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Abstract

Human society is built on electric power transmission technology and information com-
munication technology. These technologies are based on synchronization. Synchroniza-
tion is a universal phenomenon in physical, chemical, biological, and engineering sys-
tems. The regulation of rhythms in synchronization has attracted much attention from
researchers. Then, the information communication technology develops with many
applications of signal synchronization. The power or energy aspect has been already
realized as power network, but the energy aspect of synchronization is not completed
in spite of the rich possibilities of engineering applications.

In the thesis, we establish a flow of research on the energy aspect of synchronization
from the basic analysis to the application of energy conversion. The target application
is energy scavenging by a synchronized motion of the parametric pendulum. The
parametric pendulum inherently converts the external vibration to its motion in the
rotational direction, which accompanies energy. The typical periodic motions of the
parametric pendulum are libration and rotation. These synchronized motions give a
significant viewpoint to the energy aspect of synchronization. In order to understand
the energy conversion by synchronization and apply it to the energy scavenging, we
analyze the energy conversion in frequency entrainment for each motion. The periodic
librations derive from exciting static states. On the other hand, the periodic rotations
appear at high energy states in the periodic state space. The onset of the periodic
rotations depends on the initial state of the pendulum. We propose a control method
for starting a periodic rotation of the parametric pendulum based on synchronization
as an application of phase regulation by energy conversion.

The former part of the thesis is devoted to investigation into energy conversion
in frequency entrainment of libration and rotation. At the entrained states, response
curves are obtained numerically and theoretically for energy supplied to the system
and characteristics of the entrained motion. Comparison of both the motions indicates
that the entrained rotations can convert a larger amount of energy than the entrained
librations. In the transient regime, the regulation of phase in the frequency entrainment
is analyzed in terms of energy exchange. The notion of phase is the heart in the theory
of synchronization. We can find a relationship between the phase regulation and the
energy conversion only for rotation. Therefore, energy conversion is associated with
amplitude for libration and with phase for rotation.

In the latter part, a control method is proposed for starting a periodic rotation of
the parametric pendulum. We construct the control with delay based on the possibility

i



to regulate the phase of rotation by exchanging energy which is obtained in the former
part. The performance of the proposed control is examined numerically. In addition,
the feasibility is verified experimentally by using a vertically excited mechanical pen-
dulum. Bifurcation phenomenon with respect to the delay is observed to clarify the
tolerance of the control with mistuned delay. We advocate that window in the domain
of delay exhibits qualitatively similar structure to synchronization region. This result
implies that the proposed control with delay induces synchronization in the controlled
system.
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Chapter 1

Introduction

Human society is supported by electric power transmission technology and informa-
tion communication technology. Synchronization of electric generators underlies the
power transmission. The information communication technology is also based on signal
synchronization. Synchronization is a universal phenomenon in physical, chemical, bi-
ological, and engineering systems. A lot of researchers have shown interest in analysis
of the phenomenon, in particular the regulation of rhythms. Then, the information
communication technology develops with many applications of signal synchronization.
The power or energy aspect of synchronization has been already achieved in power
network, but the energy aspect of synchronization is not completed in spite of the rich
possibilities of engineering applications.

1.1 Energy aspect of synchronization

Synchronization takes on two different aspects: regulating rhythm and exchanging
energy between oscillators. The regulation of rhythms of oscillators can be visibly
confirmed as cycle or frequency. This aspect has attracted a lot of interest from re-
searchers [1, 2]. The notion of phase was introduced for understanding the regulation
of rhythms in synchronization [3–8]. Based on the notion, a state of an oscillator is as-
signed to a value of the phase. As a result, theoretical investigations have been carried
out into transient regimes of synchronization phenomena and synchronized states in
complicated systems such as interacting many oscillators [7–11]. The other aspect as
the exchange of energy underlies the occurrence of synchronization. The phenomenon
is induced and sustained by the interaction of oscillators. The interaction accompanies
the exchange of energy between the oscillators. Thus, the underlying energy exchange
is necessary for the phenomenon. As an engineering application of the energy aspect,
we can mention synchronization of generators in electrical power systems [12–16]. The
synchronizing generators exchange energy with keeping a common frequency, which
enables the transmission and distribution of electrical energy. The energy aspect of
synchronization is not an additional effect but an essential factor in the application.

Several groups of researchers have focused on the energy aspect of synchronization.
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Cartwright examined the time average of energy stored in the van der Pol oscillator for
various steady states and showed that the entrained state appears at higher energy than
the drift and asynchronous states [17]. Kuramitsu et al., by using the Brayton-Moser
formulation [18] of nonlinear electrical circuits, defined the averaged potential as the
time average of power dissipated from a coupled system of self-oscillatory circuits such
as the van der Pol oscillators [19–21]. They showed that the frequency entrainment
develops in the direction that the averaged potential decreases. Sarasola et al. evalu-
ated synchronization in coupled chaotic systems by using the notion of energy stored
in and dissipated from the systems [22–24]. Paley et al. employed the time derivative
of kinetic energy to control collective motions of phase oscillators [25].

Takagi referred to difference between oscillators and rotators from the energy aspect
of synchronization [12], where we use oscillators as librating objects in comparison with
rotating objects denoted by rotators. Blekhman indicated a different point in the energy
aspect [1]: “The most substantial difference is that usually only clocks with sufficiently
close partial frequencies can self-synchronize, while in the case of rotating rotors the
effect can occur also at very different partial angular velocities. This is partially related
to another practical and important difference: In the case of the self-synchronization of
oscillating objects, like pendulum clocks, much less power can be transmitted between
the objects than in the case of rotors (vibro-exciters).” These statements imply that
the energy aspect of synchronization is possibly understood from the type of oscillation.

The different types of oscillations can be interpreted as topologically different kinds
of periodic orbits in nonlinear dynamics. Pikovsky et al. recognized that synchro-
nization of rotators is different from the phenomenon of oscillators, in the sense that
a single rotator is not a self-sustained system. The oscillation of librating object is
called libration, and the oscillation of rotator is rotation [26]. These oscillations can be
observed as the typical oscillations of a pendulum.

1.2 Energy scavenging by parametric pendulum

The parametrically excited pendulum exhibits a variety of behaviors such as a static
state at the downward position, periodic librations and rotations, and chaos [27–40].
The parametric pendulum inherently converts the external vibration to its motion
in the rotational direction [41]. Since the motion in the rotational direction can be
associated with the operation of a generator, it is expected that energy is derived from
external sources by using a motion of the parametric pendulum. The process leads to
energy harvesting or energy scavenging. The periodic motions are regarded as favorable
motions of the parametric pendulum in terms of steady operation in the applications.
The periodic rotations were numerically investigated with respect to the stability and
the existence domain in the excitation parameter space [32,34,35]. Theoretical studies
were performed for the periodic librations and rotations [38,39].

As a vertical vibration in nature, we focus on the heave motion of sea wave. Fig. 1.1
shows a conceptual diagram of energy scavenging from the heave motion of sea wave
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Figure 1.1: Conceptual diagram of energy extraction from the heave motion of sea
wave by the parametric pendulum.

by the parametric pendulum. Ocean energy has huge potential from a global point of
view, but lags behind solar and wind energy in the practical application [42]. Recently
ocean wave has attracted attentions as a renewable energy source in particular in
Europe [43–46]. Over the past 30 years, surface winds which are useful for wind power
generation have declined in several areas of the northern hemisphere [47]. This report
implies that external sources for energy scavenging should be diversified, and possibly
promotes the development of ocean energy extraction.

Energy conversion of the parametric pendulum is achieved through its motion in
the rotational direction. In particular the periodic librations and rotations are closely
related with resonant and synchronized states. For each type of the periodic motions,
understanding the mechanism of the energy conversion gives a guideline for the prac-
tical and efficient aspect of energy scavenging by the parametric pendulum.

1.3 Control based on synchronization

The mechanism of synchronization is applicable to control for the onset of target mo-
tions. Forced synchronization occurs in an oscillator with an external input. In other
words, the application of an external input to an oscillator induces the synchronization.

This effect of synchronization has been shed light on by Pecora and Carroll as
complete synchronization of chaotic oscillators [48,49]. In the regime of complete syn-
chronization, identical or non-identical chaotic oscillators exhibit almost same behavior
through the strong coupling. Even though one of the chaotic oscillators is replaced by
the corresponding chaotic signal generator, the complete synchronization is still kept.
The chaotic system consisting of the other oscillators is controlled by regulating the
state of the chaotic signal generator. The controlled state of the chaotic system is
not restricted to chaotic oscillation. Ott, Grebogi, and Yorke introduced the concept
of controlling chaos to stabilize an unstable periodic orbit embedded in a chaotic at-
tractor [50]. Pyragas extended the target from discrete systems to continuous systems
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and proposed the external force control as a method for controlling chaos [51]. The
external force control can be regarded as a control method by using a signal generator.
Furthermore, he proposed the delayed feedback control in which the signal is generated
by a delayed state of the system [51]. A lot of experimental applications of the control
have been carried out with the benefit of the property to require no exact mathematical
model of the system [52–55]. The control method nulls the control input after stabi-
lizing an unstable periodic orbit. The delayed feedback control can be regarded as a
control method which synchronizes the current state and the time delayed one [53,56].

The control based on synchronization can be easily extended to control for stable
periodic rotations. The chaos control operates due to the properties of chaos such as
the topological transitivity and the sensitive dependence on small perturbation [57,58].
It is obvious that these properties are not observed in periodic rotations. However, the
periodic structure of the state space which generates rotation can replace the topolog-
ical transitivity. Since the desired motion is a stable periodic rotation, the sensitive
dependence is not required. Thus the chaos control can operate for periodic rotations
without the above chaotic properties. The onset of the periodic rotations of the para-
metric pendulum, which we introduced in the previous section, depends on the initial
state [35]. The control based on synchronization must be applicable to the periodic
rotations. In particular, the delayed feedback control is suited for starting the energy
scavenging by the parametric pendulum. After the onset of a periodic motion, the con-
trol satisfies the null control input desirable from the viewpoint of energy scavenging.
The parametric excitation or external vibration of nature cannot be measured exactly
and fixed, and the damping effect in mechanical systems is so complicated that the
exact model is not available [59,60]. However, the delayed feedback control can realize
the target motion without the exact model.

1.4 Purpose and organization

The purpose of the thesis is to understand and apply the conversion of energy by
synchronization. As an application of the energy conversion, we introduce energy scav-
enging by a resonant or synchronized motion of the parametrically excited pendulum.
In order to understand the energy conversion at synchronized states, a fundamental
synchronization, namely frequency entrainment, is analyzed in terms of energy. The
obtained perceptions of energy conversion at the entrained states indicate that the
periodic rotations are suitable for the energy scavenging by the parametric pendulum.
The relationship between the phase regulation and the energy conversion is applied to
control for starting a periodic rotation.

Chapter 2 describes the theory of synchronization for a pendulum. First, we review
the notion of phase which plays a central role in the theory of synchronization. Then,
the notion of energy conversion in synchronization is introduced. A value of energy
stored in a pendulum can be assigned with a closed orbit. Energy possibly becomes a
more general notion than amplitude. In addition, we give a self-sustained oscillator and
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a rotator defined in the state space of a pendulum which are analyzed in the following
chapters. The steady oscillations are interpreted as the limit cycles which are distin-
guishable according to the topological property. Finally, the parametric pendulum is
introduced as a energy conversion device for energy scavenging.

Chapter 3 is devoted to analysis of frequency entrainment of libration in the van
der Pol oscillator. We investigate the entrained states and the transient regime for
the frequency entrainment. For the entrained states, an averaged equation is derived
to give a theoretical approach. Energy conversion is studied by using response curves
which are shown numerically and theoretically. The obtained theoretical expression
characterizes the energy conversion at the entrained states. For the transient regime,
a phase equation is derived which describes the dynamics of phase for the entrainment
of libration. Analyzing energy stored in the system with the phase dynamics shows
that energy is converted regardless of the phase dynamics in the transient regime. The
results and the approaches in this chapter can be confirmed in terms of the validity
and the generality by comparing with reported results. This is significant for analysis
of frequency entrainment of rotation in the next chapter.

In chapter 4, we analyze frequency entrainment of rotation in the phase-locked sys-
tem by using the same approaches as chapter 3. Phase for the frequency entrainment
of rotation is identified through response characteristics and an expression of the limit
cycle. A phase equation is derived as the same form as the phase equation for libra-
tion. The energy conversion at the entrained states is understood by using response
curves. In the transient regime, we associate energy stored in the system with the
phase dynamics. In the end of this chapter, difference is discussed between the fre-
quency entrainment of libration and rotation. The difference is clarified mainly from
the viewpoint of energy. The result indicates advantages of rotation over libration for
energy conversion. In addition, the relationship between the phase regulation and the
energy conversion leads to the concept of control for starting a periodic rotation by
exchanging energy.

In chapter 5, we propose a control method for starting a periodic rotation of the
parametric pendulum. The discussion in chapter 4 implies that rotation is more efficient
than libration for energy conversion of the parametric pendulum. On the basis of the
results in the previous research, we reveal a problem related with the onset of the
periodic rotations for energy scavenging. The onset of the periodic rotations depends on
the initial state of the pendulum. A start control is designed based on the relationship
between the phase regulation and the energy conversion. The remaining of this chapter
numerically establishes the performance of the start control with respect to the domain
of attraction and the bifurcation diagram.

Chapter 6 verifies the feasibility of the start control from the experimental ap-
proach. The parametric pendulum is realized by exciting the mechanical pendulum
vertically. First, the experimental setup and the system parameters are described. We
adjust suitable excitation parameters which induce the target periodic rotation. Then,
the control scheme is implemented in the experimental setup. The experiments elu-
cidate the performance of the control method depending on the control parameters.
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In particular, we focus on the bifurcation phenomenon with respect to the delay time.
The phenomenon is explained in comparison with synchronization region. Finally, we
demonstrate the energy scavenging by a periodic rotation of the mechanical pendulum.

In chapter 7, the conclusions of this study are summarized. Some proposals for the
future work is also presented.
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Chapter 2

Pendulum and its Synchronization

This chapter provides preliminaries about the dynamics of a pendulum and the syn-
chronization. First, we summarize the notion of phase and energy in synchronization.
Then, the cylindrical state space and two types of oscillations are explained. Synchro-
nization phenomena occur for both oscillations. We give a dynamical system with each
of the two types of limit cycles. Finally, it is shown that the parametric pendulum
exhibits the two oscillations.

2.1 Phase for synchronization

Phase is an essential physical quantity in synchronization. We first define the no-
tion of phase for a limit cycle in an n-dimensional autonomous system. Then, the
equation which describes the dynamics of phase for synchronization is derived for an
n-dimensional non-autonomous system.

2.1.1 Definition of phase

The notion of phase is defined according to [2, 5, 6, 8]. Consider an n-dimensional
autonomous system given by

dx

dt
= f(x), x ∈ Rn (2.1)

with an asymptotically stable T0-periodic limit cycle. In the state space, the limit cycle
is represented by a closed orbit, depicted by C. The limit cycle possesses the following
properties:

dx

dt
= f(x) and x(t + T0) = x(t). x ∈ C (2.2)

We focus on the vicinity of the closed orbit C corresponding to the limit cycle.
Since C is assumed to be stable, each state point x in the vicinity of C approaches the
closed orbit C as t → ∞. In order to describe an expression for this asymptotically
stable motion in the vicinity of C, we begin with the closed orbit C. A certain value of

7



x

y

A φ

Figure 2.1: Limit cycle in a quasilinear oscillator described as x(t) = A cosφ(t) =
A cos(ω0t + φ0), where y = dx/dt.

a quantity φ is assigned with each point x on C so that φ increases at constant speed
with development of the motion. This assignment is formulated as

dφ(x)

dt
= ω0, x ∈ C (2.3)

where ω0 is the constant increase of φ. The quantity φ may be called phase defined
on the closed orbit C. The value of phase is identified at an integer multiple of the
period T0. For the definition of phase, we can give a simple example in which the
system (2.1) corresponds to a 2-dimensional quasilinear oscillator in Fig. 2.1. The
stable limit cycle of the oscillator can be described as the sinusoidal function x(t) =
A cos(ω0t + φ0). Here ω0 denotes the angular frequency and φ0 the initial phase.
The oscillation is identified by the amplitude A and the phase φ(t) = ω0t + φ0. The
phase φ(t) of the oscillation increases without bound. However the cosine is a periodic
function, that is, cos(φ + 2π) = cosφ. Thus two phases that differ from 2π degenerate
to a physical state.

The definition of the phase φ is extended to each x in the vicinity of the closed
orbit C. Fig. 2.2 illustrates a circular tube which corresponds to the vicinity of C.
The phase φ is associated with each state point x inside the tube. The tubular region
containing all neighborhoods of C is depicted by G in Fig. 2.2. This region G is defined
as a subset in the domain of attraction for C. We track two points xC and xG. The
point xC lies on the closed orbit C and the other point xG exists in G except C. The
definition of the phase φ can be applied to xC . Now let the two points xC and xG start
to move simultaneously. Then xG approaches to the closed orbit C. This suggests that
the phase φ(xG) is assigned to xG. As t → ∞, the two points move on C at a finite
distance from each other. By using the notion of phase, this situation is formulated as
φ(xC)−φ(xG) = const. In particular, infinitely small distance between the two points
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C: Limit Cycle

G: Vicinity of C

xC(0)=xC(T0)
xG(0)

xG(T0)

Figure 2.2: Circular tube G corresponding to the vicinity of the limit cycle orbit C.

corresponds to φ(xC) = φ(xG). Since xG is an arbitrary point in G, the consistent
phase shows that a certain value of the phase φ can be assigned with each point x in
G. Therefore, the tubular region G is completely filled with a one-parameter family of
hypersurfaces which consist of the state points associated with the same phase. The
(n − 1)-dimensional hypersurfaces, denoted by I(φ), form so-called isochrons [4, 6] if
they are extended to the entire state space. From the definition of phase in G, all the
points on a common isochron remain on another common isochron after any interval.
The phase for a state point changes as the same rate as the phase of the other points
on the common isochron. Thus,

dφ(xG)

dt
=

dφ(xC)

dt
=

dφ(x)

dt
= ω0. x ∈ G (2.4)

Eq. (2.4) can be transformed as

dφ(x)

dt
=

∂φ

∂x
· dx

dt
=

∂φ

∂x
· f(x) = ω0. x ∈ G (2.5)

2.1.2 Phase equation

In addition to the notion of phase, we review the phase equation [2, 3, 7, 8, 61] which
describes the dynamics of phase for synchronization. We have already derived the phase
equation for the system (2.1). That is, Eq. (2.3) or Eq. (2.4). However, these equations
do not give any information. The reason is that the phase equation is expected to
describe the dynamics of phase for an oscillator influenced by another oscillator. From
the reason, a phase equation should be derived for a perturbation of the system (2.1).

