj at the time are underlined in table 2.2. At least 5 digits

agree even for higher harmonics, such as ℜ[v6,31,16] and ℜ[v6,33,32]. As shown in

figure 2.17(a), (b), the relative errors for the phase velocity, c, and the example

of the lower harmonic, ℜ[v1,4,2], fluctuate around 10−11 or 10−12 after the 5th

iteration. On the other hand, those of higher harmonics fluctuate around 10−6

or 10−8 (see figure 2.17c, d). In both cases, the convergence does not improve



30 Chapter 2. Nonlinear Analysis of Internally Heated Duct Flow

afterwards. Therefore, the tolerance level 10−5 is a reasonable choice (if a

tougher tolerance level is taken, the Newton iteration will be stuck).

Table 2.2: The values of the phase velocity c, ℜ[v1,4,2], ℜ[v6,31,16] and ℜ[v6,33,32]
against the number of the iterations.

Iteration c ℜ[v1,4,2] ℜ[v6,31,16] ℜ[v6,33,32]
0 757.20234 -2.8576215 3.7470195 ×10−4 3.1340373 ×10−5

1 796.51369 -2.5935051 1.2756321 ×10−3 2.8374936 ×10−5

2 789.97788 -2.5862998 1.9004427 ×10−4 4.4116145 ×10−5

3 789.78438 -2.5914831 -5.1934472 ×10−7 3.5835975 ×10−5

4 789.78578 -2.5914993 -7.7468959 ×10−7 3.5804028 ×10−5

5 789.78578 -2.5914994 -7.7467745 ×10−7 3.5804028 ×10−5

6 789.78578 -2.5914994 -7.7468113 ×10−7 3.5804028 ×10−5

7 789.78578 -2.5914994 -7.7468107 ×10−7 3.5804027 ×10−5

8 789.78578 -2.5914994 -7.7468271 ×10−7 3.5804029 ×10−5

9 789.78578 -2.5914994 -7.7468080 ×10−7 3.5804028 ×10−5

10 789.78578 -2.5914994 -7.7467625 ×10−7 3.5804028 ×10−5

11 789.78578 -2.5914994 -7.7468208 ×10−7 3.5804029 ×10−5

12 789.78578 -2.5914994 -7.7468409 ×10−7 3.5804029 ×10−5

13 789.78578 -2.5914994 -7.7467868 ×10−7 3.5804028 ×10−5

14 789.78578 -2.5914994 -7.7467896 ×10−7 3.5804028 ×10−5

15 789.78578 -2.5914994 -7.7468232 ×10−7 3.5804028 ×10−5

16 789.78578 -2.5914994 -7.7467987 ×10−7 3.5804027 ×10−5

17 789.78578 -2.5914994 -7.7468181 ×10−7 3.5804028 ×10−5

18 789.78578 -2.5914994 -7.7467868 ×10−7 3.5804028 ×10−5

19 789.78578 -2.5914994 -7.7468065 ×10−7 3.5804027 ×10−5

20 789.78578 -2.5914994 -7.7468089 ×10−7 3.5804028 ×10−5

2.7.3 Continuation to the isothermal case when Pr = 0

We consider the limit of vanishing Prandtl number, Pr → 0. In this case, the

governing equation for the temperature disturbance (2.14) becomes ∇2θ̂ = 0.

The isothermal condition on the wall (2.15) leads to θ̂ ≡ 0 everywhere. There-

fore, the temperature deviation equation is neglected and the problem becomes

purely hydrodynamic. The degrees of freedom is reduced by approximately 1/3

from the thermal case.

The neutral curve when Pr = 0 is shown by the solid curve in figure 2.18.

Here, we impose the symmetry I to the disturbances and set the wavenumber

α = 1.0. The laminar flow becomes unstable inside the curve. The unstable
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Figure 2.17: The relative errors for (a) the phase velocity c, (b) ℜ[v1,4,2], (c)
ℜ[v6,31,16] and (d) ℜ[v6,33,32] against the number of the iterations.

region when Pr = 0 exists mainly inM3 and is almost included in that of Pr =

7 (shown by the dashed curve in figure 2.18). This instability is not detected in

Uhlmann & Nagata (2006) because they only investigate the parameter range

0 ≤ Gr ≤ 8000.

The continuation path to the isothermal solution when Pr = 0 is shown by

the arrows in figure 2.18. The path is made up by the two sections: (a) increas-

ing Re from −3934 (the linear critical point) to 1000 by fixing Gr = 30000, (b)

decreasing Gr from 30000 down to zero by fixing Re = 1000. The variation of

Reb in each section is shown in figure 2.19. Figure 2.19(a) shows the bifurca-

tion of the nonlinear solution from the critical point (Re,Gr) = (−3934, 30000)

(the open triangle) when fixing Gr = 30000. The bulk Reynolds number mono-

tonically increases as the Reynolds number increases. The nonlinear solution

at (Re,Gr) = (1000, 30000) is indicated by the open circle in figure 2.19(a),

(b). In figure 2.19, we reduce the Grashof number from 30000 and obtain the

isothermal solution (the intersection between the bifurcation curve and the line

Gr = 0 shown by the upper closed circle). The nonlinear solution undergoes
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Figure 2.18: The path taken from the linear critical point of the internally
heated duct flow to the isothermal solution indicated by the arrows when Pr =
0. The solid and dashed curves show the neutral curve with α = 1.0 when
Pr = 0 and Pr = 7, respectively. The region M2 and M3 are represented by
−7.69 < Gr/Re < −5.75 and −48.40 < Gr/Re < −7.69, respectively.

the turning point at Gr = −962 and crosses Gr = 0 again (lower closed circle).

The upper and lower closed circles correspond to the lower and upper branches

of the isothermal solution obtained in section 2.4.
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Chapter 3

Asymmetric Travelling Wave
Solutions

Linear stability analysis of the mirror-symmetric solutions in square duct flow

discovered by Okino et al., J. Fluid Mech. 657, 413 (2010) is investigated. The

solution is found to be unstable from the onset. Two types of asymmetric solu-

tions, which emerge through a symmetry breaking bifurcation from the mirror-

symmetric solutions, are found numerically. One of them is characterised by

a pair of streamwise vortices and a low-speed streak localized near one of the

side walls and retains the shift-and-reflect symmetry. The bifurcation nature

as well as the flow structure of the solution shows striking resemblance to those

of the asymmetric solution in pipe flow found by Pringle and Kerswell, Phys.

Rev. Lett. 99, 074502 (2007), despite the geometrical difference between their

cross sections. The solution seems to be embedded in the edge state of square

duct flow identified by Biau and Bottaro, Phil. Trans. Roy. Soc. A 367, 529

(2009). The other is slightly deviated from the mirror-symmetric solution from

which it bifurcates: the shift-and-rotate symmetry is retained but the mirror

symmetry is broken.

3.1 Stability analysis of the mirror-symmetric

travelling waves

In order to investigate the stability of the travelling wave solution, (u
TW
, P

TW
),

found in the previous chapter, we superimpose infinitesimal perturbations,

(ũ, P̃ ), on the solution. (
u

P

)
=

(
u

TW

P
TW

)
+

(
ũ

P̃

)
. (3.1)

35
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Substituting (3.1) into (2.1) and (2.2), we obtain the governing equations for

the perturbations:

∇ · ũ = 0, (3.2)

and

∂tũ+ (Ū · ∇)ũ+ (ũ · ∇)Ū + (ǔ · ∇)ũ+ (ũ · ∇)ǔ = −∇P̃ +∇2ũ, (3.3)

where the nonlinear term, (ũ·∇)ũ, is neglected. Operating ez ·∇× and ey ·∇×
on (3.3) leads to[

{∂t + (Ū · ∇)−∇2 + ∂yV̂ }∂x − ∂2yyŪ
]
ṽ

−
[
{∂t + (Ū · ∇)−∇2 + ∂yV̂ }∂y + ∂yŴ∂z

]
ũ

+
(
∂yŪ∂z − ∂zŪ∂y − ∂2yzŪ + ∂zV̂ ∂x

)
w̃

+ez · ∇ × {(ǔ · ∇)ũ+ (ũ · ∇)ǔ} = 0,

(3.4)

[
{∂t + (Ū · ∇)−∇2 + ∂zŴ}∂x − ∂2zzŪ

]
w̃

−
[
{∂t + (Ū · ∇)−∇2 + ∂zŴ}∂z + ∂zV̂ ∂y

]
ũ

+
(
∂zŪ∂y − ∂yŪ∂z − ∂2yzŪ + ∂yŴ∂x

)
ṽ

−ey · ∇ × {(ǔ · ∇)ũ+ (ũ · ∇)ǔ} = 0.

(3.5)

Based on the Floquet theory, the velocity perturbations, ũ, is expanded as

follows:

ũ(x, y, z, t) =
L∑

l=−L

ũl exp
[
i(lα + d)(x− ct) + σt

]
, (3.6)

where σ is the growth rate. In this chapter, we only investigate the fundamental

mode, d = 0. The interaction of the perturbations ũ and the disturbances

ǔ generates the feedbacks on the mean part. Therefore, we include the x-

independent parts (Ũ , Ṽ , W̃ ) = (ũ0, ṽ0, w̃0) exp[σt] of the perturbations in (3.6)

(cf. (2.27)). Ṽ and W̃ are derived from the stream function φ̃ on the cross

section:

Ṽ = ∂zφ̃, W̃ = −∂yφ̃. (3.7)

Taking the streamwise average of ex·(3.3) and ex · ∇×(3.3) leads to

(∂t + ∂zφ̂∂y − ∂yφ̂∂z −△2)Ũ+(∂zφ̃∂y − ∂yφ̃∂z)Ū

+ ∂yǔṽ + ũv̌ + ∂zǔw̃ + ũw̌ = 0,
(3.8)

−(∂t + ∂zφ̂∂y − ∂yφ̂∂z −△2)△2φ̃− (∂zφ̃∂y − ∂yφ̃∂z)△2φ̂

+ (∂2yy − ∂2zz)ṽw̌ + v̌w̃ + 2∂2yzw̌w̃ − v̌ṽ = 0,
(3.9)
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where ũ is solved by using (3.2) as ũ = Ũ − ∂−1
x (∂yṽ + ∂zw̃).

