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General Introduction 

Molecular assembly 

Molecular self-assembly is based on the spontaneous association of molecules via 

noncovalent bonds under equilibrium conditions to generate stable, structurally well-defined 

aggregates. These self-assemblies are constructed by a great number of molecules and their 

assembling mechanism is often very complex because a number of parameters play important 

roles in cooperative and dynamic ways. Further, the self-assembling process is mediated 

through weak intermolecular forces, such as van der Waals forces, electrostatic interactions, 

hydrogen bonds, and π-π stacking interactions. Therefore, it is still difficult to predict the 

morphologies and dynamics of the assemblies from their constituent molecular structures. 

On the other hand, in nature, complex multicomponent three-dimensional structures 

are formed through the spontaneous association of molecules.1 Membrane proteins show 

various biological functions, and their localization in lipid bilayer with constructing complex 

morphologies allows amplification of the protein functions. For example, a localization of 

G-protein-coupled inwardly-rectifying potassium channels, which is specifically located at the 

postsynaptic membrane on the dendrites of dopaminergic neurons, enables an efficient cell 

signalling.2–4 This fact obviously indicates that morphology of the molecular assembly is 

deeply related with function of living cells. In addition, it was reported on the internalization 

into HeLa cells of specifically designed, monodisperse hydrogel particles as a function of 

their sizes, shapes, and surface charges.5 This observation is also a good example stressing the 

importance of the relationship of the shape of biomaterials with their bioprocesses. 

The morphology control has been considered to be one of the most important 

challenges in the field of molecular assembling. Understanding about the mechanism on 

molecular self-assembling is directly related to the structural study about biological 

self-assemblies. For the accomplishment of the morphology control on molecular assembling, 
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there have been many reports on clarification of requirements for the constituent molecules to 

self-assemble into a specified morphology under proper preparative conditions.  

Amphiphiles 

The most important force to prepare molecular assembly is intermolecular 

hydrophobic interaction between amphiphilic molecules. Bangham and Horne found out that 

the bilayer vesicles were prepared from the egg yolk lecithin in 1964.6 Since then, lipid 

amphiphiles have been extensively examined, and molecular assembly having various unique 

morphologies such as micelles,7,8 worm-like micelles,9,10 and vesicles11,12 were prepared. 

Morphologies of molecular assemblies from lipid amphiphiles are revealed to be dependent 

on the critical packing parameter (CPP), which describes a balance of hydrophilic surface area 

and hydrophobic length of amphiphiles (Figure 1).13 However, the molecular assembly is so 

soft, fluid, flexible, and imbalance due to low molecular weights of the lipids. Therefore, the 

assembly has a tendency to form thermodynamically stable and symmetrical shapes of 

Figure 1. Relationship between the critical packing parameters (CPP) of lipids and their 
assembly morphologies. 
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vesicles etc. as described above. More complex morphologies found in nature are thus 

considered to be difficult to be prepared from lipid amphiphiles via self-assembling. 

In addition to lipid amphiphiles, various types of amphiphilic compounds,14–17 

including synthetic polymers18–20 and poly (oligo)peptides, have been studied from 1990s. 

These molecular assemblies are mostly more robust than those prepared from lipid 

amphiphiles, because high molecular weight hydrophobic moieties strongly associate with 

each other.21 Further, these amphiphiles can be arbitrarily designed and modified by 

functional groups. Therefore, various forces such as aromatic interaction, dipole moment, and 

hydrogen bond can be utilized for control of the molecular assembling. Hydrophilic-lipophilic 

(hydrophilic-hydrophobic) balance (HLB)22–24 of the amphiphiles is also an important factor 

for amphiphiles to take a specified morphology. To establish the principles of molecular 

design for amphiphiles to take a specified morphology, it is necessary to clarify the 

relationship between constituent molecular structures and assembly morphologies. Especially, 

amphiphilic polypeptides are suitable for the clarification because they are molecularly 

designed to take a specified conformation. Further, polypeptides are applicable to 

biomaterials due to their biocompatibility. For example, peptide-derived specific interactions 

can be utilized for bio-sensing and molecular recognition. Therefore, the author focuses his 

attention on preparation of molecular assemblies from peptides and/or their derivatives. 

Peptide Vesicle 

Vesicular assembly formation from peptide amphiphiles has been actively 

investigated from mid 1990s.25–29 Bergeron et al. found out microcapsule formation from 

tetrapeptides derived from L-aspartic acid diketopiperazine.25 On the other hand, Kimura et al. 

prepared vesicle assemblies from amphiphilic polypeptides, one having a gramicidin A unit 

and polyethylene glycol (PEG)27 and the other with 8-mer peptide forming α-helix.28 Since 

the hydrophobic layer in the peptide membrane was constituted of secondary structure of 

helix, the peptide vesicles (named peptosomes) show membrane fluidity. Polypeptide can be 
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also utilized as a hydrophilic segment.30–35 For example, the ability of 

poly(butadiene)-b-poly(L-glutamic acid) block copolymers to form micelles and vesicular 

assemblies was confirmed.36,37 These reports suggest that the vesicle size is well-defined by 

control of the length of poly(butadiene) and poly(L-glutamic acid). Amphiphilic peptides, 

which were constituted by hydrophilic and hydrophobic peptide moieties such as 

surfactant-like oligopeptide38,39 and diblock copolypeptide,40–47 also self-assembled to 

vesicular assemblies.  

Recently, various kinds of peptide-based vesicles were prepared. Kataoka et al. 

prepared a novel polymer vesicle by a simple mixing of a pair of oppositely charged block 

copolymers composed of PEG and poly(amino acid)s in an aqueous medium and named it as 

polyion complex (PICsome).48 Electric charges were cancelled by the ion-complex formation 

and worked as a constituent of hydrophobic core. Hadjichristidis et al. and Nolte et al. used 

triblock polypeptides for vesicle formation (Table 1).49,50  

 

Table 1. Vesicle forming amphiphiles with polypeptide block. 
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About nonpeptide polymer amphiphiles, Würthner et al. reported that the size control 

of vesicular assembly by co-self-assembly of wedge- and dumbbell-shaped amphiphilic 

perylene bisimides.51 These examples suggest that the CPP is one of the most important 

factors for the formation of vesicle assembly. In the case of polymer amphiphiles, the 

assembly formation manner was also regulated by CPP, but was not so simple. This is 

because the hydrophilic segment of the amphiphilic polypeptides is a polymer with a defined 

molecular length, whereas that of lipid amphiphiles is considered as a dot. 

Peptide Nanotube 

Preparation of molecular assembly having tubular shapes also has made rapid 

progress in these ten years. At 2001, Matsui et al. demonstrated that bola-amphiphilic 

peptides, GG-heptane-GG containing both peptidic and non-peptidic segments, formed 

nanotubes whose diameter (50 nm–1 μm) was controllable by co-assembling with 

polycarbonate.52,53 Various peptide surfactants, which are consisted of a hydrophilic head 

group with one or two charged amino acids and a hydrophobic tail with four or more 

consecutive segments such as A6D, V6D, G8DD, KV6 were synthesized.38,54–56 Upon 

dissolution in water, these peptides formed the mixture of network of open-ended nanotubes, 

and numerous three-way junctions that may act as links between the nanotubes were observed. 

These molecules also formed a bilayer in the same way with conventional surfactants. 

On the other hand, unlike conventional surfactants, peptide surfactants formed 

typical β-sheet structure implying a fairly extended backbone. The β-sheet peptides tend to be 

regularly packed with a tilt angle and to form a fibril or tubular assembly. Preparation of 

nanotube from a β-sheet peptide segment contained amphiphiles was reported by some 

research groups as follows. Mihara’s group showed that the biotinylated peptides, 

BiXX-PKFKIIEFEP, having different linkers between biotin and β-sheet peptide segment, 

self-assembled to form a tubular structure in an aqueous solution with external diameter of ca. 

60 nm and inner diameter of ca. 30 nm.57 Lynn et al. prepared nanotube from a biological 
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peptide derived from the amphiphilic core Aβ(16–22).58,59 Liskamp’s group used modified 

Amylin(20–29). Amylin is known to form fibril structure. By controlling strength of 

intermolecular hydrogen bond by chemical modification, nanotubular assembly could be 

constructed.60 On the other hand, Gazit et al. demonstrated nanotube formation from planar 

sheets using aromatic stacking inducement.61–63 They used simple dipeptide, Phe-Phe, of the 

diphenylalanine motif in the Alzheimer’s β-amyloid peptide. These nanotubes prepared from 

the amphiphilic peptides were robust, straight and so long, and their diameters showed a 

narrow distribution. This is because long helical ribbon generally fused the edges together to 

grow into nanotubes (Figure 2, top).58,59 In 2008, Kimura’s group showed the short nanotube 

with 70 nm in diameter and 200 nm in length.64 In this case, nanotube formation mechanism 

is different from that of conventional peptide nanotube. They explained the mechanism of 

nanotube formation that the block polypeptide initially formed a curved square sheet 

assembly, and transformed the morphology quantitatively into nanotube upon heating. The 

transformation mechanism from the curved sheet into the nanotube is just to stick two 

opposing hydrophobic sides of the square sheet (Figure 2, bottom). Therefore, the size of the 

nanotube is determined by the initial size of the curved square sheet, which has an advantage 

of a very narrow size distribution of the produced nanotubes.  

 

In the self-assembling fields with using lipid surfactants and aromatic amphiphiles, 

chirality of amphiphiles is reported to be important to form nanotube (Figure 3).65–74 In 

peptidic amphiphiles, however, it is so difficult to clarify the relation between chirality and 

Figure 2. Transformation mechanism from nanosheet into nanotube assembly. 
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nanotube formation, because peptides have chiral points of constituent residues and chirality 

derived from the secondary structure. 

 

Complex Assembly 

In recent years, some reports on Janus materials have been published in lipid 

assemblies,75–77 protein derivate,78–80 polymer particles,81–91 and inorganic materials.92–94 

Janus materials have two or more faces of different chemical or physical characters within 

themselves (Figure 4). For example, Janus structures are classified into three categories 

according to their architecture: spherical micelles and particles (3D),81–85,93 two types of 

cylinders (1D),86 and sheets or discs (2D).87 These structures are attractive in nanoscience due 

to their interesting properties in terms of an academic point of view as well as technological 

reasons.88,95,89,83 Inorganic and polymeric Janus materials have been developed but their 

structures are particles different from membranes of self-assembling. On the other hand, 

examples of Janus assemblies from amphiphiles are hardly reported because they are difficult 

to be prepared. Some phase-separated lipid membrane formed Janus vesicle morphology and 

its phase-separated assembly may have a complex morphology.75 The preparation of these 

Janus assemblies is an important challenge for control of the novel complex morphology and 

for development of the molecular assembly field. 

Figure 3. Schematic illustration of the relation between chirality of amphiphiles and their 
nanotube formation. 
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Aim 

Peptide amphiphilies can be molecularly designed in terms of dipole moment, 

secondary structure, functionalization, and precisely controllable hydrophilic-hydrophobic 

balance. The peptide amphiphiles therefore have advantages for elucidation of the assembling 

mechanism into a specific morphology. As described before, various molecular assemblies 

have been prepared with using peptide-based molecules, and these reports help us understand 

the relationship between assembly morphologies and constituents. However, several factors of 

peptide amphiphiles remain to be evaluated. Especially, the author focuses his attention on 

examination of amphiphilic polypeptides having a hydrophobic helical block. Helical peptides 

have a good ability to be regularly packed in the molecular assembly as frequently observed 

helix bundles in nature.96,97 With using these amphiphilic peptides, stable assemblies can be 

prepared and the effects of helicity in hydrophobic core of molecular assemblies on 

morphology can be elucidated. In addition, the author tries to prepare the molecular 

assemblies having more complex morphology composed of patchwork patterns, where 

different peptide membranes are combined like the Janus assembly by using a 

phase-separation strategy in the membrane. 

With the background described above, the control and the preparation of molecular 

assemblies having vesicular, tubular and more complex structures from peptide amphiphiles 

are investigated in the present thesis. 

Figure 4. Schematic illustration of Janus materials. 
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Outline 

 

In Chapter 1, the morphology of peptide assembly is evaluated in the viewpoint of 

the helicity of constituent peptides.  A right-handed helix and a left-handed helix may form a 

stereo-complex, which should lead to morphology different from a right-handed helix or a 

left-handed helix alone. Here, two different amphiphilic polypeptides, (Sar)25-b-(L-Leu-Aib)6 

and (Sar)25-b-(D-Leu-Aib)6, are designed and synthesized. The hydrophobic blocks of the 

former and the latter peptides form a right-handed and a left-handed helix, respectively. The 

size and shape of molecular assemblies prepared from a single component and from an 

equimolar mixture of these peptides are compared by TEM observation. Further, a difference 

Figure 5. Schematic illustration of amphiphiles and assembly morphologies dealt in each 
chapters of this present thesis. 
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of thermodynamic stability between these two assemblies is also studied by occurrence of 

membrane fusion. 

In Chapter 2, a membrane fusion ability of vesicles composed of an equimolar 

mixture of (Sar)25-b-(L-Leu-Aib)6 and (Sar)25-b-(D-Leu-Aib)6 is studied. A stereo-complex 

membrane in this vesicle becomes more flexible upon heating. The flexibility may cause the 

vesicle fusion to become a more stable morphology. This point is precisely investigated by 

using a stereo-complex between these peptides. 

In Chapter 3, a series of stereo-complexes between (Sar)25-b-(D-Leu-Aib)6 and 

(Sar)24-b-(L-Leu-Aib)n (n = 7, 8, 10) are examined on their self-assemblies. The right-handed 

helix and the left-handed helix favor to associate together, but in these stereo-complexes there 

are misfits about the helix lengths between them. The effects of these misfits in helix length 

on self-assembling are examined and discussed.  