Consider an n-dimensional non-autonomous system as the perturbed system (2.1)

dx

dt
= f(x) + εp(t,x), (2.6)

where ε is the small parameter and p represents the perturbation which depends on the
time t and the state x. A T -periodic solution is assumed to exist as the perturbation
of the limit cycle. The perturbation theory allows us to identify the limit cycle and
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the periodic orbit. Then, the definition of phase is expanded to the system (2.6). As
a result, in the perturbation of the domain G, denoted by G′,

dφ(x)

dt
=

∂φ

∂x
· dx

dt
=

∂φ

∂x
· f(x) +

∂φ

∂x
· εp(t,x) = ω0 + ε

∂φ

∂x
· p(t,x). x ∈ G′ (2.7)

Now the state point x is represented by the corresponding phase φ(x). The last
term ε∂φ/∂x · p(t,x) can be described as the function, denoted by Φ, of the time t
and the phase φ as follows:

dφ

dt
= ω0 + Φ(t, φ). (2.8)

This equation is the phase equation which we now consider.
In order to make it easy to analyze the phase equation, the equation is generally

transformed into the averaged form by applying the averaging method [62]. By using
the transformation φ(x(t)) = ωt + ψ(t) with ω = 2π/T and the averaging method,the
phase equation is given by

dψ

dt
= ω0 − ω + Ψ(ψ), (2.9)

where the function Ψ is the time average of Φ.

2.2 Energy conversion in synchronization

In this section, we construct the notion of energy conversion for dynamical systems in
which synchronization appears. Energy as a conserved quantity can be associated with
a closed orbit.

Consider the dynamical system (2.6). We assume that the vector field f can be de-
composed into the sum of vector fields fc and εfd, where ε is the small parameter. The
vector field fc corresponds to a conservative system, and εfd changes the conservative
system to a system with limit cycle. That is,

dx

dt
= f(x)+εp(t, x) = fc(x)+εfd(x)+εp(t,x) = fc(x)+ε

{
fd(x)+p(t,x)

}
. (2.10)

The conservative system dx/dt = fc(x) has conserved quantities. One of them is
energy, denoted by S(x), stored in the system from a physical standpoint. The stored
energy S(x) possesses the following property:

dS

dt
=

∂S

∂x
· dx

dt
=

∂S

∂x
· fc(x) = 0. (2.11)

In the system (2.10), the stored energy S(x) is not conserved. The time derivative of
S(x) is

dS

dt
=

∂S

∂x
· dx

dt

=
∂S

∂x
· fc(x) +

∂S

∂x
· εfd(x) +

∂S

∂x
· εp(t,x)

= ε
∂S

∂x
· fd(x) + ε

∂S

∂x
· p(t,x).

(2.12)
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Eq. (2.12) reveals that the temporal change of the stored energy is determined by
effect from the vector field fd which constructs the structure with a limit cycle and the
perturbation p which induces synchronization. Now, for any motion of x, integration
of Eq. (2.12) in any interval [t1, t2], where t1 < t2, gives

S(t2) − S(t1) =

∫ t2

t1

ε
∂S

∂x
· fd(x) dt +

∫ t2

t1

ε
∂S

∂x
· p(t,x) dt. (2.13)

Since the stored energy S(x(t)) is a function of time t, we describe the stored energy as
S(t). Eq. (2.13) clarifies that the variation of the stored energy is equivalent to energy
supplied and dissipated by the vector field fd and the perturbation p. In this sense,
we consider energy conversion in dynamical systems. This notion of energy conversion
is not restricted to synchronization.

An additional advantage is described which appears with the introduction of energy.
On the definition of phase, the addressed state space is restricted to the vicinity of a
periodic orbit corresponding to a synchronous state. The definition of phase and the
extension require the criterial periodic orbit. Eq. (2.10) implies that the periodic orbit
can be expressed as a perturbation of a closed orbit in the conservative system. In the
conservative system, each closed orbit is assigned a value of the stored energy. Thus
the value of the stored energy can be associated with the synchronized state through
the perturbation method. In the same way, the relationship can be extended to the
neighborhoods of the periodic orbit. There is no closed orbit governed by the dynamics
of the system in the vicinity of the periodic orbit. We can interpret transient motion
of x in the vicinity as temporal change of the phase φ, the energy S, and the other
conserved quantities. In particular, for a pendulum, a current state is identified by the
phase φ and the stored energy S because the pendulum is a 2-dimensional system.

2.3 Two types of oscillations in cylindrical state
space

The state space of a pendulum can be considered as the cylindrical phase space [26,63].
Throughout the thesis, we call it the cylindrical state space for avoiding confusion with
phase for synchronization. In the cylindrical state space, there exist two types of
periodic orbits. This section explains the cylindrical state space and the two types of
periodic orbits. Frequency entrainment appears in the system with a limit cycle [2,64].
There are limit cycles which are the topologically same as the periodic orbits. In the
following we introduce two dynamical systems for the entrainment phenomena of the
oscillations, which are studied in Chapters 3 and 4, respectively.

2.3.1 Cylindrical state space

The dynamics of a pendulum can be described by using temporal change of the angu-
lar displacement and the velocity. At a moment t, the angular displacement and the
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υ
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Figure 2.3: Cylindrical state space with two topologically different kinds of closed
orbits: a libration and a rotation. The libration is topologically same as a closed orbit
on the state plane. The rotation encircles the cylinder.

velocity are denoted by θ(t) and υ(t), respectively. Since the angular displacement θ
has the periodicity of 2π, a motion of pendulum is associated with the corresponding
trajectories on the (θ, υ)-state plane. The trajectories can be identified after the trans-
formation θ(t)+2πn '→ θ(t) for the integer n. By identifying the planes divided at the
interval 2π in the direction of θ, the periodical state space of the pendulum is uniquely
determined. Fig. 2.3 shows the cylindrical state space [26, 63] which represents the
state space of a pendulum. The cylinder well depicts the continuity of the uniquely
determined state space in the direction of the angular displacement θ.

There are two topologically different kinds of closed orbits on the cylinder as shown
in Fig. 2.3. One of them can exist on the state plane as shown in Fig. 2.4 and called a
periodic orbit of the first kind [63] or a libration [26]. The periodic orbit satisfies the
following property with the angular displacement θ of a pendulum:

θ(t) = θ(t − T ), (2.14)

where T denotes the period. The other periodic orbit encircles the cylinder as shown
in Fig. 2.3 and called a periodic orbit of the second kind [63] or a rotation [26]. The
periodic orbit satisfies the following property:

θ(t) = θ(t − T ) + 2πr, (2.15)

where r is the integer except zero. The rotation shown in Fig. 2.3 depicts the case of
r = 1. These closed orbits correspond to periodic motions of a pendulum.

In the thesis, we consider synchronization phenomena in a pendulum. Frequency
entrainment represents a synchronous motion of an oscillation described by the corre-
sponding limit cycle. The synchronization occurs for each of the two typical motions
of a pendulum [2]. We explain the limit cycles corresponding to libration and rotation
in the following.

12
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Libration

State Plane

Figure 2.4: Librational limit cycle on the state plane of the van der Pol oscillator (2.16),
where v = du/dt. Libration existing on the cylindrical state space can exist on the
state plane.

2.3.2 Libration

The limit cycle corresponding to libration has been known as a fundamental knowledge
of the nonlinear dynamics [26,65]. In order to distinguish the limit cycle from the cycle
corresponding to rotation, we call this type of cycle a librational limit cycle or a limit
cycle of the first kind [63]. Now we can introduce the van der Pol oscillator [66] as the
system with a librational limit cycle. In the forced van der Pol oscillator, frequency
entrainment appears [17, 64, 66]. The dynamics of the forced van der Pol oscillator is
described by the ordinary differential equation of u [64],

d2u

dt2
− µ(1 + βu + γu2)

du

dt
+ u = B sin νt, (2.16)

where µ denotes the magnitude of the nonlinear damping, and β and γ are the parame-
ters related to the characteristics of the damping. The term B sin νt =: eL(t) represents
the periodic excitation. A librational limit cycle and the state plane of the van der Pol
oscillator are shown in Fig. 2.4, where v = du/dt.

We show a librational limit cycle and a periodic libration in the system (2.16).
Fig. 2.5(a) shows a waveform and the closed orbit of the librational limit cycle at
µ = 0.15 and β = γ = 4/3 [64]. The limit cycle represents the self-sustained oscillation
in the system (2.16). The angular frequency of the limit cycle is around 0.99. By
applying the periodic excitation with ν = 0.99 to the system (2.16), we can observe
frequency entrainment of the librational limit cycle. The entrained state at B = 0.05
is represented by the periodic libration shown in Fig. 2.5(b).

2.3.3 Rotation

Next, we consider a rotational limit cycle. We introduce the phase-locked system
with a rotational limit cycle. The phase-locked system represents [2, 26, 67] a single
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(a) Librational limit cycle.
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(b) Periodic libration.

Figure 2.5: Librational limit cycle and periodic libration in the system (2.16) at µ =
0.15 and β = γ = 4/3. The periodic excitation eL(t) is fixed at the amplitude B = 0.05
and the angular frequency ν = 0.99 because the angular frequency of the limit cycle is
around 0.99. The circles ( depicts the stroboscopic points of eL. The gray lines in (b)
corresponds to the lines in (a).
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Figure 2.6: Rotational limit cycle in the cylindrical state space of the phase-locked
system, where y = dφ/dt.

mechanical pendulum [68], the Josephson junction circuit [69–72], the phase-locked
loop circuit [73, 74], and a simple power system [13, 75]. In the phase-locked system,
frequency entrainment appears [2, 74]. The dynamics of the phase-locked system is
described by the ordinary differential equation of φ,

d2φ

dt2
+ k

dφ

dt
+ sinφ = N + A sinΩt, (2.17)

where k denotes the damping, N the constant force, and the term A sinΩt =: eR(t) the
periodic excitation. A rotational limit cycle and the state space of the phase-locked
system are shown in Fig. 2.6, where y = dφ/dt.

Figure 2.7(a) shows temporal change and the closed orbit of the rotational limit
cycle at k = 0.1 and N = 0.2. The values of parameters satisfy the condition which
describes the existence of a stable rotational limit cycle [65]. The angular frequency of
the limit cycle is around 1.93. The application of the periodic excitation with Ω = 1.93
to the system (2.17) induces frequency entrainment of the rotational limit cycle. The
entrained state at A = 0.05 is represented by the periodic rotation shown in Fig. 2.7(b).

2.4 Parametric pendulum

In the thesis, we introduce the parametric pendulum as application of energy conver-
sion through synchronization. Periodic motions of the parametric pendulum can be
regarded as conversion from the vertical vibration to its motion in the rotational di-
rection. Because the converting motion is induced with energy, the energy conversion
by the parametric pendulum is applicable to energy scavenging. First, the equation of
motion is derived for the parametric pendulum. Then, libration and rotation of the
parametric pendulum are briefly reviewed. In addition, we give another motivation to
study the energy conversion of the parametric pendulum in the sense of synchroniza-
tion.
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Figure 2.7: Rotational limit cycle and periodic rotation in the system (2.17) at k = 0.1
and N = 0.2. The periodic excitation eR(t) is fixed at the amplitude A = 0.05 and
the angular frequency Ω = 1.93 because the angular frequency of the limit cycle is
around 1.93. The circles ( depicts the stroboscopic points of eR. The gray lines in (b)
corresponds to the lines in (a).
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Figure 2.8: Model of a vertically excited pendulum.

2.4.1 Equation of motion

Figure 2.8 illustrates a vertically excited pendulum. The pendulum consists of a mass m
and a support with length l. The angular displacement of the pendulum from the
downward position is defined by θ. We assume that the viscous damping influences
the motion of the pendulum, and the vertical displacement z(t) of the pivot point is
excited sinusoidally as z(t) = A cosΩt. Here A is the amplitude and Ω is the angular
frequency of the excitation. The motion of the vertically excited pendulum is described
by the following ordinary differential equation:

ml2
d2θ

dt2
+ γl

dθ

dt
+ ml

(
g − d2z

dt2

)
sin θ = 0, (2.18)

where γ is the damping coefficient and g represents the gravitational acceleration. By
scaling time t by τ = Ω0t with respect to the natural frequency Ω0 =

√
g/l, the

equation of motion (2.18) is transformed into the following non-dimensional form:

d2θ

dτ 2
+ c

dθ

dτ
+ (1 + p cosωτ) sin θ = 0, (2.19)

where the parameters are defined as follows: the damping c := γΩ0/mg, the excitation
amplitude p := Ω2A/g, and the excitation frequency ω = Ω/Ω0.

2.4.2 Steady motions

As typical motions, periodic librations and rotations of the parametric pendulum are
reviewed. Fig. 2.9(a) shows a periodic libration. The period is twice the excitation
period. Fig. 2.9(b) shows a periodic rotation which has the same period as the excita-
tion. In the thesis, these periodic motions are associated with an entrained libration
and rotation in the previous section. It is noted that these motions do not represent en-
trained oscillations because these motions are not induced from limit cycles. However,
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Figure 2.9: Periodic motions of the parametric pendulum.

we mentioned that the notion of energy conversion is extended to any motions in the
introduction. By using the perception about energy conversion in synchronization of
libration and rotation, we understand the energy conversion by the periodic librations
and rotations of the parametric pendulum.

2.4.3 Mutual synchronization in coupled pendulums

We introduce the parametric pendulum from another standpoint. The ordinary dif-
ferential equation (2.19) for the parametric pendulum can describe the dynamics of
coupled pendulums or rotators [68]. Periodic motions of the parametric pendulum
correspond to synchronous motions of the coupled pendulums.

Let us begin with the equation of motion for coupled two damped driven pendu-
lums [76,77]

ml2
d2θ1,2

dt2
+ γl

dθ1,2

dt
+ mgl sin θ1,2 + K sin

(
θ1,2 − θ2,1

)
= N, (2.20)

where m and l is the mass and the length of the pendulums, and g is the gravitational
acceleration. γ is the damping coefficient and N denotes the driving torque. The
last term on the left-hand side represents the coupling which is originated from the
Kuramoto model [76, 77]. For the angular displacements θ1,2, we introduce the sum
and the difference coordinates:

θ+ =
θ1 + θ2

2
and θ− =

θ1 − θ2

2
. (2.21)
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These coordinate transformations into the Eq. (2.20) leads to two differential equations.
Here we focus on the coordinate θ−. The obtained equation for θ− is

ml2
d2θ−
dt2

+ γl
dθ−
dt

+ mgl cos θ+ sin θ− + 2K sin θ− = 0. (2.22)

Furthermore we assume that the torque N is sufficiently large so that the angular
velocity of the rotating pendulums are almost constant. The condition is described as

θ1,2 ≈ Ωt + φ1,2, (2.23)

where Ω denotes the angular velocity and φ1,2 is the initial angle of each pendulum.
For θ := θ−, non-dimensionalization with respect to the natural angular frequency,
Ω0 =

√
2K/ml2, transforms Eq. (2.22) into

d2θ

dτ 2
+ c

dθ

dτ
+

(
1 + p cosωτ

)
sin θ = 0. (2.24)

The parameters in Eq. (2.24) are defined as follows:

τ := Ω0t + τ0, c :=
γ√

2mK
, p :=

mgl

2K
, and ω :=

2Ω

Ω0
, (2.25)

where τ0 is selected at τ0 = (φ1+φ2)Ω0/2Ω to regulate the initial phase of the paramet-
ric excitation p cosωτ . The derived equation (2.24) is the same form as the equation of
motion (2.19) for the parametric pendulum. The derivation implies a correspondence
relationship between the parametric pendulum and the coupled pendulums. The static
downward position of the parametric pendulum indicates the synchronization of the
coupled pendulums. Thus, the periodic librations represent subharmonic motions near
the synchronization. On the other hand, the periodic rotations correspond to the syn-
chronization of the different order. For example, for a periodic rotation at which the
parametric pendulum rotates once during the excitation period, the synchronization of
the order 1 : 2 or 2 : 1 appears in the coupled pendulums. In this way, the periodic
motions of the parametric pendulum are associated with the synchronous motions of
coupled pendulums.
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Chapter 3

Energy Conversion in Frequency
Entrainment of Libration

This chapter begins analysis of energy conversion in synchronization. We focus on
frequency entrainment for two types of limit cycles on the cylindrical state space. In
this chapter, we first introduce the van der Pol oscillator as a model system in which
frequency entrainment of libration occurs. Then energy exchanged in the system is
examined with response characteristics of periodic librations. The energy is further
analyzed in transient phenomenon to the entrainment.

3.1 Van der Pol oscillator

In this section, the van der Pol oscillator [66] is introduced as a model system in which
frequency entrainment occurs for a librational limit cycle. We review the entrainment
phenomenon and then define the notion of energy in the system for the analysis of
energy conversion.

3.1.1 Model system

As a dynamical system with a stable librational limit cycle, we consider the forced van
der Pol oscillator described as follows [64]:

du

dt
= v, (3.1a)

dv

dt
= µ(1 − βu − γu2)v − u + B sin νt, (3.1b)

where u and v are the dependent variables of the nondimensional time t. The positive
parameter µ determines the magnitude of the nonlinear damping, and β and γ char-
acterize the nonlinearity of the damping. The term B sin νt represents the periodic
excitation with the amplitude B and the angular frequency ν. We express the periodic
excitation by eL(t) := B sin νt and its period by TL := 2π/ν. In the thesis, the damping
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Figure 3.1: Frequency entrainment of libration in the system (3.1) at µ = 0.15, β =
γ = 4/3, B = 0.05, and ν = 0.99. The periodic excitation eL(t− t0) = B sin{ν(t− t0)}
is applied from t = t0. The convergence of the stroboscopic points, denoted by the
circles (, shows that the librational limit cycle is entrained by the periodic excitation.

parameters are fixed at µ = 0.15, β = 4/3, and γ = 4/3 [64] so that a stable limit cycle
appears in the system (3.1).

3.1.2 Frequency entrainment

As mentioned in Chapter 2, there exists a stable librational limit cycle or a limit cycle
of the first kind [63] in the system (3.1) without the periodic excitation as shown in
Fig. 2.5(a). The angular frequency ν0 of the limit cycle is numerically estimated to
be around 0.99. Frequency entrainment can be observed in the situation in which the
excitation frequency is close to the frequency of a limit cycle [64]. We briefly review
the system behavior that represents the frequency entrainment of libration.

