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Chapter 1

Introduction

1.1 Fusion energy
Huge increase in demand for energy available for human kind is expected in near future.
Thus large-scale and sustainable energy generation satisfying environmental require-
ment has to be developed. Fusion energy is considered to be a future energy option,
and will be able to play a significant role in providing a sustainable and secure solution
for energy requirement.

1.1.1 Nuclear fusion reaction
Fusion energy is generated by some of nuclear fusion reactions. When two light nuclei
approach sufficiently close to each other against electric repulsive force, they fuse and
produce a new nucleus. The total mass of the new nucleus and by-products is slightly
smaller than the total mass of the two fused nuclei. The mass deficit, ∆m, between the
two incident nuclei and the fusion product nucleus is converted into kinetic energy, E,
according to the following equation;

E = ∆mc2

where c denotes the velocity of light.
Some fusion reaction candidates available for fusion power plants are listed below.

(Branching ratios are correct for energies near the cross section peaks.) [1]

D + D→50% T(1.01MeV) + p(3.02MeV) (1.1)
→50% He3(0.82MeV) + n(2.45MeV) (1.2)

D + T → He4(3.5MeV) + n(14.1MeV) (1.3)
D + He3 → He4(3.6MeV) + p(14.7MeV) (1.4)

T + T → He4 + 2n + 11.3MeV (1.5)
He3 + T→51% He4 + p + n + 12.1MeV (1.6)

→43% He4(4.8MeV) + D(9.5MeV) (1.7)
→6% He5(2.4MeV) + p(11.9MeV) (1.8)
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Figure 1.1: Fusion cross sections for some reactions as a function of the relative kinetic
energy of the incident particles. [2]

1.1.2 Fusion cross section and reaction rate
The cross section of the reaction, σ, is a measure of the probability of the fusion re-
action as a function of the relative velocity of the two reactant nuclei. Fig. 1.1 shows
fusion cross section as a function of the relative kinetic energy of the incident particles.
From the figure, it is seen that the maximums cross section occurs at around 100 keV
in D-T reaction, and the energy which maximized the D-T reaction cross section is
the lowest among the fusion reactions. Owing to this reason, the D-T reaction is pre-
ferred for fusion plant nearest future, and this reaction will be employed in the ITER
(International Thermonuclear Experimental Reactor) project [3].

1.1.3 Plasma confinement scheme
When particles are accelerated enough to fuse each other, the particles are fully ionized.
The fully ionized gas is called as plasma. Although plasma is rarely found on earth, it
is estimated that more than 99% of the matter identified in universe exists as plasma.

In order to operate a fusion reactor, extremely high temperature (higher than 10keV)
plasma must be confined in some space until fusion reaction occurs. Plasma density
and confinement time depend on the plasma confinement scheme. There are two major
types of plasma confinement schemes, one is inertial confinement, the other is magnetic
confinement.

Inertial confinement

In the inertial confinement scheme, nuclear fusion reactions are initiated by heating and
compressing a fuel pellet. In order to heat and compress a fuel pellet, high energy beam
of laser , (∼ 1015W), is applied as an energy driver. Typically in this scheme, the plasma
density reaches extremely high, ∼ 1031∼32m−3, while the required energy confinement
time becomes very short, ∼ 10ns.
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In 2010, there are some laser driven inertial confinement devices, such as ‘NIF’ in
U.S., ‘Gekko XII’ in Japan, ‘ISKRA’ lasers in Russia and more.

Magnetic confinement

The magnetic confinement scheme is highly developed and is usually considered more
promising for energy production. Since particles in plasma have electric charge, they
are tied around a magnetic field line due to the Lorentz force. Typically in this scheme,
the plasma density becomes ∼ 1020m−3, while the necessary energy confinement time
becomes larger than 1s.

In 2010, there are many magnetic confinement devices. Magnetic confinement de-
vices are classified by the magnetic configuration, such as tokamak, helical system,
mirror, and so on. ITER is a tokamak type reactor which is under construction in
France. In this paper, plasma confined in tokamak configuration is studied.

1.1.4 Merits of fusion energy
Resources

The resources necessary for fusion reactor was well studied in 1970s. It was found
that the most of materials required for the D-T fusion reactor is sufficiently resourceful.
Here, the some characteristic resources for steady state tokamak reactor (SSTR [4])
which is the typical design of D-T fusion plant are discussed.

• Deuterium (D2) as fuels

A fusion plant which generate ∼ 3 GW thermal output and ∼ 1 GW electric output
expends ∼ 200 g deuterium on a day. Since deuterium exists abundantly in seawater
(∼ 48 Tera tons), deuterium can be supplied inexhaustibly. Deuterium is produced by
the Girdler sulfide process which is a kind of isotope exchange method, and this process
can produce plentiful deuterium economically.

• Lithium (Li) as tritium source

Since tritium, a fuel of D-T reactor, is extremely rare naturally on the earth, it
is necessary to produce tritium by neutron activation of lithium-6 in tritium breeding
blankets.

Li6 + n→ He4(2.05MeV) + T(2.75MeV)

Although lithium is widely distributed on Earth, it does not naturally occur in elemental
form due to its high reactivity. Lithium resources are estimated as 19 million tons in
continental brine and 11 million tons in mineral. Moreover 230 billion tons lithium
is contained in seawater. Lithium occurrences content of seawater exist at a relatively
constant concentration, on the other hand, lithium reserves of brine and mineral are
distributed unevenly. Presently resources in brine and mineral are mainly mined in a
commercial reason.
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Approximate 2000 fusion reactors are needed when assuming that the electrical
power consumption of present all of the world (∼ 19 PWh in 2006) is supplied in the 1
GW class fusion reactor. If a D-T fusion reactor is running for 30 years, about 300 tons
lithium will be consumed for blankets and Lithium consumption per a year becomes
about 10 tons. Thus 2000 fusion reactors consume lithium 20 kilo tons in a year.

From the lithium reserves and the expectation of lithium consumption, lithium can
be extracted around 1000 years. Furthermore, if the economic efficiency of lithium
extraction from seawater increases, lithium can be supplied inexhaustibly.

• Beryllium (Be) for neutron multiplication

In order to increase tritium breeding ratio, neutron multiplier composed of Be are
used in the blanket.

Be9 + n→ 2n + 2He4

The resources of beryllium are estimated approximately 740 kilo tons all of the world
[5].

It is estimated that a SSTR consume ∼ 110 tons beryllium, thus ∼ 220 kilo tons
beryllium is needed for 2000 SSTRs which supply electrical power consumed in present
all of the world. Furthermore, since 1 ton of beryllium will be consumed through
the nuclear reaction by a SSTR per a year, 2000 SSTRs will consume 2000 tons of
beryllium per a year. From these estimation, it seems that beryllium will be short
in a few hundred years. However, there is a possibility that resources of beryllium
increase. Since the present demand of beryllium is low, resource explanation is done
insufficiently [6, 7]. In addition, beryllium which is a material of neutron breeder can
be substituted by lead. Moreover, Li/V blanket which uses liquid lithium as coolant and
breeder does not require neutron breeder [8]. In these reasons, beryllium resources will
make no trouble for fusion reactor.

• Vanadium (V) for blanket material

Vanadium holds great promise for structural material of liquid metal blanket. This type
of blanket has a feature that beryllium as neutron breeder materials is not required. The
resources of vanadium are estimated approximately 27 million tons all of the world.

It is estimated that 600 tons of vanadium will be required for structural material of a
SSTR, and 300 tons of vanadium will be changed every three years. Therefore it seems
that resources of vanadium will be short in approximate 200 years. However, since
very plentiful vanadium (∼ 2.7 billion tons) is contained in seawater, if the economic
efficiency of vanadium extraction from seawater increases, vanadium can be supplied
inexhaustibly.

• Niobium (Nb) for superconducting material

Since niobium is a kind of rare metal and used for superconducting coil, the re-
sources of niobium are also important. The resources of niobium are estimated approx-
imately 4.2 million tons.
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It is estimated that approximate 400 kilo tons of niobium will be required for su-
perconducting material of 2000 SSTRs. Assuming the lifetime of SSTR is 40 years,
niobium is able to be supplied for approximate 400 years. If superconducting materi-
als are 90% recycled, the resources of niobium make no problems for a few thousand
years.

• note

SSTR is designed in the early 1990s. In present (2000s), some tokamak reactors
which are more economical and more efficiency are designed [9, 10]. Therefore it
seems that resources of constructing materials will be consumed less than that of esti-
mated above.

Safety

Since fusion plasma emits a strong flux of neutron radiation during the operation of
fusion reactor, it is expected that some radiation will leak from plants even though
plants are shielded. The expected amount of radiation at site boundary during ITER
operation is an amount equivalent to one tenth of natural radiation (1 mS) or less.

Moreover, since nuclear reactions in fusion plants make no nuclear waste, fusion
plants make no high-level radioactive waste unlike fission plants. Therefore it only has
to consider the neutron induced activation material as radioactive waste. The radiologi-
cal toxic hazard potential1 of fusion plants is much lower than the nuclear fission plants,
furthermore low activation material makes the risk lower.

Environmental

Since nuclear reactions make no CO2, nuclear plants can generate electric power with-
out CO2 emissions. Therefore CO2 is emitted at only the stages of construction and
dismantlement of fusion plants.

Fig. 1.2 shows the comparison of the amount of CO2 emissions among verious kind
of electrical power plants [13]. From this figure, it is found that the amount of CO2

emissions from fusion plant is estimated smaller than that of most of other plants

1.2 Tokamak
Tokamak is a kind of axisymmetric magnetic configuration, in which the plasma current
itself gives rise to the poloidal field essential to the equilibrium of toroidal plasmas.
The tokamak type device is composed of toroidal field coils, poloidal field coils, ohmic
heating coil, and vacuum vessel mainly.
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Thermal power (LNG)

Wind electricity

Solar energy generation

Geo-thermal generation

Hydraulic power

BWR

Fusion plant

Figure 1.2: Comparison of CO2 emissions from fusion reactor and other electric gener-
ation systems. These values except fusion are quoted from [11, 12].

1.2.1 Magnetic configuration
The conceptual diagram of tokamak is shown in Fig. 1.3. The tokamak plasma is de-
scribed in toroidal coordinate system (r, θ, φ), where r, θ, and φ denote minor radius,
poloidal angle, and toroidal angle. Since the tokamak plasma is not cylinder but torus,
the strength of the toroidal magnetic field is inversely proportional to the major radius
from the torus axis and encircles the torus axis. Charged particles drift due to the inho-
mogeneity and curvature of the toroidal magnetic field. The direction of the magnetic
drift due to gradient and curvature of Bt is the opposite direction for electrons and ions.
Therefore these drifts generates the vertical electric field due to the charge separation
as shown in Fig. 1.4. And then, both electrons and ions drift towards the outer region
of the confined plasma due to the E × B drift. In this way, plasma can not be confined
in a simple torus. In order to overcome this problem, the poloidal magnetic field is
introduced.

The poloidal magnetic field prevents the separation of the charged particle to occur.
It makes magnetic field line curved around magnetic axis, and a magnetic field line
becomes a spiral and a magnetic surface is created as shown in Fig. 1.5. Since charged
particles can move freely along magnetic field lines, spiral magnetic field lines enable
the charge separation to be short-circuited. The poloidal magnetic field is generated by
toroidal plasma current IP.

