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Approximation scheme based on effective interactions for stochastic gene regulation
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Since gene regulatory systems sometimes contain only a small number of molecules, these systems are not
described well by macroscopic rate equations; a master equation approach is needed for such cases. We develop
an approximation scheme for dealing with the stochasticity of the gene regulatory systems. Using an effective
interaction concept, original master equations can be reduced to simpler master equations, which can be solved
analytically. We apply the approximation scheme to self-regulating systems with monomer or dimer interactions,
and a two-gene system with an exclusive switch. The approximation scheme can recover the bistability of the
exclusive switch adequately.
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I. INTRODUCTION

Recently, the stochastic nature of small systems has
attracted much attention [1–3]. One of the interesting examples
of the stochasticity is a gene regulatory system; it has been
known experimentally that the gene regulatory systems show
various phenomena caused by intrinsic noise [4,5]. The gene
regulatory systems basically consist of genes, RNA, and
proteins. The genes could sometimes be activated or repressed
by regulatory proteins known as transcription factors. The
number of regulatory proteins is sometimes very small,
and there are large fluctuations. From a theoretical point
of view, the gene regulatory systems have been studied
a lot using Monte Carlo simulations (e.g., Refs. [6,7]).
In addition, in order to gain insights into mechanisms or
functions of the gene regulatory systems, many analytical
studies have been done [8–18]. For example, for a self-
regulating system with monomer binding interactions, an exact
solution is already known [12]. However, when one considers
more complicated systems, some approximations are needed.
Such approximations have also been developed: a Fokker-
Planck or Langevin equation approach [8–10], a variational
approach [11,14,15], and a self-consistent proteomic field
approximation [13].

A gene regulatory system with only two genes and feedback
mechanisms has been studied a lot because it plays an
important role as a genetic switch; two distinct stable states
emerge, and they could be switched either spontaneously or
by external signals. In a mathematical description for the gene
regulatory systems, the RNA is sometimes neglected for sim-
plicity, and only genes and regulatory proteins are considered.
When we construct a macroscopic rate equation, in which
fluctuations in protein copy numbers or gene expression states
are neglected, the analysis for the rate equation tells us the
following facts: A system with two mutually repressing genes
shows a bistability, and cooperative binding of regulatory
proteins is important for making the bistability [19,20]. Here
the cooperative binding means that combinations of two or
more proteins are needed to activate or repress genes. The
macroscopic rate equation gives multiple stable solutions,
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and each solution corresponds to a stable state of the gene
regulatory systems, which causes the bistability. Hence, for
the cooperative binding cases, it may be enough to use the
macroscopic treatments in order to investigate the qualitative
behavior of the bistability. However, other studies have shown
that a so-called exclusive switch shows a bistability even when
the macroscopic rate equations have only one solution [21–23].
Although the bistability has been confirmed numerically
using Monte Carlo simulations, no exact or approximated
analytical treatment has been proposed yet, to the best of our
knowledge.

In the present paper, we develop a new approximation
scheme for gene regulatory systems. In the approximation
scheme, there is no need to use a continuous description
such as Fokker-Planck or Langevin equations, and hence
the smallness or discrete properties of the system are not
neglected. The basic idea of the approximation is similar to
the “self-consistent proteomic field approximation” developed
by Walczak et al. [13]. In the self-consistent proteomic field
approximation, a joint probability for all genes is approximated
as a product of probability distributions for each gene, and then
the interactions between genes and regulatory proteins can be
evaluated “exactly” within this approximation. While the self-
consistent proteomic field approximation was applied to toggle
switches, further approximations are needed for a kind of reg-
ulating system, such as self-regulating systems, as discussed in
Ref. [13]. We here develop a more applicable approximation
scheme; the interactions between a gene and regulatory
proteins are approximated first, and effective interactions
are introduced. The new approximation scheme enables us
to give analytical expressions for probability distributions
of the numbers of proteins without loss of the discreteness
property of the system. We will show that the new approx-
imation scheme is applicable not only to the self-regulating
systems, but also to the exclusive switch without cooperative
interactions.

The present paper is constructed as follows. In Sec. II, we
give a brief review of a stochastic model for gene regulation.
In Sec. III, self-regulating systems are studied. Section III B
gives one of the important results in the present paper, in
which our approximation scheme is proposed. The proposed
approximation scheme is applied to the exclusive switch in
Sec. VI. Section V gives concluding remarks.
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II. STOCHASTIC MODEL FOR GENE REGULATION

We here briefly review the basic biology of gene regula-
tory system and a simplified stochastic model, for readers’
convenience.

