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Abstract 

This research is a part of a long term regional project on “Application of Satellite Rainfall 

Estimation in the Hindu Kush-Himalayan Region” implemented by the International Centre for 

Integrated Mountain Development (ICIMOD) and the regional partners.  

Flood disasters are recurrent in Nepal leading to huge loss of lives, infrastructure damage and 

adverse impacts on socioeconomic development. An important approach to non-structural flood 

management lies in the provision of an end-to-end flood forecasting and warning services. Due 

to the limited spatial coverage of ground based gauges, unavailability of real-time rainfall data, 

and constraint in technical and financial resources, the Department of Hydrology and 

Meteorology (DHM) of Nepal is yet to initiate an operational flood forecasting. The availability 

of global coverage of satellite data offer effective and economical means of calculating areal 

rainfall estimates in sparsely gauged areas. Thus, satellite-based rainfall estimates (SRE) may be 

one of the best and appropriate approaches for Nepal to predict and forecast rainfall-induced 

runoff that may produce flooding.  

Satellite-based rainfall estimation technology has rapidly developed in the last few decades 

but this technology is still in its infancy in most of the Hindu Kush Himalayan (HKH) countries 

including Nepal. A clear understanding of the satellite rainfall estimation methods and products 

are a prerequisite to apply SRE for flood prediction. The research focussed on three broad 

objectives (i) to evaluate the accuracy of SRE over the central himalayas of Nepal (ii) to improve 

the SRE with bias-adjustment (iii) to improve the flood prediction by applying bias-adjustment. 

This research carried out review of the various satellite-based rainfall estimation methods and 

products. Quantitative validation of the National Oceanic and Atmospheric Administration 

(NOAA) CPC-RFE2.0 (RFE) and Japan Aerospace Exploration Agency (JAXA) 

GSMaP_MVK+ (GSMaP) products based on independent ground station observed data were 

carried out. The verifications were conducted at three levels. The first set of verification was 

conducted considering the whole country as one homogeneous region. The second level 

verification was conducted partitioning the county into various physiographic regions and the 

third was at river basin level. At a regional level the analysis data from 422 rainfall stations were 

available for the verification out of which 176 are within Nepal for the period 2002 to 2006. The 

accuracy of the SRE was evaluated using the standard verification technique which included 

visual analysis as well as continuous verification statistics and categorical verification statistics. 
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Visual verification was subjective and compared maps of satellite estimates with observations. 

The continuous verification statistics included correlation coefficient, root mean square error 

(RMSE), bias, and percentage error, to provide a quantitative assessment for each set of 

verification data. The categorical verification statistics were qualitative and included probability 

of detection (i.e., events diagnosed correctly) and false-alarm ratio (which detects non-events).  

The results in general show underestimation of rainfall in intense rainfall periods and heavy 

rainfall regions and overestimation of rainfall in rainshadow and arid areas with both the SRE 

products. In general the rainfall events matched qualitatively when spotting extreme rainfall, but 

quantitatively there were some differences. The GSMaP estimates were found to underestimate 

the whole Nepal averaged annual rainfall by 48 % and RFE by 30%. The daily bias averaged 

over whole of Nepal was -1.1 mm/day with RFE and -2.0 mm/day with GSMaP for the period 

2003 to 2006. The RMSE over whole of Nepal was -4.0 mm/day with RFE and -4.9 mm/day 

with GSMaP for the same period. The bias and the RMSE were higher for the June July, August 

and September (JJAS) period compared to the annual. The GSMaP however showed better 

correlation with the observed data as compared to RFE.  

The second level of verification was conducted for various physiographic regions to assess 

the performance of RFE and GSMaP. Both SREs performed better in the flatter regions in the 

Terai and Siwalik regions. The performance deteriorated with higher elevations with the 

minimum performance in the High Mountains. The Middle Mountain regions despite denser 

network of stations compared to other regions showed poorer performance of SREs. At the basin 

level the bias was smaller in the Bagmati than the Narayani. These results indicate that overall 

the SREs provides reasonable rainfall estimates but needs to be improved before it can be 

implemented for operational flood forecasting. 

The United States Geological Survey (USGS) GeoSpatial Streamflow Model (GeoSFM) 

model was applied in two basins, the Bagmati and Narayani. In both basins there was a good 

correlation between the simulated and observed discharge at Pandheradovan and Devghat using 

gauge observed rainfall, for the period 2002-2004, with correlation values of 0.95 for Bagmati 

and 0.94 for Narayani. With the RFE estimates the simulated discharges followed the trend of 

the observed values quite well, although there was a significant difference in the magnitude of 

the flows indicating a need for bias correction prior to application into operational flood 

prediction. 
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With five years of data from 2002 to 2006; the seasonal, monthly and 7-day moving average 

bias-adjustments were derived comparing the RFE rainfall estimates and gridded gauge observed 

rainfall data at grids with one or more gauges. These bias-adjustments were applied to the RFE 

to obtain a new set of rainfall estimates. These bias-adjusted rainfalls when applied to the 

GeoSFM model resulted in improvement in flood prediction. The second approach of improving 

the SREs was by ingesting additional local rain gauge data into the RFE algorithm (referred to as 

“improved RFE”) by expanding the Global Telecommunication Satellite (GTS) data input. The 

GeoSFM model calibrated with the gauge observation and the “improved RFE” provided 

considerable improvement in flood prediction. However, there seemed to be some discrepancy in 

the medium flow estimation. Therefore, keeping in mind the inherent errors in the SREs the 

model was recalibrated with improved RFE. The recalibrated model with new gauge-satellite 

merged rainfall estimates showed further improvement in the simulation of flows.  

Overall, findings from this study indicate that the SRE underestimates rainfall significantly 

over Nepal but with correlation higher than 0.70. The performance of the SRE is better in the 

flatter terrain than in the mountainous areas. The accuracy of SREs can be improved by applying 

a bias-adjustment. Prediction of discharge using bias-adjusted rainfall estimates can improve the 

accuracy of discharge prediction with considerable increase in the predictive capability of flood 

prediction for which the hydrological model needs to be recalibrated. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Water induced disasters are very prevalent in Nepal and annually many lives and properties 

worth millions of dollars are destroyed. Due to the diverse geological settings rugged terrain and 

monsoon precipitation Nepal is prone to floods, landslides, and glacial lake outburst floods 

similar to other mountainous countries in the Hindu Kush-Himalayan (HKH) region (Shrestha 

and Choppel, 2010). Nepal is primarily under the influence of the southwest monsoon from the 

Bay of Bengal. The monsoon season in Nepal occurs between June and September; the monsoon 

is the dominant rainfall season with almost 80% of the annual rainfall occurring in that period. 

Based on twenty years of data (1980-2000) Nepal is found to have high vulnerability for flood 

disasters as reported in the UNDP global report on Reducing Disaster Risk (UNDP, 2004). 

Between 1983 and 2005 on average 309 people lost their lives in Nepal due to floods and 

landslides (Annex A) accounting for over 60% of those dead due to different types of disasters in 

the country (Khanal et al., 2007). Recent flood disasters in Nepal include the 1981 flood in Lele, 

the 1993 flood of the Bagmati and Narayani, the 1998 Andhi Khola flood (Chalise and Khanal, 

2002), the 2002 flood in the Narayani and Bagmati and the 2008 flood in the Koshi. The high 

level of poverty and rate of population growth has further increased the vulnerability to flood 

disasters. Floods are posing severe constraints for socio-economic development, investment in 

agriculture, physical infrastructure and industrial production where they are most needed. Thus, 

flood mitigation in Nepal is more than a hydrological priority; it is a socio-economic necessity. 

Flood early warning systems are one of the most effective ways to minimize the loss of life 

and property. A reliable flood forecasting system is very important to enable establishment of a 

reliable early warning system that transmits down to the community for minimizing the impacts 

of disasters. Accurate rainfall estimations are essential for timely flood forecasting and warning. 

In many regions operational flood forecasting has traditionally been relied upon by a dense 

network of rain gauges or ground-based rainfall measuring radars that report in real time. In 

Nepal, like many other developing countries, the hydrometeorological station networks are 

sparse and rainfall data are available only after a significant delay. According to the Department 
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of Hydrology and Meteorology (DHM) of Nepal the country average density is one gauge for 

about 331 km2 and is especially very sparse in mountainous areas. Due to the limited spatial 

coverage and uneven distribution of ground based gauges, unavailability of real-time rainfall 

data, and constraint in technical and financial resources, operational flood forecasting is yet to be 

initiated (Shrestha et al., 2008a). In mountainous terrain where lag times may be as measured in 

terms of minutes or hours, rainfall estimation and forecasting is especially difficult. 

Through the use of hydrologic modelling techniques it is possible to better prepare for and 

respond to flood events. There are many rainfall-runoff models available in the world today. For 

example the lumped and conceptual models are applicable for prediction of runoff for un-gauged 

catchments and also water balance studies. Semi-distributed models are suitable for streamflow 

records and real-time runoff simulations. Use of appropriate hydrologic models to predict floods 

can mitigate flood damage, provide support to contingency planning, and warning to people 

threatened by floods. However, flood forecasting model predictions are subject to uncertainty 

due to model simplifying assumptions in terms of model structure and uncertainties in model 

parameters and input. Precipitation is an important input in rainfall-runoff modelling and is 

highly variable in both space and time. Flood forecasting in basins with sparse rain gauges pose 

an additional challenge. The availability of global coverage of satellite data offer effective and 

economical means of calculating areal rainfall estimates in sparsely gauged areas (Artan et al., 

2007; Shrestha et al., 2008a). Thus, satellite-based rainfall estimates (SRE) may be one of the 

best and appropriate approaches for Nepal to predict and forecast rainfall-induced runoff that 

may produce flooding.  

1.2 Identification of Problem 

Precipitation is an essential component of the hydrological cycle. Accurate global rainfall 

coverage is necessary to improve short term, medium and long term weather forecasts, and 

climate monitoring and prediction. A longstanding promise of meteorological satellites is the 

improved identification and quantification of rainfall at different temporal and spatial scales 

consistent with the nature and development of cloud rain. Meteorological satellite data 

strengthens the geographical (spatial) coverage and time-base of conventional ground-based 

rainfall data observation for a number of applications, including hydrology analysis and weather 

monitoring and forecasting. The primary scope of satellite rainfall monitoring is to provide 

information on rainfall occurrence, amount and distribution over the globe for climatology, 

hydrology, and environmental analysis. SRE is a significant method for rainfall measurements 
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compared with conventional gauge data and supplements gauge stations. Conversely, 

conventional gauge data are needed to calibrate the SREs, so together they can provide improved 

real-time rainfall information. 

Because there is a lag time between the onset of rainfall and the occurrence of flooding, 

accurate rainfall estimation is very essential to reduce the impact of floods. This is done through 

early warnings issued by government systems that monitor and forecast floods. Modernization of 

data sources and programming techniques has increased the accuracy of the rainfall estimation 

with near real-time availability. 

The global coverage of space-based precipitation estimates provides information on rainfall 

frequency and intensity in regions that are inaccessible to other observing systems such as rain 

gauges and radar. Several high resolution SREs are now available from various operational 

agencies and academic institutions for example CMORPH (Joyce et al., 2004), TRMM 

Multisensor Precipitation Analysis (TMPA) (Huffman et al., 2007), CPC_RFE2.0 (Xie et al., 

2003) and GSMaP (Ushio et al., 2009). The verification of accuracy of SREs have been studied 

in various regions of the world at varying temporal and spatial scales (Kubota et al., 2009; Ebert 

et al., 2007; Kidd et al., 2009; Hughes, 2006; Dinku et al., 2008). However, there has been no 

rigorous verification of the SREs over the Himalayan region for application into flood 

forecasting purposes.  

Often in developing countries like Nepal the availability of ground measuring stations is very 

limited with scarce density of hydrometeorological network and uneven distribution making it 

challenging for accurate flood prediction. Accurate quantitative documentation of regional 

rainfall analysis (gridded data) remains a challenging task because of the large spatial and 

temporal variability of rainfall and lack of a comprehensive observing system. As the SRE 

technique provides information on rainfall occurrence, amount, and distribution over a region it 

is an important technology for rainfall measurement that provides near real-time data. It can be 

used alongside conventional gauge data. Satellite-enhanced rainfall estimation appears to 

offer an effective and viable alternative means for estimating precipitation. The use of SREs 

will enable a more thorough, accurate, and timely analysis of the rainfall estimates. Satellite-

improved rainfall estimates delivered in a timely fashion can facilitate the use of flood-

information systems. These estimates, enhanced by gauge data, can improve rainfall 

analyses that are currently interpolated solely from sparse rain-gauge data, and will lead to 

value-added agricultural and hydrological applications such as crop monitoring and flood 
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forecasting. Mitigation measures for weather-related disasters will thus be able to use more 

accurate and timely information in the decision-making process. 

The satellite derived rainfall estimates can be applied to various rainfall-runoff models to 

simulate the floods downstream well in advance depending upon the size of the basin. However, 

the accuracy in predicting flood parameters such as peak runoff and time to peak is dependent on 

the ability to monitor the spaciotemporal variability of rainfall (Hossain and Katiyar, 2006). 

Given the uncertainty of space based rainfall observation the accuracy of the estimates needs to 

be assessed by validating the space-based observations with that from gauged stations. Hossain 

(2005) cautions that the uncertainty that rise from the space based rainfall estimates propagates 

in the rainfall run-off models thereby increasing the prediction uncertainty of floods. Hossain and 

Katiyar (2006) stresses on the need to use the existing streamflow measuring systems for 

validation and calibration of the space based forecasting systems. Literature review indicates that 

there are many rainfall-runoff models like the HEC-HMS, TOPMODEL, OHYMOS, GeoSFM, 

and others that have been applied in for runoff prediction. 

Some work has also been attempted to look into the application of satellite based rainfall 

estimates into flood forecasting. Artan et al. (2007) investigated the utility of SRE for flood 

forecasting purposes. Harris et al. (2007) tried to assess the hydrologic implications of 

uncertainty of satellite rainfall data at the coarse scale using TRMM data. Yilmaz et al., (2005) 

evaluated the utility of SRE for hydrologic forecasting. Hughes (2006) evaluated SRE with 

gauge observed data at a monthly time step for application in hydrological modelling. Hong 

et al. (2007) proposed the application of satellite rainfall data in near real time using 

Tropical Rainfall Measuring Mission (TRMM) in global monitoring system for early 

warning of floods and landslides.  

However, there has been no verification over the Himalayan region for flood prediction. The 

SREs could provide information on spatiotemporal variation of precipitation in data sparse 

regions of Nepal and can be used as input to streamflow modelling system in basins for flood 

forecasting. Therefore, it is necessary to assess the quality of the SRE over the Himalayan region 

for improved rainfall monitoring. The intent is to evaluate the SREs, make bias-adjustments so 

they can be used with confidence in providing rainfall input to improved flood forecasting 

systems.  
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1.3 Background of the Research 

This research is a part of a longer term regional project “Application of Satellite Rainfall 

Estimation in the Hindu Kush Himalayan Region” implemented by ICIMOD and its regional 

partners under the Asia Flood Network (AFN) Programme of USAID/OFDA. The first phase of 

the project was initiated in June 2006 to June 2008. A follow on second phase project was from 

December 2008 to June 2010. As this was a regional project the partners were from the regional 

member countries primarily the hydromet services. 

The project aimed to minimise the loss of lives and property by reducing the region’s 

vulnerability to floods and droughts – in particular in the Indus, and Ganges-Brahmaputra-

Meghna basins (Shrestha et al., 2008b). The project sought to strengthen regional cooperation in 

flood forecasting and information exchange, and build capacity among the partner institutions. 

The main objective was to validate the National Oceanic and Atmospheric Administration 

(NOAA) Climate Prediction Centre’s (CPC) rainfall estimate CPC_RFE2.0 (hereafter referred to 

as RFE) for the HKH region to determine their operational viability and improve the algorithm, 

and to apply rainfall estimates to the United States Geological Survey (USGS) Geospatial 

Streamflow Model (GeoSFM).  

The specific objectives included 

• to validate NOAA RFE and improve river forecast products 

• determining the relationship between RFE and the corresponding observed rainfall, and 

assessing whether the satellite data can be used in conjunction with gauge data as inputs 

to a hydrological model. 

• to test the GeoSFM model for selected basins and explore its applications. 

In August 2010 a new phase of this project was initiated to build on the application of 

satellite rainfall estimation in the HKH region. This phase will focus on carrying out 

intercomparison of SREs and adding the snow and glacier melt component into the GeoSFM 

model for better discharge prediction particularly for estimating flow availability.  

1.4 Study Area 

The study area is the central himalayas in Nepal. Geographically Nepal is located between 80o 4’ 

to 88o 12’ east longitudes and 26o 22’ to 30o 27’ north latitudes with a total area of 147,100 km2 

(Fig1.1). The topography is highly rugged with elevation ranging from 60 m in the south to 8848 
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m in the north within a short distance of about 160 km. Physiographically, the country is divided 

into five regions, the Terai in the south, the Siwalik, the Middle Mountains, the High Mountains 

and the High Himal in the north (Fig.1.2). 

 The Terai in the south is the northern extension of Indo-Gangetic plain (13 % of the 

country’s area) with altitude ranging from 60-300 m. Flooding is common during monsoon 

inundating large areas. The Siwaliks is 10-30 km wide foothill belt (12 % of the total area of 

Nepal) and have relative relief less than 1000 m; the slope are generally steep with shallow soils. 

The Middle Mountains covers 30% of the total area of Nepal, with a total width range from 60-

80 km and rises fairly abruptly from the Siwaliks to elevations between 1500 and 3000 m above 

mean sea level. The High Mountain ranges from 2000 to 4000 m and occupies 21 % of the total 

area. Topographically, this mountain range shows extremely rugged terrain with very steep 

slopes and deeply cut valleys. The High Himal in the north occupies nearly 24% of the total area.  

The climate at macro-level is dominated by the summer monsoon and topography plays an 

important role in creating meso and micro level differences. Hence, there are pronounced 

temporal and spatial variations in precipitation. The average area-weighted annual precipitation 

for Nepal is about 1,630 mm. More than 80% of the total annual precipitation occurs during the 

monsoon from June through September. Kansakar et al. (2004) derived climatological patterns of 

monthly precipitation, and classified regimes by the shape and magnitude of monthly 

precipitation using rainfall data from 222 stations over Nepal. They found that precipitation 

patterns were controlled by the summer monsoon and by orographic effects induced by the 

mountain ranges. Ichiyanagi et al. (2007) investigated the spatial and temporal variability in 

monthly precipitation and annual and seasonal precipitation patterns over Nepal. The maximum 

annual precipitation is found to increase with altitude for elevations below 2000 m but decreased 

for elevations of 2000–3500 m. In extreme cases up to 37% of the mean annual precipitation has 

been reported to occur within 24 hours for example the 540 mm of rainfall that occurred in July 

1993 in central Nepal caused a large flood disaster killing more than 1100 people. Spatially, 

mean annual precipitation ranges from less than 160 mm in Lomangthang (Mustang) located in 

the trans-himalayan zone north of the Higher Himalayan ranges, to more than 5000 mm in Lumle 

(near Pokhara) located in the southern part of the Higher Himalayan ranges (Sharma, 1977; 

Chalise et al., 1996). A few isolated pockets of dense precipitation are located in different parts 

of the country.  
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Figure 1.1 Location and drainage network of Nepal 

 

 

 

Figure 1.2 Physiographic regions of Nepal 

1.5 Objectives 

This study focuses on the application of SREs for flood prediction in the central himalayan 

region of Nepal. The conceptual framework is provided in Figure1.3. The main objectives of the 

Thesis are as follows. 
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[1] To review and understand the global SRE products that can be applied to flood 

forecasting in the Himalayan region 

 [2] To assess the accuracy of the SRE over Nepal and understand the knowledge gaps for 

satellite-based flood prediction 

[3] To assess the performance of SREs in flood prediction using rainfall-runoff model in 

various basins 

 [4] To assess how SRE can be improved for better flood prediction using bias-adjustment – 

the relationship between gauge observed and satellite data needs to be established and calibrated 

for correcting the satellite-based data 

[5] To use rainfall-runoff modelling framework with SRE for improved flood prediction. 

 

 

Figure 1.3 Conceptual framework of research 

1.6 Outline of the Thesis 

This thesis has six chapters. Chapter one is the introduction. Chapter two provides a review of 

the satellite-based rainfall estimation methods and products. The SRE products that have been 

reviewed mainly include the high resolution satellite-based products that have been in operation 

since 2001.The purpose of this chapter is to have a thorough knowledge of the SRE products and 
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understand the spatial and temporal scales at which they are produced at. The SRE products that 

are now available are usually a combination of inputs from various satellites rather than using a 

sole satellite input as it has been demonstrated the accuracy of estimates increase with a 

combination of products to weigh the strengths and weakness. This chapter also provides a 

review of the verification of SREs in other regions of the world. The purpose of this section is to 

understand the types of verification and the general trend in performance of SREs in various 

regions to draw on lessons for the himalayan region of Nepal. 

Chapter three provides a thorough verification of SREs over Nepal using two products RFE 

and Japan Aerospace Exploration Agency (JAXA) GSMaP_MVK+ (hereafter referred to as 

GSMaP). The second section of this chapter provides the methodology of verification of SREs. 

The standard statistical verification technique has been described including the various 

performance indicator for assessing the accuracy of the SREs. The third section of this chapter 

provides an exhaustive verification of satellite based rainfall estimates over Nepal using three 

approaches. The first approach is assessment of the accuracy over whole of Nepal considering it 

as one homogeneous region. The second approach of verification is assessing the accuracy of 

SREs in various physiographic regions of Nepal to better understand the variation of 

performance of the estimates with elevation. The third approach of verification is at a basin level. 

Chapter four presents the rainfall-runoff analysis using the GeoSFM streamflow model 

forced with SREs for flood prediction. This chapter provides a description of the model, the 

input parameters and flood prediction for two basins, Bagmati and Narayani. The purpose of this 

chapter is to demonstrate the applicability of SREs in flood prediction. The chapter provides an 

assessment of the accuracy of the rainfall estimates by comparing the simulated and observed 

discharge and provides as opportunity to understand the uncertainty in prediction of the rainfall-

runoff model with observed rainfall as well as SREs. 

Chapter five presents the rainfall-runoff analysis using GeoSFM streamflow model forced 

with bias-adjusted rainfall estimates for flood prediction. The first section of this chapter 

provides bias-adjustment method for flood prediction. It also describes the three ratio-based bias 

adjustments derived in this research. The next section presents the application of these bias-

adjustments for improved flood prediction. The improvement in the SRE by ingesting the local 

rain gauge data into the RFE algorithm and application in improved flood prediction is also 

presented. This section also provides a comparative analysis of flood prediction with and without 

bias-adjustment.  