Since plasma particles gyrate around magnetic field line, a guiding center of plasma
particle also gyrates around magnetic axis like a magnetic field line. Accordingly, the

1Radiological Toxic Hazard Potential: The influence of exposure when radionuclide is taken into
human body is shown in this value.

6



Bt
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minor radiusR0

Bp

Bt

a

magnetic axis

RO

Z

r 

poloidal angleθ

toroidal angleφ

Ip

high Bt region low Bt region

major axis

minor radius direction 

Figure 1.3: The conceptual diagram of tokamak configuration. The toroidal magnetic
field Bt is generated by toroidal field coils, while the poloidal magnetic field Bp is
generated by the plasma current Ip and the poloidal field coils.

orbit of plasma particles makes a closed circle on poloidal cross section.

1.2.2 Trapped particle
Since toroidal magnetic field is inversely proportional to major radius, the guiding cen-
ter rotating around the magnetic axis feels stronger magnetic field when it moves to
high Bt region from low Bt region. This inhomogeneity of the toroidal magnetic field
classifies the guiding center motion of particles into two types, one is passing particle
another is trapped particle.

If v‖0 (velocity component parallel to the magnetic field at the minimum magnetic
field point) is much smaller than v⊥0 (velocity component perpendicular to the magnetic
field at the minimum magnetic field point) and satisfies the condition;

v⊥0

v‖0
>

√
1 − ε

2ε

the particle is trapped in the region of weak magnetic field due to the mirror effect as is
shown in Fig. 1.6 (where ε = r/R0). This kind of particles are called trapped particles.
Meanwhile, circulating particles without trapped are called passing particles.
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Figure 1.4: Outward drift of plasma
particle
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Figure 1.5: Magnetic field line and
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Projection on to poloidal cross section

passing

trapped

Figure 1.6: Guiding center orbits of passing and trapped particle.

The trapped particle has several features which passing particle does not have. Be-
cause of these features, it is necessary to consider physical mechanism separately.

1.3 Plasma heating in tokamak plasmas
In a fusion plasma, the energy losses are balanced by the plasma heating from the
slowing down of α particles resulting from the fusion reaction. The fusion reaction
rate, however, is a strong function of temperature and is negligible at low temperatures.
Thus to reach the temperature required for reaction, it is necessary to provide some kind
of heating. There are several methods proposed for this requirement.
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EC IC LH NBI
Frequency (Energy) 170 GHz 40 ∼ 60MHz 5GHz 1MeV

Injection power 20MW 20MW 0 33MW
Unit power 1MW 2.5MW 1MW 16.5MW D0

Upgrade option +20MW +20MW +20 ∼ 40MW 17MW

Table 1.1: Installation plan of ITER heating and current drive systems. [14, 15]

1.3.1 Ohmic heating
One of the conventional methods is ohmic heating caused by the joule heating of
toroidal current. At low temperatures, ohmic heating is quite powerful and, in large
tokamaks, easily produces temperatures of a few keV. However, as the temperature
increases, the collision frequency and the resistivity fall. Consequently, at the tempera-
tures required for reactor operations, the power of ohmic heating is strongly reduced.

tB

inductive E field

primary coil

coli current

E

poloidal flux Ψ swing

Figure 1.7: The conceptual diagram of pri-
mary coil and toroidal inductive current.

In addition, since the toroidal current
necessary for ohmic heating is driven by
an inductive electric field generated by
the primary coil as is shown in Fig. 1.7,
it is impossible to drive toroidal current
in steady state. As a consequence, addi-
tional heating is required.

1.3.2 Wave heating
One of the main method which are envis-
aged for heating to ignition temperatures
is resonant absorption of electromagnetic
waves. When an electromagnetic wave
propagates through a plasma, the elec-
tric field of the wave accelerates a group
of charged particles which then heat the
plasma through collisions. Wave heating
has been used to heat magnetically confined plasmas since the early days of fusion
research. Three schemes have emerged as the most successful, namely, ion cyclotron
(IC), lower hybrid (LH), and electron cyclotron (EC) heating (H) and current drive
(CD). Each method has been tested at the Mega Watt level in major tokamak devices.

In ITER, tens of MW wave heating is planned as is shown in Table 1.1. EC wave
are used for plasma ramp up, plasma heating, current drive for sustaining operation, and
suppression of neoclassical tearing mode (NTM). Especially, EC waves which is able
to drive local plasma current is essential for stabilization of NTM. In ITER, a coupled
transport and MHD simulation has shown that 20MW EC wave power is required for
NTM suppression. Since IC wave has a good track record of some dozens of MW ion
heating in several experimental devices, such as JT-60, JET, and LHD, IC heating and
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current drive device will be equipped as highly-dependable heating source and core
plasma current drive. Moreover, ICH is expected as the method of fusion reaction
control, because ICRF can heat ions selectively.

1.3.3 Neutral Beam Injection
Another promising method for plasma heating to reactor operation is the neutral beam
injection (NBI). The beams used for injection heating have to be composed of neutral
particles because ions can not penetrate across the tokamak magnetic field. Heating
with neutral beams is a slightly complicated process. Ions must be produced first and
accelerated to a required energy. They are then neutralized by charge exchange in a gas
target, and the unwanted residual ions are removed. Once the neutral beam particles en-
tering the plasma become ionized, the resulting fast ions are slowed down by Coulomb
collisions. Through the slowing down process, the kinetic energy is transferred to the
particles in the plasma, causing heating of both electrons and ions. At high injection
velocity, the electron heating is initially dominant. Then, as the beam ions slow down,
the heating is transferred to the ions.

It is clearly desirable that as much of deposition as possible should take place in
the central region of plasma. This means avoiding both too strong absorption, which
leads to heating of the plasma edge, and too weak absorption which allows transmission
of the beam through the plasma to produce heating and particle sputtering at opposite
material surfaces. The deposition of beam particles depend on the energy of beam
particles and the plasma density. In the high density (∼ 1020 m−3) plasma, since tens
of keV neutral beam is not able to penetrate plasma core, high energy neutral beam
(∼ 1MeV) is required. Because of this requirement, high energy negative-ion based
neutral beam injection systems (N-NBI) have been developed [16]. In ITER, tens of
MW N-NBI is planned as is shown in Table 1.1.

1.3.4 α particle heating
Different from the previous heating schemes, α particle heating is a internal heating
without external heating devices. The D-T thermonuclear power consists of two parts.
Four fifth of the reaction energy is carried by neutrons and one fifth is carried by α
particles.

D+ + T+ → He2+(3.5MeV) + n(14.1MeV)

The neutrons leave the plasma without interaction with plasma but the α particles, being
charged, are confined by the magnetic field. The α particles then transfer their 3.5MeV
energy to the plasma through collisions.

As a D-T plasma is heated to thermonuclear conditions, the α particle heating pro-
vides an increasing fraction of total heating. When adequate confinement conditions are
provided, a point is reached where the plasma temperature can be maintained against
the energy losses solely by α particle heating. In this case, the applied heating can be
removed and the plasma temperature is sustained by internal heating. By analogy with
the burning fossil fuels, this event is called ignition.
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1.4 Kinetic analysis
Kinetic theory describes the behaviour of plasmas in terms of the particle motions.
Because of the large number of particles involved, this description has to be statistical.
In practice, this is carried out using the distribution function, f (r, u, t) which measures
the probability density for a single particle in six dimensional phase space, (r,u). The
behaviour of the distribution function is described by the kinetic equation.

For many purposes, it is adequate to describe the plasma in terms of fluid variables
such as the particle density n(r, t), fluid velocity u(r, t), and pressure p(r, t) which are
functions of only four variables. In fact, a lot of conventional transport codes apply fluid
description instead of kinetic description because it is easy to calculate fluid model due
to less variables. Although conventional transport simulation which use diffusive fluid
transport equation describes only fast particle in the momentum distribution function,
there are some vagueness of classification between fast particles and bulk particles.
Thus kinetic transport simulation is required because there are a lot of kinetic effects
which can not be described by fluid models in fusion plasmas. One of the effects is the
effect of plasma heating. Plasma heatings, such as ohmic, RF, NBI, and α particles, de-
form the velocity distribution function of plasma from Maxwellian to non-Maxwellian.
Ohmic heating accelerates the plasma particles parallel to the magnetic field line, while
IC and EC waves mostly accelerate perpendicular to the magnetic field line. NBI is a
particle source with strong anisotropy, and α particle heating is a non-thermal particle
source. In this reason, kinetic description is required for accurate analysis of plasma
heating in tokamaks.

1.4.1 Fokker-Planck equation
In the absence of collisions, the velocity distribution function obeys the following equa-
tion under the electromagnetic field.

∂ f
∂t
+ u · ∂ f

∂r
+

e
m

(E + u × B) · ∂ f
∂u
= 0 (1.9)

This equation is called Vlasov equation. The inclusion of collisions requires the ad-
ditional collision term, (∂ f /∂t)c to the RHS of eq. (1.9). Vlasov equation including a
collision term derived on the basis of multiple small angle collisions is the Boltzmann
equation.

∂ f
∂t
+ u · ∂ f

∂r
+

e
m

(E + u × B) · ∂ f
∂u
=

(
∂ f
∂t

)
c

(1.10)

Many plasma phenomena involve processes which are slow compared to the cy-
clotron frequency and which vary slowly in space compared to the Larmor radius of the
individual particles, such as transport. To study such phenomena simpler kinetic equa-
tions which average over the fast Larmor motion have been derived. The advantage
of such kinetic equations lies in the reduced dimensionality of the phase space. The
Fokker-Planck equation has the six independent variables (r, u), and the gyro-averaging
reduces them to five, (r, v‖, v⊥), where v‖ is the velocity parallel to the magnetic field
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line, and v⊥ is the velocity perpendicular to the magnetic field line. The gyro-averaged
velocity distribution function is described as

f̄ =
1

2π

∫
f dφ. (1.11)

The equation which the gyro-averaged velocity distribution function obeys is called
drift kinetic equation. In our study, we refer to “gyro averaged distribution function”
and “drift kinetic equation” just as “distribution function” and “kinetic equation” for
simplicity.

1.4.2 Previous work
One of the earliest kinetic evaluations of ICRF heating was done by Stix [17] using
Fokker-Planck theory. Several authors [18, 19, 20] applied Stix’s approach to reactor
studies and wrote Fokker-Planck codes. Some of them had three dimensions (time, par-
allel and perpendicular velocity). These approaches, however, assumed uniform mag-
netic field, so spatial distribution and wave propagation are neglected. The assumption
of homogeneous magnetic field is assured in the study of RF heating and current drive in
tokamaks if the RF waves interact only with passing particles. This is often not proper
in cyclotron heating case because cyclotron resonances develop distribution function of
heated species to perpendicular direction and it will cause heated particle to be trapped.
In this reason, a number of bounce-averaged Fokker-Planck codes have been written
[21, 22, 23, 24, 25]. Some of them consists of a 2D in momentum space, multi-species,
relativistic, bounce-averaged Fokker-Planck equation solver running on a radial array
of non-circular flux surface [26].

