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Abstract 

In this work, we examine the fluctuation of the intensity and the phase of an NMR signal 

during repetition of experiments and investigate possibilities of using these information to 

judge suspicious peaks, whose true colors may be noises or genuine signals.  We firstly 

analyze the intensity and the phase of an NMR signal separately, and show that for the 

accumulated spectral profile the contribution of the intensity is less than that of the phase.  

Secondly we show that we can de-noise a noisy spectrum by using the standard deviation of 

phase at each spectral point.  We then compare the de-noising effect of the present 

approach and that of the phase-covariance method proposed recently, which is an 

alternative method of appreciating phase distribution.  Finally, effects of the dispersion 

component are dicussed. 

 

  



 

1. Introduction 

The sensitivity of nuclear magnetic resonance (NMR) spectroscopy is low.  In many 

practical cases, resonance lines in the spectrum are buried in the noise, when the data is 

acquired only once.  To improve the signal-to-noise ratio (SNR), it is common to 

accumulate a number of free induction decays (FIDs).  When N FIDs are added 

together, SNR is increased by √  compared to that of the single scan signal.  Since 

this increase rate is rather slow, measurements often require very large N, making 

experiments quite time consuming.  Historically, the conventional signal accumulation 

scheme has been a natural choice, considering the limited data storage space.  On the 

other hand, recent progress in storage devices has made separate data recording feasible, 

as demonstrated by Ivchenko et al. in the context of multiplex phase cycling [1]. 

In this work, we propose to store the individual data separately and statistically 

analyze the data.  We show that such analysis gives us additional information that can 

be used to process the data in a more efficient manner than mere accumulation.  In fact, 

we recently proposed a signal analysis method for de-noising based on phase correlation 

between the NMR signal and the excitation pulse (the phase-covariance analysis [2]).  

In the following we analyze the distribution of the intensity and phase of the data points 

in terms of variance and covariance, and present their applications to de-noising a noisy 

spectrum and elimination of spurious signals. 

In this paper we propose two new NMR data processing methods, referred to as phase 



 

standard deviation weighting (PSDW) and phase covariance weighting (PCW), and 

examine these methods using experimental data, and show that PSDW and PCW are 

useful to judge signals and noises. 

  



 

2. Theory, results, and discussion 

2.1. A model of a quadrature NMR signal and noise 

A quadrature NMR FID of a single signal at Ω  may be given by  

 
exp Ω , 0

0, 0
 (1)  

where we assumed no noise involved and a Lorentzian lineshape with the spin-spin 

relaxation time of .   is Fourier transformed to give the spectrum written as 

 Ω
1

√2
exp Ω ⋅ exp Ω

exp  
(2)  

with Ω Ω , where  and  are written as 

 

2 1
 

(3)  

and 

 Arctan , (4)  

respectively.  At the center of the peak of Ω  Ω Ω , the phase factor is zero 

0 0 , while it reaches π 2⁄  at the far envelope.  This phase is related to the 

dispersion (the imaginary) component of the signal, and we shall hereafter refer to this 

phase as an intrinsic phase. 

More generally, a quadrature accumulated NMR signal at a frequency  may be given 

by the product of an intensity  and a phase factor as 



 

 ⋅ exp , (5)  

where  is the intrinsic phase and  represents the phase ascribed to the phase 

difference between the transmitter and the receiver systems and the 

frequency-dependent phase shift due to the experimental time delays, etc.  Since this 

phase can be removed by the conventional phase correction, the phase  is 

neglected hereafter for simplicity.  The overline in Eq. 5 denotes the averaging over the 

accumulation; 

 
⋅ exp

1
⋅ exp , 

(6)  

where  and  are the intensity and the phase of the signal at  in the j-th 

spectrum of the N accumulation.  Each  and  includes noise as 

 ⋅ exp ⋅ exp ⋅ exp , (7)  

where  and  are the intensity and the phase without noise, and  and 

 are the intensity and the phase of noise at  in the j-th spectrum, respectively 

(Fig. 1a). 

