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Abstract

We introduce a new conserved quantity, Normalized Energy Density (NED),
alternative to the conventional definition of energy for a layered structure
in a 2D SH problem. NED is defined by the average of power of a half
transfer function multiplied by the impedance, and the conservation across
the material interface is analytically proved for a two-layered case. For three,
four, and ten-layered cases, the conservation is examined by applying the
Monte Carlo simulation method, and then NED is supposed to be conserved
through the layers.
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1. Introduction

Conserved quantities, such as mass, momentum and energy, in elasto-
dynamic problems are the fundamental variables when analyzing wave prop-
agation in a continuous medium. In addition, the balance principles asso-
ciated with these quantities, e.g., the balance of mass and the balance of
momentum, govern the deformation within the framework of Newtonian me-
chanics. The balance of energy is one of the principles used to quantify the
seismic energy radiated from an earthquake source.
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Radiation energy E is theoretically defined as the total energy transmitted
through a certain surface, S, as follows:

E = −
∫ ∞

0

dt

∫
S

(
σij − σ0

ij

)
u̇injdS, (1)

where σij and σ0
ij are the tentative and the initial stress tensors, respectively.

u̇i is the particle velocity, and nj is a normal vector of the surface S. When
a particular region, e.g. a seismic fault, generates all of the energy, the in-
tegration on the arbitrary surface S surrounding the region is theoretically
conserved even for a general heterogeneous medium. The above representa-
tion has already been introduced in Love [1] . The energy of seismic events
was first applied by Richter [2] in order to measure the size of earthquakes
by using the local magnitude scale (ML), although it was not exactly equal
to the definition of the energy. Afterward, Kanamori [3] proposed the use of
moment magnitude (MW ), defined from the seismic moment that is related
to the energy release during the events, whose energy is different from the
radiation energy (Equation (1)). A detailed discussion on radiation energy
is introduced in Kostrov and Das [4], Fukuyama [5], and Abercrombie et al.
[6].

If a seismic wave through the surface S is approximated by a single plane
wave, either a P- or an S-wave propagated in a uniform direction, the energy
for the P-wave case, Eα, and that for the S-wave case, Eβ, are represented
as follows:

Eα =

∫ ∞

0

dt

∫
S

ραu̇2
αlinidS, Eβ =

∫ ∞

0

dt

∫
S

ρβu̇2
βlinidS, (2)

where ρ, α and β are the density, the P-wave velocity, and the S-wave velocity,
respectively. u̇α and u̇β are the amplitudes of particle velocity for the P-wave
and the S-wave, respectively. li is a vector representing the direction of the
wave propagation. The energy density, defined by the integrand, is a product
of the square of the particle velocity and the impedance. Note that the total
energy for a general wave field, represented by the superposition of the P-
and the S-waves, is not equal to Eα + Eβ (see Appendix A).

A part of the energy integrated on the shrunken area of S is utilized as a
principle of energy conservation when all of the input energy is confined in
a certain region, so-called “ray tube” [7] . The energy on the cross-sectional
area of the tube is theoretically conserved. Here, we focus on the layered
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Figure 1: Ray tube at the material interface and the energy conservation.

structure. At the interface, part of the energy for the input wave is transmit-
ted, and the rest is reflected. Then, both the transmitted and the reflected
waves should be considered in order to apply the energy conservation in the
ray tube. As shown in Figure 1, the sum of the transmitted energy and the
reflected energy is equal to the input energy. However, the total input en-
ergy can not be observed in only the opposite layer because the transmitted
energy is part of the input energy. Therefore, the energy is not conserved
across the interfaces. Note that some researchers apply the energy, directly
defined by

∫∞
0

ρcu̇2dt, to the layered structure (e.g., Kokusho and Motoyama
[8]) , however, they do not pay attention to the fact that the quantity is not
conserved. If a quantity conserved over the layer structure exists, absorbed
energy in propagating in the layer might be estimated, directly. The quan-
tification of the absorbed energy helps to understand the hysteretic damping
due to anelasticity, e.g. Q-factor, and the soil nonlinearity, as discussed in
Kokusho and Motoyama [8].