1.4.3 Our kinetic analysis
Our Fokker-Planck code TASK/FP [22] is one of them. TASK/FP has advanced features
as follow. Firstly, it includes non-linear collision term to the second order Legendre har-
monics in order to conserve total density, momentum and energy through collision. Sec-
ondly, it calculates velocity distribution function of each species simultaneously. Thus,
velocity distribution function of background particles are non-Maxwellian. Thirdly,
it is able to couple with full wave analysis code TASK/WM [27] in order to evaluate
ICRF wave-particle interaction. Fourthly, fusion reaction rate is calculated without the
assumption of Maxwellian background.

1.5 The contents of this thesis
The objective of this thesis is to develop a drift kinetic transport code and to study the
time evolution of the plasma including the deformation of velocity distribution func-
tion in plasma heating. And the aim of this study is to contribute to the international
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collaboration for the development of ITER integrated modeling codes and the domes-
tic collaboration for the code development intended for computer simulations in the
Broader Approach activities.

Chapter 2 introduces the integrated code TASK which describes the time evolution
of toroidal plasmas. Since various phenomena with broad range of time and spatial
scales occurs, it is impossible to describe whole phenomena in a single simulation
code. Therefore integrated code TASK implements several components which describe
various phenomena separately. The drift kinetic transport component TASK/FP is also
included in TASK.

In Chapter 3, a detailed description of kinetic transport code TASK/FP is given:
basic equation, implemented models, and numerical scheme. And then, verification of
the code is given in Chapter 4.

Chapter 5 and 6 show simulation results with ITER like plasma parameters by using
TASK/FP. In Chapter 5, the simulation of the case without radial transport is shown.
And then the simulation of the case with radial transport is presented in Chapter 6.

Finally, the thesis is summarized and future perspective of this study is presented in
chapter 7.
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Chapter 2

Integrated code TASK

In order to develop reliable and efficient schemes to control burning plasma, numeri-
cal simulations which predict the behavior of burning plasma in tokamaks are needed.
However, the phenomena related in burning plasma have various temporal (a few hun-
dred GHz∼ a few thousand sec) and spatial (a few µm ∼ a few ten m) scales and the
simulations have to describe whole plasma and whole discharge as are shown in Fig.
2.1 and 2.2. In this reason, a single simulation code never covers all the phenomena
essential for reactor operation. Therefore simulation of burning plasmas requires in-
tegrated modeling of various physics phenomena with wide-ranging spatial and time
scales.

Because of this requirement, our integrated modeling code TASK (Transport Ana-
lyzing System for Tokamak) has been developed since 1992. The features of the code
are listed below.

1. TASK is an integrated code which have a modular structure.
2. It include various heating and current drive schemes.
3. It has high portability and most of library routines are included.
4. Parallel processing using MPI library is enabled.
5. Open Source: http://bpsi.nucleng.kyoto-u.ac.jp/task/
6. Expansion for 3D helical system has been developed.

At present, the TASK code is composed of several components which are listed in
Fig. 2.3. Each component exchanges initial data and calculated results and use them
for its calculation. For example, the Fokker-Planck component TASK/FP calculates
time evolution of the momentum distribution function using the magnetic configuration
calculated by the equilibrium component TASK/EQ and the wave electric field calcu-
lated by the full wave analysis component TASK/WM. When TASK/WM calculates
the wave electric field, it calls the wave dispersion component TASK/DP in order to
calculate the dielectric tensor. The wave dispersion calculation the requires magnetic
configuration (TASK/EQ), the density and temperature profiles (TASK/TR). It also can
include the effect of relativistic non-Maxwellian distribution function which is calcu-
lated by TASK/FP.

The rest of this chapter introduces briefly several components of TASK. Detailed
explanation of the Fokker-Planck component TASK/FP will be given in Chapter 3.
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Figure 2.3: The structure of integrated code TASK.
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2.1 Equillibrium components
The MHD equilibrium of an axisymmetric plasma is governed by Grad-Shafranov
equation. TASK has two equilibrium components, TASK/EQ and TASK/EQU. TASK/EQ
solves Grad-Shafranov equation with a fixed plasma boundary condition for given
plasma pressure and safety factor profiles. Using the solution of Grad-Shafranov equa-
tion or reading the equilibrium data from a file, TASK/EQ calculates the magnetic flux
coordinates and metric data. The other component TASK/EQU solves Grad-Shafranov
equation with a free boundary condition for given separatrix points by iteration starting
from initial poloidal coil currents. In this study, TASK/EQ is used.

Equilibrium component TASK/EQ calculates the poloidal magnetic flux ψ(R,Z)
which satisfies Grad-Shafranoc equation.

R
∂

∂R
1
R
∂ψ

∂R
+
∂2ψ

∂Z2 = µ0R2 dp(ψ)
dψ

− F(ψ)
dF(ψ)

dψ
(2.1)

where, P(ψ), F(ψ), R, and Z denote the pressure profile, the poloidal current density
profile, the vertical position, and the major radius, respectively. The poloidal magnetic
flux determines the shape of the cross section of the plasma.

2.2 Wave analysis components
There are various kinds of electromagnetic fields in tokamak plasma, excited internally
or externally, with a wide range of frequency, growth rate and wave number. In order
to describe the excitation, propagation, and absorption of the fields several modeling
schemes have been used in toroidal plasma as shown in Table. 2.1.

The full wave analysis component, TASK/WM [27, 28], analyzes the wave propa-
gation by solving a boundary value problem of Maxwell’s equations.

∇ × ∇ × E(r) =
ω2

c2

↔
ε (r) · E(r) + iωµ0jext(r), (2.2)

where j̃ext(r, t) = jext(r) exp(−iωt) and Ẽ(r, t) = E(r) exp(−iωt) denote the external an-
tenna current density and the wave electric field with a wave angular frequency ω and

Scheme Temporal dependence Spatial dependence TASK
Wave optics Initial value problem FEM/FDM -

Boundary value problem Fourier analysis -
Fourier & FEM/FDM WM

FEM/FDM WF
Geometrical optics Initial value problem Ray tracing WR

Beam tracing WR

Table 2.1: Type of wave modeling
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↔
ε (r) is the dielectric tensor which is calculated by the wave dispersion component
TASK/DP. It uses the Fourier expansion in the poloidal and toroidal directions and the
finite element method (FEM) in the radial direction. The TASK/WM has been used in
the analysis of wave heating and current drive in the ion cyclotron range of frequency
[29]. Since the wave frequency can be complex in TASK/WM, it is applicable to the
eigen mode analysis by maximizing the volume integral of the square of the wave am-
plitude for given excitation proportional to the electron density. It also has been applied
to the analysis of Alfvén eigen mode. Another full wave component TASK/WF using
three dimensional FEM is under development for the analysis of the waves with shorter
wave length.

The ray tracing component, TASK/WR, solves the ray equation in the Hamiltonian
form to calculate the ray position and the wave number from the dispersion relation
which corresponds to the Hamiltonian. It also uses the dielectric tensor component,
TASK/DP, to calculate the dispersion relation. The TASK/WR is applicable to beam
tracing in which the radius of the wave beam and the curvature radii of the equi-phase
wave surface are also calculated. The TASK/WR has been applied to the electron cy-
clotron heating and current drive as well as the lower-hybrid current drive.

The wave dispersion component TASK/DP calculates the dielectric tensor
↔
ε (ω, k; r).

Various models of dielectric tensor are available in the code. For example, resis-
tive MHD, collisional multi-fluid, uniform kinetic, and drift kinetic models are imple-
mented. For the kinetic models, not only the Maxwellian distribution function but also
any form of equilibrium momentum distribution function, such as the output calculated
by the Fokker-Planck component TASK/FP can be used through numerical integration.
In this thesis, kinetic model is employed.

2.3 Transport components
Transport components usually describe the time evolution of the plasma in the transport
time scale. Table 2.2 shows various levels of transport modeling. The most accurate
models are full kinetic and gyro kinetic which is usually used in the analysis of the tur-
bulence. However these models requires very large amount of computational resources.

On the other hand, conventional transport modeling (TASK/TR) is easy to calculate
the time evolution of the plasma. It solves the diffusive transport equation accompanied
with the flux gradient relation. Since the flux gradient relation is derived from the
stationary solution of the equation of motion, quick change of the transport may not be
described self-consistently.

The dynamic transport modeling (TASK/TX [30]) solves the flux-surface-averaged
multi-fluid equations coupled with Maxwell’s equation. Since the equations of motion
and Poisson’s equation are solved simultaneously, the plasma rotation and the radial
electric field are self-consistently calculated without the assumption of quasi-neutrality.

In order to analyze the heating and current drive which usually produce energetic
particles and modify the velocity distribution function, the kinetic transport modeling
(TASK/FP) has been developed. It solves the bounce averaged Fokker-Planck equation
for the momentum distribution function including radial transport and will be described
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Model Equation Variables TASK
Fluid model Diffusive transport equation n(ρ, t), vφ(ρ, t), T (ρ, t) TR

Dynamic transport equation n(ρ, t), u(ρ, t), T (ρ, t) TX
Kinetic model Bounce averaged drift kinetic equation f (p, θ, ρ, t) FP

Axisymmetric gyrokinetic equation f (p, θ, ρ, χ, t) -
Gyro kinetic equation f (p, θ, ρ, χ, ζ, t) -
Full kinetic equation f (p, θ, φ, ρ, ξ, ζ, t) -

Table 2.2: Type of transport modeling.

in the next chapter.
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Chapter 3

Fokker-Planck component TASK/FP

In this chapter, we concentrate on the Fokker-Planck component TASK/FP [29, 31].
In order to include the relativistic effects, TASK/FP treats the momentum distribution
functions. So, here, f denotes the momentum distribution function not the velocity
distribution function.

3.1 Preliminaries

3.1.1 Coordinate systems
In TASK/FP, the assumptions of azimuthal symmetry in momentum space and toroidal
symmetry in real space are applied. In the poloidal direction, we average over the
bounce and circulating motion of the particles on a magnetic surface. Therefore vari-
ables of the momentum distribution function f (p, r, t) are reduced to f (p‖, p⊥, ρ, t),
where p‖, p⊥, and ρ denote the momentum parallel or perpendicular to magnetic field
at the poloidal position where the strength of the magnetic field is minimum on the
magnetic surface, and the normalized minor radius of the magnetic surface. p‖ and p⊥
satisfy the following relations,

p2 = p2
‖ + p2

⊥, (3.1)
cos θ = p‖/p, (3.2)

where p is the total momentum and θ denotes the pitch angle. Using these relations,
TASK/FP can be expressed in the spherical coordinate system, (p, θ), in the momentum
space. In this coordinate system, a divergence of the flux,∇p,ρ · S, is written in the
following expressions,

∂ f
∂t
= −∇p,ρ · S = −

1
p2

∂

∂p
p2S p −

1
p sin θ

∂

∂θ
sin θS θ −

1
ρ

∂

∂ρ
ρS ρ, (3.3)
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Figure 3.1: The spherical coordinate systems for momentum variables.

where,

S p = −Dpp
∂ f
∂p
− Dpθ

1
p
∂ f
∂θ
+ Fp f (3.4)

S θ = −Dθp
∂ f
∂p
− Dθθ

1
p
∂ f
∂θ
+ Fθ f (3.5)

S ρ = −Dρ

∂ f
∂ρ
+ Fρ f . (3.6)

It should be noted that the collisional, quasi-linear, and dc electric field fluxes do not
contribute to the radial transport, namely ∇ρ · Sc,ql,dc = 0, in the present analysis. This
assumption neglects the finite particle orbit width effect.