PhD Dissertation 

10 

Finally, the conclusions and recommendations from the study are presented in Chapter six. 
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CHAPTER 2 

2 REVIEW OF GLOBAL SATELLITE-BASED RAINFALL 

ESTIMATION METHODS, PRODUCTS AND VERIFICATION 

Since the launch of a meteorological satellite Television Infra-Red Observation Satellite 

(TIROS-1) in 1960 the study of the earth's atmosphere and oceans using data obtained from these 

remote sensing devices has advanced rapidly. Particularly, since the last two decades, there has 

been a lot of advancement in the estimation of rainfall from space. In the 1970s rainfall 

estimation using Infra-Red (IR) sensors on geostationary platforms to track cloud movement and 

advance climate and weather prediction was developed (Janowiak et al., 2001). Since then, this 

technology for monitoring precipitation from space obtained from satellites orbiting the earth has 

rapidly advanced. The primary scope of satellite rainfall monitoring is to provide information on 

rainfall occurrence, amount and distribution over the globe on a continuous basis from all areas 

including those inaccessible to gauges and radar for various applications in meteorology, 

climatology, hydrology, and environmental sciences. This chapter reviews the satellite-based 

rainfall estimation methods and provides a summary of the satellite-based rainfall estimate (SRE) 

products available at high resolution from operational and academic institutions and suitable for 

water resources monitoring particularly for flood prediction. In this chapter a review of 

verification of high resolution SREs available in the literature is also presented. 

2.1 Satellite-Based Rainfall Estimation Methods 

SRE are primarily from two types of meteorological satellites, geostationary satellites and polar 

orbiting satellites. Figure 2.1 shows the global observing system of meteorological satellites. 

Geostationary Operational Environmental Satellites (GOES) are located over the equator and are 

at about 35,800 km away from the earth surface stationary relative to the earth and uses infrared 

channels. The orbits of these satellites are such that they rotate at the same speed as the earth and 

hence appear to be stationary relative to the earth. Geostationary satellites provide continuous 

observation of the earth’s surface and provide data on a half hourly basis. Imagery obtained from 

these satellites is mainly visible (VIS) and IR at resolution of about 4 km, with information on 

clouds collected once every 30 minutes (Kidd et al., 2009). Though a continuous coverage is 

provided by these satellites they are said to be limited by their range and resolution of the 
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imagery. There are several operational geostationary meteorological satellites in orbit such as the 

MTSAT, GOES, Meteosat, FY series, and INSAT. 

The second type of satellites is the polar orbiting satellites. Polar-orbiting satellites travel in a 

circular orbit from pole to pole orbiting at an altitude of about 800 km and use microwave (MW) 

channels. The orbits of these satellites are such that they pass the equator at the same local time 

on each orbit, providing about two overpasses each day. These satellites carry a range of 

instruments such as MW sounders and imagers that are capable of more direct measurement of 

precipitation. The polar orbiting satellites include the NOAA-17 and 18, DMSP-F13,16,17, FY-

1D, and METOP-A operated by various operational agencies. 

Broadly there are three methods for estimating rainfall, the VIS/IR method, passive 

microwave (PMW) method and multi sensor technique which are briefly described below. 

  

Figure 2.1 The Global Observing System of Meteorological Satellites (source: Kidd et 
al., 2009).  

2.1.1 VIS/IR Method 

The visible (VIS) and infrared (IR) imagers uses cloud top temperatures which are indirect 

measurements but provides rapid temporal update cycle with a continuous temporal coverage 

every half an hour needed to capture the growth and decay of precipitating clouds (Levizzani and 

Amorati, 2002). Due to the indirect measurement of precipitation using cloud top temperatures 
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the precipitation estimates has a lower degree of accuracy. There are many IR rainfall estimation 

techniques that have been described in literature for example GOES precipitation technique, 

Negri-Adler-Wetzel technique, Infrared power law rain-rate technique, RAINSAT technique, 

Griffith-Woodley technique (Ebert et al., 1995; Levizzani and Amorati, 2002). The GPI 

technique is briefly described below. 

The GOES precipitation index (GPI) is one of earliest satellite rainfall estimation technique 

developed by Arkin and Meisner (1987). This technique utilizes the correlation between the 

frequency of cold tropical cloud-top temperatures and rainfall rates observed at the surface on a 

time-scale of one month at spatial scales of 2.5o latitude and longitude (Ebert et al., 1995; Kidd 

et al., 2009). A threshold temperature of 235 K is set to determine a constant rain rate. For each 

pixel, the rain rate, RR, is estimated as 

ܴܴ ൌ 3 ݉݉ ݄ିଵ    ௕ܶ ൏  ܭ 235

ܴܴ ൌ 0 ݉݉ ݄ିଵ  ௕ܶ ൒  ܭ 235

where Tb is the brightness temperature. 

 

2.1.2 Passive Microwave method 

As the IR method is an indirect measurement of rainfall using only cloud top temperatures in the 

late 1980 the Passive Microwave (PMW) evolved. Passive Microwave are considered more 

accurate estimate as it provides the direct interaction between the hydrometeors and the radiation 

field and more physically based rain estimates by monitoring rainfall structure inside the clouds. 

Precipitation drops strongly interact with MW radiation and are detected by radiometers. The 

major instruments used for MW-based rainfall estimations are the Special Sensor 

Microwave/Imager (SSM/I), a scanning-type instrument. The biggest disadvantage of this 

technique is the poor spatial and temporal resolution, the first due to diffraction, which limits the 

ground resolution for a given satellite MW antenna, and the latter to the fact that MW sensors are 

consequently only mounted on polar orbiting satellites with infrequent passes (twice per day per 

satellite) resulting in gaps in time series data (Levizzani and Amorati, 2002; Kidd et al., 2009). 

The rainfall estimation techniques based upon PMW observations is broadly categorized into two 

groups; the empirical and physical techniques the details of which are provided by Kidd et al. 

(1998).  
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2.1.3 Mutli-Sensor Technique 

Techniques to generate merged products of high resolution precipitation estimates are relatively 

new and evolved rapidly in recent years (Xie et al., 2007). As each of the techniques based on IR 

and MW sensors described above have their strengths and limitations, techniques in combining 

these satellite data have been developed to improve accuracy, coverage and resolution for better 

rainfall estimates (Huffman et al., 2007). There are several algorithms that have been developed 

to combine the various satellite data the details of which can be referred in Levizzani and 

Amorati, 2002). Combining information from multiple satellite sensors as well as gauge 

observations and numerical model outputs yielded analyses of global precipitation with stable 

and improved quality (Huffman et al., 1997; Xie and Arkin, 1996; Hsu et al., 1997; Janowiak 

and Xie, 1999; Huffman et al., 2001; Adler et al., 2003; Xie et al., 2003; Huffman et al., 2004; 

Joyce et al., 2004; Xie et al., 2007). 

 

2.2 Satellite Rainfall Estimate Products 

As we have seen from the previous section the last two decades have produced a great deal of 

research on estimating rainfall from IR radiometers and microwave satellite observations. As a 

result, there are now several operational and semi-operational algorithms available from national 

centres and universities to produce rainfall estimates for time periods ranging from half-hourly to 

monthly. There are now many global SREs that blends various sources of satellite data such as, 

TRMM Multi Satellite Precipitation Algorithm (TAMPA) (Huffman et al., 2007), Global 

Satellite Mapping Project (GSMaP) (Ushio et al., 2009), CMORPH (Joyce et al., 2004), Climate 

Prediction Centres CPC_RFE2.0 (Xie and Arkin, 1996), PERSIANN which are described briefly 

in the following section. 

2.2.1 The NOAA CPC_RFE2.0 Satellite Rainfall Estimates 

The National Oceanic and Atmospheric Administration (NOAA) has developed several satellite-

based techniques and algorithms for estimating rainfall to support the weather and flood 

monitoring activities of the USAID and USGS. Among them is the system developed at the 

Climate Prediction Center (CPC) of NOAA known as the CPC_RFE2.0 (RFE). The RFE 

estimates precipitation for the whole globe on a 0.1° x 0.1° grid and was produced for USAID 

Famine Early Warning System (FEWS) to assist in drought monitoring activities over Africa. 

The system merges various satellite estimates, which increases accuracy by reducing bias and 
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random error compared to individual data sources (Xie and Arkin ,1996), thereby adding value to 

rain-gauge interpolations.  

The initial version RFE1.0 was operational from 1996 to 2000 over Africa. Since January 

2001 the new version RFE2.0 has been operational. Input data used for operational rainfall 

estimates are from 4 sources; 1) Daily World Meteorological Organization’s (WMO) Global 

Telecommunication Satellite (GTS) rain gauge data 2) Advanced Microwave Sounding Unit 

(AMSU) microwave satellite precipitation estimates up to 4 times per day 3) SSM /I satellite 

rainfall estimates up to 4 times per day 4) GPI cloud-top IR temperature precipitation estimates 

on a half-hour basis. The three satellite estimates are first combined linearly using predetermined 

weighting coefficients, then are merged with station data to determine the final rainfall. The 

shape of the precipitation is given by the combined satellite estimates, while the magnitude is 

inferred from GTS station data (NOAA 2009). This RFE has been put into operation at the CPC 

on a semi real time basis for South Asia since June 2001 (Xie et al., 2002). Figures 2.2 and 2.3 

shows the domain for which the RFE are available over South Asia. The initial domain was 

expanded to 60o – 110o E longitude and 5o – 40o N latitude at 0.1o spatial resolution and provides 

daily rainfall estimates over South Asia 

(http://www.cpc.ncep.noaa.gov/products/fews/SASIA/rfe.shtml). 
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Figure 2.2 CPC_RFE2.0 rainfall estimates over South Asia domain 

 

 

Figure 2.3 Domain of the CPC RFE-2.0 (Source: Love, T., 2006) 
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2.2.2 The NOAA CMORPH Rainfall Estimates 

CPC MORPHing technique (CMORPH) is a method that produces global precipitation estimates 

from passive microwave and infrared data at high spatial and temporal resolution. This technique 

uses precipitation estimates that have been derived from microwave observations, and whose 

features are transported via spatial propagation information that is obtained entirely from 

geostationary satellite IR data (NOAA-CP website). First, the time sequence of feature motions 

are determined from the IR data, and then this information is used to provide the displacement 

vector for morphing from one instantaneous microwave estimate to the next. In this way, 

CMORPH combines the superior retrieval accuracy of PM estimates and the higher temporal and 

special resolution of IR data. The final product is PM only, with the IR data used indirectly. This 

technique is not a precipitation estimation algorithm but a means by which estimates from 

existing microwave rainfall algorithms are combined. Therefore, this method is extremely 

flexible such that any precipitation estimates from any microwave satellite source can be 

incorporated. CMORPH produces global precipitation analyses at very high spatial (8 km) and 

temporal (30 min) resolution starting from December 2002 and is available 60N-60S. The 

rainfall estimates are also available 3 hrly at 0.25 o x 0.25 o spatial resolution and can be accessed 

from http://www.cpc.noaa.gov/products/janowiak/cmorph_description.html/. 

 

2.2.3 Tropical Rainfall Measuring Mission (TRMM) 

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in 1997 to provide 

accurate measurement of the spatial and temporal variation of tropical rainfall around the globe. 

Three instruments form the original TRMM rainfall estimates, the Precipitation Radar (PR), the 

TRMM Microwave Imager (TMI), a multi-channel passive microwave radiometer, and the 

Visible Infrared Scanner (VIRS). The PR provides three-dimensional structure of rainfall, 

particularly the vertical distribution and 2) obtains high quality, quantitative rainfall 

measurements over land as well as over ocean. The TMI complements the PR by providing total 

hydrometeor (liquid and ice) content within precipitating systems. The VIRS is used to provide 

the cloud context of the precipitation structures and is used as part of a transfer strategy to 

connect microwave precipitation information to infrared-based precipitation estimates from 

geosynchronous satellites.  
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The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 

(TMPA) provides global precipitation estimates from a wide variety of meteorological satellites. 

Rainfall estimates are provided at fine resolution (0.25°x0.25°, 3-hourly) in both real and post-

real time basis. Products from TMPA include the 'TRMM and Other Satellites' (3B42) and 

'TRMM and Other Sources' (3B43) described in Huffman et al. (2003). The major inputs into the 

3B42 algorithm are IR data from geostationary satellites, PM data from the TMI, SSM/I, AMSU 

and Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E). The 3B42 

estimates are produced in four steps: (1) the PM estimates are calibrated and combined, (2) IR 

precipitation estimates are created using the PM estimates for calibration, (3) PM and IR 

estimates are combined, and (4) the data are rescaled to monthly totals whereby gauge 

observations are also used indirectly (Huffman et al., 2007). This product is however not real 

time but available about 10 to 15 days after the end of each month. There is a near-real-time 

version, 3B42-real-time (3B42RT), that is available with a time lag of about 9 hours. This 

version is just a product at the third step above, and does not include gauge information. It starts 

from 2002 and is still an experimental product. Finally, 3B42 estimates are accumulated and 

merged with gauge data to produce the monthly product (3B43) at 0.25° spatial resolution. The 

data covers the domain from 50° N- 50° S. The 3B42 and 3B43 products have been available 

since 1998. An easy web-based interface TRMM Online Visualization and Analysis System 

(TOVAS) has been designed for visualization and analysis of the daily TRMM and other rainfall 

estimates (3B42_V6 derived). The details of the algorithm can be obtained from 

http://trmm.gsfc.nasa.gov/3b42.html and easy visualization of data from 

http://disc2.nascom.nasa.gov/Giovanni/tovas/TRMM_V6.3B42_daily.shtml. Figure 2.4 provides 

the daily TRMM 3B42_V6 rainfall map for 28th July 2010 during the recent Pakistan floods and 

Figure 2.5 shows the global near real-time 3 hrly TMPA rainfall estimates. 
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Figure 2.4 Daily TRMM 3B42_V6 rainfall estimates in the South Asia domain 

 

 

Figure 2.5 Global TRMM Multisatellite Precipitation Analysis (TMPA) rainfall estimates 
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2.2.4 Global Satellite Mapping Project (GSMaP) 

Since 2002 the Global Satellite Mapping of Precipitation (GSMaP) was initiated by Japan 

Science and Technology Agency (JST) and is promoted by the JAXA Precipitation Measuring 

Mission (PMM) Science Team, to produce global precipitation products with high temporal and 

spatial resolution (Ushio et al., 2009). The GSMaP_MVK+ (hereafter, GSMaP) is a global 

hourly product with a domain covering 60o N – 60o S at a 0.1 x 0.1 degree grid resolution and 

calculated using a passive MW radiometer – IR radiometer blended algorithm (Ushio et al., 

2009). Several satellite estimates from MW and IR are merged together to estimate the rainfall. 

The MW radiometer data includes TRMM/TMI, Aqua/AMSR-E, DMSP/SSMI (F13, 14, 15), 

NOAA/ AMSU-B (N15, N16, N17, N18). The IR data includes globally-merged (60o N-60o S) 

pixel-resolution IR brightness temperature data, merged from all available geostationary 

satellites (GOES-8/10, METEOSAT-7/5 & GMS) provided by NCEP/CPC. The 24 hours 

accumulated daily GSMaP MVK+ rainfall estimates from 2003 to 2006 were downloaded from 

the JAXA ftp server for the present research. There is also a near real time version 

(GSMaP_NRT) product the estimates of which are shown in Figure 2.6 for South Asia. 

 
Figure 2.6 GSMaP_NRT rainfall estimates over South Asia 
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2.2.5 Precipitation Estimation from Remote Sensing Information using Artificial Neural 

Network (PERSIANN) 

The Precipitation Estimation from Remote Sensing Information using Artificial Neural Network 

(PERSIANN) is a neural network derived rainfall estimate combining data from IR and MW 

observations. It computes an estimate of rainfall rate at each 0.25° x 0.25° pixel of the infrared 

brightness temperature image provided by geostationary satellites. An adaptive training feature 

facilitates updating of the network parameters whenever independent estimates of rainfall are 

available. The PERSIANN system was based on geostationary infrared imagery and later 

extended to include the use of both infrared and daytime visible imagery. Rainfall product covers 

50° S to 50° N globally. The system uses grid infrared images of global geosynchronous 

satellites (GOES-8, GOES-10, GMS-5, Metsat-6, and Metsat-7) provided by CPC, NOAA to 

generate 30-minute rain rates are aggregated to 6-hour accumulated rainfall. Model parameters 

are regularly updated using rainfall estimates from low-orbital satellites, including TRMM, 

NOAA-15, -16, -17, DMSP F13, F14, F15. The product is available at a spatial resolution of 

0.25° x 0.25° latitude/longitude and a temporal resolution of 30 minutes accumulated to 6-hour 

accumulated rainfall and the detailed description of which can be accessed through 

http://chrs.web.uci.edu/research/satellite_precipitation/activities00.html.   
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Table 2.1 A list of selected high resolution satellite-based products  
Product Description Source Data Temporal Spatial Coverage Latency Website/data information 

CPC_RFE2.0 NOAA Climate 
Prediction Centre 
Rainfall Estimate 

IR, MW 24 hrs 0.1ox 0.1o 60E-110E 

4N-40N 

17 hrs http://www.cpc.noaa.gov/products/
fews/SASIA/rfe.shtml 

GSMaP JAXA Global 
Satellite Mapping 
Project 

IR, MW hourly 0.1ox 0.1o 50N-50S 

Global 

4 hrs http://sharaku.eorc.jaxa.jp/GSMaP
_crest/ 

TRMM NASA Tropical 
Rainfall Measuring 
Mission 

IR, PW, PR 3 hourly 0.25ox0.25o 50N-50S 

Global 

6 hrs http://disc2.nascom.nasa.gov/Giov
anni/tovas/ 

TMPA NASA TRMM 
multisatellite 
precipitation 
analysis 

IR, MW, PR 3 hourly 0.25ox0.25o 50N-50S 

Global 

9 hrs http://disc2.nascom.nasa.gov/Giov
anni/tovas/ 

PERSIANN Precipitation 
estimate from 
remotely sensed 
instruments using 
artificial neural 
networks 

IR, MW 6 hourly 0.25ox0.25o 50N-50S 

Global 

 http://chrs.web.uci.edu/research/sat
ellite_precipitation/activities00.ht
ml 

CMORPH NOAA CPC 
Morphing 
technique 

IR data, passive 
microwaves (DMSP 
13, 14 & 15) (SSM/I), 
NOAA-15, 16, 17 & 
18 (AMSU-B), and 
AMSR-E and TMI 
aboard NASA's Aqua 
and TRMM 
spacecraft, 

3 hourly 0.25ox0.25o 60N-60S 

Global 

18 hrs http://www.cpc.noaa.gov/products/
janowiak/cmorph_description.html
/ 

(ftp://ftp.cpc.ncep.noaa.gov/precip/
global_CMORPH/3-
hourly_025deg) 
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2.3 Review of Verification of Satellite-Based Rainfall Estimates 

Satellite-based rainfall estimates have been verified in several regions in the world for 

understanding the accuracy and its strengths and weakness. The verification of the estimates has 

been conducted at various spatial and temporal resolutions depending upon the expected 

application. A great deal of work has been done to validate climate-scale precipitation estimates 

against gauge data over land and for island stations (Ebert, 2002). Comparisons have been made 

with gauge observed rainfall from ground stations, radar and with numerical models. This 

section provides a review of verification of SRE with gauge observed rainfall from ground 

measuring stations available in published peer reviewed literature since the last two decades 

focusing on over land verification. It primarily looks into the verification of the satellite-based 

rainfall products in various regions country wise as well as for specific topographic context in 

detecting and quantifying the amount of rainfall rather than on the rain rate estimates. 

Javanmard et al. (2010) evaluated TRMM 3B42 rainfall estimates with high resolution 

gridded precipitation datasets based on rain gauges (Aphrodite) over Iran. Comparisons were 

made in the Caspian sea region and in the Zagros mountains and for the entire country. Spatial 

distributions of mean annual average and winter rainfall were analyzed and correlation of about 

0.70 was derived between TRMM 3B42 and high resolution gridded gauge based precipitation. 

TRMM_3B42 is found to underestimate rainfall along the Zagros Mountains and the Caspian 

sea. 

Kubota et al. (2009) verified six high resolution SREs (GSMaP, CMORPH, TRMM 3B42, 

PERSIANN, Naval Research Laboratory (NRL) Blended, 3B42RT) around Japan with ground-

based radar data for January through December 2004. In particular the GSMaP rainfall estimates 

were validated in detail. The 3B42 datasets best agreed to the radar data and NRL the worst 

when comparisons of monthly time series of SREs were performed. The better performance of 

3B42 in comparison to other products is because the 3B42 datasets are adjusted by gauge 

information. The highest spatial correlation and lowest Root Mean Square Error (RMSE) was 

obtained with CMORPH and GSMaP which utilizes the morphing technique using GEO IR 

information. The study used a temperature threshold of 4 oC regions above were considered for 

the validation. In the north around the Hokaido Island the Probability of Detection (POD) was 

low with larger errors in rain no rain detection. Satellite estimates were poor for light and very 

heavy rainfall during the warm season and worst over mountainous regions influenced by 

orographic rain. 
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A number of validations with various SREs have been conducted over Africa. Asadullah et 

al. (2008) evaluated five satellite rainfall estimation products (TRMM 3B42, TAMSAT, 

PERSIANN, CMORPH and CPC_RFE2.0) over four regions of Uganda. Due to absence of 

reliable data since 1990 the SREs have been compared to the historical data from 1960-1990 to 

assess the ability of RFE to detect seasonal and spatial rainfall characteristics of Uganda. 

Products were generally able to reproduce seasonal patterns in regional rainfall amounts at the 

monthly scale. The verification is limited to monthly and regional scales and recommends further 

research at sub-regional and sub-monthly scales. CMORPH was found to match closely to the 

historical seasonal patterns of rainfall amounts and frequency followed by TAMSAT and TRMM 

3B42. However, in terms of spatial patterns CPC_RFE2.0 showed better results in comparison to 

the other products. As each satellite-based product has its merits and demerits it is recommended 

that more than one product should be used to estimate rainfall. 

A series of validation of SREs over East Africa were performed by Dinku et al. (2007, 2008). 

Dinku et al. (2007) conducted an extensive evaluation of 10 different satellite rainfall products 

over Ethiopian Highlands of East Africa at different spatial and temporal scales. Verification was 

made for coarse and high resolution products. The coarse resolution verification done using 2.5o 

grid cells of monthly rainfall estimates recommends the use of additional rain gauge data to 

improve the SREs Verification of finer resolution SREs at 10 day accumulation (1o, 0.5o and 

0.25o) showed CMORPH and TAMSAT to have better agreement with the gauge observed 

datasets with CPC_RFE2.0 underestimating the rainfall. However, the best product depends 

upon the specific application it is intended for whether for climatologically purposes, water 

resources assessment or flood forecasting. 

As a follow up to the previous work Dinku et al. (2008) evaluated high resolution satellite 

rainfall products at higher temporal (daily) and spatial resolution (0.25o) in Ethiopia with 

mountainous topography and in Zimbabwe with a flatter terrain. Similar to Nepal, topography 

play a significant role in determining the climate of Ethiopia. The topography ranges from sea 

level to about 4000 m with hot deserts as well as cold highlands. As this study has explored the 

influence of topography in the highlands of Ethiopia the research findings is of interest to my 

current research. CPC_RFE, TRMM 3B42, CMORPH, PERSIANN showed good performance 

in detecting the occurrence of rainfall but poor in estimating the amount. The performance was 

better over Zimbabwe as compared with Ethiopia which may partly be due to the influence of 

topography. 
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Xie et al. (2007) developed a new gauge analysis product over East Asia and validated it 

against five high resolution SREs, CMORPH, TRMM 3B42, 3B42RT, NRL and PERSIANN.  