The variables, ũ0, φ̃0(= φ̃/ exp[σt]), ṽl and w̃l satisfy the following boundary

conditions:

ũ0 = φ̃0 = ∂yφ̃0 = ∂zφ̃0 = ṽl = w̃l = ∂yṽl = 0 at y = ±1, (3.10)

ũ0 = φ̃0 = ∂yφ̃0 = ∂zφ̃0 = ṽl = w̃l = ∂zw̃l = 0 at z = ±1. (3.11)

All the variable are expanded using the appropriate basis functions, which

satisfies the boundary conditions (see (2.35) and (2.36)).
ṽl

w̃l

ũ0

φ̃0

 =
M∑

m=2

N∑
n=2


ṽlmnϕm(y)ψn(z)

w̃lmnψm(y)ϕn(z)

ũ0mnψm(y)ψn(z)

φ̃0mnϕm(y)ϕn(z)

 . (3.12)

The Galerkin projection of (3.4), (3.5), (3.8) and (3.9) gives a generalized

eigenvalue problem with the growth rate σ as the eigenvalue,

Ãijx̃j = σB̃ijx̃j, (3.13)

where x̃j stands for (ṽlmn, w̃lmn, ũ0mn, φ̃0mn)
T , with l = ±1, · · · ,±L. The equa-

tion is solved by the LAPACK routines, ZGESV and ZGEEV.

Recall that the travelling wave found in the previous section, which we refer

to as ONWB hereafter, is invariant under the following transformations: the

shift-and-reflection,

S :


u

v

w

 (ξ, y, z) →


u

−v
w

 (ξ +
π

α
,−y, z), (3.14)

and the mirror-reflection,

Z :


u

v

w

 (ξ, y, z) →


u

v

−w

 (ξ, y,−z), (3.15)

where ξ = x− ct. The combination of S and Z leads to the shift-and-rotation,

Ω :


u

v

w

 (ξ, y, z) →


u

−v
−w

 (ξ +
π

α
,−y,−z). (3.16)
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Examining the governing equations for the perturbations, (3.4), (3.5), (3.8)

and (3.9), we find that the following four symmetry groups for ṽl, w̃l, ũ0 and

φ̃0 are admissible:

symmetry IA :

ṽl

{
(l + ; e, e)
(l++; o, e)

, w̃l

{
(l + ; o, o)
(l++; e, o)

, ũ0(e, e), φ̃0(o, o), (3.17)

symmetry IB :

ṽl

{
(l + ; e, o)
(l++; o, o)

, w̃l

{
(l + ; o, e)
(l++; e, e)

, ũ0(e, o), φ̃0(o, e), (3.18)

symmetry IC :

ṽl

{
(l + ; o, e)
(l++; e, e)

, w̃l

{
(l + ; e, o)
(l++; o, o)

, ũ0(o, e), φ̃0(e, o), (3.19)

symmetry ID :

ṽl

{
(l + ; o, o)
(l++; e, o)

, w̃l

{
(l + ; e, e)
(l++; o, e)

, ũ0(o, o), φ̃0(e, e). (3.20)

The symmetry IA is the same as the one that the solution ONWB possesses:

the perturbations are invariant under the transformations S and Z (and there-

fore, Ω also). It is immediately verified that the symmetry IB, IC and ID

individually have the symmetry S, Z and Ω, respectively.

Figure 3.1 shows the real part of the growth rate σ of the fundamen-

tal mode of the perturbations with symmetry IA imposed on ONWB with

α = 1.14. This travelling wave solution is unstable from its appearance at

the saddle-node bifurcation at Re = 827.5: while the lower branch has two

unstable eigenmodes the number of unstable eigenmodes increases on the up-

per branch as the Reynolds number increases. The solution on both branches

always presents an eigenmode with zero growth rate, which corresponds to the

infinitesimal translation in the streamwise direction. The magnified figure in

figure 3.1(c) shows that the growth rates of the upper and lower branches join at

the saddle-node. In particular, as expected from the nature of the saddle-node

bifurcation, where the upper branch must have one more unstable direction

than the lower branch, the third largest real growth rate on the upper branch

connects with the third largest (negative) real growth rate of the lower branch

at zero. The second and third largest real growth rates on the upper branch

near the saddle-node join to become a complex conjugate pair as Re is slightly

increased. All the growth rates which cross zero on the upper branch for larger
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Figure 3.1: The real part of the growth rate, ℜ[σ], of the perturbations with
the symmetry IA on the (a) lower and (b) upper branches of ONWB with
α = 1.14. Solid and dotted curves, respectively, indicate that the growth rates
are real and complex conjugate. (c) The close-up. Curves with open and closed
circles correspond to the lower and upper branch, respectively.

Re are associated with a complex conjugate pair so that time-periodic solutions

in the frame moving with the travelling wave are expected to bifurcate there.

Figures 3.2(a) and (b) show the real part of the growth rate σ of the per-

turbations with the symmetry IB on the lower and upper branches of ONWB,

respectively. On the lower branch, the most unstable eigenmode has a com-

plex conjugate eigenvalue at Re = 827.5. It decreases as the Reynolds number

increases. The neutral point is found at Re ∼ 1450. The second largest eigen-

value, which starts as a complex conjugate pair, splits into two real eigenvalues

at Re ∼ 1000, and the larger one crosses zero at Re ∼ 1080 (open circle). Fig-

ure 3.2(b) shows that the second eigenmode with symmetry IB, associated with

a complex eigenvalue at the saddle-node of ONWB, crosses zero at Re ∼ 880

and splits into two real modes at Re ∼ 1450. The smaller one becomes neutral

when Re ∼ 1480 (closed circle). No other neutral points associated with a real
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Figure 3.2: Same as figure 3.1 for the symmetry IB.
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Figure 3.3: Same as figure 3.1 for the symmetry IC.

eigenvalue are found when Re ≤ 3000.

Figure 3.3(a) shows the lower branch of ONWB is always stable to the

perturbations with the symmetry IC within the parameter range of our inves-

tigation. On the upper branch, the leading eigenvalue appears as a complex

conjugate pair. They cross zero three times until Re ∼ 1300 and take positive

growth rates afterward (see figure 3.3b). Only one neutral mode associated

with a real eigenvalue for the symmetry IC is found at Re ∼ 1990 on the upper

branch (closed square).

The growth rate of the perturbations with the symmetry ID is shown in

figure 3.4. No unstable eigemode appear when Re ≤ 3000 on the lower branch

of ONWB as shown in figure 3.4(a). Figure 3.4(b) represents the upper branch

solution is stable to the perturbations with the symmetry ID until five unsta-

ble eigenmodes (one real and two complex conjugate pairs) appear almost at

once near Re = 1400 (closed triangle). We find two eigenmodes with the real
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Figure 3.4: Same as figure 3.1 for the symmetry ID.

eigenvalue cross zero at Re ∼ 2220 and Re ∼ 2880.

3.2 Asymmetric solutions

We are interested in only nonlinear solutions that bifurcate from ONWB at

the neutral points with the real eigenvalues because the bifurcating solution

appears as the travelling wave state. Bifurcating solutions from a nonlinear

solution with the symmetry I are classified into the following three groups

depending on the symmetry of the perturbations.

symmetry I+II:

vl


(l + ; e, e)
(l + ; e, o)
(l++; o, e)
(l++; o, o)

, wl


(l + ; o, o)
(l + ; o, e)
(l++; e, o)
(l++; e, e)

, Û

{
(e, e)
(e, o)

, φ̂

{
(o, o)
(o, e)

, (3.21)

symmetry I+III:

vl


(l + ; e, e)
(l + ; o, e)
(l++; o, e)
(l++; e, e)

, wl


(l + ; o, o)
(l + ; e, o)
(l++; e, o)
(l++; o, o)

, Û

{
(e, e)
(o, e)

, φ̂

{
(o, o)
(e, o)

, (3.22)

symmetry I+IV:

vl


(l + ; e, e)
(l + ; o, o)
(l++; o, e)
(l++; e, o)

, wl


(l + ; o, o)
(l + ; e, e)
(l++; e, o)
(l++; o, e)

, Û

{
(e, e)
(o, o)

, φ̂

{
(o, o)
(e, e)

. (3.23)

The solutions with the symmetry I+II, I+III and I+IV bifurcate due to the

instability of the perturbations with the symmetry IB, IC and ID, respectively
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and therefore, they are invariant under the transformation S, Z and Ω, respec-

tively.

Using the eigenfuction at the neutral points as an initial guess of the

Newton-Raphson method, we obtain two bifurcating solutions from ONWB

with α = 1.14. The bulk Reynolds numbers for these solutions as well as

ONWB are plotted against the Reynolds number in figure 3.5(a). The skin

frictions against the bulk Reynolds number are also shown in figure 3.5(b).