In this coordinate system, integration over the momentum becomes∫
dp =

∫
2πp2 sin θ dp dθ. (3.7)

3.1.2 Fokker-Planck equation
As shown in sec. 1.4.1, Boltzmann eqnation is expressed as

∂ f
∂t
+ u · ∂ f

∂r
+

e
m

(E + u × B) · ∂ f
∂u
=

(
∂ f
∂t

)
c
.

Because collisions in a plasma are primary due to small angle scattering, the collision
term, RHS of eq. (1.10), can be expressed as Fokker-Planck type operator, the diver-
gence of a flux; (

∂ f
∂t

)
c
= −∇p,ρ · Sa/b

c , (3.8)

where the superscript a/b means that species a collides with species b and the derivative
operator means ∇p,ρ = ∇p + ∇ρ. After averaging over the cyclotron motion in order
to derive the drift kinetic equation, averaging over the wave frequency to derive the
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quasi-linear operator and averaging over the bounce motion, Boltzmann equation can
be written as a Fokker-Planck equation:

∂ f
∂t
= −∇p,ρ · S + H, (3.9)

where

S = Sc + Sql + Sdc + Sr (3.10)

denote the collisional, quasi-linear, dc electric field fluxes, and radial diffusion, respec-
tively and H indicates the source term. Generally, the fluxes are composed of two terms,
a diffusion term and a friction term,

Ss = −
↔
D s · ∇ fs + F fs, (3.11)

subscript “s” indicates the partcile species s.

3.1.3 Relativistic momentum distribution function
In fusion plasmas, the velocity of heated particles becomes very fast. Thus the rela-
tivistic effects of fast particles, especially electrons, are important.

The relativistic momentum distribution function satisfies∫
fs(p, ρ)dp = ns(ρ), (3.12)

where ns(ρ) denotes the density on the normalized minor radius ρ. In particular, the
relativistic Maxwellian distribution function has the form [32];

fs,m(p, ρ) =
ns(ρ)

4πm3
sc3ΘsK2(Θ−1

s )
exp

(
− γs

Θs

)
, (3.13)

where subscript “m” denotes “Maxwell”, and Θs = Ts(ρ)/msc2, Kn is n-th order modi-
fied Bessel function of the second kind, γs =

√
1 + p2/m2c2 , and Ts(ρ) are temperature

at ρ.
The plasma averaged kinetic energy density is defined by

Es ≡
∫

msc2(γs − 1) fs,m(p, ρ) dp (3.14)

and the relation between Es and Ts is given by [33]

Es = mc2
(
3Θs +

K1(Θ−1
s )

K2(Θ−1)

)
ns(ρ). (3.15)

In the non-relativistic limit, the averaged kinetic energy density of the plasma Es is
defined by;

Es ≡
∫

p2
s

2ms
fs,m(p, ρ) dp (3.16)
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and the relation between Es and Ts becomes Es = 3nsTs/2.
We define the temperature Ts in the relativistic case as the solution of the relation

eq. (3.15). Since this equation can not be solved analytically, because the equation is
non-linear with respect to Ts, eq. (3.15) is solved numerically and the temperature Ts

in the relativistic case is obtained.

3.1.4 Normalization factors
In TASK/FP, most of variables are normalized because the scale of variables have dif-
ferent order of magnitude for each species. The thermal velocity and momentum, which
are the chief normalized factors, are defined as

vts0 =

√
Ts0

ms
(3.17)

pts0 =
√

msTs0, (3.18)

where Ts0 denotes the temperature on the magnetic axis ρ = 0 for species s. Using
these parameters, the velocity and momentum are normalized as

p̄s ≡
ps

pts0
(3.19)

v̄s ≡
vs

vts0
. (3.20)

Then, the relation between the velocity and the momentum is described as

msvs =
ps

γs
, (3.21)

where

γs =

(
1 +

p2
s

m2
sc2

)1/2

=

(
1 +

p2
ts0 p̄2

s

m2
sc2

)1/2

=
(
1 + p̄s

2Θs0

)1/2
(3.22)

Θs0 =
p2

ts0

m2
sc2 =

Ts0

msc2 , (3.23)

where γs is a relativistic factor and γs = 1 in the non-relativistic limit.

Similarly, the momentum distribution function f , the diffusion coefficient
↔
D , and

the friction coefficient F are also normalized;

f̂ (p̄) ≡ p3
t0 f (p) (3.24)

↔̂
D ≡

↔
D
p2

t0

(3.25)

F̂ ≡ F
pt0
. (3.26)

22



3.2 DC electric field term
First, we consider the effect of DC electric field parallel to the magnetic field. Since DC

electric field acceleration term is non-diffusive,
↔
Ddc =

↔
0 . The friction term is expressed

as

Fdc =
qsE
ms

. (3.27)

Thus (p, θ) elements of Fdc are

Fdc,p =
qs

ms
E‖ cos θ (3.28)

Fdc,θ =
qs

ms
E‖ sin θ. (3.29)

3.3 Coulomb collision term without relativistic effect
The collisional flux is given by the Landau collision integral [34]

Sa/b =
q2

aq2
b

8πε2
0ma

lnΛa/b
∫ ↔

U(u) ·
(

fa(u)
mb

∂ fb(u′)
∂u′

− fb(u′)
ma

∂ fa(u)
∂u

)
d3u′ (3.30)

where u is the relative velocity u = u − u′,

↔
U(u) =

u2
↔
I − uu
u3 , (3.31)

and lnΛa/b = ln(2λD/b0) is the Coulomb logarithm and λD and b0 denote Debye length
and impact parameter for 90 degrees scatter. Eq. (3.30) can be rewritten in terms of
Rosenbluth potentials [35, 36]:

Sa/b
c = −

↔
Dc∇ fa(u) + Fa/b

c fa(u) (3.32)
↔
D

a/b

c = −
4πΓa/b

nb0
∇∇ψb(u) (3.33)

Fa/b
c = −

4πΓa/b

nb0

ma

mb
∇φb(u), (3.34)

where

Γa/b =
nb0q2

aq2
b lnΛa/b

4πε2
0m2

a
. (3.35)

The functions φb(u) and ψb(u) are called Rosenbluth potentials and defined by:

φb(u) = − 1
4π

∫
fb(u′)
|u − u′|d

3u′ (3.36)

ψb(u) = − 1
8π

∫
|u − u′| fb(u′)d3u′. (3.37)
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∇∇ψ(u) and ∇φ(u) are decomposed into the (v, θ) components

(∇∇ψ)vv =
∂2ψ

∂v2 (3.38)

(∇∇ψ)vθ = (∇∇ψ)θv =
1
v

∂2ψ

∂v∂θ
− 1
v2

∂ψ

∂θ
(3.39)

(∇∇ψ)θθ =
1
v

∂ψ

∂v
+

1
v2

∂2ψ

∂θ2 (3.40)

(∇φ)v =
∂φ

∂v
(3.41)

(∇φ)θ =
1
v

∂φ

∂θ
. (3.42)

3.3.1 Linear collision model
If the background momentum distribution function is Maxwellian, the diffusion and
friction coefficients are calculated analytically to obtain [37],

D̂cpp =
Γ̂a/bvta0

2
√

2vtb0

(
erf(u)

u3 − erf′(u)
u2

)
(3.43)

D̂cθθ =
Γ̂a/bvta0

4
√

2vtb0

(
2erf(u)

u
− erf

u3 +
erf′(u)

u2

)
(3.44)

F̂cp = −Γ̂a/b v
2
ta0

2v2
tb0

ma

mb

(
erf(u)

u2 − erf′(u)
u

)
, (3.45)

where

Γ̂a/b =
nb0q2

aq2
b ln λa/bma

4πε2
0m2

a p3
ta0

= Γa/b ma

p3
ta0

, (3.46)

u = va/
√

2vtb0, and the error function erf(u) and its derivative erf′(u) are defined by

erf(u) =
2
√
π

∫ u

0
exp(−x2)dx (3.47)

erf′(u) =
2
√
π

exp(−u2). (3.48)

In the limit of u→ 0, eq. (3.43)∼(3.45) are simplified as

D̂cpp → Γ̂a/b 2vta0

3
√

2πvtb0

(3.49)

D̂cθθ → Γ̂a/b 2vta0

3
√

2πvtb0

(3.50)

F̂cp → 0. (3.51)
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where the relation 1

lim
u→0

(
erf(u) − u erf′(u)

)
=

4
3
√
π

u3 (3.53)

is used.

3.3.2 Legendre expansion
In the linear collision model, the momentum distribution function in the integrand of
Rosenbluth potentials, eq. (3.36) and (3.37), is assumed to be Maxwellian and the
integration is carried out analytically. In the case of non-Maxwellian distribution func-
tion, however, it is required to calculate the integration numeically, and it costs a lot of
computational resources.

In order to reduce the required computational resources, it is sometimes useful to
decompose the momentum distribution function and potentials into the Legendre har-
monics, Pl(cos θ). The momentum distribution function f (p, θ) and Rosenbluth poten-
tials φb(u) and ψb(u) are expressed in terms of the Legendre expansion [35]:

f (p, θ) =
∞∑

l=0

f (l)(p)Pl(cos θ) (3.54)

φb(v, θ) =
∞∑

l=0

φ(l)(v)Pl(cos θ) (3.55)

ψb(v, θ) =
∞∑

l=0

ψ(l)(v)Pl(cos θ) (3.56)

where

f (l)(p) =
2l + 1

2

∫ π

0
f (p, θ)Pl(cos θ) sin θdθ (3.57)

φ(l)
b (v) = − 1

2l + 1

[
v−l−1Nl(v) + vlMl(v)

]
(3.58)

ψ(l)
b (v) =

1
2(4l2 − 1)

[
v−l+1Nl(v) + vlM+l (v) − l − 1/2

l + 3/2

{
v−l−1N+l (v) + vl+2Ml(v)

}]
.

(3.59)

1Taylor expansion of the error function erf(u) is

erf(u) =
2
√
π

(
u − u3

3
+

u5

10
− · · ·

)
. (3.52)
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The four functionals of φ(l)
b (v) and ψ(l)

b (v) are defined as:

Ml(v) ≡
∫ ∞

v

v′1−l f (l)
b (v′)dv′ (3.60)

Nl(v) ≡
∫ v

0
v′2+l f (l)

b (v′)dv′ (3.61)

M+l (v) ≡
∫ ∞

v

v′3−l f (l)
b (v′)dv′ (3.62)

N+l (v) ≡
∫ v

0
v′4+l f (l)

b (v′)dv′ (3.63)

For simplicity, the valiable of radial position ρ is omitted.
Usually, we choose the value of the upper limit in the sum in eq. (3.56) lmax = 2.

Since the number of numerical grid of the valiable θ is the order of 100, Legendre
expansion enable us to compute the collision term with less resources.