Figure 3.1 shows frequency entrainment caused by the periodic excitation in the
system (3.1). The excitation parameters are set at the amplitude B = 0.05 and the
angular frequency ν = 0.99 for the occurrence of the entrainment phenomenon. In the
figure, the limit cycle is first observed. Then the periodic excitation is applied from
t = t0. The circles on the waveforms indicate stroboscopic points at every excitation
period TL. The application of the periodic excitation induces frequency entrainment of
the limit cycle. The convergence of the stroboscopic points shows that the entrained
libration appears.

We confirmed the frequency entrainment of libration in the system (3.1) by using
Fig. 3.1. The entrainment phenomenon can be divided into two regimes. One is the
entrained regime that is shown by the converged stroboscopic points. The other is
the transient regime corresponding to the interval from the application of the periodic
excitation to the entrained regime. Since the regimes exhibit different behaviors, we
expect different features for the regimes in terms of energy conversion. In this chapter,
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each of the two regimes is analyzed from the viewpoint of energy conversion.

3.1.3 Energy conversion

The notion of energy is introduced to the system (3.1). We begin with the definition
of a function SL as

SL(u, v) :=
1

2
v2 +

1

2
u2. (3.2)

From a physical point of view, we interpret SL as energy stored in the system (3.1).
The temporal change of SL can be described by using the time derivative of Eq. (3.2).
That is,

dSL

dt
=

∂SL

∂u
· du

dt
+

∂SL

∂v
· dv

dt
= µ(1 − βu − γu2)v2 + Bv sin νt. (3.3)

In the transformation, we substituted Eqs. (3.1) and (3.2) into the time and the partial
derivatives, respectively. Eq. (3.3) reveals that the temporal change of the stored
energy is determined by effect from the damping and the periodic excitation on the
system (3.1). Therefore we can evaluate variation of the stored energy during a finite
time interval. For any behavior (u(t), v(t)) of the system (3.1), integration of Eq. (3.3)
in any interval [t1, t2], where t1 < t2, gives

SL(t2) − SL(t1) =

∫ t2

t1

µ
[
1 − βu(t) − γ{u(t)}2

]
{v(t)}2 dt +

∫ t2

t1

Bv(t) sin νt dt. (3.4)

Since the stored energy SL(u(t), v(t)) is a function of time t, we described the stored
energy as SL(t). The left-hand side of Eq. (3.4) represents variation of the stored
energy during the interval [t1, t2]. On the right-hand side, the first term denotes energy
dissipated from the system by the damping, and the second term represents energy
supplied to the system by the periodic excitation during the interval [t1, t2]. The
relationship (3.4) implies that the variation of the stored energy is equivalent to the
sum of the dissipated energy and the supplied energy in any interval.

3.2 Entrained libration

In this section, energy conversion is analyzed for the entrained states in the system (3.1)
by using response curves. Before the analysis, we derive an averaged equation for the
system (3.1). Response curves help us to associate the energy conversion and response
characteristics of the entrained librations. The relationship is verified by the theoretical
description from the averaged equation.

3.2.1 Averaged equation

In order to provide a theoretical viewpoint for the analysis, an averaged equation is
derived for the system (3.1). In the derivation, we first assume the following for the
system (3.1).
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(i) The parameters µ and B are sufficiently small.

(ii) The excitation frequency ν is close to the frequency ν0 of the librational limit
cycle.

(iii) The considered domain in the state space is the vicinity of an entrained libration.

These assumptions make it possible to describe any libration (u(t), v(t)) which satisfies
(iii) as a perturbation of the librational limit cycle,

u(t) = bL(t) sin
(
νt + θL(t)

)
, (3.5a)

v(t) = νbL(t) cos
(
νt + θL(t)

)
, (3.5b)

where bL(t) is the amplitude of the libration and θL(t) is the phase difference between
the libration and the periodic excitation B sin νt. The temporal change of these vari-
ables represent the transient behavior in the vicinity of an entrained libration. A stable
fixed point of the variables corresponds to an entrained libration. By applying the av-
eraging method [62] to Eq. (3.1) with Eq. (3.5), the following averaged equation is
obtained [21]:

dbL

dt
=

1

2
µbL

(
1 − 1

4
γb2

L

)
− B

2ν
sin θL, (3.6a)

dθL

dt
=

1 − ν2

2ν
− B

2νbL
cos θL. (3.6b)

In Eq. (3.6b), the frequency of the librational limit cycle is substituted as ν0 = 1.
Equilibrium points of Eq. (3.6), denoted by b∗L and θ∗L, approximate the amplitude and
phase difference of periodic librations of Eq. (3.1). Therefore, a stable equilibrium
point of Eq. (3.6) corresponds to an entrained libration in the system (3.1).

3.2.2 Response curves for supplied energy

Energy conversion at the entrained states in the system (3.1) is analyzed through energy
supplied by the periodic excitation. We provide a relationship of energy balance at the
periodic librations. Eq. (3.4) describes the energy balance in the system (3.1) during
any interval. Substituting t1 = 0, t2 = TL and any periodic libration (u∗(t), v∗(t)) into
Eq. (3.4) gives the expression for the energy balance at any periodic libration in the
system (3.1),

0 =

∫ TL

0

µ
[
1 − βu∗(t) − γ{u∗(t)}2

]
{v∗(t)}2 dt +

∫ TL

0

Bv∗(t) sin νt dt. (3.7)

Since the stored energy during the period TL is kept constant at any periodic libration,
the difference of these functions SL(TL) and SL(0) is equal to zero on the left-hand
side of Eq. (3.7). On the right-hand side, the first term denotes energy dissipated
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Figure 3.2: Response curves for the energy supplied by the periodic excitation in the
system (3.1) at ν = 0.15 and β = γ = 4/3. The supplied energy is calculated from
the second term on the right-hand side of Eq. (3.7). The solid lines correspond to
completely stable librations, the dashed lines directly unstable ones, and the chain
lines completely unstable ones [78]. The detailed classification of the stability of these
periodic librations is explained in the appendix of this chapter.

from the system (3.1) by the damping during TL. The second term represents energy
supplied to the system by the periodic excitation during TL. Eq. (3.7) clarifies that the
supplied energy is equivalent to the dissipated energy at any periodic libration. From
the relationship, we focus on the supplied energy to analyze energy conversion at the
entrained states of the system (3.1).

Figure 3.2 shows response curves for the energy supplied to the system (3.1) by the
periodic excitation. The solid curves depict stable librations which correspond to the
entrained states. Thus, the region of the excitation frequency ν for the solid curves
implies the entrainment region. For each amplitude B of the excitation, the maxi-
mum energy is supplied around the frequency ν = ν0 ≈ 0.99. On the other hand, the
supplied energy indicates negative value around both ends of the entrainment region.
Based on Eq. (3.5a), we investigate response characteristics of the entrained librations
to associate the supplied energy with the characteristics. Here the response charac-
teristics suggest the amplitude and the phase difference in the fundamental frequency
component for the periodic librations. The amplitude and phase difference correspond
to a fixed point of the variables bL and θL in Eq. (3.5a). Fig. 3.3(a) shows response
curves for the amplitude of the periodic librations. The solid curves corresponding to
the entrained librations manifest resonance phenomenon in the neighborhood of the
frequency of the librational limit cycle, denoted by the cross symbol. Furthermore, the
excitation frequency ν for the largest amplitude decreases as the excitation amplitude B
increases. The corresponding resonance phenomenon is observed in the response curves
for the supplied energy. The result indicates a correlation between the supplied energy
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Figure 3.3: Response curves for (a) the amplitude of the periodic librations and (b) the
phase difference between the periodic librations and the periodic excitation by using
Eq. (3.1) at ν = 0.15 and β = γ = 4/3. In (a), the cross symbol represents the
amplitude of the librational limit cycle. In (b), the vertical dashed line indicates the
angular frequency of the limit cycle. Each type of the lines shows the stability of the
periodic librations in the same manner as Fig. 3.2.
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Figure 3.4: Response curves for the energy W ∗
L supplied by the periodic excitation by

using Eqs. (3.6) and W ∗
L = −πb∗B sin θ∗L at ν = 0.15 and β = γ = 4/3. The solid lines

correspond to stable equilibrium points, the dashed and chain lines unstable ones. The
instability is classified by the number of positive eigen value of the linearized matrix of
Eq. (3.6) at the equilibrium points. The dashed lines denote one positive eigen value,
the chain lines two.

and the amplitude at the entrained librations. Fig. 3.3(b) depicts response curves for
the phase difference between the periodic librations and the periodic excitation. All
solid curves are coincident at the frequency of the librational limit cycle. At the fre-
quency, the phase difference of the stable librations is −π/2. For the dashed lines, the
same coincidence is observed at π/2. Positive energy is supplied at the phase difference
from −π to 0.

We verify the numerical results from a theoretical viewpoint. By applying the
averaging method to Eq. (3.7) with any periodic libration, that is u∗(t) = b∗L sin(νt+θ∗L)
and v∗(t) = νb∗L cos(νt+θ∗L), a theoretical expression is obtained for the energy balance
at any periodic libration in the system (3.1) as

0 = πµνb∗2L

(
1 − 1

4
γb∗2L

)
− πb∗LB sin θ∗L, (3.8)

where the constants b∗L and θ∗L correspond to the equilibrium points of the averaged
equation (3.6). Eq. (3.8) is a theoretical expression of Eq. (3.7). Thus on the right-
hand side of Eq. (3.8), the first term denotes the dissipated energy, and the second
term the supplied energy during the period TL. The equilibrium points of (3.6) give
the corresponding supplied energy by using −πb∗B sin θ∗L =: W ∗

L .
Figure 3.4 shows response curves for the supplied energy W ∗

L by using Eqs. (3.6) and
(3.8). The theoretical result for the supplied energy is consistent with the numerical
result shown in Fig. 3.2. In addition, we verify the amplitude and the phase difference
of the periodic librations. Figs. 3.5(a) and 3.5(b) show response curves for the ampli-
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tude b∗L and the phase difference θ∗L obtained by using the equilibrium points of the
averaged equation (3.6). The response characteristics are coincident with the numeri-
cal results shown in Fig. 3.3. Therefore, under the above assumptions, the equilibrium
points of Eq. (3.6) and the theoretical expression (3.8) show response characteristics of
the supplied energy and the periodic librations in the system (3.6). This implies that
the expression of the supplied energy, that is W ∗

L = −πb∗LB sin θ∗L, reveals relationships
of the supplied energy with the amplitude and the phase difference of the entrained
librations. From the theoretical expression, the supplied energy W ∗

L increases with the
amplitude b∗L. For the phase difference θ∗L from −π to 0, positive energy is supplied
to the system (3.1) by the periodic excitation. These relationships are consistent with
the characteristics observed in Figs. 3.2 and 3.3.

3.3 Transient phenomenon of entrainment of libra-
tion

In this section, we analyze the transient regime of the frequency entrainment of li-
bration in terms of energy. First a phase equation is derived to describe transient
phenomenon of the entrainment in the system (3.1). The theoretical viewpoint clari-
fies the relationship between the stored energy and the frequency entrainment in the
transient regime.

3.3.1 Phase equation

A phase equation is derived which describes the phase dynamics for the frequency
entrainment. The phase for the frequency entrainment of libration in the system (3.1)
is explicitly identified as the phase difference θL defined in Eq. (3.5) because of the
following. In the frequency entrainment, the frequency of the limit cycle is entrained
by the excitation frequency. The frequency change in the entrainment phenomenon
from the limit cycle to the entrained libration can be described by substituting the
phase θL(t) = ν0t − νt + θL0 and θL(t) = θ∗L into Eq. (3.5), respectively. Here θL0 is
the initial phase of the limit cycle. The phase difference θL represents the frequency
entrainment of libration. In the following, we call the phase difference the phase or the
phase variable for the entrainment. We make an additional assumption,

(iv) The temporal change of bL(t) is fixed at the amplitude of the librational limit
cycle, denoted by bL0.

From the assumption, we can focus on the phase dynamics in the transient regime.
Then, the expression (3.5) is modified to

u(t) = bL0 sin
(
νt + θL(t)

)
, (3.9a)

v(t) = νbL0 cos
(
νt + θL(t)

)
. (3.9b)
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Figure 3.5: Response curves for (a) the amplitude b∗L and (b) the phase difference θ∗L by
using Eqs. (3.6) and (3.8) at ν = 0.15, β = γ = 4/3. In (a), the cross symbol represents
the amplitude of the librational limit cycle. In (b), the vertical dashed line indicates
the angular frequency of the limit cycle. Each type of the lines shows the stability of
the equilibrium points in the same manner as Fig. 3.4.
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The expression (3.9) clearly shows that the dynamics near an entrained libration are
governed by the phase variable θL(t). By applying the averaging method to Eq. (3.1)
with Eq. (3.9), the following phase equation is obtained:

dθL

dt
=

1 − ν2

2ν
− B

2νbL0
cos θL. (3.10)

On the right-hand side, the first term represents the difference between the frequency
of the librational limit cycle ν0 = 1 and the excitation frequency ν, and the second
term the effect of the periodic excitation on the phase dynamics. Eq. (3.10) has the
same formulation as the phase equations in [2, 8, 79]. We describe the mechanism of
phase regulation in the entrainment phenomenon of libration in terms of the phase
equation (3.10). The periodic excitation is applied to the system (3.1), and then the
phase θL undergoes a gradual change according to Eq. (3.10). If the effect of the periodic
excitation can compensate the difference between the frequency of the limit cycle and
the excitation frequency, the frequency entrainment of libration is observed. Thus the
phase equation (3.10) represents how the frequency of the limit cycle is entrained to
excitation frequency. In the next chapter, we will obtain the same mechanism for the
frequency entrainment of rotation in the phase-locked system (4.1).

3.3.2 Transient behavior of stored energy

The transient regime of the frequency entrainment of libration in the system (3.1) is
analyzed in terms of the stored energy. By substituting Eq. (3.9) into Eq. (3.2), the
time average of the stored energy is derived as follows:

〈SL〉(θL) :=
1

TL

∫ TL/2

−TL/2

SL

(
u(t, θL), v(t, θL)

)
dt =

1

4
(1 + ν2)b2

L0 =: 〈SL〉∗, (3.11)

where the bracket 〈·〉 denotes the time average during the excitation period TL. The
constant 〈SL〉∗ indicates the value of 〈SL〉 at the periodic libration. Eq. (3.11) explicitly
shows that 〈SL〉 is not a function of the phase θL and remains at 〈SL〉∗ in the transient
and entrained regimes. This result is originated from the assumption (iv). Eq. (3.11)
is significant for the mechanism of the frequency entrainment of libration.

Figure 3.6 shows the stored energy and the phase in the frequency entrainment of
libration in the system (3.1). The transient regime is induced by resetting the periodic
excitation at t = t0. The solid line on the waveform of u denotes the amplitude which
is calculated from

√
u2 + (v/ν)2. The stored energy SL is obtained by using Eq. (3.2).

The solid curve on the waveform of SL indicates the time average obtained by averaging
SL over the excitation period TL. In addition, the dashed line represents the time
average at the entrained libration. Since these lines correspond to bL, 〈SL〉, and 〈SL〉∗,
we indicate these lines by using the corresponding notations in Fig. 3.6. We regard the
stroboscopic points of tan−1(νu/v) =: φL as the phase θL. Figs. 3.6(a) and 3.6(b) are
for two different reset time t0 for ν = 0.98. In Fig. 3.6(a), the deviation 〈SL〉 − 〈SL〉∗
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(a) t0 = (3 + 1/4) TL and ν = 0.98.
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(b) t0 = (3 + 3/4)TL and ν = 0.98.
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(c) t0 = (3 + 1/4)TL and ν = 0.99.
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(d) t0 = (3 + 3/4)TL and ν = 0.99.

Figure 3.6: Stored energy and phase in the frequency entrainment of libration in the
system (3.1) at µ = 0.15, β = γ = 4/3, and B = 0.05. The phase of the periodic exci-
tation eL is reset at t = t0, and then the transient regime of the frequency entrainment
appears. The solid lines on the waveforms of u and SL denote the amplitude and the
time average of SL, respectively. The dashed lines of SL represent the time average at
the entrained libration. Since these lines correspond to bL, 〈SL〉, and 〈SL〉∗, we indicate
these lines by using the corresponding notation. The phase θL is estimated from the
stroboscopic points ( of tan−1(νu/v) =: φL.
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indicates negative value after the resetting. On the other hand, in Fig. 3.6(b), the
positive deviation is observed. These changes of 〈SL〉 have no affect on the phase
response. Indeed the phase monotonically increases. Rather, we can confirm that
bL depends on 〈SL〉. The dependence coincides with Eq. (3.11). Here it should be
noted that the amplitude bL(t) is fixed at bL0 in the derivation of the phase equation.
Next, we consider the stored energy and the phase at the different excitation frequency,
namely ν = 0.99 in Figs. 3.6(c) and 3.6(d). In these figures, the phase θL increases
or decreases for the negative deviation 〈SL〉 − 〈SL〉∗. The results are consistent with
Eq. (3.11). Therefore, the development of the entrainment phenomenon of libration
does not depend on the stored energy.

3.4 Remarks

In this chapter, we analyzed energy conversion in frequency entrainment of libration.
Here the van der Pol oscillator was employed as a dynamical system with a stable
librational limit cycle.

At the entrained states, energy conversion in the system was investigated through
energy supplied to the system by the periodic excitation. Response curves were ob-
tained numerically and theoretically for the supplied energy and the characteristics of
the entrained librations. The characteristics are the amplitude and the phase difference
from the periodic excitation. The theoretical result from the averaged equation for the
system is coincident with the numerical one. The coincidence implies that the observed
relationships between the response curves are described by the theoretical expression.
The magnitude of energy conversion at the entrained librations increases with the am-
plitude. Since the response curves for the amplitude exhibit resonance phenomenon,
the maximum energy is converted near the frequency of the librational limit cycle.

In the transient regime, we considered the development of the entrainment phe-
nomenon by deriving the phase equation which describes the phase dynamics for the
entrainment. The theoretical expression for the stored energy does not include the
phase. This implies that the development of the entrainment phenomenon of libra-
tion does not depend on the energy conversion. We numerically confirmed the energy
conversion in the transient regime of the entrainment. Therefore, the phase regulation
which governs the frequency entrainment of libration is not essentially affected by any
energy supply from the external. The energy conversion determines the amplitude.

Finally, we summarize the energy conversion in the frequency entrainment of li-
bration. The notion of energy was associated with the amplitude. As a relationship
between the energy conversion and the response characteristics of the periodic libra-
tions, we can take the resonance phenomenon for the supplied energy. The theoretical
expression for the supplied energy contains the phase. However, the supplied energy
can be replaced with the dissipated energy without the phase from the relationship of
energy balance. Therefore in the transient and entrained regimes, the energy conversion
can be comprehended through the amplitude.
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Appendix to classification of stability

This appendix presents the classification used in the thesis for the stability of hyperbolic
periodic orbits or fixed points according to [78,80].