Apart from the 3B42 all of the other four products (CMORPH, TRMM 3B42RT, NRL, and 

PERSIANN) are based on combination of various satellite observations. The TRMM 3B42 is 

bias corrected using gauge observations. While all the five products performed well in capturing 

the spatial structure of the precipitation CMORPH provided better skill in reproducing the spatial 

pattern. Quantitative evaluation of the products conducted over China revealed that the 

performance of temporal variation of daily precipitation was better in the eastern half of China. 

In the quantitative assessment also CMORPH showed better skill than the rest though the 

TRMM 3B42 which is gauge corrected yielded higher correlation. In parts of western China and 

the Tibetan Plateau the correlation was very poor. Xie et al. (2007) infers that that the satellite 

algorithms tend to perform better over regions with wetter climate, while they demonstrate 

limited skills over arid and semiarid areas. 

Hughes (2006) compared satellite-based rainfall data from PERSIANN and GPCP with 

gauge observed rainfall data in four basins with different climate regimes within southern Africa 

to explore the use of SRE in hydrological models. Monthly time steps with simple statistics 

(visual interpretation, r2 and slope) were used in the comparison for use in hydrological models 

for water resources assessment. Preliminary analysis has provided encouraging results for further 

use of SRE data and suggests further research on methods to adjust the estimates for application 

into water resources assessment. 

Barros et al. (2000) evaluated the skill of TRMM sensors in detecting rain-producing weather 

systems, and compared TRMM derived precipitation (TMI and PR) with ground based 

observations in the Marshyangdi catchment of Nepal. It was found that PR has better overall 

performance in detecting rainfall compared with TMI. PR is able to detect heavy rain in the 

complex Himalayan terrain however, detection is found to be better in lower altitudes compared 

with high altitudes. The verification was limited to detection of rainfall and not regarding 

quantitative amounts. For the first time over the central Himalayas the horizontal and vertical 

profile for a storm system was also studied. 

Laurent et al. (1998) evaluated the performance of five satellite rainfall estimation methods 

with ground based precipitation over the Sahel region using the 10-day rainfall records from 

1989-1993 at a 0.5o to 1o spatial resolution. This study is before the availability of high 

resolution satellite-based products such as the TRMM. The study shows that the impact of 
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increasing the integration of time yielded in improved and is thus is more important than space 

averaging. For accurate performance evaluation it is recommended that a multi error criteria 

approach needs to be adopted. 
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Table 2.2 Verification of satellite based rainfall estimates in selected regions 

Region/ 

Country 

Satellite-based 

rainfall products 

Reference Verification 

Period 

Verification 

scale 

Verification 

Parameters 

Results/comments 

Japan (2009) GSMaP, 
CMORPH, 
3B42, 3B42RT, 
PERSIANN, 
NRL Blended 

Kubota et al. 
(2009) 

2004 3 hrly, daily, 
monthly 

Spatial correlation, 
RMSE, ETS, POD, 
FAR, Frequency 
Bias 

GSMaP performed worse in 
mountainous areas with orographic 
influence 

East Asia 
(China) 

CMORPH, 
TRMM 3B42, 
TRMM 
3B42RT, 
PERSIANN, 
NRL 

Xie, et al. 
(2007) 

Jan–July, 
2003            
(7 months) 

daily correlation Satellite algorithms tend to perform 
better over regions with wetter 
climate, while they demonstrate 
limited skills over arid and semiarid 
areas. 

Marsyangdi
Valley 
(Nepal) 
(2000) 

TRMM (TMI 
and PR) 

Barros et al. 
(2000) 

1999 
(monsoon) 

hrly, 
seasonal 

POD, FAR, Skill, 
TS 

Better detection of rain at low altitude 
stations compared with high elevation 
stations but with no quantification. 

Africa 

Uganda 

TRMM 
3B42, 
CMORPH, 
TAMSAT, 
RFE2.0, 
PERSIANN 

 1960-1990 

2003-2005 

Average 
monthly, 
seasonal 

Bias, correlation, 
efficiency, RMSE 

Products are able to reflect seasonal 
and spatial patterns of rainfall but 
generally poor performance in 
mountainous regions. RFE2.0 shows 
best spatial patterns. 

Sahel 
(Bukino 
Faso) 

TAMSAT  1989-1993 10-days Bias, RMSE, r, 
skill and scaled 
root mean square 
error 

Improvement in performance with 
increasing the time integration from 
dekadel to 30 days but no significant 
improvement in increasing the grid 
cell size. 

East 
Africa 
(Ethiopia) 

GPCP, 
CMAP, TRMM-
3B43, 
TAMSAT, 

Dinku et al. 
(2007) 

2000-
2004 

dekadel Bias, RMSE, 
Efficiency, 
multiplicative bias 

Best product depends on the specific 
application – TRMM 3B42RT 
performs better than CPC_RFE2 
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CMORPH, 
CPC_RFE, 
TRMM 3B42 

Ethiopia 

Zimbabwe 

RFE, 
TRMM 3b42, 
3b42NRT, 
CMORPH, 
PERSIANN 

Dinku et al. 
(2008) 

2003-2004 
(Jun – Sep) 

2003 
(Jan-Mar) 

daily Bias, MAE, r, 
efficiency, POD, 
FAR, ETS, HK, 
HSS 

All products perform poorly at a pixel 
to pixel level comparison with 
underestimation of rainfall except 
with PERSIANN where there is 
overestimation. All products good in 
detection but not in estimation. 

Southern 
Africa 
(2006) 

PERSIANN 

GPCP 

Hughes 
(2006) 

1997-2000 monthly Coefficient of 
determination, 
slope of the best fit 
regression line 

Satellite data needs to be calibrated 
against gauge observed data to be 
used in conjunction with the gauge 
observed data for hydrological 
applications. 

Iran (2010) TRMM 
3B42 

Javanmard et 
al. (2010) 

1998-2006 Monthly, 
seasonal, 
annual 

Spatial correlation, 
bias, standard 
deviation 

Relatively good correlation but 
varying with regions and overall 
underestimation of rainfall. 
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2.4 Summary 

For application of SREs into hydrological modeling such as flood prediction it is important to 

have a thorough understanding of the SREs. This chapter has provided a review of the various 

methods available for satellite rainfall estimation the understanding of which is necessary for 

verification of the products. The three methods described are VIS/IR method, PMW method and 

merging of various satellite data. The high resolution satellite products that are now available are 

mostly merged products with a combination of various IR and MW satellite sensor inputs. A 

summary of selected high resolution SREs considered relevant for hydrological modeling has 

been described. Finally, verification of some of the products over various regions has been 

presented. 
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CHAPTER 3 

3 VERIFICATION OF SATELLITE-BASED RAINFALL 

ESTIMATES OVER CENTRAL HIMALAYAS OF NEPAL 

From the previous chapters we have seen that in the recent years there has been rapid 

development of satellite-based precipitation products with various temporal and spatial 

resolutions and efforts to evaluate the accuracy of such estimates.  Depending upon the nature of 

the application these products need to be verified to understand their accuracy and limitations for 

further use whether it is in flood forecasting, climate modelling or other hydrological water 

resources assessments (Ebert et al., 2007a). Verification of the Satellite-based Rainfall Estimates 

(SRE) is done by comparing the estimates against independent observed data from rain gauges 

and radars. One of the objectives of this research is to assess the accuracy of SRE in Nepal for 

suitability of applying it to flood prediction. Verification of SREs has been conducted at various 

levels, country as a whole region, for various physiographic regions and in selected basins. This 

chapter provides the verification of SRE over the central Himalayas of Nepal. This chapter is 

divided into two sections. The first section provides the methodology for verification of SREs. 

The second section provides the verification of SREs over Nepal at various levels. 

3.1 Methodology for Verification of Satellite-Based Rainfall Estimates 

Standard methods for verifying SRE to quantify error include bias, correlation, and Root Mean 

Square Error (RMSE) (Ebert et al., 2007b). For finer application in near real time basis for 

floods and flash floods forecasting more accurate estimates of rain volume, time and other 

indicators are needed. For example in flash floods Kidler et al. (2001) emphasizes the 

importance of correct detection of occurrence of the event along with estimate of the maximum 

rate rates. The standard verification techniques to compare SREs with the gauge observed 

rainfall includes three methods 1) visual interpretation, 2) continuous verification technique and 

3) categorical verification technique (Ebert et al., 2007b). This section describes the verification 

techniques that have been used for rainfall verification in general and in specific describes the 

method used for this research. 
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3.1.1 Visual Verification 

Visual comparison is one of the effective means of verification by comparing mapped estimates 

and observations of the same scale. The two datasets are remapped to the same projection with 

the same colour scale and inspected by laying them side by side. This verification technique is 

also known as the "eyeball" verification and is a good qualitative measure of verification. This is 

one of the techniques of verification used in this research.  

 

3.1.2 Continuous Verification Technique 

Continuous verification technique is quantitative in nature and used to evaluate the performance 

of satellite-based products in estimating the amount of rainfall. The statistical indicators such as 

mean error (bias), RMSE, multiplicative bias (Mbias), percentage error (PE) and correlation 

coefficient are used to quantify the predictive skills of the SREs. In the statistical indicators that 

are described below Ei designates estimated value, Oi Observed value at a given cell and N the 

number of samples. 

 

Bias or Mean Error 

The bias is defined as the average difference between SREs and gauge observed rainfall data. 

The value of bias can be positive as well as negative. A negative bias indicates underestimation 

of rainfall while a positive bias indicates overestimation of rainfall. The bias is given by equation 

1 and normalized bias by equation 2. 
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The mean absolute error (MAE) measures the average magnitude of the error and is given by 

equation 3. 

ܧܣܯ ൌ  ଵ
ே
∑ |ሺ ܧ௜ െ  ௜ܱ ሻ|ே
௜ୀଵ                                       (3) 

Root Mean Square Error 

The RMSE measures the average error magnitude, giving greater weight to larger errors. The 

RMSE was differentiated into systematic (RMSEs) and unsystematic (RMSEu) error. The 

RMSE, RMSEs, and RMSEu parameters are defined (Wilmott, 1982) by equations 4, 5 and 6 

respectively. 
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The proportion of RMSE that arises from systematic and unsystematic error was described by 

RMSEs/RMSE and RMSEu/RMSE. To make cross-comparisons between models the ‘index of 

agreement’ (d) was used and is defined (Wilmott, 1982) by equation 7. 
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where n is the number of observations, Oi is the observed value, Pi is the predicted value, 
∧

iP  = a 

* Oi + b, Pi’ = Pi – O and Oi
’ = Oi - O. 
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Multiplicative bias 

Multiplicative bias (Mbias) is the ratio of average estimated and observed rainfall estimates and 

is given by equation 8. It provides an estimate of whether the satellite based rainfall estimates 

tend to underestimate or overestimate. A perfect value of estimate is 1. 

ݏܾܽ݅ܯ ൌ      
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೔సభ
                                             (8) 

Correlation Coefficient 

The correlation coefficient ‘r’ is one of the most commonly used statistics to define relationship 

between two values. It measures the degree of linear association between the estimated and 

observed values of rainfall estimates. It is recommended to be used along with other statistical 

measures when verifying SREs. It is given by equation 9. 
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3.1.3 Categorical Verification Technique 

The categorical verification technique is used to assess the rain detection capabilities of the 

SREs. A 2 x 2 contingency table of yes/no events, with rain/no rain, is used, as shown in Table 

3.1. In Table 3.1, ‘hits’ (a) represents correctly estimated rain events, ‘false alarms’ (b) 

represents when rain is estimated, but did not occur, ‘misses’ (c) represents when rain is not 

estimated, but did occur, and ‘correct negatives’ (d) represents correctly estimated no rain events. 

The threshold for rain or no rain used in the contingency table can vary depending upon the 

nature of verification. Normally 0 mm day -1 is considered but often variable amount such as 1, 

5, 10 and 20 mm day -1 is also considered to distinguish between rain and no rain. For the current 

research a threshold of 0 mm day -1 is adopted. 
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Table 3.1 2 x 2 contingency table 

 

The probability of detection (POD) measures the fraction of observed events diagnosed 

correctly. It is a ratio of hits to the sum of hits and misses. It is defined by equation 10. 

ܦܱܲ ൌ       ௔
ሺ௔ା௖ሻ

                              (10) 

The false alarm ratio (FAR) gives the fraction of diagnosed events that turned out to be wrong. It 

is given by equation 11. 
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                                                (11)                   

The perfect values of POD=1, and FAR=0. The POD and FAR should always be used together. 

There are also other indicators for example threat score (TS), also known as the “critical 

success index”, measures the fraction of all events estimated and/or observed that were correctly 

diagnosed. Since this score is naturally higher in wet regimes, a modified version known as the 

equitable threat score (ETS) was formulated to account for the hits that would occur purely due 

to random chance. The ETS, though not a true skill score, is often interpreted that way since it 

has a value of 1 for perfect correspondence and 0 for no skill. TS and ETS are defined by 

equation 12 and 13 respectively. The ETS and TS are not reported in this study. 
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There is no one single indicator that can determine the performance of SREs. Normally a 

combination of various indicators needs to be used to assess the accuracy of the estimates. The 

combination depends upon the use of the estimates. 

3.2 Interpolation of the Observed Rainfall - Kriging 

Satellite-based rainfall estimates are continuous and represent areal rainfall while gauge 

observed rainfall is at a particular point in location. Hence, to make comparisons between the 

two it is necessary to convert the point rainfall values into areal by using a suitable interpolation 

technique. 

In mountainous areas such as in the Himalayas of Nepal orography is an important 

component and the spatial distribution of rainfall varies in small scales. Further the sparse and 

limited rainfall stations make accurate and reliable spatialization of rainfall amounts at the local 

scale difficult. There are various interpolation techniques available for converting point rainfall 

data into areal such as the inverse distance weighting method (IDW), kriging and others. The 

kriging interpolation technique is considered superior to IDW because prediction estimates tend 

to be less biased as predictions are accompanied by prediction standard errors. The kriging 

interpolation is found to perform better than other interpolations schemes such as Thiessen 

polygon, polynomial interpolation, and inverse distance method by many researchers for 

example Creutin and Obled (1982), Tabios and Salas (1985). This interpolation technique has 

also been identified as the best suited interpolation technique in the Himalayas (Basistha and 

Goel, 2007). In other mountain regions for example the Sannio mountain regions of southern 

Italy ordinary cokriging was found to be the most robust interpolation method as compared to 

two others (linear regression and inverse squared distance) taking into consideration topography 

and is recommended to be better applicable in other mountainous regions (Diodata and 

Caccelelli, 2005). Hence in this research the kriging technique has been utilized and is briefly 

described below. 

Kriging is a geostatistical interpolation technique. It is a method of interpolation which 

predicts unknown values from data observed at known locations. This method uses variogram to 

express the spatial variation, and it minimizes the error of predicted values which are estimated 

by spatial distribution of the predicted values. It is considered to be the best linear unbiased 

estimate at each location and also know as BLUE. It is "linear" since the estimated values are 

weighted linear combinations of the available data. It is "unbiased" because the mean of error is 
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0. It is "best" since it aims at minimizing the variance of the errors. The difference of kriging and 

other linear estimation method is its aim of minimizing the error variance. A fundamental 

concept of geostatistics is the use of quantitative measures of spatial correlation, commonly 

expressed by variograms. Geosatistics offers a way of describing the spatial continuity of natural 

phenomenon and provides adaptation of classical regression techniques to take advantage of this 

continuity (Issaks and Srivastava, 1989). For the kriging interpolation a semivariogram which 

captures the spatial dependence between data points have been used. A semivariogram models 

the autocorrelation between datapoints. Kriging predicts using a weighted average of 

surrounding sample values. Weights are based on model and spatial correlation. This requires the 

assumption of stationarity i.e. the model is spatially homogeneous. For the current scope of the 

work the interpolation method used is ordinary kriging with a spherical variogram. Detailed 

information about geostatistical tools and procedures can be found in Isaaks and Srivastava 

(1989). All interpolation computations for this research have been performed using the 

Geostatistical Analyst integrated in ArcGIS 9.3 – ESRI software.  
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Figure 3.1 Flowchart of satellite rainfall verification 

 

3.3 Verification of Satellite-Based Rainfall Estimates over Nepal 

As we have seen from the previous chapter verification there has been limited work on 

assessment and application of SRE over the Himalayan region particularly in Nepal. For this 

research two high resolution SREs CPC_RFE2.0 from NOAA (RFE) and GSMaP_MVK+ 

(GSMaP) from JAXA have been evaluated. In this section we provide the verification of RFE 

and GSMaP. The temporal resolution is daily with a spatial resolution of 0.1ox0.1o latitude and 

longitude. The assumption is made that there is not much difference in 24 hr rainfall with about 3 

hours of delay as the accumulation for the daily satellite-based rainfall is from 0Z to 0Z. Satellite 

data represent areal rainfall while gauge observed data represent point rainfall. To make 
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comparison between the two datasets the gauge observed rainfall data made available by the 

Department of Hydrology and Meteorology (DHM) of the Government of Nepal was 

interpolated to represent areal data using the krigging interpolation technique which has been 

found to be best suited in the Indian Himalayas and in mountainous terrain.  

The SREs and gauge observed data were verified using the standard verification technique. A 

step wise methodology adopted for this research is provided below and shown in Figure 3.1. 

3.3.1 Data Preparation  

Satellite-based rainfall estimates 

A substantial amount of effort and time is taken for data preparation. The first step is the 

familiarization with the satellite-based data formats, scale and resolution. As has been explained 

earlier the RFE uses merging technique, which increases the accuracy of the rainfall estimates by 

reducing significant bias and random error compared to individual precipitation data sources 

(Xie and Arkin, 1996) thereby adding value to rain gauge interpolations. The RFE rainfall 

estimates has been put into operation at the Climate Prediction Centre (CPC) on a near real time 

for South Asia since June 2001 (Xie et al., 2002) at a 0.1 degree spatial resolution on a daily 

basis (70oE–110oE; 5oN–35oN). The GSMaP is a global hourly product with a domain covering 

60oN - 60oS at a 0.1 x 0.1 degree grid resolution and calculated using a MW radiometer – 

infrared (IR) radiometer blended algorithm (Ushio et al., 2009). 

The RFE has been provided by NOAA for the period 2002 to 2006. This data is in gridded 

binary format and can also be downloaded directly from the ftp server on a daily basis. The 

GSMaP has been provided by JAXA and can also be accessed through the ftp server. The 

GSMaP is available for four years from 2003 to 2006. There is also a near real time version 

known as the GSMaP_NRT which is available on an hourly basis with 4 hours latency. The 

downloaded binary data has to be converted for validation purposes and for application in 

hydrological models. For the present research, GSMaP and RFE data is extracted between 

latitude 26oN – 31oN and longitude 80oE– 89oE (862 grids) to cover the whole of Nepal. The data 

set used for the verification covers a period of 4 years from 2003–2006 with no missing data.  

As the verification of SREs were conducted using ArcGIS the binary data was first converted 

to ASCII format. The ASCII format data was imported into ArcGIS and projected in the correct 



PhD Dissertation 

44 

format to carry out the verification. The gauge observed rainfall datasets were also formatted and 

converted into GIS format and transformed into the same projection as the SREs.  

 
Gauge Observed Rainfall 

The DHM of the Government of Nepal has provided the daily gauge observed point rainfall 

dataset from 176 stations for the period 2002 to 2006 (Annex 2). The distribution of the rainfall 

stations is shown in Figure 3.2. The gauge observed rainfall datasets have been quality checked 

and screened by DHM prior to making it available. However, further data quality control has 

been adopted by using the following process. 

• The gauge data are quality controlled by removing duplicates 

• Remove rain gauge data that contribute to GTS in the RFE 

• Removal of the rain gauge stations which have data less than 6 months 

• Considered rainfall data for the period 2002-2006 for the analysis 

• Station information (especially location) should be verified, where the details are 

available 

• The precipitation data should be checked for typing error 

Using the kriging interpolation technique the quality controlled 176 rain gauges were gridded 

to a spatial resolution of 0.1 degree latitude longitude to match with the same resolution of the 

SREs. The validation data set used for the research is the daily gridded rainfall data for the whole 

of Nepal and used as the ground truth.  
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Figure 3.2 Distribution of rain gauge stations in Nepal 

 

3.3.2 Country Level Verification - Assessment of the Accuracy of the Satellite-Based 

Rainfall Estimates over the Whole of Nepal 

Verification of the SREs over the whole of Nepal has been conducted by comparing the rainfall 

estimates with the gauge observed rainfall data for January through December of 2003 to 2006 to 

examine the spatial distribution of precipitation. Nepal is covered by 862 grid cells of 0.1o x 0.1o 

resolution in latitude and longtitude. Comparison of the gauge observed and estimated rainfall 

were made in all the grid cells within the boundary of Nepal considering it as one homogeneous 

region. Analysis was done on a yearly basis with daily satellite-based and gauge observed 

rainfall data and accumulated for the four year period from 2003 to 2006. 

Figure 3.3 shows the time series comparison of average daily RFE and GSMaP rainfall 

estimates and gauge observed rainfall from 2003 to 2006 averaged over whole of Nepal. Visual 

interpretation of the plot shows that both RFE and GSMaP estimated rainfall corresponds well to 

the gauge observed rainfall capturing the peaks but there is underestimation of the amount of 

rainfall. The average annual rainfall from 2003 to 2006 is 1433 mm, 1025 mm and 745 mm from 
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gauge observation, RFE, and GSMaP respectively. The area averaged gauge observed annual 

rainfall varied from 1824 to 1022 mm from 2003 to 2006 with the driest year being 2006. 

Similarly, the area averaged GSMaP estimate annual rainfall for the whole of Nepal varied from 

816 to 665 mm from 2003 to 2006 with the driest year being 2005. For RFE the area averaged 

rainfall varied from 1195 to 871 with the driest year in 2005. The summary of area averaged 

rainfall estimates is provided in Table 3. 2. The GSMaP is found to underestimate annual rainfall 

by about 50 % while RFE is about 30%. Applying the standard statistical verification technique 

the correlation coefficient is 0.75, bias is -1.9 mm day-1, RMSE is 4.1, POD is 0.98 and FAR 

0.08 with GSMaP. With RFE correlation is 0.71, bias is -1.1 mm, RMSE is 4.0 mm day-1, POD 

is 0.91 and FAR is 0.05 (Table 3.3). Table 3.2 also provides the yearwise comparison of 

statistical errors with GSMaP and RFE for daily area averaged rainfall. For each year from 2003 

to 2006 we find that the GSMaP estimates show a better correlation with gauge observed data 

than RFE estimates. In an intercomparison with various SREs over Japan Kubota et al. (2009) 

also obtained better correlation with GSMaP compared to other products. However, the bias is 

smaller in the case of RFE which is not surprising as RFE uses gauge observed rainfall data as 

one of the input data sources. 