Chapter 4 deals with the preparation of molecular assembly having novel 

morphology. It is expected that morphology is able to be controlled by a combination of a 

nanotube forming membrane from a single component and a vesicle forming membrane from 

a stereo-complex of (Sar)25-b-(L-Leu-Aib)6 and (Sar)25-b-(D-Leu-Aib)6. In addition, 

distribution of one component in the assembly is evaluated by labeling the component with a 

gold nano particle.  

Chapter 5 describes preparation of new morphologies with extension of the results 

obtained in Chapter 4. The author examines self-assembling with combinations of two 

different membranes, which form vesicle and nanotube. As vesicle forming molecules, 

(Sar)25-b-(L-Leu-Aib)6 and a dipalmitoylphosphatidylcholine (DPPC) are examined. As 

nanotube forming membrane, (Sar)24-b-(L-Leu-Aib)7 and a mixture of (Sar)24-b-(L-Leu-Aib)7 

and (Sar)25-b-(D-Leu-Aib)6 are examined. 

These patchwork assemblies are characteristic from others because the membranes 
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are phase-separated into two phases, which take their own morphologies. The size of each 

morphology is also controllable. In this sense, the principles which are shown in this thesis 

are quite new and are expected to be applied to various materials fields. The details are 

described in the following chapters. 
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Introduction 

Helical peptides are easily designed to take either helicity, right-handed or left-handed, 

by using L- or D-residues in the sequence. When the right-handed helix is mixed with the left-

handed helix, they are expected to form a stereo-complex probably due to the convexo-

concave fitness between their surfaces. By using stereo-complex formation of these helical 

peptides, the author demonstrates here vesicle formation from two types of peptide nanotubes 

by membrane fusion. 

Several morphologies in the shapes of micelle, rod-shaped micelle, sheet, tube and 

vesicle have been prepared in solution by the current self-assembling techniques.1–4 The 

author has reported on molecular assemblies of amphiphilic peptide molecules especially by 

using hydrophobic helical peptides at the hydrophobic core of the molecular assemblies.5–9 

Helical peptides have a good ability to be packed regularly in the molecular assembly as 

shown by frequent observation of helix bundles in nature.10,11 Indeed, several hydrophobic 

helical peptides with attachment of suitable hydrophilic groups formed vesicular assemblies 

with a diameter of ca. 100 nm in water, which are named “peptosome”.5 Further, a peptide 

nanotube with a diameter of ca. 60 nm and a length of ca. 200 nm was obtained from 

amphiphilic block polypeptide with a hydrophobic helix, (Sar)27-b-(L-Leu-Aib)6.12 In the 

latter case, the block polypeptide initially formed a curved square sheet assembly, which was 

transformed quantitatively into a nanotube morphology upon heating at 90 °C for 10 min. The 

transformation mechanism from the curved sheet to the nanotube is just to stick two opposing 

hydrophobic sides of the square sheet, which is unique from other reports on nanotube 

formation, where a twisted long sheet or helix ribbon generally fused the edges together to 

grow into nanotubes.13–17 On the other hand, in our nanotubes, the size of the nanotube is 

determined by the initial size of the curved square sheet, which has an advantage of a very 

narrow size distribution of the produced nanotubes. The reason for the sheet curving is 
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considered to be due to the regular packing of the right-handed helices in the hydrophobic 

core, similarly to the recent studies on molecular assemblies with chiral molecules.18–31 

 

Experimental Section 

Materials. Boc-L-leucine (Boc-Leu), aminoisobutylic acid (Aib) and Z-sarcosine (Z-

Sar) were purchased from Watanabe Chemical Industries, Ltd. (Japan). Water was purified by 

a Milli-Q system (Nihon Millipore Ltd, Japan) and had a specific resistivity of ca. 18 MΩ 

cm−1. All other reagents were purchased from commercial sources and used as received. 

Preparation of Molecular Assemblies. Polypeptide (12 mg) was dissolved in ethanol 

(120 μL). Then an aliquot (30 μL) of the peptide solution was injected into a buffer (1 mL, 10 

mM Tris-HCl, pH 7.4) with stirring at 4 °C. After 30 min, the dispersion was purified by 

Sephacryl S-100 column (1.5 × 30 cm, GE healthcare Bio-Sciences) using 10 mM Tris-HCl 

buffer (pH 7.4) as an eluent to remove ethanol. Molecular assemblies of different 

compositions were prepared similarly. 

Circular Dichroism (CD). CD measurements were carried out on a JASCO J600 

spectropolarimeter with an optical cell of 0.1 cm optical path length at room temperature. The 

HOCH2CO-(Sar)25-(L-Leu-Aib)6-OMe (SLL) 

HOCH2CO-(Sar)25-(D-Leu-Aib)6-OMe (SDL) N
H

H
N

OMe
O

OO
N

HO
O 25 6
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sample concentration in 10 mM Tris-HCl buffer (pH 7.4) was 0.375 mM (per amino acid 

residue). 

Transmission Electron Microscopy (TEM) and Electron Diffraction (ED) 

Analysis. TEM images were taken using a JEOL JEM-2000EXII at an accelerating voltage of 

100 kV. For the observation, a drop of dispersion was mounted on a carbon-coated Cu grid 

and stained negatively with 2 % uranyl acetate, followed by suction of the excess fluid with a 

filter paper. 

Frozen-Hydrated/Cryogenic-TEM (Cryo-TEM). The dispersions in a buffer were 

frozen quickly in liquid ethane, which was cooled with liquid nitrogen. The samples were 

examined at 100 kV accelerating voltage at the liquid nitrogen temperature. 

Fourier Transform Infrared Spectroscopy/Attenuated Total Reflection (FT-

IR/ATR). Infrared transmission spectroscopy of the assembly dispersion was performed on a 

Fourier transform infrared spectrometer (Nicolet 6700 FT-IR, Thermo Fisher Scientific, MA) 

at room temperature with a solution cell.  The sample concentration in ultrapure water was ca. 

0.33 mM. 

S25L12 and S25D12 (SLL and SDL). The Aib-containing dodecapeptides were 

synthesized by the conventional liquid phase method. Boc group of the dodecapeptide (600 

mg, 0.454 mmol) was removed by treatment with trifluoroacetic acid (TFA, 6 mL) and 

anisole (0.6 mL). The TFA salt was washed with isopropylether and dried in vacuo for 2 h. 

The salt was dissolved in chloroform and washed with 4 wt% NaHCO3 and saturated NaCl 

aqueous solutions. The organic layer was dried over anhydrous MgSO4 and the solvent was 

removed and dried in vacuo to afford H-(Leu-Aib)6-OMe (546 mg). To a solution of Sar NCA 

(634 mg, 5.51 mmol) in N,N-dimethylformamide (DMF) (12 mL), a solution of H-(Leu-

Aib)6-OMe in DMF/CHCl3 (9:1 v/v, 273 mg / 10 mL) was added. After complete 

consumption of the Sar NCA was confirmed, glycolic acid (85 mg, 1.12 mmol, 5.0 eq.), 2-(1-

H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate methanaminium 
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(HATU, 426 mg, 1.12 mmol, 5.0 eq.) and diisopropyl ethyl amine (DIEA, 293 mL, 1.68 

mmol, 7.5 eq.) were added at 0 °C to react with the N-terminal, and the solution was stirred at 

0 °C for 10 min and at room temperature for 10 h. Then another portions of glycolic acid (34 

mg, 0.45 mmol, 2.0 eq.), HATU (170 mg, 0.45 mmol, 2.0 eq.), and DIEA (118 mL, 0.67 

mmol, 3.0 eq.) were added to the solution. After stirring for 12 h, the solution was condensed, 

and the residue was purified by a Sephadex LH20 column with methanol as an eluent to 

afford polypeptided SLL or SDL (504 mg). The degree of polymerization of the poly(Sar) 

block was determined to be 25 from the relative areas of SarN-CH3 signal against the OCH3 

signal in the 1H NMR spectra.  
1H NMR (400 MHz, MeOH-d) δ (ppm) 8.2–7.7 (m, 11H, amide), 7.4–7.3 (br, 1H, amide), 

4.6–3.8 (br, 56H, LeuCαH, SarCH2), 3.66 (s, 3H, OCH3), 3.3–2.8 (m, 75H, Sar N-CH3), 1.9–

1.3 (m, 36H, LeuCH2, LeuCγH, AibCH3), 1.1–0.8 (m, 36H, Leu(CH3)2). 

MALDI-TOF MS analysis also supported the degree of polymerization to be 25 (Figure 1). 

 

 

 

Figure 1. MALDI-TOF MS spectra of (a) SLL and (b) SDL. Poly(sarcosine) of 25 mers 
were attached to the N-terminal of hydrophobic blocks of SLL and SDL. ([M+Na]+ calcd: 
3077) 
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Results and Discussion 

Peptide design and synthesis. Poly(sarcosine) is used here as a hydrophilic segment, 

because it is as hydrophilic as poly(ethylene glycol), and sarcosine is biodegradable by 

endogenous sarcosine dehydrogenase. The author has applied the amphiphilic peptide 

micelles made of (Sar)n-b-(Glu-OMe)m
6 or (Sar)n-b-(lactic acid)m

7 for in vivo tumor imaging 

by using a near-infrared fluorescence labeling probe. These poly(sarcosine) conjugates are 

shown to be highly biocompatible. The (Sar)25 block was attached to the N-terminal of the 

hydrophobic helical block, (L- or D-Leu-Aib)6, via polymerization of sarcosine N-carboxy 

anhydride (NCA) to obtain SLL or SDL (Scheme 1 and 2). 

 

Scheme 1. Synthetic scheme of the hydrophobic polypeptide segment. 

(a) SOCl2/MeOH, 99 %; (b) DCC, HOBt/DMF, 93 %; (c) NaOH/MeOH, 100 %, (d) 4N HCl-
dipxane, 97 %, (e) DCC, HOBt/DMF, 89 %. 
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Molecular assembly prepared from SLL and SDL. Morphologies of molecular 

assemblies were studied by transmission electron microscope (TEM) with negative staining or 

cryogenic freezing. As previously reported, SLL as injected in buffer took a homogeneous 

nano curved-sheet morphology.12 The same nano curved-sheet assembly was also obtained 

from SDL (Figure 2a). These nano curved-sheet assemblies were transformed into nanotubes 

by heating the molecular assembly solution at 90 °C for 10 min (Figure 2b). Circular 

dichroism (CD) measurements showed that SLL and SDL in the molecular assemblies took 

right-handed and left-handed α-helix, respectively. Further, the Cotton effect at 222 nm was 

slightly stronger than that at 208 nm, indicating that the helices form a tightly packed bundle 

structure (Figure 3). 

 

Figure 2. TEM images (negative staining with uranyl acetate) of the assembly suspension 
from SDL before (a) and after heating at 90 °C (b). The assemblies were prepared in 10 
mM Tris-HCl Buffer (pH 7.4) (3 mg/mL) by the ethanol injection method.  
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Scheme 2. Synthetic scheme of the amphiphilic polypeptide segment. 

(a) SOCl2, 14 %; (b) HATU, DIEA/DMF, CHCl3 95 %. 
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The important point of the nano curved-sheet and nanotube is that they are metastable, 

where upon heating transformation from the nanosheet to the nanotube occurs quantitatively, 

and upon further heating elongation of the nanotube to double and triple was observed.12 Even 

though the hydrophobic edges of the nanosheet and the nanotube are stabilized by a shielding 

effect of poly(sarcosine) chains nearby, the edges can be fused with other hydrophobic 

surfaces upon heating. 

Nanotube fusion. Nanotubes were prepared separately from SLL and SDL, and two 

types of the nanotubes were mixed at an equimolar ratio. The mixture was heated at 90 °C for 

50 min, and the time course of the morphology change was analyzed by TEM (Figure 4a–d). 

Before heat treatment, nanotubes with a diameter of ca. 70 nm and length of ca. 200 nm were 

homogeneously formed (Figure 4a). Upon heating for 10 min, planar square sheets with ca. 1 

μm side appeared in the TEM image (Figure 4b). Then, the sheets were gradually transformed 

into vesicles (Figure 4c and 4d). Transformation of the sheet into the vesicle was completed 

within 50 min at 90 °C. With SLL or SDL alone, no such change was observed but just 

Figure 3. CD spectra of SLL and SDL in buffer. The amphiphilic polypeptides were 
injected into 10 mM Tris-HCl buffer (pH 7.4) (0.18 mg/mL) and then were heated at 90 °C 
for 10 min. These spectra suggest that the hydrophobic blocks of SLL and SDL formed 
right-handed and left-handed helices, and the helices were tightly packed as bundle in 
buffer. 
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elongation of the nanotubes partially. It is thus speculated that the SLL nanotube and the SDL 

nanotube should fuse together to transform the nanotube morphology into the planar square 

sheet. Indeed, the observation of a planar sheet could be reasonably explained by mixing of 

enantiomeric polypeptides SLL and SDL with stereo-complex formation accordingly to 

generate the achiral planar sheet. Whereas, SLL or SDL alone formed the curved sheet due to 

the one-handed helix association with a regular tilt angle between the helices. To investigate 

the morphology transformation mechanism in detail, the same fusion system was examined at 

lower temperature. 

