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Abstract. We numerically investigate the early phase of nucleation on a planar fault 
with the rate- and state-dependent friction law, loaded externally by steady slip, to clar
ify its relation to fault instability. We define Rn as the invasion distance of the inward 
creep to characterize that phase. For a circular fault, the dependence of Rn on the di
mensionless parameters lb, lb-a, and IRA (all of these are proportional to the rigidity and 
the characteristic distance of the state evolution L and inversely proportional to the nor
mal stress and the fault radius) can be compiled. We found that Rn is proportional to 
lb (both aging law and slip law of the state evolution) and lb-a (aging law). In the case 
of the aging law only, there are two regimes (ordinary events and slow events) separated 
by the value of IRA. The regimes have different trend lines, although we could not mea
sure Rn for the case of IRA < 0.35 because of breaking of the mirror symmetry of in
stability along the loading direction. Rn in the slow event regime is smaller. Moreover, 
we investigated the effect of fault shape and found that a model with a long radius along 
the mode-2 direction has similar parameter dependence to circular faults, but a model 
with a long radius along the mode-3 direction has different ones. Our results imply that 
we can qualitatively estimate the fault instability parameters from the early phase of nu
cleation, although further research is necessary to enable application to actual faults. 

1. Introduction 

Earthquakes have mainly been observed using elastic 
wave detectors. Until now, many physical models have fo
cused on underground wave sources, namely, dynamic prop
agation of high-speed fault slips (dynamic ruptures). The 
equation of motion is solved in an elastic body with a cri
terion for stress drop on the fault. Assumptions such as 
a constant rupture velocity or a linear slip-weakening law 
(Ida [1972]) have been successfully used as criteria for stress 
drop (Madariaga [1976]; Mikumo and Miyatake [1978]; Day 
[1982], among many others). The studies showed certain re
lations between the distribution of initial shear stress, slip 
velocity, amount of slip, and rupture propagation velocity, 
as well as the characteristics of elastic wave radiation. How
ever, the models need an early initial condition to initiate 
dynamic rupture propagation. 

Nowadays, in contrast, there are excellent instruments 
for observation of crustal movement. These instruments can 
detect even slow fault slips during interseismic, preseismic, 
and postseismic periods. For example, GPS has already 
been used to detect a slow slip event with a slip velocity as 
slow as 10 cm/year (Miyazaki et al. [2006]). This indicates 
the importance of constructing physical models of interseis
mic, preseismic, and postseismic stress/strain accumulation. 
In particular, spontaneous nucleation of earthquake sources, 
which is caused by tectonic forces and is governed by the 
frictional properties of the fault, has been a target for re
searchers studying earthquake models. A considerable num
ber of them assume a rate- and state-dependent friction law 
(Dieterich [1979]; Ruina [1980]) since it can represent long
term stick-slip behavior with spontaneous nucleation pre
ceding dynamic instability (Tse and Rice [1986]; Lap1Lsta 
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and Rice [2003]). It can also represent slow interseismic and 
post seismic deformation (Marone et al. [1991]; Boatwright 
and Cocco [1996]; Li1L and Rice [2005]), as well as dynamic 
rupture propagation (Bizzarri et al. [2001]). Models based 
on the rate- and state-dependent friction law have been suc
cessfully used for simulating all of the above phenomena 
during an earthquake cycle. Fitting to actual data (using 
simple models with one degree of freedom) has also been 
successfully performed (e.g., Savage and Langbein [2008]; 
Helmstetter and Shaw [2009]). This study therefore follows 
the same strategy. 

In particular, the dependence of the nucleation parame
ters on the rate and state friction fault has been investigated 
in Dieterich [1992] as well as in subsequent studies R1Lbin 
and Amp1Lero [2005] and Ampuero and Rubin [2008]. They 
assumed a one-dimensional linear fault in a two-dimensional 
elastic body, loaded via quasi-uniform stress increasing along 
the entire fault. These studies have shown that nucleation 
evolves through several stages: (1) localization with a grad
ual increase in the slip rate, (2) self-acceleration of the slip 
rate at localized patches, and (3) growth (e.g., crack-like ex
pansion). They have also clarified some dependence of the 
frictional parameters on nucleation. The characteristic nu
cleation size depends on a, b, and L, which are the frictional 
parameters in the rate- and state-dependent friction law, as 
well as on the rigidity G of the elastic bulk and the effective 
normal stress ij. 

Although the above-mentioned results have contributed 
to our understanding of nucleation, a number of details re
main to be investigated, one of which is the model of stress 
loading, and another is related to the dimensionality of the 
parameters. Elaboration of both these points is expected to 
lead to better understanding of nucleation in actual faults. 
If we have a means of estimating frictional instability from 
nucleation, it would be possible to infer fault instability pa
rameters using excellent geodetic instruments such as GPS. 
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The "early" phase of nucleation (localization) is especially 
important from this point of view. 

Thus, in the present research, we perform numerical ex
periments to investigate the early phase of nucleation. First, 
we assume shear stress loading through slip deficits from 
steady slip, which has been successfully used in models 
of earthquake recurrence (e.g., Tse and Rice [1986]; Rice 
[1993]; Ben-Zion and Rice [1995]; Hori et al. [2004]), and the 
Omori aftershock law following stress perturbations (Kaneko 
and Lapusta [2008]). As Rubin [2008] discussed in his slow 
slip simulations, this difference in the stress loading model 
affects the mechanical equilibrium between the energy re
lease rate and the elastic strain energy. This stress loading 
model causes the propagation of aseismic slip (hereinafter 
called "creep") from the edges of the fault and hence leads 
to dependence of stress accumulation during interseismic 
periods on the fault size. Next, we prepare a model of a 
two-dimensional planar fault in a three-dimensional body 
in accordance with the dynamic rupture models and the 
earthquake recurrence models in the literature. Naturally, 
it is extremely difficult to obtain general results about nu
cleation, even for model faults. As a fundamental step, we 
assume an isolated fault with a simple geometry, as in Kato 
[2003] , which shows the entire cycle of slip events, including 
the processes of stress accumulation and release in a circular 
fault patch, by using the rate- and state-dependent friction 
law and quasi-dynamic approximation (Rice [1993]). We do 
not consider dynamic stress transfer caused by inertial ef
fects (Chen and Lapusta [2009]; Lapusta and Liu [2009]), 
even though its importance for earthquake cycles has been 
demonstrated in Lapusta and Liu [2009]' since the magni
tude of the term must be excessive during high-speed slips 
with strong wave radiation. 