 

Figure 3.3 Time series comparison of GSMaP and gauge observed daily rainfall for 2003-
2006 over whole of Nepal. 
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Table 3.2 Comparison of area averaged annual rainfall estimates over whole of Nepal using 
GSMaP and RFE 

Year 
Annual Rainfall (mm) Percentage Error (%) 

Observed GSMaP RFE GSMaP RFE 

2003 1824.3 816.4 1195.3 -55 -33 
2004 1570.8 703.4 1054.4 -55 -33 
2005 1315.6 665.0 871.2 -49 -34 
2006 1022.4 806.9 977.7 -21 -4 
Average 1433.3 747.9 1024.7 -48 -29 
 

Table 3.3 Time series comparison of daily area averaged rainfall from 2003 to 2006 

 Bias RMSE correl PE MBias POD FAR 

2003: GSMaP -2.7 5.0 0.83 -54.7 0.45 1.00 0.08 
RFE -1.7 4.6 0.79 -33.5 0.66 0.91 0.06 

2004: GSMaP -2.4 4.5 0.73 -55.2 0.45 0.91 0.05 
RFE -1.4 4.6 0.67 -32.9 0.67 0.89 0.03 

2005: GSMaP -1.8 3.9 0.72 -49.2 0.51 1.00 0.12 
RFE -1.2 3.6 0.72 -33.5 0.67 0.94 0.06 

2006: GSMaP -0.6 2.4 0.81 -21.1 0.79 1.00 0.09 
RFE -0.1 2.6 0.79 -4.4 0.96 0.89 0.05 

Average: GSMaP -1.9 4.1 0.75 -47.6 0.52 0.98 0.08 
RFE -1.1 4.0 0.71 -28.4 0.72 0.91 0.05 

 

Spatial Distribution of Annual Precipitation 

In addition to the area averaged annual rainfall variation understanding the spatial distribution of 

rainfall is very important for various applications in water resources assessment as well as in 

flood forecasting. In this section we seek to understand how closely the SREs conform to the 

gauge observed rainfall and how good are they to represent the spatial variation. The analysis has 

been conducted using the daily rainfall estimates of RFE, GSMaP and gauge observation for the 

same period from 2003 to 2006.  

In the gauge observed analysis precipitation is detected to be relatively heavy in central 

Nepal near Pokhara exceeding 3000 mm/yr agreeing with Kansakar et al. (2004) and Ichiyanagi 

et al. (2007). Kansakar et al. (2004) described zones of heavy precipitation also in the northeast 

of the Kathmandu Valley which we can also see in the 2003 to 2006 gauge observed analysis. 
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The highest annual precipitation amount is about 4500 mm in 2003 from the gauge observed 

analysis which is quite close to the average amount referred in Chalise et al. (1996) despite the 

short period of analysis from 2003 to 2006. The driest part of the country is the rain shadow area 

of Mustang in the transhimalayan region with below 200 mm of rainfall similar to the Tibetan 

plateau region. 

The spatial distribution of average annual precipitation obtained from RFE and GSMaP are 

also similar to that of the gauge observed and in general represents the spatial distribution of 

rainfall well. However, there are distinct variations in the pattern in the mid mountain areas. 

Figure 3.4 presents the comparison of spatial distribution of mean annual precipitation (SREs 

using RFE and GSMaP and gauge observed rainfall) averaged from 2003 to 2006. Inspecting the 

satellite-based rainfall analysis for 2003 we find that the highest annual precipitation amount is 

about 2196 mm and 1798 mm from RFE and GSMaP respectively compared to 4500 mm with 

gauge observed analysis. There is underestimation of the amount by both SREs. Further, it is 

found that in the SREs the heavy precipitation tends to be more towards the southern belt rather 

than in the mid mountain regions. This variation may be due to the orographic influence on 

precipitation in the mid mountain areas which the SRE seem to not detect well. There are also 

some local variations in pattern for example in the far eastern and western region of Nepal where 

gauge observation shows higher precipitation while SREs seem to not capture this variation. The 

observed trend is decrease in precipitation from east to west while this is not adequately reflected 

in the SREs. The better quantitative estimate of RFE compared to GSMaP is quite likely because 

the RFE estimate is gauge merged SREs and utilizes the WMO observed rainfall datasets while 

the GSMaP is based on satellite observations only. 
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( a ) 

( b ) 

( c ) 

Figure 3.4 Spatial distribution of average annual precipitation from 2003 to 2006, a) gauge 
observed, b) GSMaP and c) RFE 
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Figure 3.5 presents the average annual rainfall bias map using GSMaP and RFE rainfall 

estimates. As we have seen both the products are significantly underestimating the amount of 

rainfall. However, it is interesting to observe the difference in the bias between the two products 

GSMaP is found to have larger underestimation of rainfall in the central region compared to RFE 

as seen in Figure 3.5. In the central north region in the trans-himalayas both products are found 

to have positive bias though RFE has higher positive bias. In the central far east of Nepal 

GSMaP and RFE have negative bias with GSMaP having higher negative bias. 

 

(a) GSMaP 

 

(b) RFE 

 Figure 3.5 Bias Map of average annual precipitation for 2003-2006, a) GSMaP and b) RFE 
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Figure 3.6 presents the spatial distribution of average annual precipitation year wise from 

2003 to 2006 for GSMaP, RFE and gauge observed rainfall. For every year SREs using RFE and 

GSMaP underestimates the annual precipitation.  

 

2003: GSMaP 
 

2003: RFE 

 

2003: Gauge Observed 

 

2004: GSMaP 

 

2004: RFE 

 

2004: Gauge Observed 

 

2005: GSMaP 

 

2005: RFE 

 

2005: Gauge Observed 

 

2006: GSMaP 

 

2006: RFE 

 

2006: Gauge Observed 

 Figure 3.6 Spatial distribution of annual precipitation with GSMaP, RFE and gauge 
observed rainfall for 2003 to 2006 
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2003: GSMaP Bias Map 

 

2003: RFE Bias Map 

 

2004: GSMaP Bias Map 

 

2004: RFE Bias Map 

 

2005: GSMaP Bias Map 

 

2005: RFE Bias Map 

 

2006: GSMaP Bias Map 
 

2006: RFE Bias Map 

Figure 3.7 Annual bias map for each year from 2003 to 2006 with GSMaP and RFE 

Figure 3.7 presents the bias map of average annual precipitation showing yearly variation in 

the bias. In general the positive and negative biases for both satellite-based products are similar 
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in trends. However, the significant negative bias of GSMaP is high rainfall areas (Pokhara valley 

area) is very prominent from inspecting these bias maps. 

Spatial Distribution of Seasonal Precipitation 

The average accumulated rainfall for four season premonsoon (March, April, May), monsoon 

season, (June July, August, September), post monsoon (October, November) and winter 

(December, January and February) were analysed for 2003-2006. The monsoon season is of 

primary interest to this study as more than 80% of the rain falls during this period and is 

important for flood prediction. Therefore, only the monsoon (JJAS) rainfall analyses are 

reported. Figure 3.8 shows the variation of spatial distribution of average JJAS rainfall over 

Nepal. Inspection of RFE, GSMaP and gauge observed maps shows that patterns of rainfall are 

similar as heavy rainfall is detected in the south western and central region. But as in the annual 

maps there are some distinct local differences for example the orographic heavy rainfall is not 

detected in the southern part of Annapurna range around Pokhara valley which is the highest 

rainfall area in Nepal. The rainfall estimates from satellite data are more concentrated in the 

flatter areas of Terai and Siwaliks both in the case of RFE and GSMaP. There are also some 

variations in the north east region and in some areas such as Bajura, Khaptad and Mangalsen in 

far western region where local topography and orography plays a role (Shrestha et al., 2010).  

Figure 3.9 shows the average JJAS bias map from 2003-2006 using GSMaP and RFE. The 

general trend of bias is very similar to the annual bias map with underestimation in the high 

rainfall areas and overestimation in low rainfall and rainshadow areas. GSMaP rainfall product is 

found to have larger underestimation in heavy rainfall areas and lesser positive bias in rain 

shadow areas compared to RFE estimates. 

Figure 3.10 shows the comparison of JJAS average rainfall maps for each year from 2003 to 

2006 using GSMaP, RFE and gauge observation. There is a year to year variation in the 

agreement between SREs and gauge observations. Figure 3.11 shows the bias map for each year 

from 2003 to 2006. Negative bias in the high rainfall area and positive bias in the low rainfall 

areas are quite evident from these figures. 



PhD Dissertation 

54 

 

(a) Gauge Observed 

 

(b) GSMaP 

 

(c) RFE 

Figure 3.8 Spatial distribution of June, July, August and September (JJAS) average rainfall 
map for 2003-2006 a) gauge observed, b) GSMaP and c) CPC_RFE2.0. 
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(a) Bias with GSMaP 

 

(b) Bias with RFE 

 Figure 3.9 Bias Map of average JJAS precipitation for 2003-2006, a) GSMaP and b) RFE 
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2003: GSMaP 2003: RFE 

 

2003: Gauge Observed 

 

2004: GSMaP 

 

2004: RFE 

 

2004: Gauge Observed 

 

2005: GSMaP 

 

2005: RFE 2005: Gauge Observed 

 

2006: GSMaP 

 

2006: RFE 

 

2006: Gauge Observed 

Figure 3.10 Spatial distribution of year wise average JJAS rainfall using GSMaP, 
CPC_RFE2.0 and gauge observation over Nepal for 2003 to 2006. 
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2003: Bias GSMaP 

 

2003: Bias RFE 

 

2004: Bias GSMaP 

 

2004: Bias: GSMaP 

 

2005: Bias GSMaP 

 

2005: Bias RFE 

 

2006: Bias GSMaP 

 

2006: Bias RFE 

Figure 3.11 Bias Map of  JJAS precipitation for 2003-2006, a) GSMaP and b) RFE 
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Scatter plots of area averaged daily rainfall for the monsoon (JJAS) for 2003 to 2006 for 

GSMaP and RFE estimates are shown in Figure 3.12. For the area averaged daily rainfall for the 

period 2003 to 2006 the correlation coefficient is 0.79, bias is -5.0 mm day-1, and RMSE is 5.6 

for GSMaP and 0.72, -2.9 mm day-1 and RMSE is 4.0 mm for RFE respectively (Table 3.4). The 

bias is less in the RFE estimates than the GSMaP, however, the GSMaP has a higher correlation 

coefficient.  

 (a) 

 

 (b) 

 

Figure 3.12 Scatter plot of area averaged daily rainfall for monsoon (JJAS) of 2003-2006 
from a) observed and GSMaP, (b) observed and RFE. 

 

Table 3.4 Statistical error of daily area average rainfall from 2003-2006 for JJAS 

 Bias RMSE PE correl MBias POD FAR 

RFE -2.9 4.0 -31.9 0.72 0.68 1.00 0.00 
GSMaP -5.0 5.6 -54.1 0.79 0.46 1.00 0.00 

 

Figure 3.13 shows the scatter plot of average accumulated rainfall for each 0.1o x 0.1o grid 

cell (862 grid cells in total) for JJAS for 2003 to 2006 for GSMaP and RFE estimates. For the 

average accumulated monsoon rainfall (JJAS) of each 0.1o x 0.1o grid cell the correlation 

coefficient is 0.46, bias is -609.7 mm and RMSE is 736.5 with a percentage error of -54.2% for 

GSMaP and 0.35, -352.0 mm, 569.8, -31.3% for RFE respectively. Table 3.5 shows that the bias 

is less in the RFE estimates than the GSMaP, however, the GSMaP has a higher correlation 

coefficient. The underestimation of rainfall is consistent with previous finding (Shrestha et al., 

2008; Dinku et al., 2008; Ebert et al., 2007a). In the case of Ethiopia, with a complex terrain 

similar to the study area, Dinku et al. (2008) investigated the performance of various satellite 
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rainfall products and found that satellite-based estimates did well in detecting the occurrence of 

rainfall, but were not good in estimating the amount of daily rainfall. Table 3.5 presents the 

statistical error of accumulated rainfall for monsoon (JJAS) from 2003-2006 at each grid cell.  

(a) 

 

(b) 

 

Figure 3.13 Scatter plot of accumulated average rainfall for JJAS of 2003-2006 from a) 
GSMaP and b) CPC_RFE2.0for each 0.1ox0.1o grid cell. 

 

Table 3.5 Statistical error of accumulated rainfall for monsoon (JJAS) from 2003-2006 at 
each grid cell 

 Bias RMSE PE correl MBias POD FAR 

RFE -352.0 569.8 -31.3 0.35 0.69 1.0 0.0 
GSMaP -609.7 736.5 -54.2 0.46 0.46 1.0 0.0 
 

The monthly, seasonal and annual total rainfall is computed from the daily analyzed values. 

The year 2003 is selected over the whole observation period as 2003 is the wettest year and 

SREs from GSMaP. Using the 0.1ox0.1o data set of individual grids the total annual rainfall in 

2003 is 1824.3 mm from gauge and 816.4 mm from the GSMaP. There is a negative bias of 

1007.9 mm year-1 (Table 3.6). During the monsoon (JJAS) there is an accumulated rainfall of 

1501.8 mm from gauge and 605.3 mm from GSMaP with a highest negative bias of 896.5 mm 

compared to other seasons. The correlation coefficient between the gauge observed and the 

GSMaP annual rainfall estimates is 0.48 and for the monsoon is 0.47 (Shrestha et al., 2010). 
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Table 3.6 Comparison of GSMaP and gauge observed rainfall for 2003 

 

The RMSE is 1172.5 for the annual rainfall and 1033.4 for JJAS. Percentage error on an 

annual basis is quite large about -55.3 % and is -59.7 % during monsoon. The probability of 

detection (POD) remained high throughout the year varying between 1.0 and 0.71 and the false 

alarm ratio close to 0 except for November. The multiplicative bias is 0.40 in the monsoon 

indicating more than 50 % underestimation of rainfall by GSMaP. 

3.3.3 Physiographic Level Verification - Assessment of the Accuracy of the Satellite-Based 

Rainfall Estimates for Various Physiographic Regions 

To have a better understanding of how the performance of the SREs varies with elevation further 

verification according to physiographic regions has been conducted. The verification has been 

done for four physiographic regions High Mountains, Mid Mountains, Siwaliks and Terai at a 

spatial resolution of 0.1 degree with 2003 GSMaP datasets. Each physiographic region is clipped 

from the whole Nepal dataset to make this verification. The Terai area is covered by a total of 

122 grids, Siwaliks by 122 grids, Mid Mountains by 251 grids and High Mountains by 170 grids. 

Accordingly the distribution of rainfall stations is 31 in Terai, 18 in Siwaliks, 78 in Mid 

Mountains and 45 in High Mountains (Figure 3.14). The Himals with elevation higher than 4000 

m is not included in the verification due to fewer number of rainfall stations which would 

significantly influence the accuracy of interpolated gauge observed rainfall used as ground truth 

for all the analysis. 

 Gauge 
Observed 
(mm) 

GSMap 
(mm) 

bias 
(mm) 

RMSE 
(mm) 

Correl PE 
(%) 

Mbias POD FAR 

Jan 28.4 9.3 -19.1 24.0 0.18 -67.3 0.33 0.93 0.00 
Feb 68.0 33.2 -34.8 46.0 0.39 -51.1 0.49 0.99 0.00 
Mar 48.4 43.4 -5.0 36.5 0.24 -10.3 0.90 0.99 0.00 
Apr 58.0 71.6 13.6 46.6 0.61 23.5 1.23 1.00 0.00 
May 74.9 31.4 -43.6 62.1 0.36 -58.1 0.42 0.99 0.00 
Jun 312.9 140.0 -172.9 216.3 0.53 -55.3 0.45 1.00 0.00 
Jul 513.7 211.5 -302.2 352.9 0.60 -58.8 0.51 1.00 0.00 
Aug 374.4 132.2 -242.2 276.4 0.43 -64.7 0.35 1.00 0.00 
Sep 300.9 121.7 -179.2 210.2 0.38 -59.6 0.40 1.00 0.00 
Oct 29.1 13.9 -15.3 28.7 0.78 -52.4 0.48 0.71 0.00 
Nov 1.0 2.4 1.3 6.6 0.01 -125.2 2.25 0.40 0.16 
Dec 14.5 5.9 -8.6 15.3 -0.09 -59.3 0.41 0.93 0.01 
Annual 1824.3 816.4 -1007.9 1172.5 0.48 -55.3 0.45 1.00 0.00 
Monsoon (JJAS) 1501.8 605.3 -896.5 1033.3 0.47 -59.7 0.40 1.00 0.00 
ON 30.2 16.2 -14.0 30.6 0.67 -46.3 0.54 0.75 0.00 
DJF 110.9 48.4 -62.5 76.8 0.22 -56.3 0.44 1.00 0.00 
MAM 181.4 146.4 -35.0 106.2 0.51 -19.3 0.81 1.00 0.00 
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Figure 3.14 Location of rainfall stations in various physiographic regions of Nepal 

 

Table 3.7 presents the comparison of annual GSMaP and gauge observed rainfall in the four 

physiographic regions of Nepal. In the Terai and Siwaliks area where the elevation is fairly low 

less than 1500 m the correlation coefficient between the GSMaP and gauge observed rainfall is 

high above 0.8. In the Mid Mountains and High Mountain areas where orography plays an 

important role the correlation coefficient decreases to about 0.4 on average with increasing 

RMSE. In the High Mountains the RMSE is 1470.1 and in the Mid Mountains 1070.4. Despite 

the relatively denser network of rainfall stations the prediction in the Mid Mountain area is less 

than in the Terai and Siwaliks. The percentage error an indicator of how close the predictions are 

to observed values also is minimum in the Terai (-38.8%) and maximum in the High Mountains 

(-67.4%). The correlation coefficient is highest in the Siwlaki (0.85) and Terai (0.84) regions 

while it decreases to 0.83 in the mid mountain region and to 0.47 in the High mountains. The 

multiplicative bias is higher in the Terai and Siwalik region and decreases rapidly to less than 0.4 

in the High mountains indicating the performance of satellite based rainfall estimates to 

deteriorate with higher altitude region where influences of orography is high. The accuracy of 

prediction in the Terai and Siwalik is about 38% while with increase in elevation this accuracy 
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decreases to 49% in the middle mountains and more than 67% in the high mountain regions 

(Shrestha et al., 2010). 

Table 3.7 Error statistics of area averaged annual GSMaP and gauge observed rainfall in 
various physiographic regions for 2003. 

 

Table 3.8 Error statistics of monsoon (JJAS) GSMaP and gauge observed rainfall in 
physiographic regions for 2003. 

 

For the monsoon (JJAS) similar results are obtained as shown in Table 3.8. The correlation 

coefficient is high in the Siwaliks and Terai region on an average of about 0.8 while in the 

Middle and High Mountain region the correlation coefficient sharply drops to about 0.4. The 

RMSE is lowest in the Terai (697.2) and highest in the High Mountains (1277.9). This result 

clearly illustrates that GSMaP performs well in the flatter terrain with better prediction (Shrestha 

et al., 2010). While with increasing elevation the accuracy of predicting rainfall by GSMaP 

algorithm is found to become lower. Worse performances of the SREs over mountainous regions 

of Japan were indicated by previous works (Kubota et al., 2009; Shiraishi et al., 2009). This may 

be due to the impact of orographic enhancement of rainfall despite denser network of stations in 

the Mid Mountain region. The GSMaP uses a statistical database of precipitation vertical profiles 

classified into 10 types (Aonashi et al., 2009), but currently it cannot reflect profiles of localized 

precipitation systems. The profiles of heavy orographic rainfall are unique and largely different 

from those in the database, which can lead to large errors (Kutota et al., 2009). 

Table 3.9 shows the error statistics of daily area averaged GSMaP and gauge observed 

rainfall during JJAS in various physiographic regions. Similar to the accumulated rainfall 

comparison the correlation is high in the Terai and Siwalik regions and reduces significantly in 

  
bias 

 
RMSE 

 
Correl 

 
PE 

 
Mbias 

 
POD 

 
FAR 

Terai -743.4 784.6 0.80 -38.8 0.61 1.00 0.00 
Siwaliks -697.6 764.7 0.88 -37.0 0.63 1.00 0.00 

Mid Mountains -931.9 1070.4 0.37 -49.0 0.51 1.00 0.00 
High Mountains -1313.1 1470.1 0.43 -67.4 0.33 1.00 0.00 

  
bias 

 
RMSE 

 
Correl 

 
PE 

 
Mbias 

 
POD 

 
FAR 

Terai -662.4 697.2 0.76 -41.4 0.59 1.00 0.00 
Siwaliks -645.9 721.8 0.83 -40.9 0.59 1.00 0.00 

Mid Mountains -832.5 943.3 0.40 -53.0 0.47 1.00 0.00 
High Mountains -1151.1 1277.9 0.46 -72.5 0.27 1.00 0.00 
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the High Mountains. The error in detection is also lowest in the Terai and Siwalki region and 

increases to about 70% in the High Mountains. The daily bias in the Siwalik is half of that of the 

High Mountain region. 

Table 3.9 Error statistics of daily GSMaP and gauge observed rainfall during JJAS in various 
physiographic regions for 2003. 

  RMSE Correl PE Mbias POD FAR 

Terai -2.0 5.5 0.84 -38.0 0.62 0.73 0.01 
Siwaliks -1.8 5.1 0.85 -35.9 0.64 0.73 0.00 
Mid Mountains -2.5 5.1 0.83 -48.3 0.52 0.70 0.01 
High Mountains -3.6 6.8 0.47 -67.0 0.33 1.00 0.12 

 

Figure 3.15 illustrates the scatter plot of accumulated rainfall for JJAS of 2003 from 

observed and GSMaP for each grid cell. The poor performance of SREs in the high mountains is 

quite evident. We see that the High mountain regions show greater underestimation of rainfall 

compared to Siwalik and Terai regions. It is quite clear from this analysis that at higher elevation 

where orographic influence is evident the performance of the SREs decreases. However, the 

decrease in the performance cannot be solely attributed to orography only because other factors 

such as wind, slope and aspect are also important. Figure 3.16 shows the scatter plots of area 

averaged rainfall for the various physiographic regions of Nepal.  
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Figure 3.15 Scatter plot of accumulated rainfall for JJAS of 2003 from observed and GSMaP 
for each 0.1ox0.1o grid cell. 
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Terai 

 

Siwalik 

 

Middle Mountains High Mountains 

 

Figure 3.16 Scatter plots of area averaged rainfall for various physiographic regions of Nepal  

 

3.3.4 Basin Level Verification in the Bagmati and Narayani Basins 

There are three major river basins in Nepal the Koshi, Narayani and the Karnali. Apart from 

these river basins there are other river basins like Bagmati, East Rapti as shown in Figure 3.17. 

For the current research, basin level verification has been done for two basins Bagmati and 

Narayani. These two basins were selected to study the performance of SRE considering the flood 

vulnerability of the basin as well as the catchment sizes and topographic extent.  Narayani Basin 

is a snow fed basin with more than 15 % of catchment area above 5000 m while the Bagmati 

Basin is below 2700 m with a catchment area of 2800 km2. However, in both the basin flooding 
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causes adverse impacts to people’s lives and livelihoods on a regular basis. It is anticipated that 

the study of these two basins will enable a better understanding of the performance of SREs for 

flood prediction purposes. The characteristics of the two basins are provided in Table 3.10.  