Fig. 1b describes two cases,  and ≲ .  When the intensity of the signal 

is larger than the intensity of the noise, the apparent distribution of the phase would be 

relatively small.  For a pure signal without the noise, the standard deviation  of the 

phase is zero.  On the other hand, the phase distribution and  would increase with 

the noise.  At frequencies where 0, only the noise exists and  becomes 



 

d 2π⁄
√

.  Hence,  at each frequency carries information as to 

certainty about whether the signal exists.  It may be also envisaged that the standard 

deviation of the signal intensity  would not be significantly different for the signal 

and the noise. 

    



 

2.2. Distribution of phase and intensity 

 In order to examine the distribution of the intensity and the phase experimentally, we 

performed 13C NMR of a low-concentration mixture of D,L-alanine (3 wt.%) and 

glycine (0.7 wt.%) in KBr powder.  The conventional combined techniques of 

cross-polarization (CP) and decoupling sequence (Fig. 2) under magic-angle spinning 

(MAS) of the sample was used to observe high-resolution 13C solid state NMR spectra 

in 14 T with a repetition time of 20 s.  We applied the conventional phase alternation 

for the 1st 90° pulse and the pairs of FIDs were subtracted with each other to reduce 

artifacts [3].  Total 1800 pairs of FIDs were collected separately and Fourier 

transformed to obtain an array of spectra.  Fig. 3b shows one of them, showing that the 

present spectrum corresponds to the case of ≲ .  The accumulated spectrum is 

shown in Fig. 3a. 

Firstly, we examined distributions of the intensity  and phase  of the pure 

noise.  The  values obtained from 100 noise points indicated in Fig. 3a by two 

horizontal arrows (i.e. 1800 100 data points) are plotted in Fig. 4. 

As shown in Fig. 4, the distribution of  obeyed the Rayleigh distribution 

exp  [4-7], where  is the standard deviation.  The vertical broken line 

represents the average noise intensity ∑ , which takes non-zero value.  At a 

signal, the distribution of  shifts to the right with a slight broadening and is 

represented by Nakagami-Rice distribution [4-7] (not shown).  On the other hand, the 



 

distribution of  shows a more apparent dependence.  Indeed,  is uniform over 

 for noise, while at signal  shows a broad single peak centered at  

as will be shown in the next section. 

Assuming that the intensity and the phase of the noise have no correlation, we 

evaluated statistically the signal intensity and phase individually.  We compared the 

averaged absorption signal ⋅ cos  given by Eq. 6 (Fig. 3a) with the 

averaged signal intensity  (Fig. 5a), the averaged phase cos  (Fig. 5b), and 

their product 	 ⋅ cos  (Fig. 5c).  The large peak of  at the center is 

ascribed to the DC-offset.  We found that separate accumulation of the intensity and 

the phase does not distort the spectrum significantly (compare Figs. 3a and 5c).  It is 

interesting to note that cos  was quite similar to the accumulated spectrum, but 

 was not.  This is because, as the SNR in a single spectrum was low in the present 

case (see Fig. 3b), the distribution of the intensity was dominantly determined by the 

noise and  was similar at any .  In other words, when the SNR of each FID is 

low,  is nearly constant and ⋅ cos  is controlled by cos .  

When the SNR of each FID is high, the contribution of  to the lineshape 

⋅ cos  should be appreciable.  For such a case, however, the tedious 

analysis of each FID for de-noising would not be necessary. 

Here we examine in passing whether one can reduce noise by subtracting the average 

 of  from  in the product.  Fig. 5d shows ⋅ cos , 



 

which has apparently better SNR.  However, the spectrum is significantly distorted and 

the small peaks at around -60 ppm are attenuated considerably.  