3.3.3 Normalized potentials
The functionals, eq. (3.60)∼(3.63), can be written as a function of momentum;

Ml(p) =
∫ ∞

mb
ma

p
v′−1−l p′2 f (l)

b (p′)dp′ (3.64)

Nl(p) =
∫ mb

ma
p

0
v′lb p′2 f (l)

b (p′)dp′ (3.65)

M+l (p) =
∫ ∞

mb
ma

p
v′1−l p′2 f (l)

b (p′)dp′ (3.66)

N+l (p) =
∫ mb

ma
p

0
v′l+2 p′2 f (l)

b (p′)dp′. (3.67)

By the use of f̂ , p̄, and va = pta0 p̄/maγa, normalized functionals, M̂l, N̂l, M̂+l , and N̂+l ,
are defined as;

Ml(p̄) =
(

ptb0

mb

)−l−1 ∫ ∞

pc

(
1
γb

)−l−1

p̄′(1−l) f̂ (l)
b (p̄′)dp̄′ =

(
ptb0

mb

)−l−1

M̂l( p̄) (3.68)

Nl(p̄) =
(

ptb0

mb

)l ∫ pc

0

(
1
γb

)l

p̄′(2+l) f̂ (l)
b (p̄′)dp̄′ =

(
ptb0

mb

)l

N̂l( p̄) (3.69)

M+l (p̄) =
(

ptb0

mb

)−l+1 ∫ ∞

pc

(
1
γb

)−l+1

p̄′(3−l) f̂ (l)
b (p̄′)dp̄′ =

(
ptb0

mb

)−l+1

M̂+l ( p̄) (3.70)

N+l (p̄) =
(

ptb0

mb

)l+2 ∫ pc

0

(
1
γb

)l+2

p̄′(4+l) f̂ (l)
b ( p̄′)dp̄′ =

(
ptb0

mb

)l+2

N̂+l ( p̄), (3.71)
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where

p2
c =

v2
t

1 − Θb0v
2
t (p̄/γa)2

(
p̄
γa

)2

(3.72)

vt ≡
mb pta0

ma ptb0
.

Similarly, eq. (3.58) and (3.59) can be rewritten in term of normalized quantities;

φ(l)
b (p̄) = − 1

2l + 1

( pta0 p̄
maγa

)−l−1 (
ptb0

mb

)l

N̂l( p̄) +
(

pta0 p̄
maγa

)l ( ptb0

mb

)−l−1

M̂l( p̄)
 (3.73)

ψ(l)
b (p̄) =

1
2(4l2 − 1)

( pta0 p̄
maγa

)−l+1 (
ptb0

mb

)l

N̂l( p̄) +
(

pta0 p̄
maγa

)l ( ptb0

mb

)−l+1

M̂+l ( p̄)

− l − 1/2
l + 3/2


(

pta0 p̄
maγa

)−l−1 (
ptb0

mb

)l+2

N̂+l ( p̄) +
(

pta0 p̄
maγa

)l+2 (
ptb0

mb

)−l−1

M̂l( p̄)


 .
(3.74)

Here, the normalized Rosenbluth potentials, φ̂b ≡
ptb0

mb
φb and ψ̂b ≡

mb

ptb0
ψb are intro-

duced and then their Legendre expansion, φ̂(l)
b and ψ̂(l)

b are expressed as;

φ̂(l)
b ( p̄) = − 1

2l + 1

(
mb pta0

ma ptb0

) [
p−l−1

d N̂l + pl
d M̂l

]
(3.75)

ψ̂(l)
b ( p̄) =

1
2(4l2 − 1)

(
ma ptb0

mb pta0

) [
p−l+1

d N̂l + pl
d M̂+l −

l − 1/2
l + 3/2

{
p−l−1

d N̂+l + pl+2
d M̂l

}]
.

(3.76)

where pd ≡
mb pta0 p̄
ma ptb0γa

.

3.3.4 Non-linear collision coefficients
Using eq. (3.25), (3.26), (3.33), (3.34), and (3.38)∼(3.42), the normalized diffusion
and friction coefficients can be written in terms of normalized Rosenbluth potentials
for each components;

D̂cpp = −
4πΓ̂
nb0

γ6
a
∂2ψ̂

∂ p̄2 (3.77)

D̂cpθ = −
4πΓ̂
nb0

(
γ4

a
1
p̄
∂2ψ̂

∂p̄∂θ
− γ2

a
1
p̄2

∂ψ̂

∂θ

)
(3.78)

D̂cθθ = −
4πΓ̂
nb0

(
γ4

a
1
p̄
∂ψ̂

∂p̄
+ γ2

a
1
p̄2

∂2ψ̂

∂θ2

)
(3.79)

F̂cp = −
4πΓ̂
nb0

(
ma

mb

)
γ3

a
∂φ̂

∂p̄
(3.80)

F̂cθ = −
4πΓ̂
nb0

(
ma

mb

)
γa

1
p̄
∂φ̂

∂θ
(3.81)
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Since the normalized Rosenbluth potentials are also expanded in terms of the Leg-
endre polimoninals, the derivatives of the potentials in eq. (3.77)∼(3.81) are expressed
as

∂2ψ̂

∂ p̄2 =
∑

l

∂2ψ̂(l)( p̄)
∂ p̄2 Pl (3.82)

∂2ψ̂

∂p̄∂θ
=

∑
l

∂ψ̂(l)

∂ p̄
∂Pl

∂θ
(3.83)

∂2ψ̂

∂θ2 =
∑

l

ψ̂(l)∂
2Pl

∂θ2 (3.84)

∂ψ̂

∂ p̄
=

∑
l

∂ψ̂(l)

∂ p̄
Pl (3.85)

∂ψ̂

∂θ
=

∑
l

ψ̂(l)∂Pl

∂θ
(3.86)

∂φ̂

∂ p̄
=

∑
l

∂φ̂(l)

∂ p̄
Pl (3.87)

∂φ̂

∂θ
=

∑
l

φ̂(l)∂Pl

∂θ
. (3.88)

where the argument of Pl(cos θ) is omitted for simplicity. These derivatives are calcu-
lated by the relation ;

∂φ̂(l)

∂ p̄
= − 1

2l + 1

(
mb pta0

ma ptb0

)2

γ−3
a

[
−(l + 1)p−(l+2)

d N̂l + lpl−1
d M̂l

]
(3.89)

∂ψ̂(l)

∂ p̄
=

γ−3
a

2(4l2 − 1)

[
−(l − 1)p−l

d N̂l + lpl−1
d M̂+l

− l − 1/2
l + 3/2

{
−(l + 1)p−l−2

d N̂+l + (l + 2)pl+1
d M̂l

}]
(3.90)

∂2ψ̂(l)

∂p̄2 =

(
mb pta0

ma ptb0

)
γ−6

a

2(4l2 − 1)

[
l(l − 1)

{
p−l−1

d N̂l + pl−2
d M̂+l

}
− l − 1/2

l + 3/2

{
(l + 1)(l + 2)

(
p−l−3

d N̂+l + pl
d M̂l

)}]
(3.91)

∂Pl(µ)
∂θ

=
l

sin θ
{µPl(µ) − Pl−1(µ)} (3.92)

∂2Pl

∂θ2 = −
(

l
sin2 θ

+ l2
)

Pl +
l cos θ
sin2 θ

Pl−1, (3.93)

where µ = cos θ. The derivation of these relations are given in Appendix A.1.
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3.4 Coulomb collision term with relativistic effect
The relativistic collision operator is given by Beliaev and Budker [38]. The collision
term for a plasma of species a colliding of species b may be written in Fokker-Planck
form as:

−∇ · Sa/b
c =

∂

∂u
·
(
↔
D

a/b

· ∂ fa

∂u
− Fa/b fa

)
(3.94)

where the diffusion and friction coefficients are given by

↔
D

a/b

(u) =
Γa/b

2nb

∫ ↔
U(u,u′) fa(u′)d3u′ (3.95)

Fa/b(u) = −Γ
a/b

2na

ma

mb

∫ (
∂

∂u′
·
↔
U(u,u′)

)
fb(u′)d3u′, (3.96)

where u is the momentum per unit rest mass. In the relativistic case, the kernel
↔
U is

given by [38]

↔
U(u,u′) =

r2

γγ′ω

(
ω2
↔
I − uu − u′u′ + r(uu′ + u′u)

)
, (3.97)

where

r = γγ′ − u · u′/c2 (3.98)

ω = c
√

r2 − 1. (3.99)

3.4.1 Potentials for relativistic collision operator
Braams and Karney [39, 40] formulated the relativistic collision operator in terms of
five scalar potentials:

Ψs′[1]0(u) = − 1
4π

∫
ω−1 fs′(u′)

d3u′

γ′

Ψs′[2]02(u) = − 1
8π

∫
ω fs′(u′)

d3u
γ′

Ψs′[3]022(u) = − 1
32π

∫
c3

(
r sinh−1(ω/c) − ω/c

)
fs′(u′)

d3u′

γ′

Ψs′[1]1(u) = − 1
4π

rω−1 fs′(u′)
d3u′

γ′

Ψs′[2]11(u) = − 1
8π

∫
c sinh−1(ω/c) fs′(u′)

d3u′

γ′
. (3.100)
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These potentials satisfy the following equations

L0Ψs′[1]0 = fs′

L2Ψs′[2]02 = Ψs′[1]0

L2Ψs′[3]022 = Ψs′[2]02

L1Ψs′[1]1 = fs′

L1Ψs′[2]11 = Ψs′[1]1 (3.101)

where

LaΨ =

(↔
I +

uu
c2

)
:
∂2Ψ

∂u∂u
+

3u
c2 ·

∂Ψ

∂u
+

1 − a2

c2 Ψ (3.102)

and “a” is a positive integer. Eqs. (3.101) can be expressed in the concise form

LaΨs′[k+1]∗a = Ψs′[k]∗. (3.103)

The notations of the potentials used in ref. [40] are employed in the following.
In terms of these potentials, the diffusion and friction coefficients are expressed in

the following form [40]:

↔
D

s/s′

(u) = −4πγs/s′

n′s

1
γ

↔L + ↔
I

c2 +
uu
c4

Ψs′[2]02 −
4
γc2

↔L − ↔
I

c2 −
uu
c4

Ψs′[3]022


(3.104)

Fs/s′(u) = −4πγs/s′

n′s

ms

ms′

1
γ

[
KΨs′[1]1 −

2
c2 KΨs′[2]11

]
, (3.105)

where
↔
LΨ(u) =

(↔
I +

uu
c2

)
· ∂

2Ψ

∂u∂u
·
(↔

I +
uu
c2

)
+

(↔
I +

uu
c2

) (
u · ∂Ψ

∂u

)
(3.106)

KΨ(u) =
(↔

I +
uu
c2

)
· ∂Ψ
∂u

. (3.107)

In the spherical coordinate system, now we assume azimuthal symmetry, that is,
∂/∂φ = 0. The components of the operators

↔
L and K become [40]:

LuuΨ = γ
4∂

2Ψ

∂u2 +
γ2u
c2

∂Ψ

∂u

LθθΨ =
1
u2

∂2Ψ

∂θ2 +
γ2

u
Ψ

u

LuθΨ = LθuΨ =
γ2

u

(
∂2Ψ

∂u∂θ
− 1

u
∂Ψ

∂θ

)
KuΨ = γ

2∂Ψ

∂u

KθΨ =
1
u
∂Ψ

∂θ
. (3.108)

Similarly, the operator La (eq. (3.102)) becomes

LaΨ = γ
2∂

2Ψ

∂u2 +

(
2
u
+

3u
c2

)
∂Ψ

∂u
+

1
u2

(
∂2Ψ

∂θ2 + cot θ
∂Ψ

∂θ

)
+

1 − a2

c2 Ψ. (3.109)
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3.4.2 Legendre expansion
Similarly to the case of non-relativistic collision term, the momentum distribution func-
tion, the potentials, and the operators are expanded in terms of Legendre harmonics.
The potentials are expanded as:

Ψ[k]∗(u) =
∞∑

l=0

ψl[k]∗(u)Pl(cos θ). (3.110)

Eq. (3.101) becomes
Ll,aψl[k+1]∗a = ψl[k]∗, (3.111)

where eq. (3.109) is rewritten as

Ll,aψ(u) =
(
1 +

u2

c2

)
d2ψ

du2 +

(
2
u
+

3u
c2

)
dψ
du
−

(
l(l + 1)

u2 +
a2 − 1

c2

)
ψ. (3.112)

The coefficient ψl[k]∗ of the Legendre expansion of the potential is expressed as:

ψl[k]∗(u) =
∫ u

0
Nl[k]∗(u, u′)

u′2

γ′
f (l)(u′)du′ +

∫ ∞

u
Nl[k]∗(u′, u)

u′2

γ′
f (l)(u′)du′. (3.113)

The kernel function Nl[n]∗(u, u′) is defined by

Nl[0](u, u′) = 0
Nl[1]a(u, u′) = c−1yl[1]a(u/c) jl[1]a(u′/c)

Nl[2]aa′(u, u′) = c
[
yl[1]a(u/c) jl[2]aa′(u′/c) + yl[2]aa′(u/c) jl[1]a′(u′/c)

]
Nl[3]aa′a′′(u, u′) = c3 [

yl[1]a(u/c) jl[3]aa′a′′(u′/c) + yl[2]aa′(u/c) jl[2]a′a′′(u′/c)
+yl[3]aa′a′′(u/c) jl[1]a′′(u′/c)

]
, (3.114)

and

jl[1]a(u/c) =
√
πc/2uP−l−1/2

a−1/2 (γ)

yl[1]a(u/c) = (−1)−l−1
√
πc/2uPl+1/2

a−1/2(γ). (3.115)

where Pµ
ν is the associated Legendre function of the first kind. The functions, jl[k]∗ and

yl[k]∗, satisfy the relations jl[k]∗(−z) = (−1)l jl[k]∗(z) and yl[k]∗(−z) = (−1)lyl[k]∗(z), and
they are related with each other:

yl[k]∗ = (−1)l+1 j−l−1[k]∗. (3.116)

The derivative of these functions are

d
du

jl[k]∗ =
1
cγ

jl−1[k]∗ −
l + 1

u
jl[k]∗

d
du
yl[k]∗ = −

1
cγ
yl+1[k]∗ +

l
u
yl[k]∗. (3.117)
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The argument of these functions, z = u/c, is omitted for simplicity. The functions, jl[k]∗
and yl[k]∗, for k = 2, 3 are expressed in terms of jl[1]∗ and yl[1]∗:

jl[2]02 =
u
2c

jl+1[1]1

yl[2]02 = −
u
2c
yl−1[1]1

jl[2]11 =
u
2c

jl+1[1]0

yl[2]11 = −
u
2c
yl−1[1]0

jl[2]22 =
u
2c

(
jl+1[1]1 +

u
c

jl+2[1]0

)
yl[2]22 = −

u
2c

(
yl−1[1]1 −

u
2c
yl−2[1]0

)
jl[3]022 =

u2

8c2 jl+2[1]0

yl[3]022 = −
u2

8c2yl−2[1]0. (3.118)

The detailed derivation of the functions jl[k]∗ and yl[k]∗ are expressed in the Appendix
A.2.

3.4.3 Non-linear coollision coefficients
Using eqs. (3.104), (3.105), (3.108), (3.110), (3.111), and (3.112), the coefficients of
the Legendre expansion of the diffusion and friction coefficients in momentum spherical
coordinate with azimuthal symmetry are given by

Ds/s′

luu =
4πΓs/s′

ns′

γ

u

[
2γ2∂ψs′l[2]02

∂u
− 8γ2

c2

∂ψs′l[3]022

∂u
− uψs′l[1]0

− l(l + 1)
u

ψs′l[2]02 +

(
8u
c4 +

4l(l + 1)
uc2

)
ψs′l[3]022

]
Pl(µ)

Ds/s′

lθθ =
4πΓs/s′

ns′

1
γu

[
−γ2∂ψs′l[2]02

∂u
Pl(µ) −

(
u
c2 Pl(µ) +

1
u
∂2Pl(µ)
∂θ2

)
ψs′l[2]02

+
4γ2

c2

∂ψs′l[3]022

∂u
−

(
4u
c4 Pl(µ) − 4

uc2

∂2Pl(µ)
∂θ2

)
ψs′l[3]022

]
Ds/s′

luθ =
4πΓs/s′

ns′

γ

u

[
4
c2

∂ψl[3]022

∂u
− ∂ψl[2]02

∂u
− 4

uc2ψl[3]022 +
1
u
ψs′[2]02

]
∂Pl(µ)
∂θ

F s/s′

lu = −
∂ψl[2]02

∂u
ms

ms′
γ

(
−∂ψl[1]1

∂u
+

2
c2

∂ψl[2]11

∂u

)
Pl(µ)

F s/s′

lθ = −
∂ψl[2]02

∂u
ms

ms′

1
γu

(
−ψl[1]1 +

2
c2ψl[2]11

)
∂Pl(µ)
∂θ

. (3.119)

The expression for , l ≤ 1, is given in Ref. [40]. In order to satisfy the energy conser-
vation, we formulate up tp l = 2.
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Now we consider to express the potentials, ψl[k]∗, and its derivatives in Eqs. (3.119)
in terms of jl[1]∗, and yl[1]∗. We define the abbreviations of the integrals as follow:

J+i
a ≡

∫ u

0

u′2+i

γ′
j′l+i[1]a f (l)(u′)du′

Y−i
a ≡

∫ ∞

u

u′2+i

γ′
y′l−i[1]a f (l)(u′)du′, (3.120)

where j′l[k]∗ = jl[k]∗(u′/c) and y′l[k]∗ = yl[k]∗(u′/c).
Using these notations, potentials, ψl[k]∗, and their derivatives are expressed as fol-

low:

ψl[1]0 =
1
c

[yl[1]0J+0
0 + jl[1]0Y−0

0 ]

ψl[1]1 =
1
c

[yl[1]1J+0
1 + jl[1]1Y−0

1 ]

ψl[2]02 =
1
2

[yl[1]0J+1
1 − uyl−1[1]1J+0

2 + u jl+1[1]1Y−0
0 − jl[1]2Y−1

1 ]

ψl[2]11 =
1
2

[yl[1]1J+1
0 − uyl−1[1]0J+0

1 + u jl+1[1]0Y−0
1 − jl[1]1Y−1

0 ]

ψl[3]022 =
c
8

[
yl[1]0J+2

0 − 2uyl−1[1]1

(
J+1

1 +
1
c

J+2
0

)
+ u2yl−2[1]0J+0

2 + u2 jl+2[1]0Y−0
0

−2u
(

jl+1[1]1 +
u
c

jl+2[1]0

)
Y−1

1 + jl[1]2Y−2
0

]

∂ψl[1]1

∂u
=

1
c

[
∂yl[1]1

∂u
J+0

1 +
∂ jl[1]1

Y

−0

1

]
∂ψl[2]02

∂u
=

1
2

[
∂yl[1]0

∂u
J+1

1 −
(
yl−1[1]1 + u

∂yl−1[1]1

∂u

)
J+0

2

+

(
jl+1[1]1 + u

∂ jl+1[1]1

∂u

)
Y−0

0 −
∂ jl[1]2

∂u
Y−1

1

]
∂ψl[2]11

∂u
=

1
2

[
∂yl[1]1

∂u
J+1

0 −
(
yl−1[1]0 + u

∂yl−1[1]0

∂u

)
J+0

1

+

(
jl+1[1]0 + u

∂ jl+1[1]0

∂u

)
Y−0

1 −
∂ jl[1]1

∂u
Y−1

0

]
∂ψl[3]022

∂u
=

c
8

[
∂yl[1]0

∂u
J+2

0 − 2
(
yl−1[1]1 + u

∂yl−1[1]1

∂u

) (
J1

1 +
1
c

J2
0

)
+u

(
2yl−2[1]0 + u

∂yl−2[1]0

∂u

)
J0

2 + u
(
2 jl+2[1]0 + u

∂ jl+2[1]0

∂u

)
Y0

0

−2
{(

jl+1[1]1 +
2u
c

jl+2[1]0

)
+ u

(
∂ jl+1[1]1

∂u
+

u
c
∂ jl+2[1]0

∂u

)}
Y−1

1 +
∂ jl[1]2

∂u
Y−2

0

]
.

(3.121)
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3.4.4 Linear collision coefficients with weak relativistic approxima-
tion

In the relativistic case, due to the relativistiv form of Maxwellian, the integration in-
cluding Maxwellian can not be solved analytically. Therefore, there is no counter-part
to the Eqs. (3.43)∼(3.45) in the relativistic case.

In TASK/FP, the relativistic linear collision coefficients are obtained by numerical
integration with a weak relativistic approximation. If either the incident or background
species is weakly relativistic (pa � mac, or pb � mbc), the kernel

↔
U, eq. (3.97), may

be approximated by its non-relativistic form, eq. (3.31). With this approximation, the
linear diffusion and friction coefficients are given with isotropic background [41]. By
the use of our normalization, the coefficients are expressed as

D̂cpp =
4π
3nb
Γ̂

m2
a p2

tb0γ
3
a

m2
b p2

ta0 p3

∫ pc

0
f̂b

p′
4

γ2
b

dp′ +
mb pta0

ma ptb0

∫ ∞

pc

f̂bγb p′dp′


D̂cθθ =
4πΓ̂
3nb

(
3γa

2p̄

∫ pc

0
p̄′2 f̂bdp̄′ − 1

2
m2

a p2
tb0γ

3
a

m2
b p2

ta0 p̄3

∫ pc

0
p̄′4

1
γ2

b

f̂bdp̄′ +
mb pta0

ma ptb0

∫ ∞

pc

p̄′γb f̂bdp̄′
)

F̂cp = −
4π
3nb
Γ̂

[
3

ma

mb

γ2
a

p̄2

∫ pc

0
p̄′2 f̂bγ

−1
b dp̄′ − ma

mb
Θb0

γ2
a

p̄2

∫ pc

0
p̄′4 f̂bγ

−3
b dp̄′

+2
pta0

ptb0

p̄
γa
Θa0

∫ ∞

pc

p̄′ f̂bdp̄′
]
, (3.122)

where pc is given by eq. (3.72).