 

Figure 3.17 Major river basins of Nepal 

 

Table 3.10 Characteristics of Bagmati and Narayani Basins 

 Bagmati Narayani 

Catchment Area [km2] 2800 (at Pandheradovan) 32000 (at Devghat) 
Altitudinal range [m] 70 – 2700 100 - >8000 
Physiography Terai, Siwalik and Middle 

mountains (alluvial plain to 
the mid mountains) 

Terai, Siwaliks, Middle 
mountains, High Mountains 
and Himal (alluvial plain to 
the himal with tundra 
conditions) 

Dominant land use Forest and agriculture Forest and agriculture 
Annual rainfall [mm] 1800 2000 
Range of annual rainfall[mm] 1200 - 2000 200 - 6000 
 

Bagmati Basin 

The Bagmati Basin originates in the Mahabhararat range of the Middle Mountains of Nepal at 

elevation of around 2700 m and drains southward into the state of Bihar in India to join the 

Ganges River. It has a catchment area of about 3550 km2 upto the Nepal India border and has 
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been classified into three physiographic regions. The upper part of the Bagmati Basin covers the 

whole of Kathmandu Valley. The middle part of the catchment extends downstream of the 

Chovar gorge to the Terai area at Pandhera Dovan near Karmaiya where the catchment area is 

about 2800 km2. Further downstream beyond Pandhera Dovan gauging station the river then 

flows through the third part of the catchment with the lowest elevation of the Bagmati River at 

the Nepal India border at about 70 m above mean sea level (Figure 3.18). The catchment area of 

the Bagmati Basin lying below 1000 m inside Nepal is about 2050 km2 and that lying between 

1000 m and 3000 m is about 1500 km2. The location of the basin is shown in Figure 3.17. The 

average elevation of the basin is about 1350 m. The total length of the river from its origin to 

Nepal India border is 170 km. The average slope of the river is about 1% which flattens down to 

0.03% in the Terai area. The catchment lies in eight districts of Nepal; Kathmandu, Lalitpur, 

Bhaktapur, Sindhuli, Kavre, Makwanpur, Rautahat, and Sarlahi. 

 

Figure 3.18 Location of rainfall station in the Bagmati Basin and its vicinity 

and discharge gauging station at Pandhera Dovan  

Assessment of the accuracy of the RFE estimates 

The rainfall observed at the rain gauge stations was higher than the concurrent RFE. Figure 3.19 

shows an example of a rainfall event on July 23, 2002 along with the details of the statistical 

analysis. The probability of detection is 1 and the false alarm ratio is 0 showing that the RFE is 

capturing the rainfall event quite well qualitatively in terms of occurrence. However, the 
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Figure 3.20 Basin average rainfall of Bagmati Basin for 2002 

 

The daily accuracy of RFE was determined comparing the daily basin average rainfall for 

June, July, August and September (JJAS) from 2002 to 2006 (Figure 3.21). Table 3.11 provides 

the yearwise statistics of the performance of RFE compared to the gauge observed data of daily 

basin average rainfall. The correlation coefficient between the RFE and gauge observed daily 

basin average rainfall for JJAS was found to vary from 0.49 to 0.68 for each year with an 

average correlation of 0.60. The daily area averaged bias is -3.6 mm, RMSE is 13.1 mm and 

percentage error is -30.7 for the period 2002 to 2006. Figure 3.21 illustrates the underestimation 

of daily basin average rainfall from RFE compared to gauge observed rainfall for JJAS from 

2002 to 2006. A histogram of daily basin averaged rainfall for 2003 is shown in Figure 3.22. The 

RFE showed relatively good agreement on some days while on other days, the RFE completely 

failed to register any significant rainfall when the rain gauge network showed high rainfall 

amounts.  
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Figure 3.21Time series comparison of gauge observed and RFE daily basin average rainfall for 

monsoon (JJAS) from 2002 to 2006 in the Bagmati Basin 

Table 3.11Statistics of performance of daily RFE compared to gauge observed data for JJAS 
from 2002 to 2006 

 

 

Figure 3.22 Daily basin averaged gauge observed rainfall with RFE for JJAS of 2003 in the 
Bagmati Basin 
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Year  B ias 
(mm/day) 

RMSE 
(mm/day) 

r PE 
(%) 

Mbias   

2002   -5.4   14.9.9 0.68 -39.1 0 .61   
2003   -4.2   13.5 0.58 -31.2 0.69   
2004   -2.1   16.3 0.49 -18.8 0.81   
2005   -4.3   10.3 0.64 -42.7 0.57   
2006   -1.8   8.7 0.63 -19.3 0.81   

Av erage   
(2003-2006)  -3.6   13.1 0.60 -30.7 0.69   
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Narayani Basin   

The Narayani Basin lies in the Western Development Region of Nepal (Figure 3.17). The 

Narayani river system has five major tributaries, the Kali Gandaki, Seti Gandaki, Marsyandi, 

Budhi Gandaki, and Trisuli. The Trisuli and Budhi Gandaki originate in the Tibet Autonomous 

Region of China, while the other three originate within Nepal. The Kali Gandaki is the main 

river in this drainage system. After the confluence of its five tributaries, the Narayani flows 

through Devghat and meets the Ganges in India. Geographically, it is located between longitudes 

82.88o to 85.70o east and latitudes 27.36o to 29.33o north and passes through 19 districts of 

Nepal. It has a total drainage area of 32,000 km2 at the Devghat hydrometric station. 

The basin has high topographic variation with elevation ranging from 60 m in the south to 

higher than 8000 m in the north where it passes through the high Himalayas, which contain the 

Dhaulagiri (8167 m) and Annapurna (8091 m) peaks. The Narayani Basin contains all five 

physiographic regions of Nepal: the Terai (the northward extension of Indo-Gangetic plain), the 

Siwalik (Chure Hills), Middle Mountains, High Mountains, and Himal. The Terai covers an area 

extending from an altitude of less than 500 m (9.2%), the Siwaliks from 501 to 1500 m (31.1%), 

the Middle Mountains from 1501 to 3,000 m (18.2%), High Mountains from 3001 to 5000 m 

(26.5%) and Himals above 5000 m (14.9%). Given the topographic variation the climate varies 

from subtropical in the Terai to alpine conditions in the Himal. There is pronounced temporal 

and spatial variation in precipitation in the basin; the mean annual precipitation varies from 200 

mm to more than 5000 mm (Sharma, 1977; Chalise et al., 1996). The upper basin of the Kali 

Gandaki lies in the Trans Himalayan region, which has arid conditions. The main rainy season is 

the monsoon from June to September. 

The Narayani Basin is one of major development hubs of Nepal contributing about 50 per 

cent of the total hydropower production of the country (NEA, 2008). In 1993, a large flood 

occurred in the Narayani Basin with record high rainfall of 540 mm in 24 hours and intensity 

exceeding 70 mm/hr, during which more than 1050 people lost their lives. Bhusal and Bhattarai 

(2002) noted that had there been a flood forecasting system in place the loss of lives would have 

been minimized. Hence, SREs now available at a higher resolution provides an opportunity for 

flood prediction. 
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Assessment of the accuracy of the RFE estimates 

Verification of the RFE rainfall estimates over the Narayani Basin was conducted by comparing 

with the gauge observed rainfall data for selected high rainfall days from 2003 and 2004. The 

Narayani Basin is covered by 234 grids of 0.1 degree resolution; 41 of the grids contain one or 

more rainfall stations (Figure 3.23). Comparison of the gauge observed and estimated rainfall in 

those grids with one or more stations shows that, on average, the observed rainfall was higher 

than the concurrent rainfall estimates in all cases considered. Figure 3.23 shows an example of a 

rainfall event on 9 July 2003, along with the statistics. 

The RFE captures the rainfall spatial trends well, but underestimates the amount on average 

by more than 50 per cent. The POD was 0.97 and the FAR was 0.05. The RMSE was 45.2 mm; 

using the Wilmott method (Wilmott, 1982; Wilmott et al., 1985), 34.7 mm was unsystematic 

RMSE (0.59), and 28.9 mm was systematic RMSE (0.41). The RFE estimated rainfall was lower 

than the gauge observed rainfall amount with bias of 33.7 mm. The random and systematic errors 

observed in the RFE estimates result from the uncertainty in estimates from the individual data 

sources used to produce the RFE product (Xie et al., 2002). The satellite data used in the 

production of the RFE are from microwave imagers and infrared imagery. The SSM/I and 

AMSU-B are the primary passive microwave data included in the RFE estimates. These data 

have a strong physical relationship to the hydrometeors that result in surface precipitation, but 

each individual satellite provides a very sparse sampling of the time-space occurrence of 

precipitation (Huffman et al., 2007). The random error observed in the rainfall estimates could 

partly be associated with this limited sampling of satellite observations.  
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Figure 3.23 Comparison of gauge observed and RFE for 9 July, 2003 in the Narayani Basin 

 

The daily accuracy of RFE was determined comparing the daily basin average rainfall for 

June, July, August and September (JJAS) from 2002 to 2006 (Figure 3.24). Table 3.12 provides 

the yearwise statistics of the performance of RFE compared to the gauge observed data of daily 

basin average rainfall. The correlation coefficient between the RFE and gauge observed daily 

basin average rainfall for JJAS was found to vary from 0.40 to 0.69 for each year with an 

average correlation of 0.50.  The daily basin averaged bias is -4.9 mm, RMSE is 8.8 mm and 

percentage error is -43.4 for the period 2002 to 2006. Figure 3.25 illustrates the underestimation 

of daily basin average rainfall from RFE compared to gauge observed rainfall for JJAS from 

2002 to 2006. A histogram of daily basin averaged rainfall for 2003 is shown in Figure 3.25. The 

RFE showed relatively good agreement on some days while on other days, the RFE completely 
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failed to register any significant rainfall when the rain gauge network showed high rainfall 

amounts. This random nature of the SRE was also noted in the Bagmati Basin.  

In both the basins there is a consistent underestimation of rainfall by RFE except for some 

days where the satellite-based rainfall exceeds the gauge observed rainfall and shows false 

detection. The bias is smaller in the Bagmati Basin compared to the Narayani. However, the 

percentage error in the Narayani is larger than that observed in the Bagmati, suggesting that the 

SREs perform better in the basins located in the Terai and Siwalik regions compared to basins 

with substantial area in the Mid Mountain and High Mountain areas. The underestimation of 

rainfall is consistent with previous studies (Dinku et al., 2008; Ebert et al., 2007; Harris et al., 

2007; Shrestha et al., 2008; Hughes, 2006). This underestimation of rainfall in the Narayani 

Basin, may be further attributed to the orographic effects prevalent in the basin where rainfall 

varies in small spatial scales between 200 mm to over 5000 mm which may not be adequately 

represented in the current rain profile algorithms of the SRE. To accurately predict floods the 

RFE thus needs to be adjusted. 

Table 3.12 Statistics of performance of daily RFE compared to gauge observed data for JJAS 
from 2002 to 2006. 

 

 

  

Year Bias 
(mm/day)

RMSE 
(mm/day)

r PE 
(%) 

Mbias 

2002 -6.7 12.0 0.41 -51.6 0.48 
2003 -5.9 8.7 0.69 -44.2 0.56 
2004 -5.7 8.9 0.40 -49.5 0.50 
2005 -4.2 7.1 0.55 -46.2 0.54 
2006 -2.1 6.7 0.50 -23.8 0.76 

Average  
(2003-2006) -4.9 8.8 0.50 -43.4 0.57 
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Figure 3.24 Time series comparison of gauge observed and RFE daily basin average rainfall 
for monsoon (JJAS) from 2002 to 2006 in the Narayani Basin 

 

 

Figure 3.25 Daily basin averaged gauge observed rainfall with RFE for JJAS of 2003 in the 
Narayani Basin 

 

3.4 Summary 

Verification of SREs using two products, the RFE and GSMaP has been conducted at three 

levels. The first set of verification was conducted at a country level. The GSMaP estimates were 

found to underestimate the annual rainfall by 48 % and RFE by 30%. The GSMaP however 

showed better correlation with the observed data as compared to RFE. The second level of 

verification was conducted for various physiographic regions to assess the performance of RFE 
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is various regions. Both SREs performed better in the flatter regions in the Terai and Siwalik 

regions. The performance deteriorated with higher elevations with the minimum performance in 

the High Mountain region. The middle mountain regions despite the dense network of stations 

showed poorer performance of SREs. Finally, verification was also conducted at a basin level in 

two basins Bagmati and Narayani which differ in catchment areas and general characteristics. On 

a daily basis the Bagmati Basin has a lower bias than the Narayani. The percentage error is also 

smaller in the Bagmati compared with the Narayani, suggesting that RFE performs better in 

basins lying in the Siwaliks and the Terrai region compared to the Middle Mountains and High 

Mountain areas.  In all three levels of verification the SREs were found to be generally lower 

than the gauge observed data indicating the need to adjust the rainfall estimates for further 

application. 
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CHAPTER 4 

4 RAINFALL-RUNOFF MODELLING USING SATELLITE-

BASED RAINFALL ESTIMATES 

4.1 Introduction 

There are a range of rainfall-runoff models for discharge prediction based on rainfall inputs 

(Maidment, 1993). The rainfall-runoff process can depict a catchment response based on 

meteorological inputs (rainfall, evapotranspiration) and catchment parameters including soil, 

landuse and landcover. The rainfall-runoff models are used for a number of applications for 

example flood forecasting, prediction of the effects of proposed changes of the catchment 

including climate change and, in general for water resources management. Since the 1960s after 

the development of the Stanford Watershed model which is based on water-balance accounting 

there has been a wide number of rainfall-runoff models developed. Literature review indicates 

that there are many rainfall-runoff models like the HEC-HMS, TOPMODEL, OHYMOS, NAM, 

TANK, GeoSFM, and others that have been applied in for runoff prediction. We can find in 

literature many comparisons of these models examining their performance. Moore and Bell 

(2001) has provided a review of the rainfall-runoff models used for flood forecasting purposes 

mainly in the United Kingdom. With the rapid technological advancement in computation 

rainfall-runoff processes have been modelled using distributed hydrologic modelling techniques. 

Precipitation is one of the most important inputs that feed into the rainfall-runoff models for 

hydrological modelling. However, in many regions the number of ground measuring stations is 

very limited and unevenly distributed making it difficult for flood prediction. In areas with 

limited or no rain gauge network, like the Himalayan region, satellite-based rainfall estimation 

could provide information on rainfall occurrence, amount, and distribution (Hong et al., 2007; 

Shrestha et al., 2008). A few studies have looked into the application of satellite-based 

rainfall estimates (SRE) in hydrological modelling. Artan et al. (2007a) investigated the 

utility of SREs for flood forecasting purposes. Yilmaz et al. (2005) evaluated the utility of 

SREs for hydrologic forecasting. Hughes (2006) evaluated SREs with gauge observed data at 

a monthly time step for application in hydrological modelling. Hong et al. (2007) proposed 
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the application of satellite rainfall data in near real time using TRMM in global monitoring 

system for early warning of floods and landslides. Harris and Hossain (2008) investigated 

the optimal configuration of conceptual hydrologic models for flood predictions based on 

satellite rainfall data using a 970 km2 catchment in Kentucky in the United States. 

Considerable caution is recommended in application of satellite rainfall data when the scale of 

available satellite rainfall data is comparable to the overall size of the basin. Wilk et al. (2006) 

developed a long-term rainfall dataset by combining gauge and satellite datasets for various 

periods for the data sparse Okavango River Basin in Africa and applied it in a hydrological 

model for runoff estimation to provide decision support in water management. Asante et al. 

(2007a) demonstrated the usefulness of SRE in the detection of extreme flood events for 

wide area flood monitoring to enhance the ability of water managers to provide early 

warnings, but the accuracy of the estimates were not assessed. The usefulness of SRE to 

hydrological modelling on a daily time scale has been further demonstrated in several basins 

around the world including Bagmati and Narayani Basin in Nepal using the United States 

Geological Survey (USGS) hydrological model, the Geospatial Stream Flow Model (GeoSFM) 

(Artan et al., 2007a; Asante et al., 2007a; Shrestha et al., 2008; Shrestha et al., 2010). Results 

using SRE have shown underestimation of flows (Artan et al., 2007a; Harris et al., 2007; 

Shrestha et al., 2008). This chapter describes the GeoSpatial Streamflow model (GeoSFM) used 

for the study and provides calibration and validation of the model and application of SRE as an 

input for flood prediction. 

 

4.2 The GeoSFM Model 

4.2.1 Introduction 

The GeoSFM is a semi distributed hydrologic model developed by USGS, Earth Resources 

Observation and Science (EROS) Centre. The GeoSFM simulates the dynamics of runoff 

processes by using remotely sensed and widely available global datasets. The GeoSFM model 

assimilates spatially distributed data to simulate streamflow on a daily basis. The model is a 

physically-based catchment scale hydrologic model (Artan et al., 2007a). The model runs in 

ArcView environment with a Graphical User Interface (GUI) and a rainfall-runoff simulation 

component. The general framework of the GeoSFM model is illustrated in Figure 4.1. 
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The GeoSFM GUI component runs within the GIS for model input and data preparation and 

visualization of model outputs. Topographic, land cover and soil information are the basic inputs 

to derive and parameterize the hydrologic modeling units. On the basis of Digital Elevation 

Model (DEM) hydrologic parameters such as slope, aspect, flow direction and accumulation are 

derived. After the data parameterization and end of the hydrologic simulation run the GeoSFM 

provides a module through which flow statistics outputs can be generated in a tabular form 

which includes maximum, minimum, mean, standard deviation and percentile flows of each 

catchment. Through the GUI these values can be viewed through a visual map. Flow status maps 

of each catchment can be viewed in a color coded map.  

 

Figure 4.1 General framework of the GeoSFM model 
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4.2.2 Model Formulation 

The GeoSFM rainfall-runoff component has three main modules: water balance, catchment 

routing, and distributed channel routing (Artan et al., 2007a; Asante et al., 2007a). In the water 

balance module, the sub-basins are the subject of a daily water balance calculation. This 

calculation determines how much water enters the stream network from each sub-basin. In the 

water balance module, the soil is conceptualized as composed of two zones: (a) an active soil 

layer where most of the soil– vegetation–atmosphere interaction processes take place, and (b) the 

groundwater zone. The active soil layer is divided into an upper thin soil layer where evaporation 

and transpiration both occur and a lower soil layer where only transpiration takes place. The 

catchment runoff mechanisms considered in the model are excess precipitation runoff, direct 

runoff from impermeable areas of the basin, rapid subsurface flow (interflow), and base flow 

contribution from groundwater.  

The model has several excess runoff generation options; in the present study the Soil 

Conservation Service Curve Numbers (CN) method is used to model the surface runoff 

generation process. CN were estimated from a land use and land cover data layer and were 

dynamically updated to reflect the state of the soil moisture. The runoff produced by the water 

balance module is routed in two phases. First, the catchment runoff is routed at the sub-basin 

level to its outlet, and then the flow is routed through the main river channel network. In the sub-

basins, the subsurface runoff is routed using a set of two conceptual linear reservoirs. According 

to Artan et al. (2007a) in the GeoSFM model the surface runoff routing is carried out using a 

diffusion wave equation modified for use in a GIS environment, the land cover and DEM data 

are used to determine the rate at which runoff is transported from the point of generation to the 

catchment outlet. When runoff generated within a given catchment arrives at the catchments 

outlet, it enters the river network and travels downstream to the basin outlet. The GeoSFM model 

supports two linear namely pure translation and the diffusion analog, and one non-linear method, 

the Muskingum–Cunge for flow routing. The GeoSFM has been used in several basins around 

the globe with good results (Artan et al., 2007b; Asante et al., 2007b). Figure 4.2 provides the 

process map and system diagram for the GeoSFM Model 
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Figure 4.2 Process Map and System Diagram for the GeoSpatial Streamflow Model (Source: 
Asante et al. 2001) 

4.3 Data Inputs 

4.3.1 Digital Elevation Model 

The GeoSFM uses a digital elevation model (DEM) for the delineation of hydrologic modeling 

units. The model supports the use of DEM of any resolution. In this study the DEM of 1-

kilometer resolution Hydro1k produced by the USGS EROS data centre is used which provides a 

hydrologically corrected DEM of the HKH region.  

4.3.2 Soil Data  

The response of a river basin to a rainfall event depends heavily on the nature and condition of 

underlying soils. In the GeoSFM model the static parameters and the dynamic parameters of soil 

characteristics are required.  In particular the model requires soil water holding capacity, 

hydrologically active soil depth, texture, average saturated hydraulic conductivity and runoff 

curve number (Artan et al., 2007a). The curve number determines the amount of incident 
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precipitation that becomes surface runoff. Model-required soil parameters (i.e., soil water 

holding capacity, saturated soil hydraulic conductivity, hydrologically active soil layer depth, 

and soil texture) were extracted from the Digital Soil Map of the World (FAO, 1995). All the 

data are in geographic projection and are produced from original map sheets with a scale of 

1:5,000,000. 

 

4.3.3 Land Cover Data 

The nature of vegetation on the land surface influences the flow velocity and hence runoff 

generation and overland flow processes. The USGS Global Land Cover Characteristics (GLCC) 

database is used in the GeoSFM modeling. The GLCC data were derived from 1km Advanced 

Very High Resolution Radiometer (AVHRR) data and are presented in the Lambert Equal Area 

Azimuthal projection. 

 

4.3.4 Evaporation Data 

Evaporation is a process by which water is extracted from the soil column. The rate of 

evaporation depends upon the amount of water present in the soil column. The potential 

evapotranspiration (PET) depends upon the prevailing weather conditions including temperature, 

radiation, atmospheric pressure, relative humidity, wind speed as well as factors like soil 

moisture availability and type of vegetation. The GeoSFM uses the data from the Global Data 

Assimilation System (GDAS) to solve the Penman-Monteith equation to generate grids of PET at 

a daily time step. The GeoSFM contains a procedure for processing the PET grids and computing 

actual daily evapotranspiration based on antecedent soil moisture conditions. 

 

4.3.5 Rainfall Data 

Precipitation is the most essential input to the GeoSFM. In the current study the SRE as well as 

the observed rainfall from ground based gauges have been used for the modeling. The NOAA 

CPC-RFE 2.0 (RFE) rainfall estimates over the Central Himalayas for the period 2002-2006 has 

been used for the study. The daily observed rainfall data are from 176 rainfall stations over 

Nepal for the 2002 to 2006 period obtained from the DHM. The gauged observed rainfall data 

were checked for consistency and accuracy. Incomplete and duplicates datasets were discarded. 
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The datasets were then formatted to GIS format and transformed to the same projection as the 

RFE data sets. The gauged data was then interpolated using the kriging spatial interpolation 

technique at a 1o x 1o spatial resolution. 

 

4.4 Methodology - Geospatial Processing and Hydrologic Computations 

4.4.1 Preprocessing Modules 

The preprocessing module includes the terrain analysis, unit hydrograph response and daily 

weather data assimilation.  

Terrain Analysis 

The main input parameter in the terrain analysis is DEM. The direction and rate of movement of 

water over the land surface is highly influenced by underlying topography. The analysis of 

topographic data for hydrologic modeling applications relies on the simple principle that water 

flows in the direction of steepest descent. Flow direction in GeoSFM is assigned using the eight 

direction pour point model in which each grid cell is assigned one of eight compass directions 

depending on which of its eight neighboring cells it discharges flow into. The computation of a 

flow direction grid paves the way for the determination of other parameters of hydrologic interest 

such as upstream contributing area, distance to the basin outlet and the slope of the land surface. 