 

2.3. Phase variance and phase standard deviation 

  In Section 2.1. we discussed the standard deviation  of the phase distribution for 

the two extreme cases of pure signal and pure noise.  Here we derive a general formula 

of  for a given set of the signal intensity  and the noise intensity .  For this 

purpose we introduce a probability density function , which is the probability of 

finding the phase of  frequency point to be .  Then,  can be represented as 

 

. (8)  

In order to obtain , we firstly express noise in the Cartesian coordinate as 

⋅ exp , where  and  are the x(real)- 

and y(imaginary)-components of noise, respectively, and assume that both components 

follow the two-dimensional normal distribution given by 

 ,
1

2
exp

2
exp

2
. (9)  

Here, we use  and  as variables to express distribution of the x- and 

y-component of noise, respectively, and  is the standard deviation of 

, .  Eq. 9 gives the probability density function whose origin is 

, .  To calculate a probability density function ,  for  

and , we shift the origin to 0,0  by substituting  and  as follows; 

 cos cos  (10)  

and 



 

 sin sin , (11)  

where  and  are the variables corresponding to  and , 

respectively.  By putting Eqs. 10 and 11 into Eq. 9, we have 

 ,

1
2
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cos cos

2
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2

1
2
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cosΔ sinΔ

2
, 

(12)  

where Δ .  Note here that the shift of the origin induces the 

apparent frequency dependence into the probability density function. 

The probability density function for phase  is given by 

 ,

1
2

exp
2

sin Δ ⋅ exp
cos Δ

2

1
2

exp
2

cos Δ

2√2
exp

2
sin Δ ⋅ 1 erf

cos Δ

√2
, (13)  

where  is a ratio between the pure signal intensity  and the standard 

deviation of noise  ⁄ , which represents the SNR at .  The 

distribution depends solely on , and to appreciate its dependence, we calculated 

 for =0.1, 1.0, and 10 and plotted Fig. 6a to 6c, respectively.  For small 

,  shows a broad distribution around  with the baseline 

determined by the first term in Eq. 13, and for ≫ 1,  becomes a 

Gaussian-like distribution. 



 

  In Fig. 7, we plot  calculated for several R values; for a pure noise ( 0), 

we have 
√

 (we define the value 
√

 as  and use it below), 

which decays asymptotically to zero for ∞ (a pure signal).  

Fig. 8 shows the distribution of 	  obtained from the experimental data used in 

the previous section.  Fig. 8a and 8b shows the distribution of the phase at -86.2 ppm 

(a signal) and 150 ppm (noise).  The distribution at the signal is similar to  

calculated for R=1.0 (Fig. 6b).  This small R value is consistent with the poor SNR in 

each spectrum (Fig. 3b).  The distribution of 	  for the noise area is flat as 

expected. 

  The standard deviation  is calculated by using the distribution of 	  

obtained for each  with  calculated from the accumulated spectrum at each 

point.  To compare with the accumulated spectrum (Fig. 3a), we plot 1⁄  instead 

of  in Fig. 9a.  The 1⁄  plot resembles the accumulated spectrum.  We 

then use 1⁄  as a weighting factor of the accumulated spectrum as 	 ⋅ , 

which is shown in Fig. 9b.  Apparently such weighting does not suppress noise.  This 

is because the 1⁄  value at noise is large ca. 0.551 and is not significantly 

different from those at signals (0.595-0.878).  Here we introduce a new weighting 

factor, referred to as a measure of certainty, which is plotted in Fig. 9c, and is defined as 



 

 
1

1
√3

. 

(14)  

The measure of certainty  is zero for a noise and one for a pure signal.  We then 

use the measure of certainty as a weighting factor of the accumulated spectrum as 

 ⋅ , (15)  

which we shall refer to as a phase-standard-deviation weighted (PSDW) NMR spectrum, 

and the resulting spectrum is shown in Fig. 9d.  Appreciable de-noising is achieved. 

  In the following, we compare the performance of the present analysis with the 

phase-covariance analysis [2].  However, before comparison, we shall briefly describe 

the phase-covariance analysis.  