Consider an n-dimensional non-autonomous T -periodic system

dx

dt
= f(t, x), x ∈ Rn (3.12)

with a T -periodic orbit x∗(t) = x∗(t − T ). We can construct a stroboscopic map P
for the system (3.12). The T -periodic orbit x∗(t) corresponds to a fixed point of the
map P , that is, x∗ = P (x∗). The local behavior of P near x∗ is approximated by
linearizing the map P at x∗. The obtained linear map

ξk+1 = DP (x∗)ξk (3.13)

describes the dynamics in the vicinity of x∗, where ξk denotes a variation of xk from
x∗ for the integer k. The linear map DP (x∗) is an n × n matrix, where D := ∂/∂x.
The eigenvalues λi of the matrix DP (x∗) determine the stability of the periodic orbit
or fixed points x∗ for i = 1, · · · , n. These eigenvalues have been already sorted by the
magnitude of the modulus, that is, |λ1| ≥| λ2| ≥ · · · ≥ |λn|.

For n = 2, the periodic orbit or fixed point x∗ is characterized [78] as follows:






completely stable if |λ2| ≤ |λ1| < 1,

completely unstable if |λ1| ≥ |λ2| > 1,

directly unstable if λ1 > 1 > λ2 > 0,

inversely unstable if λ1 < −1 < λ2 < 0.

For x∗, the dimensions of the stable and the unstable manifolds are denoted by
ns and nu, respectively. Here ns + nu = n. For n ≥ 3 and nu ≤ 1, we extend the
classification as follows:






completely stable if |λ1| < 1,

directly unstable if λ1 > 1 and |λ2| < 1,

inversely unstable if λ1 < −1 and |λ2| < 1.

This extended classification is determined by the eigenvalue λ1 with the maximum
modulus for |λi| < 1 (i = 2, · · · , n).
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Chapter 4

Energy Conversion in Frequency
Entrainment of Rotation

In this chapter, we analyze energy conversion in frequency entrainment for the rota-
tional limit cycle. The phase-locked system is introduced as a dynamical system with
a stable rotational limit cycle. In the same manner as Chapter 3, energy conversion
in the system is investigated at the entrained rotations. Then, the transient regime of
the frequency entrainment is analyzed in terms of energy. We associate the dynamics
of phase for the entrainment phenomenon with energy stored in the system. Finally,
the frequency entrainment phenomena of libration and rotation are compared from the
viewpoint of energy conversion.

4.1 Phase locked system

This section explains the phase-locked system in which frequency entrainment appears
for a rotational limit cycle or a limit cycle of the second kind [63]. The frequency
entrainment of rotation is reviewed, and the notion of energy is introduced into the
system.

4.1.1 Model system

We consider frequency entrainment of rotation in the phase locked system given by

dφ

dt
= y, (4.1a)

dy

dt
= −ky − sinφ + N + A sinΩt, (4.1b)

where φ and y are the dependent variables of the nondimensional time t. The pos-
itive parameter k denotes the damping coefficient and N the constant torque. The
term A sinΩt represents the periodic excitation with the amplitude A and the angular
frequency Ω . Here we express the periodic excitation by eR(t) := A sinΩt and its
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Figure 4.1: Frequency entrainment of rotation in the system (4.1) at k = 0.1, N = 0.2,
A = 0.05, and Ω = 1.93. The periodic excitation eR(t − t0) = A sin{Ω(t − t0)} is
applied from t = t0. The convergence of the stroboscopic points, denoted by the
circles (, shows that the rotational limit cycle is entrained by the periodic excitation.

period by TR := 2π/Ω . The damping coefficient and the constant torque are fixed
at k = 0.1 and N = 0.2 so that there exists a stable rotational limit cycle in the
system (4.1). The parameter setting satisfies the condition, namely N > 4k/π, which
describes the existence of a stable rotational limit cycle. The condition is obtained
from the Melnikov’s method [65].

4.1.2 Frequency entrainment

In Chapter 2, we already confirmed the existence of a stable rotational limit cycle in
the system (4.1) without the periodic excitation. The angular frequency Ω0 of the limit
cycle is numerically estimated to be around 1.93. Frequency entrainment of rotation
can be observed in the same situation as the phenomenon of libration. Frequency
entrainment of rotation has been observed in a single driven pendulum [81] and the
Josephson junction circuit [69,70,72,82]. We briefly review the frequency entrainment
of rotation in the system (4.1).

Figure 4.1 shows frequency entrainment by the periodic excitation in the sys-
tem (4.1). The excitation parameters are fixed at A = 0.05 and Ω = 1.93 to induce the
entrainment phenomenon. In the figure, we observe the rotational limit cycle without
the periodic excitation for t < t0. From t = t0, the periodic excitation is applied to
the system. The circles on the lines denote the stroboscopic points at every excitation
period TR. After t = t0, the stroboscopic points converge. Since the convergent stro-
boscopic points represent the appearance of a periodic rotation, we can observe that
the frequency of the rotational limit cycle is entrained by the excitation frequency.

As confirmed for the frequency entrainment of libration in Chapter 3, we also con-
firm two regimes of the entrainment phenomenon of rotation in the system (4.1). After
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the application of the periodic excitation, the transient regime appears. Then the
entrained regime is observed. In the same manner as Chapter 3, energy conversion
in the system (4.1) is investigated for the entrained rotations and for the transient
phenomenon, respectively.

4.1.3 Energy conversion

We define the energy stored in the system (4.1) as the following function SR:

SR(φ, y) :=
1

2
y2 − cosφ. (4.2)

The temporal change of the stored energy SR is represented by the time derivative,

dSR

dt
=

∂SR

∂φ
· dφ

dt
+

∂SR

∂y
· dy

dt
= −ky2 + Ny + Ay sinΩt. (4.3)

In the transformation, we substituted Eqs. (4.1) and (4.2) into the time and the partial
derivatives, respectively. Eq. (4.3) explains that the temporal change of the stored
energy is determined by effect from the damping, the constant torque, and the periodic
excitation on the system (4.1). Next, variation of the stored energy SR during a
finite time interval is obtained. For any behavior (φ(t), y(t)) of the system (4.1), by
integrating Eq. (4.3) in any interval [t1, t2], the following equation is given:

SR(t2) − SR(t1) =

∫ t2

t1

[
− k

{
y(t)

}2
]
dt +

∫ t2

t1

Ny(t) dt +

∫ t2

t1

Ay(t) sinΩt dt, (4.4)

where we regarded the stored energy SR(φ(t), y(t)) as the function of time t, that is
SR(t). The left-hand side of Eq. (4.4) represents the variation of the stored energy
during the interval [t1, t2]. On the right-hand side, the first term denotes energy dis-
sipated from the system by the damping, and the second and third terms represent
energy supplied to the system by the constant torque and the periodic excitation dur-
ing the interval [t1, t2]. Therefore, Eq. (4.4) implies that the stored energy changes by
the sum of the dissipated energy and the supplied energy in any interval. The similar
relationship (3.4) was obtained for the system (3.1).

4.2 Entrained rotation

This section describes analysis of energy conversion at the entrained states of the
system (4.1) by using response curves. In order to provide a theoretical viewpoint to
the analysis, we derive an averaged equation for the system (4.1). The response curves
obtained numerically and theoretically allow us to understand features of the energy
conversion with the entrained rotations. As the notion of energy, energy supplied to
the system by the periodic excitation is considered.
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4.2.1 Averaged equation

Before analyzing energy conversion at the entrained rotations, an averaged equation
is derived for the system (4.1). First we make the following assumptions for the sys-
tem (4.1).

(v) The parameters k, N , and A are sufficiently small.

(vi) The excitation frequency Ω is close to the angular frequency Ω0 of the rotational
limit cycle.

(vii) The vicinity of a stable periodic rotation representing an entrained state is ad-
dressed.

From these assumptions, we can describe any rotation (φ(t), y(t)) which satisfies (vii)
as a perturbation of the rotational limit cycle. However, the general expression of
rotation is not established because of the nonlinearity. A few researchers have given
expressions to periodic rotations from various viewpoints [38,39,74,83].

We begin with an expression for the rotational limit cycle. From the temporal
change and the periodic orbit in the state space shown in Fig. 2.7(a), the rotational limit
cycle, denoted by φ0(t), can be approximated as the sum of the rotatory component
and the fundamental oscillatory one,

φ0(t) = Ω0t + θR0 + aR0 sin
(
Ω0t + ψR0

)
. (4.5)

On the right-hand side, the first two terms denote the rotatory component, and the
last term represents the fundamental oscillatory component with the amplitude aR0

and the phase difference ψR0. The second term θR0 is an arbitrary constant obtained
from the time average of φ0(t) − Ω0t. Here the rotatory component Ω0t + θR0 remains
at constant difference from the phase of the oscillatory component, Ω0t +ψR0, because
the periodic orbit for the limit cycle is identified in the cylindrical state space. We
explicitly describe the constant phase deviation δR0 := ψR0 − θR0 as

φ0(t) = Ω0t + θR0 + aR0 sin
(
Ω0t + θR0 + δR0

)
. (4.6)

In Eq. (4.6) the amplitude aR0 and the phase deviation δR0 are uniquely determined
for the fixed parameters k and N .

From the above assumptions, we can describe any rotation (φ(t), y(t)) which satisfies
(vii) as a perturbation of the rotational limit cycle and its time derivative,

φ(t) = Ωt + θR(t) + aR(t) sin
(
Ωt + θR(t) + δR(t)

)
, (4.7a)

y(t) = Ω + ωR(t) + ΩaR(t) cos
(
Ωt + θR(t) + δR(t)

)
. (4.7b)

The perturbation of θR0, aR0, and δR0 produces the corresponding variables θR(t), aR(t),
and δR(t). In addition, we should consider the perturbation of the rotatory component
in y, denoted by ωR(t), because of the assumption (vii). Therefore, the temporal
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change of these variables represents transient behavior in the vicinity of an entrained
rotation, and a stable fixed point of these variables corresponds to an entrained rotation.
Applying the averaging method [62] to Eq. (4.1) with Eq. (4.7) gives the averaged
equation

dθR

dt
= ωR, (4.8a)

dωR

dt
= −k

(
Ω + ωR

)
− J1(aR) sin δR + N, (4.8b)

daR

dt
=

J0(aR) + J2(aR)

2Ω
sin δR − 1

2
kaR − A

2Ω
sin

(
θR + δR

)
, (4.8c)

dδR

dt
= −ωR +

J0(aR) − J2(aR)

2aRΩ
cos δR − 1

2
Ω − A

2aRΩ
cos

(
θR + δR

)
, (4.8d)

where Jn(·) is the Bessel function of the first kind for the integer n. The detailed
derivation is given in the appendix of this chapter. Equilibrium points of Eq. (4.8),
denoted by θ∗R, ω∗

R, a∗
R, and δ∗R, approximate the components of the periodic rotations

in the system (4.1). Thus, a stable equilibrium point of the averaged equation (4.8)
corresponds to an entrained rotation in the system (4.1). Here we already know ω∗

R = 0
because the perturbation creates the variable ωR(t).

4.2.2 Response curves for supplied energy

Using the same approach as Chapter 3, we analyze energy conversion at the entrained
rotations in the system (4.1). Energy balance is described at the entrained rotations.
We already derived the energy balance (4.4) in the system (4.1) during any interval. For
any periodic rotation (φ∗(t), y∗(t)), by substituting t1 = 0 and t2 = TR into Eq. (4.4),
the energy balance at any periodic rotation in the system (4.1) is given by

0 =

∫ TR

0

[
− k

{
y∗(t)

}2
]
dt +

∫ TR

0

Ny(t) dt +

∫ TR

0

Ay∗(t) sinΩt dt

=

∫ TR

0

[
− k

{
y∗(t)

}2
]
dt + 2πN +

∫ TR

0

Ay∗(t) sinΩt dt.

(4.9)

For any periodic rotation (φ∗(t), y∗(t)), the corresponding stored energy SR changes
periodically. The difference of the stored energy, SR(TR) − SR(0), is equal to zero on
the left-hand side of Eq. (4.9). On the right-hand side, the first term denotes energy
dissipated from the system (4.1) by the damping during the excitation period TR.
The remaining terms correspond to energy supplied to the system by the constant
torque and the periodic excitation during TR. Eq. (4.9) shows that the supplied energy
is equivalent to the dissipated energy at the entrained rotations. Since the second
term 2πN on the right-hand side of Eq. (4.9) is constant, the energy supplied by the
constant torque is invariant for the periodic excitation. Thus we consider the energy
supplied by the periodic excitation to analyze the energy conversion at the entrained
rotations in the system (4.1).
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Figure 4.2: Response curves for the energy supplied by the periodic excitation in the
system (4.1) at k = 0.1 and N = 0.2. The supplied energy is calculated from the last
term on the right-hand side of Eq. (4.9). The solid lines correspond to completely stable
rotations and the dashed lines directly unstable ones [78]. The detailed classification
of the stability of these periodic rotations is explained in the appendix of Chapter 3.

Figure 4.2 shows response curves for the energy supplied to the system (4.1) by the
periodic excitation. The solid curves denote stable rotations which correspond to the
entrained states. Thus the region of the excitation frequency Ω for the solid curves
shows the entrainment region. The supplied energy increases with the excitation fre-
quency. The periodic excitation with the large amplitude A can entrain the rotational
limit cycle at high frequency. A large amount of energy can be supplied by the large
amplitude excitation at high frequency. At low frequency, the periodic excitation ex-
tracts energy from the system (4.1). In order to associate the supplied energy with
the components of the entrained rotations, we show response characteristics of the
entrained rotations based on the variables θR, aR, and δR in Eq. (4.7a). Fig. 4.3(a)
shows response curves for the phase of the rotatory component corresponding to θR.
For the solid curves representing entrained rotations, the phase is restricted between
−π/2 and π/2. Positive energy is supplied for the phase from −π to 0. The response
curves show similar structure with the curves for the phase difference of the entrained
librations in Fig. 3.3(b). All solid and dashed curves are coincident at the frequency
of the rotational limit cycle, respectively. Fig. 4.3(b) shows response curves for the
amplitude of the fundamental oscillatory component in the periodic rotations. The
solid curves show that antiresonance phenomenon appears at higher frequency than
the rotational limit cycle. For most of the frequency region, the amplitude decreases as
the excitation frequency increases. The amplitude exhibits opposite response charac-
teristics from the supplied energy. Fig. 4.3(c) represents response curves for the phase
deviation of the fundamental oscillatory component from the rotatory component. The
phase deviation shows little change in comparison with the phase. All curves except
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Figure 4.3: Response curves for the periodic rotations in the system (4.1) at k = 0.1
and N = 0.2: (a) the phase, (b) the amplitude, and (c) the phase deviation. In (a),
the vertical dashed line indicates the angular frequency of the rotational limit cycle.
In (b) and (c), the cross symbol represents the amplitude and the phase deviation of
the rotational limit cycle. Each type of the lines shows the stability of the periodic
rotations in the same manner as Fig. 4.2.
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Figure 4.3: Continued.

A = 0.03 are coincident at Ω = 2.
These numerical results are verified by the theoretical study based on the averaged

equation (4.8). By applying the averaging method to Eq. (4.9) with any periodic
rotation, that is φ∗(t) = Ωt + θ∗R + a∗

R sin(Ωt + θ∗R + δ∗R) and y∗(t) = Ω + ω∗
R +

Ωa∗
R cos(Ωt + θ∗R + δ∗R), a theoretical expression for the energy balance at a periodic

rotation in the system (4.1) is derived as

0 = −πkΩ(2 − a∗2
R ) + 2πN − πa∗

RA sin(θ∗R + δ∗R), (4.10)

where the constants θ∗R, ω∗
R = 0, a∗

R, and δ∗R are the equilibrium values of the averaged
equation (4.8). Eq. (4.10) theoretically describes Eq. (4.9). Thus on the right-hand
side of Eq. (4.10), the first term denotes the dissipated energy, and the second and
third terms correspond to the supplied energy during the period TR. The equilibrium
points of the averaged equation (4.8) give the corresponding supplied energy by using
−πa∗

RA sin(θ∗R + δ∗R) =: W ∗
R.

Figure 4.4 shows response curves for the supplied energy W ∗
R. The theoretical result

of the supplied energy approximates the numerical one shown in Fig. 4.2. In addition,
we verify the response characteristics shown in Fig. 4.3 theoretically. Figs. 4.5(a), (b),
and (c) represent response curves for the phase θ∗R, the amplitude a∗

R, and the phase
deviation δ∗R in Eq. (4.8), respectively. These theoretical results are consistent with the
numerical ones shown in Fig. 4.3. Under the above assumptions, the equilibrium points
of Eq. (4.8) and the relationship (4.10) show response characteristics of the periodic
rotations and the supplied energy in the system (4.1). From the results, it is obvious
that the expression of the supplied energy, W ∗

R = −πa∗
RA sin(θ∗R + δ∗R), describes re-

lationships of the energy with the entrained rotation. The magnitude of the supplied
energy W ∗

R increases with the amplitude a∗
R. Since the phase deviation δ∗R undergoes
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Figure 4.4: Response curves for the energy W ∗
R supplied by the periodic excitation by

using Eqs. (4.8) and W ∗
R = −πa∗

RA sin(θ∗R + δ∗R) at k = 0.1 and N = 0.2. The solid
lines correspond to stable equilibrium points and the dashed lines unstable ones.

little change for the excitation frequency Ω , the phase θ∗R determines effect of the pe-
riodic excitation on the system (4.1). That is, the periodic excitation supplies energy
to the system (4.1) for −π/2 < θR < 0 at the entrained rotations. For 0 < θR < π/2,
energy is extracted from the system (4.1) by the excitation. These relationships can be
confirmed by using the response curves in Figs. 4.2 and 4.3. Moreover, we observe that
the amplitude a∗

R and the phase deviation δ∗R remain at almost constant in comparison
with the phase θ∗R. The supplied energy W ∗

R is governed by the phase θ∗R. Here we
recall the energy balance (4.10). Because of the almost constant amplitude a∗

R, the
dissipated energy −πkΩ(2−a∗2

R ) is governed by the excitation frequency Ω . Consider-
ing the constant supplied energy 2πN , we conclude that energy supplied to the system
is determined by the phase θ∗R or the excitation frequency Ω . The validity is con-
firmed from the response curves for the phase θ∗R. Indeed for increase of the excitation
frequency Ω , sin(θ∗R + δ∗R) ≈ sin θ∗R monotonically decreases.