It also allows for the definition of hydrologic modeling units such as basins and river reaches. 

Unit Hydrograph Response 
For each catchment a unit hydrograph is developed to simulate the response of the catchment. 

Based on the catchment slope and land cover an overland velocity is computed for the 

catchment. The distance along the flow path from each grid cell in the catchment to the outlet is 

also computed.  On the basis of this the travel time is computed. The distribution of discharge at 

the catchment outlet is given by the probability function of travel times in the catchment. All 

these computations are done through an algorithm built inside the GeoSFM. 

Daily Weather Data Assimilation 
The primary data required by GeoSFM for daily simulations are precipitation and 

evapotranspiration. Daily rainfall values (RFE and gauge observed rainfall grids) are used to 

compute mean areal precipitation and mean areal evapotranspiration values for each sub-basin. 
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On the basis of antecedent soil moisture conditions and the data from the GDAS evaporation 

time series are generated. 

4.4.2 Hydrologic Simulation Modules 

The hydrologic simulation modules include soil moisture accounting, channel flow routing and 

computing spatial statistics. 

Soil Moisture Accounting 
Soil moisture condition on a daily basis is computed for each catchment. The soil parameters of 

each catchment are extracted from the DMSW produced by FAO and UNESCO. In the model 

there are two soil moisture accounting routines: the single layer soil model and the two layer soil 

model. Where there is limited data availability the single layer model is widely used which 

however does not account for land cover within a catchment. In areas where finer resolution data 

is available the two layer soil model is used which has a more complete representation of 

subsurface processes by creating separate soil layers within which interflow and baseflow 

processes occur. 

Channel Flow Routing 
When runoff generated within a given catchment arrives at the catchment outlet, it enters the 

river network and works its way downstream to the basin outlet. Within the GeoSFM model 

there are three methods for routing, two linear methods namely pure translation and diffusion 

analog, and one non-linear method, the Muskingum Cunge. For the current study the diffusion 

analog routing method has been used given its simplicity and better generation of results 

compared to other two routing methods. 

Diffusion Analog Routing 

The diffusion analog method is a linear transport routine. It is similar to the lag routing except 

that it accounts for both flow advection (using a flow time or celerity) and attenuation (using a 

flow dispersion coefficient). The diffusion analog equation is in fact the linear solution of the 

Advection-dispersion equation (also known as the Navier-Stokes equation) for a plane 

rectangular source (Maidment, 1993). Mathematically, the diffusion analog equation can be 

expressed by using a series of equations as described below. 
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ఋ௬
ఋ௫
ൌ  ܵ௢ െ  ௙ܵ                          (2) 

 

where Q is discharge at location x along the channel, A is channel cross-sectional area, q is the 

lateral inflow, and the friction slope, Sf can be parameterized using Mannings’s equation 

 

௙ܵ ൌ  
௡మ|ொ|ொ
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        (3) 
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      (4) 

where C is the Chezy’s coefficient. 

For a rectangular channel the continuity and momentum equation can be written as 
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where D is the Diffusion coefficient and is estimated as 

ܦ ൌ   ௄೎
మ

ଶொ஻
      (6) 

 

where v is an advective velocity estimated as 

ݒ ൌ   ொ
஻௄೎

ௗ௄೎
ௗ௬

      (7) 

 

where Kc is the conveyance given as 

௖ܭ ൌ ܳ √ ௙ܵ      (8) 
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And finally the Diffusion equation is given by 

 

ܳሺݐሻ ൌ ଴ሻݐሺ ܫ  ቀ
ଵ

ଶሺగ஽ሻబ.ఱ
௫

ሺ୲ି୲బሻభ.ఱ
ቁ exp ቂെ ሺ୴ሺ୲ି୲బሻି୶ሻమ

ସDሺ୲ି୲బሻ
ቃ                                   

 (9) 

 

where x is the location for forecast point downstream or the length of the river reach in m. 

D is the dispersion coefficient in m2/s 

V is the advection velocity or the flow celerity in m/s 

x is the length of the river reach in m 

to is the time of the input event in seconds 

t is the present time in seconds 

 is the numerical constant Pi and has a value of 3.14159 ߨ

Q(t) is the discharge at the downstream end of the river reach 

I(to) is the inflow at the upstream end of the river reach. 

4.4.3 Post Processing Modules 

The post processing module in the GeoSFM includes calibration, sensitivity, flow statistics and 

flow status maps. 

Sensitivity Analysis 
Sensitivity analysis (SA) is an important step towards model calibration. Sensitivity analysis has 

a dual purpose of testing which sensitive parameters should be used for calibration as well as 

analyzing feasible parameter ranges. Sensitivity analysis allows us to see if there is a change in 

model results when the parameter values are changed. The SA result can be used to test the 

model structure, if parameters assumed to have a strong impact on model results do not show any 

sensitivity, the model structure should be reassessed.   

Model Calibration 
The purpose of calibration is to adjust the model parameters so that the model closely matches 

the real system. Although many GeoSFM model parameters are derived from spatially 
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distributed observed data, uncertainties in parameter adjustment to differences in scale, 

uncertainty in deriving the parameter values from observed data, and uncertainties in the 

structure of the model require that parameters be adjusted to overcome what we do not know, 

and cannot measure about the watershed. These issues apply to all hydrologic models. Built 

within the GeoSFM is a parameter calibration module which includes a sensitivity analysis 

routine and a model calibration routine. The sensitivity analysis determines which parameters are 

to be adjusted during the calibration process. There are twenty parameters in the model (eg. soil 

water holding capacity, hydraulic conductivity, soil depth, curve number, river loss coefficients, 

pan coefficient, etc) and the sensitivity analysis thus significantly reduces the time taken to 

calibrate the model. The model calibration routine is an automatic calibration process using the 

Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) Algorithm. It is an 

automatic optimization process which finds the optimum parameters to minimize the difference 

between the model simulated output and the observed output values. There are several objective 

functions available within the model for example RMSE, NSCE among others to carry out the 

optimization of the parameters. Manual calibration of the model can also be conducted by 

adjusting the parameters identified during the sensitivity analysis by trial and error process. 

Flow Statistics 
At the end of a simulation run, flow statistics provides a summary of the results. GeoSFM 

includes a tool for computing a variety of flow statistics including the maximum, minimum, 

mean, standard deviation, median, 25th, 33rd, 66th, and 75th percentile flows for each basin. The 

results of the flow statistics computations are stored in the form of tables which are linked to the 

basin data layer. 

Flow Status Maps 

Flow Percentile Map 

Visual maps are considerably easier to interpret than tabular time series data particularly when 

dealing with large river basins. GeoSFM contains a tool for displaying the results of simulations 

for any given date in a visual map. The stream flow values on a user-selected date are presented 

in the form of indices which present the values in the context of predefined criteria. The default 

criterion for differentiating between low and normal flow is the 33rd percentile flow for the 

analysis period, while the 66th percentile flow is the minimum threshold separating normal flow 

and high flows. However, the user can define other criteria such as return period flow or 
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predetermined drought and flood warning levels for the classification of flows. Each basin is 

assigned a flow status index of 1, 2 or 3 to signify the respective low, normal and high flow 

conditions. A color-coded map is then produced showing the flow status of each basin for the 

select day. 

Flow Hydrographs 

GeoSFM contains a graphing tool for plotting hydrographs at the completion of a simulation run. 

The tool can be activated from either a program menu or the tool menu bar. The user can then 

visually select the basin for which a hydrograph is required by clicking on the basin in the visual 

interface. The program automatically matches the spatial information with the time series and 

produces a hydrograph. The flexibility of this tool is limited by ArcView’s rather limited 

charting capabilities. The user is consequently encouraged to import the ASCII files resulting to 

flow simulations into spreadsheet programs such as Microsoft’s Excel for more sophisticated 

time series plotting capabilities. 

4.5 Model Performance Indicators used for the Study 

There is no single model performance indicator that determines the strengths and weakness of a 

particular model. For determining the model performance it is desirable to adopt a variety of 

different statistics and tests and decisions be made on the basis of these tests (Weeks and 

Hebbert, 1980). A variety of tests, including those described by Aitken (1973), Nash and 

Sutcliffe (1970) were utilized in this study to evaluate the performance of the GeoSFM model. In 

the model performance indicators that are described below Qo and Qs are observed and simulated 

discharge, തܳ௢ and  തܳ௦ are the mean of the observed and simulated discharge. N is the number of 

samples. 

 

4.5.1 Correlation Coefficient 

The standard correlation coefficient is one of the indicators used to describe the agreement 

between the observed and simulated flows. It is defined as 

 

ݎ ൌ   ∑ሺொ೚ ି ொത೚ሻሺொೞ ି ொതೞሻ
ඥ∑ሺொ೚ ି ொത೚ሻమ ∑ሺொೞ ି ொതೞሻమ   

                                                                                            (10) 
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4.5.2 Nash Sutcliff Coefficient of Efficiency (NSCE) 

The Nash-Sutcliffe Coefficient of Efficiency (NSCE) (Nash and Sutcliffe, 1970) is commonly 

used to evaluate the fit of the predicted hydrograph with observed. The perfect value is 1. It is 

calculated as: 
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4.5.3 Bias 

The bias is the difference between the simulated and observed discharge and is defined as 

ݏܽ݅ܤ ൌ   ∑ ሺொೞି ொ೚ሻಿ
೔సభ

ே
                                                                                                             (12) 

 

4.5.4 Root Mean Square Error (RMSE) 

The RMSE provides greater emphasis on larger error and is defined as 

 

ܧܵܯܴ ൌ  ට൫∑ ሺொೞି ொ೚ሻమಿ
೔సభ ൯

ே
                                                                                                   (13) 

4.5.5 Peak Flow Error 

The accuracy of flood prediction is evaluated using the peak flow error which is expressed in 

percentage. The peak flow error is defined as 

௣ܧ ൌ  ∑
൫ொ೛ೞି ொ೛೚൯

ொ೛೚
௡
௜ୀଵ ൈ  100                                                                                                   (14) 

 

where Ep is the peak flow error in %, Qps is the peak simulated discharge, Qpo is the peak 

observed discharge and n is the number of peaks above a defined threshold corresponding to the 

discharge of the warning water level of the river.  
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1. Case 1:  With the gauged observed rainfall over a peak flooding period. The run was for 

38 days period, July 1 – August 7, 2002. The run was during monsoon caused peak flood 

period. 

2. Case 2: With the RFE data over the same 38 days period 

3. Case 3: With the RFE for 2002 to 2004 period. 

4.6.2 Results and Discussion 

Simulated streamflow with gauge observed rainfall of July 2002 

The simulated hydrograph over the 38-day period in 2002 (July 1 to August 7) using the gauge 

observed rainfall compares well with the observed flows (Figure 4.5). The magnitude of the daily 

simulated flow and timing matched well the observed flow magnitude and timing during the high 

flow period (Figure 4.5). The high NSCE (0.91) and correlation (0.95) indicate a good fit 

between observed and simulated flows. The scatter plot of the simulated and observed flows is 

presented in Figure 4.6. Our findings of good correlation and performance of the model with 

gauged observed rainfall data is consistent with the findings of previous studies (Hapuarachchi et 

al., 2007; Kafle et al., 2006; Sharma et al., 2007; Artan et al., 2007b). The excellent match at the 

peaks between simulated and observed flows indicates that the model can be used effectively for 

flood forecasting. 

 

Figure 4.5 Observed and simulated daily flows at Panheradovan, the daily flows were 
simulated using gauge observed rainfall data (July 1 – August 7, 2002) 
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Figure 4.6 Scatter Plot of daily Observed and Simulated Discharge (July 1 – August 7, 2002) 

Results of Model with the RFE Rainfall of July 2002 

For the same period from July 1 to August 7, 2002 without readjusting the GeoSFM parameters 

the model was driven with the RFE data. The comparison of observed and simulated flows is 

presented in Figure 4.7. We find that with the RFE data the GeoSFM underestimates the peak 

flow compared with observed gauge rainfall. We can also observe that there is a shift in the 

timing and the sharpness of the peak. The NSCE of 0.15 and correlation of 0.50 were achieved. 

The scatter plot of the simulated and observed flows is presented in Figure 4.8. Hapuarachchi et 

al. (2007) explored the applicability of satellite-based precipitation data for near real-time flood 

forecasting considering satellite based products from CMORPH, TRMM 3B42RT and GSMaP. 

A grid based distributed hydrological model (BTOP) was used to generate river flow of Yoshino 

basin in Japan. With gauged precipitation the NSCE was 0.84 while with CMORPH, 3B42RT 

and GSMaP were 0.06, 0.52 and -0.06 respectively. The findings of the current study are 

consistent with Hapuarachchi (2007) with the gauged precipitation performing well compared to 

the RFE. Artan et al. (2007b) found poor agreement between the observed and RFE simulated 

flows for the Se Done basin, a tributary of the Mekong River in Laos when the model was 

calibrated with rain gauge measured rainfall data. Similarly when applied to the Nyando basin in 

Kenya, tributary to Lake Victoria, the model with the RFE data considerably loses predictive 

skills in contrasts to if gauged observed rainfall are used. The Se Done and Nyando are midsize 

basins (6000 and 2600 km2) as the Bagmati Basin. The poor results for simulated flows with 
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RFE suggest that the RFE is not a suitable rainfall data for input to hydrologic models for basin 

with the size of the Bagmati Basin.  

 

Figure 4.7 Comparison of observed and simulated daily flows at Pandheradovan using gauge 

observed rainfall and RFE data as an input rainfall (July 1 – August 7, 2002) 

 

 Figure 4.8 Scatter plot of observed and simulated discharge when the GeoSFM was driven 

with RFE (July 1 – August 7, 2002) 

 Streamflow Simulation using RFE for 2002, 2003 and 2004 

As poor agreement was found between the gauge observed and RFE simulated flows for 

Bagmati Basin when the model was calibrated with rain gauge measured rainfall data further 

analysis was done to recalibrate the GeoSFM with RFE. As three years of daily discharge 

data was available the period 2002 to 2003 was taken as the calibration period and 2004 for 

validation. Parameters were adjusted to provide the best simulated results using the RFE. The 

calibration was considered to be complete when no further improvement or very little change 
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was observed in the predicted flows even when varying the parameters. This involved 

successive changes in the parameter values identified as sensitive during the sensitivity 

analysis until the best fit was obtained. Comparison of observed and simulated hydrographs 

from the model is summarized in Figure 4.9. The year 2002 and 2003 the agreement between 

the observed and simulated flows was marginal. The NSCE was 0.23 with a correlation of 

0.59. 

 

Figure 4.9 Observed and simulated streamflows using RFE from 2002 to 2004 (calibration) 

 

Using the same parameters from the calibration period the GeoSFM was run for 2004 using 

2004 RFE. The predicted peak flows in 2004 were extremely low compared to the observed 

flows as presented in Figure 4.10. The performance of the validation period was not satisfactory. 

When the model is driven with an RFE it under predicted considerably the flows. When the 

model was calibrated with the RFE soil water holding capacity (SWHC) value becomes 

significantly lower than the at prior estimated values at around 100 mm per 1 meter of soil. 

Figure 4.11 shows a box plots of the SWHC that were estimated when the two rainfall data were 

use. Where the SWHC estimated from the calibration of the gage data is reasonable of what 

could be expected for the dominant soil types present in the basin (silty clay loam and clay loam 

soil types). 

The poor performance of the results could be due to a number of reasons. Firstly, the 

calibration period i.e. 2002 to 2003 may not have been appropriate or long enough. Secondly, the 
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quality of data/RFE is questionable at best. Thirdly, the 2004 RFE must be significantly 

underestimating rainfall resulting in an amplification of error into a large flow underestimation. 

 

Figure 4.10 Observed and simulated flows for 2002-2005 

 

In a study conducted by Hughes et al. (2006) the results of the validation period using the 

satellite rainfall data were poorer compared to the calibration period in the Okavango river. The 

current results also indicate similar findings. 

 

Figure 4.11 Average soil water holding capacity of the 21 sub-basins modelling units when 
the GeoSFM (a) is calibrated with satellite-based rainfall fields, and (b) when the model is 

calibrated with rain 

In the past several studies have been done to assess the runoff of the Bagmati Basin using 

various rainfall-runoff models and satellite data. Kafle (2007) used the HEC-HMS hydrologic 

model with TRMM and rain gauge data to simulate flows of the Bagmati. Sharma et al. (2007) 

has made comparison with TRMM 3B42RT data and rain gauge data and applied the results to 

predict floods in the Bagmati Basin. He observed that the TRMM data has underestimated the 

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

Days

D
is

ch
ar

ge
 (m

3 /s
ec

)

Observed Calibrated (RFE) Validated (RFE)

60

80

100

120

140

G
ag

e.
So

ilW
H

C
..m

m
.

8

10

12

14

16

SB
R

.S
oi

lw
hc

..m
m

.



PhD Dissertation 

 

99 

monsoon rainfall peaks. The findings of these studies in the past are in agreement with the 

current findings where with the rain gauge data the model predicted the peak discharge fairly 

accurately while the satellite data underestimated the discharge significantly as was observed 

from the one month simulation in 2002. This indicates that the accuracy of the RFE has to be 

improved further to realistically predict the floods of the basin and become useable product for 

an operational flood forecasting system for the Bagmati River. 

 

4.7 GeoSFM Model of the Narayani Basin 

The location and general physiographic description of the Narayani Basin has been presented in 

the previous chapter. The location of the rainfall stations in and within the vicinity of the 

Narayani Basin is shown in Figure 4.12. 

  

Figure 4.12. Location of the rainfall stations within and in the vicinity of the Narayani Basin 

 

4.7.1 Data Parameterization and Analysis 

The Narayani Basin boundary was delineated and clipped from this global digital elevation 

model Hydro1k. Similar to the Bagmati Basin the model-required soil parameters (i.e., soil water 

Devghat Hydrological 
station 
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holding capacity, saturated soil hydraulic conductivity, hydrologically active soil layer depth, 

and soil texture) were extracted from the Digital Soil Map of the World (FAO, 1995). The USGS 

Global Land Cover Characteristics (GLCC) database derived from 1km AVHRR data projected 

in the Lambert Azimuthal Equal Area projection is used in the GeoSFM modelling. The rainfall 

station data and streamflow gauge data were provided by DHM of the Government of Nepal. The 

daily rainfall data covered the period 2002 through 2006 and was provided for 176 stations over 

Nepal including 45 stations within the Narayani Basin. The daily discharge data of Narayani 

River at Devghat from 2002 to 2006 was also made available by DHM for the study. The 

locations of the hydrological and meteorological stations in the Narayani Basin and its vicinity 

are shown in Figure 4.12. 

This focus of this study is the four months of the monsoon June, July, August, and September 

when floods occur in the basin. The gridded gauge observed rainfall data for the monsoons of 

2003 and 2004 were used in the GeoSFM to predict floods. Daily observed river discharge data 

from the 2003 monsoon were used for GeoSFM model calibration and data from 2004 for 

validation. The reliability of the RFE rainfall estimates for flood prediction was evaluated using 

the 2003 monsoon data. 

4.7.2 Results and Discussion 

Calibration and validation of the GeoSFM with gauge observed rainfall 

The calibration of the GeoSFM for the Narayani Basin was performed using daily gauge 

observed rainfall data from June to September 2003. A high NSCE (0.84) and a highly 

significant correlation (0.94) indicate a relatively robust calibration with a good fit between 

observed and simulated discharge. The RMSE was 754.3 with an average discharge error of -3 % 

over a threshold of 7500 m3/sec.  The threshold discharge of 7500 m3/sec corresponds to the 

warning level of 6.8 m at the Devghat hydrological station. The average peak discharge error 

was -7.6% for the three peaks. Overall, the magnitude and timing of the simulated peak 

discharge matched well with the observed. Figure 4.13 presents the comparison and scatter plot 

of the simulated and observed discharge. In the Bagmati Basin about ten times smaller than 

the Narayani Basin a similar high NSCE of 0.91 and r of 0.95 were obtained (Shrestha et al., 

2008). The GeoSFM therefore predicts the flows accurately when gauge observed data are 

applied and calibrated in small and large basins indicating reliable application to flood 

forecasting with improved quality of rainfall estimates. 
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Figure 4.13 Comparison and scatter plot of observed and simulated discharge at Devghat 
using 2003 monsoon gauge observed rainfall (June to September) 

 

The validation of the GeoSFM was performed using rainfall data from June to September of 

2004. An NSCE of 0.77, RMSE of 697.1 and a highly significant correlation coefficient of 0.94 

were achieved. The peak flow error was about -3%. All flood peaks during this year was lower 

than the threshold discharge corresponding to the warning level so no discharge error above the 

threshold was computed. Figure 4.14 presents the comparison of simulated and observed 

hydrographs and scatter plot indicating a fairly good fit.  

  

Figure 4.14 Comparison and scatter plot of daily observed and simulated discharge at 
Devghat using 2004 monsoon gauge observed rainfall (June to September) 

 

Flood Prediction using CPC_RFE2.0 (RFE) rainfall estimates 

A simulation run of the GeoSFM model forced with the RFE for the period June to September 

2003 was obtained. The model parameters obtained from the calibration of the GeoSFM with the 

gauge observed rainfall data were not readjusted. The hydrograph simulated with the RFE 
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considerably underestimated the peak flows when compared with the hydrograph simulated with 

gauge observed rainfall (Figure 4.15). Also, the fact that RFE simulated streamflow missed some 

of the peaks, points to the presence of random errors in the RFE data. A low NSCE of -1.17, a 

high RMSE of 2805 and correlation coefficient of 0.69 were achieved indicating a significant 

underestimation of flow but still with a relatively significant correlation. The average peak 

discharge error using RFE was -53%. The average error above the threshold discharge 

corresponding to the warning level was -61%. Figure 6 shows the scatter plot of the simulated 

and observed flows (R2 = 0.47) with significant underestimation of flows. In the Bagmati Basin 

(which is about ten times smaller than the Narayani), RFE simulated hydrographs showed an 

underestimation of flows with a NSCE of 0.15 and a correlation of 0.50 (Shrestha et al., 2008). 

The increased correlation obtained in the Narayani Basin simulation suggests better performance 

of GeoSFM in larger basins. But, the reduced NSCE, increased RMSE and peak discharge error 

compared to the Bagmati indicates deterioration in flood prediction using the RFE rainfall 

estimates in the Narayani Basin where the terrain is complex with a large proportion of basin 

area in the high mountains with greater influence of orography. 

 

Figure 4.15 Comparison and scatter plot of daily observed and simulated discharge at 
Devghat using gauge observed rainfall and RFE data as input rainfall (June to September 

2003) 

Therefore, the poor skills of the GeoSFM hydrological model to predict the magnitude of the 

floods when using the RFE, compared to when using gauge observed rainfall, suggest that the 

increased uncertainty of flood prediction is a result of inaccurate satellite-based rainfall inputs 

rather than the modelling of the hydrological processes, thus, making imperative the de-biasing 

or improvement of the SRE prior to use in predicting floods. 
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Flood Prediction using CPC_RFE2.0 (RFE) rainfall estimates calibrated model 

A simulation run of the GeoSFM model forced with the RFE rainfall estimates for the period 

June to September 2003 was obtained. In this simulation the model was calibrated using the RFE 

estimates instead of using the parameters obtained from the calibration of the GeoSFM with the 

gauge observed rainfall data. By recalibrating the model with RFE a slight improvement in the 

performance of the model is seen though the hydrograph simulated with the recalibration still 

underestimates the peak flows when compared with the hydrograph simulated with gauge 

observed rainfall (Figure 4.16). The NSCE increases from -1.17 to -0.36 and correlation 

coefficient from 0.69 to 0.76 while the RMSE decreases from 2805 to 2174. The average error 

above the threshold discharge corresponding to the warning level was decreases to -41% from -

61%. Figure 4.16 shows the scatter plot of the simulated and observed flows (R2 = 0.58) with 

significant underestimation of flows. The improvement in the results indicates that the model has 

to be recalibrated with the RFE rainfall estimates for discharge prediction with RFE. However, 

even with improvement the RMSE and peak flow error are large with the recalibrated model 

suggesting that the RFE has to be bias-corrected before further use in discharge prediction.  