A gene regulatory system consists of many components,
such as genes, RNA, and proteins. The transcription of a gene
is initiated by a binding of RNA polymerase to a promoter site
of the gene in the DNA. The binding of regulatory proteins
(or molecules), so-called transcription factors, regulates the
transcription initiation. These regulatory proteins bind to their
own target operator sites, and they sometimes act as repressors
(which repress the transcription) or activators (which enhance
the transcription). When the RNA polymerase binds to a
gene, the gene sequence is transferred to a messenger RNA
(mRNA), and the mRNA is translated into a protein molecule
by a ribosome enzyme complex. The produced proteins play
various roles, and sometimes they can become regulatory
signals for genes.

Although all of the above reactions would be important for
the gene regulatory systems, mRNA is sometimes neglected
in stochastic modeling for simplicity. That is, the translation
from mRNA to proteins is straightforward, and then we
assume that an activated gene directly increases the number of
proteins. In addition, we consider that a repressed gene cannot
produce any proteins, which makes analytical treatments much
simpler [12].

In the present paper, all regulatory proteins act as repressors.
If regulatory proteins are not binding to a gene, we call a state
of the gene an “ON” state; if not, the gene is in an “OFF” state.
A gene in an OFF state cannot produce any proteins, as we
assumed above.

III. SELF-REGULATING SYSTEM

In this section, first, we propose and explain a new approx-
imation scheme using a simplest model, i.e., a self-regulating
system with monomer interactions. Results obtained from
the approximation scheme will be compared with exact
solutions studied previously [6,12]. Second, the scheme will
be applied to a self-regulating system with dimer interactions,
and comparisons with Monte Carlo simulations will be given.

A. Model

First, we give a brief explanation for a self-regulating
system. In the self-regulating system, there is only one gene,
and it produces proteins. The produced proteins are considered
as regulatory proteins for the gene, and the regulation is
a repressed one. In this sense, there is a self-regulation
mechanism. Figure 1 shows the self-regulating system. When
the gene is in ON state, it produces the regulatory proteins
with rate g. The degradation rate of the regulatory proteins
is k. The regulatory proteins can bind the gene with a rate
function H (n), where n is the number of “free” regulatory
proteins. The function H (n) can be a complicated function
of the regulatory proteins; e.g., H (n) = hn for monomer
interactions, and H (n) = hn(n − 1)/2 for dimer interactions,
where h is a rate constant for the binding. f is a rate constant
with which the regulatory protein is released from the repressor
site of the gene.

FIG. 1. A schematic illustration of the self-regulating gene.

B. Approximation scheme

We here consider the simplest interaction case, i.e., a
monomer interaction case. Hence, H(n) in Fig. 1 is written
as hn, as discussed in Sec. III A. For the monomer interaction
cases, exact solutions have already been known [6,12], and
therefore we can compare our approximation results with the
exact solutions for the monomer interaction case.

We first note one assumption in order to make analytical
treatments simpler. The assumption has also been used in a
previous work [6]; i.e., one of the proteins in an ON state
is inert. The inert protein cannot repress the gene, and it is
not degraded. Although there are a few differences between
usual stochastic simulations and this analytical treatment, it has
already been discussed that the assumption gives quantitatively
good results [6]. Hence, we here employ this assumption.
Figure 2 shows the transition scheme for the usual stochastic
simulations and the analytical treatment. αn and βn correspond
to states in which there are n regulatory proteins for ON and
OFF states, respectively. In the usual stochastic simulations,
the degradation rate of the proteins, i.e., the change from αn to
αn−1, is proportional to the number of proteins n. In contrast,

FIG. 2. Transition scheme for usual simulations and analytical
calculations for monomer interaction cases. αn and βn correspond to
states with which there are n regulatory proteins for ON and OFF
states, respectively. In the analytical calculations, one of the proteins
is considered as an inert one when the gene is in an ON state, and the
inert protein is also included in αn; the number of “free” regulatory
proteins in an ON state is n − 1.
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the above assumption means that the rate from αn to αn−1 in
the analytical treatment is proportional to n − 1, not to n. For
convenience, we introduce a new notation α′

n, where there are
n “free” regulatory proteins for an ON state; αn+1 ≡ α′

n. Note
that the inert protein is not a “free” regulatory protein, and α′

n

does not include the inert protein.
Here we propose a new approximation scheme. The key of

the approximation scheme is to use “an effective interaction.”
The effective interaction means that the interaction factor in
Fig. 1, H (n), is replaced as a scalar value; i.e., H(n) = h̃.
Note that the effective interaction h̃ is not a function of the
regulatory proteins, but a constant. Hence, the master equation
for this approximated system is written as follows:

dP (α′
n,t)

dt
= g[P (α′

n−1,t) − P (α′
n,t)]