4.3 Transient phenomenon of entrainment of rota-
tion

This section presents a relationship between the energy conversion and the transient
regime of the frequency entrainment of rotation. The dynamics for the entrainment
phenomenon can be represented by a phase equation. We first derive the phase equation
for the system (4.1). The stored energy is associated with the dynamics of phase for
the frequency entrainment.
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Figure 4.5: Response curves for the equilibrium points of Eq. (4.8) at k = 0.1 and
N = 0.2: (a) the phase θ∗R, (b) the amplitude a∗

R, and (c) the phase deviation δ∗R.
In (a), the vertical dashed line indicates the angular frequency of the rotational limit
cycle. In (b) and (c), the cross symbol represents the amplitude aR0 and the phase
deviation δR0 of the rotational limit cycle. Each type of the lines shows the stability of
the equilibrium points in the same manner as Fig. 4.4.
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Figure 4.5: Continued.

4.3.1 Phase equation

A phase equation is derived so that we focus on the dynamics of phase for the transient
phenomenon in the frequency entrainment of rotation. For the phase-locked system or
a rotator, the phase equation has been derived under the condition of overdamping [2].
We derive the phase equation without the condition. In order to derive the phase
equation, the phase is identified for the frequency entrainment of rotation. It is possible
to identify the phase by using the perturbation of the rotational limit cycle. We add
the following assumption:

(viii) The amplitude aR(t) and the phase deviation δR(t) do not change from the rota-
tional limit cycle, denoted by aR0 and δR0.

Eq. (4.7) describes a perturbation of the rotational limit cycle. By modifying Eq. (4.7),
another perturbation of the rotational limit cycle is given by

φ(t) = Ωt + θR(t) + aR0 sin
(
Ωt + θR(t) + δR0

)
, (4.11a)

y(t) = Ω + ωR(t) + ΩaR0 cos
(
Ωt + θR(t) + δR0

)
. (4.11b)

The expression (4.11) clearly shows that any rotation satisfying (vii) is governed by the
variable θR(t) and the time derivative ωR(t) = dθR/dt. Hence θR is the phase variable
for the frequency entrainment of rotation.

Now we derive a phase equation that governs the temporal change of θR. By
applying the averaging method to Eq. (4.1) with Eq. (4.11), we obtain the following
phase equation:

dθR

dt
=

N

k
· Ω0 − Ω

Ω0
− AaR0

2k
sin

(
θR + δR0

)
. (4.12)

45



The detailed derivation is given in the appendix of this chapter. On the right-hand
side of Eq. (4.12), the first term represents the difference between the frequency Ω0 of
the rotational limit cycle and the excitation frequency Ω , and the second term effect
of the periodic excitation on the phase dynamics. The phase equation (4.12) for the
frequency entrainment of rotation has the same form as Eq. (3.10) for the entrainment of
libration. This suggests that the entrainment phenomena for the topologically different
limit cycles are governed by a common mechanism of phase regulation.

4.3.2 Energy description of transient phenomenon

We identify a relationship between the transient phenomenon of the frequency entrain-
ment of rotation and the energy conversion in the system (4.1). This gives a new
description for behavior of the frequency entrainment. We consider the stored en-
ergy SR again to introduce the notion of energy. The stored energy SR is defined as a
function of the fast variables φ(t) and y(t). On the other hand, the phase θR for the
frequency entrainment is a slow variable, because the phase variable θR is produced
on the perturbation and the averaging. The purpose of this section is to associate the
notion of energy and the phase dynamics. We need to extract the response of the stored
energy SR with the same time scale as θR. It is obvious that the time scale is longer
than the excitation period TR. This operation is achieved by averaging the function SR

over TR. By substituting Eq. (4.11) into Eq. (4.2) and averaging the equation over TR,
we obtain the following function 〈SR〉 that depends on the phase variable θR:

〈SR〉(θR) :=
1

TR

∫ TR/2

−TR/2

SR

(
φ(t, θR), y(t, θR, ωR)

)
dt

=
1

2
Ω2 +

1

4
Ω2a2

R0 + J1(aR0) cos δR0 + ΩωR

= 〈SR〉∗ + Ω
dθR

dt
,

(4.13)

where J1(·) is the Bessel function of the first kind. The bracket 〈·〉 denotes the time
average during the excitation period TR. The value 〈SR〉(θR) slowly changes with the
slow variable θR. The constant 〈SR〉∗ indicates the value of 〈SR〉 at the entrained
rotation. Eq. (4.13) can be transformed into

dθR

dt
=

1

Ω

(
〈SR〉(θR) − 〈SR〉∗

)
. (4.14)

The time evolution of the phase θR represents transient phenomenon of the entrainment
of rotation. Eq. (4.14) implies that the entrainment phenomenon develops according
to the change of the stored energy.

The direct consequence of Eq. (4.14) unveils the energy conversion in the transient
regime of the frequency entrainment of rotation. From the energy balance (4.4), the
variation of the stored energy is equivalent to the sum of the supplied energy and
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Figure 4.6: Stored energy and phase in the frequency entrainment of rotation in the
system (4.1) at k = 0.1, N = 0.2, A = 0.05, and Ω = 1.93. The phase of the periodic
excitation eR is reset at t = t0 and then transient regime of the frequency entrainment
appears. The solid line on the waveform of SR denote the time average over TR which
corresponds to 〈SR〉. The dashed lines of SR indicate the time average at the entrained
rotation. Since these lines correspond to 〈SR〉 and 〈SR〉∗, we indicate these lines by
using the corresponding notation. The phase θR is estimated from the stroboscopic
points ( of φ.
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the dissipated energy. Eq. (4.14) implies that the energy exchange induces the phase
regulation or the entrainment phenomenon of rotation. Fig. 4.6 shows the stored energy
and the phase at the transient regime of the frequency entrainment of rotation in the
system (4.1) at A = 0.05 and Ω = 1.93. We reset the phase of the periodic excitation eR

at t = t0 so that the transient regime appears. The stroboscopic points of φ, marked
by the circles, extract the time response of the phase θR. The solid and dashed lines
on the waveform of SR correspond to the time average of SR, that is 〈SR〉 and 〈SR〉∗,
respectively. These lines are calculated by averaging the waveform of SR during the
excitation period TR. In Fig. 4.6(a), the phase of the periodic excitation eR changes
by π at t = t0 = (5 + 1/2)TR. At the same moment the phase shifts by around −π,
and then the averaged energy 〈SR〉 increases. The phase which can be estimated by
using the stroboscopic points increases while the averaged energy 〈SR〉 is higher than
〈SR〉∗. Fig. 4.6(b) shows transient behavior caused by resetting the excitation eR at
t = t0 = (5+1/4)TR. At that time the phase shifts by around π/2. The deviation of the
averaged energy 〈SR〉 from 〈SR〉∗ becomes positive, and the phase slightly increases.
In the meantime the deviation 〈SR〉 − 〈SR〉∗ becomes negative, and then the phase
decreases. We confirmed the dynamic relationship between the phase and the averaged
energy. The temporal change of the phase is proportional to the magnitude of the time
average of the stored energy.

Moreover, we examine the relationship between the phase shift and the deviation
of the stored energy. By integrating Eq. (4.14) in the interval [t0,∞), we obtain the
following relationship between the phase shift and the total of the deviation of the
stored energy:

θR(t0) − θ∗R = − 1

Ω

∫ ∞

t0

{
〈SR〉

(
θR(t)

)
− 〈SR〉∗

}
dt, (4.15)

where θ∗R is the phase at an entrained rotation. Fig. 4.7 shows the total of the deviation
of the stored energy against the phase shift. The dashed line is the theoretical result
obtained by using Eq. (4.15). The dots show the numerical result obtained by using
Eq. (4.1). Here the phase shift is estimated through the application of φ(t0) − Ωt0 in
Eq. (4.1). The theoretical result quantitatively corresponds to the numerical one. The
phase shift is proportional to the total of the deviation of the stored energy from the
steady value.

4.4 Summary of frequency entrainment of rotation

We analyzed energy conversion in frequency entrainment of rotation. The phase-locked
system is considered as a dynamical system with a stable rotational limit cycle.

At the entrained states, the energy conversion in the system was studied by using
energy supplied to the system by the periodic excitation. Response curves were ob-
tained numerically and theoretically for the supplied energy and the characteristics of
the entrained rotations. That is, the phase difference of the rotatory component from
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Figure 4.7: Relationship between the total of the deviation of the stored energy and
the phase shift in the system (4.1) at k = 0.1, N = 0.2, A = 0.05, and Ω = 1.93. The
dashed line is the theoretical result obtained from Eq. (4.15), and the dots show the
numerical one from Eq. (4.1). The arrows (a) and (b) show the situations in Figs. 4.6(a)
and (b), respectively.

the periodic excitation, and the amplitude and the phase deviation of the fundamental
oscillatory component. For the theoretical result, we derived the averaged equation for
the system. The averaged equation is valid for the periodic rotations and the stability.
The theoretical result from the averaged equation is coincident with the numerical one.
The coincidence implies that the observed relationships between the response curves
are described by the theoretical expression. The energy conversion at the entrained ro-
tations depends on the phase difference of the rotatory component or the phase for the
entrainment. In addition, the supplied energy increases with the excitation frequency.

In the transient regime, we associated the development of the entrainment phe-
nomenon with the energy conversion in the system. The phase equation was derived to
represent the dynamics of phase for the frequency entrainment of rotation. The stored
energy is described as a form including the temporal change of the phase variable.
This implies that the entrainment phenomenon develops according to the change of
the stored energy. The energy conversion in the transient regime of the entrainment is
confirmed numerically. The obtained energy description of the phase regulation implies
the possibility to regulate the phase by changing the stored energy. In other words, we
can regulate the phase of rotation by energy exchange.

The energy conversion is summarized in the frequency entrainment of rotation. The
notion of energy was associated with the phase difference of the rotatory component
or the phase for the frequency entrainment in the transient and entrained regime.
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4.5 Comparison with frequency entrainment of li-
bration

In this section, the frequency entrainment of rotation in this chapter is compared with
the phenomenon of libration in Chapter 3 from the viewpoint of energy conversion. Be-
fore the discussion, we summarize the frequency entrainment phenomena of libration
and rotation again. Frequency entrainment occurs for a limit cycle. The entrainment
phenomena analyzed in the thesis occur for the topologically different limit cycles. The
entrained oscillations, namely the entrained librations and rotations, are also topolog-
ically different. The difference reflects the forms of theoretical expressions for the
entrained oscillations. Since the corresponding phase is defined from an expression
of the entrained oscillation, the defined phase depends on the form of the expression.
For each of the entrainment phenomena, the phase was identified and then the phase
equation was derived. The obtained phase equations are described as the sum of the
difference between the frequency of the limit cycle and the periodic excitation and the
effect of the excitation on the phase dynamics. Therefore, the entrainment phenomena
of libration and rotation are governed by the same mechanism of phase regulation. The
type of the entrained oscillation does not essentially reflect the frequency entrainment
in terms of phase.

In the following, we discuss the energy conversion in the frequency entrainment
phenomena of libration and rotation. First, we focus on the energy conversion at the
entrained states. For the frequency entrainment of libration, the energy conversion is
associated with the amplitude of the entrained librations. The magnitude of energy
conversion increases with the amplitude. Since the response curves for the amplitude
exhibit resonance phenomenon, the maximum energy can be converted at the reso-
nance frequency or the frequency of the librational limit cycle. For the entrainment
phenomenon of rotation, the energy conversion is associated with the phase for the phe-
nomenon. From the response curves for the phase, the energy conversion monotonically
increases with the excitation frequency. The two entrained oscillations are compared
in terms of the magnitude of energy conversion in a pendulum. In a pendulum, the
amplitude of the periodic librations can increase to π with the energy conversion. We
can regard the periodic libration with the amplitude π as a periodic rotation with the
half period. Further increase of the amplitude produces rotation. In this sense, the
rotation can be regarded as a periodic libration with the amplitude π and with twice
the period. Therefore, a larger amount of energy can be converted at the entrained
rotations than at the entrained librations. From the response curves for the supplied
energy at the entrained rotations, we conclude that the entrained rotations at high
frequency are suited for the energy conversion by a pendulum.

Next, we consider the frequency entrainment phenomena of libration and rotation
from the viewpoint of phase regulation by the energy exchange. For the entrainment
phenomenon of libration, it was confirmed that the dynamics of phase were not affected
by the energy supply. On the other hand, we could associate the notion of energy with
the phase for the frequency entrainment of rotation. The result suggests the possibility
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to regulate the phase for the entrainment of rotation. The energy-based regulation of
phase may be obvious because the stored energy for rotation is directly related to the
angular velocity Ω+ωR or the temporal change of the phase ωR = dθR/dt in Eq. (4.13).
The point that we should raise is the relationship between the stored energy and the
temporal change of the phase, described by Eq. (4.14). Eq. (4.14) indicates a strategy
to regulate the phase of rotation. For rotation of a pendulum, energy exchange is
realized by the application of torque in the direction of rotation and inverse rotation.
The possibility to regulate the phase is applied to the start control of a periodic rotation
of the parametric pendulum in Chapter 5.

Finally, we summarize the energy conversion in frequency entrainment. The en-
trainment phenomena of libration and rotation exhibit different properties of energy
conversion. Energy conversion is associated with amplitude for libration and with
phase for rotation. Thus, the entrainment phenomena with the common mechanism of
phase regulation can be characterized in terms of energy conversion in the systems.

Appendix to detailed derivation of averaged equa-
tion

This appendix provides the detailed derivation of the averaged equation (4.8) for the
system (4.1). By substituting Eq. (4.7) into Eq. (4.1), we obtain

Ω +
dθR

dt
+

daR

dt
sin

(
Ωt + θR + δR

)
+

(
Ω +

dθR

dt
+

dδR

dt

)
aR cos

(
Ωt + θR + δR

)

= Ω + ωR + ΩaR cos
(
Ωt + θR + δR

)
,

(4.16)

and

dωR

dt
+ Ω

daR

dt
cos

(
Ωt + θR + δR

)
−

(
Ω +

dθR

dt
+

dδR

dt

)
ΩaR sin

(
Ωt + θR + δR

)

= − k
{
Ω + ωR + ΩaR cos

(
Ωt + θR + δR

)}

− sin
{
Ωt + θR + aR sin

(
Ωt + θR + δR

)}
+ N + A sinΩt.

(4.17)

Averaging the above equations over the excitation period TR = 2π/Ω gives the following
equations:

dθR

dt
= ωR, (4.18)

and
dωR

dt
= −k

(
Ω + ωR

)
− J1(aR) sin δR + N, (4.19)

where Jn(·) is the Bessel function of the first kind for the integer n. In addition,
averaging (4.16)× sin(Ωt+ θR + δR)+ (4.17)× cos(Ωt+ θR + δR)/Ω over TR, we obtain

daR

dt
=

J0(aR) + J2(aR)

2Ω
sin δR − 1

2
kaR − A

2Ω
sin

(
θR + δR

)
, (4.20)

51



and averaging (4.16)× cos(Ωt + θR + δR)− (4.17)× sin(Ωt + θR + δR)/Ω over TR gives

dθR

dt
+

dδR

dt
=

J0(aR) − J2(aR)

2aRΩ
cos δR − 1

2
Ω − A

2aRΩ
cos

(
θR + δR

)
. (4.21)

From the above equations (4.18), (4.19), (4.20), and (4.21), we obtain the averaged
equation (4.8).

Appendix to detailed derivation of phase equation

We describe the derivation of the phase equation (4.12). Under the assumption (viii),
Eqs. (4.16) and (4.17) are modified as

Ω+
dθR

dt
+

(
Ω+

dθR

dt

)
aR0 cos

(
Ωt+θR+δR0

)
= Ω+ωR+ΩaR0 cos

(
Ωt+θR+δR0

)
, (4.22)

and

dω

dt
−

(
Ω +

dθR

dt

)
ΩaR0 sin

(
Ωt + θR + δR0

)

= − k
{
Ω + ωR + ΩaR0 cos

(
Ωt + θR + δR0

)}

− sin
{
Ωt + θR + aR0 sin

(
Ωt + θR + δR0

)}
+ N + A sinΩt.

(4.23)

Averaging the above equations over the excitation period TR gives

dθR

dt
= ωR, (4.24)

and
dωR

dt
= −k

(
Ω + ωR

)
− J1(aR0) sin δR0 + N, (4.25)

where Jn(·) is the Bessel function of the first kind for the integer n. Since the fun-
damental oscillatory component can be regarded as an additional one of the rotatory
component, we remove the effect of the oscillatory component on the phase dynamics.
By averaging (4.22)× sin(Ωt + θR + δR0) + (4.23)× cos(Ωt + θR + δR0)/Ω over TR, we
do not have to consider the effect and obtain

J1(aR0) sin δR0 =
1

2
kΩa2

R0 +
AaR0

2
sin

(
θR + δR0

)
, (4.26)

where the relationship 2J1(aR0)/aR0 = J0(aR0) + J2(aR0) is used. Substitution of
Eq. (4.26) into Eq. (4.25) gives

dωR

dt
= −k

(
Ω + ωR

)
− 1

2
kΩa2

R0 −
AaR0

2
sin

(
θR + δR0

)
+ N. (4.27)
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Here the assumption (v) is explicitly formulated as k = εk′, N = εN ′, and A = εA′

with the small parameter ε, where the constants k′, N ′, and A′ are of the same order.
Then we can rewrite Eq. (4.27) as

dωR

dt
= ε

{
− k′(Ω + ωR

)
− 1

2
k′Ωa2

R0 −
A′aR0

2
sin

(
θR + δR0

)
+ N ′

}
. (4.28)

This equation indicates that the time derivative of ωR is sufficiently small. Thus we can
regard it as zero. Using Eq. (4.24), we obtain the following equation which describes
the time derivative of θR:

dθR

dt
=

N

k
− Ω − 1

2
Ωa2

R0 −
AaR0

2k
sin

(
θR + δR0

)
. (4.29)

This derivation can be applied for the rotational limit cycle at A = 0. The similar
equation for θR0 is obtained as

dθR0

dt
=

N

k
− Ω0 −

Ω0a2
R0

2
= 0, (4.30)

where the excitation frequency Ω is changed into the frequency Ω0 of the rotational
limit cycle. This equation gives the description for Ω0. By substituting Eq. (4.30) into
Eq. (4.29), the phase equation (4.12) is derived.

Appendix to verification of phase equation

In this chapter, we derived the phase equation (4.12) for the frequency entrainment
of rotation in the system (4.1) without a condition of overdamping. This appendix
numerically confirms the validity of the phase equation.

First, the transient regime represented by the phase equation (4.12) is confirmed.
Fig. 4.8 shows transient regime of the entrainment obtained by using Eqs. (4.12) and
(4.1). As for the initial condition, we set the initial value of Eq. (4.12). Then, by
using Eq. (4.11), the corresponding initial value is determined for Eq. (4.1). Note
that the initial value of Eq. (4.1) is not uniquely determined because Eq. (4.1) is non-
autonomous. However the non-uniqueness of the initial value does not change the
numerical result shown in Fig. 4.8. In Fig. 4.8(a) the initial value of Eq. (4.12) is set
at θR(0) = −3. The initial deviation θR(0) is negative in comparison with the steady
state. In Fig. 4.8(b) the initial deviation θR(0) = 2 is positive. The predicted value of
the phase is consistent with the value obtained from Eq. (4.1).