 

Upon heating at 50 °C, the peptide nanotube fusion process proceeded slowly 

compared with that at 90 °C. TEM observations revealed that upon heating at 50 °C for the 

initial 1–2 h, longer nanotube assemblies connecting two or more tubes were observed (Figure 

5c). Hydrophobic edges at the open mouths of the nanotubes therefore triggered the 

Figure 4. TEM images of the mixture of assembly suspension from SLL and SDL upon 
heating at 90 °C. The each assemblies were prepared in 10 mM Tris-HCl Buffer (pH 7.4) (3 
mg/mL) by the ethanol injection method. 
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association of the nanotubes. Interestingly, some bunchy connecting regions of two nanotubes 

were observed (Figure 5c). This observation strongly indicates that the mixing of SLL and 

SDL takes place to generate a vesicle-like morphology at this connecting region. After 

heating for 7 h at 50 °C, the fused nanotubes were broken up and transformed into a planar 

square sheet with ca. 1.5 μm side (Figure 5d). These results indicate that the polypeptide 

nanotubes are connected randomly at the initial stage (association). When two types of the 

peptide nanotubes are connected, the right- and the left-handed helices diffuse through the 

connecting moieties to cause membrane fusion, because the stereo-complex is 

thermodynamically stable.13 However, the diffusion of helical peptides in the membrane 

should be slow due to the tight packing of helices, which should be the reason for the long 

Figure 5. DLS data (a) and TEM images (b–d) of the mixture suspension upon heating at 
50 °C. (e) TEM images of same sample upon heating at 90 °C for 1 h after heating at 50 °C 
for 14 h. 
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heating period for complete transformation from the nanotube to the sheet. The mixing 

proceeded with time, and finally the tubular structure broke up to take the planar square sheet. 

It took more than 7 h to form the planar sheet (Figure 5d). Upon heating at 90 °C, 

transformation into a vesicle was attained. The morphology changes were followed by 

dynamic light scattering (DLS) similar to changes in hydrodynamic diameters which are 

calculated from the translational diffusion coefficient by using the Stokes-Einstein equation 

(Figure 5a). Importantly no vesicular assembly transformation from the planar sheet was 

observed at 50 °C, suggesting that the transformation from the planar sheet into the vesicle 

requires higher energy. On the basis of analysis of many TEM images, the author thinks that 

the planar sheet is flexible to bend. Upon heating at 90 °C the sheet is torn off to small sheets, 

which then immediately close themselves to vesicle. 

In the case of the nanotube suspension from SLL alone, the elongation was observed 

after heating at 50 °C for 14 h and then at 90 °C for 1 h. The diameter of nanotube was 70 nm, 

which was the same as that before heating. On the other hand, the length of nanotube became 

200–900 nm (Figure 6). 

 

Figure 6. TEM images (negative staining with uranyl acetate) of nanotube suspension 
prepared from SLL upon heat treatment at 50 °C for 14 h and then at 90 °C for 1 h. The 
scale bar is 1 μm.  



Peptide Vesicle from Stereo-Complex Formation 

 

 

- 30 -

Vesicle induced by stereo-complex formation. The author confirmed the vesicle 

formation due to the stereo-complex formation by using another preparative method. An 

equimolar mixture of SLL and SDL in ethanol was injected into a buffer solution. The 

morphology of the self-assembly was a planar-sheet (Figure 7a), which was different from the 

curved sheet prepared from the single component. The planar sheets shown in Figure 4b, 5d, 

and 7a resemble each other in shape and size, supporting that these planar sheets are made of 

a mixture of SLL and SDL. Further, upon heating at 90 °C for 1h, vesicles were 

quantitatively formed (Figure 7b and 7c, cryo-TEM). The size distribution of the vesicles was 

very narrow around 200 nm diameter. Since this size was smaller than the expected size by 

closing the planar sheet with 1.5 μm side, the planar sheet should be torn off to generate the 

most stable size of the vesicle. This should be the reason for the narrow distribution of the 

vesicle diameter.  

 

The author has shown two different preparation methods for the same vesicle 

morphology, which confirms his interpretation of vesicle formation due to the mixing of the 

right- and the left-handed helices in the molecular assembly, which is thermodynamically 

induced by the stereo-complex formation. Indeed, the electron diffraction (ED) patterns from 

the planar sheet of the mixture of SLL and SDL were different from those of the nanotube, 

Figure 7. TEM images (negative staining with uranyl acetate; (a) and (b), cryogenic TEM; 
(c)) of molecular assemblies from mixtures of helical polypeptides SLL and SDL; 50/50. 
The assemblies were prepared in 10 mM Tris-HCl Buffer (pH 7.4) (3 mg/mL) by the 
ethanol injection method. Before heat treatment; (a), and after heat treatment; (b) and (c).  
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indicating a tight molecular packing of SLL and SDL in the planar sheet and therefore vesicle 

due to the stereo-complex formation (Figure 8). Further, the electron diffraction pattern 

obtained from the planar sheet assembly suggests the face-centred rectangular lattice (a = 2.65, 

b = 3.00, α = 90º) of SLL and SDL. On the other hand, that from the nanotube assembly 

showed the square lattice of SDL. These results also support that the molecular packing 

pattern of mixture assembly is different from that of single component assembly. 

 

In addition to ED analysis, the difference of molecular packing between assembly 

from stereo-complex component and single component was checked by the Fourier transform 

infrared spectroscopy/attenuated total reflection (FT-IR/ATR) analysis (Figure 9). On the 

assembly from single component of SLL and mixture of SLL and SDL, the positive peaks at 

2850 cm-1 show the C-H asymmetrical stretching vibration modes. On the other hand, the 

peaks of the C-H symmetrical stretching vibration modes of each assemblies were observed at 

2920 and 2927 cm-1, respectively. One possible interpretation for the high-frequency shift of 

C-H symmetrical stretching vibration band was the decreasing of the mobility of side chain of 

Figure 8. TEM images and electron diffraction patterns of (a) the planar sheet assembly 
from an equimolar mixture of SLL and SDL and (b) the nanotube assembly from a single 
component of SDL in 10 mM Tris-HCl buffer (pH 7.4). 
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amino acids in the stereo-complex state. These results indicate that the intermolecular 

entanglement of mixture assembly is tighter than that of single component assembly. 
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Introduction 

Specific fusion of biological membranes is a central issue for many cellular 

processes.1 Studies on the membrane fusion are important not only for elucidation of 

bioprocesses but also for applications to biomaterials including drug delivery systems. For 

example, liposome has been used for a model of cell membrane, and the fusion mechanism of 

liposomes is clarified.2–5 However, application of liposome is not so feasible because of its 

weak physical property. On the other hand, vesicles are also preparable from amphiphilic 

polymers, which have an advantage of their robustness.6–8 Polymer vesicles are however 

considered to be inactive in membrane fusion, because the membrane fluidity is significantly 

suppressed due to entanglement of polymer chains. We demonstrate here successful fusion of 

polypeptide vesicles, which are composed of (Sar)n-b-(L- or D-Leu-Aib)n. The amphiphilic 

block polypeptides comprise a hydrophobic helical block, which allows membrane fluidity of 

regularly packed helices, leading to membrane fusion. 

We have reported on molecular assemblies of amphiphilic peptide molecules 

especially with using hydrophobic helical blocks at the hydrophobic core of the molecular 

assemblies.6–10 Helical peptides have a good ability to be packed regularly in the molecular 

assembly as shown by frequent observation of helix bundles in nature.11,12 Indeed, the peptide 

nanotube with diameter of ca. 70 nm and length of ca. 200 nm was obtained from amphiphilic 

block polypeptide with hydrophobic helix, (Sar)25-b-(L-Leu-Aib)6 (SLL) or (Sar)25-b-(D-Leu-

Aib)6 (SDL).13 Further, we succeeded in preparation of a vesicular assembly with using an 

enantiomeric mixture of amphiphilic polypeptides, SLL and SDL, which have the right- and 

left-handed hydrophobic helices, respectively in Chapter 1. When the right-handed helix is 

mixed with the left-handed helix, they form a stereo-complex probably due to the convexo-

concave fitness between their surfaces.14,15 This vesicle from an equimolar mixture of SLL 

and SDL (DL vesicle) has the size of 180 nm diameter with a narrow distribution. 
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Experimental Section 

Materials. Boc-L-leucine (Boc-Leu), aminoisobutylic acid (Aib) and Z-sarcosine (Z-

Sar) were purchased from Watanabe Chemical Industries, Ltd. (Japan). 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE) and 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rho-

PE) were purchased from Avanti Polar Lipids, Inc (U.S.A.). Fluorescein isothiocyanate-

dextran (FITC-dextran) was purchased from Sigma-Aldrich. Water was purified by a Milli-Q 

system (Nihon Millipore Ltd, Japan) and had a specific resistivity of ca. 18 MΩ cm−1. All 

other reagents were purchased from commercial sources and used as received. 

Preparation of Molecular Assemblies. Each polypeptide (12 mg) was dissolved in 

ethanol (120 μL).  Then an aliquot (a mixture of SLL (5 μL) and SDL (5 μL), or S28L16 (10 

μL)) of the peptide solution was injected into a buffer (1 mL, 10 mM Tris-HCl, pH 7.4) with 

stirring at 4 °C. Molecular assemblies of different compositions were prepared similarly. 

Transmission Electron Microscopy (TEM). TEM images were taken using a JEOL 

JEM-2000EXII at an accelerating voltage of 100 kV. For the observation, a drop of dispersion 

was mounted on a carbon-coated Cu grid and stained negatively with 2 % uranyl acetate, 

followed by suction of the excess fluid with a filter paper. 

Frozen-Hydrated/Cryogenic-TEM (Cryo-TEM). The dispersions in a buffer were 

frozen quickly in liquid ethane, which was cooled with liquid nitrogen. The samples were 

examined at 100 kV accelerating voltage at the liquid nitrogen temperature. 

Dynamic Light Scattering (DLS). The DLS measurements were taken using Photal 

DLS-8000 at 25 °C with a transmission cell. 
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Fluorescent Analysis. The fluorescent spectra of assembly dispersion were obtained 

using JASCO FP-6600 spectro fluorometer at 25 °C with a transmission cell. 

Synthesis of S14L16, S28L16 and S35L16. The amphiphilic polypeptides were 

synthesized by the same method in previous report.1–3 The hexadecapeptides, (Leu-Aib)8, 

were synthesized by the conventional liquid phase method. With using Sar NCA, the 

hydrophilic Sar chains attached to the N-terminal of by NCS polymerization. The degree of 

polymerization of the poly(Sar) block was determined to be 14, 28 and 35 from the relative 

areas of SarN-CH3 signal against the OCH3 signal in the 1H NMR spectra. 

Results and Discussion 

Peptide vesicle prepared from single component of S28L16 (L16 vesicle). A single 

component of (Sar)28-b-(L-Leu-Aib)8 (S28L16) formed a small planar sheet with ca. 200 nm, 

including a minor fraction of vesicle (a few percent, yield) in buffer at room temperature 

(Figure 1a). This planar sheet was transformed completely into a vesicular shape by heating at 

90 °C for 1 h. Transmission electron microscopy (TEM) observation showed that this vesicle, 

L16 vesicle, has the size of ca. 90 nm diameter (Figure 1b and 5e blue), which was agreeable 

Figure 1. TEM images (negative staining with uranyl acetate) of molecular assemblies 
prepared from L16 (a); before and (b); after heating at 90 °C. The assemblies were 
prepared in 10 mM Tris-HCl buffer (pH 7.4) (1 mg/mL) by the ethanol injection 
method. 
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with that determined by dynamic light scattering (DLS) measurements (Figure 4c filled circle). 

L16 retained the morphology at least for two months on the basis of TEM observation. 

Vesicle fusion. We assayed membrane fusion of these polypeptide vesicles by 

fluorescence resonance energy transfer (FRET) technique and TEM observations, and DLS 

measurements. Two kinds of DL vesicles were prepared; one with 0.25 % (mol/mol) 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-

PE) (ex: 460 nm, em: 535 nm) and 0.25 % (mol/mol) 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rho-PE) (ex: 560 nm, em: 583 

nm), and the other without these fluorophores.  When these two kinds of vesicles were mixed 

at room temperature, the fluorescence intensity from rhodamine at 583 nm was stronger than 

that from NBD at 535 nm due to FRET from NBD to Rho as both fluorophores were 

condensed in the same vesicle (Figure 2a). Upon heating at 90 °C, the fluorescence intensity 

of NBD increased with incubation time and fluorescence intensity from Rho decreased. 

Eventually NBD fluorescence became stronger than Rho fluorescence. The change of 

fluorescence pattern suggests occurrence of membrane fusion, by which the fluorophores are 

diluted in the fused membrane to reduce FRET. The vesicle fusion was completed within 7.5 

min after heating at 90 °C, but no fusion was observed even after 2 h when heating 

temperature was at 80 °C (Figure 2b). There seems to be a critical temperature for membrane 

fusion of DL vesicles.  

Membrane fusion of L16 vesicles was examined by using similar methods. Two kinds 

of L16 vesicles were prepared; one with 0.25 % (mol/mol) NBD-PE and 0.25 % (mol/mol) 

Rho-PE, and the other without these fluorophores. When these two kinds of vesicles were 

mixed and heated at 90 °C, no fluorescence spectral change was observed even after 2 h 

heating in this case (Figure 2c), suggesting that L16 vesicles did not fuse together even at 

high temperature. 

Morphology changes of DL vesicles and L16 vesicles upon heating at 90 °C were 

examined by DLS and TEM observations. The hydrodynamic diameter of DL vesicles was ca. 
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180 nm diameter before heating and ca. 200 nm after heating. L16 vesicles kept ca. 90 nm 

diameter before and after heating. TEM images of DL vesicles and L16 vesicles after heating 

showed that the morphologies and their sizes were preserved before and after heating (Figure 

2d and 2e), supporting the results of DLS measurements. In the case of fusion of DL vesicles, 

the fused vesicles should therefore fission to vesicles of the original size of ca. 180 nm. 