The dotted curve in figure 3.5 indicates the ONWB branch. A new solution,

which results from the instability due to the symmetry IB and has the sym-

metry I+II, bifurcates subcritically from the lower branch of ONWB at Re =

1077, Reb = 468 (open circle), undergoes two turning points at Re = 969 and

1753, and terminates on the upper branch of ONWB at Re = 1483, Reb = 490

(closed circle). This solution branch connects the bifurcation points indicated

by the open and closed circles in figure 3.2. We refer to this solution as the

S-symmetric solution. Another new solution, which results from the instability

due to the symmetry ID and has the symmetry I+IV, bifurcates supercritically

from the upper branch at Re = 1393, Reb = 467 (closed triangle). This solution

is referred to as the Ω-symmetric solution. The solution with the symmetry

I+III (i.e. the bifurcating solution due to the instability of the symmetry IC

at Re ∼ 1990) is not calculated here.

3.2.1 S-symmetric solution

The mean and the total flow of the S-symmetric solution with α = 0.7 at

Re = 3000 are shown in figure 3.6. The mirror-symmetry with respect to

z = 0 of ONWB is broken (compare figure 3.6 and 2.12) and strong distur-

bances, which are composed of a pair of streamwise vortices and a low-speed

streak, are observed near the side wall z = +1. The solution, which has

the same structures near z = −1, is also a possibility by the symmetry of

the system. The mean flow is mirror-symmetric with respect to y = 0 (tak-

ing the streamwise average of (3.14) leads to the symmetry for mean flow:

(Ū , V̄ , W̄ )(y, z) = (Ū ,−V̄ , W̄ )(−y, z), where Ū =
∫ 2π/α

0
u dx, etc.). Figure 3.7

shows the iso-surfaces of the srreamwise vorticity and the streamwise velocity

of the solution. A pair of quasi-streamwise vortices attached to one of the

side walls is clearly seen. The disturbance velocity of the S-symmetric solution

is shown in figure 3.8. The left and the right frames present the mean part

and the instantaneous flow, respectively. These flow structures of this solution

exhibits a striking similarity to those of the asymmetric solution in a pipe by

Pringle & Kerswell (2007) (see figure 3.9). These two solutions possess the
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Figure 3.5: (a) The bulk Reynolds number versus the Reynolds number for
α = 1.14. Dotted curve: ONWB. Solid curve: The S-symmetric solution.
Dashed curve: The Ω-symmetric solution. Thin dotted line: The laminar
state, Reb = 0.47704Re. The circles and the triangle show the bifurcation
points. (b) The skin friction against the bulk Reynolds number. Thin dotted
line: The laminar state, λ = 28.45/Reb.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 3.6: Mean flow Ū (top-left) and images of the total flows u along ξ of the
S-symmetric solution with α = 0.7 at Re = 3000 (Reb = 1342). The velocity
components are shown on the y-z plane (arrows) and along the x-direction
(grey scale). ξ = x− ct.

shift-and-reflect symmetry in common. Strong similarity for the two solutions

is also observed in the skin friction (compare figure 3.5b with figure 3.10).

Figure 3.11 shows the existence domains of the S-symmetric solution. The

solution connects the lower and the upper branch of ONWB. Our S-symmetric

travelling waves appear at α = 1.36, Re = 924 (Reb = 374) and their minimum

bulk Reynolds number is 365 at α = 1.38, Re = 952. The existence domain

has more turning points on the α–Reb plane as the Reynolds number increases:

the number of solutions increases for a fixed wavenumber.

The invariant set on the boundary between the laminar and turbulent states

in phase space is called the edge state. The trajectory, which starts with an

initial condition near the laminar-turbulent boundary transiently approaches

the edge state before the flow uneventfully relaminalizes or evolves into tur-

bulence (Biau & Bottaro 2009; Duguet, Willis & Kerswell 2008; Itano & Toh

2001; Mellibovsky & Meseguer 2009; Schneider et al. 2007, 2008; Schneider &
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Figure 3.7: The iso-surfaces of the streamwise vorticity and the streamwise
velocity of the S-symmetric solutions with α = 0.7, Re = 3000 (Reb = 1342).
Black (dark grey) represents +70% (-70%) of the maximum vorticity and light
grey represents 40% of the maximum velocity. The flow is from left to right.

(a) (b)

Figure 3.8: (a) The mean part and (b) the instantaneous flow of the disturbance
of the S-symmetric solution with α = 0.7, Re = 3000 (Reb = 1342). The
velocities on the y-z plane and along the x-direction are indicated by the arrows
and the grey scale.
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(a) (b)

Figure 3.9: The top frames of figure 1 of Pringle & Kerswell (2007). Velocity
fields of the disturbance for the asymmetric travelling wave in a pipe. (a) The
mean part. (b) The instantaneous field.

Figure 3.10: Figure 6 of Pringle & Kerswell (2007). Friction factor Λ against
the bulk Reynolds number Re for the various travelling wave families. The
dashed line indicates the laminar value Λlam = 64/Re. The dash-and-dotted
line indicates the experimental data 1/

√
Λ = 2.0 log(Re

√
Λ). The labels m

indicate the different travelling wave solutions with the rotational symmetry
by 2π/m. The mirror-symmetric solution and the asymmetric solution are
shown by the solid and the dashed curves, respectively. The bifurcation point
where the asymmetric solution appears is marked by the dot.

Eckhardt 2009; Wang et al. 2007). The temporal variation of the skin fric-

tion and the instantaneous secondary flows of the edge state in square duct

flow is shown in figure 3.12 and 3.13, respectively. The edge state of square
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Figure 3.11: The existence domains of the S-symmetric solutions. Solid curve:
Re = 950. Dashed curve: Re = 1000. Dash-and-dotted curve: Re = 1050.
The dotted curves indicate ONWB at Re = 950, 1000 and 1050. The open and
closed circles represent the bifurcation points on the lower and upper branches
of ONWB.

duct flow is not steady but chaotic. Note that different walls become ‘active’

as time varies (here, active means a pair of vortices is attached to one of the

sides). The mean flow of our S-symmetric solution resembles that of the edge

state in square duct flow (Biau & Bottaro 2009) (compare the right frame of

figure 3.8 with figure 3.13). The properties of the S-symmetric solution and

the lower branch of other travelling wave solutions with α = 0.5 for Re = 3315

(this parameter corresponds to α = 1.0, Reτ = 150 in the notation of Biau &

Bottaro 2009) are listed in table 3.1. The edge state takes 0.021 . λ . 0.024,

2720 . Reb . 2900 and 214 . EU . 250 (see figure 3.12 and figure 7 of Biau &

Bottaro 2009). The S-symmetric solution and ONWB take the values almost

equal to the lower bound of the skin friction and the upper bound of the mean

flow energy and the bulk Reynolds number of the edge state, while WBN and

UKP have rather higher friction, lower energy and bulk Reynolds number than

the edge state The S-symmetric solution has a fewer unstable eigenvalues and

the values themselves are smaller than those of ONWB (see table 3.2). This

implies that the S-symmetric solution is more accessible than ONWB in phase

space. Note that no symmetry is applied to the perturbations to calculate the

stability of the S-symmetric solution and ONWB in table 3.2. The edge state
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of pipe flow also consists of a pair of streamwise vortices located off center

(Duguet, Willis & Kerswell 2008; Mellibovsky & Meseguer 2009; Schneider et

al. 2007; Schneider & Eckhardt 2009). We expect the edge state in square

duct flow is formed around the S-symmetric solutions (four S-symmetric solu-

tions exist due to the rotational symmetry by 90 degrees in square duct flow)

and their heteroclinic connections similar to those shown in Duguet, Willis &

Kerswell (2008) for pipe flow.

Figure 3.12: Figure 5 of Biau & Bottaro (2009). The skin friction f versus time.
The definition of f is same as λ in (2.41). The dashed curve corresponds to the
edge state for α = 0.5, Re = 3315. The lower and upper dotted line indicate
the laminar and turbulent values. The solid curves undergo relaminarization
or evolution into turbulence. Time t is nondimensionalized by h/uτ , where h
is the side length of the square and uτ is the friction velocity.

Figure 3.13: Figure 6 of Biau & Bottaro (2009). Instantaneous secondary flows
of the solution on the edge for α = 0.5, Re = 3315. (a) t = 0.6, (b) t = 33, (c)
t = 40 and (d) t = 54.
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Table 3.1: The skin friction λ, bulk Reynolds number Reb and energy of the
streamwise averaged flow EU = 1/4

∫ +1

−1

∫ +1

−1
(Ū2 + V̄ 2 + W̄ 2)/2 dydz of the

travelling waves with Re = 3315, α = 0.5. The values in the bracket are
normalized by the scales adopted in Biau & Bottaro (2009). The solutions
reported in Wedin et al. (2009) and Uhlmann et al. (2010) are referred to as
WBN and UKP, respectively.

Solution λ Reb EU

S-symmetric 0.02087 1468 (2937) 1.439× 106 (255.8)
ONWB (lower) 0.02099 1464 (2928) 1.429× 106 (254.1)
WBN (lower) 0.03459 1145 (2290) 8.172× 105 (145.3)
UKP (lower) 0.02568 1324 (2648) 1.120× 106 (199.1)

Table 3.2: The five largest eigenvalues of the travelling waves with Re =
3315, α = 0.5.

Solution σ1 σ2 σ3 σ4 σ5
S-symmetric 45.2 11.4 3.5 0 −5.2

ONWB (lower) 56.5 19.4 9.3 7.1± 56.9i 0

3.2.2 Ω-symmetric solution

Figure 3.14 shows the velocity field of the Ω-symmetric solutions. These so-

lutions almost look like the upper branch of ONWB. However, the mirror-

symmetry Z with respect to z = 0 is broken by the pitchfork bifurcation,

giving rise to two solutions which are mirror-symmetric with each other. The

three-dimensional representation of the solutions is shown in figure 3.15. We

can see in the left frame of figure 3.15 for one of the two solutions that the

vortices with negative vorticity are elongated in the streamwise direction more

than those with positive vorticity. The right figure for the other solution shows

an opposite structure.