In addition to the transient regime, we examine the entrained states by using re-
sponse curves for the phase variable. Fig. 4.9 shows the response curves obtained
(a) theoretically by using Eq. (4.12) and (b) numerically by using Eq. (4.1). For suf-
ficiently small value of the amplitude A, the response curves show a good agreement
with each other. At A = 0.1, however, the existence regions of steady states which
correspond to the entrainment regions are not consistent. This indicates the limitation
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Figure 4.8: Transient regime of the entrainment phenomenon of rotation by using
Eqs. (4.12) and (4.1) at k = 0.1, N = 0.2, A = 0.05, and Ω = 1.93. The initial
conditions of Eq. (4.12) are (a) θR(0) = −3 and (b) θR(0) = 2, and the conditions
of Eq. (4.1) are set at the corresponding values by employing Eq. (4.11). The curves
denoted by θR show the phase obtained from Eq. (4.12). The stroboscopic points (
represent the phase estimated from Eq. (4.1).
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Figure 4.9: Response curves for the phase obtained (a) theoretically by using Eq. (4.12)
and (b) numerically by using Eq. (4.1) at k = 0.1 and N = 0.2. The steady states
correspond to equilibrium points of Eq. (4.12) and the time average of φ(t) − Ωt at
periodic rotations of Eq. (4.1).
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of the validity of Eq. (4.12). The limitation originates from the assumption (v). The
numerical results show that the phase equation (4.12) provides good approximation of
the transient regime and the steady states of Eq. (4.1).
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Chapter 5

Start Control of Periodic Rotation

This chapter presents a control method for starting the periodic rotation inherent
in the parametric pendulum. First, properties of the target periodic rotations are
explained. The requirements are clarified for the control method. Then, the start
control is constructed on the basis of the possibility to regulate the phase of rotation
discussed in Chapter 4. We numerically investigate the performance of the control.

5.1 Parametric pendulum

In this section, the periodic rotations inherent in the parametric pendulum are ex-
plained. The periodic rotations are suited for applications such as energy scavenging.
A problem arises in applications of the periodic rotations.

5.1.1 Equation of motion and periodic steady states

The dynamics of the parametric pendulum are described by the following equation
of motion with the nondimensional time t, the angular displacement θ(t), and the
velocity υ(t):

dθ

dt
= υ, (5.1a)

dυ

dt
= −cυ −

(
1 + p cosωt

)
sin θ, (5.1b)

where c is the damping coefficient. The term p cosωt denotes the parametric excita-
tion with the amplitude p and the angular frequency ω. We express the parametric
excitation by eP(t) := p cosωt and its period by TP := 2π/ω.

Periodic steady states of the parametric pendulum are represented with a natural
number n and an integer r by

θ(t) = θ(t − nTP) + 2πr. (5.2)
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Figure 5.1: Existence domain of the periodic rotations (1, 1) in the excitation parameter
space (p, ω) for the parametric pendulum (5.1) at c = 0.1. SN denotes the saddle-
node bifurcation and PD the period-doubling bifurcation. The gray corresponds to the
existence domain of the periodic rotations (1, 1).

A combination of n and r corresponds to a state in which the pendulum rotates r times
during n periods. The positive (negative) value of r shows that the pendulum rotates
in the direction to increase (decrease) the angular displacement θ. Periodic librations
are expressed as r = 0. We describe a periodic steady state at which the pendulum
rotates r times during n periods as a periodic rotation (n, r) for r .= 0 [32] and an
nTP-periodic libration for r = 0. In the following figures, completely stable, directly
unstable, and inversely unstable periodic steady states or fixed points are symbolized
by nSr, nDr, and nIr. In particular, for n ≥ 2, the periodic points are numbered as nSr

i

for i = 1, · · · , n.

5.1.2 Periodic rotation

In Chapters 3 and 4, we clarified periodic rotations can convert larger amount of
energy than periodic librations. This suggests that the periodic rotations are useful for
energy scavenging by the parametric pendulum. We explain properties of the periodic
rotations of the parametric pendulum.

First, the dependence of the periodic rotations (1, 1) on the excitation parameters is
examined. Fig. 5.1 shows the existence domain of the periodic rotations (1, 1), denoted
by 1S1, in the excitation parameter space for the parametric pendulum (5.1) at c = 0.1.
Small amplitude excitation cannot sustain the periodic rotations. For high excitation
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Figure 5.2: Domain of attraction for the parametric pendulum (5.1) at c = 0.1, p = 0.5,
and ω = 2. The fixed points 1S±1 correspond to stable periodic rotations (1,±1),
respectively. The pair of periodic points 2S0

1,2 denote a stable 2TP-periodic libration.

frequency, the existence domain extends to large amplitude. The existence domain for
small amplitude is bounded by the saddle-node bifurcation SN and the period-doubling
bifurcation PD. On the other hand, for large amplitude and low frequency, there is
another existence domain of the periodic rotations (1, 1). The domain is surrounded
by the period-doubling bifurcation PD.

Next, we investigate the dependence of the periodic rotations on the initial condi-
tion. Fig. 5.2 shows the domain of attraction for the parametric pendulum at c = 0.1,
p = 0.5, and ω = 2. At the parameter setting, there exist three periodic steady states:
a periodic rotation (1, 1), a 2TP-periodic libration, and a periodic rotation (1,−1).
These states are denoted by 1S1, 2S0

1,2, and 1S−1, respectively. Because the bound-
aries θ = ±π are identified on the plane, we can image a simply-connected domain in
the cylindrical state space for each attractor. Since Eq. (5.1) is invariant with respect
to the transformation (θ, υ) '→ (−θ,−υ), the domain of attraction exhibits rotational
symmetry. Thus we have only to consider one of the periodic rotations (1,±1). In
this chapter, we focus on the periodic rotation (1, 1). Fig. 5.2 shows that the onset of
the periodic rotations (1,±1) depends on the initial state. Moreover, the basin of the
rotations locates on limited region of high angular velocity υ.

These numerical results give us some remarks for the periodic rotations of the
parametric pendulum from the viewpoint of applications such as energy scavenging.
Fig. 5.1 suggests that the periodic rotations are applicable to energy scavenging over
a wide range of the excitation parameters. On the other hand, Fig. 5.2 brings up the
dependence of the onset on the initial state for the periodic rotations. The pendulum
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at the static downward position requires enough energy supply to rotate. In addition,
the pendulum has to be controlled for the periodic rotations.

5.2 Start control

In this section, we propose a control method for starting the periodic rotation inherent
in the parametric pendulum. The possibility to regulate the phase of rotation by energy
exchange in Chapter 4 presents a concept of the control method. The concrete scheme
of the start control is constructed.

We describe requirements for the control for starting the periodic rotation. In
Fig. 5.2, the basin of the periodic rotation (1, 1) does not cover all the region with
large velocity. This implies that increasing the angular velocity is not sufficient for
the onset of the periodic rotation. The control is required to locate the state point
inside the basin of the target. It is difficult to find a theoretical condition for the basin
because of the nonlinearity. Thus the desired control makes the state point approach
the target periodic rotation without any information about the target. In addition, the
control input must become null after the onset of the periodic rotation inherent in the
parametric pendulum.

5.2.1 Strategy based on phase regulation by energy exchange

In Chapter 4, we indicated the possibility to regulate the phase of rotation by exchang-
ing energy with the considered system. The possibility is originated from Eq. (4.14).
That is, the temporal change of phase is governed by the deviation of the stored energy
from the criterion value at the entrained rotation. The relationship (4.14) can be inter-
preted as follows. Energy supply to the system increases the phase or the frequency of
rotation, and energy extraction from the system decreases the phase or the frequency.
In this sense, the phase of rotation can be regulated by exchanging energy. The energy
supply and extraction can be easily carried out by applying the constant torque in the
direction of the rotation and the inverse rotation, respectively.

Then we shift an issue about how to identify the current state of phase. In the
analysis for the frequency entrainment phenomena of libration and rotation, the phase
was estimated by the stroboscopic measurement. The temporal change of stroboscopic
points for the angular displacement corresponds to the change of phase. It is effective
to identify the current state of phase by using the difference between the two adjacent
stroboscopic points for the angular displacement. Since the measurement of strobo-
scopic points is operated at a constant time interval, it is not suited for continuous
control. Now identifying the absolute value of phase is not required for the regulation
of phase because we focus on the temporal change of phase. We extend the above
discrete measurement to a continuous one. The extension is performed by employing
at every moment the difference between two states at a distance of the time interval of
stroboscopic measurement.
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Pendulum
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Figure 5.3: Block diagram of the proposed control for the periodic rotation inherent in
the parametric pendulum (5.1).

For the parametric pendulum (5.1), we follow the above strategy to design a con-
trol method for starting an inherent periodic rotation. We target the periodic rota-
tion (n, r). The period of the target rotation is nT . The temporal change of the phase
is estimated by using θ(t)− θ(t− nT )− 2πr, where we consider the rotation number r
of the target rotation. Thus the control input torque u(t) to the parametric pendulum
is designed with the estimated phase shift and the control gain K as

u(t) = −K
(
θ(t) − θ(t − nT ) − 2πr

)
, (5.3)

where the minus sign reflects the relationship between the phase and the energy ex-
change. The control gain K is introduced to adjust the magnitude of the control
torque.

The control method has been known as the delayed feedback control which was
proposed by Pyragas for controlling chaos [51]. The delayed feedback control does not
require the exact model for the controlled system [52–55] and can establish the motion
inherent in the system. These properties satisfy the above requirements. The control
scheme is designed as a general form based on the delayed feedback control.

5.2.2 Construction of control scheme

Based on the delayed feedback control, we construct the start control for the periodic
rotation inherent in the parametric pendulum as a general formulation. The block
diagram of the proposed method is shown in Fig. 5.3. In the control scheme at a
moment t, the current angular displacement θ(t) is input to the delay block Dτ , and
then the angular displacement delayed by time τ , that is θ(t − τ), is output from
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the block. The control input u(t) affects the pendulum as torque in the direction of
rotation. The equation governing the controlled parametric pendulum is described as

dθ

dt
= υ, (5.4a)

dυ

dt
= −cυ −

(
1 + p cosωt

)
sin θ + u(t), (5.4b)

u(t) = K
(
θ(t − τ) + 2πl − θ(t)

)
. (5.4c)

The performance of the control method is determined by the control gain K, the delay
time τ , and the rotation number l.

5.3 Control behavior

This section begins numerical investigation into the proposed control for the periodic
rotation inherent in the parametric pendulum. In this chapter, the parameter setting
for Eq. (5.1) is fixed at

c = 0.1, p = 0.5, and ω = 2 (5.5)

so that the parametric pendulum exhibits a stable periodic rotation (1, 1). The periodic
rotation (1, 1) coexists with a periodic rotation (1,−1) and a 2TP-periodic libration at
the parameter setting. From the symmetry of the parametric pendulum with respect
to the transformation (θ, υ) '→ (−θ,−υ), we focus on the periodic rotation (1, 1) as the
target rotation of the proposed control. As for the control parameters, the delay time
and the rotation number are fixed at τ = TP = 2π/ω and l = r = 1, respectively. This
setting corresponds to targeting the stable periodic rotation (1, 1).

First of all, we numerically show how the proposed method controls the parametric
pendulum to the target rotation. The time delay component extends the dimension
of the state space of the system from the inherent two to infinity. Now we fix the
initial condition at the stable 2TP-periodic libration inherent in the parametric pen-
dulum (5.1), that is (θ(s), υ(0)) for s ∈ (−TP, 0]. Fig. 5.4 shows control behaviors in
the system (5.4) from t = t0 = 3TP. The circles on the curves denote the stroboscopic
points at the excitation period TP in order to evaluate the periodicity of the motion.
A transient behavior at the control gain K = 0.1 is shown in Fig. 5.4(a). The initial
state is one of the periodic points with θ < 0, as symbolized by 2S0

1 in Fig. 5.2. After
applying the start control, the control input u(t) operates as driving torque and then
the angular displacement θ(t) begins to increase. At around t = 11TP, θ(t) shows peri-
odicity and the control input u(t) disappears. This result indicates the achievement of
the start control. The null control input at the achievement satisfies the requirement
for the start control. Fig. 5.4(b) shows another control behavior at K = 0.1. The
initial state is the other periodic point 2S0

2 with θ > 0. In this situation, the proposed
method cannot start the target rotation. The angular displacement θ(t) does not reach
θ = π/2. The state approaches to a periodic libration. Then, the control continues
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2 at K = 0.1.
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2 at K = 0.15.

Figure 5.4: Behaviors of the controlled parametric pendulum (5.4). The other param-
eters are fixed at c = 0.1, p = 0.5, ω = 2, τ = TP = 2π/ω, and l = 1. The initial
condition for the time delay component is set at the coexisting 2TP-periodic libration.
The start control is applied from t = t0 = 3TP = 3 · 2π/ω. The initial state is one of
the periodic points corresponding to the 2TP-periodic libration, namely 2S0

1,2 shown in
Fig. 5.2. The circles ( on the curves denote the stroboscopic points at the excitation
period TP.
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to apply torque to the pendulum. Compared with Fig. 5.4(a), the initial condition
directly affects the performance of start control. Fig. 5.4(c) shows a control behavior
at K = 0.15 for the same initial condition as Fig. 5.4(b). The control swings up the
pendulum over θ = ±π at around t = 8TP, and then the pendulum rotates periodically
at around t = 18TP. The control input indicates null after establishing the target
rotation. The result shows the accomplishment of the proposed method. Figs. 5.4(b)
and (c) show control behaviors from the same initial condition. However, the differ-
ence of the control gain K changes the performance of the control method. For the
large control gain, the control can swing up the pendulum over θ = π/2. Therefore,
it is expected that the control method with the larger control gain starts the periodic
rotation inherent in the parametric pendulum (5.1).

5.4 Domain of attraction

The performance of the start control directly depends on the control gain K. On the
other hand, even though the small control gain, it is easily expected that the start
control is achieved if the initial state is in the vicinity of the target rotation. This
suggests that the achievement also depends on the initial condition. In the following,
we study the basin of the target periodic rotation (1, 1) for the controlled parametric
pendulum (5.4).

Figure 5.5 shows the domain of attraction for the system (5.4) at the control
gain K = 0.05, 0.1, 0.15, 0.2, and 0.25. The initial condition for the time delay
component is given as the inherent behavior of the parametric pendulum (5.1). The
start control is applied from t = 0. Hence the figures display the domain at the begin-
ning moment of the start control. Increasing the control gain expands the basin of the
target rotation (1, 1). At K = 0.05, the basin of the target rotation contains the vicin-
ity of the state point at (θ, υ) = (π, 0). The state point represents the static pendulum
at the upward position. From the position the pendulum can rotate with small energy
supply because the state point lies on the boundary between librations and rotations
in an undamped free pendulum. In Fig. 5.2, the vicinity of the state point is contained
in the basin of the 2TP-periodic libration. This implies that the parametric excitation
does not supply energy at the neighborhoods of the point. Fig. 5.5(a) shows that these
neighborhoods can be controlled for the target rotation. Thus the basin of the periodic
rotation (1, 1) possibly contains state points representing transient rotation. Indeed,
Figs. 5.5(a), (b), and (c) show that there appear state points with enough angular
velocity to rotate outside of the basin of the target. It should be noted that transient
rotation is not a sufficient condition for the onset of the target rotation. For the small
control gain, the achievement of the control strongly depends on the initial condition.
In contrast, the periodic rotation (1, 1) becomes only one attractor on the domain at
K = 0.2 as shown in Fig. 5.5(d). At the control gain, the proposed method can start
the target rotation from any initial state. Further increase of the control gain breaks
the achievement at K = 0.2 and the target rotation disappears. The stability of the
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Figure 5.5: Domain of attraction for the controlled parametric pendulum (5.4) at
c = 0.1, p = 0.5, ω = 2, τ = TP = 2π/ω, and l = 1. The start control is applied
from t = 0. The initial condition for the time delay component is given as the inherent
behavior of the parametric pendulum (5.1) for t < 0. The target rotation is indicated
by the fixed point 1S1.
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Figure 5.5: Continued.

target rotation changes by the increase of the control gain. In Fig. 5.5(e), the white
corresponds to the basin of a periodic state generated through a bifurcation.

From the numerical investigation into the domain of attraction, we confirmed that
a range of the control gain K exists to operate the start control regardless of the initial
condition. The detailed range is identified through studying the bifurcation structure
with respect to the control gain in the next section.

5.5 Bifurcation structure with respect to control
gain

The control gain is a parameter to govern the performance of the start control. It
has been reported that the stabilization of an unstable periodic orbit depends on the
control gain in the delayed feedback control [51]. In addition, increasing the control
gain may change the stability of the target. This implies that the proposed method,
which is based on the delayed feedback control, possibly induces the stability change of
the target rotation. We confirmed the stability change of the target rotation shown in
Fig. 5.5(e). On the other hand, the previous section showed that starting the periodic
rotation requires enough torque or the control gain to swing up the pendulum. Thus
even the control with the large control gain does not always start the target rotation.
It is important to understand the two features of the proposed method associated with
the control gain K: the accessibility to the target and the stability change of the target.

Before studying the bifurcation structure, the following notation is introduced for
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Figure 5.6: Bifurcation diagram with respect to the control gain K in the controlled
parametric pendulum (5.4) at c = 0.1, p = 0.5, ω = 2, τ = TP = 2π/ω, and l = 1.
PD denotes the period-doubling bifurcation and SN the saddle-node bifurcation. The
type of line shows the stability of the periodic states; the solid lines denote completely
stable states, the dashed lines directly unstable ones, and the chain lines inversely
unstable ones. The detailed classification of the stability is explained in the appendix
of Chapter 3.

displaying the bifurcation diagram:

Θ := θ + 2πr, (5.6)

where θ denotes the angular displacement at the stroboscopic point and r indicates
the rotation number of the periodic rotation in the positive direction. The notation
divides periodic rotations and librations.