In this article, we introduce a quantity, Normalized Energy Density, which
is an alternative to the conventional definition of energy, and discuss the
features of the 2D SH problem. The quantity is analytically discussed for
the two-layered case, and numerically examined for multi-layered cases.

2. Two-layered case

The theoretical implementation starts from the waves, vertically propa-
gated into a simple two-layered structure. Only 2D SH waves, which have
an antiplane amplitude with respect to the plane, are considered here. The
structure consists of a horizontal layer, Layer #1, with a thickness of h and
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Figure 2: Two-layered model.

a half space basement, Basement #0. The S-wave velocity and the density
are β1 and ρ1 for Layer #1 and β0 and ρ0 for Basement #0, as shown in Fig-
ure 2. An incident plane wave propagates vertically into Layer #1 through
the interface between Layer #1 and Basement #0. Each layer keeps elasticity
independent of the wave amplitude.

The displacement in each layer satisfies the following wave equations in
the frequency domain:

−ω2

β2
1

u1(ω, z1) =
∂2u1(ω, z1)

∂z12
(3)

−ω2

β2
0

u0(ω, z0) =
∂2u0(ω, z0)

∂z02
, (4)

where ω is an angular frequency, and u1 and u0 are the displacements of
Layer #1 and Basement #0, respectively. The general solutions for Equa-
tions (3) and (4) are represented by the superposition of upgoing and down-
going waves, namely,

u1(ω, z1) = A1e
iωz1/β1 +B1e

−iωz1/β1 (5)

u0(ω, z0) = A0e
iωz0/β0 +B0e

−iωz0/β0 , (6)

where i indicates an imaginary unit. A1 and A0 are the amplitudes of the
upgoing waves, while B1 and B0 are those for the downgoing waves. The
boundary conditions at the interface are as follows:

u1(ω, h) = u0(ω, 0), ρ1β
2
1

∂u1

∂z1

∣∣∣∣
z1=h

= ρ0β
2
0

∂u0

∂z0

∣∣∣∣
z0=0

. (7)
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Then, the amplitudes for Basement #0 are represented by those for Layer
#1 via the following matrix equation.(

A0

B0

)
=

[
1
2
(1 +R1,0)e

iωh/β1 , 1
2
(1−R1,0)e

−iωh/β1

1
2
(1−R1,0)e

iωh/β1 , 1
2
(1 +R1,0)e

−iωh/β1

](
A1

B1

)
, (8)

where R1,0 represents an impedance ratio (= ρ1β1/ρ0β0). Since the space
differentiation of the displacement is zero on the free surface, the amplitude
of an upgoing wave, A1, should be equal to that of a downgoing wave, B1.
Then, the ratio, A1/A0, is represented by the following form:

A1

A0

=
1

cos(ωh/β1) + iR1,0 sin(ωh/β1)
. (9)

Quantity A1/A0 is half of transfer function H(ω), ratio of free surface dis-
placement to input wave, for the two-layered structure,

H(ω) ≡ u1(ω, 0)

A0

=
2A1

A0

. (10)

Here, we define real functions P1 and P0 as the square of the absolute
value of the upgoing wave amplitudes A1 and A0 normalized by input wave
amplitude.

P1(ω) =

∣∣∣∣A1

A0

∣∣∣∣2 = 1

cos2(ωh/β1) +R1,0
2 sin2(ωh/β1)

, (11)

P0(ω) =

∣∣∣∣A0

A0

∣∣∣∣2 = 1. (12)

P1 is a single-valued function with respect to cos(ωh/β1), and a periodic
function of ωh/β1 = nπ (n ∈ N). Moreover, P1, defined in ωh/β1 ∈ [0, π], is
symmetric about π/2. Therefore, the average of P in ω ∈ [−∞,∞], defined
by 〈P1〉, is equal to the average of P1 in ωh/β1 ∈ [0, π/2].