The existence domains of theΩ-symmetric solution are shown in figure 3.16.

The solution appears through the saddle-node bifurcation at α = 1.43, Re =

1271 (Reb = 427). At a slightly larger Reynolds number, the Ω-symmetric

solution begins to connect with the upper branch of ONWB via a pitchfork

bifurcation (the bifurcation points are indicated by the closed triangles). The

counterpart of this solution in pipe flow has not been reported yet.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 3.14: Same as figure 3.6 for the Ω-symmetric solution with α = 1.43 at
Re = 1400 (Reb = 461).

3.3 Conclusion

We have performed the linear stability analysis of the mirror-symmetric trav-

elling wave, ONWB, and found the neutral points with the real eigenvalue

for the lower and upper branches. ONWB is shown to be unstable from the

onset. Choosing the eigenfunction at the neutral points as an initial guess

of the Newton-Raphson method, we obtain two asymmetric travelling waves,

which emerge through the pitchfork bifurcation. One solution has the shift-

and-reflect symmetry S. The other solution has the shift-and-rotate symmetry

Ω. The S-symmetric solution is characterized by a pair of quasi-streamwise

vortices and a low-speed streak near one of the side walls. The S-symmetric

solution and its bifurcation nature is very similar to those of pipe flow found

by Pringle & Kerswell (2007). Also, the mean flow structure and the proper-

ties such as the skin friction, the bulk Reynolds number and the mean flow

energy of our S-symmetric solution shows striking closeness to the edge state

calculated by Biau & Bottaro (2009). The S-symmetric solution has only three
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Figure 3.15: The iso-surfaces of the streamwise vorticity and the streamwise
velocity of the Ω-symmetric solutions with α = 1.43, Re = 1400 (Reb = 461).
Black (dark grey) represents +70% (-70%) of the maximum vorticity and light
grey represents 40% of the maximum velocity. The flow is from bottom to top.
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Figure 3.16: The existence domains of the Ω-symmetric solutions. Solid curve:
Re = 1280. Dashed curve: Re = 1330. Dash-and-dotted curve: Re = 1380.
The thin dotted curves indicate ONWB at Re = 1280, 1330 and 1380. The
closed triangles represent the bifurcation points on the upper branches of
ONWB.
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unstable direction, while ONWB has five. The eigenvalues of the S-symmetric

solution are smaller than those of ONWB. These results imply that the S-

symmetric solution is more likely to appear in the laminar-turbulent boundary

than ONWB. The Ω-symmetric solution is slightly deviated from ONWB. The

solution in pipe flow, which corresponds to our Ω-symmetric solution, has not

been reported yet. However, it is probable that such a solution will be found

through the stability analysis of the mirror-symmetric solution by Pringle &

Kerwsell (2007).

Our stability analysis exhibits that many solutions could emerge far below

the transitional Reynolds number, Reb ∼ 1000, via symmetry breaking bifur-

cations (mainly from the upper branch), showing the richness of the nonlinear

solutions due to the symmetry breaking and the complexity of phase space in

the transitional regime. Solutions which bifurcate from neutral points with the

complex eigenvalue are not considered here. These solutions are expected to be

time-periodic in the frame of reference moving with a constant speed (relative

periodic orbit). They might be captured numerically by using a time stepping

code.

3.4 Appendix

3.4.1 Accuracy of the asymmetric travelling waves

The numerical accuracy of the asymmetric travelling waves is checked in ta-

ble 3.3 and 3.4. The phase velocity, the bulk Reynolds number and the skin

friction are listed as a function of the truncation level. We regard the S-

symmetric solution with (L,M,N) = (6, 33, 33) and Ω-symmetric solution

with (L,M,N) = (7, 37, 37) as converged. At least three digits agree for the

characteristic quantities with the dashed underline in the tables.
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Table 3.3: The phase velocity c, the bulk Reynolds number Reb and the skin
friction λ for the S-symmetric solution with α = 0.70 at Re = 3000 as a
function of the truncation level (L,M,N).

(L,M,N) c Reb λ
(4, 33, 33) 2207.1 1342.0 0.02261
(6, 31, 31) 2213.9 1342.1 0.02261
(6, 33, 33) 2207.2 1342.0 0.02261

(6, 35, 35) 2207.9 1341.5 0.02263
(8, 33, 33) 2207.2 1342.0 0.02261

Table 3.4: Same as table 3.3 for the Ω-symmetric solution with α = 1.43 at
Re = 1400.

(L,M,N) c Reb λ
(5, 37, 37) 591.79 460.62 0.08957
(7, 35, 35) 592.00 460.89 0.08946
(7, 37, 37) 592.24 461.03 0.08941

(7, 39, 39) 592.22 461.03 0.08941
(9, 37, 37) 592.15 460.96 0.08943





Chapter 4

A Variety of Travelling Wave
Solutions

A number of travelling wave solutions in a square duct are discovered by a

homotopy approach using artificially arranged body forces, following Waleffe,

Phys. Rev. Lett. 81, 4140-4143 (1998). Some of them appear at much lower

Reynolds number than the transitional regime to turbulence, Reb ∼ 1000. It is

found that most of the solutions presented in the thesis have their counterparts

in pipe flow listed in Pringle et al., Phil. Trans. R. Soc. A 367, 457-472 (2009).

4.1 Continuation method using an artificial body

force

In Chapter 2, we were successfully able to obtain the nonlinear solution in

square duct flow, establishing the continuation from the internally heated flow

to the isothermal flow. However, it is impossible to know beforehand whether

the homotopy path using some parameter reaches the exact solution to the

Navier-Stokes equations or not. For example, Barnes & Kerswell (2000) cal-

culated the three-dimensional travelling wave solutions in rotating pipe flow.

The attempt to find the nonlinear solution in pipe flow by reducing the rota-

tion rate to zero failed. Waleffe (1998, 2003) calculated the exact solutions to

plane Couette flow and plane Poiseuille flow by introducing an external body

force, which creates the streamwise vortices. The streamwise vortices roll up

the fluid in the vicinity of the wall, which is called the low-speed streak. The

instability of the two-dimensional streaky flow leads to the subcritical bifurca-

tion of the three-dimensional flow and the successful continuation to the exact

solution to the Navier-Stokes equations without the external forcing. Following

his approach, the method to calculate the nonlinear solutions in square duct

55
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flow using an artificial body forces is described below.

The motion of the fluid is governed by the continuity equation,

∇ · u = 0, (4.1)

and the momentum equation

∂tu+ (u · ∇)u = −∇P +∇2u+ F . (4.2)

Here, F is an artificial body force, which depends on the coodinates in the cross

section: F = (0, Fy(y, z), Fz(y, z)). We impose the no-slip boundary condition,

u = 0 at y = ±1 and z = ±1. (4.3)

4.1.1 Laminar solution

We set (u, v, w) = (UB(y, z), VB(y, z),WB(y, z)), P = PB = −χx as the laminar

state. Substituting them into (4.2), we obtain

(VB∂y +WB∂z −△2)UB = χ, (4.4)

(VB∂y +WB∂z −△2)VB = Fy, (4.5)

(VB∂y +WB∂z −△2)WB = Fz. (4.6)

We define the Reynolds number as follows,

Re = UB0(0, 0) =
UB0∗(0, 0)b∗

ν∗
, (4.7)

where UB0(y, z) is the laminar flow without forcing (i.e. UB0(y, z) satisfies

−△2UB0 = χ and the no-slip boundary condition). The Reynolds number has

the proportionality to the pressure gradient, χ = 3.3935Re.

Note that VB and WB are separated from (4.4). As the continuity equation

(4.1) leads to

∂yVB + ∂zWB = 0, (4.8)

we introduce the basic stream function in the cross section for the laminar flow:

VB = ∂zφB, (4.9)

WB = −∂yφB. (4.10)

The equation for the stream function is obtained by ∂y(4.6)−∂z(4.5),

−(∂zφB∂y − ∂yφB∂z −△2)△2φB = ∂yFz − ∂zFy ≡ Ωx. (4.11)
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An arbitrary motion in the cross section represented by φB is induced by

applying the forcing, Ωx defined in (4.11). Therefore, we initially give φB and

solve (4.4) to obtain the laminar state. The stream function φB is expanded

by the basis function, which satisfies the Dirichlet and Neumann conditions:

φB = ε
M∑

m=4

N∑
n=4

φBmnϕm(y)ϕn(z), (4.12)

where ϕm is given in (2.35). For instance,

ϕ5(y) = 16y(1− y2)2, (4.13)

ϕ7(y) = 16y(1 + 4y2)(1− y2)2. (4.14)

The coefficients φBmn are normalized as

M∑
m=4

N∑
n=4

|φBmn| = 1. (4.15)

We refer to the parameter ε as the strength of the roll. The typical choices of the

basic stream function and the consequent laminar solutions are shown in figures

4.1 and 4.2. The four and eight-vortex state are produced by the artificial

forcing in figure 4.1 and 4.2, respectively. These are the two dimensional flows.

(a) (b)

Figure 4.1: (a) The basic stream function φB = εϕ5(y)ϕ5(z) with ε = 1 rep-
resented by the grey scale. (b) The laminar solution for Re = 3000 with
ε = 0.266. The grey scale shows the streamwise velocity UB.
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(a) (b)

Figure 4.2: Same as figure 4.2. (a) φB = ε
(
ϕ5(y)ϕ7(z) − ϕ7(y)ϕ5(z)

)
/2 with

ε = 1. (b) The laminar solution for Re = 3000 with ε = 0.191.