The bifurcation diagram with respect to the control gain K is shown in Fig. 5.6. At
K = 0, there exist seven fixed points and a pair of periodic points: the fixed points 1S±1

and 1D±1 for completely stable and directly unstable periodic rotations (1,±1), the
fixed points 1D0 and 1I0 for directly and inversely unstable equilibrium points, and the
periodic points 2S0

1,2 for a completely stable 2TP-periodic libration. Since Eq. (5.4) at
K = 0 is equivalent to Eq. (5.1), the stable points 1S±1 and 2S0

1,2 correspond to those
in Fig. 5.2. Increasing the control gain first induces the saddle-node bifurcation which
annihilate the branches 1S−1 and 1D−1. The domain of attraction after the bifurcation
changes as shown in Figs. 5.5(a) and (b). For additional increase of the control gain,
the period-doubling bifurcation occurs. As a result, 2S0

1,2 and 1I0 disappear and a
completely stable libration 1S0 appears as the alternative attractor. At K = 0.1586,
the system encounters the saddle-node bifurcation. The stable TP-periodic libration
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coexisting with the target disappears with the paired unstable libration 1D0. The
domain of attraction in the interval of K was shown in Fig. 5.5(c). We describe the
value of the control gain K at the saddle-node bifurcation as K0. The value K0 is a
critical point that all the inherent steady states coexisting with the target disappear
through the bifurcations for K < K0. Fig. 5.5(d) shows that the target rotation
becomes only one attractor at K = 0.2 > K0. However, further increase of the control
gain bifurcates the target rotation (1, 1) to the periodic rotation (2, 2). The period
doubling bifurcation is confirmed as the stability change of the target. Fig. 5.5(e)
shows the bifurcated periodic rotation (2, 2), denoted by 2S2

1,2 at K = 0.25. On the
other hand, the directly unstable periodic rotation 1D1 is invariant for the change of
K because of the odd number condition [84,85].

For the control gain K > K0, the proposed control establishes the periodic rotation
regardless of the initial condition. However, the control gain K larger than the critical
point K0 does not give a necessary and sufficient condition for the achievement of the
control. The reason is that the large control gain possibly changes the stability of
the target. Indeed, we confirmed the stability change by the numerical investigation.
Thus, the critical point K0 does not give a sufficient condition. The point still provides
valuable information to the design of the control parameter because it is a necessary
condition for the control from any initial condition. For any parameter setting, it is
difficult to determine the critical point K0. We can present the inequality K0 ≤ 1/2π by
a brief consideration. In the system (5.4) without the parametric excitation, the control
input u(t) = 2πK > 1 breaks the static and periodic potential. As a result, the stable
equilibrium point disappears for the control gain K > 1/2π. There exists no periodic
libration bifurcated from the equilibrium point due to the parametric excitation.

5.6 Remarks

In this chapter, we proposed a control method for starting the periodic rotation inherent
in the parametric pendulum (5.1) and numerically examined the performance. The
analysis of energy conversion in frequency entrainment clarified that periodic rotations
can convert larger amount of energy than periodic librations. This implies that the
periodic rotation is suited for applications such as energy scavenging by the parametric
pendulum.

We began with investigation into the properties of the periodic rotations. As a
result, the onset of the periodic rotations depends on the initial state of the pendulum
and requires energy supply because the periodic rotations are motions with high energy.
The investigation suggests the need for a control method to start the periodic rotation.
The possibility to regulate the phase of rotation by energy exchange in Chapter 4 gives
a strategy to construct the control method. That is, supplying energy to the system
increases the phase or the frequency of rotation, and extracting energy from the system
decreases the phase or the frequency. Energy exchange can be realized by applying the
constant torque to a rotating pendulum. Identifying the temporal change of the phase
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is carried out by using at every moment the difference between the states at a distance
of the excitation period. In this way, we proposed the start control for the periodic
rotation inherent in the parametric pendulum.

The proposed control method was numerically studied. The control behaviors show
that the expected control can be achieved. The domain of attraction and the bifurcation
structure indicate that the control gain governs the performance of the control method.
For an initial state with low energy, the control method first has to swing up the
pendulum over the upward position for the target periodic rotation. This operation
requires large control input torque. In addition, the stability change of the target
orbit, depending on the control gain, occurs in the control method because the control
is based on the delayed feedback control. On the other hand, we could find the range
of the control gain in which the control method is achieved from any initial state of
the pendulum.

The proposed method with time delay operates as a control to cross over a separatrix
which forms a boundary between basins of steady states. The control generates a
pass to the target by adding dimensions to the inherent state space. For the delayed
feedback control which is the framework of the proposed method, the extended and the
generalized schemes have been reported [58, 86]. It is obvious that the extension and
the generalization are valid for the proposed onset control. These concepts imply that
the proposed start control is applicable to periodic rotations in complicated systems.
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Chapter 6

Controlled States of Mechanical
Pendulum under Delayed Feedback

This chapter experimentally investigates the start control proposed in the previous
chapter. First, a mechanical pendulum excited vertically by shaker is introduced as
an experimental setup for the parametric pendulum. Next, the control scheme is im-
plemented to the setup. The feasibility of the control is confirmed experimentally.
Experiments elucidate the performance of the control method depending on the con-
trol parameters. Finally, a verification experiment manifests energy scavenging by a
periodic rotation of the mechanical pendulum.

6.1 Vertically excited mechanical pendulum

A vertically excited mechanical pendulum is introduced as an experimental setup for
the parametric pendulum. We observe periodic rotations of the mechanical pendulum
with the coexisting motions to verify the start control and the energy scavenging.

6.1.1 Experimental setup

We construct the experimental setup for the parametric pendulum by exciting a me-
chanical pendulum vertically. Fig. 6.1 illustrates the rod and the bob which constitute
the mechanical pendulum. The rod is perforated for the rotary shaft and the bob. The
holes for the bob is opened at 10 mm intervals to adjust and fix the position of the bob.
The adjustment determines the length and the moment of inertia of the mechanical
pendulum. In the bob, the hole which the rod is inserted into and the corresponding
holes to fix the position are opened. In Fig. 6.1, the gray corresponds to the holes.
The mechanical pendulum is constructed by inserting the rod into the bob as shown
in Fig. 6.2. The position of the bob is explained by center-to-center distance between
the rotary shaft and the bob.

Figure 6.3 shows a photograph of the experimental setup. The pendulum is sup-
ported by the mechanical rig mounted on an electromagnetic shaker. The electromag-
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Figure 6.1: Schematic illustration of the parts of the mechanical pendulum: the rod
and the bob. The gray corresponds to the holes.

Position of Bob

Figure 6.2: Schematic illustration of the mechanical pendulum. The pendulum is
constructed by inserting the rod in the hole of the bob and fixing the position. The
position of the bob is described as center-to-center distance between the rotary shaft
and the bob.

netic shaker generates vertical excitation which corresponds to the parametric exci-
tation. In addition, the experimental setup includes an accelerometer, angle sensors,
and DC motors. The accelerometer measures the vertical acceleration of the rig or the
pendulum. The angle sensor is fixed at the rotary shaft of the mechanical pendulum to
measure the angular displacement of the pendulum. The DC motor is connected with
the shaft by the gears for applying torque and generating electricity. Fig. 6.4 shows a
schematic diagram of the experimental setup. The electromagnetic shaker is regulated
through the V/I converter and the current amplifier at excitation frequency generated
by the function generator. Here it is not expected that the shaker vertically excites the
mechanical pendulum in ideal sinusoidal waveform, because the experimental setup
behaves as a coupled system of the mechanical pendulum and the electromagnetic
shaker [87].
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Pendulum

Shaker

Figure 6.3: Photograph of the experimental setup for the parametric pendulum. The
experimental setup consists of the mechanical rig supporting the pendulums mounted
on the electromagnetic shaker which generates vertical excitation.

6.1.2 Observation of motions

Typical motions are observed for the vertically excited mechanical pendulum. In par-
ticular, we confirm the existence of periodic rotations and the system parameters at
which the rotations appear. The system parameters correspond to the specification of
the mechanical pendulum and the amplitude and the frequency of the vertical excita-
tion. Periodic rotations observed here are employed as the target of the start control
and perform energy scavenging from the vertical excitation in the following section.
Throughout this experimental study, two kinds of setups are used for the mechanical
pendulum in order to adjust the range of rotatory torque induced by the DC motor.

One is the mechanical pendulum with the smallest moment of inertia which can be
realized in the experimental setup. The specification is listed as Setting 1 in Table 6.1.
At this setup, the DC motor can generate the largest torque relative to the moment
of inertia of the pendulum. However motions of the mechanical pendulum are damped
strongly by the connected DC motor. As a result, two steady states appear for various
vertical excitations. Fig. 6.5 shows the steady states at sinusoidal excitation with
amplitude 5.6 m/s2 and frequency 5 Hz. The two states are (a) a periodic rotation (1, 1)
and (b) the static downward position.

At the other setup the mechanical pendulum possesses the largest moment of inertia
listed as Setting 2 in Table 6.1. The damping effect which is caused by the connected
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Figure 6.4: Schematic diagram of the experimental setup.

Table 6.1: Two kinds of specifications of the mechanical pendulum.

Setting 1 2
Mass of Rod 39.6 g
Mass of Bob 50.6 g 144.9 g
Position of Bob 89.0 mm 149.0 mm
Mass 94.8 g 189.1 g
Length 88.2 mm 138.3 mm
Moment of Inertia 7.37×10−4 kg·m2 3.62×10−3 kg·m2

Natural Frequency 1.68 Hz 1.34 Hz
Damping Coefficient 7×10−5 kg·m2/s 1×10−4 kg·m2/s

DC motor is suppressed at the smallest level. There appear a variety of periodic steady
motions of the vertically excited mechanical pendulum. Fig. 6.6(a) shows a periodic
rotation (1, 1) and (b) a 2TP-periodic libration at sinusoidal excitation with ampli-
tude 1.1 m/s2 and frequency 2 Hz, where TP denotes the excitation period. Fig. 6.7(a)
shows a periodic rotation (1, 1) and (b) a 4TP-periodic libration. The excitation pa-
rameters are regulated to the amplitude 2.1 m/s2 and the frequency 3.5 Hz. Fig. 6.8
shows two periodic rotations which possess different periods. One has the same period
as the vertical excitation and the other twice the period. The vertical excitation is
generated at sinusoidal waveform with amplitude 2.0 m/s2 and frequency 4 Hz.

We can observe the static downward position of the vertically excited mechanical
pendulum for any vertical excitation. The observation is different from the numerical
results for the physical model in Chapter 5. The difference is caused by the assumption
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(a) Periodic rotation (1, 1).
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(b) Static downward position.

Figure 6.5: Steady states of the vertically excited mechanical pendulum with the small-
est moment of inertia. The vertical excitation of the shaker is regulated to sinusoidal
waveform with amplitude 5.6 m/s2 and frequency 5 Hz. The dots denote the strobo-
scopic points at every excitation period.
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(a) Periodic rotation (1, 1).

-π

0

π

0 2 4 6 8 10

θ
 [r

ad
]

t [s]

-2

0

2

e
P

 [m
/s

2 ]

(b) 2TP-periodic libration.

Figure 6.6: Steady motions of the mechanical pendulum at sinusoidal excitation with
amplitude 1.1 m/s2 and frequency 2 Hz. The mechanical pendulum is assembled with
the largest moment of inertia.

of the linear viscous damping in the model. Nonlinearity of the damping appears in real
mechanical systems. Moreover, the mechanical pendulum is connected with the DC
motor. This induces complicated nonlinearity of the damping. In the thesis, we do not
consider the damping characteristics. Instead of the detailed modeling and identifica-
tion of the damping, we estimate the approximate value of the linear component of the
damping through the logarithmic decrement method [87] for the reference. It should
be noted that the modeling and identification are significant for applications such as
energy scavenging because the damping characteristics directly related to dissipative
energy due to the damping and the converted energy. The modeling and identification
have been known as much complicated work [59, 60]. Indeed, the start control with
delay operates properly without the exact mathematical model of the experimental
setup [52,55].
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(a) Periodic rotation (1, 1).
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(b) 4TP-periodic libration.

Figure 6.7: Steady motions of the mechanical pendulum at sinusoidal excitation with
amplitude 2.1 m/s2 and frequency 3.5 Hz. The mechanical pendulum is assembled with
the largest moment of inertia.
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(a) Periodic rotation (1, 1).
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(b) Periodic rotation (2, 1).

Figure 6.8: Two periodic rotations of the mechanical pendulum at sinusoidal excitation
with amplitude 2.0 m/s2 and frequency 4 Hz. The mechanical pendulum is assembled
with the largest moment of inertia. The periodic rotations have rotation frequency
different from each other.

6.2 Start control for periodic rotation

The control method proposed in the previous chapter is implemented in the exper-
imental setup. The preliminary experiment showed that the mechanical pendulum
connected with the DC motor rotates periodically. Since the DC motor is used in the
control scheme, we should regard the mechanical pendulum with the DC motor as the
experimental setup including the control system. However, the DC motor cannot be
removed after the onset of the target rotation because of the following two reasons.
One is that the DC motor is necessary for generating electric power in the energy
scavenging. The other reason is that disconnecting the DC motor causes discontinuous
change in the inertia and damping of the mechanical pendulum. The change possibly
breaks the target periodic rotation. The DC motor should be regarded as a part of the
mechanical pendulum which is now controlled. In other words, the periodic rotation
observed in the previous section is the target motion of the proposed start control.
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This section experimentally verifies the feasibility of the proposed control.

6.2.1 Installation of control system

The block diagram shown in Fig. 5.3 illustrates a flow of the start control. The flow
is implemented in the experimental setup as shown in Fig. 6.4. Data acquisition of
the angular displacement for the control is carried out by using the angle sensor. The
control input is calculated by a computer according to the block diagram. The output
voltage corresponding to the control input is converted to current for regulating the
DC motor. The DC motor induces torque through the gears by 0.179 N·m/A. In
the following, we use the control gain K and the delay time τ as well as the vertical
excitation eP and its period TP with the corresponding dimension. In particular, the
delay time is displayed at its reciprocal, that is, frequency. We call it control frequency.

6.2.2 Controlled behavior

We show behaviors of the mechanical pendulum under the start control. The observed
periodic rotations are established by the start control from the coexisting motions.

First, we observe the start control for a periodic rotation from the static downward
position. Based on the previous observation in Fig. 6.5, the mechanical pendulum is
fixed at Setting 1 in Table. 6.1, and the vertical excitation is regulated to sinusoidal
waveform with amplitude 5.6 m/s2 and frequency 5 Hz. As for the control parameters,
the control gain K is 0.072 A/rad, the delayed time τ is the same as the excitation
period 1/(5 Hz) = 2 s, and the rotation number l is unit. Fig. 6.9 shows the behavior
of the mechanical pendulum controlled for the periodic rotation. At the beginning of
the control, the control operates for swinging up the pendulum and then the pendulum
rotates. The stroboscopic points, denoted by the dots on the curves, show that the
amount of change in the angular displacement increases at first and then converge. At
around 3 s after the operation, the control input disappears and the target periodic
rotation appears.

Next, the target periodic rotations are established from the coexisting periodic
librations or rotations. We have already observed periodic motions coexisting with the
corresponding target periodic rotations. Fig. 6.10(a) shows the system behavior under
the start control from the 2TP-periodic libration to the target rotation in Fig. 6.6.
Fig. 6.10(b) depicts the start control from the 4TP-periodic libration to the target
rotation in Fig. 6.7. As shown in Fig. 6.10(c) the mechanical pendulum is controlled
from the periodic rotation (2, 1) to the target rotation (1, 1) in Fig. 6.8. In addition, the
start control can target the periodic rotation (2, 1) in Fig. 6.8 by adjusting the delay
time. The delay time is fixed at twice the excitation period. Fig. 6.10(d) shows the
start control from the unstable static upward position to the target rotation (2, 1) in
Fig. 6.8. In this case, we empirically confirmed that the initial condition for starting the
target rotation is strict. However, the proposed control can realize the target rotation.

These experiments verify the feasibility of the proposed control. Here we showed

77



-π

0

π

0 2 4 6 8 10

θ
 [r

ad
]

t [s]

-0.3

0

0.6

u
 [A

] control signal
actual current

-10

0

10

e
P

 [m
/s

2 ]

Figure 6.9: Start control of the vertically excited mechanical pendulum from the static
downward position to the periodic rotation. The mechanical pendulum is assembled
at Setting 1 in Table 6.1. In order to generate the inherent periodic rotation, the
vertical excitation is regulated to sinusoidal waveform with amplitude 5.6 m/s2 and
frequency 5 Hz. As the control parameters, the control gain K is 0.072 A/rad, the
delayed time τ is the same as the excitation period 1/(5 Hz) = 2 s, and the rotation
number is fixed at l = 1. The vertical dashed line indicates the beginning time of the
start control.

the achieved results of the control scheme. As discussed in the previous chapter, the
magnitude of the control gain and the initial condition govern the establishment of the
target rotation in experiments. From a practical point of view, the limitation of the
maximum torque generated by the DC motor might become a main cause of the failure.
However, this point is not essential for the proposed method because the advantage is
to make the motion of the pendulum approach to the target rotation.

6.3 Bifurcation with respect to control gain

This section experimentally confirms that the performance of the proposed control,
which was numerically studied in the previous chapter, depends on the control gain.
We focus on the stability of the target rotation. In the following, the mechanical
pendulum is adjusted at Setting 2 in Table 6.1.

Figure 6.11 shows a bifurcation diagram of a periodic rotation with respect to
the control gain K. The vertical excitation is regulated to sinusoidal waveform with
amplitude 1.1 m/s2 and frequency 2 Hz. As for the control parameters, the delay time is
fixed at the excitation period and the rotation number is unit. The diagram is plotted
through the stroboscopic observation. With increase of the control gain, the periodic
rotation bifurcates at around K = 0.15 A/rad. Fig. 6.12 shows the system behaviors
around the bifurcation. Before the bifurcation as shown in Fig. 6.12(a), the start
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(a) From the 2TP-periodic libration in Fig. 6.6.
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(b) From the 4TP-periodic libration in Fig. 6.7.
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(c) From the periodic rotation (2, 1) in Fig. 6.8.
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(d) From the unstable static upward position to
the periodic rotation (2, 1) in Fig. 6.8.

Figure 6.10: Start control of the vertically excited mechanical pendulum assembled at
Setting 2 in Table 6.1. The vertical excitation is regulated as the same as Figs. 6.6, 6.7,
and 6.8. As the control parameters, the control gain K is 0.072 A/rad and the delayed
time τ is the same as the excitation period in (a) and (b). In (c), the control gain K
is increased to 0.11 A/rad. In (d), the delay time τ is regulated to twice the period in
order to target the periodic rotation (2, 1). The rotation number is fixed at l = 1.
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Figure 6.11: Bifurcation diagram with respect to the control gain K for the periodic
rotation of the vertically excited mechanical pendulum under the start control. The
vertical excitation is regulated to sinusoidal waveform with amplitude 1.1 m/s2 and
frequency 2 Hz. As for the control parameters, the delay time is fixed at the exci-
tation period and the rotation number is unit. The data are measured through the
stroboscopic observation.

control performs the desired operation. This is confirmed from the null control input.
The mechanical pendulum exhibits the target periodic rotation. After the bifurcation
in Fig. 6.12(b), the control input appears and the period is twice the excitation period.
The pendulum rotates with twice the excitation period. This implies the occurrence
of the period-doubling bifurcation. The experimental result is consistent with the
numerical result in the previous chapter.