2. Numerical Model 
2.1. Basic relations 

The relations between the frictional stress Tj, the load
ing shear stress T, the effective normal stress u, and the slip 
velocity v at each point are expressed as follows: 

Tf = uM = U [MO + aln(:J + blnClB)] (1) 

Gv 
T - Tf = - (2) 

2cs 

where M is the frictional coefficient; Mo is a reference value 
corresponding to steady slipping with a reference velocity 
va; a, b, and L are frictional parameters; G is the rigidity; 
and Cs is the shear wave velocity. Furthermore, B is a state 
variable that is equal to L/v for steady slipping and evolves 
via certain empirical evolution laws (to be described in Sec
tion 2.2). At the steady state, B = L/v, Eq. (1) can be 
represented as 

(3) 

Here, "a - b" is well known as an important parameter re
lated to slip instability. A negative value of a - b (a < b) is 
a necessary condition for spontaneous nucleation, although 
dynamic ruptures or aseismic slips can propagate along the 
fault even when a - b is positive (e.g., Tinti et al. [2005]; 
Perfettini and Ampuero [2008]). Moreover, on a numerically 
discretized fault plane, accumulation of the loading stress T 

at grid i (Xi, y;) depends on the fault slip u at all grids. In 
the case of background fault loading at a rate va, T (Xi, Yi) 
is calculated from the static response: 

where t is the time, and the stiffness kernel K is obtained 
from the elastostatic theory. To avoid singularities, the grids 
for T and u are laid in an overlapping pattern. The right
hand side of Eq. (2) represents the instantaneous stress 
drop caused by shear wave radiation (Brune [1970]; Rice 
[1993]; Fukuyama and Madariaga [1998]), which is called 
the radiation-damping term. 

2.2. State evolution laws 

As noted in Section 1, it is necessary to use an empirical 
evolution law for B in Eq. (1). In this regard, there are two 
widely used evolution laws (Dieterich [1979]; Ruina [1983]). 
One of these is the aging law: 

dB = 1 _ vB 
dt L 

and the other is the slip law: 

dB = _ vB In (VB) 
dt L L 

(5) 

(6) 

Both laws are based on laboratory experiments, and neither 
can reproduce all experimental results. Because of this im
perfectness, a considerable number of numerical studies in 
this field have used either of the laws as a constitutive law. 
A composite law is proposed in Kato and Tullis [2001]' in 
which the two laws are combined by introducing a cut-off 
velocity. This law has been used in Kato [2003] and several 
subsequent studies. However, many numerical models with 
the rate- and state-dependent friction law still assume one 
of the basic laws (either aging or slip). We therefore assume 
both basic laws in the present paper. 

2.3. Non-dimensionalization and calculation methods 

The constitutive Eqs. (1)-(4), together with (5) or (6), 
can be rendered dimensionless by introducing scaling factors 
for the length, velocity, and stress parameters. Here, when 
we introduce three scaling factors (the characteristic size of 
the fault R for length, Vo for velocity, and U for stress), the 
constitutive variables and parameters are rendered dimen
sionless as 

v' = V/VO,T' = T/U,Tf = Tj/U = M,C~ = cs/vo 

G' = G/u, K' = KR/u, vb = volvo = 1 

t' = tvo/R,u' = u/u = 1,u' = u/R 

L' = L/R,x' = x/R,y' = y/R,B' = BVo/R 

and the constitutive equations are written as 

, '( B') T j = M = Mo + a In v + b In L' 

, , G'v' 
T - Tf = 2c~ 

(7) 

(8) 

T' (x;, y;) = L L K' (x; - xj, y; - yj) [t' - u' (xj, yj )](9) 

x; Yj 

dB' v'B' 
-=1--- or 
dt' L' 

dB' = _ v' B' In (v' B) 
dt' L' L' 

(10) 
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Figure 1. (a) Model in this study: a planar fault in a three-dimensional homogeneous elastic body 
with a fault patch (with a negative value for a - b) and the outside of a steady-slipping region. (b) 
Cross section along the fault surface representing the lower surface viewed from the top. The black area 
represents the fault patch, and the arrow indicates the loading direction. 

In the calculations, the fault is discretized by introducing a 
square grid in which the edge size of each square is equal 
to 0.01 crack radii. Regarding the initial values, we set the 
steady-state condition as v' = 0.9, and e' = L'/0.9 for the 
entire grid. In the region of velocity weakening, in order to 
solve the above constitutive relations, we first differentiate 
Eqs. (7)-(9) and then integrate them together with Eq. (10) 
using the RK45 algorithm (Press et al. [1992]). Outside the 
region of velocity weakening, v' is set to become equal to 
v' = 1 soon after the calculation is started. To calculate the 
loading stress with Eq. (9), we use a two-dimensional FFT 
method, which entails the introduction of artificial periodic 
boundary conditions. Although we cannot avoid artificial 
noise perfectly, as in K ato [2003]; Chen and Lapusta [2009]' 
the introduction of the steady-slip assumption outside the 
region of velocity weakening decreases the noise. 

2.4. Fault settings 

We assume a two-dimensional planar fault in a three
dimensional homogeneous elastic body, and set a circular or 
elliptical region of velocity weakening (with negative a - b). 
The outside is assumed to have a constant tectonic loading 
rate (with v = va), which corresponds to the non-slip bound
ary condition in classical dynamic rupture models, since we 
(similar to Kato [2003]) implicitly assume a back-slip con
dition (Savage [1983]). This setting is illustrated in Figure 
1. 

2.5. Model parameters 

First, it should be noted that the only explicit parameter 
for the elastic bulk is G' 1[2c~]. This parameter affects only 
the radiation-damping term, in such a way as to prevent 
explosion of the slip velocity, and might not significantly af
fect nucleation. In this study, we use two values for this 
parameter (1.55 x 10-10 and 1.55 x 10- 12 ) and confirm that 
the effect is small. Furthermore, the rigidity G appears im
plicitly in the elastic kernel K. We tentatively assume that 
G = 34.3 [GPa] and since the rigidity fluctuates relatively 
little within the seismogenic portion of the crust, the as
sumption is unlikely to limit the generality of the obtained 
results. 

We also perform numerical experiments by varying the 
remaining parameters, namely, a, b, and L'. In addition, 
both state evolution laws are used, as mentioned above. In 
all cases, the parameter range for which we perform the ex
periments is alb::;' 0.5, since a and b are considered to be 
comparable values in terms of the thermally activated rhe
ology of the real contact area (Nakatani and Scholz [2004]). 