 

Stability of L16 vesicle. To understand the reason for inability of L16 vesicles about 

membrane fusion, two other block polypeptides having different lengths of the hydrophilic 

block but with the same hydrophobic block were synthesized and examined on self-

assembling in buffer. (Sar)14-b-(L-Leu-Aib)8 (S14L16), which length of the hydrophilic block 

Figure 2. Emission spectra from a mixture of DL vesicles and DL vesicles containing of 
0.25 % NBD-PE and 0.25 % Rho-PE upon heating (a); at 90 °C and (b); at 80 °C, and (c); 
from a mixture of L16 vesicles and L16 vesicles containing 0.25 % NBD-PE and 0.25 % 
Rho-PE upon heating at 90 °C. TEM images (negative staining with uranyl acetate) of (d); 
DL vesicles and (e); L16 vesicles after heating at 90 °C. The assembly suspensions were 
prepared in 10 mM Tris-HCl buffer (pH 7.4) (1 mg/mL) by the ethanol injection method.  
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is shorter than that of S28L16, formed planar sheets by the ethanol injection method. Upon 

heating at 90 °C for 1 h, about 10 % of S14L16 sheets transformed into vesicles but the rest 

retained the shape like a planar sheet (Figure 3a). It is therefore considered that the short 

poly(Sar) chain cannot conceal the hydrophobic domain of the helix assembly taking a 

vesicular structure, where the planar sheet should bend intensively to a high curvature. On the 

other hand, (Sar)35-b-(L-Leu-Aib)8 (S35L16), which length of the hydrophilic block is longer 

than that of S28L16, formed very small sheets of ca. 30 nm square before and after heating at 

90 °C for 1 h, suggesting that the long poly(Sar) chains stabilize the small sheets and prevent 

the sheets from growing into a large sheet for transformation into a vesicular structure (Figure 

3b). Taken together, the chain length of poly(Sar) of S28L16 is suited just for taking a 

vesicular structure, and thus L16 vesicles are so stable that the vesicle fusion does not occur.. 

 

Thermodynamic character of DL vesicle and L16 vesicle. Transformation of 

morphology from planar sheets into vesicles was studied in detail with varying the incubation 

temperature. In the case of a mixture of SLL and SDL, the hydrodynamic diameters of the 

molecular assembly did not change up to 80 °C for 1 h heating, and a sudden change from 

600 nm (planar sheet) to ca. 180 nm (vesicle) upon heating at 90 °C was observed (Figure 4a). 

This temperature coincides with the critical temperature for fusion of DL vesicles determined 

Figure 3. TEM images (negative staining with uranyl acetate) of molecular assembly 
prepared from (a); S14L16  and (b); S35L16 after heating at 90 °C. 
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by the FRET method. On the other hand, in the case of S28L16, the hydrodynamic diameters 

of the molecular assemblies increased gradually from ca. 45 nm (small planar sheet) to ca. 90 

nm (vesicle) with rising the temperature (Figure 4b and 4c). These observations suggest that 

DL vesicles have a phase transition temperature at 90 °C, which may reflect the sol-gel 

transition observed with liposome, but S28L16 vesicles do not have. 

To characterize peptide membranes further, vesicles were analysed by differential 

scanning calorimetry (DSC). DSC measurement of DL vesicles showed an endothermic peak 

at 89 °C (Figure 4d). The membrane may be fluidic above 89 °C to allow vesicle fusion. 

However, there should be another factor for vesicle fusion, when we consider L16 vesicles. 

L16 membranes should be fluidic in the temperature region examined here, because 

transformation of morphologies from small planar sheets into vesicles requires diffusion of 

peptide molecules in the membrane to realize molecular rearrangement suitable for vesicles. 

Membrane fluidity is not therefore enough for vesicle fusion but prerequisite. We speculated 

the high bending energy stored in DL vesicles contribute to vesicle fusion. A mixture of SLL 

and SDL yielded large planar sheets by the ethanol injection method, which makes a contrast 

to curved sheets prepared from SLL or SDL. In the mixed membranes of SLL and SDL, the 

helical chirality in total is cancelled out by stereo-complex formation to generate large planar 

sheets. On the other hand, the membranes of SLL or SDL have chirality depending on the 

right-handed or the left-handed helix to induce curvature of the membrane. It is therefore 

considered that the mixed membranes of SLL and SDL should be rigid and possess high 

bending energy upon taking a vesicular structure. On the other hand, the membranes of L16 

vesicles do not have such a high bending energy, which is agreeable with spontaneous 

formation of small vesicles of ca. 90 nm diameter even at room temperature, whereas DL 

vesicles take diameter of ca. 180 nm upon heating at 90 °C. 
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Vesicle fusion between DL vesicle and L16 vesicle. Fusion of DL vesicles and L16 

vesicles was examined. L16 vesicles containing 0.25 % NBD-PE and 0.25 % Rho-PE were 

prepared and mixed with DL vesicles without these fluorophores. Upon heating at 90 °C, 

fluorescence intensity of NBD at 535 nm increased and that of Rho at 583 nm decreased, 

Figure 4. DLS data of transformation from planar sheets to vesicles after heating at 50, 60, 
70, 80 or 90 °C for 1 h in the case of a mixture of SLL and SDL, (a); and L16. (b). The 
hydrodynamic diameters of molecular assemblies from L16 (c) are plotted with varying the 
heating period at 90 °C (filled circle) and at 80 °C (open circle). DSC data of a mixture 
membrane of SLL and SDL, (d) and L16 membrane (e). 
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suggesting that these two kinds of vesicles fused together to dilute fluorophores in the 

membrane, resulting in reduction of FRET (Figure 5a). 

On the other hand, upon heating at 80 °C even for 2 h, no fusion was suggested from 

the fluorescence spectra (Figure 5b). The critical temperature of 90 °C for fusion of DL 

vesicles and L16 vesicles coincides with that for fusion of DL vesicles, indicating that 

physical change in DL membranes at 90 °C triggers the fusion. DLS measurement of the 

molecular assemblies after heating at 90 °C revealed the hydrodynamic diameter of ca. 140 

nm, which is a value between DL vesicles of ca. 180 nm and L16 vesicles of ca. 90 nm. 

Further, TEM image confirmed that the fused morphology was vesicle with diameter of ca. 

140 nm (Figure 5c and 5e). The fused vesicles were stable at 25 °C at least for two weeks on 

the basis of DLS measurements. Taken together, DL vesicles and L16 vesicles fused together 

upon heating at 90 °C, and the fused vesicles should fission to vesicles of the intermediate 

size of ca. 140 nm. 

The fused vesicles of ca. 140 nm should be therefore composed of SLL, SDL, and 

S28L16. To support this interpretation, a mixture of SLL, SDL, and S28L16 (1/1/2 w/w/w) 

was injected in buffer and heated at 90 °C for 1 h. TEM image of the molecular assemblies 

clearly showed formation of vesicles of ca. 140 nm diameter (Figure 5d), which are exactly 

the same as those prepared by fusion of DL vesicles and L16 vesicles. It is therefore 

concluded that DL vesicles and L16 vesicles fuse together at 90 °C, and the fused membrane 

should be composed of a homogeneous mixture of SLL, SDL, and L16 by diffusion of the 

peptide molecules in the membrane. With this composition, vesicles of ca. 140 nm diameter 

should be the most stable morphology after heating at 90 °C. 
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Mechanism of vesicle fusion. To elucidate the fusion mechanism of DL vesicles, a 

release behavior of the fluorescent agent encapsulated in DL vesicles was studied during the 

vesicle fusion. Fluorescein-labeled dextran (FITC-dextran) (Mw: 4000) (ex: 480 nm, em: 520 

nm) was used as an encapsulating reagent. DL vesicles loading FITC-dextran were prepared 

by the ethanol injection method using a FITC-dextran solution (2 mg/mL). The solution was 

heated at 90 °C for 1 h, followed by elution through a Sephacryl S-100 column (1.5 × 30 cm, 

GE healthcare Bio-Sciences) using 10 mM Tris-HCl buffer (pH 7.4) as an eluent (Figure 6a). 

The peak at fraction number 5–9 represents DL vesicles encapsulating FITC-dextran. The 

fraction number 11–20 corresponds to free FITC-dextran. The 8 th fraction was eluted again 

Figure 5. Emission spectra from a mixture of DL vesicles and L16 vesicles containing of 
0.25 % NBD-PE and 0.25 % Rho-PE upon heating (a); at 90 °C and (b); 80 °C. TEM 
images of (c); a mixture of two kinds of vesicles after heating at 90 °C for 1 h and (d); 
molecular assemblies prepared from a mixture of SLL, SDL and L16 (1/1/2 w/w/w) after 
heating at 90 °C for 1 h. (e); The histogram of diameters of L16 vesicles (blue), DL 
vesicles (yellow), and a mixture of DL vesicles and L16 vesicles after heating at 90 °C for 
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through the same column (Figure 6b), showing nearly no leakage from DL vesicles during the 

column operation. This result showed that DL vesicle loaded FITC-dextran without physical 

adsorption. The 8 th fraction was heated again at 90 °C for 30 min, which induces vesicle 

fusion as described before. Then, the fraction was eluted through the same column. The 

elution profile clearly showed nearly no leakage during the vesicle fusion (Figure 6c). Taken 

together, it is concluded that DL vesicles fuse each other to connect two vesicular membranes, 

followed by fission into two vesicles of 200 nm diameters, without leaking the encapsulated 

reagents (Figure 7). The membranes of DL vesicles are therefore speculated to be very 

flexible for distortions during the vesicle fusion. 

 

Figure 6. Elusion profile of FITC-dextran loading DL vesicles through Sephacryl S-100 
column (a); after purification and subsequently (b); before and (c); after heat treatment at 
90 °C for 30 min.  



Chapter 2 

 

 

- 47 -

 

References 

(1) Blumenthal, R.; Dimitrov, D. S. Handbook of Physiology: Section 14: Cell 
Physiology; Oxford University Press: New York, 1997, 563–603. 

(2) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967–973. 

(3) Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Science 2006, 
313, 80–83. 

(4) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785–788. 

(5) Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, 
M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. 
N.; Vinogradov, S. A. Nature 2004, 430, 764–768. 

(6) Tanisaka, H.; Kizaka-Kondoh, S.; Makino, A.; Tanaka, S.; Hiraoka, M.; Kimura, S. 
Bioconjugate Chemistry 2008, 19, 109–117. 

(7) Makino, A.; Kizaka-Kondoh, S.; Yamahara, R.; Hara, I.; Kanzaki, T.; Ozeki, E.; 
Hiraoka, M.; Kimura, S. Biomaterials 2009, 30, 5156–5160. 

(8) Fujita, K.; Kimura, S.; Imanishi, Y. Langmuir 1999, 15, 4377–4379. 

(9) Kimura, S.; Kim, D.; Sugiyama, J.; Imanishi, Y. Langmuir 1999, 15, 4461–4463. 

(10) Kimura, S.; Muraji, Y.; Sugiyama, J.; Fujita, K.; Imanishi, Y. Journal of Colloid and 
Interface Science 2000, 222, 265–267. 

Figure 7. Schematic illustration of mechanism between FITC-dextran loading DL vesicles. 



Temperature Triggered Vesicle Fusion 

 

 

- 48 -

(11) Milburn, M. V.; Prive, G. G.; Milligan, D. L.; Scott, W. G.; Yeh, J.; Jancarik, J.; 
Koshland, D. E.; Kim, S. H. Science 1991, 254, 1342–1347. 

(12) Parker, M. W.; Pattus, F.; Tucker, A. D.; Tsernoglou, D. Nature 1989, 337, 93–96. 

(13) Kanzaki, T.; Horikawa, Y.; Makino, A.; Sugiyama, J.; Kimura, S. Macromolecular 
Bioscience 2008, 8, 1026–1033. 

(14) Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules 1987, 20, 904–906. 

(15) Brizzolara, D.; Cantow, H.; Diederichs, K.; Keller, E.; Domb, A. J. Macromolecules 
1996, 29, 191–197. 

 



 

 

Chapter 3 

Rational Design of Peptide Nanotubes for Varying 

Diameters and Lengths 

 

 



Rational Design of Peptide Nanotubes 

 

 

- 50 -

Introduction 

Precise control of morphology is an important challenge in the field of molecular self-

assembly.1–4 Nano-ordered tubular assemblies, nanotubes, are of interest due to their 

numerous possible applications. For example, hollow tubular structures provide closed 

reaction chambers when adjusting the space to guest molecules as demonstrated by protein-

folding chaperonins5,6 and protein-degradation enzymes.7 Peptide amphiphiles have been used 

for preparation of molecular assemblies in a wide range of morphologies such as micelles,8 

cylinder micelles,9 fibers,10 nanotubes,11,12 and vesicles.13 The group of authors has reported 

that amphiphilic peptides, especially composed of hydrophobic helical peptides, form vesicles 

(named peptosomes) and nanotubes uniquely on their narrow size distribution.14–19 Indeed 

helical peptides have the ability to pack in regular mode in molecular assemblies as shown by 

frequent occurrence of helix bundles in proteins.20,21  

(Sar)27-b-(L-Leu-Aib)6, an amphiphilic helical peptide, was found to form peptide 

nanotubes with a diameter of about 70 nm and a length of about 200 nm.14 The self-

assembling process is constituted of two steps. Initially, the amphiphilic helical peptide forms 

a curved square sheet assembly upon dispersion in buffer at room temperature. Heating the 

dispersion at 90 °C for 10 min triggers the morphological conversion from the curved sheet to 

nanotube. The length of the nanotube is further increased by additional heating for 24 h to 

reach about 1 μm; however, it is difficult to obtain very long nanotubes. For the preparation of 

the longer peptide nanotubes, nanotubes with more robust membranes are required.  

In the present study the effect of stereo-complexes on helix association in molecular 

assemblies was examined. A typical example of stereo-complex formation was reported 

between the right-handed and the left-handed helices of poly-(lactic acid)n. The stereo-mixture 

was found to possess improved properties in terms of mechanical strength and heat resistance 

than each enantiomer.22,23 Correspondingly, a mixture of right-handed and left-handed helical 
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peptides is expected to form a stereo-complex as a result of the convex-concave 

complementarities of their surfaces. In this report, we demonstrate that indeed robust and long 

nanotubes are obtained as a result of the stereo-complex formation between right- and left-

handed helices differing in their helix lengths.  