6.4 Bifurcation with respect to delay time

In this section, we examine bifurcation with respect to the delay time τ as another
control parameter. In the applications of the controlled parametric pendulum, no ex-
act information can be obtained for the frequency of external vibration in nature. The
bifurcation diagram with respect to the delay time elucidates the existence range of a
periodic rotation in the domain of delay. The range possibly represents the tolerance of
the proposed control with the mistuned delay. In addition, it is confirmed that synchro-
nization governs the existence and the width. The result assures that synchronization
overcomes the mistuned difference of delay through entrainment.
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(a) K = 0.14A/rad.
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(b) K = 0.15A/rad.

Figure 6.12: Behaviors of the vertically excited mechanical pendulum under the start
control at the different control gain K in Fig. 6.11.

6.4.1 Experimental observation

Figure 6.13 shows a bifurcation diagram of rotation with respect to the delay time τ in
the vertically excited mechanical pendulum under the start control. The shaker is cali-
brated to generate sinusoidal excitation with amplitude 1.2 m/s2 and frequency 2.3 Hz.
The control gain is fixed at 0.072 A/rad and the rotation number at unit. The diagram
is measured by downward and upward shift of the delay time from the excitation pe-
riod 1/2.3 s. The points are plotted through the stroboscopic observation. According
to the experimental procedure, we display the bifurcation parameter at the reciprocal
of the delay time, denoted by 1/τ in Fig. 6.13. For some of the delay time, controlled
behaviors are shown in Fig. 6.14. At τ = 1/2.3 s, the delay time is the same as the
excitation period. In this case, the periodic rotation inherent in the vertically excited
mechanical pendulum appears as shown in Fig. 6.14(c). The null control input implies
the achievement of the desirable operation.

Increasing the control frequency, corresponding to decreasing the delay time τ , shifts
the stroboscopic point of θ in the positive direction. Figs. 6.14(d) and (e) show that
the start control can maintain the periodic rotation. Each of the periodic rotations is
denoted by a single stroboscopic point in Fig. 6.13, which implies that the period or the
rotations is coincident with the excitation period. Then, the control input remains and
vibrates periodically. Average of the control input increases with the control frequency.
Further increase of the control frequency induces a bifurcation. At around 1/τ =
3.3 Hz, the periodic rotation disappears and a quasiperiodic rotation appears. The
quasiperiodic rotation is depicted by a number of the stroboscopic points in Fig. 6.13.
Fig. 6.14(f) shows the the quasiperiodic behavior of the mechanical pendulum and the
control input. The frequency of the quasiperiodic rotation is larger than the excitation
frequency. On the other hand, decreasing the control frequency shifts the stroboscopic
point of θ in the negative direction in a symmetric fashion. Small decrease induces
a bifurcation at which the periodic rotation disappears. For the control frequency
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Figure 6.13: Bifurcation diagram of rotation with respect to the control frequency as
the reciprocal of the delay time τ in the vertically excited mechanical pendulum under
the start control. The vertical excitation is regulated to sinusoidal waveform with
amplitude 1.2 m/s2 and frequency 2.3 Hz. The control gain is regulated to 0.072 A/rad
and the rotation number is fixed at unit. This diagram is measured by downward and
upward shift of the control frequency from the excitation frequency 2.3 Hz.

lower than the critical value of the bifurcation, the mechanical pendulum exhibits
quasiperiodic rotations. Figs. 6.14(a) and (b) show the quasiperiodic rotations with
the frequency lower than the excitation frequency. Here we compare the quasiperiodic
behaviors which appear by loosing the stability under the control. In Fig. 6.14(f), the
stroboscopic points of θ increases at almost the same distance. The control input is
almost constant. In Figs. 6.14(a) and (b), the shift of the stroboscopic points greatly
changes at every 6 periods. At the change, the control input increases. This result
implies that the control rotates the mechanical pendulum if the rotation frequency is
lower than the control frequency. As a result, the quasiperiodic rotation appears.

Figure 6.15 shows a bifurcation diagram at the control gain K = 0.14 A/rad. The
other condition is not changed from Fig. 6.13. The bifurcation diagram displays qual-
itatively the same structure as the diagram in Fig. 6.13. The range of the delay time
in which the periodic rotation is maintained becomes narrow with the increase of the
control gain. For increasing the control gain, the bifurcation which annihilates the
periodic rotation is induced by smaller difference between the angular displacement at
the current and the delay because the difference is amplified by the larger control gain.
This result possibly shows that the control gain governs the window of the periodic
rotation in the domain of the delay time. Further increase of the control gain may
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(e) 1/τ = 3Hz.
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(f) 1/τ = 3.5Hz.

Figure 6.14: Behaviors of the vertically excited mechanical pendulum under the start
control at different delay time in Fig. 6.13.
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Figure 6.15: Bifurcation diagram of rotation with respect to the delay time τ in the
vertically excited mechanical pendulum with the start control. The vertical excitation
is regulated to sinusoidal waveform with amplitude 1.2 m/s2 and frequency 2.3 Hz. The
control gain is 0.14 A/rad and the rotation number at unit.

break the tolerance of the the proposed control toward the inaccurate delay time. The
critical value of the control gain is consistent with the period-doubling bifurcation with
respect to the control gain K in the previous chapter.

In addition, we confirm the bifurcation structure for different vertical excitation.
Fig. 6.16 shows the bifurcation diagram with respect to the control frequency at the
excitation amplitude 2.2 m/s2 and the frequency 4 Hz. The control gain K is fixed at
0.14 A/rad and the rotation number at unit. This bifurcation diagram also shows qual-
itatively the same structure as Figs. 6.13 and 6.15. The bifurcating structure appears
for any periodic rotation inherent in the vertically excited mechanical pendulum.

6.4.2 Comparison with entrainment region

The start control is tolerant toward the mistuned delay time. The bifurcation diagram
with respect to the delay time elucidated the window of the periodic rotation in the
domain of the delay. The experiments showed the common bifurcation structure. The
window extends to the direction of high control frequency more widely than to low
frequency. We here clarify that the feature is closely associated with the region of
frequency entrainment.

In order to explain the bifurcation structures, we introduce a simple model below.
The bifurcation diagrams shown in Figs. 6.13, 6.15, and 6.16 indicate that the con-
trol input u increases with the increase of the control frequency inside of the window.
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Figure 6.16: Bifurcation diagram of rotation with respect to the control frequency 1/τ
in the vertically excited mechanical pendulum under the start control. The verti-
cal excitation is regulated to sinusoidal waveform with amplitude 2.2 m/s2 and fre-
quency 4 Hz. The control gain K is fixed at 0.14 A/rad and the rotation number at
unit. This diagram is measured by downward and upward shift of the control frequency
from the excitation frequency 4 Hz.

Fig. 6.14 shows that the control input can be expressed as the sum of a sinusoidal
waveform and a constant. The vibration of the control input can be regarded as a
perturbation because the vibration amplitude is sufficiently small. From the experi-
mental point of view, we simplify the controlled pendulum as the following parametric
pendulum (5.1) driven by a constant torque N :

dθ

dt
= υ, (6.1a)

dυ

dt
= −cυ −

(
1 + p cosωt

)
sin θ + N. (6.1b)

Figure 6.17 shows a bifurcation diagram of rotation with respect to the torque N
at c = 0.1, p = 0.5, and ω = 2. The bifurcation diagram shows qualitatively similar
structure to the window in the domain of the delay time τ . By regarding the vibration
of the control input as a perturbation, we qualitatively identify both bifurcations. The
stable periodic rotation disappears by the saddle-node bifurcation at both sides of the
existence range of the periodic rotation in Fig. 6.17. The existence range is widely
extended to the direction of large torque. For appropriate torque N , no parametric
excitation implies the existence of a stable rotational limit cycle. The Melnikov’s
method [65] gives the existence condition N > 4c/π ≈ 0.127. Frequency entrainment
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Figure 6.17: Bifurcation diagram of rotation with respect to the torque N in the driven
parametric pendulum (6.1) at c = 0.1, p = 0.5, and ω = 2. The branches consist of the
stroboscopic points.

of the rotational limit cycle occurs by the parametric excitation in the range which
satisfies the condition. The periodic rotations correspond to the entrained rotations.
On the other hand, for N ≤ 4c/π, the entrainment does not arise because the required
limit cycle does not exist [2,64]. However, the existence range is extended to a certain
negative value of torque because the parametric excitation can compensate energy
dissipated by the negative torque. In terms of frequency entrainment, we can give
different interpretations for saddle-node bifurcations. The bifurcation at the positive
torque corresponds to out of the entrained state. As a result, quasiperiodic rotation
appears after the bifurcation [17, 64]. For the negative torque, rotation cannot be
maintained because the torque works in the opposite direction of the rotation.

From the above discussion, the window of the periodic rotation is widely extended
to shorter delay because of the effect of frequency entrainment. Frequency entrain-
ment or synchronization governs the tolerance of the start control with the mistuned
delay time. This result implies that the start control operates to a periodically excited
system without the exact information of the excitation frequency. A periodic rotation
is established by regulating the delay time shorter than the expected value. The con-
trolled periodic rotation is not the target rotation. However, decreasing the control
gain or the control frequency corresponds to the decrease of the control input. Then,
the periodic rotation approaches to the target rotation. Furthermore, the tolerance
of the start control with mistuned delay is efficient for vibration of nature which in-
cludes a variety of frequency. The control method is expected to extract the frequency
component suited for the periodic rotation from the window.
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Figure 6.18: Energy scavenging by a periodic rotation of the mechanical pendulum
with the DC motor from the vertical vibration. The vertical excitation is regulated to
sinusoidal waveform with amplitude 3.4 m/s2 and frequency 4.5 Hz. The electric load
is resistance 500Ω.

6.5 Energy scavenging from vertical vibration

In this chapter, we have observed the periodic rotations of the vertically excited me-
chanical pendulum connected with the DC motor. At the end, we demonstrate energy
scavenging from the vertical vibration by the mechanical pendulum. Here the DC
motor works as an electric generator and the electric load is a resistance. Fig. 6.18
shows the energy scavenging through a periodic rotation of the mechanical pendulum
with the DC motor from the vertical excitation of the shaker. The vertical vibration is
fixed at sinusoidal waveform with amplitude 3.4 m/s2 and frequency 4.5 Hz. The DC
motor generates electricity at 4.3 V for the resistance 500Ω. The experimental result
manifests the possibility of energy scavenging by a periodic rotation of the parametric
pendulum.

6.6 Remarks

This chapter was devoted to the experimental investigation into the controlled states
of the mechanical pendulum under the delayed feedback. First, the vertically excited
mechanical pendulum was introduced as an experimental system for the parametric
pendulum. The mechanical pendulum connected with the DC motor exhibited periodic
rotations and the coexisting motions. For the experimental setup, we mounted the
control system for stating a periodic rotation proposed in the previous chapter. The
experiments verified the feasibility of the proposed method.

In addition, the performance which depends on the control parameters was con-
firmed through examining the bifurcation structure. The increase of the control gain
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induced the loss of stability of the target rotation. The feature has been already pre-
dicted by the numerical study in the previous chapter. The bifurcation diagram with
respect to the delay elucidated the tolerance of the start control with the inaccurate
delay time for maintaining the periodic rotation. In particular, the control method
can establish the periodic rotation at large mistuned difference of the delay time in
the direction of short delay. The reason was interpreted as the effect of frequency
entrainment through analyzing the parametric pendulum driven by a constant torque.
Synchronization phenomenon governs the tolerance of the start control with the mis-
tuned delay time. Finally, we demonstrated the experimental energy scavenging by a
periodic rotation of the mechanical pendulum from the vibration of the shaker.
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Chapter 7

Conclusions and Future Prospects

The thesis investigated the energy aspect of synchronization in a pendulum to under-
stand and apply the conversion of energy. As an application, we introduced energy
scavenging by the resonant or synchronized motions of the parametrically excited pen-
dulum and proposed a control method for starting a periodic rotation of the pendulum
based on synchronization. The conclusions of this study are presented and the future
work is summarized below.

7.1 Conclusions

Chapter 2 described the theory of synchronization in a pendulum. First, the notion of
phase was reviewed which plays a central role in the theory of synchronization. Then,
we introduced the notion of energy conversion in synchronization. A value of energy
stored in a pendulum can be assigned with a closed orbit in the state space. In this
sense, energy possibly becomes more general notion than amplitude. In addition, we
gave the self-sustained oscillator and rotator defined in the state space of a pendulum
analyzed in the thesis. The steady oscillations are interpreted as the limit cycles
which are distinguishable according to the topological property. Finally, the parametric
pendulum was explained as a energy conversion device for the energy scavenging.

Chapter 3 was devoted to the analysis of energy conversion in frequency entrainment
of libration. We employed the van der Pol oscillator as a model system in which the
entrainment phenomenon occurs. Response curves were obtained to understand the
relationship between the supplied energy and the characteristics of entrained librations.
The averaging and calculation revealed that the maximum energy is converted with the
resonance phenomenon occurring in the entrainment region. Energy conversion can be
estimated by the magnitude of amplitude of the libration. Then, the energy conversion
was tried to associate with the transient phenomenon of the entrainment of libration.
Energy exchanged between the system and the external does not develop the frequency
entrainment in terms of the theory based on the phase dynamics. Therefore, the
phase regulation which governs the frequency entrainment of libration is not essentially
affected by any energy supply from the external. The energy conversion determines
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amplitude of the libration.
In Chapter 4, we analyzed energy conversion in frequency entrainment of rotation

by using the same approach as the previous chapter. The phase-locked system was
considered as a dynamical system with a stable rotational limit cycle. At the entrained
states, response curves were obtained numerically and theoretically for the supplied
energy and the characteristics of entrained rotations. The phase for the synchronization
and the excitation frequency governs the energy conversion. In the transient regime, we
associated the development of the entrainment phenomenon with the energy conversion.
By identifying the phase through response characteristics and the expression of the
limit cycle, the phase equation was derived to represent the dynamics of phase for the
frequency entrainment of rotation. The entrainment phenomenon develops according
to the change of the stored energy. The relationship implies the possibility to induce
the frequency entrainment of rotation or regulate the phase of rotation by exchanging
energy.

In addition, we discussed the difference between the frequency entrainment phe-
nomena of libration and rotation. The obtained result indicated advantages of periodic
rotations over periodic librations for the energy scavenging in terms of energy conver-
sion by synchronization. Energy conversion is associated with amplitude for libration
and with phase for rotation. Thus, the entrainment phenomena with the common
mechanism of phase regulation can be characterized in terms of energy conversion.

In chapter 5, we proposed a control method for starting a periodic rotation of the
parametric pendulum. We began with investigation into the properties of the peri-
odic rotations. The onset of the periodic rotations depends on the initial state of the
pendulum and requires energy supply because the periodic rotations are motions with
high energy. The possibility to regulate the phase of rotation in Chapter 4 gave the
strategy to construct the control method. That is, the energy supply and extraction
regulate the phase or the frequency of rotation. In the control scheme, energy ex-
change is realized by applying the constant torque, and the temporal change of phase
is identified by using at every moment the difference between states at a distance of the
excitation period. Furthermore, the proposed control method was numerically studied.
The control behaviors showed that the expected control is achieved. The remaining of
the chapter numerically confirmed the performance of the start control with respect to
the domain of attraction and the bifurcation diagram. Here, we found the range of the
control gain in which the target periodic rotation is established from any initial state
of the pendulum.

Chapter 6 provided experiments on the controlled states of the mechanical pendu-
lum under the delayed feedback. First, the vertically excited mechanical pendulum was
introduced as an experimental system for the parametric pendulum. The mechanical
pendulum connected with the DC motor exhibited periodic rotations. For the exper-
imental setup, we installed the control system for starting the periodic rotation. The
experiments verified the feasibility of the proposed method. Next, the performance of
the control method is discussed. The observed bifurcation with respect to the control
gain showed the same structure as the numerical result in the Chapter 5. The bifur-
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cation diagram with respect to the delay time elucidated the window of the periodic
rotation. This results indicates the tolerance of the start control with the mistuned de-
lay time. The window was explained by synchronization region with respect to torque.
Thus synchronization governs the tolerance of the control toward the inaccurate delay.
We confirmed that the mechanism of the start control is closely related to synchroniza-
tion. Finally we demonstrated energy scavenging by the mechanical pendulum from
the vertical vibration generated by the electromagnetic shaker.

In the thesis, we began with the basic research for the energy conversion in synchro-
nization of a pendulum. The analysis of energy conversion gave us the perspective to
the applications such as energy scavenging. In addition, the obtained results contribute
to the applied research as the proposition of a control based on synchronization. The
proposed method with time delay operates as a control to cross over a separatrix which
forms a boundary between basins of steady states. The control generates a pass to the
target by adding dimensions to the inherent state space.

7.2 Future prospects

Energy conversion by synchronization has still rich possibilities of engineering appli-
cations. The effective example we can mention is energy scavenging from external
vibration in nature through the synchronized motions.

Vibration in nature exhibits power spectrum extended from a main frequency com-
ponent [88]. We first have to know the feasibility of synchronization and the synchro-
nized frequency. Irregularity of the vibration possibly breaks the periodic structure re-
quired for synchronization. By regarding the irregularity as noise, stochastic resonance
is expected [89]. The resonance phenomenon enhances the main frequency component.
Synchronization extracts energy at a frequency component related to the synchronized
cycle except for chaos synchronization, but the maximum energy conversion is realized
by the stochastic resonance. The combination use of multiple synchronized frequency
can cover the extended power spectrum.

In the thesis, we dealt with forced synchronization of a pendulum. If a pendulum is
coupled with another pendulum, mutual synchronization may be observed. It is obvious
that energy is converted between the pendulums through the mutual synchronization.
The mutual synchronization possibly enhances energy supplied by the external. In this
sense, energy conversion in coupled pendulums becomes an issue we have to solve.

In application of energy scavenging, conversion to electricity is needed for a variety
of energy use. The performance of electric generators governs the efficiency and the
realization of energy scavenging. In the thesis, we proposed a torque control for the
onset of a periodic rotation of the parametric pendulum. This control scheme requires
two parallel electric systems for the generator and the motor in the practical system.
If the generator is designed for usage as an electric motor, the two electric systems are
integrated into one. The development of generators is one of the most important work
for the practical realization.
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[58] E. Schöll and H. G. Schuster, eds., Handbook of chaos control (2nd ed.), WILEY-
VCH, Weinheim:, 2008.
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