In order to discuss the dependence of the frictional pa
rameters on nucleation, it is preferable to introduce dimen
sionless parameters for the slip instability. Referring to Di
eterich [1986], we normalize G I R (ex effective fault stiffness 
around the fault center) by some critical values. As a con
cept, in Ruina [1983], the critical stiffness (b - ala I L is 
obtained by performing linear stability analysis. We next 
obtain the dimensionless parameter lb-a = G' L' I(b - a). 
As another concept, in Dieterich [1992]' it is proposed that 
nucleation might not depend on b - a but on b alone. We 
then obtain another dimensionless parameter lb = G' L' lb. 
In addition, in Rubin and Ampuero [2005], one more pa
rameter is introduced, only for the aging law. It is de
fined as IRA = lb-a[bl(b - a)] = Ib[b2/(b - a)2] with non
dimensionalization. Qualitatively, smaller lb-a,lb-a, and 
IRA result in more unstable fault. 

3. Results 

3.1. Circular faults 

First, we present the results for a simple circular fault. 
The characteristic fault size R is equal to the fault radius. 
3.1.1. In the case of the aging law 

In this section, we present the results obtained using the 
aging law (de'ldt' = 1 - vie' I L'). 

One set of calculation results is presented in Figure 2, 
which shows stick-slip behavior after occurrences of sev
eral slip events from the initial condition. During the ini
tial phase of the interseismic period, the slip velocity on 
the entire fault is lower than the loading rate (Figure 2(a); 
loglQ(v') = 0 indicates that the slip velocity is equal to the 
loading rate va). The creep front then propagates from out
side, leading to spontaneous stress concentration around the 
fault center. The slip velocity at the creep front increases 
with its inward propagation. Figures 2(b) and (c) show 
snapshots of this early phase of nucleation when the maxi
mum value of loglo (v') on the fault exceeds 1 (panel b) and 
2 (panel c). Furthermore, Figure 2 (d) shows a later phase 
immediately followed by high-speed slip propagation. After 
that, the high-speed slip propagates outwards and stops at 
the fault edge (Figure 2(e)). The slip velocity on the en
tire fault subsequently decreases and again falls below the 
loading rate (Figure 2 (f)). 

Figure 3 shows the same stick-slip behavior via plotting 
[2 = v' e' I L'. The black area represents [2 = v' e' I L' < 1, 
de' I dt' = 1 - [2 > 0 (strengthening); the red area repre
sents de' I dt' < 0 (weakening); and the blue area represents 
de'ldt' '::::: 0 (nearly steady state). In panels (a) and (b), the 
creep front (located at the outer boundary between the red 
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Figure 2. Set of calculation results for the case of the aging law in the OE regime (the definition of this 
regime is given in Section 3.1.1), with lb = 0.037, lb-a = O.Hi, and IRA = 0.694. In the upper two figures, 
the solid lines indicate the temporal evolution of the slip at the fault center. The figure on the right is 
an enlarged version of the figure on the left; the colored points correspond to those in the lower figures 
and indicate the temporal evolution of the slip velocity, 10glO v'. The alphabetical order of the six lower 
figures follows the temporal order in the upper figures. The black region around the fault center in panel 
(b) represents the area of Snl and in panel (c) represents that of Sn2. 

and blue areas) is propagating into the black area. In panel 
(c), the inward creep propagation almost stops, and the slip 
velocity around the fault center (red area) starts to increase 
owing to frictional weakening. Thus, at that moment, the 
early phase of nucleation may finish and the subsequent self
acceleration phase starts. A set of such processes repeats 
itself on a fixed fault. 

In particular, we focus on the early phase of nucleation, 
as shown in panels (a-c) in Figures 2 and 3. In order to char
acterize this phase, we measure the "locking center area", 
with loglo(v') < 0, when the maximum value of loglo(v') 
on the fault exceeds 1, and determine Snl and R n1 . Snl is 
the relative size of the area of the locking center with re
spect to the entire fault, and Rnl = 1 - .VS;;; approximates 
the length from the fault edge to the creep front around the 
locking center area. 'liVe also determine Sn2 and Rn2, when 
the maximum value of loglo(v') on the fault exceeds 2. The 

relation between Sn and Rn is schematically illustrated in 
Figure 4. 

Extensive calculations were performed by varying the fric
tional parameters, and the results are reported in Tables 1 
and 2. All of the cases show stick-slip behavior. The char
acteristic sizes (Snl, R n1 , Sn2, and R n2) in the early phase 
of nucleation depend on the dimensionless frictional param
eters, lb, lb-a, and IRA, in various ways. 

Initially, we classify the results into two regimes: "or
dinary events" (OEs) and "slow events" (SEs). 'liVe define 
SEs as the case when the maximum slip velocity v' does not 
reach 2c~a/G', which is a characteristic condition of high
speed slip. We can obtain this by differentiating (7) and (8) 
with respect to t': 

[ G'. ~] dv' = dT' _ b(d()' /dt') 
2c~ + v' dt' dt' ()' 

(11) 
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Figure 3. Temporal evolution of loglo rl in the same case as in Figure 2. The alphabetical order of 
the figures follows that in Figure 2. The black area represents rl = v' ()' I L' < 1, dB' I dt' = 1 - rl > 0 
(strengthening); the red area represents d()' Idt' < 0 (weakening); and the blue area represents d()' Idt' "-' 0 
(nearly steady state). 

When v' » 2c:aIG', the change in the slip velocity (dv' I dt') 
is governed by radiation damping. This never occurs in the 
SE regime but does in the OE regime after nucleation. We 
confirmed that separation of the two regimes depends on the 
value of IRA. A value of IRA lower than approximately 0.7 
leads to the OE regime and IRA> 1.0 leads to the SE regime. 
The dependence of these regimes on IRA corresponds to the 
results obtained with the two-dimensional model in Rubin 
[2008]. Next, we found that the dependence of Snl, Rnl , 
Sn2, and Rn2 on the non-dimensional frictional parameters 
lb and lb-a in the OE regime are different from those in the 
SE regime. 

Figures 5 and 6 show the dependence of Snl, Rnl , Sn2, 
and Rn2 on lb, lb-a, and IRA in the OE regime. The numer-

Figure 4. Schematic of the relation between the lock
ing center area Sn and the characteristic length from the 
fault edge to the creep front, R n, for a circular fault. Rn 
is defined as 1 - vs;,. We measure Snl (and Rnd when 
the maximum slip velocity is 10 times the loading rate, 
and Sn2 (and R n2 ) when the maximum slip velocity lS 
100 times the loading rate. 

ical results imply that Snl and Sn2 (Rnl and R n2 ) depend 
on lb-a and lb, but there seems to be no clear dependence 
on IRA. We fit the results to the data using Rn ex: (lb) and 
Rn ex: (lb-a). The reason for assuming this type of fitting 
will be discussed in Section 4. 