 

Experimental Section 

Materials. Boc-L-leucine (Boc-Leu), aminoisobutylic acid (Aib) and Z-sarcosine (Z-

Sar) were purchased from Watanabe Chemical Industries, Ltd. (Japan). Water was purified by 

a Milli-Q system (Nihon Millipore Ltd, Japan) and had a specific resistivity of ca. 18 MΩ 

cm−1. All other reagents were purchased from commercial sources and used as received. 

Preparation of Molecular Assemblies. Equimolar mixtures of two polypeptides (1 

μmol each) were dissolved in ethanol (40 μl) and injected into a buffer (1 ml, 10 mM Tris-

HCl, pH7.4) under stirring at 4 °C. After 30 min, the dispersions were heated at 90 °C for a 

specified period.  

Molecular structure of the amphiphilic polypeptides. The (Sar)m constitutes the 
unstructured hydrophilic block and (Leu-Aib)n the hydrophobic α-helical block. 
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Circular Dichroism (CD). CD measurements were carried out on a JASCO J600 

spectropolarimeter with an optical cell of 0.1 cm optical path length at room temperature. The 

sample concentration in 10 mM Tris-HCl buffer (pH 7.4) was 0.375 mM (per amino acid 

residue). 

Transmission Electron Microscopy (TEM). TEM images were taken using a JEOL 

JEM-2000EXII at an accelerating voltage of 100 kV. For the observation, a drop of dispersion 

was mounted on a carbon-coated Cu grid and stained negatively with 2 % uranyl acetate, 

followed by suction of the excess fluid with a filter paper. 

Synthesis of S24L14, S22L16 and S25L20. The synthesis schemes of these peptides 

are same as that of S25L12 in Chapter 1. The Aib-containing dodecapeptide was synthesized 

by the conventional liquid phase method. Boc group of the dodecapeptide (400 mg, 0.263 

mmol) was removed by treatment with trifluoroacetic acid (TFA, 4 mL) and anisole (0.4 mL). 

The TFA salt was washed with isopropylether and dried in vacuo for 2 h. The salt was 

dissolved in chloroform and washed with 4 wt% NaHCO3 and saturated NaCl aqueous 

solutions. The organic layer was dried over anhydrous MgSO4 and the solvent was removed 

and dried in vacuo to afford H-(Leu-Aib)7-OMe (287 mg). To a solution of Sar NCA (465 mg, 

4.04 mmol) in N,N-dimethylformamide (DMF) (8 mL), a solution of H-(Leu-Aib)6-OMe in 

DMF/CHCl3 (9:1 v/v, 283 mg/10 mL) was added. After complete consumption of the Sar 

NCA was confirmed, glycolic acid (77 mg, 1.01 mmol, 5.0 eq.), 2-(1-H-7-azabenzotriazol-1-

yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate methanaminium (HATU, 384 mg, 1.01 

mmol, 5.0 eq.), and diisopropyl ethyl amine (DIEA, 264 mL, 1.52 mmol, 7.5 eq.) were added 

at 0 °C to react with the N-terminal, and the solution was stirred at 0 °C for 10 min and at 

room temperature for 10 h. Then another portions of glycolic acid (31 mg, 0.40 mmol, 2.0 

eq.), HATU (151 mg, 0.40 mmol, 2.0 eq.), and DIEA (106 mL, 0.6 mmol, 3.0 eq.) were added 

to the solution. After stirring for 12 h, the solution was condensed, and the residue was 

purified by a Sephadex LH20 column with methanol as an eluent to afford polypeptide 

S24L14. The degree of polymerization of the poly(Sar) block was determined to be 24 from 

the relative areas of SarN-CH3 signal against the OCH3 signal in the 1H NMR spectra.  
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1H NMR (400 MHz, MeOH-d) δ (ppm) 8.2–7.7 (m, 11H, amide), 7.4–7.3 (br, 1H, amide), 

4.6–3.8 (br, 56H, LeuCαH, SarCH2), 3.66 (s, 3H, OCH3), 3.3–2.8 (m, 72H, Sar N-CH3), 1.9–

1.3 (m, 36H, LeuCH2, LeuCγH, AibCH3), 1.1–0.8 (m, 36H, Leu(CH3)2). 

MALDI-TOF MS analysis also supported the degree of polymerization to be 24. 

S22L16 and S25L20 were synthesized by the same method as S24L14. MALDI-TOF MS 

analysis supported the degree of polymerization to be 22 and 25. 

 

Figure 1. MALDI-TOF MS spectra of S24L14, S22L16, and S25L20. Poly(sarcosine) of 
24 mers, 22 mers, and 25 mers were attached to the N-terminal of hydrophobic blocks. 
([M+Na]+ calcd: 3204, 3191, and 3871) 
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Results and Discussions 

Peptide design. The hydrophilic block of (Sar)n was attached to the N-termini of the 

hydrophobic helical blocks of (D-Leu-Aib)6 and (L-Leu-Aib)m (m = 7, 8 and 10) via 

polymerization of sarcosine NCA to obtain S25D12, S24L14, S22L16, and S25L20 (Figure 

1), respectively. Similar sizes of the Sar block were adopted to avoid the complexity of 

molecular parameters inducing morphology change. Circular dichroism (CD) spectra of each 

peptide in buffer after heat treatment at 90 °C for 24 hours indicated, as expected, the 

presence of a left-handed α-helix for S25D12 and right-handed α-helices for S24L14, S22L16, 

and S25L20 (Figure 4). 

Molecular assembly from a mixture of enantiomeric peptides. The morphologies 

of the molecular assemblies of mixtures of two components after heat treatment at 90 °C for 

24 hours were analyzed by transmission electron microscopy (TEM) with negative staining. 

One component of the peptide mixture was the S25D12 with its left-handed α-helix. As 

second component S24L14, S22L16, and S25L20 were added with their right-handed α-

helices of different lengths. In the case of the equimolar mixture of S25D12 and S24L14 

(DL14) nanotubes of 200 nm diameter and 400 nm length and elliptical planar sheets of 200–

300 nm were obtained (Figure 2a and 6). On the other hand, the mixture of S25D12 and 

S22L16 (DL16) yields long nanotubes of 70 nm diameter and 2–30 μm length and planar 

sheets of 50–200 nm (Figure 2b and 6), whereby single- and multi-walled long nanotubes of 

DL16 were detected (Figure 2d and 2e). A mixture of S25D12 with the longest right-handed 

α-helix S25L20 (DL20) led to the formation of short nanotubes with 70 nm diameter and 

100–600 nm length as well as twisted ribbons of 300 nm (Figure 2c and 6). No multi-walled 

nanotubes were found in the cases of DL14 and DL20. 
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CD analysis. In the first instance the question was examined whether the nanotubes 

observed in these mixtures were indeed consisting of the two components. For this purpose 

the assembly dispersions of DL14, DL16 and DL20 were purified by a Sephacryl S-100 

column to obtain fractions including the dominant nanotubes. CD spectra of these fractions 

showed negative Cotton effects with intensities that were smaller than those of the molecular 

assemblies prepared from the corresponding single components S24L14, S22L16 and 

S25L20 (Figure 3). The reduced intensities can be attributed to the coexistence of S25D12 in 

the nanotubes. Indeed, the residual intensities increased in the order of DL14 < DL16 < DL20, 

which corresponds to the order of the helix-length difference of S24L14 < S22L16 < S25L20 

from S25D12. The molar ratios of the left- and the right-handed helix in the nanotubes as 

estimated from the intensities of the Cotton effects were 1/0.97 for S25D12/S24L14, 1/0.95 

Figure 2. TEM images (negative staining with uranyl acetate, (a–e)) of molecular 
assemblies from equimolar mixtures of helical polypeptides S25D12 and S24L14, (a); 
S25D12 and S22L16, (b), (d), (e); S25D12 and S25L20, (c)). The assemblies were 
prepared in 10 mM Tris-HCl buffer (pH 7.4) (2 μmol/mL) by the ethanol injection method 
and heat treatment. (d) and (e) show the magnified view of (b).
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for S25D12/S22L16 and 1/0.93 for S25D12/S25L20, confirming that the nanotubes are 

composed of equimolar mixtures of the peptides. Furthermore, the increased ratio of the 

intensity at 222 nm compared to that at 208 nm indicated a helix bundle structure, which 

results from the strong association of neighbouring helices.24 

 

Conformation of the hydrophobic segment of S24L14, S22L16, S25L20 and S25D12 

in a buffer was analyzed by CD spectroscopy (Figure 4), to show α-helical structure with 

bundle formation. The intensities at 208 nm of DL14, DL16, and DL20 in a buffer were 

−0.57803, −1.36097 and −2.9804 mdeg, respectively. Compared with those of S24L14, 

S22L16 and S25L20 in a buffer, −5.22089, −6.5002, and −8.05515 mdeg, respectively, the 

molecular assemblies of DL14, DL16, and DL20 are estimated to be composed of mixtures of 

two helices with excess presence of the right-handed helices by 1.6 mer, 3.4 mer and 7.4 mer, 

respectively. This estimation is agreeable with equimolar mixtures of the two helices in feed. 

Figure 3. CD spectra of assemblies from DL14 (dot line), DL16 (dash line) and DL20 
(solid line) in Tris buffer after heating at 90 °C for 24 h and purification through a 
Sephacryl S-100 column. The increased ratio of the intensity at 222 nm compared to that at 
208 nm indicates a helix bundle structure. 
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Molecular assembly of a single component of peptides. TEM observations of the 

molecular assemblies prepared from the single components of S25D12, S24L14, S22L16 and 

S25L20, supported the coexistence of the two peptides in the nanotubes of DL14, DL16 and 

DL20. In fact, TEM images showed that S25D12 and S24L14 formed in the buffer nanotubes 

of 70 nm diameter and 200 nm length, while S22L16 yielded vesicles of 100 nm diameter and 

Figure 4. CD spectra of S24L14; (a), S22L16; (b), S25L20; (c) and S25D12 in a buffer 
(d). The amphiphilic polypeptides were injected into a 10 mM Tris-HCl buffer (pH 7.4) 
(0.18 mg/mL), and then were heated at 90 °C for a specified period. CD spectra were 
measured after purification through a Sephacryl S-100 column (elusion solvent: buffer). 
These spectra suggest that the hydrophobic blocks of S24L14, S22L16 and S25L20 formed 
right-handed and that of S25D12 formed left-handed in the molecular assemblies without 
mutual influence on the helicity. 
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S25L20, small planar sheets (Figure 5), which are different from the nanotubes obtained from 

DL14, DL16, and DL20.  

 

Properties of nanotubes. The membrane thicknesses of the assemblies prepared from 

DL14, DL16 and DL20 were of about 10 nm. In the membranes, the helices are supposed to 

be aligned in an interdigitated manner with anti-parallel orientation to gain the favorable 

dipole-dipole stabilization between peptide helices. Since the hydrophobic helical peptide has 

2–3 nm chain length, the sarcosine chain length should be 7–8 nm in the assembly, suggesting 

a moderately extended conformation of the poly(Sar) chain in the membrane. The 1H-NMR 

spectra of S25D12, S24L14, S22L16 and S25L20 in methanol showed two kinds of N-CH3 

signals due to the coexistence of the cis and trans configurations of sarcosine amides (data not 

shown), indicating that the poly(Sar) chains are flexible.25,26 

The diameter of the nanotubes in the case of DL14 was the largest among the present 

combinations of two kinds of peptides. S25D12 alone formed a curved sheet before heat 

treatment in the preparation of the molecular assembly, because the left-handed helices should 

be molecularly packed in a consecutive twisted manner with a defined tilt angle between the 

helices as demonstrated by cholesteric liquid crystals of helical compounds. Upon mixing the 

Figure 5. TEM images (negative staining with uranyl acetate; (a–c)) of molecular 
assemblies from single component of helical polypeptides S24L14; (a), S22L16; (b) and 
S25L20; (c)). The molecular assemblies were prepared in a 10 mM Tris-HCl buffer (pH 
7.4) (1 μmol/mL) by the ethanol injection method after heat treatment at 90 °C for 1 h. The 
scale bars are 200 nm.
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left- and the right-handed helix, the twisting property should be lost in the molecular 

assembly, resulting in a smaller curvature of the nanotube of DL14 than that of S25D12. 

However, there is a mismatch of the helix lengths by two residues between S25D12 and 

S24L14, which leads to the curvature of the molecular assembly because of the excess 

helicity in the hydrophobic core. This is the reason why DL14 yields thick nanotubes of 

moderate curvature.  

On the other hand, in the cases of DL16 and DL20 the mismatch lengths are 4 

residues (6 Å) and 8 residues (12 Å), respectively, which should cause a large curvature of the 

nanotubes. However, DL16 yielded the long nanotubes of about 10 μm in contrast to the short 

nanotubes of DL20. To better understand the differences in the morphologies on the 

molecular basis, the process of formation of these molecular assemblies were analyzed by 

TEM measurements before and after heat treatment. 

Mechanism of morphology formation. In the case of DL14, planar elliptical sheets 

of 20 nm minor axis and 100 nm major axis were formed before heat treatment (Figure 6a). 

Upon heat treatment at 90 °C for 24 h, the planar sheets grew up to the large elliptical sheets 

of 200 nm minor axis and 400 nm major axis (Figure 6b). In these TEM images many 

structures under transformation from planar sheets into nanotubes were also observed (Figure 

6g–l). The nanotube formation is thus explained as follows. The large elliptical sheets are 

rolled up, and the opposite hydrophobic edges stick together to form nanotubes followed by 

rearrangement at the open mouth of the nanotubes from ragged ends to blunt ends. The 

resulting nanotube length is relatively uniform (Figure 7), because the nanotube is formed 

directly from a planar sheet, size of which is determined by the growth conditions of 90 °C for 

24 h. No further nanotube elongation has taken place. 