+ k[(n + 1)P (α′
n+1,t) − nP (α′

n,t)]

− h̃P (α′
n,t) + f P (βn,t), (1)

dP (βn,t)

dt
= k[(n + 1)P (βn+1,t) − nP (βn,t)]

+ h̃P (α′
n,t) − f P (βn,t), (2)

where P (α′
n,t) and P (βn,t) are probabilities for n free

regulatory proteins for ON and OFF states, respectively. Note
that P (αn+1,t) ≡ P (α′

n,t).
Because the interaction factor H (n) = h̃ has a simple form,

the analytic solution can be easily calculated by using the
generating function approach, as in the case of the exact
solutions [6,12]. The generating functions for stationary states
are defined as follows:

α′(z) =
∞∑

n=0

P (α′
n)zn, (3)

β(z) =
∞∑

n=0

P (βn)zn, (4)

where P (α′
n) = limt→∞ P (α′

n,t) and P (βn) =
limt→∞ P (βn,t). We note that α′(1) + β(1) = 1 from
the normalization condition. Using the generating functions,
various information about the number of proteins can be
obtained. For example, the probability P (α′

n) is calculated
from

P (α′
n) = 1

n!

∂n

∂zn
α′(z)

∣∣∣∣
z=0

. (5)

It is also possible to calculate moments or cumulants. Since
the probability with which the gene is in an ON state is
given as α′(1). The number of total proteins in the system is
calculated as

〈n〉 = ∂α′(z)

∂z

∣∣∣∣
z=1

+ 1 × α′(1) + ∂β(z)

∂z

∣∣∣∣
z=1

, (6)

where the second term in the right-hand side means a
contribution from the inert protein in an ON state.

Putting the left-hand sides of Eqs. (1) and (2) as zero and
rewriting Eqs. (1) and (2) in terms of the generating functions
α′(z) and β(z), stationary solutions for the generating functions

are obtained as follows:

α′(z) = AF [a,b,N (z − 1)], (7)

β(z) =
(

1 + h̃

f

)
AF [a − 1,b − 1,N (z − 1)] − α′(z), (8)

where A = f/(f + h̃) and

N = g

k
, a = 1 + f

k
, b = 1 + f + h̃

k
. (9)

F (p,q,r) is the Kummer confluent hypergeometric function,

F (p,q,r) ≡
∞∑

n=0

(p)n
(q)n

rn

n!
, (10)

where (p)n = p(p + 1)(p + 2) · · · (p + n − 1).
A remaining task is to determine the effective interaction h̃.

For the self-regulating system with monomer interactions, the
binding of the regulatory proteins occurs only when the system
is in an ON state. Hence, the number of proteins, which can
be attached to the binding site, should be equal to the number
of free proteins for an ON state.

According to the above discussions, we here set the effective
interaction h̃ as

h̃ = h〈n〉α′ , (11)

where 〈n〉α′ is the expectation of the number of free regulatory
proteins under a condition that the gene is in an ON state
(conditional expectation). Because it is possible to evaluate
the conditional expectation using the generating function as

〈n〉α′ ≡ 1

α′(1)

∂

∂z
α′(z)

∣∣∣∣
z=1

= g(k + f )

k(k + f + h̃)
, (12)

we obtain the following self-consistent equation by inserting
Eq. (12) into Eq. (11):

h̃ = h
g(k + f )

k(k + f + h̃)
. (13)

Solving Eq. (13), we finally obtain

h̃ = −(k2 + kf ) +
√

(k2 + kf )2 + 3khg(k + f )

2k
. (14)

Once the effective interaction h̃ is determined, all statistical
properties related to the number of regulatory proteins are
evaluated from the generating functions, as denoted above.
For example, using the following property of the Kummer
confluent hypergeometric function,

∂

∂r
F (p,q,r) = p

q
F (p + 1,q + 1,r), (15)

the probability distributions for the numbers of free proteins
are written as

P (α′
n) = A

n!
Nn (a)n

(b)n
F (a + n,b + n, − N ), (16)

P (βn) = A

n!