As mentioned above, numerical experiments showed that 
the parameter dependence in the SE regime differ from those 
in the OE regime. All of the results are described in Table 
2. Figure 7 shows the dependence of Snl (and R nl ) on lb, 
lb-a, and IRA. Snl (and R nl ) can no longer be fitted with 
the lines used in the OE regime (see Figure 5). The results 
imply that the early phase of nucleation in the SE regime 
tends to be distributed over wider ranges than in the OE 
regime. 
3.1.2. In the case of the slip law 

In this section, we present the results obtained with the 
slip law (d()'ldt' = -In(v'()'IL')v'()'IL'). 

First, we confirm that almost none of the ranges for the 
SE regime are present. For all practical purposes, only the 
OE regime exists. This tendency of the slip law was also re
ported in Rubin [2008]; this tendency might be pronounced 
in our model since the model does not contain any regions of 
velocity strengthening (alb> 1). In order to cause sponta
neous slow slip events to appear in a fault with the slip law, 
it is necessary to have rheological frictional heterogeneities 
(Mitsui and Hirahara [2008]) or evolution of pore fluid pres
sure (Segall et al. [2010]). 

The results are presented in Table 3. Figures 8 and 9 
show the dependence of Snl, R nl , Sn2, and Rn2 on lb, lb-a, 
and IRA. The numerical results imply that Snl and Sn2 (Rnl 
and Rn2 ) depend on lb but are independent of lb-a and IRA. 
We fit the results to the data using Rnl and Rn2 ex: lb. 

To support the above implication of the parameter depen
dence, we also present the results, using different symbols 
to specify the parameters, in Appendix A. 
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Figure 7. Dependence of Snl and Rnl on the param
eters for a circular fault in the case of the aging law in 
the SE regime. The open squares represent the results 
of numerical calculations. The dotted lines represent the 
fitting lines for the OE regime shown in Figure 5. (a) 
and (d) Results for lb. The solid line is a fitting line: 
Rnl = 0.53 + 21b. (b) and (e) Results for lb-a. The solid 
line is a fitting line: Rnl = 0.34+h-a. (c) and (f) Results 
for IRA. 
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and (f) Results for IRA. 
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tions. (a) and (d) Results for lb. The solid line is a fitting 
line: Rnl = 0.75 + 31b. (b) and (e) Results for lb-a. 
and (f) Results for IRA. 

(a) 

Q) 2 ,---~-----, 
() 
c 
ro 

1Q 
""D 

al 0 
.bi 
ro 
E -1 o 
z -2 L-~_~_~_-' 

-2 -1 0 2 
Normalized distance 

t 

(b) 

Q) 2 
() 
c 
ro 

1Q 
""D 

""D 
0 Q) 

.bi 
ro 
E -1 
0 
z 

-2 
-2 -1 0 

Normalized distance 

(c) 

t 
2 

Figure 10. Cross sections of the elliptical faults along 
the fault surface shown in Figure 1 (b). The black areas 
represent the fault patches, and the arrows indicate the 
loading directions. (a) Case of LM2. (b) Case of LM3. 

3.2. Elliptical faults 

Next, we consider elliptical faults, for which the ratio of 
the long radius to the short radius is 2. The area is assumed 
to be equal to that of a circular fault. The long radius is 
therefore yi2R and the short radius is RI yi2, where R is 
equivalent to the oval radius. Moreover, we construct two 
models. In one of the models, the direction of the long ra
dius is parallel to the loading direction, and we refer to this 
model as LM2 (long radius along mode-2 direction). In the 
other model, the direction of the long radius is perpendic
ular to the loading direction, and it is named LM3 (long 
radius along mode-3 direction). The two fault models are 
illustrated in Figure 10. Sn (Snl and Sn2) and Rn (Rnl and 
Rn2 ) for an elliptical fault are measured as in the case of a 
circular fault (Figure 11). 

We also perform some calculations for elliptical faults 
with the aging law in both the OE and SE regimes, and 
with the slip law. The data sets for the frictional parame-
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Figure 11. Schematic of the relation between the lock-
ing center area Sn and the characteristic length from the 
fault edge to the creep front, R n , for an elliptical fault. 
As above, Rn is defined as 1 - VS;:. 
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Figure 12. Dependence of Snl on lb. The open squares 
represent the results for a circular fault; the crosses, for 
an LM2 fault; and the solid circles, for an LM3 fault. (a) 
Case of the aging law in the OE regime. (b) Case of the 
aging law in the SE regime. (c) Case of the slip law. 

ters are chosen from the cases of a circular fault. The results 
are listed in Tables 4 and 5. 

Figure 12 shows the dependence of Snl on lb with the 
aging law in the OE and SE regimes, and with the slip law, 
which were used to check the effects of the fault shape. We 
found that the results for the LM3 fault are clearly differ
ent from those for the LM2 fault and for the circular fault. 
Namely, Snl for the LM3 fault is larger than that for the cir
cular fault, but the values for the LM2 fault and the circular 
fault are almost the same. 

3.3. "Creep" propagation imposed by state variable 
evolution 

We measured Sn (and Rn) as characteristic sizes in the 
early phase of nucleation. The sizes reflect the character
istics of creep propagation from the fault edge; Figure 13 
shows an example of propagation of the creep front from 
the fault edge. The propagation velocity V;TOP gradually 
increases with propagation, which is associated with the in
crease in slip velocity at the creep front. As explained in 
Appendix B, the propagation velocity v;rop is first approxi
mated by Eq. (B1). 

Only in the case of a fault governed by the aging law do 
the characteristic sizes also depend on lb-a (Figures 5-7). 
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Figure 13. Example of creep front propagation for 
lb = 0.037, lb-a = 0.16, and IRA = 0.694 (the same 
case as in Figure 2). The vertical axis represents the dis
tance of the creep front from the fault edge divided by 
R. The line is plotted until the point where the slip rate 
at the front reaches 100vo. The upper value corresponds 
to Rn2 . 