In the case of DL16, planar rectangular sheets with sides of 30 nm and 50 nm were 

observed before heat treatment (Figure 6c). Upon heat treatment at 90 °C for 24 h, the planar 

sheets also grew up to the moderate size of rectangular sheets with sides of 150 nm and 200 

nm; however, no large sheets were formed (Figure 6d). In the same TEM images, nanotubes 
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of 70 nm diameter and 200 nm length as well as the long nanotubes were identified (Figure 

6m and 6n). The long nanotubes are thus formed by continuous attachment of the sheets to the 

open mouth of the nanotube, which are then rolled up to form the elongated nanotubes with 

ragged ends (Figure 6o and 8). The wide distribution in nanotube lengths can also be 

accounted for by this mechanism (Figure 7).  

 

The aspect ratio of the longest nanotube was 430, which has 70 nm diameter and 30 μm 

length (Figure 9). The nanotubes took straight morphology, reflecting their stiff property. 

Furthermore, upon heat treatment at 90 °C, the elongation of DL16 nanotube was also 

observed by microscopy (Figure 10). 

Figure 6. TEM images of each sheet structure of DL14, (a) and (b); DL16, (c) and (d); and 
DL20, (e) and (f). The formation mechanism from sheet or micelle to nanotubes of DL14, 
(g–l); DL16, (m–o); DL20, (p–r); respectively. The assemblies were prepared in 10 mM 
Tris-HCl buffer (pH 7.4) (2 μmol/mL) by the ethanol injection method. Before heat 
treatment, (a), (c), (e); and after heat treatment at 90 °C for 24 h, (b), (d), (f) and (g–r).  
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In the case of DL20, micelles of about 20 nm and nanotubes of 70 nm diameter and 

100 nm length coexisted before heating (Figure 6e). Upon heat treatment at 90 °C for 24 h, 

the twist ribbons and the nanotubes of 70 nm diameter and 100–600 nm length were formed 

(Figure 6f). As the open mouth of DL20 nanotubes looks ragged similarly to that of DL16 

nanotubes, the transformation mechanism of DL20 is the same as that of DL16 (Figure 6p–r). 

However, the large mismatch of the helix lengths in the case of DL20 favors formation of 

stable twist ribbons, which hinders the elongation of nanotubes. 

 

 

Figure 7. Histogram of the nanotube lengths of DL14; (a), DL16; (b), and DL20; (c) in a 
Tris-HCl buffer after heating at 90 °C for 24 h. 
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Figure 9. TEM images (negative staining with uranyl acetate) of molecular assemblies 
from DL16. The assemblies were prepared in 10 mM Tris-HCl buffer (pH 7.4) (2 
μmol/mL) by the ethanol injection method after heat treatment at 90 °C for 24 h. The arrow 
shows the longest peptide tube. The scale bar is 5 μm. 

Figure 8. TEM images (negative staining with uranyl acetate) of the open mouth of long 
nanotubes prepared from DL16. The molecular assemblies were prepared in a 10 mM Tris-
HCl buffer (pH 7.4) (2 μmol/mL) by the ethanol injection method after heat treatment at 
90 °C for 1 h. The scale bars are 200 nm. 
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Introduction 

In cells, the author can find out various complex morphologies of submicron sized 

molecular assemblies. On the other hand, simple morphologies in the shape of micelle, rod-

shaped micelle, sheet, tube and vesicle have been prepared in solution by using the current 

self-assembling techniques.1–4 In most cases, hydrophilic and hydrophobic moieties of 

amphiphilic compounds are carefully adjusted to adopt one specific type of these 

morphologies. On the other hand, the author reports here a novel morphology of a round-

bottom flask molecular assembly, which has a nanotube connecting to a vesicle with one 

sheet of membrane but phase-separated. 

The group of authors has reported on molecular assemblies of amphiphilic peptide 

molecules especially with using hydrophobic helical segments at the hydrophobic core of the 

molecular assemblies.5–9 Helical peptides have a good ability to be packed regularly in the 

molecular assembly as shown by frequent observation of helix bundles in nature.10,11 Indeed, 

the peptide nanotube with diameter of ca. 60 nm and length of ca. 200 nm was obtained from 

amphiphilic block polypeptide with hydrophobic helix, (Sar)25-b-(L- or D-Leu-Aib)6 in 

Chapter 1.12 In this case, the block polypeptide initially formed a curved square sheet 

assembly, which was transformed into nanotube morphology upon heating at 90 °C for 10 

min. The mechanism for the nanotube formation is based on the regular packing of the one-

handed helices in the hydrophobic core as reported by the recent many studies on molecular 

assemblies with chiral molecules.13–24 Further, the author succeeded in preparation of a 

vesicular assembly with using an enantiomeric mixture of amphiphilic polypeptides, (Sar)25-

b-(L-Leu-Aib)6 and (Sar)25-b-(D-Leu-Aib)6, which has the right- and left-handed hydrophobic 

helices, respectively in Chapter 1. When the right-handed helix is mixed with the left-handed 

helix, they form a stereo-complex probably due to the convexo-concave fitness between their 

surfaces.25,26 The stability of the membrane from a stereo-complex is thus higher than that 

from a single component in Chapter 1 and 3. 
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Poly(sarcosine) is used here as a hydrophilic segment, because it is as hydrophilic as 

poly(ethylene glycol), and sarcosine is biodegradable by endogenous sarcosine 

dehydrogenase. The author has applied the amphiphilic peptide micelles made of (Sar)n-b-

(Glu-OMe)m
5 or (Sar)n-b-(lactide)m

6 for in vivo tumor imaging with using near-infrared 

fluorescence labelling probe. These poly(sarcosine) conjugates are shown to be highly 

biocompatible.  

In the previous report, an equimolar mixture of SLL and SDL (Figure 1) generated a 

vesicular assembly. The author changes here the composition of the mixture to study on the 

effect of the composition on morphology.  

 

Experimental Section 

Materials. Boc-L-leucine (Boc-Leu), aminoisobutylic acid (Aib) and Z-sarcosine (Z-

Sar) were purchased from Watanabe Chemical Industries, Ltd. (Japan). Gold nano particle (10 

nm) was purchased from British Biocell International (U.K.). Water was purified by a Milli-Q 
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system (Nihon Millipore Ltd, Japan) and had a specific resistivity of ca. 18 MΩ cm−1. All 

other reagents were purchased from commercial sources and used as received. 

Preparation of Molecular Assemblies. Polypeptide (12 mg) was dissolved in ethanol 

(120 μL). Then an aliquot (30 μL) of the peptide solution was injected into a buffer (1 mL, 10 

mM Tris-HCl, pH 7.4) with stirring at 0 °C. After 30 min, the dispersion was purified by 

Sephacryl S-100 column (1.5 × 30 cm, GE healthcare Bio-Sciences) using 10 mM Tris-HCl 

buffer (pH 7.4) as an eluent to remove ethanol. Molecular assemblies of different 

compositions were prepared similarly. 

Circular Dichroism (CD). CD measurements were carried out on a JASCO J600 

spectropolarimeter with an optical cell of 0.1 cm optical path length at room temperature. The 

sample concentration in 10 mM Tris-HCl buffer (pH 7.4) was 0.375 mM (per amino acid 

residue). 

Transmission Electron Microscopy (TEM). TEM images were taken using a JEOL 

JEM-2000EXII at an accelerating voltage of 100 kV. For the observation, a drop of dispersion 

was mounted on a carbon-coated Cu grid and stained negatively with 2 % uranyl acetate, 

followed by suction of the excess fluid with a filter paper. 

Synthesis of sSLL. sSLL was prepared by the same method as SLL but the capping 

reagent was lipoic acid instead of glycolic acid. After complete consumption of Sar NCA was 

confirmed, lipoic acid (50 mg, 5.0 eq.), HATU (90 mg, 5.0 eq.) and triethylamine (64 μL, 7.5 

eq.) were added to the solution. After stirring for 12 h, another lipoic acid (25 mg, 2.5 eq.), 

HATU (45 mg, 2.5 eq.) and triethylamine (32 μL, 3.8 eq.) were added to the solution. After 

stirring for 12 h, the solution was condensed, and the residue was purified by a Sephadex 

LH20 column with methanol as an eluent to afford sSLL.  
1H NMR(400 MHz, MeOH-d) δ (ppm) 8.2–7.7 (m, 11H, amide), 7.4–7.3 (br, 1H, amide), 

4.6–3.8 (br, 56H, LeuCαH, SarCH2), 3.66 (s, 3H, OCH3), 3.55 (quin, 1H, SSCH), 3.3–2.8 (m, 

79H, Sar N-CH3, SSCH2, CH2CH2CO), 2.5–2.4 (br, 2H, SSCH2CH2), 2.0–1.7 (br, 8H, 
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CH2CH2CH2CH2CO, CH2 CH2CH2CH2CO, CH2CH2CH2CH2CO, CH2CH2CH2CH2CO), 1.7–

1.3 (m, 36H, LeuCH2, LeuCγH, AibCH3), 1.1–0.8 (m, 36H, Leu(CH3)2). 

 

Results and Discussion 

Morphology of molecular assembly. Morphology of the molecular assembly 

prepared from a mixture of SLL and SDL (20/80 or 80/20 w/w) was studied by transmission 

electron microscope (TEM) with negative staining. The mixture as injected in buffer 

produced a mixture of nano curved-sheets and large planar-sheets (Figure 1a and 1b). Upon 

heating at 90 °C, these sheets were transformed into homogenous nano round-bottom flasks 

(Figure 1c and 1d). The sizes of the spherical part and the neck part were around 180 nm in 

diameter and ca. 60 nm in diameter and 200 nm in length, respectively. These sizes are 

compatible with those of the nanotubes and vesicles prepared from SLL or SDL and a 

mixture of SLL and SDL (50/50 w/w), respectively,12 suggesting that the nano round-bottom 

flask morphology is a chimera assembly of the nanotube and the vesicle. 
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CD analysis. The author investigated CD spectral features of the assembled mixture 

of the enantiomeric polypeptides SLL and SDL. Both polypeptides were mixed in ethanol at 

molar ratios of SLL and SDL from pure SLL (enantiomeric excess; −100), 80/20 (−60), 

60/40 (−20), 50/50 (0), 40/60 (20), 20/80 (60), and pure SDL (100), and the mixtures were 

injected into a Tris-HCl buffer. The obtained suspensions were heated at 90 °C for 1 h and 

then allowed to stand at 25 °C. The CD spectra of the suspensions changed the CD intensities 

in a linear relation with the enantiomeric excess (Figure 2). The linear relationship clearly 

showed that both peptides in the assemblies should keep their respective helicity in solution. 

Figure 1. TEM images (negative staining with uranyl acetate; (a–d)) of molecular 
assemblies from mixtures of helical polypeptides SLL and SDL; 20/80; (a) and (c); 80/20; 
(b) and (d)). The assemblies were prepared in 10 mM Tris-HCl Buffer (pH 7.4) (3 mg/mL) 
by the ethanol injection method. Before heat treatment; (a) and (b), and after heat 
treatment; (c) and (d). 
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Location of SLL in molecular assembly. The compositions of SLL and SDL in the 

spherical part and the neck part of the nano round-bottom flask were evaluated in order to 

examine the presumption that the nano round-bottom flask is a fused assembly of the vesicles 

and the nanotubes. SLL distribution in the molecular assemblies was analyzed by using sSLL, 

which has lipoic acid at the N-terminal of the hydrophilic poly(sarcosine) block of SLL. Since 

the structural difference between SLL and sSLL is only in the molecular terminal, the 

location of sSLL, which is visualized by binding of gold nano particles (GNP) by the TEM 

images, is regarded as the distribution of SLL in the molecular assembly. Molecular 

assemblies composed of mixtures of SDL and SLL + sSLL with varying ratios, 0/100, 20/80, 

50/50, 80/20, and 100/0 (w/w) (the content of sSLL is 10 % of SLL + sSLL), were prepared 

and heated at 90 °C for 1 h. To the dispersions, GNPs (diameter of 10 nm) were added at 

25 °C, and an aliquot was placed on a Cu grid for TEM measurement. TEM images were 

taken after washing excess amount of GNP with buffer (10 mM Tris-HCl, pH 7.4) (Figure 3).  

As shown in Figure 3a, the SLL nanotube containing sSLL was bound by GNPs 

homogeneously on the surface, whereas the nanotube of SDL was not stained by GNPs 

Figure 2. CD spectra (a) and intensity change of CD signals at 200, 222, 230, and 240 nm 
(b) with changing the mixing ratio of SLL and SDL in the molecular assemblies. The 
molecular assemblies were formed from varying mole ratios of amphiphilic polypeptides, 
SLL and SDL, in 10 mM Tris-HCl Buffer (0.18 mg/mL). Enantiomer excess (%) = |SDL − 
SLL| / (SDL + SLL) × 100. 
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(Figure 3e), indicating the binding of GNP specific to sSLL and no physisorption under the 

present conditions (Figure 3a and 3e). The round-bottom flask prepared with SLL/SDL ratio 

at 80/20 (Figure 3b) and the vesicle with SLL/SDL ratio at 50/50 (Figure 3c) were bound by 

GNPs on the whole surface, indicating homogenous distribution of SLL at any places of the 

assemblies. On the other hand, the nano round-bottom flask prepared with SLL/SDL ratio at 

20/80 (Figure 3d) was stained by GNPs only on the spherical surface but not on the neck part. 

These observations of GNP staining clearly show that the spherical part of the nano round-

bottom flask is made of an equimolar mixture of SLL and SDL, and the neck part is formed 

from a single component of SLL or SDL depending on the excess peptide in the mixture. 