〈P1〉 = lim
Ω→∞

1

Ω

∫ Ω/2

−Ω/2

1

cos2(ωh/β1) +R1,0
2 sin2(ωh/β1)

dω

=
2

π

∫ π/2

0

dω̃

cos2(ω̃) +R1,0
2 sin2(ω̃)

, (13)
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where ω̃ = ωh/β1. The above integration is analytically integrable, as follows:∫ π/2

0

dω̃

cos2(ω̃) +R1,0
2 sin2(ω̃)

=

[
1

R1,0

tan−1 (R1,0 tan(ω̃))

]π/2
0

=
π

2R1,0

, (14)

Thus, the average of P1 is equal to the inverse of impedance ratio R1,0.

〈P1〉 =
1

R1,0

=
ρ0β0

ρ1β1

. (15)

When the input wave satisfies |A0| = 1, 〈P1〉 represents the average power for
the upgoing waves in Layer #1 or for half the amplitude of the waves observed
on the free surface. On the other hand, the average of P0 is identical to 1
because of P0 = 1.

〈P0〉 = 1. (16)

We define a quantity, a product of the average of P and the impedance
ρβ, such as ρ1β1〈P1〉 for Layer #1 and ρ0β0〈P0〉 for Basement #0. From
the explicit representations of 〈P1〉 and 〈P0〉 by Eqs.(15)-(16), the following
relation is obtained:

ρ1β1〈P1〉 = ρ0β0〈P0〉. (17)

Equation (17) includes some physical features. Both the left- and right-
hand sides are the average power of the upgoing waves multiplied by the
impedance at each layer. This means that the quantity, ρβ〈P 〉, is conserved
across the interface. Moreover, the quantity is directly evaluated from the
transfer function H(ω) as

ρ1β1〈P1〉 = lim
Ω→∞

1

Ω

∫ Ω/2

−Ω/2

ρ1β1

∣∣∣∣H(ω)

2

∣∣∣∣2 dω. (18)

Let g(t) to be an impulse response in a time domain for the upgoing waves in
Layer #1. Although g(t) is not guaranteed to be a stationary ergodic process,
the formally defined average power spectral density is generally equal to 〈P1〉.
Since the average power spectral density for a stationary ergodic process is
a variance of the process, the quantity may be formally defined as a product
of the impedance ρ1β1 and the variance of g(t), as follows:

ρ1β1〈P1〉 = lim
T→∞

1

T

∫ T/2

−T/2

ρ1β1 [g(t)− 〈g(t)〉]2 dt, (19)
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Figure 3: Multi-layered model.

where 〈g(t)〉 is the average g(t). Note that the derivation of Equation (19)
should be discussed after the treatment for the convergence of the integra-
tion, the super function, etc. We just mention that the representation of
Equation (19) is similar to the conventional definition of the energy, whereas
the proposed quantity, which is limited to the unity input waves, gives rise to
conservation across the interface. Therefore, we name the quantity ρβ〈P 〉,
Normalized Energy Density (NED).

3. Multi-layered case

We consider a multi-layered structure consisting of n layers (#1-#n) over
Basement #0, as shown in Figure 3. The S-wave velocity of Layer #k is βk,
the density is ρk, and the thickness is hk. 2D SH waves vertically propa-
gate vertically into the layers through the interface between Layer #n and
Basement #0.

The general solution for the wave equation at Layer #k is obtained by

uk(ω, zk) = Ake
iωzk/βk +Bke

−iωzk/βk . (20)

From the boundary conditions at the interface between Layers #(k+1) and
#k, the amplitudes for Layer #(k + 1) are represented by those for Layer
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#k as(
Ak+1