In order to explain the dependence of l~_a in the case of the 
aging law, we propose a possible condition governing the 
creep front (instability front), namely, d2()' /dt,2 = O. Since 
d()' / dt' must be positive in front of the instability front, neg
ative around it, and positive behind it (see Figure 3 as an 
example), d2()' /dt'2 should be zero around the front. We 
then write ()' and v' at that point as ()~f and v~f' From the 
state evolution of the aging law (Eq. (5)), d2()~f / dt'2 = 0 
can be rewritten as 

Here, by taking the respective time derivatives of Eqs. (7) 
and (8), and excluding the radiation-damping term, we ob
tain 

(13) 

Next, substituting Eq. (13) into (12), the slip velocity at 
the point is obtained: 

, L'[(b - a)/()~f - dT~f/dt'] 
Vaf = b - a (14) 

This relation might lead to the dependence on b - a of the 
fault governed by the aging law. For example, by assuming 

vIrant c:::: v~f in Eq. (B1), we arrive at 

, L'[(b - a)/()~f - d<ddt']G' 

vprap c:::: b(b _ a) In(();ni[(b - a)/()~f - dT~f/dt'l/(b - a)) 

(15) 

Although Eq. (15) still indicates complex parameter de
pendence, we can reduce it using the relations lb = G' L' /b 
and lb-a = G' L' /(b - a) as follows: 

, [ [(b-a)/()~f-dT~f/dt'] ] 
vprop c:::: lb (b _ a) In(();ni[(b - a)/()~f - dT~ddt']/(b - a)) 

(16) 

, [ [(b - a)/()~f - d<ddt'] ] 
vprap c:::: lb-a bln(();ni[(b _ a)/()~f - dT~f/dt'l/(b - a)) 

(17) 

This implies the following approximate relations: v;rap ex: lb 
or v;rap ex: lb-a. In fact, our results regarding Rn2 (Sn2) 
in the OE regime in Figure 6 imply Rn ex: lb-a, and Rnl 
(Snd in the SE regime in Figure 7 implies both Rn ex: lb 
and Rn ex: lb-a. 

For a fault governed by the slip law, we can adopt the 
same strategy. In the case of the slip law (Eq. (6)), 
d()~d dt'2 = 0 is changed to 

[V~2f()~f/L']ln(v~f()~dL') - ()~f(dv~ddt') 
L' 

= 0 (18) 

Substituting Eq. (13) in (18), we obtain 

[ ( V~f()~f)]' '( b d<f) b-aln --- v f=L ----
L' a ()' dt' af 

(19) 

Next, by comparing Eq. (19) with Eq. (14), it becomes 
clear why there are no b - a dependence in the case of the 
slip law. Assuming vIrant c:::: v~f again, Eq. (B1) is modified 
as follows: 

v' ~ L'[hlg~r - dT~rldt']G' 
pmI' - h[b - a In( v~rg;rI L') ] In (gi:' [h l g;r - dT~! I dt'] / [h - a In(V':fg~rlL')]) 

(20) 

(21 ) 

Indeed, an approximate relation v;rop ex: lb might work for 
the slip law fault since Rn ex: lb, as shown in Figures 8 and 
9. 

4. Discussion 

4.1. Effects of IRA in the case of the aging law 

In our results using the aging law, IRA determined the 
regime of the slip events; this corresponds with previous 
studies using two-dimensional models, as is explained in Ap
pendix C. In our three-dimensional model, IRA < 0.7 led to 
the OE regime, but IRA > 1.0 led to the SE regime. We 
found that the characteristic sizes of early nucleation (Rn 
and Sn) depend on the regime (see Figure 7). Rn in the SE 
regime is smaller (in other words, Sn in the SE regime is 
larger) unless the maximum slip rate at the creep front does 
not reach the threshold value for measuring Sn. However, 
explaining this fact is rather difficult. We think that Eq. 
(B1) could provide a hint. Here, ();ni in Eq. (B1) represents 
the magnitude of the strength healing from the stress drop 
in a prior event. In addition, the slip velocity at the creep 
front in the SE regime always involves certain limits, which 
are considerably smaller than 2c~a/G'. For example, many 
of our results for Sn2 in the SE regime are 0 (Table 2), since 
10glO (v') never reaches 2 in these cases. This point will be 
clarified in future studies. 
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Moreover, the minimum value of IRA we tested was 0.351. 
What happens in the case of IRA < 0.357 We tried many cal
culations with this parameter range. However, all of the cal
culations showed that the mirror symmetry of slip evolution 
along the loading direction breaks, namely, slip instability, 
occurs disproportionately near the fault tip and high-speed 
slip propagates unidirectionally. Such breaking of the mir
ror symmetry was also shown in Chen and Lapusta [2009] 
(Figure 6 in their paper). This is not a physical result due to 
numerical instability, because the fault is assumed to have 
mirror symmetry along the loading direction. We also tried 
calculations with smaller grid sizes and the same frictional 
parameters, but the results did not change. Therefore, we 
concluded that IRA < 0.35 leads to breaking of the mir
ror symmetry, resulting in earlier nucleation than in other 
cases. This limitation would be important in discussing nu
merical results for faults with more complex distributions of 
frictional parameters. 

We further confirmed that the regime classified by IRA is 
almost consistent with the calculation results in a previous 
study with an inertial effect and a velocity-strengthening 
region surrounding the velocity-weakening patch (Chen and 
Lapusta [2009]). The results shown in Figure 3 in Chen and 
Lapusta [2009], IRA R:; 0.92, seem to correspond to the SE 
regime; those shown in Figure 5, IRA = 0.76, correspond to 
the OE regime; and those shown in Figure 6, IRA R:; 0.33, 
correspond to the case where breaking of the mirror sym
metryoccurs. (Note that we did not show the cases for the 
regime transition range (0.7 < IRA < 1.0) in this study, since 
these led to complex fault behavior.) 

4.2. Effects of fault geometry 

We found that the direction of the fault loading affects 
nucleation. Figure 12 shows that Snl for an LM3 fault is 
larger than those for circular and LM2 faults, for both the 
state evolution laws. The difference between the loading di
rections of the LM2 and LM3 faults notably affects the early 
phase of nucleation. 

In order to illustrate a particular example, Figure 14 
shows snapshots of the early phase of nucleation for LM2 
and LM3 faults with the same frictional parameters. In the 
case of the LM2 fault, the nucleation shape looks similar to 
the fault shape as well as the shape in the case of a circular 
fault. By contrast, in the case of the LM3 fault, the nucle
ation shape looks different from that of the fault shape. This 
may lead to the above characteristics in the case of the LM3 
fault. Moreover, especially in the case of the aging law, we 
confirm by some trial calculations that the parameter range 
for the SE regime in the case of the LM3 fault is apparently 
larger (Z, which is defined in Appendix C, is smaller) than 
in the case of the circular fault. 