3.5 Quasi-linear diffusion term
The wave-particle interaction is conveniently described in terms of the quasi-linear the-
ory [42, 43]. The quasi-linear theory assumes the amplitudes of the various modes
are still small enough that the structure, frequency, and instantaneous growth rates of
the modes are all adequately described by the linear approximation. Thus, even in the
small amplitude limit, the quasi-linear theory allows us to understand and quantify how
waves and particles exchange energy. The essence of the theory is to suppose that the
0th order distribution function f0 does not only describe some initial state, but also de-
scribes a slowly evolving background distribution that is changing due to the effects
of the unstaqble waves themselves. Moreover the assumption that f0 is averaged spa-
tially over many wave length is adopted. It is also assumed a continuous spectrum of
waves with different k value is excited. Since the wave spectrum is sufficiently dense,
coherence between modes is destroyed by phase mixing.

In this theory, the flux of plasma particles in momentum space is given by:

Sql = −
↔
Dql · ∇ f (3.123)

where
↔
Dql is the quasi-linear diffusion tensor. Although the quasi-linear theory is not

strictly applicable to a single wave, the case of sigle wave is adopted because it is the

34



simplest. The quasi-linear diffusion coefficient for single wave is given by [44]

↔
Dql =

∑
n

π

2
q2

s

m2
s
δ(ω − k‖v‖ − nΩs/γs)a∗nan (3.124)

and

an = Θn
k‖
ω

[(
ω

k‖
− v‖

)
û⊥ + v⊥û‖

]
(3.125)

Θn =
Ew+Jn−1 + Ew−Jn+1√

2
+
v‖

v⊥
JnEw‖ (3.126)

where Ωs = qsB/ms is the cyclotron frequency for species s, B is the magnetic field,
superscript ∗ indicates complex conjugation, Jn is the nth order Bessel function, and the
argument of the Bessel functions is k⊥v⊥/Ωs. Ew+ and Ew− are the left- and right-handed
components of the wave electric field Ew, that is,

Ew+ =
Ewr + iEw⊥√

2
(3.127)

Ew− =
Ewr − iEw⊥√

2
, (3.128)

where Ewr and Ew⊥ denote the radial electric field of waves and the wave electric field
perpendicular to the magnetic field.

Since the perpendicular velocity in the second term of RHS of Eq. (3.126) has a
possibility to be zero, using the reccurence formula of the Bessel function

Jn+1(x) =
2n
x

Jn(x) − Jn−1(x), (3.129)

we can rewrite Eq. (3.126) as

Θn =
Ew+Jn−1 + Ew−Jn+1√

2
+
v‖Ew‖k⊥

2nΩ
(Jn+1 + Jn−1) (3.130)

for n , 0.
The vector an in Eq. (3.125) should be expressed in (p‖, p⊥) coordinate. Sicne

our coordinate system is (p, θ), variable transformation is required. Using the relations
u‖ = p̂ cos θ − θ̂ sin θ and u⊥ = p̂ sin θ + θ̂ cos θ, an is expressed in (p, θ) system:

an = Θn

[{(
1 − k‖

ω
v‖

)
sin θ +

k‖
ω
v⊥ cos θ

}
p̂ +

{(
1 − k‖

ω
v‖

)
cos θ − k‖

ω
v⊥ sin θ

}
θ̂

]
(3.131)

The delta function in Eq. (3.124) is put into Gaussian distribution for small σ

δ(x)→ 1
√

2πσ
exp

(
− x2

2σ2

)
(3.132)
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in order to surpress numerical divergence due to the discretization. Using the substitu-

tion, normalized quasi-linear diffusion coefficient
↔̂
Dql becomes

↔̂
Dql =

q2
a

p2
ta0

√
π

2
√

2|ω|σ
exp

(
− (ω − k‖v‖ − nΩa/γa)2

2σ2ω2

)
a∗nan. (3.133)

The delta function in Eq. (3.124) specifies the resonance condition. Only particles
for which the Doppler-Shifted wave frequency ω − k‖v‖ is zero (n = 0: the Landau
damping) or a multiple of cyclotron frequency (n , 0: a cyclotron harmonic resonance)
interact with the wave.

3.6 Radial transport term
TASK/FP implements the radial diffusion corresponding to the turbulence transport.

3.6.1 Pinch effect

The radial transport term contains the radial diffusion coefficient
↔
Dρ and the pinch co-

efficient Fρ. These coefficients should be calculated from turbulent transport models,
though there exists no reliable theory based model. In the present analysis, we intro-
duce simple models with fixed radial profiles. The pinch coefficient is chosen to sustain
the initial density profile. The time evolution of momentum distribution function due
to radial flux is given by [45] (

∂ f
∂t

)
ρ

= −1
ρ

∂

∂ρ
ρS ρ (3.134)

S ρ = −Dρ

∂ f
∂ρ
+ Fρ f . (3.135)

In order to keep the density defined by n(ρ) =
∫

dp f , the pinch coefficient has to
satisfy

−
∫

1
ρ

∂

∂ρ
ρS ρdp = 0, (3.136)

in other words, ∫
S ρdp = 0. (3.137)

In this case, though density is not transported, energy is able to transport, because∫
(γ − 1)S ρ dp , 0. (3.138)

If Fρ has a p dependence as same as Dρ, Fρ can be calculated numerically.
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3.6.2 Radial dependence
We employ a simple model of radial diffusion coefficient Dρ(ρ) model. The radial
profile of radial diffusion coefficient is assumed to be parabolic and stationary, namely,

Dρ(ρ) = Dρ(0) + (Dρ(1) − Dρ(0))ρ2. (3.139)

Since the radial transport in outer region is stronger than that of inner region, Dρ(0) <
Dρ(1) is usually satisfied.

3.6.3 Momentum dependence
TASK/FP implements three simple momentum dependence models. The first model has
no momentum dependence. The second model is roughly proportional to the inverse of
the momentum as

Dr ∝
1√

1 + p2/p2
th(ρ)

(3.140)

where pth(ρ) denotes the thermal momentum at the normalized minor radius ρ (dif-
ferent from pta0). This model simulates the finite gyroradius effect due to turbulence
with k⊥ρth ∼ 1, where k⊥ is typical perpendicular wave number and ρth is the thermal
gyroradius.

The spatial diffusion across a magnetic field can be expressed as [46]:

D⊥ ∝
∑

k

∑
n

∫ ∞

−∞
dω

[
|E2(k, ω)|k

2
⊥

k2 J2
n(ζ1)δ(nΩ + k‖v‖ − ω)

]
(3.141)

where |E2(k, ω)| denotes the fluctuation spectrum and Jn(ζ) is the Bessel function of
the nth order with the argument ζ = k⊥v⊥/Ω = k⊥rg. k and ω are the wave vector
and the frequency of the fluctuation. The quasi-linear theory has shown that the radial
diffusion coefficient in a magnetized plasma is proportional to J2

n(ζ) or similar terms.
Since the gyro radius rg of energetic ion is much larger than rg,th and k⊥ spectrum of the
turbulence is usually broad, J2

n(ζ) dependence may be approximated by 1/ζ by the use
of the asymptotic form, Jn(ζ) ∝ 1/

√
ζ. Therefore, from Eq. (3.141), we conclude that

the radial diffusion scales as 1/
√

p2
⊥. For simplicity, p⊥ in the dependence is replaced

by p in our calculations.
The third model is roughly proportional to the inverse of the kinetic energy, namely

square of the momentum,

Dr ∝
1

1 + p2/p2
th(ρ)

. (3.142)

3.7 Source term
TASK/FP implements two kind of particle sources, neutral beam and the particles gen-
erated by fusion reaction. The Fokker-Planck equation with source term, H, is given
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by:

∂ f
∂t
= − 1

p2

∂

∂p
p2S p −

1
p sin θ

∂

∂θ
sin θS θ −

1
ρ

∂

∂ρ
ρS ρ + H(p, θ, ρ). (3.143)

3.7.1 Neutral beam injection
The nuetral beam is a source of accelerated ions and electrons which have same velocity
for simplicity. In TASK/FP, the beam deposition profile is a very simple model. It is
assumed to be the Gaussian distribution, namely:

I(ρ) ∝ nNB√
2πσNB

exp
(
(ρ − ρNB0)2

2σ2
NB

)
, (3.144)

where nNB, ρNB0 and σNB denote the amount of source density [1/m3], center radius
of the beam deposition and the width of deposition profile. The deposition profile of
neutral beam is assumed to be constant in time and the pitch angle of the beam is
constant in radial direction. In momentum space, the beam source is a delta function
which is non-zero at only p̄ =

√
2maENB/pta0 and θ = θNB, where ENB and θNB denote

the beam energy and the pitch angle of the beam.

3.7.2 Fusion reaction
In fusion plasma, several kinds of fusion reaction may occur, such as D-D, D-T, and T-
T. These reactions have different reaction rates and temperature dependence. TASK/FP
calculates the reaction rate for four kind of reaction. Since the fusion reaction rate
depends on the momentum distribution functions of ions, the rate of energetic ions
generation also depend on them. Under the plasma heating, therefore, the reaction rate
is calculated by the numerical integration of the momentum distribution functions. The
fusion reaction rate is expressed by [2, 1]:

R = nanb〈σv〉 =
∫∫

σT (E)v′ fa(ua) f (ub) duadub (3.145)

where v′, E, and σT are relative velocity v′ = |ua−ub|, kinetic energy of incident particle
in keV, and reaction cross section in barns (1 barns =10−24cm−2), respectively. The
fusion cross section σT (E) is approximated by fitting formula [47, 48]:

σT (E) =
A5 + [(A4 − A3E)2 + 1]−1A2

E[exp(A1E−1/2) − 1]
. (3.146)

The coefficients Ai are Duane coefficients given in Table 3.1

Relative velocity

In TASK/FP, the velocity and the moemntum are described in (p, θ) coordinate system.
However, in order to obtain the relative velocity v′ = |ua − ub|, the gyro phase φa and φb
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D-D D-D D-T D-He3 T-T T-He3

Eq. 1.1 1.2 1.3 1.4 1.5 1.6∼ 1.8
A1 46.097 47.88 45.95 89.27 38.39 123.1
A2 372 482 50200 25900 448 11250
A3 4.36 × 10−4 3.08 × 10−4 1.368 × 10−2 3.98 × 10−3 1.02 × 10−3 0
A4 1.220 1.177 1.076 1.297 2.09 0
A5 0 0 409 647 0 0

Table 3.1: The Duane coefficients for the principle fusion reaction [1]

are required. Therefore the relative velocity between ua and ub have to be averaged in
gyro phase. In Cartesian system, the velocity ua and ub can be expressed as

ua = (v⊥a cos φa, v⊥a sin φa, v‖a) (3.147)
ub = (v⊥b cos φb, v⊥b sin φb, v‖b). (3.148)

Thus the square of the relative velocity v′2 becomes

v′2 = |ua − ub|2

= v2
⊥a + v

2
⊥b + (v‖a − v‖b)2 − 2v⊥av⊥b cos(φa − φb)

=
2
µ

E

=
2
µ

(E0 + E1 cos(φa − φb)), (3.149)

where µ = mamb/(ma + mb) is a reduced mass, E0 and E1 are coefficients of the kinetic
energy of relative motion, and

2
µ

E0 = v
2
⊥a + v

2
⊥b + (v‖a − v‖b)2 (3.150)

2
µ

E1 = −2v⊥av⊥b. (3.151)

In Eq. (3.145), since fa(ua), fb(ub), dua, and dub are independent of the gyro phase,
φa and φb, σT (E)v′ can be averaged over the gyro phase to obtain.