Bk+1

)
=

[
1
2
(1 +Rk,k+1)e

iωhk/βk , 1
2
(1−Rk,k+1)e

−iωhk/βk

1
2
(1−Rk,k+1)e

iωhk/βk , 1
2
(1 +Rk,k+1)e

−iωhk/βk

](
Ak

Bk

)
, (21)

where Ak and Ak+1 are the amplitudes for the upgoing waves, and Bk and
Bk+1 are those for the downgoing waves. Rk,k+1 is the impedance ratio be-
tween Layers #k and #(k + 1) (= ρkβk/ρk+1βk+1). Hereinafter, each com-
ponent of the matrix in Equation (21) is indicated by T k

ij as[
T k
11 T k

12

T k
21 T k

22

]
=

[
1
2
(1 +Rk,k+1)e

iωhk/βk , 1
2
(1−Rk,k+1)e

−iωhk/βk

1
2
(1−Rk,k+1)e

iωhk/βk , 1
2
(1 +Rk,k+1)e

−iωhk/βk

]
, (22)

The amplitudes for Layer #k are represented by those for Layer #1 by ap-
plying Equation (21), recursively.{

Ak = T k−1
1i · T k−2

ij · · ·T 2
lm · (T 1

m1A1 + T 1
m2B1)

Bk = T k−1
2i · T k−2

ij · · ·T 2
lm · (T 1

m1A1 + T 1
m2B1)

(for k ≥ 3) (23)

{
A2 = T 1

11A1 + T 1
12B1

B2 = T 1
21A1 + T 1

22B1
(24)

The traction-free condition on the free surface, A1 = B1, gives the following
representation of the amplitudes:{

Ak = Ck−1A1

Bk = Dk−1A1
(for 1 ≤ k ≤ n) (25)

{
A0 = CnA1

B0 = DnA1
(26)

where Ck and DK are defined as follows:{
Ck−1 = T k−1

1i · T k−2
ij · · ·T 2

lm · (T 1
m1 + T 1

m2)

Dk−1 = T k−1
2i · T k−2

ij · · ·T 2
lm · (T 1

m1 + T 1
m2)

(for k ≥ 2) (27)

{
C1 = T 1

11 + T 1
12

D1 = T 1
21 + T 1

22

,

{
C0 = 1
D0 = 1

(28)
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We introduce the identity of C∗
k = Dk in the Appendix B, where C∗

k is a
complex conjugate of Ck.

Pk(ω) is also defined by the square of the absolute value of Ak/A0, as
follows:

Pk(ω) =

∣∣∣∣Ak

A0

∣∣∣∣2 = |Ck−1|2

|Cn|2
(29)

The denominator of the last part of Equation (29) is rewritten as

|Cn|2 = |T n
11Cn−1 + T n

12Dn−1|2

=

∣∣∣∣12(1 +Rn,0)αnCn−1 +
1

2
(1−Rn,0)α

∗
nC

∗
n−1

∣∣∣∣2
= |<[αnCn−1] + iRn,0=[αnCn−1]|2

= (<[αnCn−1])
2 +R2

n,0(=[αnCn−1])
2, (30)

where αn represents the complex variables defined by αn = eiωhn/βn . <[ ] and
=[ ] indicate the real and the imaginary parts of the argument, respectively.
Therefore, the average of P1, 〈P1〉, is represented as follows:

〈P1〉 = lim
Ω→∞

1

Ω

∫ Ω/2

−Ω/2

dω

(<[αnCn−1])2 +R2
n,0(=[αnCn−1])2

. (31)

For the two-layered case (n = 1), the above equation becomes Equation (13).
For the three-layered case (n = 2), α2C1 is a sum of periodic functions of

ω(h1/β1 + h2/β2) = mπ and ω(h1/β1 − h2/β2) = nπ (m,n ∈ N), as follows:

α2C1 =
1

2
(1 +R1,2)e

iω(h1/β1+h2/β2) +
1

2
(1−R1,2)e

−iω(h1/β1−h2/β2) (32)

If the ratio (h1/β1 + h2/β2)/(h1/β1 − h2/β2) were a rational number repre-
sented by m/n (m,n ∈ N), α2C1 might be a periodic function of ω(h1/β1 +
h2/β2) = lnπ (l ∈ N). However, α2C1 is generally not guaranteed to be a
periodic function because (h1/β1 + h2/β2)/(h1/β1 − h2/β2) is a real num-
ber. Therefore, the same strategy with the two-layered case (Eq.(13)) is not
applicable to cases with more than three layers (n ≥ 2).