This observation is explained by the phase separation in the nano round-bottom flask due to 

the stereo-complex formation between the right-handed and left-handed helices. The stereo-

complex is so stable that an equimolar mixture of SLL and SDL is phase-separated to form 

the vesicular part of the nano round-bottom flask, and the rest of the peptide is used for the 

nanotube part. 

 

Transformation from planar sheet into vesicle. The transformation process from the 

nano planar-sheet into the vesicle was traced by time lapse analysis with TEM. An equimolar 

Figure 3. Distribution of GNPs on the surface of the molecular assemblies from mixtures 
of various SLL/SDL ratios; 100/0; (a), 80/20; (b), 50/50; (c), 20/80; (d), 0/100; (e). An 
aliquot of GNP (10 nm) suspension was added to the molecular assemblies on the TEM 
grid. In these cases, SLL contained sSLL of 10 wt%. The scale bar is 200 nm. 
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mixture of SLL + 10 % sSLL and SDL in the presence of GNPs was heated at 90 °C. Initially, 

GNPs were uniformly dispersed on the planar-sheet surface (Figure 4a), indicating uniform 

distribution of SLL and SDL in the assembly. Upon heating for 30 min, the GNPs gathered 

on the edge region of the planar sheet, and the planar sheet was rounded off (Figure 4b–d). 

Finally, the GNP bound by sSLLs were excluded as a result of the vesicle formation. It is thus 

speculated that the heating should work as anneal to eliminate defects in the molecular 

assembly as well as to reduce the hydrophobic edges which are unstable by being exposed to 

water. 

 

These results suggest that the nanotube acts as an auxiliary for the transformation from 

the planar-sheet into sphere morphology due to the hydrophobic edges. The edges of the 

planar-sheet may attach favourably to the edges of the nanotube because the fused structure is 

energetically stable by reduction of the hydrophobic edges. Accordingly, the planer-sheet 

Figure 4. Formation mechanism of the vesicle assembly from a mixture of SLL and SDL 
50/50. In this case, SLL contained 10 wt% of sSLL. Time lapse TEM images with keeping 
temperature at 90 °C. The scale bar shows (a), (b), (e), (f), 100 nm and (c), (d), 200 nm. 
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wrapped up to reduce the edge length, and finally, the planer-sheet transformed into sphere 

morphology at the terminal of the nanotube like the round-bottom flask. Indeed, upon heat 

treatment at 90 °C for 1h of the mixture of the nanotube from single component and the 

vesicle from stereo-complex, the round-bottom flask type morphology could not be observed. 

This result also supports our presumption.  

Optimization of preparation. Instead of starting from the mixture of SLL and SDL 

(80/20), the SLL nanotube and the planar sheet of SLL and SDL (50/50), where the 

concentration ratio of SLL and SDL in total is 80/20, were mixed and heated. With this two-

step method, the yield of the nano round-bottom flask increases as high as 38 % (the number 

of the round-bottom flask / (the number of the round-bottom flask + the number of the 

nanotube) = 168/443 in six TEM images), which coincides with the calculated value for 

quantitative production without the vesicle transformation (Figure 5).  

The calculation method is followed: the occupied surface area of a molecule, SLL, is 

same to that of SDL in assembly. So, the percentage of constituent molecules, SLL or SDL, 

of morphology can be calculated by the surface area of it. Now, SLL/SDL = 75/25 in this 

system, because the nanotube of SLL (50 wt%) and the planar sheet composed of an 

equimolar mixture of SLL and SDL (25 and 25 wt%), were prepared, and then, both 

molecular assemblies were mixed. The surface area of the spherical part (diameter = 180 nm) 

of round-bottom flask type conformation is 101736 nm2. This part is composed of a mixture 

of SLL (25 wt%) and SDL (25 wt%). On the other hand, the surface area of the neck part 

(diameter 60 nm and length 200 nm) of it is 37680 nm2, suggesting that this part is composed 

of SLL (19 wt%), by (25 + 25) × (37680/101736). Therefore, It is considered that the rest 

SLL (31 wt%) formed the free nanotube in this system, indicating that the ratio of the round-

bottom flask conformation (the round-bottom flask / (the round-bottom flask + the free 

nanotube)) is 19 / (19 + 31). 
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The nano round-bottom flask can be thus obtained by two different methods, 

suggesting that the nano round-bottom flask should be thermodynamically stable. The author 

can preserve the dispersion of the nano round-bottom flask for more than two months at room 

temperature without any morphological change. It is concluded that the phase separation into 

the spherical domain of the equimolar mixture of SLL and SDL and the nanotube domain of 

SLL or SDL single-component in the nano round-bottom flask is caused thermodynamically 

and not kinetically. 

 

Figure 5. TEM images (negative staining with uranyl acetate) of molecular assemblies 
after heating (90 °C, 1 h) a mixture of the nanotube prepared from SLL and the planer 
sheet prepared from an equimolar mixture of SLL and SDL. The nanotube and the planer 
sheet assemblies were prepared in 10 mM Tris-HCl buffer (pH 7.4) (3 mg/mL) by the 
ethanol injection method with and without heat treatment, respectively. 
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Introduction 

Self-assembling of amphiphilic molecules is prevailing in living systems, and the 

selection of morphology of the molecular assemblies is explained generally on the basis of the 

molecular amphiphilicity. For example, molecular assemblies in water are found to take either 

morphology of micelle, wormlike micelle, or lamellar including nanotube and vesicles.1–4 In 

most cases, the critical packing parameters of amphiphiles successfully predict the selection 

of morphology in water.5 On the other hand, the author showed that a novel morphology of 

nano round-bottom flask was prepared by a pair of chiral amphiphilic peptides, right-handed 

helix and left-handed helix, with forming stereo-complex between them and phase separation 

in membrane in Chapter 4. The morphology is regarded as a joint of nanotube and vesicle, 

and the author named the assembling as patchwork assembly. Here, the author extends this 

patchwork assembly to other morphologies. These unique assemblies of different shapes and 

sizes should be useful for various fields, for example, to know the effects of shape and size of 

nanoparticles on cellular internalization and intracellular trafficking.6 

The author has reported on molecular assemblies of amphiphilic peptide molecules 

especially with using hydrophobic helical segments at the hydrophobic core of the molecular 

assemblies.7–11 Helical peptides have a good ability to be packed regularly in the molecular 

assembly as shown by frequent observation of helix bundles in nature.12,13 Indeed, the peptide 

nanotube with diameter of ca. 70 nm and length of ca. 200 nm was obtained from amphiphilic 

block polypeptides with a hydrophobic helical block, (Sar)25-b-(L-Leu-Aib)6 (SLL) or (Sar)25-

b-(D-Leu-Aib)6 (SDL), as a result of tight and regular packing of helices at the hydrophobic 

core of the membrane.14 Further, the author succeeded in preparation of a vesicular assembly 

with using an equimolar mixture of SLL and SDL in Chapter 1. When the right-handed helix 

is mixed with the left-handed helix, they are considered to form a stable stereo-complex, 

which drives molecular assembling to take vesicular structure.15,16 
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The nanotube and the vesicle were then connected to generate a nano round-bottom 

flask just by mixing the nanotube of SLL or SDL and a planar sheet of an equimolar mixture 

of SLL and SDL followed by heat treatment. This assembly consists of the spherical 

membrane of stereo-complex of SLL and SDL and the tubulous membrane of SLL or SDL in 

Chapter 1. The round-bottom flask formation is driven by the decrease of the hydrophobic 

edges and the phase separation into a single component domain and a SLL and SDL stereo-

complex domain in membrane. 

 
Figure 1. Schematic illustration of “patchwork self-assembly”. 
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Experimental Section 

Materials. Boc-L-leucine (Boc-Leu), aminoisobutylic acid (Aib) and Z-sarcosine (Z-

Sar) were purchased from Watanabe Chemical Industries, Ltd. (Japan). 

Dipalmitoylphosphatidylcholine (DPPC) and cholesterol were purchased from Avanti Polar 

Lipids. Inc. (U.S.A.). Water was purified by a Milli-Q system (Nihon Millipore Ltd, Japan) 

and had a specific resistivity of ca. 18 MΩ cm−1. All other reagents were purchased from 

commercial sources and used as received. 

Preparation of Molecular Assemblies. Polypeptide (12 mg) was dissolved in ethanol 

(120 μL). Then an aliquot (30 μL) of the peptide solution was injected into a buffer (1 mL, 10 

mM Tris-HCl, pH 7.4) with stirring at 4 °C. After 30 min, the dispersion was purified by 

Sephacryl S-100 column (1.5 × 30 cm, GE healthcare Bio-Sciences) using 10 mM Tris-HCl 

buffer (pH 7.4) as an eluent to remove ethanol. Molecular assemblies of different 

compositions were prepared similarly. 

Transmission Electron Microscopy (TEM). TEM images were taken using a JEOL 

JEM-2000EXII at an accelerating voltage of 100 kV. For the observation, a drop of dispersion 

was mounted on a carbon-coated Cu grid and stained negatively with 2 % uranyl acetate, 

followed by suction of the excess fluid with a filter paper. 

Frozen-Hydrated/Cryogenic-TEM (Cryo-TEM). The dispersions in a buffer were 

frozen quickly in liquid ethane, which was cooled with liquid nitrogen. The samples were 

examined at 100 kV accelerating voltage at the liquid nitrogen temperature. 
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Results and Discussion 

Sphere part of a single component peptide membrane. The author found out that 

(Sar)22-b-(L-Leu-Aib)8 (SLL16) also self-assembles into vesicle. In buffer, SLL16 formed a 

planar sheet at room temperature, and transformed morphology into a vesicular shape with ca. 

80 nm diameter upon heating at 90 °C for 1 h in Chapter 3 (Figure 2a). The vesicle diameter 

fits to the diameter of SLL nanotube, which is considered suitable for making a new 

morphology of a round-bottom test tube (2nd row of Figure 1). Accordingly, SLL16 planar 

sheets were incubated with SLL nanotubes, and the dispersion was heated at 90 °C for 1 h. As 

shown in Figure 2b, a test tube with a round bottom was observed by TEM. The sizes of the 

neck part and the round bottom part correspond to those of nanotube and vesicle, suggesting 

that the test tube morphology should be formed with a membrane where SLL and SLL16 are 

phase-separated to build up the corresponding parts of tube and vesicle in the test tube 

morphology. The nano test tube morphology is thus a chimera assembly of a vesicle and a 

nanotube. The membrane thickness of the spherical part is 10 nm, which is the same as that of 

the vesicle prepared from SLL16. The yields of the test tube and the nanocapsule, where the 

both mouths of nanotube are sealed with round-bottom shaped membrane, under the condition 

of mixing equal amount of SLL and SLL16 are 45 % and 36 %, respectively, and the rest is 

vesicle and irregular morphology (n = 526). 

The yields of nanocapsule increased drastically from 11 % to 36 % and further to 67 % 

with increasing the mixing ratio of SLL16 and SLL from 0.5/1 to 1/1 and further to 2/1 (w/w) 

(Figure 2c). On the other hand, the yields of the nano test tube changed from 31 % (n = 130) 

to 45 % and down to 16 % (n = 421) with increasing the mixing ratio (Figure 2g). This result 

indicates that target morphology can be prepared as a major fraction by optimizing the mixing 

ratio of the nanotube and the planar sheet. 
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When an ethanol solution of the mixture of SLL and SLL16 (1/1 w/w) was injected 

into a buffer followed by heating at 90 °C for 1 h, the self-assembled test tube and the 

nanocapsule were identified by TEM observation, which morphologies were similar to those 

obtained by mixing the nanotube of SLL and the planar sheet of SLL16 after heating. The 

yields of the test tube and the nanocapsule are 41 % and 38 %, respectively (Figure 3). The 

shapes and sizes of the test tube and the nanocapsule are independent on the preparation 

methods of the two different ways, indicating that these chimera morphologies are 

Figure 2. TEM images (negative staining with uranyl acetate; (a–f)) of molecular 
assemblies from mixtures of SLL nanotube and SLL16 planar sheet; 0/1; (a); 1/1; (b) and 
1/2; (c) and from mixtures of SLL nanotube and DPPC liposome; 0/1; (d); 1/1; (e) and (f). 
The yield of morphologies of molecular assembly prepared at each mixing ratio; (g). The 
assemblies were prepared in 10 mM Tris-HCl Buffer (pH 7.4) (1 mg/mL) by heating a 
mixture suspension of SLL nanotube and SLL16 planar sheet, which prepared by the 
ethanol injection method, or DPPC+Cholesterol in ethanol, at 90 °C for 1 h. 
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thermodynamically stable. In fact, these molecular assemblies retain morphology at least for 1 

month on the basis of TEM observation. 

 

Sphere part of liposome. One mouth of the SLL nanotube is thus possible to be 

sealed by spherical peptide membranes of two types made of either a mixture of SLL and 

SDL or SLL16. The author extends the trial of sealing the nanotube with vesicle forming 

membrane to the other kind of vesicle, liposome. A mixture of DPPC and cholesterol at a 

molar ratio of 55/45 generated liposome (Figure 2d). The mixture in ethanol was injected to 

the SLL nanotube suspension (molar ratio of DPPC/SLL, 1/1) in buffer and heated at 90 °C 

for 1 h. In the TEM images, the round-bottom flask assembly was observed (Figure 2e). The 

sizes of diameter and length of the neck part of the round-bottom flask are similar to those of 

the SLL nanotube. The membrane thickness of the neck part is ca. ~10 nm, which is the same 

as that of the SLL nanotube, supporting that the neck part is made of SLL. On the other hand, 

the round bottom part of the round-bottom flask shows a smaller morphology than liposome, 

Figure 3. TEM images (negative staining with uranyl acetate) of molecular assemblies 
from mixtures of SLL and SLL16 with ratio of 1/1 (w/w). The assemblies were prepared in 
10 mM Tris-HCl Buffer (pH 7.4) (1 mg/mL) by the ethanol injection method and heat 
treatment with a mixture of SLL and SLL16 in ethanol (40 μL). 
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and the membrane thickness of ca. 15 nm is obviously larger than that of liposome (Figure 

2d), suggesting that the round-bottom shaped membrane should be composed of a mixture of 

DPPC, cholesterol, and SLL. 