4.1.2 Linear stability analysis

The method to investigate the instability of the basic flow with the two-

dimensional streamwise rolls is presented in this subsection. We superimpose

perturbations, û and p̂, on the laminar state obtained by the last section,

UB = (UB, VB,WB) and PB:

u = UB + û, (4.16)

P = PB + p̂. (4.17)

The perturbations are governed by the following equations,

∇ · û = 0, (4.18)

∂tû+ (UB · ∇)û+ (û · ∇)UB + (û · ∇)û = −∇p̂+∇2û. (4.19)

Neglecting the nonlinear terms in ez · ∇×(4.19) and ey · ∇×(4.19) leads to[
{∂t + (UB · ∇)−∇2 + ∂yVB}∂x − ∂2yyUB

]
v̂

−
[
{∂t + (UB · ∇)−∇2 + ∂yVB}∂y + ∂yWB∂z

]
û

+
(
∂yUB∂z − ∂zUB∂y − ∂2yzUB + ∂zVB∂x

)
ŵ = 0,

(4.20)

[
{∂t + (UB · ∇)−∇2 + ∂zWB}∂x − ∂2zzUB

]
ŵ

−
[
{∂t + (UB · ∇)−∇2 + ∂zWB}∂z + ∂zVB∂y

]
û

+
(
∂zUB∂y − ∂yUB∂z − ∂2yzUB + ∂yWB∂x

)
v̂ = 0.

(4.21)
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We solve (4.18) for û to obtain

û = −∂−1
x (∂yv̂ + ∂zŵ), (4.22)

where ∂−1
x is the integrating operator with respect to x. We give VB and WB

by (4.9) and (4.10), and eliminate û using (4.22) in (4.20) and (4.21). The

perturbations in the cross section, v̂ and ŵ, are expanded in normal modes:(
v̂

ŵ

)
(x, y, z, t) =

(
v1(y, z)

w1(y, z)

)
exp[iα(x− ct)]. (4.23)

Here, the complex wave speed is expressed by c, whose imaginary part mul-

tiplied by the wavenumber α indicates the growth rate of the perturbations.

After we expand v1 and w1 by the appropriate basis functions, which satisfy the

boundary conditions, we substitute (4.23) into (4.20) and (4.21). The Galerkin

projection leads to the generalized eigenvalue problem with the eigenvalue c.

4.1.3 Calculation of travelling waves

The three-dimensional solution, which bifurcates from the neutral point iden-

tified by the linear stability analysis, is calculated by the following procedure.

We decompose perturbations, û and p̂, into the mean parts and the residuals.

û(x, y, z, t) = Û(y, z, t) + ǔ(x, y, z, t), (4.24)

p̂(x, y, z, t) = P̂ (y, z, t) + p̌(x, y, z, t). (4.25)

Note that ∇P̂ = 0 because the pressure gradient is fixed. We define the mean

flow, Ū = (Ū , V̄ , W̄ ) =
∫ 2π/α

0
u dx, and the mean deviation from the laminar

flow without forcing, U ′ = (U ′, V ′,W ′) = Ū − UB0ex. Substituting (4.24) and

(4.25) into (4.18) and (4.19) leads to

∂yV
′ + ∂zW

′ +∇ · ǔ = 0, (4.26)

∂t(U
′ + ǔ) + (U ′ · ∇)Ū + (Ū · ∇)ǔ+ (ǔ · ∇)Ū + (ǔ · ∇)ǔ

= −∇p̌+△2U
′ +∇2ǔ+ F .

(4.27)

Operations ez · ∇×(4.27) and ey · ∇×(4.27) lead to[
{∂t + (Ū · ∇)−∇2 + ∂yV

′}∂x − ∂2yyŪ
]
v̌

−
[
{∂t + (Ū · ∇)−∇2 + ∂yV

′}∂y + ∂yW
′∂z

]
ǔ

+
(
∂yŪ∂z − ∂zŪ∂y − ∂2yzŪ + ∂zV

′∂x

)
w̌

−(∂t −△2)∂yU
′ − ∂y(U

′ · ∇)Ū + ez · ∇ × {(ǔ · ∇)ǔ} = 0,

(4.28)
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{∂t + (Ū · ∇)−∇2 + ∂zW

′}∂x − ∂2zzŪ
]
w̌

−
[
{∂t + (Ū · ∇)−∇2 + ∂zW

′}∂z + ∂zV
′∂y

]
ǔ

+
(
∂zŪ∂y − ∂yŪ∂z − ∂2yzŪ + ∂yW

′∂x

)
v̌

−(∂t −△2)∂zU
′ − ∂z(U

′ · ∇)Ū − ey · ∇ × {(ǔ · ∇)ǔ} = 0.

(4.29)

We take the streamwise average of (4.26) to obtain

∂yV
′ + ∂zW

′ = 0. (4.30)

Then, the stream function in the cross section, φ′ is introduced as follows:

V ′ = ∂zφ
′, (4.31)

W ′ = −∂yφ′. (4.32)

Operation on the streamwise average of ex·(4.27) and ex · ∇×(4.27) leads to

∂tU
′ + (∂zφ

′∂y − ∂yφ
′∂z)Ū −△2U

′ + ∂yǔv̌ + ∂zǔw̌ = 0, (4.33)

−(∂t + ∂zφ
′∂y − ∂yφ

′∂z −△2)△2φ
′ +(∂2yy − ∂2zz)v̌w̌+ ∂2yzw̌

2 − v̌2 = Ωx, (4.34)

where the overline means the streamwise average: · ≡ α/(2π)
∫ 2π/α

0
· dx.

Subtracting (4.30) from (4.26) and solving for ǔ, we obtain

ǔ = −∂−1
x (∂yv̌ + ∂zw̌). (4.35)

The boundary condition for the variables are

v̌ = w̌ = ∂yv̌ = U ′ = φ′ = ∂yφ
′ = ∂zφ

′ = 0 at y = ±1, (4.36)

v̌ = w̌ = ∂zw̌ = U ′ = φ′ = ∂yφ
′ = ∂zφ

′ = 0 at z = ±1. (4.37)

We assume a travelling wave as a nonlinear solution. The residual v̌, w̌ are

expanded by Fourier series in the streamwise direction as follows:(
v̌

w̌

)
(x, y, z, t) =

L∑
l = −L

l ̸= 0

(
vl(y, z)

wl(y, z)

)
exp[ilα(x− ct)]. (4.38)

All the variables are expanded by the basis functions ϕm and ψn in the cross

section, 
vl

wl

U ′

φ′

 =
M∑

m=2

N∑
n=2


vlmnϕm(y)ψn(z)

wlmnψm(y)ϕn(z)

Umnψm(y)ψn(z)

φmnϕm(y)ϕn(z)

 . (4.39)
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In order to fix the phase of the travelling wave, we set

ℑ[v252] = 0. (4.40)

Eliminating V ′, W ′ and ǔ by (4.31), (4.32) and (4.35) in (4.28), (4.29), (4.33),

(4.34) and (4.40), the Galerkin projection onto the appropriate basis leads to

the quadratic equation:

Aijxj +Bijkxjxk = 0, xj = (vlmn, wlmn, Umn, φmn, c)
T . (4.41)

This algebraic equation is solved by the Newton-Raphson iteration. As the

initial guess of the Newton iteration, we choose the eigenfunction near the

neutral point. In order to measure the nonlinearity (or three-dimensionality)

of the solutions, we define the energy of the fluctuating part of the disturbance

as

E3D =
α

8π

∫ 2π/α

0

∫ +1

−1

∫ +1

−1

|ǔ|2

2
dxdydz. (4.42)

4.2 Result

We have calculated nine travelling wave solutions by the method described

in the previous section. Three of them have already been reported (Wedin

et al. 2009; Uhlmann et al. 2010; Okino et al. 2010). Other six are new

solutions. We have imposed one of the symmetries I, II and III shown by

(2.43)–(2.45) and (2.47) to the solutions. Hence, the bifurcating solutions,

which have been presented in Chapter 3, are not reproduced here. All the

travelling wave solutions we have obtained are listed in table 4.1 with their

minimum bulk Reynolds number and minimum Reynolds number. Figures 4.3

and 4.4 show the skin frictions and the existence domains for some solutions.

The wavenumbers of the solutions are chosen to minimize their bulk Reynolds

number for figure 4.3. Figure 4.4 shows that the solutions, which appear far

below the transitional Reynolds number (Reb ∼ 1000), take their minimum

Reynolds number when their wavenumber is almost equal to one (see also

table 4.1).
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Table 4.1: Travelling wave solutions in square duct flow with their minimum
values of the bulk Reynolds number and the Reynold number.