 

2.4. Phase covariance between the pulse and the signal 

  In the phase-covariance scheme [2], an array experiment is performed by 

incrementing the phase  of the rf pulse, and the correlation between the spectral and 

the rf phases is examined in terms of the covariance.  A quadrature NMR signal at a 

j-th experiment may be given by introducing the rf phase factor of the j-th experiment 

 in Eq. 5 as 

 ⋅ exp . (16)  

Similar to the conventional signal accumulation, the N FIDs are accumulated after 

taking the corresponding rf phase shift 1⋯  into account; the accumulated 

FID is Fourier transformed to produce the NMR spectrum .  In addition to the 

conventional procedure, each FID signal is Fourier transformed separately to produce N 

NMR spectra .  Practically, we determine the 0th and 1st order phase correlation 

values from the accumulated spectrum 	 .  These phase values are used to correct 

each spectrum and the phase  of each spectral point  in the j-th 

spectrum is deduced. 

  Fig. 10a shows two-dimensional distribution of ,  for 0  and 

1.0 .  Since  values obtained from experimental data include noise, 

observed ,  pairs at the center of a signal ( 0) would ideally distribute 

along the diagonal line.  The cross-section at  is the phase probability density 

function ,  given by 



 

 , 2⁄ . (17)  

The normalized covariance, which we call the correlation coefficient, is calculated for 

each point according to 

 ∑ ∑
⋅
∑

∑ ∑
⋅
∑ ∑

. 
(18)  

Practically, however, one apparent problem may be noted, that is, the ,  

data at the corners – ,  and ,  in Fig. 10a does reduce the ∑  

term and thereby correlation coefficient.  The ,  data at the corners arise 

because of the periodicity of angles.  Instead of developing a theory for evaluating a 

correlation factor in such a case, we transform ,  to Φ ,Ψ  as 

 Φ
π
2

 (19)  

and 

 Ψ
π
2
. (20)  

Fig. 10b illustrates the result of the transformation. The phase probability density 

function in this region Φ ,Ψ  is written as 

 Φ ,Ψ Φ
2
,Ψ

2
Φ

π
2
,Ψ

2

Φ
2
, Ψ

π
2

Φ
π
2
, Ψ

π
2
. 

(21)  

  The two-dimensional phase field Φ ,Ψ  corresponds to a ,  square 

folded along the 0 and 0 lines.  We refer to this field as the folded field.  



 

The correlation coefficient	  in the folded field is written as 

 ∑ Φ Ψ ∑ Φ
⋅
∑ Ψ

∑ Φ ∑ Φ
⋅
∑ Ψ ∑ Ψ

. 
(22)  

In the phase-covariance analysis, we use the absolute value of  as a weighting 

factor at  as 

 | | , (23)  

which we call a phase-covariance weighted (PCW) NMR spectrum. 

  



 

2.5. Comparison of the phase-standard-deviation analysis and the phase-covariance 

analysis 

  To examine the de-noising effect for both analyses, we carried out 13C CPMAS 

experiments by intentionally adding an incoherent noise to the receiver circuit.  The 

receiver cable was coupled with an additional signal from a frequency synthesizer 

which was not synchronized with the NMR spectrometer.  Further, to examine the 

effects of these de-noising analyses to a small signal, we used a shorter delay time of 10 

s.  As a consequence, the relative intensity of glycine peaks was much smaller than 

that in previous sections.  One of the paired-scan spectra is given in Fig. 11a, in which 

the strong peak at 33.2 ppm is the introduced noise.  The 13C CP phase  (Fig. 2) was 

varied by 1° step in each of the paired FIDs with the 90° pulse phase alternation.  

For the PSDW analysis, these 1° phase shifts were compensated by phase correction, 

while for the PCW analysis, they were left to appreciate correlation.  It is worth 

nothing here that PSDW and PCW, as well as signal averaging, use a common data 

array, so that all of these post processing can be performed concurrently. 