(
1 + h̃

f

)
Nn (a − 1)n

(b − 1)n
×F (a − 1 + n,b − 1 + n, − N ) − P (α′

n). (17)
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FIG. 3. Comparison between results from the exact solutions and those from the approximation scheme. (a) Probability distributions of
the number of proteins. Xeq = 10.0, Xad = 10.0, ω = 0.01 in Case A; Xeq = 10.0, Xad = 50.0, ω = 10.0 in Case B. (b) and (c) Averages
and variances of the number of proteins, respectively. Only the value of ω was changed, and Xeq = 10.0, Xad = 10.0 in Case A; Xeq = 10.0,
Xad = 50.0 in Case B. (d) and (e) Results for modality in the exact solutions and in the approximation scheme, respectively. The filled circle
means unimodal regions, and the empty circles indicate regions with bimodal distributions. Xeq = 10.0 for (d) and (e).

C. Results for monomer interactions

For monomer interaction cases, the exact solutions are
obtained [6,12]. Hence, we here compare the exact results
with results obtained by the approximation scheme.

For the comparison, we here introduce rescaled parameters
as follows [6,12]:

ω = f

k
, Xeq = f

h
, Xad = g

2k
, (18)

and, for simplicity, we set k = 1 in all numerical evaluations.
These rescaled parameters are helpful to understand properties
of the genetic switch. The parameter Xad characterizes the
synthesis and degradation processes, and large Xad would
give a large average number of proteins. Xeq is related to the
equilibrium constant of the binding and unbinding process.
Finally, ω is a parameter called a “adiabaticity parameter.” ω

measures how rapidly the gene can equilibrate in a gene state.

If ω is small, the synthesis and degradation behaves almost like
an independent birth and death process, and there would be
two peaks corresponding to the binding and unbinding states,
respectively. For details of these parameters, for example, see
Ref. [6].

First, the probability distributions of the number of protein
were compared. Figure 3(a) shows the results. Here we
performed two cases: In Case A, we set Xeq = 10.0, Xad =
10.0, and ω = 0.01; in Case B, Xeq = 10.0, Xad = 50.0,
and ω = 10.0. For Case A, the results obtained from the
approximation scheme give good agreement with those from
the exact solutions, and it is difficult to see the difference.
Although there are quantitative differences between the exact
and approximate solutions for Case B, the approximation
scheme gives qualitatively good results despite the rough
approximation. Figures 3(b) and 3(c) show the averages and
variances of the number of proteins for various values of ω
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when Xeq = 10.0 and Xad = 10.0 for Case A and Xeq = 10.0
and Xad = 50.0 for Case B, respectively. Figures 3(d) and 3(e)
show results for modality in the exact solutions and in the
approximation scheme, respectively, for Xeq = 10.0. These
results indicate that the approximation scheme works well, at
least qualitatively.

D. Results for dimer interactions

As a second example, a self-regulating system with dimer
interactions is studied. The dimer interaction, i.e., H (n) =
hn(n − 1)/2, has a more complicated form than the monomer
interaction cases, and exact solutions for the dimer interaction
cases have not been known yet. There are some numerical
studies for the dimer interaction cases (for example, see
Ref. [24]), and here we compare results obtained from the
approximation scheme with those of Monte Carlo simulations
using the Gillespie algorithm [25].

In the dimer interaction cases, the transition scheme
for analytical calculations is different from the monomer
interaction cases; see Fig. 4. The master equations are the
same as Eqs. (1) and (2), but the effective interaction should
be set as

h̃ = h
〈n(n − 1)〉α′

2
, (19)

and we should interpret α′
n as P (αn+2,t) = P (α′

n,t).
Using the similar procedure written in Sec. III B, the

effective interaction h̃ is obtained by solving the following
self-consistent equation:

h̃ = h

2

1

α′(1)

∂2

∂z2
α′(z)

∣∣∣∣
z=0

. (20)

Since it is a slightly complicated task to obtain the analytical
expression for the effective interaction h̃, we numerically
solved the self-consistent equation (20). Once we evaluate the
effective interaction h̃, all properties related to the number
of proteins are immediately obtained, in a similar way to
Sec. III B.