Solution minReb(Re, α) minRe(α)
ν1 (WBN) 598 (Re = 1968, α = 0.85) 1952 (α = 0.87)
µ1 (ONWB) 332 (Re = 836, α = 1.14) 828 (α = 1.13)
ν2 (UKP) 455 (Re = 1579, α = 0.90) 1535 (α = 0.88)
σ2 498 (Re = 1627, α = 1.10) 1607 (α = 1.08)
σ4a 1081 (Re = 4308, α = 3.06) 4287 (α = 3.11)
σ4b 1011 (Re = 2726, α = 3.20) 2714 (α = 3.12)
µ2 903 (Re = 3285, α = 2.35) 3138 (α = 2.27)
ζ2 624 (Re = 2313, α = 1.20) 2179 (α = 1.16)
δ2 670 (Re = 2225, α = 1.32) 2187 (α = 1.21)
σ1 (S-symmetric) 365 (Re = 952, α = 1.38) 924 (α = 1.36)
ω1 (Ω-symmetric) 427 (Re = 1272, α = 1.43) 1271 (α = 1.43)
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Figure 4.3: The skin friction λ against the bulk Reynolds number for the
travelling waves in square duct flow. The laminar state is represented by λ =
28.45/Reb. The turbulent state obeys the empirical formula by Jones (1976):
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4.2.1 Symmetry I

We obtain the travelling waves, WBN and ONWB, by choosing the streamwise

function as φB = εϕ5(y)ϕ5(z) and φB = ε(ϕ5(y)ϕ7(z) − ϕ7(y)ϕ5(z))/2 (see

figures 4.1 and 4.2), and rename them ν1 and µ1, respectively, in order to

link the nomenclature of the solutions, N1 and M1, in pipe flow by Pringle

et al. (2009). For instance, taking φB = εϕ5(y)ϕ5(z), the growth rate of the

perturbations with α = 0.85 at Re = 2500 as a function of the strength of the

roll, ε, is shown in figure 4.5(a). The neutral point is found at ε ∼ 0.285. Figure

4.5(b) show the energy of the fluctuating part of the disturbance against ε as

a bifurcation diagram. The solution bifurcates subcritically from the critical

point at ε = 0.285 (shown by the closed circle) and cross the line, ε = 0. This

intersection (open circle) represents the solution to the Navier-Stokes equations

without any artificial body force. The solution curve continues to decrease until

it undergoes the turning point at ε = −0.275 and crosses zero again. This is
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how we calculate the solution ν1 (WBN). The velocity field of the lower branch

of ν1 is shown in figure 4.6. The similarity between ν1 and N1 is mentioned in

Wedin et al. (2009) (see also figure 4.7). We find the minimum bulk Reynolds

number of µ1 is lower than those of any other solutions we have obtained (see

table 4.1 and figure 4.3).
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Figure 4.5: (a) The growth rate of the perturbations, αℑ[c], with α = 0.85 at
Re = 2500. (b) The bifurcation diagram of the solution ν1 with α = 0.85 at
Re = 2500. The bifurcation point is indicated by the closed circle.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.6: Mean flow Ū (top-left) and images of the total flows u along ξ of
the lower branch solution of ν1 with α = 0.85 at Re = 3000 (Reb = 1056).
The velocity components are shown on the y-z plane (arrows) and along the
x-direction (grey scale). ξ = x− ct.

(a) (b)

Figure 4.7: The instantaneous disturbance velocity field for (a) ν1 with α =
0.85 and Re = 3000 (Reb = 1056) (b) N1 (figure 5b in Pringle et al. 2009).
The streamwise component is shown by grey scale. Grey and white represent
slow and fast region, respectively.
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4.2.2 Symmetry II

The nonlinear solutions with the symmetry II represented by (2.44) and (2.47)

are invariant under the following transformations: the shift by half the wave-

length in the streamwise direction and reflection with respect to y,

S :


u

v

w

 (ξ, y, z) →


u

−v
w

 (ξ +
π

α
,−y, z),

the rotation by 180 degrees in the cross section,

R2 :


u

v

w

 (ξ, y, z) →


u

−v
−w

 (ξ,−y,−z). (4.43)

The combination of S and R2 shows the shift by half the wavelength in the

streamwise direction and reflection with respect to z:

S′ :


u

v

w

 (ξ, y, z) →


u

v

−w

 (ξ +
π

α
, y,−z). (4.44)

The schematic expression of the flow with the symmetry II in the cross section

is presented in figure 4.8.
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Figure 4.8: The schematic flow pattern with the symmetry II in the cross
section at (left) ξ = ξ0 and (right) ξ = ξ0 + π/α, where ξ0 is an arbitrary
constant. The letters “F” and “L” show some different flow patterns in the
cross section.

Choosing the basic stream function φB = ε(ϕ5(y)ϕ7(z)−ϕ7(y)ϕ5(z))/2, we

have reproduced the solution by Uhlmann et al. (2010), which is referred to as
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ν2 hereafter. Examining the coefficient vector, it is found that the solution ν2

has the additional symmetry. The coefficients of ν2 have the following relation:
vlmn = wlnm,

Umn = Unm,

φmn = −φnm.

(4.45)

It is easily verified that this inherent symmetry means the diagonal symmetry,

D :


u

v

w

 (ξ, y, z) →


u

w

v

 (ξ, z, y). (4.46)

For example,

v(ξ, y, z) =V ′(y, z) + v̌(ξ, y, z)

=∂zφ
′(y, z) + v̌(ξ, y, z)

=
∑
m,n

φmnϕm(y)ϕ
′
n(z) +

∑
l,m,n

vlmnϕm(y)ψn(z) exp[ilαξ]

=
∑
m,n

−φnmϕm(y)ϕ
′
n(z) +

∑
l,m,n

wlnmϕm(y)ψn(z) exp[ilαξ]

=
∑
m,n

−φmnϕ
′
m(z)ϕn(y) +

∑
l,m,n

wlmnψm(z)ϕn(y) exp[ilαξ]

=− ∂yφ
′(z, y) + w̌(ξ, z, y)

=W ′(z, y) + w̌(ξ, z, y) = w(ξ, z, y),

where the prime in the 4th–6th lines indicates the derivative. The flow field of

ν2 is shown in figure 4.9. As mentioned in Uhlmann et al. (2010), the mean

flow shows the diagonally symmetric eight-vortex structure, which is consistent

with the mean flow of the fully developed turbulence in square duct flow. It is

clearly seen that the vortex pattern and the position of the low-speed streak

of ν2 are very similar to those of N2 in pipe flow (see figure 4.10).
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.9: Same as figure 4.6 for ν2 with α = 0.9 at Re = 3000 (Reb = 1230).

(a) (b)

Figure 4.10: Same as figure 4.7 for (a) ν2 with α = 0.9 at Re = 3000 (Reb =
1230) and (b) N2 (figure 1b of Pringle et al. 2009).
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σ2

We apply the forcing to induce the motion in the cross section represented by

the stream function, φB = εϕ5(y)ϕ5(z). Figure 4.11 shows (a) the growth rate

of the perturbations and (b) the bifurcation diagram of the three dimensional

solution with α = 2.0 at Re = 2750. The neutral point of the first eigen-

value (ε = 0.157) is indicated by the closed circle in figure 4.11(a). The three

dimensional solution, which bifurcates subcritically from the critical point at

ε = 0.1568 (the closed circle in figure 4.11b), cross ε = 0 (open circle). The

solution curve has the turning point at ε = −0.0134, and intersects ε = 0

again. We refer to the two solutions found here as σ2. The solution, which

takes smaller value of E3D, is on the lower branch of σ2 and the other is on

the upper branch solution: these two solutions connect with each other when

the Reynolds number is decreased. The velocity field of σ2 is shown in figure

4.12. The mean flow has the four-vortex structure (see the top-left of figure

4.12). The solution has two pairs of streamwise vortices, oscillating along the

side walls alternately. This pattern is very similar to that of the solution S2 in

pipe flow (see figure 4.13).

Figure 4.14 shows the existence domains of ν2 and σ2. We find that the

solution σ2 bifurcates from ν2 by breaking the symmetry D (the bifurcation

points are indicated by the circles). The bifurcation is the pitchfork type: two

different solutions, which are identical under the rotation by 90 degrees in the

cross section, appear at the same time. The solution also emerges through the

saddle-node bifurcation at α ∼ 1.15, Reb ∼ 675 (see the closed-loop at the

middle of figure 4.14).
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Figure 4.11: (a) The growth rate of the perturbations, αℑ[c], with α = 2.0 at
Re = 2750. (b) The bifurcation diagram of the solution σ2 with α = 2.0 at
Re = 2750. The bifurcation point is indicated by the closed circle.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.12: Mean flow Ū (top-left) and images of the total flows u along ξ of
σ2 with α = 2.0 at Re = 2750 (Reb = 1053).

(a) (b)

Figure 4.13: Same as figure 4.7 for (a) σ2 with α = 1.1 at Re = 2500 (Reb =
1010) and S2 (figure 5d in Pringle et al. 2009, rotated by 90 degrees).
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Figure 4.14: The existence domains of the solutions ν2 and σ2 for Re = 1700
and 2000. Dotted curve: ν2. Solid curve: σ2. The bifurcation points of σ2 at
Re = 1700 and 2000 are indicated by the closed and open circles, respectively.

σ4

We choose the artificial rolls as φB = ε(ϕ5(y)ϕ7(z) − ϕ7(y)ϕ5(z))/2. In this

case, the opposite sign of ε results in the different solutions. Figure 4.15(a)

shows the growth rate with α = 3.2 at Re = 5000. The basic flow becomes

unstable when ε ∼ 0.30. The bifurcating solution from the neutral point is

calculated (the solid curve in figure 4.15). Though the bifurcation is subcritical,

the solution undergoes the turning point at ε = 0.037. The solution passes

the other two turning points at ε = 2.242,−0.334 and intersect with ε = 0

twice. The lower branch solution is indicated by the open circle. We refer

to the solutions obtained here as σ4a. The other neutral point is found at

ε ∼ −0.29 (see the closed diamond in figure 4.15a). The bifurcation curve,

which subcritically starts from ε = −0.287, reaches the exact solution in square

duct flow represented by the intersection with the line ε = 0 (see the open

diamond in figure 4.15b). After passing through the turning point at ε = 0.036,

it crosses zero again. These solutions are labelled as σ4b. Figures 4.16 and

4.17 present the velocity fields of σ4a and σ4b, respectively. Note that the



4.2. Result 73

solutions has the rotational symmetry by 90 degrees,

R4 :


u

v

w

 (ξ, y, z) →


u

w

−v

 (ξ,−z, y). (4.47)

This symmetry is derived from the imposed symmetries (2.44), (2.47) and the

inherent relation of the coefficients of the solution shown below:
vlmn = (−1)lwlnm,

Umn = Unm,

φmn = −φnm.