  

Figure 4.16 Hydrograph and scatter plot of daily observed and simulated discharge at 
Devghat with RFE calibrated model from June to September 2003 

 

4.8 Summary 

The GeoSFM, a semi-distributed physically based hydrological model developed by the USGS 

was used to simulate the discharge using remotely sensed and widely available global datasets 

for the Bagmati and Narayani Basins in Nepal. Bagmati has a catchment area of 2800 km2 at the 

Padheradovan gauging station while the Narayani is about 32,000 km2 at Devgaht gauging 

station. The interpolated gauge observed rainfall data and SRE from NOAA at 0.1 x 0.1 degree 
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spatial resolution on a daily basis were used to simulate the flows. The GeoSFM model was 

calibrated using the gauge observed monsoon data from June to September 2003 for the 

Narayani Basin and for from 1st July to 7th August 2002 for the Bagmati Basin. Satisfactory 

validation of the model was obtained using the gauge observed monsoon data. The same 

parameters obtained during the calibration were used for the validation of the model which 

showed good agreement with the observed. Thus we can infer that GeoSFM predicts the flows 

accurately when observed rain gauge data have been applied and calibrated indicating reliable 

application to flood forecasting with improved quality of rainfall estimates. 

Discharge was then simulated with RFE using the calibrated parameters from the 2002 

and 2003 monsoon data for Bagmati and Narayani respectively, which showed 

underestimation of flood prediction. The hydrograph simulated with the RFE considerably 

underestimated the peak flow when compared with the hydrograph simulated with gauge 

observed rainfall. The accuracy in RFE estimates was assessed by comparing the gauge 

observed and estimated rainfall in those grids with one or more stations. The RFE captures the 

rainfall spatial trends well, but underestimates the amount on average by more than 50 per cent.  

As the magnitude of the rainfall is much lower in the RFE compared to the gauged observed 

rainfall there is underestimation of simulated flows when the RFE dataset is used to force the 

hydrologic model. The underestimation of simulated flows when using the RFE data is an 

agreement with results from previous research on the matter. It is thus difficult to predict the 

floods quantitatively using current satellite based data. We can only give an indication of 

probability of occurrence. This suggests that remotely sensed rainfall estimates needed to be 

adjusted prior to use for flood prediction. 
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CHAPTER 5 

5 BIAS-ADJUSTMENT OF SATELLITE-BASED RAINFALL 

ESTIMATES 

5.1 Introduction 

From the previous chapter we have seen the discharge prediction in two river basins of Nepal 

using the satellite-based rainfall estimates (SRE). The SREs are found to detect the occurrence of 

rainfall and have a significantly good correlation with the gauge observed rainfall but failing to 

adequately capture rainfall amounts. There is significant underestimation of rainfall leading to 

lower predicted discharge suggesting the need for bias correction of SREs before it can be put 

into operational use (Shrestha et al., 2008).  The need for bias-adjustment of the global SREs for 

application into water resources management and flood prediction have also been felt by Hughes 

(2006), Harris et al. (2007).  

The NOAA CPCP_RFE2.0 (RFE) rainfall estimates used in the present study is a satellite-

gauge merged rainfall estimate (Xie et al., 1996) available on a semi real time basis. Apart from 

the RFE currently there are no other global satellite-based rainfall products with bias-corrected 

rainfall estimates on a near real time basis. As explained in chapter 2 the TRMM 3B42_V6 is a 

research product the rainfall estimates of which are adjusted by gauge data but not in near real 

time. The TMPA was upgraded in early 2009 to include a climatological calibration to the post-

real-time research TMPA product but was still on testing phase.  

The RFE algorithm uses available rain gauge information from the WMO GTS network to 

remove bias from each satellite estimate component; hence the number of gauges used in each 

daily product is very much related to the accuracy of the final product. Currently, the WMO 

network of GTS gauges is relatively sparse for many of the HKH countries, thus essentially 

forcing the RFE algorithm to rely primarily on satellite estimates in these locations. For example, 

from Nepal only a few stations contribute to the GTS while none contribute from Bhutan. In 

mountainous areas, there is both a lack of gauge information and a tendency for satellite rainfall 

sensors to perform poorly, thus complicating the situation. Availability of larger number of 

gauge observation at a local level provides an opportunity to merge these estimates at a local 

level for improving the SREs. 
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The research problem we address in this chapter is how can SREs be adjusted for better flood 

prediction? Two approaches have been proposed to adjust the SREs. The first approach is a ratio 

based bias-adjustment using various temporal scales of adjustment; monthly, seasonal and 7-day 

moving average. The second approach is local tuning of SREs by ingesting the local rain gauge 

data into the RFE algorithm. These two approaches have been used in correcting the SREs and 

applied in hydrological modelling of the Narayani Basin in Nepal for the monsoon of 2003, 

yielding encouraging results at a daily time scale. This chapter describes the bias correction 

methods available in the literature, provides the procedure for bias correction developed for this 

study and evaluates the procedure for flood prediction.  

5.2 Bias-Adjustment  

As has been stressed earlier the availability of rainfall data for hydrological modeling is limited 

because of the sparse density of rain gauge data in various regions of the world particularly in 

developing countries. Satellite based rainfall estimates which provide continuous spatial 

variation of precipitation is one of the inputs that can drive a hydrological model however; the 

accuracy of the estimates so far needs to be improved. The methods available for bias correction 

of SREs are very few in the literature hence the methods in correcting the Regional Climate 

Models (RCM) were reviewed as the methods are thought to be relevant for RFE. Regional 

Climate Models are an important source of climate input for hydrological models. The RCM data 

are used in hydrological model to address the impact of climate change on the hydrological 

response of river basins. Though the scale of application is different from the current research the 

bias-adjustment of the RCM has been reviewed having precipitation as the common 

meteorological parameter to examine the impacts on the hydrological regime. Similar to the 

problem of SREs in application into hydrological modeling, the RCM data is also faced with 

inherent source of uncertainty coming from RCM’s inability to simulate present-day climate 

conditions accurately. There are a number of studies that have applied bias correction to rainfall 

estimates derived from Global Climate Models (GCM) (Terink et al., 2010; Hay et al., 2002; 

Leander and Buishand, 2007; Piani et al., 2010). This section describes the methods for 

correcting rainfall using gauge observed data. 
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5.2.1 Gamma Transform for Bias-Adjustment 

Hay et al. (2002) examined the use of RCM outputs for hydrologic modeling. The runoff using 

RCM outputs were found to have large bias compared to the observed hydrograph. Bias 

corrections were made on a monthly basis using a gamma transform. The Gamma transform 

preserves the precipitation distribution in the observed and model values. This method requires 

both the time series datasets of observed and model to be fit into a gamma distribution and 

compute the cumulative probability in the distribution. The basic assumption is that both the 

simulated and observed values can be approximated by using the same probability function. The 

probability distribution function (PDF) of the satellite-based product is adjusted to the PDF of 

the observed values, minimizing bias. It is assumed that the non-exceedance probability of the 

observed and simulated is the same. As the bias correction is a magnitude correction of the 

precipitation value Hay et al. (2002) found that the corrected precipitation did not contain the 

day to day variability which was present in the observed data set. Piani et al. (2010) applied the 

gamma transform method also known as the statistical bias correction to the daily precipitation in 

regional climate models over Europe and obtained improvement in the model results.  The 

Gamma distribution with two parameters that is commonly used for rainfall analysis is given by 

equation 1. 

݂ ሺݔሻ ൌ ఉషഀ ௫ഀషభ

ீሺఈሻ
exp ቄି௫

ఉ
ቅ , ߙ ൐ 0, ߚ ൐ 0, ݔ ൐ 0       (1) 

where α and β are shape and scaling parameters and x is the precipitation field.  

For the current study this method was not adopted as only five years of overlap data between 

the RFE and gauge observation was available which is not adequate to fit a gamma distribution 

for obtaining bias corrections. 

5.2.2 Power Transform for Bias-Adjustment 

Leander and Buishand (2007) used a power transformation, which converts CV as well as the 

mean of the rainfall estimates. This method of bias correction has been applied by Tirren et al. 

(2010) in bias correcting RCM in the Rhine Basin. This is a non-linear correction of daily 

precipitation and is given by equation 2. 

 a ܲ௕                                             (2) = כܲ

where P is the precipitation amount and a and b are coefficients. 
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Parameters a and b were determined for every five day period of the year. As a first step 

parameter b was determined keeping the coefficient of variation (cv) of the corrected 

precipitation matching the cv of the observed precipitation. 

ሺܲሻ ܸܥ ൌ  ݂ሺܾሻ                                                (3) 

כܲ ൌ  ܲ௕                                       (4) 

The parameter a is determined such that the mean of the transformed daily values correspond to 

the observed values. 

Applying this technique to the Rhine River Terink et al. (2010) found that the bias-adjusted 

precipitation improved however, the RMSE of the daily precipitation differences between RMC 

output and observed precipitation was not smaller for the corrected precipitation values. This 

method was not adopted given the limitation of the number of years of data overlap available for 

such a correction to be meaningful. 

5.2.3 Ratio Based Bias-Adjustment 

Ines and Hansen (2006) applied a simple concept of bias-adjustment by applying a multiplicative 

shift to correct the bias of the mean monthly GCM rainfall. The concept is similar to the one 

proposed in this research where a correction factor for various time periods is derived by 

comparing the daily SREs with the gauge observed values. Though this procedure is said to 

adjust only rainfall intensity to reproduce the long-term mean observed monthly rainfall, it is 

seen to be adequate for flood prediction for capturing the peak discharges. The section below 

describes the three ratio based bias-adjustments derived for this research.  

As the RFE are available for the South Asia domain from 2002 and the gauge observed 

rainfall data till 2006 there is an overlap of five years between the two data sets. Ideally for 

obtaining bias correction a longer data series is required preferably more than 10 years. 

However, with the five years of data from 2002 to 2006; the seasonal and monthly bias-

adjustments were derived comparing the RFE and gridded gauge observed rainfall data at grids 

with one or more gauges. The bias-adjustment was derived using a two step procedure. Firstly, 

the daily datasets were accumulated to monthly totals to obtain the ratio of the gridded gauge 

observed rainfall to the RFE estimates at each grid with one or more rainfall stations. Then the 

monthly values of ratio were averaged over all grids with one or more station. Similarly for a 
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seasonal value the accumulated period was for JJAS instead of each month. The bias-adjustment 

“Z” is given by equation 5. 

 

             (5) 

where n is the number of grids with one or more rain gauges, Oi is the gauge observed rainfall, Pi 

is the satellite-based rainfall and m is the number of years.  

The bias corrections were derived on a seasonal, monthly and a 7 day moving average basis. 

The method of bias-adjustment is schematically shown in Figure 5.1. 

  

Figure 5.1 Methodology for bias correction 

5.2.4 Improved Gauge-Satellite Merged Rainfall Estimates for Bias-Adjustment 

The RFE is a daily satellite-gauge merged product which uses 3 SREs merged with GTS rain 

gauge data. The satellite data sources are of data; AMSU-B; SSM/I and GPI cloud-top IR 

temperature precipitation estimates.  The three satellite estimates are first combined linearly 

using daily, predetermined weighting coefficients, then are merged with station data to determine 

the final rainfall. Although the RFE algorithm incorporates the available GTS data, much of the 

time, data are not reported from the stations in near real time for various reasons. The number of 
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GTS stations that report on a timely and regular basis is limited affecting the accuracy of the 

rainfall estimates. Therefore, at a country level, it is possible to access data from more gauges 

than that available from the GTS. To increase the accuracy of temporal and spatial variability of 

precipitation data, local rain gauge data may be added to the NOAA RFE algorithm and obtain 

improved satellite-gauge merged rainfall products. The increase in accuracy of the rainfall 

estimates depends upon the number of local rain gauges that can be added. 

The RFE data can be downloaded from the ftp server using the NOAA algorithm available in 

FORTRAN which runs in a windows version (NOAA 2009). For use with the Windows RFE 

version, GTS, GPI, SSMI and AMSUB input files are available via anonymous ftp on a daily 

basis. For the current study the three satellite inputs available during 2003 to 2006 were used 

with modification to the GTS master file. The GTS master file was edited to incorporate the 

additional rain gauge stations in the study area. As data from all over the Himalayan region was 

available the master station file was modified to reflect additional 419 stations which include the 

176 rainfall stations available from Nepal. Incorporation of a larger number of rainfall stations 

from the whole HKH region prevents discontinuity of rainfall estimates at national borders. 

Because no GTS data were found to report for the monsoon of 2003, all the quality checked 

available gauge observed rainfall data were added to obtain a new GTS file for ingestion into the 

algorithm. To de-bias satellite-based rainfall using gauge observed rainfall data, the algorithm 

described by Xie and Arkin (1996) was used. Using the merging algorithm developed by Xie and 

Arkin (1996), the SREs from SSM/I, AMSU-B, and GPI, and the new GTS datasets were 

merged to come up with new gauge-satellite merged estimates for the 2003 monsoon over the 

Narayani Basin (NOAA, 2009). 

5.3 Rainfall-Runoff Simulation Using Bias-Adjusted Satellite-Based Rainfall 

Estimates 

5.3.1 Satellite-Based Rainfall Estimates with Bias-Adjustment 

Three ratio based bias-adjustment factors were derived and applied to the RFE rainfall estimates. 

The first bias-adjustment of 1.80 was derived for a season using a ratio between the total 

volumes of gauge observed and RFE from June through September (JJAS) for 2002 to 2006 

period, at those grids with one or more rainfall stations, as explained in the earlier section. Daily 
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rainfall amounts from RFE and gauge observed rainfall were accumulated from June to 

September to yield seasonal totals for each year from 2002 to 2006.  

The second bias-adjustment was derived for each month instead of a season by comparing 

the cumulative hyetographs on a monthly basis. Daily rainfall of the RFE and gauge observed 

rainfall estimates were accumulated to monthly rainfall and ratios derived based on the monthly 

accumulation for each year and averaged over a five year period from 2002 to 2006. The bias-

adjustments for June, July, August, and September were calculated to be 1.99, 2.0, 1.58, and 

1.82, respectively.  

With the aim to further improve the rainfall estimates for flood prediction purposes, a 

moving bias-adjustment averaged over the previous seven-day period for the whole monsoon 

season were derived. The seven-day period was chosen based on inspection of tests to represent 

rainfall event duration. To further improve the flood prediction a new gauge-satellite merged 

product was developed using the gauge observed data not included in the GTS and the Xie and 

Arkin (1996) algorithm. Figure 5.2 provides the scatter plot of daily basin averaged SRE with 

and without adjustments for the monsoon period for 2003. Figure 5.2 illustrates the improvement 

in rainfall estimates by applying bias-adjustments compared to the unadjusted RFE. In the figure 

we can see the unadjusted RFE underestimating the rainfall values while the best adjustment is 

seen to be with improved RFE obtained from merging RFE with local rain gauge data. 
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Figure 5.2 Scatter plot of daily area averaged gauge observed rainfall and SRE with and 
without bias-adjustment for monsoon of 2003. 

 

5.3.2 Rainfall Simulation with Bias-Adjusted Satellite-Based Rainfall Estimates 

 The GeoSFM hydrologic model was used to simulate the flows with bias-adjustment. The 

parameters of the semi-distributed hydrological model are determined for each sub-basin derived 

by dividing the basin into several sub-basins using the basin threshold as was done earlier. The 

sub-basins were delineated from the GTOPO Hydro1K DEM using the terrain analysis module 

with ARCView interface as already described in the previous chapter. A total of 39 sub-basins 

were delineated with an average basin area of about 900 km2. 

The GeoSFM model was then run with the bias-adjusted rainfall estimates. With the seasonal 

bias-adjustment of the RFE, the predicted flows using GeoSFM showed considerable 

improvement in predicting the magnitude compared with the raw RFE simulations. There was an 

increase in the NSCE (from -1.23 to 0.27) and in the correlation (from 0.69 to 0.80). The RMSE 

decreased from 2750 to 1561, 49% of which was systematic and 51% unsystematic. The peak 

flow error decreased dramatically from -53% to -11% showing improvement in peak flow 

detection. For calculating the peak flow error a discharge threshold of 7500 m3/sec was used 

corresponding to a warning level at the Devghat hydrometric station. Though the percentage of 

systematic error in the RMSE reduced from 81% to 49% further improvement in the 

performance seemed necessary. With this single bias-adjustment factor for the whole monsoon 

season there still remained a variation in the improvement of the simulated flows between 

months with amplification of false peaks (Fig.5.3). Hence finer scale bias-adjustments than a 

seasonal was derived and applied to assess further improvement in flood prediction. 

The monthly bias-adjustments ratios were applied to the RFE estimates to obtain a new set of 

improved rainfall estimates for the monsoon of 2003. The improved rainfall estimates were then 

applied to the gauge observed calibrated GeoSFM model to assess the impact of the adjustments 

on flood prediction in the Narayani Basin. Figure 5.3 shows the improvement in flood prediction 

with applying bias-adjusted rainfall estimates. After the application of this second bias-

adjustment method, the correlation and the NSCE of the predicted flows improved, compared to 

single seasonal bias-adjustment (Table 5.1). The NSCE increased from 0.27 to 0.38 and the 
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RMSE decreased from 1561 to 1471 indicating better performance with a monthly adjustment as 

compared to a seasonal.  

A 7-day moving average bias-adjustment was also applied to the GeoSFM to assess the 

improvement in flood prediction. Using this bias-adjustment, no further improvement in the 

flood predictability of the Narayani Basin was found. Though the bias appeared small with this 

adjustment compared to other adjustments, the correlation decreased to 0.79 and RMSE 

increased to 1654 with the systematic error component increasing from 45% to 52% indicating 

deterioration in the model performance. Figure 5.3 and Table 5.1 present the statistics for the 

comparison of simulated flows using the bias-adjusted RFE with observed streamflow for the 

Narayani River.  

Although, all three bias-adjustments showed improvement in flood predictability compared 

to the raw RFE, the second adjustment (monthly) was found to be the best with an ‘index of 

agreement’ (d) of 0.87 and the lowest RMSE. The streamflow predicted with the RFE adjusted 

with the second bias-adjustment predicted the flood peak, flow volume, and hydrograph timing 

more accurately. The NSCE improved from -1.23 to 0.38 and the correlation coefficient (r) from 

0.75 to 0.81 using a monthly adjustment factor. The peak flow error above a threshold 

corresponding to the warning level at Devghat hydrological station decreased from -53% with 

RFE to -11% with a seasonal bias-adjustment and to -9% with monthly bias-adjustment 

indicating an overall improvement in the model simulation. Table 5.1 provides the error statistics 

with bias-adjusted rainfall estimates. 

These results indicate that the SREs can be improved to better estimate the quantity of 

rainfall and capture the peak flow occurrence with a ratio based bias-adjustment. However, the 

improved rainfall estimates do not capture the day to day variability of gauge observed rainfall 

which may be required for other water resources applications on a daily basis. Further work is 

needed to identify the causes for systematic biases in the SRE and develop improved methods to 

remove the biases, and improve the RFE simulations of daily variability of rainfall. 
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Table 5.1 Error statistics of discharge with bias-adjusted CPC_RFE rainfall estimates 

 

Figure 5.3 Daily observed and simulated flows using bias-adjusted CPC_RFE2.0 rainfall 
fields 

 

Discharge simulation with ingestion of local rain gauge data 

The new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge 

data into the RFE algorithm heron referred to as “improved RFE” were used to simulate 

discharge at the Devghat hydrometric station. The GeoSFM model with parameters determined 

using gauge observed data were used to simulate runoff using the “improved RFE” estimates. 

With the “improved RFE” estimates the GeoSFM showed a marked improvement in flood 

prediction (Figure 5.3). We find the flood predictions closer to the observed river discharge. The 
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NSCE and correlation coefficient increased from -1.23 to 0.53 and 0.75 to 0.90 with a ‘degree of 

agreement’ (d) of 0.89 (Table 5.1). However, overall underestimation of discharge by about 25% 

was observed mainly during the medium flow periods. To investigate the underestimation of 

medium discharge with the improved RFE estimates further inspection of the rainfall over the 

Narayani Basin was made. 

The gauge observed rainfall within the Narayani Basin was used as the 'ground truth' to 

verify the gauge-satellite merged analysis over grid boxes with at least one reporting station. 

Anywhere else, the quality of the gauge observed analysis would be compromised, especially 

over a region like the Narayani Basin where orographic effects work on small scales. Figure 5.4 

shows good agreement between the gauge observed and estimated rainfall. The bias reduced 

from -33.7 to -3.4 mm and the correlation coefficient from 0.60 to 0.91 using the “improved 

RFE” rainfall for 9 July 2003.  

 

Figure 5.4. Comparison of new gauge-satellite merged and gauge observed rainfall over grid 
boxes where there is at least one reporting station for 9 July 2003 

Visual and statistical examinations of the basin averaged rainfall estimates indicate 

significant improvement in the rainfall estimates with ingestion of local rain gauge data. Figure 

5.5 shows comparison of basin averaged observed rainfall using RFE with and without 

improvement for JJAS of 2003. The comparison of basin averaged gauge observed rainfall and 
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new gauge-satellite merged rainfall estimates for the four months of the 2003 monsoon shows 

improvement in the overall estimation of rainfall but with a slight underestimation of medium 

rainfall (Figure 5.5). The correlation coefficient increased from 0.02 to 0.92 and RMSE 

decreased from 15.5 to 5.2 mm/day with the new gauge-satellite merged product compared with 

unadjusted RFE rainfall estimates. Figure 5.6 shows the comparison of scatter plots of observed 

and RFE rainfall estimates (without adjustment and with ingestion of local rain gauge) averaged 

over the Narayani Basin. 