As in the case of Fig. 3, we evaluated the probability
distributions, the averages and variances of the number of
proteins, and the modality. In Case A in Figs. 5(a)–5(c), we
used the following rescaled parameters: Xeq = 10.0, Xad =
10.0, and ω = 0.01; in Case B, Xeq = 10.0, Xad = 50.0, and
ω = 10.0. The numbers of the Monte Carlo steps are over 107

FIG. 4. Transition scheme for simulations and analytical calcula-
tions for dimer interaction cases.

for Case A and 108 for Case B. For Figs. 5(d) and 5(e), we set
Xeq = 10.0.

In the dimer interaction cases, there are large differences
in the variances of the number of proteins; see Fig. 5(c).
This is because the crude approximation, i.e., the effec-
tive interaction h̃, does not include any fluctuation effects.
However, the behavior of the modality in the approximation
scheme is qualitatively similar to those of the Monte Carlo
simulations.

IV. EXCLUSIVE SWITCH

Next, we consider a more complicated case, i.e., an
exclusive switch [21–23]; see Fig. 6. The exclusive switch
consists of two genes, gene 1 and gene 2. The two genes
have overlapping promoter sites, and the binding of one of the
regulatory proteins prevents the binding of the other regulatory
proteins.

Here the interactions between the binding sites and pro-
teins are assumed to be monomer interactions. Because the
interactions are not cooperative bindings, the macroscopic
rate equations give only one solution [21–23]. However, it
has been shown that the exclusive switch can play as a
switch. In the exclusive switch, stochastic effects make the
bistability even without cooperativity between the regulatory
proteins.

In order to study the exclusive switch analytically, master
equations for a joint probability P (n1,n2,s1,s2) should be
constructed; ni is the number of proteins for gene i, and
si ∈ {ON,OFF} indicates the gene state. In general, the master
equations for multiple gene cases are very complicated, and it
could be difficult to obtain numerical solutions if the number
of genes is large.

In our approximation scheme, the effective interaction is
used, and it enables us to reduce the dimensionality of the prob-
lem. Because we consider only the effective interaction, gene 1
and gene 2 can be considered independently, and then the prob-
ability P (n1,n2,s1,s2) is expressed as P (n1,s1) × P (n2,s2).
P (ni,si) is directly connected to the probabilities discussed
in Sec. III B. For example, P (n1 + 1,ON) = P (α′(1)

n ) and
P (n1,OFF) = P (β(1)

n ), where the superscript “(1)” indicates
gene 1, and α′(1)

n and β(1)
n are states where there are n free

regulatory proteins in an ON state and OFF state, respectively,
for gene 1. Using these notations for the states, the master
equations for gene 1 are written as

dP
(
α′(1)

n ,t
)

dt
= g(1)

[
P

(
α

′(1)
n−1,t

) − P
(
α′(1)

n ,t
)]

+ k(1)[(n + 1)P
(
α

′(1)
n+1,t

) − nP
(
α′(1)

n ,t
)]

− h̃(1)P
(
α′(1)

n ,t
) + f (1)P

(
β(1)

n ,t
)
, (21)

dP
(
β(1)

n ,t
)

dt
= k(1)

[
(n + 1)P

(
β

(1)
n+1,t

) − nP
(
β(1)

n ,t
)]

+ h̃(1)P
(
α′(1)

n ,t
) − f (1)P

(
β(1)

n ,t
)
. (22)

The master equations for gene 2 can be obtained in a similar
way. Using the same discussion for the self-regulating systems
in Sec. III, the generating functions for genes i ∈ {1,2}, α′(i)(z),
and β(i)(z) are derived immediately.
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FIG. 5. Comparison between results from the Monte Carlo simulations and those from the approximation scheme. (a) Probability
distributions of the number of proteins. Xeq = 10.0, Xad = 10.0, ω = 0.01 in Case A; Xeq = 10.0, Xad = 50.0, ω = 10.0 in Case B. (b)
and (c) Averages and variances of the number of proteins, respectively. Only the value of ω was changed, and Xeq = 10.0, Xad = 10.0 in
Case A; Xeq = 10.0, Xad = 50.0 in Case B. (d) and (e) Results for modality in the Monte Carlo simulations and in the approximation scheme,
respectively. The filled circle means unimodal regions, and the empty circles indicate regions with bimodal distributions. Xeq = 10.0 for (d)
and (e).