One possible explanation for this point is that evolution 
of slip instability is determined by the minimum dimension 
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Figure 14. Snapshots of early nucleation when loglO v' 
reaches 2, in the case of the slip law for lb = 0.206, 
lb-a = 0.103, and IRA = 0.412. (a) Case of LM2. (b) 
Case of LM3. 

of the ellipse. The section along the minor axis of the LM2 
fault corresponds to a mode-3 direction, whereas that of the 
LM3 fault corresponds to a mode-2 direction. Since, in gen
eral, the effective rigidity for elastic deformation in a mode-2 
direction is larger than the rigidity (a multiple of 1/ (1- Po), 
where Po is Poisson's ratio), nucleation just before dynamic 
instability should require a larger dimension in the mode-2 
direction (this is identical to the nucleation area shown in 
Figure 2(d)). This would affect the early phase of nucleation. 
On the LM3 fault, because the minor axis corresponds to the 
mode-2 direction, the larger dimension of nucleation along 
the minor axis may lead to earlier instability occurrence, a 
shorter Rn, and a larger Sn. 

Such characteristics might cause differences between large 
strike-slip faults (LM2-like) and dip-slip faults (LM3-like) as 
subducting plate boundaries. 

4.3. Implications for actual faults 

During the early phase of nucleation in our model, the 
creep front propagates from the fault edges into the lock
ing center area, depending on the value of lb (and also lb-a 
in the case of the aging law). This means that nucleation 
definitely depends on fault sizes, since lb is inversely propor
tional to the characteristic fault length R. In addition, if the 
characteristic length L for the state evolution is assumed to 
be proportional to R, the early phase of nucleation behaves 
as a scale-independent (self-similar) phenomenon, although 
such an assumption is sophistic. 

Moreover, we obtained fitting of the results to the cal
culation data using Rn ex: lb and Rn ex: lb-a , as shown in 
Figures 5-9. However, these depend on our assumptions 
of simple fault geometries, homogeneities of the parameters 
within the velocity-weakening region, and steady slip out
side the region. The fitting lines would be inappropriate for 
application to actual faults. 

Instead, the important implications of our results for ac
tual faults are as follows. The early phase of nucleation is 
certainly controlled by Rn ex: lb and Rn ex: lb-a, where the 
values of lb and lb-a are local values around the inward creep 
front. After this early phase, however, inward propagation 
is masked by the increase in the slip rate within the locking 
center area due to stress concentration. This later phase 
is no longer controlled by the above relations (for example, 
the OE and SE regimes in the case of the aging law, sepa
rated by the value of IRA). In particular, heterogeneities of 
the frictional parameters may allow local stress to concen
trate highly and lead to an earlier occurrence of unstable slip 
events than in a homogeneous model. In other words, Rnl 
and Rn2 can be shortened by fault heterogeneities. Further
more, introduction of a velocity-strengthening region sur
rounding the velocity-weakening patch might affect early 
nucleation. Kato [2008] showed several examples of model 
calculations on such faults with heterogeneities. We are on 
the way to understanding the whole system for applying the 
model to actual faults. 

5. Conclusion 

We investigated the dependence of the size of early nu
cleation on various parameters for homogeneous faults. We 
assumed the rate- and state-dependent law as a constitutive 
friction law, with both the aging and slip laws. The pa
rameter range in which we performed the experiments was 
alb 2: 0.5. To focus on the early phase of nucleation, we 
defined Sn as the relative size of a lockin[.£enter area with 
respect to the entire fault, and Rn = 1- V Sn as the invasion 
distance of an inward creep. When the slip velocity at the 
creep front became 10 times the loading rate, we measured 
Snl (Rnl); when it became 100 times the loading rate, we 
measured Sn2 (Rn2). 
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First, for a circular fault, we were able to compile the 
dependence of Sn and Rn on the dimensionless parameters 
lb, lb-a, and IRA. For faults governed by the aging law, 
we classify the results into two regimes, depending on the 
value of IRA. One regime is referred to as the OE (ordinary 
events) regime, which is characterized by IRA < 0.7, and 
the other, named the SE (slow events) regime, corresponds 
to IRA> 1. In both regimes, Rn is proportional to lb and 
lb-a. Moreover, the regimes have different trend lines (Fig
ure 7), although we could not investigate this for the case 
of IRA < 0.35 because of breaking of the mirror symmetry 
of the slip instability along the loading direction. Rn in the 
SE regime is smaller (in other words, Sn in the SE regime 
is larger) than in the OE regime unless the maximum slip 
rate at the creep front does not reach the threshold value for 
measuring Sn. Furthermore, in faults obeying the slip law, 
there is practically no SE regime. In this case, Rn is pro
portional to lb but independent of lb-a. The reason for the 
apparent dependence of Rn on lb (both aging and slip laws) 
as well as on lb- a (aging law) can be partly explained in 
terms of the propagation velocity of the inward creep front. 

Next, we investigated the differences between elliptical 
and circular faults. We constructed the LM2 model (long 
radius along mode-2 direction) and the LM3 model (long 
radius along mode-3 direction), and found that they are 
clearly different. For LM2 faults, the parameter dependence 
of early nucleation is similar to that for circular faults, but 
that for LM3 faults is different. Furthermore, in the case of 
LM3 faults, Rn is smaller (thus Sn for LM3 faults is larger), 
and it was found that the direction of the fault loading does 
indeed affect early nucleation. 

Our results imply that the fault instability parameters 
(particularly lb) can be qualitatively estimated from the 
early phase of nucleation. However, the parameter depen
dence are not simple, even for modeled faults, since they dis
play fundamental relations with the state evolution law and 
the fault geometry. Furthermore, they can be drastically af
fected by fault heterogeneities. More studies are necessary 
before this approach can be applied to actual faults. 
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Figure 15. Dependence of Rn2 on lb-a and IRA for a 
circular fault, using different symbols, in response to the 
value of lb. (a) Case of the aging law in the OE regime 
(corresponding to Figures 6 (e) and (f)). (b) Case of the 
slip law (corresponding to Figures 9(e) and (f)). 

Appendix A: Results with specifying parameters 

Figures 5-9 show the compiled results for the parameters 
listed in Table 1-3. However, they do not concisely display 
the parameter range. To achieve this, we show the results, 
using different symbols, in response to the value of lb because 
lb was related to early nucleation in all cases. 

Figure 15 shows the dependence of lb-a and IRA on Rn2 
again, for both the aging law (OE regime) and the slip law. 
We can reconfirm that only lb-a in the case of the aging law 
has a clear dependence on Rn 2. 