If the integration results become 1/R1,0, NED ρ1β1〈P1〉 is also equal to
ρ0β0〈P0〉. In the same way, the average power of the upgoing waves in Layer
#k (k ≥ 2) is obtained as follows:

〈Pk〉 = lim
Ω→∞

1

Ω

∫ Ω/2

−Ω/2

(<[αk−1Ck−2])
2 +R2

k−1,k(=[αk−1Ck−2])
2

(<[αnCn−1])2 +R2
n,0(=[αnCn−1])2

dω. (33)
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Figure 4: Parameter distribution of the impedance ratio and the layer thickness for the
two-layered case.

If the integration results becomes 1/Rk,0, NED is conserved through all the
layers. Therefore, we apply the Monte Carlo simulation method in order to
examine the conservation of NED for the cases with more than three layers
in the latter chapter.

The above discussion is based on the vertical incident of SH waves. In
the shallow layers of the crust structure within about 0-1000 m depth, the
incident of waves from the basement is assumed to be vertical. On the
other hand, the general oblique incidence of waves is also interesting. When
the incident angle δ and the S-wave velocity βk satisfy β0 > βk sin δ in all
layers, the problems are reduced to the same with the vertical incidence (see
Appendix C).

4. Numerical tests

Firstly, the conservation of the quantity is numerically verified for the
two-layered case using the Monte Carlo simulation. Five hundred sets of
physical values are generated from random numbers within the range of 10-
700 m/s for the S-wave velocity and 1000-2000 kg/m3 for the density of
both Layer #1 and Basement #0. The parameters set for Layer #1 are not
guaranteed to be smaller than those for Basement #0 in the simulations.
The layer thickness is generated within the range of 1-50 m. Figure 4 shows
the parameter distribution of impedance ratio R1,0 and layer thickness h.

For each sample, P1(ω) is calculated by Equation (11). Figure 5 shows
three samples of P1(ω) normalized by 1/R1,0. Since the average P1(ω) is
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Figure 5: Samples of P1 normalized by 1/R1,0 for the two-layered case (Model1:
R1,0=0.231, h/β1=0.004 s, Model2: R1,0=0.816, h/β1=0.066 s, Model3: R1,0=0.145,
h/β1=0.249 s).
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1>

 [k
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]
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ρ1 β1 <P1> = ρ0 β0 <P0>

Figure 6: Comparison of NED between Layer #1 and Basement #0 for the two-layered
case.

1/R1,0, as proved in section 2, the average R1,0P1(ω) should be 1. The am-
plitudes and the periodicity of R1,0P1(ω) are varied among the three samples,
Model 1, 2, and 3, although the values are distributed around 1.

In order to check the conservation of NED the averaged values for ρ1β1P1

are compared to those for ρ0β0P0. The integrations are approximated by
a numerical integration every 1.0 s−1 within 1.0 s−1 ≤ ω ≤ 2.5 × 105 s−1.
Figure 6 shows a comparison of NED. A line for ρ1β1〈P1〉 = ρ0β0〈P0〉 is
plotted together. The simulated samples, indicated by the black points, are
exactly on the line, and thus, the conservation of NED is verified for the
two-layered case.

For the three- and the four-layered cases, Monte Carlo simulations are
also performed. Five hundred sets of physical values are also generated from
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Figure 7: Samples of P1 normalized by 1/R1,0 for the three-layered case (Model1:
R1,2=0.043, R2,0=0.551, h1/β1=0.579 s, h2/β2=0.003 s, Model2: R1,2=1.277, R2,0=1.211,
h1/β1=0.044 s, h2/β2=0.015 s, Model3: R1,2=0.390, R2,0=2.067, h1/β1=0.593 s,
h2/β2=0.027 s).

random numbers within the range of 10-700 m/s for the S-wave velocity and
1000-2000 kg/m3 for the density of every layer and for Basement #0. The
total thickness of the layers is generated within the range of 1-50 m and then
divided into layers with a random thickness.