The evaluation of the effective interaction is slightly
different from the self-regulating systems. The transition of
gene 1 from an ON state to OFF state can occur only when
gene 2 is in an ON state, and the effective interaction h̃(1)

degradation

degradation

FIG. 6. A schematic illustration of the executive switch.

includes only a contribution from free proteins 2 in an ON
state. As denoted above, gene 1 and gene 2 are independent,
and hence gene 1 does not know whether gene 2 is in an ON
state or OFF state; differently from Eq. (11), the conditional
expectation cannot be used. Hence, the effective interaction
for gene 1 is evaluated as

h̃(1) = h(1) ∂

∂z
α′(2)(z)

∣∣∣∣
z=1

. (23)

According to the above discussions, we finally obtain the
following self-consistent equations:

h̃(1) = h(1)g(2)f (2)(k(2) + f (2))

k(2)(f (2) + h̃(2))(k(2) + f (2) + h̃(2))
, (24)

h̃(2) = h(2)g(1)f (1)(k(1) + f (1))

k(1)(f (1) + h̃(1))(k(1) + f (1) + h̃(1))
. (25)
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By solving the above self-consistent equations, we obtain h̃(1)

and h̃(2). We here solved them numerically.
Similar to Sec. III B, we can immediately obtain the

probability distributions for each gene using the ap-
proximation scheme. In order to reconstruct the joint
probability distribution for genes 1 and 2, we need
more calculations as follows. First, we denote conditional
probabilities for the number of free proteins for gene
i (i ∈ {1,2}) as

P cond(α′(i)
n

) ≡ P
(
α′(i)

n

)
α′(i)(1)

, (26)

P cond
(
β(i)

n

) ≡ P
(
β(i)

n

)
β(i)(1)

. (27)

Second, because of the independence of genes, the joint
probability distributions should be evaluated as

P (n1,n2,ON,ON)

= P (ON,ON)P cond
(
α

′(1)
n1−1

)
P cond

(
α

′(2)
n2−1

)
, (28)

P (n1,n2,ON,OFF)

= P (ON,OF)P cond(α′(1)
n1−1

)
P cond(β(2)

n2

)
, (29)

P (n1,n2,OFF,ON)

= P (OFF,ON)P cond
(
β(1)

n1

)
P cond

(
α

′(2)
n2−1

)
, (30)

where P (ON,ON) is the probability with which gene 1 is in
ON state and gene 2 is in ON state, and so on. Note that
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FIG. 7. Comparison between results from the Monte Carlo simulations and those from the approximation scheme for the exclusive
switch. (a)–(d) Joint probability distributions. (a) Monte Carlo result for X(1)

eq = X(2)
eq = 25.0, X

(1)
ad = X

(2)
ad = 25.0, and ω(1) = ω(2) = 0.1; (b)

the approximate results, and all parameters are the same as (a). (c) Monte Carlo results for X(1)
eq = 40.0, X(2)

eq = 30.0, X
(1)
ad = 30.0, X

(2)
ad = 20.0,

ω(1) = 10.0 and ω(2) = 20.0. (d) Approximate results, and all parameters are the same as (c). (e) and (f) Results for modality in the Monte Carlo
simulations and in the approximation scheme, respectively. The filled circle means unimodal regions, and the empty circles indicate regions
with multimodal distributions. X(1)

eq = 20.0, X
(1)
ad = 10.0, X(2)

eq = 30.0, and X
(2)
ad = 20.0 for (e) and (f).
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α
′(i)
ni−1 means only the number of “free” proteins; for monomer

interaction cases, the difference between α(i)
n and α′(i)

n is only
one inert protein, and there is no such difference for OFF
state. In addition, the probability with which both genes 1 and
2 are in OFF state is zero, P (OFF,OFF) = 0, because of the
exclusive settings.

Taking the exclusive settings into account, the marginal
probabilities are calculated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (1ON) = P (ON,ON) + P (ON,OFF),

P (1OFF) = P (OFF,ON),

P (2ON) = P (ON,ON) + P (OFF,ON),

P (2OFF) = P (ON,OFF),

(31)

where P (1ON) is a probability with which gene 1 is in ON
state, and so on. Hence, we obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩

P (ON,ON) = P (1ON) − P (2OFF),

P (ON,OFF) = P (2OFF),

P (OFF,ON) = P (1OFF),

P (OFF,OFF) = 0.