Fig. 11b shows the accumulated spectrum.  Even with 1800 pairs of FIDs, the noise 

introduced at 33.2 ppm still exists.  Fig. 11c and 11e are the measure of certainty and 

correlation coefficient, i.e., the weighting factors of the PSDW spectrum and PCW 

spectrum, respectively, and Fig. 11d and 11f are the PSDW spectrum and the PCW 

spectrum.  In both methods, the incoherent noise was effectively eliminated.  As 



 

shown in the magnified plots of the spectra, the PCW resulted in better suppression of 

the incoherent noise than PSDW.  This may be explained as follows.  Fig. 12a and b 

show the distribution of  and the distribution pattern of Φ ,Ψ  for the huge 

noise at 33.2 ppm.  In PSDW, the number of pairs of scans (N=1800) is not large 

enough to give a flat distribution of .  On the other hand, the distribution pattern 

of Φ ,Ψ  is comparatively more uniform, leading to a small correlation coefficient 

in the PCW approach.  It follows that the phase-covariance analysis is more robust for 

relatively small number of data arrays. 

  For the small C=O signal of glycine at 72.6 ppm (peak 2), designated by an arrow 

in Fig. 11, the peak was apparently reduced by both methods.  Nevertheless, its relative 

intensity to that of the incoherent noise was still larger than in the case of the 

conventional accumulation.  Table 1 shows integrated peak normalized by that of the 

incoherent noise. Since the weighted spectra correspond to the power spectrum, we 

consider | | ≡  for the accumulated spectrum.  In PSDW and PCW 

spectra, the large peak 1, 3, and 5 are noticeably enlarged, the largest peak 5 become 

about 20 times, and even the small peak 2 and 4, which are smaller than the peak of 

incoherent noise peak in  spectrum, are enough larger than incoherent noise peak, 

the peak 4 become about three times.  PSDW and PCW distort relative intensities, but 

they are useful to judge signals and noises.  More quantitative statistical analysis on 

SNR of PSDW and PCW is underway and will be published elsewhere. 



 

Lastly, we point out two problems, which arise when analyzing the intensity and the 

phase separately.  The first one of them relates to the use of the absolute intensity  

instead of the absorption-corresponding lineshape.  Since the former has a wider 

linewidth than the latter, the measure of certainty for noises on the envelope of a strong 

signal tends to be overestimated.  For example, at the frequency where the absorption 

intensity decays to 10 %, the absolute intensity decays only to 22 %, resulting in a 

non-flat distribution for .  The second one relates to the evaluation of the 

effect of a non-zero  value when calculating the standard deviation.  This 

problem of the non-zero  is apparent for the phase-covariance analysis with the 

folding as shown in Fig. 13, illustrating for the case of 2⁄  the distribution for 

the full (Fig. 13a) and the folded (Fig. 13b) fields, respectively.  Since the intensity for 

an absorption lineshape in the region of 2⁄  is less prominent, the apparent 

correlation coefficient calculated from the former case would leave noises in this region.  

The folding makes the correlation coefficient at 2⁄  small (ideally zero) and 

gives reasonable coefficient values at the whole envelope region.  



 

3. Conclusions 

In this work, we examined two statistical approaches, namely, phase standard 

deviation weighting (PSDW) and phase covariance weighting (PCW) analysis for 

de-noising, and as a result the usefulness of their methods is verified.  These methods 

are applicable to many situations, regardless of the state of sample: solid or solution, the 

dimension of the spectrum: 1D, 2D or more, and the pulse sequence.  The present 

methods can be used with other de-noising techniques [8,9].  PSDW and PCW distort 

relative intensities of signals favoring larger peaks, and cannot be applied to lineshape 

analysis or quantitative analysis.  Nevertheless, they are useful techniques to judge 

signals and noises, as demonstrated in the elimination of the incoherent spurious signal.  

When broadcasting radio waves contaminate NMR spectra, the present approach can be 

a solution to get rid of them.  Details of further examination using simulations to show 

whether the limits of visible signal in PSDW and PCW are weaker than that in classic 

accumulation or not, data processing, and discussion of applicability to more 

sophisticated pulse sequences will be presented elsewhere. 
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Table 1  Peak area intensities in the , PSDW, and PCW spectra shown in Fig. 11.  