There is however a negative percentage error of about 25% with underestimation of medium 

rainfall in some days. The reason for this difference between the RFE and the gauge observed 

rainfall may be attributed to the inherent systematic and random errors characteristic of SRE (Xie 

et al., 2003; Hossain and Anagnostou, 2006). The underestimation of rainfall in some days may 

be the reason for the difference in discharge simulation between observed and simulated using 

the new gauge-satellite merged product where the overall underestimation of discharge was also 

25%. Despite the difference in medium flows, with the new gauge-satellite merged product the 

accuracy of prediction of daily peak flows is high. The average error above the threshold 

discharge corresponding to the warning level is -7 % compared to -61% with unadjusted RFE.  
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Figure 5.5. Comparison of daily basin averaged gauge observed rainfall with CPC_RFE2.0 and 
adjusted CPC_RFE2.0 for JJAS of 2003 in the Narayani Basin 

(a) 

 

(b) 

 

 

Figure 5.6. Scatter plots of observed and CPC_RFE2.0 rainfall estimates a) without 
adjustment and b)with ingestion of local rain gauge averaged over the Narayani Basin 
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To further test the improvement in performance with the improved RFE estimates the 

GeoSFM model was calibrated using the improved RFE estimates instead of using the gauge 

calibrated parameters. An improvement in the model performance was observed with the RMSE 

decreasing from 1316 to 900, the normalized bias decreasing from -29% to -7% and a slight 

increase in coefficient of correlation 0.90 to 0.92. Table 5.2 presents the statistical summary 

comparing the simulated and gauge observed streamflow for JJAS of 2003 with the model 

calibrated with gauge observed data and the improved RFE. Artan et al. (2008) and Hughes 

(2006) had also indicated the need to recalibrate a hydrologic model when SRE are used as 

rainfall inputs. From the current result it can be said that recalibration of the model is required 

not only while running the model with SREs but also for new gauge-satellite merged rainfall 

estimates. From this marked improvement in accuracy for flood prediction, we can infer that the 

“improved RFE” are good for flood prediction in the Narayani Basin but has to be recalibrated 

with the gauge-satellite merged rainfall estimates. The larger the number of ingested local 

gauges, the better will be the flood prediction. 

 

Table 5.2 Statistical summary of the comparison between simulated and observed streamflow for 
JJAS of 2003with RFE, gauge-satellite merged model calibrated with gauge observed data and gauge 

satellite merged calibrated model.  

 RMSE 

(m3/sec) 

RMSE (%) Correlation 

Coefficient 

Normalized 

Bias (%) Unsystematic Systematic 

RFE 2750 19 81 0.73 -79 

Gauge-satellite merged model 

calibrated with gauge observed data 
1316 43 57 0.90 -29 

Gauge-satellite merged calibration 

model 
900 70 30 0.92 -7 
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Figure 5.7 Observed and simulated hydrographs obtained when the model was calibrated 
with a) gauge observed rainfall and b) new gauge-satellite rainfall estimates. 
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moving average were derived. These bias-adjustments were applied to the RFE to obtain a new 

set of improved RFE rainfall estimates. These improved RFE rainfall were applied to the 

GeoSFM model which indicate improvement in flood prediction. The second approach is the 

improvement in the rainfall estimates by ingesting additional local rain gauge data into the RFE 

algorithm by expanding the GTS data input. When the model calibrated with the gauge 

observation was run with the improved rainfall estimates considerable improvement in flood 

prediction was achieved. However, there seemed to be some discrepancy in the medium flow 

estimation. Therefore keeping in mind the inherent errors in the SREs the model was recalibrated 

with improved RFE. The recalibrated model with new gauge-satellite merged rainfall estimates 

showed further improvement in the simulation of flows. Overall, findings from this study 

indicate that the accuracy SRE can be improved by applying a bias-adjustment. Prediction of 

discharge using bias-adjusted rainfall estimates can improve the accuracy discharge prediction 

with considerable increase in the predictive capability of flood prediction for which the 

hydrological model needs to be recalibrated. 
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDATIONS 

The verification of satellite based rainfall estimates, bias-adjustment and application of the 

rainfall estimates into hydrological modeling for flood prediction are the main aspects of this 

research. SRE is a new technology for Nepal and prior to this research there has been very little 

application of SRE into hydrological modeling. This research is the first to conduct a detailed 

verification of the SRE over Nepal to understand the strengths and weakness of the now more 

easily available global satellite-based rainfall products. As there is no operational flood 

forecasting and warning system in place in Nepal this study has provided an opportunity to 

explore the application of remotely sensed data for streamflow estimation and flood forecasting. 

Accurate rainfall estimations are essential for timely flood forecasting and warning. In many 

regions operational flood forecasting has traditionally been relied upon by a dense network of 

rain gauges or ground-based rainfall measuring radars that report in real time. In Nepal, like 

many other developing countries, the hydrometeorological station networks are sparse and 

rainfall data are available only after a significant delay. Due to the limited spatial coverage of 

ground based gauges, unavailability of real-time rainfall data, and constraint in technical and 

financial resources, operational flood forecasting is yet to be initiated. Thus, SRE is considered 

as an appropriate approach for Nepal to predict and forecast rainfall-induced runoff that may 

produce flooding. Two high resolution SREs were selected for verification in this research. The 

NOAA CPC_RFE2.0 (RFE) mutli-satellite gauge merged rainfall estimates and the JAXA 

GSMaP_MVK+ (GSMaP) global rainfall estimates both available at a 0.1 degree x 0.1degree 

spatial resolution on a daily basis. The RFE uses merging technique which increases the 

accuracy of the rainfall estimates by reducing significant bias and random error compared to 

individual precipitation data sources thereby adding value to rain gauge interpolations GSMaP 

includes a Kalman filtering technique. The RFE provides near real time rainfall estimates over 

South Asia and the GSMaP has a near real time product with a 4 hr latency which makes it 

attractive for flood forecasting in Nepal. In the research the RFE estimates from 2002 to 2006 

and GSMaP from 2003 to 2006 have been used for verification. Gauge observed rainfall data 

from 176 stations made available from the DHM of the Government of Nepal were used to 
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conduct the validation over Nepal considering various levels of validation, whole country as a 

homogeneous region, various physiographic regions and in river basins. The quality of the 

estimates in terms of spatial distribution and amount was assessed by using the standard 

statistical verification technique by comparing bias, RMSE, correlation coefficient, 

multiplicative bias, percentage error, POD and FAR values for each set of validation data. As 

Nepal has a complex topography with elevation ranging from 60 m to 8848m within a short 

horizontal distance of less than 200 km the verification of SREs were made in various 

physiographic regions to better understand the performance of the rainfall estimates in such 

complex topography. As the final objective of this research is to assess the applicability of SREs 

into hydrological modeling for flood prediction rainfall verifications were also conducted at a 

basin level considering different basin sizes.  

The USGS GeoSFM was used to simulate the rainfall-runoff processes in two river basins 

Bagmati and Narayani using the gauge observed and RFE. The GeoSFM model was calibrated 

and validated using the gauge observed data. RFE estimates were applied to simulate the 

discharge. Comparison of the observed and simulated discharge using the gauge observed data 

was very good indicating the suitability of GeoSFM into flood forecasting. However when the 

model was run with RFE the performance of the model deteriorated sharply indicating the need 

for correcting the rainfall estimates prior to further application. 

As the SREs were found to underestimate bias-adjustment of the estimates were made. Two 

approaches of bias-adjustment, ratio based bias-adjustment at various temporal accumulations 

seasonal, monthly and 7-day moving average and gauge-satellite merged rainfall estimates were 

developed and assessed. The application of bias-adjusted rainfall estimates into the GeoSFM 

model showed marked improvement in flood predictability with all three ratio based bias- 

adjustment. However, the monthly bias-adjustment seemed to perform slightly better than the 

other two with better flood predictions showing a low peak flow error. As a second approach a 

new set of rainfall estimates were produced by ingesting the locally available rain gauge data 

into the RFE algorithm which when applied to the GeoSFM showed better flood predictions. 

However, the current research has indicated the need to recalibrate the GeoSFM with the new 

sets of rainfall estimates to come up with improved flood predictions. 
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6.1 Satellite-Based Rainfall Estimate Validation 

The country level validation results indicate the RFE and GSMaP provides reasonable 

rainfall estimates over the Central Himalayas of Nepal but needs to be improved before it can be 

implemented for operational flood forecasting. The physiographic level validation has shown 

that performance of the SRE was better in flatter terrain compared to mountainous areas. Due to 

orographic effects in the mountainous areas the performance of the RFE seems to deteriorate. In 

the monsoon period there was underestimation of rainfall with a high negative bias. While in the 

rain shadow areas there was overestimation of the rainfall indicating a positive bias. The major 

findings and recommendations are given below. 

Findings: 

• The area average annual gauge observed rainfall over whole of Nepal is 1433 mm, 

RFE is 1021 mm and GSMaP is 748 mm for 2003 to 2006 period with an annual bias 

of 421 mm with RFE and 685 mm with GSMaP. 

• On an annual basis there is 29% underestimation by rainfall by RFE and 48% by 

GSMaP for the four years period from 2003 to 2006. 

• There is a negative bias of 1.1 mm day-1 with RFE and 1.9 mm day-1 with GSMaP. 

• Both the SREs have significant correlation. There is higher correlation with GSMaP 

(0.75) than RFE (0.71). 

• There is higher negative bias in averaged monsoon (JJAS) rainfall over whole of 

Nepal with RFE and GSMaP. With RFE there is -2.9 mm day-1 and with GSMaP -5.0 

mm day-1 with the correlation of 0.72 and 0.79 respectively.  

• In high intensity rainfall areas example in Pokhara valley there is underestimation of 

as much as 2000 mm while in rainshadow areas of Mustang there is over a positive 

bias with overestimation. The positive bias with RFE is larger as compared to with 

GSMaP. 

• The performance of SREs is better in the flatter terrain and deteriorates with increase 

in elevation. 

• The limitation of RFE is that at present it cannot register more than a certain amount 

of rainfall in 24 hours, which is not enough in the case of monsoon depression and 
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monsoon trough in Nepal. RFE does not account for orographic aspects of rainfall. 

GSMaP also does not have orographic corrections. 

• Three ratio bias-adjustments seasonal, monthly and a 7-day moving average have 

been derived and applied to develop corrected rainfall estimates. The correction ratios 

obtained for the monsoon season is 1.82 and monthly for June, July, August and 

September are 1.99, 2.0, 1.58, and 1.82. 

6.2 Hydrological Modelling Using Satellite-Based Rainfall Estimates 

The GeoSFM hydrological model using gauge observed rainfall data and globally available soil 

and land cover datasets—the Digital Soil Map of the World by FAO and the USGS Global Land 

Cover resulted in accurate discharge prediction in the Bagmati and Narayani Basins. The 

GeoSFM predicted the flows accurately when observed rain gauge data have been applied and 

calibrated indicating reliable application to flood forecasting with good quality of rainfall 

estimates. However, when the RFE was used in the GeoSFM model as the rainfall input the 

performance of the model deteriorated with significant underestimation of flows. Although the 

satellite based rainfall products are capable of detecting a particular rainfall event within the 

magnitude of the computed discharge is much lower in the RFE driven model compared to the 

model with gauged observed rainfall. The NSCE was very low however the correlation was still 

over 0.75 indicating the applicability of improvement with a bias-adjustment. 

Bias-adjustments based on ratios comparing the accumulated gauge observed rainfall with 

RFE for the corresponding periods were derived on a seasonal, monthly and a 7 day moving 

average basis. These bias-adjustments were applied to the RFE to obtain a new set of improved 

RFE rainfall estimates. These improved RFE rainfall were applied to the GeoSFM model which 

indicate improvement in flood prediction. The second approach is the improvement in the 

rainfall estimates by ingesting additional local rain gauge data into the RFE algorithm by 

expanding the GTS data input. When the model calibrated with the gauge observation was run 

with the improved rainfall estimates considerable improvement in flood prediction was achieved. 

However, there seemed to be some discrepancy in the medium flow estimation. Therefore, 

keeping in mind the inherent errors in the SREs the model was recalibrated with improved RFE. 

The recalibrated model with new gauge-satellite merged rainfall estimates showed further 

improvement in the simulation of flows.  

The major findings are given below. 
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• SREs highly under predicts peak discharge. 

• The accuracy flood prediction can be improved by applying a bias-adjustment. 

• The bias-adjustment derived on a monthly basis yielded better improvement in the flood 

predictability compared to other adjustments. 

• The application of improved RFE obtained by merging local rain gauge data with SREs 

in the model yielded the best result of flood prediction for which the hydrological model 

needs to be recalibrated. 

 

6.3 Recommendations and Future Perspectives 

This research reveals that the satellite estimates need to be improved over the Himalayas 

particularly in areas of orographic influence. This improvement may be made by correction in 

the algorithm by incorporating the orographic effects into the rainfall estimation. One way of 

doing this may be by adjusting the GOES Precipitation Index (GPI) for the Geo-stationary input 

data so as to incorporate a variable brightness temperature to rain rate conversion in the HKH 

region. Passive microwave measurements depend strongly on the relations between the 

hydrometeor size distribution, types and the rain intensity. Therefore, it is essential to obtain 

information about the hydrometeor sizes for achieving reasonable accuracy of the precipitation 

intensities. 

The basic algorithms, for example in the RFE ignores the GTS data when it reports more 

than 200 mm, should be modified and included in the heavy rainfall event. There are many 

events in a year when rainfall exceed 200 mm per day in Nepal. Another example is the GSMaP 

algorithm where a statistical database of precipitation vertical profiles classified into 10 types are 

used, but currently does not reflect profiles of localized precipitation systems. The profiles of 

heavy orographic rainfall in the Himalayas are unique and largely different from those in the 

database, which could be considered to be improved for better rainfall estimation.  

The current verification has been conducted using limited data. Further verification may be 

conducted with additional data and products and using finer temporal and spatial scales for the 

utility of SRE in flood forecasting. The bias-adjustment technique could be further explored as 

additional data becomes available. Longer sets of concurrent data between the SRE and gauge 
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observation may provide a better estimate of bias correction which could be applied for 

improved flood forecasting.  

Finally, bias-adjusted SREs appear to be an effective and viable means to achieve an estimate 

of precipitation over Nepal. The GeoSFM model with the bias-adjustments derived from this 

study will be evaluated in the coming monsoon season in near real time for the Narayani Basin 

for flood prediction.  
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Annex A 

Loss from Floods, landslides and avalanches in Nepal (1983-2005) 

Year 

Death 

(No) 

Injured 

(No) 

Livestock 

lost (No) 

Houses 

destroyed 

(No) 

Family 

Affected 

(No) 

Land 

Affected 

(ha) 

Infrastructure 

damaged 

(No) 

Estimated 

loss 

(NRs) 

1983 293 na 248 na na na na 240.00
1984 363 na 3114 7566 na 1242.00 869 37.00
1985 420 na 3058 4620 na 1355.00 173 58.10
1986 315 na 1886 3035 na 1315.00 436 15.85
1987 391 162 1434 33721 96151 18858.00 421 2000.00
1988 342 197 873 2481 4197 na na 1087.00
1989 700 4 2979 6203 na na na 2528.61
1990 307 26 314 3060 5165 1132.00 na 44.00
1991 93 12 36 817 1621 283.00 25 21.20
1992 71 17 179 88 545 135.00 44 10.78
1993 1336 163 25425 17113 85254 5584.00 na 4904.00
1994 49 34 284 569 3697 392.00 na 59.00
1995 246 58 1535 5162 1E+05 41867.28 na 1419.00
1996 262 73 1548 28432 37096 6063.40 na 1186.00
1997 87 69 317 1814 5833 na na 102.00
1998 273 80 982 13990 33549 326.89 na 969.00
1999 214 92 331 2543 9769 182.40 na 365.00
2000 173 100 822 5417 15617 888.90 na 932.00
2001 196 88 377 3934 7901 na na 251.10
2002 441 265 2024 18181 39309 10077.50 na 418.91
2003 232 76 865 3017 7167 na na 234.78
2004 131 24 495 3684 14238 321.82 na 219.28
2005 162 34 588 1103 2130 na na 137.81
Average 309 83 2161 7570 27654 5626.51 328 749.58
Source: Compiled from Annual Disaster Review, different series published by Department of Water 

Induced Disaster Prevention (DWIDP) 
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ANNEX 2 

List of Rainfall Stations used for the research 

S.No Longitude Latitude Station Name 

1 80.58 29.30 Dadeldhura 

2 80.60 28.68 Dhangadhi 

3 82.17 29.28 Jumla 

4 84.00 28.22 Pokhara Airport 

5 83.43 27.52 Bhairhawa Airpo 

6 84.98 27.17 Simara Airport 

7 85.37 27.70 Kathmandu Airpo 

8 86.50 27.32 Okhal Dhunga 

9 87.67 27.35 Taplejung 

10 87.35 26.98 Chandpur 

11 87.27 26.48 Biratnagar Airp 

12 80.50 29.65 Kakerpakha 

13 80.42 29.55 Baitadi 

14 80.35 28.68 Belauri 

15 80.47 29.53 Satbanj 

16 80.87 29.62 Pipalkot 

17 81.32 29.38 Bajura 

18 81.13 29.00 Katai 

19 81.45 28.95 Asara 

20 80.92 28.75 Sandepani 

21 81.12 28.97 Bangga 

22 81.20 29.38 Khaptad 

23 80.82 28.57 Sitapur 

24 80.68 29.12 Kola Gaon 

25 81.28 29.15 Mangalsen 

26 81.77 29.32 Thirpu 

27 82.32 29.28 Guthi 

28 81.60 29.13 Sheri Ghat 

29 82.15 29.55 Gam Shree 

30 81.90 29.20 Magma 



PhD Dissertation 

 

133 

31 81.63 29.23 Bijayapur 

32 81.33 28.78 Jamu 

33 82.20 28.70 Jajarkot 

34 82.12 28.02 Kusum 

35 81.35 28.17 Gulariya 

36 81.58 28.78 Bale 

37 81.10 28.43 Rajapur 

38 81.72 28.27 Naubasta 

39 81.70 28.35 Shyano Shree 

40 81.90 28.05 Baijapur 

41 81.35 28.43 Bargadaha 

42 82.28 28.98 Maina Gaon 

43 82.63 28.60 Rukumkot 

44 82.63 28.30 Libang 

45 82.87 28.10 Bijuwar Tar 

46 82.12 28.22 Nayabasti 

47 82.50 28.05 Ghorahi 

48 82.53 27.70 Koilabas 

49 82.28 28.30 Luwamjula 

50 83.65 28.48 Tatopani 

51 83.88 28.82 Ranipauwa 

52 83.88 29.05 Ghami 

53 83.97 29.18 Mustang 

54 83.75 28.18 Karki Neta 

55 83.10 28.40 Bobang 

56 83.22 28.60 Gurja 

57 83.73 28.40 Ghorapani 

58 83.65 28.03 Tribeni 

59 83.40 28.38 Darbang 

60 83.57 28.15 Rangkhami 

61 83.78 28.97 Samar 

62 83.68 28.90 Samoa 

63 83.60 28.47 Bega 

64 83.48 28.38 Kuhun 
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65 83.38 28.57 Baghara 

66 83.62 28.13 Sirkon 

67 83.43 27.95 Ridi Bazar 

68 84.05 27.68 Beluwa 

69 83.67 27.53 Parasi 

70 83.87 27.58 Dhumkibas 

71 83.05 27.77 Pattharkot 

72 83.27 28.17 Musikot 

73 82.80 27.68 Bhagwanpur 

74 83.80 27.87 Garakot 

75 83.28 27.47 Lumini 

76 84.90 28.37 Jagat 

77 84.62 28.67 Larke Samdo 

78 84.35 28.13 Kunchha 

79 84.42 27.93 Bandipur 

80 83.82 28.27 Bhadaure 

81 84.28 27.97 Damauli 

82 83.97 28.27 Lamachaur 

83 84.02 28.67 Manang 

84 83.80 28.38 Ghandruk 

85 84.62 28.20 Gharedhunga 

86 84.10 28.37 Siklesh 

87 83.77 27.98 Walling 

88 84.13 27.87 Rumjakot 

89 83.75 28.27 Sallyan 

90 83.78 28.27 Pamdur 

91 84.53 27.58 Jhawani 

92 85.13 27.55 Chisapani 

93 85.00 27.28 Amlekhganj 

94 85.17 27.18 Nijgadh 

95 85.38 27.02 Ramoli 

96 85.15 27.62 Markhu 

97 84.87 27.00 Birganj 

98 85.17 27.42 Makwanpur 

99 84.82 27.55 Beluwa 
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100 85.00 27.03 Kalaiya 

101 85.02 26.92 Kolbhi 

102 85.13 26.95 Chuntaha 

103 84.98 27.43 Rajaiya 

104 85.38 28.28 Timure 

105 84.82 28.05 Aru Ghat 

106 84.93 27.87 Dhading 

107 85.87 27.87 Gumthang 

108 85.62 27.80 Nawalpur 

109 85.72 27.78 Chautara 

110 85.20 27.68 Thankot 

111 85.60 27.95 Sarmathang 

112 85.57 27.87 Dubachaur 

113 85.57 27.78 Baunepati 

114 85.65 27.70 Mandan 

115 85.72 27.63 Dolal Ghat 

116 85.63 27.92 Dhap 

117 85.90 27.78 Barabhise 

118 85.75 27.57 Pachuwar Ghat 

119 85.48 27.75 Sankhu 

120 85.52 27.58 Khopasi (Panauti) 

121 85.42 27.67 Bhaktapur 

122 85.32 28.17 Thamchit 

123 85.55 28.00 Tarkhe Ghyang 

124 85.42 27.70 Changu Narayan 

125 85.33 27.60 Chapa Gaon 

126 85.72 27.70 Sanga chowk 

127 85.78 27.70 Thokarpa 

128 85.42 27.77 Sundarijal 

129 85.28 27.58 Lele 

130 85.25 27.68 Naikap 

131 85.42 27.75 Sundarijal 

132 85.63 27.90 Dhap 

133 85.25 27.75 Nararjun 
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134 86.10 27.68 Nagdanda 

135 86.05 27.67 Charikot 

136 86.05 27.52 Melung 

137 86.17 27.18 Bahun Tilpung 

138 85.67 27.08 Pattharkot (east) 

139 85.92 27.03 Tulsi 

140 86.17 26.92 Chisapani Bazar 

141 85.82 27.45 Nepalithok 

142 85.50 27.33 Hariharpur Ghad 

143 85.78 26.88 Gausala 

144 85.57 26.87 Malangwa 

145 86.08 27.47 Manthali 

146 86.72 27.70 Chaurikhark 

147 86.57 27.43 Pakarnas 

148 86.75 27.35 Aisealukhark 

149 86.42 27.48 Mane Bhanjyang 

150 86.43 27.13 Kurule Ghat 

151 86.83 27.03 Khotang Bazar 

152 86.22 26.65 Siraha 

153 86.58 27.50 Salleri 

154 86.80 27.22 Diktel 

155 86.38 27.55 Sirwa 

156 86.90 26.60 Barmajhiya 

157 87.28 27.55 Num 

158 87.28 27.13 Leguwa Ghat 

159 87.23 27.03 Munga 

160 87.33 26.93 Mul Ghat 

161 87.15 26.93 Tribeni 

162 87.38 26.62 Haraincha 

163 87.17 26.82 Chatara 

164 87.42 27.77 Chepuwa 

165 87.22 27.28 Tumlingtar 

166 87.17 26.97 Machuwaghat 

167 87.15 27.37 Dingla 

168 87.78 27.55 Lungthung 
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169 87.78 27.48 Taplethok 

170 87.93 27.20 Memeng Jagat 

171 87.70 26.67 Damak 

172 87.98 26.63 Anarmani Birta 

173 88.03 26.88 Himali Gaon 

174 88.05 26.57 Chandra Gadhi 

175 87.97 26.68 Sanishare 

176 87.60 27.35 Dovam 

 

 