Appendix B: General expression of "creep" 
propagation 

As some studies have shown (e.g., Ida [1973]; Ampuero 
and Rubin [2008]), the propagation velocity V~rop. is gen
erally expressed as v~rop = dz'ldt' = (du' Idt')(dz' Idu') = 
VIrant (dz' I du'), where z' is the spatial coordinate of the 
creep front and viront is the slip velocity at the front. Fur
thermore, dz' I du' is of the order of G' I II Tf since II Tf "-' 
G' (du' I dz'), where llTf is the stress drop from its peak value 
around the front. The difference of Eqs. (1) and (3) yields 
llTf "-' b In( v[ronte;nd £'), where e;ni is the state variable 
immediately 111 front of the creep front. The propagation 
velocity v;rop is therefore approximated as follows: 

(El) 

Thus, the creep propagation velocity v~rop fundamentally 
depends on b, Vtront' e;ni, and £'. 

Qualitatively, a larger b (smaller lb) leads to a slower 
v;roP' smaller R n , and larger Sn, corresponding to our re
sults (Figures 5-9). 

Appendix C: Differences between the OE 
and SE regimes 

As described above, nucleation in the case of a fault gov
erned by the aging law is divided into two regimes, depend
ing on the value of IRA. This division can be explained by 
introducing the Griffith criterion G~ = G~ from fracture 
mechanics, as described in Rubin and Ampuero [2005]; Am
puero and Rubin [2008]; Rubin [2008]' where G~ is the (nor
malized) effective fracture energy and G~ is the (normalized) 
energy release rate. The point here is that G~ depends on the 
stress drop from its peak value llTf "-' bln(vtronte;nd£'), 
but G~ depends on the stress drop from its ambient value 
llaT] "-' (b - a)ln(vtronte;nd£'). In the case of the ag
ing law, which behaves as linear slip weakening (Cocco and 
Bizzarri [2002]' the weakening rate is ~ bl £') and G~ is 
approximated as follows: 

, llT? £' 
Gc = -2-b- (C1) 

G~ is the multiple of the slip increment and llaTf at the 
creep front. Let us consider a quasi-circular slip front ex
panding outwards from the fault center (with normalized 
radius R',). The slip around the fault center can be repre
sented as ZR',llaTfIG' (remember that the effective stiff
ness is ex: G'). Further, Z has a constant value. Then, G~ 
is given as ZR',llaT? IG'. The Griffith criterion G~ = G~ 
determines the following threshold value R~: 

G'£'b2 
~-~~=IRA 
b(b - a)2 

(C2) 



MITSUI AND HIRAHARA: LAYOUT BY 1ST AUTHOR X-ll 

When R~ > R~, the slip front can expand unstably. In 
such cases, the slip velocity at the front would easily ex
ceed 2c~a/G' and can be restrained by radiation damping. 
This is the OE regime. In contrast, when R~ < R~, the slip 
velocity at the front evolves more moderately. Specifically, 
1 < R~ (Z < IRA) leads to a moderate slip event over the 
fault (care should be taken with regard to R~ < R' = 1). 
Therefore, Z < IRA becomes the definition of the SE regime, 
and Z > IRA is the definition of the OE regime. Our results 
indicate Z : 0.7-1.0 for a circular fault, and this value can 
be changed for elliptical faults. This will be investigated in 
future studies. 
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Table 1. Results for a circular fault with the aging law in the OE regime. The parameter ranges of the trials 
are as follows: 0.004 < a < 0.04, 0.005 < b < 0.05, 0.001 < b - a < 0.01, 0.375 x 10-6 < L' < 6 X 10-6 , 

0.114 < lb-a. < 0.343,0.026 < lb < 0.172, and 0.351 < IRA < 0.694. 

case a b L' (xlO 6) lb-a lb IRA Snl [%] Sn2 [%] Rnl [%] Rn2 [%] 
1 0.01 0.013 1.4 0.160 0.037 0.694 4.83 0.98 78.0 90.1 
2 0.01 0.013 1.2 0.137 0.032 0.595 5.22 1.23 77.1 88.9 
3 0.01 0.013 1 0.114 0.026 0.495 5.59 1.58 76.4 87.4 
4 0.01 0.017 ,~ 0.24,~ 0.101 0.,~9,~ 1.58 0 87.4 100 
,~ 0.01 0.017 4 0.196 0.081 0.476 2.26 0.46 8,~.0 93.3 
6 0.01 0.017 3 0.147 0.061 0.357 3.44 1.61 81.5 87.3 
7 0.02 0.03 6 0.206 0.069 0.617 2.47 0.30 84.3 94.6 
8 0.02 0.03 5 0.172 0.057 0.515 2.91 0.66 82.9 91.9 
9 0.02 0.03 4 0.137 0.046 0.412 3.53 1.24 81.2 88.8 
10 0.005 0.008 1.5 0.172 0.064 0.457 2.98 0.81 82.7 91.0 
11 0.005 0.008 1.25 0.143 0.054 0.381 3.59 1.49 81.1 87.8 
12 0.005 0.008 1.15 0.131 0.049 0.351 3.99 1.96 80.0 86.0 
13 0.005 0.01 5 0.343 0.172 0.686 0.39 0 93.8 100 
14 0.005 0.01 4 0.274 0.137 0.549 1.10 0 89.5 100 
L~ 0.004 O.OO,~ 0.375 0.129 0.026 0.643 6.64 1.57 74.2 87.5 
16 0.04 0.05 3.75 0.129 0.026 0.643 5.84 1.33 75.8 88.5 
17 0.008 0.014 5 0.286 0.123 0.667 1.12 0 89.4 100 
18 0.008 0.014 4 0.229 0.098 0.,~33 1.77 0.12 86.7 96.6 

Table 2. Results for a circular fault with the aging law in the SE regime. The parameter ranges of the trials 
are as follows: 0.004 < a < 0.04, 0.005 < b < 0.05, 0.001 < b - a < 0.01, 1.125 x 10-6 < L' < 12.6 X 10-6 , 

0.294 < lb-a < 0.617,0.076 < lb < 0.309, and 1.0,~ < IRA < 2.08. 