(4.48)

The mean flows for both solutions have the diagonally symmetric 16-vortex

patterns (two major vortices near the wall and two minor vortices around

the center in each quadrant). For σ4a, each pair of vortices oscillates along

the boundary, producing the low-speed streak about the centre of the side

(see figure 4.16), while the low-speed streaks are located at the corners of

the square for σ4b. The motion of σ4a is essentially same as σ4b if it is

rotated by 45 degrees. It is verified that the motions of σ4a and σ4b resem-

ble that of S4 in pipe flow (the instantaneous flow of S4 is not presented in

any documents. The movies of the travelling waves in pipe flow are available

at http://rsta.royalsocietypublishing.org/content/367/1888/457/suppl/DC1). It

should be noted that σ4a appears at much higher Reynolds number than σ4b,

while their minimum bulk Reynolds numbers are almost the same (see ta-

ble 4.1). Their minimum bulk Reynolds number is close to the transitional

Reynolds number. Also, σ4a takes a higher value of the skin friction than σ4b

and resides around the turbulent statistic by Jones (1976) (see figure 4.3).
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Figure 4.15: (a) The growth rate of the perturbations, αℑ[c], with α = 3.2 at
Re = 5000. (b) The bifurcation diagram of the solution σ4a (solid curve) and
σ4b (dashed curve) with α = 3.2 at Re = 5000. The bifurcation points are
indicated by the closed circle and the closed triangle.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.16: Same as figure 4.6 for σ4a with α = 3.2 at Re = 5000 (Reb =
1262).

mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.17: Same as figure 4.6 for σ4b with α = 3.2 at Re = 5000 (Reb =
2025).
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µ2

We obtain the other solution with the symmetry II, named µ2, using the mean

flow pattern of σ4a with α = 3.2 at Re = 5000 (Reb = 1262) as the basic

stream function (see figure 4.18). This basic stream function creates eight

major vortices near the side wall and eight minor ones around the centre of

the duct. The bifurcating solution with α = 2.5 at Re = 5000, which emerges

from the neutral point of the third eigenvalue (ε = 3.50), leads to the solution

µ2. It is found that the solution µ2 is invariant under the transformation D

by examining the coefficient vector. Figure 4.19 shows the flow pattern of

µ2. The mean flow of µ2 is the 16-vortex structure with the symmetry with

respect to the diagonals, which is the same pattern as that of σ4a. The solution

consists of four pairs of vortices as σ4a. However, the motion of µ2 is different

from that of σ4a because µ2 has the diagonal symmetry D, while σ4a has the

rotational symmetry by 90 degrees R4. The flow patterns of µ2 and M2 in

pipe flow shows the similarity (see figure 4.20). The solution µ2 emerges at

the transitional regime and their skin friction is slightly larger than that of

turbulence (see figure 4.3).

(a) (b)

Figure 4.18: (a) The basic stream function φB with ε = 1 to calculate the
solution µ2. The strength of φB is represented by the grey scale. (b) The
laminar solution for Re = 5000 with ε = 3.50. The grey scale shows the
streamwise velocity UB.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

Figure 4.19: Same as figure 4.12 for µ2 with α = 2.5 at Re = 3300 (Reb = 989).

(a) (b)

Figure 4.20: Same as figure 4.7 for (a) µ2 with α = 2.3 at Re = 5000 (Reb =
1976) and (b) M2 (figure 5a in Pringle et al. 2009).
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4.2.3 Symmetry III

The symmetry III represented by (2.45) and (2.47) indicates that the flow is

unchanged under the transformations shown below: the mirror reflection with

respect to z,

Z :


u

v

w

 (ξ, y, z) →


u

v

−w

 (ξ, y,−z),

and the mirror reflection with respect to y

Z′ :


u

v

w

 (ξ, y, z) →


u

−v
w

 (ξ,−y, z). (4.49)

The combination of the two transformations means the rotation by 180 degrees

with respect to the origin,

R2 :


u

v

w

 (ξ, y, z) →


u

−v
−w

 (ξ,−y,−z).

Figure 4.21 presents the schematic representation of the flow with the symmetry

III.

y

z

+1

−1 +1 y

z

+1

−1 +1

F F

F F

L L

L L

Figure 4.21: Same as figure 4.8 for the symmetry III.

As shown in the following paragraphs, two nonlinear solutions with the

symmetry III are obtained.

ζ2

Choosing the basic stream function as φB = ε(ϕ5(y)ϕ7(z)−ϕ7(y)ϕ5(z))/2 with

the negative sign of ε leads to one solution with the symmetry III, which is
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labelled as ζ2. We find that the motion has not only the symmetries Z, Z′ and

R2 but also the symmetry Ω2 defined as:

Ω2 :


u

v

w

 (ξ, y, z) →


u

w

−v

 (ξ +
π

α
,−z, y). (4.50)

This is because the coefficients of the solutions satisfy the following relation:
vlmn = (−1)lwlnm,

Umn = Unm,

φmn = −φnm.

(4.51)

The transformation Ω2 means the shift by half the wavelength and the rotation

by 90 degrees around the origin. The mean flow of the solution has a diagonally

symmetric eight-vortex pattern with flows directing from the corner toward the

centre (see the top-left of figure 4.22). The instantaneous flows are also shown

in figure 4.22. The flow pattern of ζ2 looks like Z2 in a pipe as shown in figure

4.23. However, the relevance between ζ2 and Z2 is unclear, because ζ2 appears

at much smaller Reynolds number than the transitional value, Reb ∼ 1000,

while Z2 is reported to appear far above the transitional regime.

(a) (b)

Figure 4.23: Same as figure 4.7 for (a) ζ2 with α = 1.0 at Re = 3000 (Reb =
1151) and (b) Z2 (figure 5c in Pringle et al. 2009).
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

αξ = 5π/4 αξ = 3π/2 αξ = 7π/4

Figure 4.22: Same as figure 4.6 for ζ2 with α = 1.0 at Re = 3000 (Reb = 1151).
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δ2

The other solution, which is referred to as δ2, is obtained by applying the

mean flow pattern of σ2 with α = 1.1 at Re = 2500 (Reb = 1001) as the basic

stream function (see figure 4.24). The solution has the eight-vortex mean flow

structure without the diagonal symmetry. In the top-left of figure 4.25, the

vortices near z = ±1 are slightly smaller and stronger than those near y = ±1.

Though the instantaneous flow is similar to those of ζ2, the solution δ2 does

not have the symmetry Ω2 (compare the top-centre and the middle-right of

figure 4.25).

The existence domains of ζ2 and δ2 are presented in figure 4.26. It is found

that δ2 is the bifurcating solution from ζ2 through the pitchfork bifurcation:

the solution, which is obtained by rotating δ2 by 90 degrees, appears simul-

taneously. The solution δ2 connects the lower and upper branches of ζ2 (the

bifurcation points are indicated by the circles).

(a) (b)

Figure 4.24: (a) The basic stream function φB with ε = 1 to calculate the
solution δ2. The strength of φB is represented by the grey scale. (b) The
laminar solution for Re = 5000 with ε = −1.87. The grey scale shows the
streamwise velocity UB.
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mean flow αξ = 0 αξ = π/4

αξ = π/2 αξ = 3π/4 αξ = π

αξ = 5π/4 αξ = 3π/2 αξ = 7π/4

Figure 4.25: Same as figure 4.12 for δ2 with α = 1.0 at Re = 3000 (Reb = 894).
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Figure 4.26: The existence domains of the solutions ζ2 and δ2 for Re = 2200
and 2400. Dotted curve: ζ2. Solid curve: δ2. The bifurcation points of δ2 at
Re = 2200 and 2400 are indicated by the closed and open circles, respectively.

4.3 Conclusion

We have found a number of travelling waves solutions in square duct flow by

introducing the artificially body forces, taking a similar approach to Waleffe

(1998, 2003). The solutions, ν1, µ1, ν2, σ2, ζ2 and δ2, appear at much lower

bulk Reynolds number than the transitional regime, Reb ∼ 1000, and they take

much larger skin friction than the statistic of square duct turbulence (see table

4.1 and figure 4.3). It is noteworthy that these solutions have the wavenumber

almost equal to one when they take the minimum Reynolds number (see table

4.1 and figure 4.4). We have found the solution, σ4a, σ4b and µ2, which emerge

at the transitional regime. These solutions have a rather larger wavenumber

at their onset. Their flow patterns are more complex than those of the other

solutions.

As listed in table 4.2, most of the solutions presented here have their cor-

responding solutions in pipe flow. The similarity between square duct flow

and pipe flow shown throughout this thesis implies that these two pressure

driven flows become turbulent through a common mechanism despite the dif-

ference between their cross-sectional geometries. The presence of the corners

of a square does not seem to play a crucial role in transition to turbulence.
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Table 4.2: The symmetries of the travelling wave solutions in square duct flow
and their counterpart in pipe flow. The nomenclature of the solutions in pipe
flow is based on Pringle et al. (2009).