Figure 7 shows three samples of P1(ω) normalized by 1/R1,0 for the three-
layered case. In section 3, we mentioned that the integration of average P1

is not analytically discussed, although the calculated values, R1,0P1(ω), are
almost distributed around 1. NED between the layers is checked in Figure 8.
The integrations are also approximated by the numerical integration every
1.0 s−1 within 1.0 s−1 ≤ ω ≤ 2.5× 105 s−1. Every sample is on the reference
line, and thus, NED is expected to be conserved through the layers even for
the three- and the four-layered cases.

The simulations are applied to a ten-layered case. Five hundred sets of
physical values are generated from the random numbers within the range
of 10-700 m/s for the S-wave velocity and 1000-2000 kg/m3 for the density
of every layer and for Basement #0. The total thickness of the layers is
generated within the range of 1-50 m, and then divided into layers with
a random thickness. NED at Layer #1 and Basement #0 is compared in
Figure 9. The integrations are approximated by a numerical integration
every 0.02 s−1 within 0.02 s−1 ≤ ω ≤ 1.6 × 107 s−1. Almost all the samples
are on the reference line, and thus, NED is expected to be conserved between
Layer #1 and Basement #0. The depth distribution of NED normalized by
that of the basement, is also shown in Figure 9. The quantities are almost
constant at 1 for all the layers. Therefore, the results of the Monte Carlo
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Figure 8: Comparison of NED between Layer #1 and Basement #0 (top left) and between
Layer #2 and Basement #0 (top right) for the three-layered case, and for between Layer
#1 and Basement #0 (bottom left), between Layer #2 and Basement #0 (bottom middle),
and between Layer #3 and Basement #0 (botom right) for the four-layered case.
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Figure 9: Comparison of NED for the ten-layered case between Layer #1 and Basement
#0 (left), and depth distribution of NED normalized by NED at Basement #0 (right)

simulation support the conservation of NED through the layers.

5. Conclusions

We introduced Normalized Energy Density that is the average power for
the upgoing waves multiplied by the impedance, for a 2D SH problem. For
the two-layered case, the conservation of NED was analytically proved. For
the three-, the four-, and the ten-layered cases, the conservation was verified
by the Monte Carlo simulation method. The analytical proof for the gen-
eral multi-layered case is still a problem; NED is supposed to be conserved
through the layers.

We emphasize that NED can be evaluated from the transfer function and
the impedance at the top layer. Detailed layered structures are not required
for the evaluation. NED, different from the conventional definition of the
energy, is conserved in structures whose detailed physical parameters have
not been identified. It is anticipated that NED will be applied in the future to
a wide range of studies. For example, a trade-off problem has been known to
separate a contribution of source, pass and site effects by using the observed
ground motions, e.g. Sato [9], Iwata and Irikura [10], Kinoshita [11], etc. A
reference site is usually assumed to be no amplifications, and those at the
other sites are estimated in terms of the ratio to the reference site. If the
impedances on the free surface are known, NED constrains the average of
site amplifications, and thus, the trade-offs might be avoided.
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Appendix A. Total energy for general wave field

Let ui displacement of a wave propagating to the direction li. The wave
consists of both P- and S-waves.

ui = uαli + uβ1t
1
i + uβ2t

2
i , (A.1)

where uα is amplitude of P-wave, uβ1 and uβ2 are the amplitudes of S-wave
in t1i and t2i directions, which are perpendicular to li. When the following
identities are substituted into Eq.(1),

∂uα

∂xi

= − 1

α
u̇αli,

∂uβ

∂xi

= − 1

β
u̇βli, (A.2)

the total energy E is rewritten as follows:

E =

∫ ∞

0

dt

∫
S

{ραu̇2
αli + ρβu̇2

βli + ργu̇αu̇β1t
1
i + ργu̇αu̇β2t

2
i }nidS, (A.3)

where γ = ρ(α + β − 2β2/α). Therefore the total energy E is not equal to
Eα + Eβ, defined by Eq.(2).