In addition to the round-bottom flask, a dumbbell shaped assembly, where the both 

mouths of the nanotube are sealed with a spherical membrane, is observed (Figure 2f). The 

yields of the round-bottom flask and the dumbbell are 19 % and 18 % (n = 253), respectively, 

and the rest is irregular aggregates of liposomes and nanotubes. 

 

Figure 4. TEM images (negative staining with uranyl acetate; (a), and (c–e), cryo-TEM; 
(f–h)) of molecular assemblies from mixtures of SLL14 nanotube and SLL+SDL planar 
sheet; 1/0; (a); 1/1; (c–h). The yield of morphologies of molecular assembly upon heating at 
90 °C for 1, 2 and 4h (b). The assemblies were prepared in 10 mM Tris-HCl Buffer (pH 
7.4) (1 mg/mL) by heating a mixture suspension of SLL14 nanotube and SLL+SDL planar 
sheet prepared by the ethanol injection method, separately at 90 °C for certain hours. 
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Neck part of SLL14 nanotube. It is therefore shown that three different vesicular 

membranes can joint to the mouths of the SLL nanotube. Subsequently, the SLL nanotube 

part is replaced with other nanotubes with keeping the vesicle of an equimolar mixture of 

SLL and SDL as the counterpart of the chimera assembly (4 th and 5 th rows in Figure 1). 

The first example of the different nanotube was prepared from (Sar)24-b-(L-Leu-Aib)7 

(SLL14). SLL14 upon injection into a buffer and heating forms a nanotube of 70 nm 

diameter and 200 nm length, which sizes are the same as those of the SLL nanotube in 

Chapter 3 (Figure 4a). When the SLL14 nanotube was mixed with a planar sheet prepared 

form SLL and SDL, as expected, a round-bottom flask is obtained upon heating at 90 °C for 1 

h, whose sizes of the neck and the round sphere are 70 nm tubular diameter, 200 nm length, 

and 180 nm spherical diameter, which are similar to those prepared from the SLL nanotube 

and a planar sheet of SLL and SDL (Figure 4c and 4f). 

However, the yield of the round bottom flask is 15 %, which is significantly less than 

that of 38 % in the case of preparation from the SLL nanotube and the planar sheet of SLL 

and SDL. On the other hand, other morphologies of vesicle (30 % yield), a recovery flask 

(23 % yield), which has a shorter neck than a round-bottom flask, and nanotube (19 %) are 

observed by TEM observation. Extension of the heating period from 1 h to 2 h at 90 °C 

yielded no round-bottom flask, but the yield of a recovery flask increases significantly up to 

53 % (Figure 4b, 4d and 4g). Further, in the case of a heating period of 4 h, the recovery flask 

diminished its fraction down to 7 % yield, and vesicle (79 % yield) becomes a major fraction 

of the existing morphologies (Figure 4b, 4e and 4h). It is thus speculated that the most 

thermodynamically stable morphology should be vesicle followed by recovery flask and 

round-bottom flask in this order. Since the transformation from one morphology into the other 

requires high energy (heat treatment at 90 °C), the molecular assemblies can be trapped into 

each morphology kinetically by choosing the heating period suitably for transformation into 

each morphology. Indeed, once the molecular assembly was trapped either in round-bottom 

flask, recovery flask, or vesicle, each shape was stable in solution at room temperature at least 

for two weeks. 
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Taken together, the patchwork assemblies result in different ways with changing the 

amphiphilic helical peptide of the starting nanotube from SLL to SLL14, which difference in 

the peptide sequence is just two residues of Leu-Aib. In the case of a mixture of SLL and 

SDL in the excess presence of either component, molecular assemblies are formed with phase 

separation into an excessive component part and a stereo-complex part in membrane. On the 

other hand, in the case of a mixture of SLL, SDL, and SLL14, these three kinds of peptides 

are miscible in membrane. Starting with a SLL14 nanotube and a planar sheet of SLL and 

SDL, these two types of assemblies stick together to give a round-bottom flask. With heating 

further, the three kinds of peptides starts to mix together by diffusion of each component 

across the connecting region between the neck part and the round sphere part of the round-

bottom flask. Via intermediate morphology of recovery flask, vesicle is prevailing eventually 

due to complete mixing of the three kinds of peptides. 

This interpretation is supported by the following results. When a mixture of SLL and 

SDL (2/8 w/w) was injected into a buffer, round-bottom flask was a major morphology upon 

heating, suggesting occurrence of phase separation in membrane in Chapter 4. On the other 

hand, when a mixture of SLL, SDL, and SLL14 (1/1/2 w/w/w) was injected into a buffer, 

vesicle was a major morphology upon heating, supporting the complete mixing of the three 

kinds of peptides. 

Neck part of large nanotube from stereo-complex peptide membrane. Second type 

of thick nanotube was prepared from an equimolar mixture of SDL and SLL14, which forms 

a nanotube with 200 nm diameter and 500 nm length (Figure 5a and 5d).  When a nanotube 

prepared from SDL and SLL14 was mixed with a planar sheet prepared from SLL and SDL 

with ratio of 1/1 (v/v), a round-bottom test tube is generated, whose neck part has the sizes of 

200 nm diameter and ca. 500 nm length (Figure 5b and 5e). This test tube morphology is 

reasonably explained by sticking the planar sheet to one mouth of the nanotube followed by 

transformation of the planar sheet into spherical membrane to seal the mouth of the nanotube 

upon heating at 90 °C for 1 h. The test tube morphology was retained even with a longer 
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heating period for 2h, suggesting that it is thermodynamically stable with keeping phase 

separation. 

 

Noticeably, the round bottom size of the test tube did not exceed over the diameter of 

the nanotube as shown in Figure 5a. In other words, the diameter of the round bottom seems 

to be determined by the diameter of the nanotube. On the other hand, when a mixture of SDL 

and SLL14 nanotube and SLL and SDL planar sheet was incubated in buffer at room 

temperature for 30 min, round-bottom flask was observed upon subsequent heating at 90 °C 

for 1 h (Figure 5c, 5f and 6b). In the latter case, the planar sheets prepared from SLL and 

SDL at room temperature took a large area of ca. 1 μm square. The nanotubes prepared from 

SDL and SLL14 should therefore stick to the large planar sheet during 30 min incubation, 

resulting in formation of a large spherical bottom upon heating at 90 °C. When the nanotubes 

prepared from SDL and SLL14 was mixed and heated immediately at 90 °C, the planar sheets 

Figure 5. TEM images (negative staining with uranyl acetate; (a), (b) and (c), and cryo-
TEM; (d), (e) and (f)) of molecular assemblies from mixtures of SLL14+SDL nanotube 
and SLL+SDL planar sheet; 1/0; (a) and (d); 1/1; (b), (c), (e) and (f). The assemblies were 
prepared in 10 mM Tris-HCl Buffer (pH 7.4) (1 mg/mL) by heating a mixture suspension 
of SLL14+SDL nanotube and SLL+SDL planar sheet prepared by the ethanol injection 
method, separately at 90 °C for 1 h. 
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should be torn off into small sheets before sticking to the mouth of the nanotube. As a result, 

the round bottom part did not exceed over the size of the nanotube. This presumption was 

supported by the result that a large planar sheet with 1 μm square, which was formed from a 

mixture of SLL and SDL at room temperature, was reported that a small sheet roll up and 

stick the hydrophobic edge to vesicle with 180 nm diameter when a planar sheet transformed 

into vesicle at 90 °C by 1 h (Figure 4 in Chapter 4). Indeed from TEM observations, it was 

expected that a small planar sheet was generated by breaking of a large sheet at 90 °C (Figure 

7). 

 

Figure 6. Distribution of the diameter of spherical part vs that of neck part of a round-
bottom flask from a combination of SLL14+SDL nanotube and SLL+SDL planar sheet 
without; (a); and with standing for 30 min; (b); upon heat treatment at 90 °C for 1 h. 
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The character of vesicles and nanotubes, which was used to preparation of patchwork 

assembly in this report, was shown in table 1. In table 2, the morphologies of molecular 

assembly prepared by this method “patchwork self-assembling” were summarised. 

 

Table 1. The character of vesicles and nanotubes for the preparation of patchwork assembly. 

Amphiphile 
Morphology diameter 

(nm) 
length 
(nm) 

Before heating After heating

SLL+SDL (1/1, w/w)a,b Planar sheet Vesicle 180 

SLL16c Planar sheet Vesicle 80 

DPPC Vesicle  

SLLa,d Curved sheet Nanotube 70 200

SLL14c Curved sheet Nanotube 70 200

SLL14+SDL (1/1, w/w)c Planar sheet Nanotube 200 500

a: Chapter 1; b: Chapter 2; c: Chapter 3; and d: Chapter 4. 

Figure 7. TEM images (negative staining with uranyl acetate) of molecular assemblies 
from a equimolar mixtures of SLL and SDL upon the heat treatment at 90 °C for 0 min (a) 
and 10 min; (b–d). The assemblies were prepared in 10 mM Tris-HCl Buffer (pH 7.4) (1 
mg/mL) by the ethanol injection method from an ethanol solution of SLL and SDL (40 
μL). 
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Table 2. The summary of the patchwork assemblies from two different membranes 

Neck Part Spherical Part Morphology

SLL SLL+SDL Round-bottom flask 

 SLL16 Test tube

 Nanocapsule

 DPPC Round-bottom flask 

 Dumbell

SLL14 SLL+SDL Round-bottom flask 

 Recovery flask

 Vesicle

SLL14+SDL SLL+SDL Test tube

 Round-bottom flask 
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Concluding Remarks 

This section briefly summanzes the results of investigation on the preparation, 

characterization, and morphology analysis of molecular assemblies composed of amphiphilic 

polypeptides having a hydrophobic helical segment. 

Chapter 1 demonstrated a new method for vesicle preparation by novel fusion between 

two types of nanotubes, which were composed either of the right-handed helix or the 

left-handed helix. The fusion was driven by the stereo-complex formation of these helical 

amphiphiles. Morphology transfonnation process from the nanotube into the vesicle was 

composed of four steps; i) nanotube association, ii) mixing of right- and left-handed helices, 

iii) break-up of the tubular structure to the planar sheet structure, and iv) closing to the 

vesicular structure. 

Chapter 2 dealt with two examples of vesicle fusion. In either case, phase transition 

occurred in membranes of a mixture of SLL and SDL at 90°C, which triggered fusion for 

themselves and the other type of peptide vesicles. The fused membrane allowed diffusion of 

constituent peptide amphiphilies, followed by fission into vesicles whose diameter was 

determined by the composition of the fused membrane. The driving force of vesicle fusion 

was considered to be a bending energy of the mixed membranes ofSLL and SDL upon taking 

a vesicular structure. It was therefore expected that fusion ability of these peptide vesicles 

could be widely varied by designing the constituent peptide molecules. 

Chapter 3 demonstrated the analysis of the morphologies fonned by the right- and 

left-handed a-helical peptides with mismatched helix lengths. For example, when two 

peptides with mismatch length of four residues were mixed, long and straight peptide 

nanotube of more than 30 flm length and 70 nm diameter was formed. The elongation of the 

peptide nanotubes became possible here because of the strengthened membrane due to the 

stereo-complex fonnation of the right- and the left-handed helices. The curvature of 
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nanotubes was affected by the degree of mismatch length between the right- and the 

left-handed helices. 

Chapter 4 presented a new method for a novel complex morphology by 

self-assembling. The unique self-assembling process was driven by the stereo-complex 

formation of the helical amphiphiles. When SLL and SDL were mixed at 20/80 or 80120, they 

were phase-separated into the pure component domain and the 111 stereo-complex domain to 

yield the round-bottom flask morphology. The nano round-bottom flask morphology was 

considered to be a combined morphology of nanotube and vesicle, and this preparation 

method was named as "patchwork self-assembling". 

Chapter 5 showed various possibilities to generate novel complex morphologies by 

self-assembling. The strategy was based on the combination of two different membranes, 

where one membrane constituted nanotube and the other had a vesicle-forming property. 

When the two kinds of membranes were mixed together, the latter membrane associated with 

the mouth of the nanotube to decrease the total energy of the hydrophobic edge line. However, 

the each component stayed at each membrane by phase separation, resulting in generation of 

chimera morphologies. These morphologies were thermodynamically stable, and were 

retained even after a long heating process. On the other hand, in the case of combination 

between nanotube of SLL14 and vesicle of SLL+SDL, various morphologies of the 

round-bottom flask, the recovery flask, and the vesicle were prepared under kinetically 

controlled processes dependent on the heating time. 

As demonstrated in the present thesis, the molecular assemblies, which are composed 

of amphiphilic polypeptides having a hydrophobic helical segment, show unique 

morphologies and properties, which are accompanied by stereo-complex formation between 

the right-handed and the left-handed helical peptides, membrane fusion due to the membrane 

fluidity, and phase separation in assembled membranes. With all these notable points for 

preparations of molecular assemblies, the author successfully demonstrates a new aspect of 

molecular assembly of more complex morphology, which is named as "Patchwork 
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Self-Assembling". The author therefore believes that the important findings of this thesis 

should be of interest not only for materials scientists and supramolecular chemists but also for 

many scientists in other fields of medical chemistry, organic chemistry, and biological 

chemistry and so on. 
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