The peak numbers correspond to those indicated in Fig. 11b, and the area intensities are 

normalized by that of the incoherent noise (*). 

peak 1 2 3 4 5 

 2.030 0.417 4.302 0.978 4.484 

PSDW 19.90 2.050 50.19 2.861 84.85 

PCW 22.21 2.070 51.10 3.443 88.28 

PSDW/  9.803 4.916 11.67 2.925 18.92 

PCW/  10.94 4.964 11.88 3.520 19.69 

 



Graphical Abstract Statistical analysis over separately acquired spectra efficiently 

eliminates incoherent noises. 

 

Fig. 1  (a) Schematic illustration of a complex data point ⋅ exp , 

which is represented by a sum of a signal ⋅ exp , and a noise 

⋅ exp .  (b) Statistical distribution of the point represented by the 

standard deviation  of the phase characterizing the magnitude relation between  

and .  The tone of the circle represents distribution of the noise. 

 

Fig. 2  Pulse sequence for 13C high-resolution solid state NMR.  The phase of the 

90°  pulse is altered by 180°  for each spectral unit.  When standard deviation 

spectrum is obtained, the phase  of the 13C CP phase is held in 0° and the FIDs with 

90°  are subtracted from those with 90°  in order to remove artifacts.  When 

covariance spectrum is obtained, the 13C CP phase  was varied by, e.g. 1° in each of 

the two steps with the phase alternation of the 90° pulse. 

 

Fig. 3  13C CPMAS spectra of polycrystalline mixture of glycine and D,L-alanine 

obtained (a) by accumulating 1800 pairs of FIDs and (b) from a single pair of FID.  

The region indicated in (a) contains 100 data points, which are analyzed in the 

following discussion. 



 

Fig. 4  A distribution of the intensity  obtained from the 1800 100 data points in 

the noise region.   shown by dotted line represents the mean value of the intensity. 

 

Fig. 5  Plots of (a) , (b) cos , (c) 	 ⋅ cos , and (d) ⋅

cos . 

 

Fig. 6  The phase distribution function  for (a) 0.1, (b) 1.0, and (c) 

10. 

 

Fig. 7  R dependence of the standard deviation  of the phase. 

 

Fig. 8  The distribution of the phase  at (a) the peak, -86.2 ppm and (b) the noise 

area, around 150 ppm. 

 

Fig. 9  Comparison of (a) a plot of the inverse of the standard deviation 1⁄ , (b) 

the 1⁄  weighted spectrum ⋅ , (c) a plot of the measure of certainty of 

the standard deviation , and (d) the PSDW NMR spectrum. 

 

Fig. 10  (a) Distribution fraction of the pulse phase  and signal phase 	  and (b) 



that of Ψ  and Φ  calculated according to Eqs. (19) and (20) in the case of 

0 or Φ 0, and 1.0. 

 

Fig. 11  13C CPMAS spectra of polycrystalline mixture of glycine and L-alanine 

measured by adding an additional incoherent frequency signal at 33.2 ppm.  (a) The 

spectrum obtained from a single FID.  (b) The accumulated spectrum.  (c) The 

measure of certainty spectrum.  (d) The PSDW NMR spectrum.  (e) The correlation 

coefficient spectrum.  (f) The PCW NMR spectrum.  The asterisks and arrows 

indicate the noise at 33.2 ppm and the C=O signal of glycine at 72.6 ppm, respectively. 

 

Fig. 12  (a) A distribution plot of  and (b) a distribution pattern of Φ ,Ψ  at 

33.2 ppm. 

 

Fig. 13  (a) Distribution fraction of the pulse phase  and signal phase 	  and (b) 

that of Ψ  and Φ  calculated according to Eqs. (19) and (20) in the case of 

2⁄  or Φ 2⁄ , and 1.0. 
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