(32)

The marginal probabilities, such as P (1ON), can be evaluated
by using the generating functions for each gene. Finally, we
can construct the joint probability distribution as

P (n1,n2) = P (n1,n2,ON,ON) + P (n1,n2,OFF,ON)

+P (n1,n2,ON,OFF). (33)

We here note that the probabilities P (ON,ON), calculated
using the above procedures, may become negative for some
cases; i.e., P (1ON) > P (2OFF) for some choices of parameters
g(i),k(i),h(i), and f (i). This is because we neglect correlations
between two genes. In these cases, other procedures to estimate
the joint probabilities are needed. We have not yet succeeded
in finding general conditions to cause the negative joint
probabilities, and in the following numerical experiments, only
the former cases [P (1ON) < P (2OFF)] are treated.

Figures 7(a)–(d) show the joint probability distributions.
Figures 7(a) and 7(c) are Monte Carlo results, and Figs. 7(b)
and 7(d) are results of the approximation scheme. As in
Sec. III C, we used the rescaled parameters and set k(1) =
k(2) = 1. In Figs. 7(a) and 7(b), we used the parameters
X(1)

eq = X(2)
eq = 25.0, X

(1)
ad = X

(2)
ad = 25.0, and ω(1) = ω(2) =

0.1; for 7(c) and 7(d), X(1)
eq = 40.0, X(2)

eq = 30.0, X
(1)
ad = 30.0,

X
(2)
ad = 20.0, ω(1) = 10.0, and ω(2) = 20.0. The numbers of

the Monte Carlo steps are over 108 for Fig. 7(a), and over
109 for Fig. 7(c). Although Fig. 7(d) does not show the
correlated behavior seen in Fig. 7(c) because correlations
between gene 1 and gene 2 are largely neglected in the
approximation scheme, one could say that the approximation
scheme gives qualitatively good results; the characteristics of
the peak structure are recovered adequately despite the rough
approximation. In Fig. 7(b), the bistability due to the exclusive
settings is recovered well.

Finally, we investigate the modality in the exclusive
settings. For the two-gene case, we define the modality as
follows: If both the marginal distributions for n1 and n2

are unimodal, we define the joint probability distribution

as unimodal; otherwise, the joint probability distribution is
defined as multimodal. Figures 7(e) and 7(f) show the results
for the Monte Carlo simulations and for the approximation
scheme, respectively. Here we set X(1)

eq = 20.0, X
(1)
ad = 10.0,

X(2)
eq = 30.0, and X

(2)
ad = 20.0 We note that in the parameter

region in Fig. 7(f), we do not have any negative joint
probabilities. From Figs. 7(e) and 7(f), we can see that the
approximation scheme qualitatively recovers the behavior of
the modality.

V. CONCLUDING REMARKS

In the present paper, we developed the approximation
scheme for gene regulatory systems. We first applied it to
self-regulating systems. The approximation scheme gives
qualitatively good results; the characteristics of peak structures
can be recovered well. In addition, due to the extension of
the basic idea of the effective interactions, we can naturally
apply the approximation scheme even to the exclusive switch,
and the bistability of the exclusive switch without cooperative
interactions is successfully recovered.

In contrast to the Fokker-Planck or Langevin approach, the
approximation scheme proposed in the present paper does not
neglect discrete properties of systems. In addition, because we
can rewrite the joint probability for all genes as a product of
the probability distribution for each gene, the dimensions of
the problems are reduced to a large degree.

Although a switching time between two stable states is
also an important quantity in bistable systems such as genetic
switches, the evaluation of the switching time is outside the
scope of the current work. In the present paper, we focus
only on “static” information, such as the average number
of proteins and probability distributions for protein numbers.
Approximation schemes even for static information has been
needed and actually developed. For example, in transcrip-
tional regulatory cascades, information theoretic analysis has
been performed [18]; mutual information for long cascading
systems should be evaluated in the information theoretic
analysis, but Monte Carlo simulations are sometimes time
consuming and need high computational costs, especially for
the long cascading systems. In order to calculate the mutual
information for such systems, a spectral analysis method has
been developed, which treats static information [26]. We
expect that our approximation scheme should help future
work related to information theoretic studies. In addition,
it is important to study cases in which equations for the
effective interactions have bifurcation points. For example, a
self-activator system causes the bifurcation problem. It is not
straightforward to construct a whole probability distribution
from two solutions for the effective interaction, and these cases
are under investigation.
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