case a b L' (x 10 6) lb-a. lb IRA Snl [%] Sn2 [%] Rnl [%] Rn2 [%] 
19 0.01 0.013 4.2 0.480 0.111 2.08 4.65 0 78.4 100 
20 0.01 0.013 3.6 0.412 0.095 1.78 7.73 0 72.2 100 
21 0.01 0.013 3 0.343 0.079 1.49 11.0 0.30 66.8 94.6 
22 0.01 0.015 9 0.617 0.206 1.85 0 0 100 100 
23 0.01 0.015 7.5 0.515 0.172 1.54 1.54 0 87.6 100 
24 0.01 0.015 6 0.412 0.137 1.23 5.65 0 76.2 100 
25 0.02 0.027 10.5 0.,~15 0.133 1.98 2.,~2 0 84.1 100 
26 0.02 0.027 8.25 0.404 0.105 L~6 7.44 0 72.7 100 
27 0.02 0.027 6 0.294 0.076 1.13 11.9 1.44 65.5 88.0 
28 O.OO,~ 0.008 4.,~ O.,~L~ 0.193 1.05 1.09 0 89.6 100 
29 0.005 0.008 3.75 0.429 0.161 1.14 4.12 0 79.7 100 
30 O.OO,~ 0.008 3.45 0.394 0.148 1.05 5.03 0 77.6 100 
31 0.005 0.01 9 0.617 0.309 1.23 0 0 100 100 
32 0.004 0.008 6.3 0.540 0.270 1.08 0 0 100 100 
33 0.008 0.016 12.6 0.540 0.270 1.08 0 0 100 100 
34 0.004 0.005 1.125 0.386 0.077 1.93 9.82 0 68.7 100 
3,~ 0.04 O.O,~ 11.25 0.386 0.077 1.93 9.83 0 68.6 100 

Table 3. Results for a circular fault with the slip law. The parameter ranges of the trials are as follows: 
0.005 < a < 0.022, 0.01 < b < 0.03, 0.002 < b - a < 0.01, 1 x 10-6 < L' < 6 X 10-6 , 0.114 < lb-a. < 0.343, 
0.026 < lb < 0.172, and 0.357 < IRA < 2.38. 

case a b L' (xlO 6) lb-a lb IRA Snl [%] Sn2 [%] Rnl [%] Rn2 [%] 
36 0.01 0.013 1.4 0.160 0.037 0.694 3.47 1.47 81.4 87.9 
37 0.01 0.013 1.2 0.137 0.032 0.595 4.24 2.04 79.4 85.7 
38 0.01 0.013 1 0.114 0.026 0.495 ,~.53 2.66 76.5 83.7 
39 0.01 0.01,~ 3 0.206 0.069 0.617 0.85 0.13 90.8 96.4 
40 0.01 0.015 2.5 0.172 0.057 0.515 1.23 0.44 88.9 93.4 
41 0.01 0.01,~ 2 0.137 0.046 0.412 1.88 1.00 86.3 90.0 
42 0.01 0.017 ,~ 0.24,~ 0.101 0.,~95 0 0 100 100 
43 0.01 0.017 4 0.196 0.081 0.476 0.44 0 93.3 100 
44 0.01 0.017 3 0.147 0.061 0.357 1.31 0.70 88.6 91.7 
4,~ 0.02 0.03 6 0.206 0.069 0.617 0.76 0.10 91.3 96.9 
46 0.02 0.03 ,~ 0.172 0.0,~7 0.,~15 1.21 0.41 89.0 93.6 
47 0.02 0.03 4 0.137 0.046 0.412 1.78 0.85 86.7 90.8 
48 0.005 0.01 5 0.343 0.172 0.686 0 0 100 100 
49 0.005 0.01 4 0.274 0.137 0.549 0 0 100 100 
50 0.005 0.01 3 0.206 0.103 0.412 0.07 0 97.4 100 
51 0.022 0.025 2.5 0.286 0.034 2.38 9.41 2.96 69.3 82.8 
52 0.013 0.015 1.75 0.300 0.040 2.25 6.13 1.80 75.2 86.6 
53 0.013 0.016 2.5 0.286 0.0,~4 1.52 2.74 0.63 83.4 92.0 
54 0.017 0.02 2 0.229 0.034 L~2 6.46 2.08 74.6 85.6 
5,~ 0.02 0.023 2 0.229 0.030 1.75 9.09 3.36 69.9 81.7 
56 0.01 0.012 2 0.343 0.057 2.06 3.05 0.61 82.5 92.2 
57 0.01 0.012 1.7,~ 0.300 0.050 1.80 3.,~3 1.00 81.2 90.0 
58 0.01 0.012 L~ 0.257 0.043 L~4 4.30 1.27 79.3 88.7 
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Table 4. Results for an LM2 fault. 
Aging law in the OE regime 

case a b L' (x 10 (, ) lb-a lb IRA Snl [%] Sn2 [%] Rnl [%] Rn2 [%] 
3 0.01 0.013 1 0.114 0.026 0.495 6.15 1.63 75.2 87.2 
6 0.01 0.017 3 0.147 0.061 0.357 3.50 1.59 81.3 87.4 
18 0.008 0.014 4 0.229 0.098 0.533 1.89 0.13 86.3 96.4 

Aging law in the SE regime 
23 0.01 0.015 6 0.412 0.137 1.23 5.47 0 76.6 100 
28 0.005 0.008 3.75 0.429 0.161 1.14 4.03 0 79.9 100 
34 0.04 0.05 11.25 0.386 0.077 1.93 10.7 0 67.3 100 

Slip law 
41 0.01 0.015 2 0.137 0.046 0.412 1.96 0.98 86.0 90.1 
44 0.01 0.017 3 0.147 0.061 0.357 1.35 0.67 88.4 91.8 
50 0.005 0.01 3 0.206 0.103 0.412 0.07 0 97.3 100 

Table 5. Results for an LM3 fault. 
Aging law in the OE regime 

case a b L' (xlO 6) lb-a lb IRA Snl [%] Sn2 [%] Rnl [%] Rn2 [% 
3 0.01 0.013 1 0.114 0.026 0.495 10.1 2.12 68.1 85.5 
6 0.01 0.017 3 0.147 0.061 0.357 4.60 1.63 78.6 87.2 
18 0.008 0.014 4 0.229 0.098 0.533 2.68 0.21 83.6 95.4 

Aging law in the SE regime 
23 0.01 0.015 6 0.412 0.137 1.23 8.07 0 71.6 100 
28 0.005 0.008 3.75 0.429 0.161 1.14 5.99 0 75.5 100 
34 0.04 0.05 11.25 0.386 0.077 1.93 12.4 0 64.8 100 

Slip law 
41 0.01 0.015 2 0.137 0.046 0.412 3.63 1.89 81.0 86.3 
44 0.01 0.017 3 0.147 0.061 0.357 2.23 1.21 85.1 89.0 
50 0.005 0.01 3 0.206 0.103 0.412 0.34 0 94.2 100 
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