Solution Symmetry Transformation Solution in pipe flow
ν1 (WBN) I S, Z, Ω N1
µ1 (ONWB) I S, Z, Ω M1
ν2 (UKP) II S, R2, S

′ +D N2
σ2 II S, R2, S

′ S2
σ4a II S, R2, S

′ +R4 S4
σ4b II S, R2, S

′ +R4 S4
µ2 II S, R2, S

′ +D M2
ζ2 III Z, Z′, R2 +Ω2 unknown
δ2 III Z, Z′, R2 unknown
σ1 (S-symmetric) I+II S S1
ω1 (Ω-symmetric) I+IV Ω unknown

4.4 Appendix

4.4.1 Accuracy of the travelling waves

The results of the accuracy check for the travelling wave solutions presented

in Chapter 4 are shown in tables 4.3-4.10. The values in the tables seems

to converge well with the truncation level indicated by the dashed underline.

Each truncation level is adopted to calculate the minimum Reynolds numbers

shown in table 4.1.

Table 4.3: The phase velocity c, the bulk Reynolds number Reb and the skin
friction λ for the upper branch of ν1 with α = 0.85 at Re = 2000 as a function
of the truncation level (L,M,N).

(L,M,N) c Reb λ
(4, 33, 33) 933.79 600.29 0.07536
(6, 29, 29) 935.25 600.97 0.07517
(6, 33, 33) 935.23 600.96 0.07517

(6, 37, 37) 935.22 600.95 0.07517
(8, 33, 33) 934.93 600.93 0.07518



4.4. Appendix 85

Table 4.4: Same as table 4.3 for the upper branch of ν2 with α = 0.90 at
Re = 1550.

(L,M,N) c Reb λ
(10, 29, 29) 645.16 456.95 0.10076
(12, 25, 25) 645.87 457.23 0.10064
(12, 29, 29) 645.29 457.03 0.10073

(12, 33, 33) 645.25 457.00 0.10074
(14, 29, 29) 645.33 457.05 0.10072

Table 4.5: Same as table 4.3 for σ2 with α = 1.10 at Re = 1700.

(L,M,N) c Reb λ
( 8, 33, 33) 749.18 520.41 0.08520
(10, 29, 29) 748.54 520.05 0.08532
(10, 33, 33) 747.87 519.67 0.08545

(10, 37, 37) 747.86 519.67 0.08545
(12, 33, 33) 747.65 519.55 0.08549

Table 4.6: Same as table 4.3 for the upper branch of σ4a with α = 3.00 at
Re = 4400.

(L,M,N) c Reb λ
(3, 53, 53) 1127.4 1076.3 0.05156
(4, 49, 49) 1161.7 1124.9 0.04720
(4, 53, 53) 1118.4 1088.0 0.05045

(4, 57, 57) 1119.3 1087.1 0.05054
(5, 53, 53) 1121.1 1084.9 0.05074

Table 4.7: Same as table 4.3 for the upper branch of σ4b with α = 3.19 at
Re = 2750.

(L,M,N) c Reb λ
(4, 45, 45) 1329.1 1016.8 0.03611
(5, 41, 41) 1325.4 1016.9 0.03610
(5, 45, 45) 1332.2 1017.8 0.03604

(5, 49, 49) 1331.0 1017.2 0.03608
(6, 45, 45) 1331.4 1017.6 0.03605
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Table 4.8: Same as table 4.3 for µ2 with α = 2.30 at Re = 3200.

(L,M,N) c Reb λ
(3, 49, 49) 1066.9 924.89 0.05078
(4, 45, 45) 1073.1 928.98 0.05033
(4, 49, 49) 1068.9 926.47 0.05060

(4, 53, 53) 1069.5 926.90 0.05056
(5, 49, 49) 1069.8 927.16 0.05053

Table 4.9: Same as table 4.3 for the upper branch of ζ2 with α = 1.20 at
Re = 2250.

(L,M,N) c Reb λ
( 6, 37, 37) 944.93 627.08 0.07767
( 8, 33, 33) 946.08 627.60 0.07754
( 8, 37, 37) 945.61 627.38 0.07759

( 8, 41, 41) 945.70 627.42 0.07758
(10, 37, 37) 945.73 627.44 0.07758

Table 4.10: Same as table 4.3 for δ2 with α = 1.32 at Re = 2250.

(L,M,N) c Reb λ
( 6, 37, 37) 1035.5 672.76 0.06748
( 8, 33, 33) 1038.6 674.31 0.06717
( 8, 37, 37) 1039.1 674.59 0.06711

( 8, 41, 41) 1038.9 674.49 0.06713
(10, 37, 37) 1039.4 674.74 0.06708



Chapter 5

Conclusion

In this thesis, eleven nonlinear travelling wave solutions in square duct flow are

presented. These solutions are obtained by the following three approaches:

• Homotopy approach from the internally heated duct flow (Chapter 2),

• Investigation of linear stability of µ1 and subsequent bifurcations via

symmetry breaking (Chapter 3),

• Homotopy approach using artificial body forces (Chapter 4).

In Chapter 2, we have performed the nonlinear analysis of viscous flow

with the internal heat source in a vertically placed square duct, extending the

linear stability analysis by Uhlmlann & Nagata (2006). The path from the

linear critical point due to the instability caused by the inflectional property

of the basic flow to the isothermal solution (µ1) is established. The solution

µ1 appears through the saddle-node bifurcation in Re. The mean flow of µ1

shows eight-vortex structure: one major vortex near the wall and one minor

vortex around the centre of the duct for each quadrant. This is similar to the

DNS result at the transitional Reynolds number by Uhlmann et al. (2007).

The nonlinear solution µ1 is invariant under the transformations, S, Z and

Ω. In Chapter 3, the linear stability of µ1 to the perturbations, which are

divided into four groups depending on their symmetry, is investigated. The

solution µ1 is shown to be unstable from its onset at the saddle-node point.

We have obtained two asymmetric travelling wave solutions (σ1 and ω1), which

arise from breaking the mirror symmetry of µ1. The solution σ1 retains the

shift-and-reflect symmetry S, while the other solution ω1 possesses the shift-

and-rotate symmetry Ω. The flow field of σ1 consists of a pair of streamwise

vortices and a low-speed streak near one of the side walls. This flow pattern is
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very similar to that of the edge state in square duct flow identified by Biau &

Bottaro (2009). The characteristic quantities such as the skin friction and the

bulk Reynolds number for σ1 and µ1 take the close value to those of the edge

state. Our stability analysis shows that σ1 is less unstable than µ1. These

results suggest that σ1 is embedded in the edge state. Especially, we expect

the edge state is organized around σ1 (at least four σ1 solutions exist because

of the geometrical symmetry of a square) and their heteroclinic connections.

Following Waleffe (1998), the continuation method using artificially ar-

ranged body forces is formulated in Chapter 4. The advantage of this approach

is to enable us to calculate various kinds of solutions by choosing an arbitrary

forcing function. We have reproduced three solutions (ν1, µ1 and ν2), which

have already been reported in Wedin et al. (2009), Okino et al. (2010) and

Uhlmann et al. (2010), and obtained six new solutions (σ2, σ4a, σ4b, µ2, ζ2

and δ2). A lot of nonlinear solutions (ν1, µ1, ν2, σ2, ζ2 and δ2) appear at

much lower bulk Reynolds number than the transitional value (Reb ∼ 1000),

and their flow patterns are rather simple. It is noteworthy that these solu-

tions have the wavenumber almost equal to one when they take the minimum

Reynolds number. We find that µ1 takes the lowest Reynolds number at the

saddle-node among the solutions presented so far. On the other hand, the

solutions, σ4a, σ4b and µ2, emerge at the transitional regime, and have more

complex flow structures.

It is found that most of the solutions presented in this thesis have their

counterparts in pipe flow (Pringle et al. 2009). The similarity between square

duct flow and pipe flow suggests that the two pressure driven flows in a straight

tube with different cross sections have some transition mechanism in common.

Throughout this thesis, it is shown that a number of nonlinear travelling

wave solutions appear below the transitional Reynolds number and more and

more solutions would bifurcate due to their instabilities. The richness of the

nonlinear solutions implies the complexity of the phase space and they are

considered to be the fundamental building blocks to describe the turbulence

in a square duct. Though we restricted our attention to the travelling waves,

relative periodic orbits are also thought to be important in turbulent dynam-

ics. Recently, such solutions are efficiently calculated by Viswanath (2007) for

plane Couette flow and Duguet, Pringle & Kerswell (2008) for pipe flow using

the Newton-Krylov method. Calculation of relative periodic orbits in square
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duct flow should be addressed in the future. Also, in order to give an explana-

tion to laminar-turbulent transition from the view point of a dynamical system,

the linear stability of the nonlinear solutions and their heteroclinic and homo-

clinic connections should be investigated thoroughly. Heteroclinic connections

between nonlinear solutions are calculated by Halcrow et al. (2009) for plane

Couette flow and Duguet, Willis & Kerswell (2008) for pipe flow.

The other interest is the nonlinear solutions in rectangular duct flow (the

case when the aspect ratio is larger than unity). As our preliminarily work, we

have obtained a solution, whose disturbances are localized in the spanwise di-

rection when the aspect ratio of µ1 is enlarged as shown in figure 5.1. Recently

Schneider et al. (2010) have obtained solutions with a localized structure for

plane Couette flow. These solutions are expected to be a clue to elucidate

the localized structures, which are normally observed in the onset of the tur-

bulence, such as a puff in turbulent pipe flow and a turbulent spot in plane

Couette flow and plane Poiseuille flow.

Figure 5.1: The mean velocity profile of the disturbances of the solution in
rectangular duct flow. The aspect ratio of the cross section is five. The velocity
in the streamwise direction is shown by the grey scale. Grey and white represent
slow and fast, respectively. The arrows show the velocity in the cross section.
The disturbances are almost confined to −1 ≤ z ≤ +1.
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