Appendix B. Properties of Ck and Dk

From the definitions for Ck and Dk (Equations (27) and(28)), the follow-
ing recursive formulas are obtained for k ≥ 1.{

Ck = T k
11Ck−1 + T k

12Dk−1

Dk = T k
21Ck−1 + T k

22Dk−1
(B.1)

For k = 1, C1 and D1 are explicitly represented by{
C1 = p1α1 + q1α

∗
1

D1 = q1α1 + p1α
∗
1

(B.2)

where pk and qk are the real variables defined by pk = 1
2
(1 + Rk,k+1) and

qk = 1
2
(1 − Rk,k+1), and αk is a complex variable defined by αk = eiωhk/βk .
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α∗
k is the complex conjugate of αk. Thus, D1 is proved to be the complex

conjugate of C1.
If Dk is the complex conjugate of Ck, Ck+1 and Dk+1 are represented by{
Ck+1 = pk+1αk+1Ck + qk+1α

∗
k+1Dk = pk+1αk+1Ck + qk+1(αk+1Ck)

∗

Dk+1 = qk+1αk+1Ck + pk+1α
∗
k+1Dk = qk+1αk+1Ck + pk+1(αk+1Ck)

∗ (B.3)

Then, Dk+1 becomes the complex conjugate of Ck+1. Therefore, Ck and Dk

satisfy the following relationship proved by a mathematical induction.

C∗
n = Dn (B.4)

Appendix C. Oblique incidence case

Let δ to be the incident angle of the wave propagating into Basement #0.
The displacement in each layer satisfies the following wave equations:

−ω2

β2
k

uk =
∂2uk

∂x2
+

∂2uk

∂z2k
. (C.1)

The general solution for the wave equation at Layer #k is obtained by

uk = Ake
i(kxx+kzkzk) +Bke

i(kxx−kzkzk), (C.2)

where kx and kzk are the wave number in x and zk directions, respectively.
The wave numbers are related to the S-wave velocity βk and the incident
angle δ, as follows:

kx =
ω sin δ

β0

, kzk =
ω

ck
, (C.3)

where ck is the apparent S-wave velocity in zk direction defined by,

ck ≡ βk

(
1− β2

k

β2
0

sin2 δ

)−1/2

. (C.4)

Note that ck satisfies <[ck] > 0 and =[ck] > 0. When β0 is greater than
βk sin δ, ck is a real number.

From the boundary condition at the interface between Layer #(k+1) and
#k, the amplitudes for Layer #(k + 1) are represented by those for Layer
#k as(

Ak+1

Bk+1

)
=

[
1
2
(1 + R̃k,k+1)e

iωhk/ck , 1
2
(1− R̃k,k+1)e

−iωhk/ck

1
2
(1− R̃k,k+1)e

iωhk/ck , 1
2
(1 + R̃k,k+1)e

−iωhk/ck

](
Ak

Bk

)
, (C.5)
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where R̃k,k+1 is defined by

R̃k,k+1 ≡
ρkβ

2
k/ck

ρk+1β2
k+1/ck+1

. (C.6)

The above system of equations are the same form with Eq.(21). When
ck is a real number in each layer, R̃ becomes a real number, and eiωhk/ck and
e−iωhk/ck are complex numbers with the absolute values of 1. In the case,
〈Pk〉, defined by 〈|Ak/A0|2〉, is the same with Eq.(33) if impedance and S-
wave velocity are exchanged to ρkβ

2
k/ck and ck, respectively. Therefore, the

oblique incident case is identical to the problems of vertical incidence with
the impedance of ρkβ

2
k/ck and S-wave velocity of ck if β0 > βk sin δ is satisfied

in each layer.
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