〈σT (E)v′〉φaφb =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
σT (E0 + E1 cos(φa − φb))√

2
µ

(E0 + E1 cos(φa − φb)) dφa dφb

=
1

2π

∫ 2π

0
σT (E0 + E1 cosψb)

√
2
µ

(E0 + E1 cosψb) dψb, (3.152)

where variables φa and φb are transformed into ψa = ψa + φb and ψb = φa − φb. The
integration is calculated numerically.
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Using Eq. (3.152), Eq. (3.145) is rewritten as

R =
∫∫
〈σT (E)v′〉φaφb fa(ua) f (ub) duadub. (3.153)

3.8 Bounce averaging
In general, the magnetic field is non-uniform in magnetic confinement devices. There-
fore it is necessary to include the effect of the non-uniform magnetic field into the anal-
ysis. The formulations of Fokker-Planck equation including the non-uniform magnetic
field effect is given by Killeen et al.[49]. In this method, the gyro averaged distri-
bution function and the Fokker-Planck equation are averaged along a poloidal circu-
lation of guiding center. Since the poloidal circulating motion becomes bounce mo-
tion for a trapped particle, this method is called bounce averaging. According to this
method, Fokker-Planck equation and its coefficients are bounce averaged in TASK/FP.
The scheme of bounce averaging used in TASK/FP is explained in this section.

3.8.1 Bounce averaged Fokker-Planck equation
Now we assume that the typical time scale is longer than the bounce peroid τB = 2π/ωB.
The gyro averaged distribution function f is expanded in inverse powers of the large
bounce frequency:

f = F + F1 + F2 + · · · (3.154)

where F is bounce phase independent. Fokker-Planck equation averaged over bounce
period is expressed in term of F as follow[49]:

∂F
∂t
=

〈
∇ · Sc,ql

〉
φB
+ 〈∇ · Sdc〉φB

+
〈
∇ρ · Sρ

〉
φB
. (3.155)

where bracket, 〈Q〉φB
, denotes the average over the bounce motion for physical quantity

Q.
The bounce average is defined as:

〈Q〉φB
=

1
τB

∫ sB

0

Q
v‖

ds (3.156)

where ds is the element of the arclength along the magnetic field line associated with
the guiding center motion and sB is the arclength of guiding center orbit from minimum
magnetic field point to bounce point. Here, zero banana width approximation, ∆B = 0,
is applied.

Similarly, the bounce period is defined as follow:

τB =

∫ sB

0

ds
|v‖|
. (3.157)

The arclength of guiding center orbit from minimum magnetic field point to maximum
magnetic field point is smx = πq(ρ)R0, where q(ρ) is the safty factor and R0 is the major
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Figure 3.2: The projection of bounce motion on poloidal cross section.

radius at the magnetic axis. Because of non-uniformity of magnetic field, v‖ depend on
poloidal phase angle. Therefore it is required to express v‖ as a function of the arclength
s. Now, we define a function ψ(s) as for a plasma with a circular cross section:

ψ(s) ≡ B(s)
Bmin

=
R + r

R + r cos(πs/smx)

=
1 + ε

1 + ε cos
(
π s

smx

) , (3.158)

where ε = r/R is the inverse aspect ratio. Since the magnetic moment µ = mv2
⊥/2B(s) is

constant, ψ(s) satisfies sin2 θ = ψ sin2 θ0. The pitch angle variables θ and θ0 denote the
pitch angle at s and the minimum magnetic field point, s = 0. Using ψ(s), the definition
of τB is rewritten as:

τB =

∫ sB

0

ds

v0

√
1 − ψ(s)(1 − cos2 θ0)

(3.159)

Next, the expression of the bounce averaged divergence of the flux, 〈∇ · S〉φB
, is

considerd. Using ψ(s), the derivatives in (p, θ, ρ) system are transformed into those of
(p0, θ0, ρ0) systems.

∂

∂p
=

∂

∂p0
(3.160)

∂

∂θ
=

sin θ cos θ
ψ sin θ0 cos θ0

∂

∂θ0
(3.161)

∂

∂ρ
=

∂

∂ρ0
(3.162)
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Therefore 〈∇ · S〉φB
is expressed as

〈∇ · S〉φB
≡ 1
τB

∫ sB

0

ds
|v‖|

[
− 1

p2

∂

∂p
p2S p −

1
p sin θ

∂

∂θ
sin θS θ −

1
ρ

∂

∂ρ
ρS ρ

]
=

1
τB

∫ sB

0

ds
v0| cos θ|

[
− 1

p2
0

∂

∂p0
p2

0S p −
1
p0

cos θ
ψ sin θ0 cos θ0

∂

∂θ0
sin θS θ −

1
ρ0

∂

∂ρ0
ρ0S ρ

]
(3.163)

Now we introduce λ = v0| cos θ0|τB and rewrite Eq. (3.163) as

〈∇ · S〉 = 1
λ

[
1
p2

0

∂

∂p0
p2

0λ
〈
S p

〉
φB

+
1

p0 sin θ0

∂

∂θ0
sin θ0λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

+
q(ρ)R0

ρ0

∂

∂ρ0
ρ0

λ

q(ρ0)R0

〈
S ρ

〉
φB

 .
(3.164)

The detailed derivation of this equation is introduced in Appendix C. Since the bounce
average parameter λ has a dimension of the length, we normalize the bounce average
parameter by q(ρ0)R0 as λ = v0| cos θ0|τB/(q(ρ0)R0). Because of the independence of
the normalized factor from the variables p0 and θ0, by using this normalization, Eq.
(3.164) can be rewritten as:

λ 〈∇ · S〉 = 1
p2

0

∂

∂p0
p2

0λ
〈
S p

〉
φB

+
1

p0 sin θ0

∂

∂θ0
sin θ0λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

+
1
ρ0

∂

∂ρ0
ρ0λ

〈
S ρ

〉
φB

(3.165)

Then the bounce averaged Fokker-Planck equation is given by:

∂λF
∂t
= − 1

p2
0

∂

∂p0
p2

0λ
〈
S p

〉
φB

− 1
p0 sin θ0

∂

∂θ0
sin θ0λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

− 1
ρ0

∂

∂ρ0
ρ0λ

〈
S ρ

〉
φB
.

(3.166)

where each components of the bounce averaged flux λ 〈S〉φB
are expressed as

λ
〈
S p

〉
φB
= −Dpp0

∂F
∂p0
− Dpθ0

1
p0

∂F
∂θ0
+ Fp0F = S p0 (3.167)

λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

= −Dθp0
∂F
∂p0
− Dθθ0

1
p0

∂F
∂θ0
+ Fθ0F = S θ0 (3.168)

λ
〈
S ρ

〉
φB
= −Dρ0

∂F
∂ρ
+ Fρ0F = S ρ0. (3.169)
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The new coefficients
↔
D0 and F0 are composed of the following coefficients.

Dpp0 = λ
〈
Dpp

〉
φB

Dpθ0 = λ

〈
cos θ
√
ψ cos θ0

Dpθ

〉
φB

Dθp0 = λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
Dθp

〉
φB

Dθθ0 = λ

〈
cos2 θ

ψ3/2 cos2 θ0

sin θ
sin θ0

Dθθ

〉
φB

Fp0 = λ
〈
Fp

〉
φB

Fθ0 = λ

〈
cos θ
ψ cos θ0

sin θ
sin θ0

Fθ

〉
φB

Dρ0 = λ
〈
Dρ

〉
φB

Fρ0 = λ
〈
Fρ

〉
φB

(3.170)

Similarly, the boucen averaged Fokker-Planck equation with source term is given by:

∂λF
∂t
= − 1

p2
0

∂

∂p0
p2

0λ
〈
S p

〉
φB

− 1
p0 sin θ0

∂

∂θ0
sin θ0λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

− 1
ρ0

∂

∂ρ0
ρ0λ

〈
S ρ

〉
φB
+ λ 〈H〉 .

(3.171)

In the following, the distribution function with 0-th order of bounce phase F is
represented by merely f for simplicity

3.8.2 Bounce averaging parameters
Now we examine the boundary condition θ0 = θB which divides the momentum space
into trapped and passing regions. From the conservation of magnetic moment, the
poloidal angle of bounce point φB is obtained as

cos φB = 1 − 1 + ε
ε

cos2 θ0. (3.172)

When θ0 = θB, the particle bounce at the highest magnetic field point, φB = π. Thus the
boundary pitch angle θB is given by

cos θB =

√
2ε

1 + ε
. (3.173)
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Figure 3.3: Trapped and passing regions at minimum magnetic field point.

The bounce period τB is given by Eq. (3.159). The integrating variable transforma-
tion, ds = smxdφ/π, makes Eq. (3.159)

τB =
smx

v0π

∫ φB

0
dφ

√
1 + ε cos φ

1 + ε cos φ − (1 + ε) sin2 θ0
. (3.174)

Similarly, the bounce averaging parameter λ is given by

λ =
| cos θ0|
π

∫ φB

0
dφ

√
1 + ε cos φ

1 + ε cos φ − (1 + ε) sin2 θ0
. (3.175)

3.8.3 Bounce averaged dc electric field term
The bounce averaging of the dc electric field term requires the following steps. The
parallel electric field E‖0 at minimum magnetic field point and E‖ at any arclength s
satisfy the following relation

2π(R + r)E‖0 = 2π(R + r cos φ)E‖

namely,

E‖ = ψ(s)E‖0. (3.176)

The p and θ components of Eqs. (3.29) are bounce averaged as

λ
〈
F̂p

〉
=
λ

τB

∫ sB

0

ds
v0| cos θ| F̂p

=
1
π

qa

pta0
E‖0| cos θ0|

∫ φB

0
dφ ψ(s)

cos θ
| cos θ| , (3.177)

λ

〈
cos θ
ψ cos θ0

sin θ
sin θ0

Feθ

〉
=
λ

τB

∫ sB

0

ds
v0| cos θ|

cos θ
ψ cos θ0

sin θ
sin θ0

Feθ

= −1
π

qe

pta0
E‖0 sin θ0

∫ φB

0
ψ(s)dφ. (3.178)
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for passing particles. On the other hand, DC term for trapped particles becomes zero.
Since trapped particles have back-and-forth motion along the magnetic field line, the
average for trapped particles becomes zero.

3.9 Evaluations of physical quantities

3.9.1 Variation of kinetic energy
In this section, the variation of the kinetic energy due to each term is considerd. In the
non-relativistic limit, the total kinetic energy for species “a”, Wa, is given by

Wa =

∫
1
2

mav
2 fa d3u

=
p2

ta0

2ma

∫
p̄2 f̂a p̄2 sin θ dp̄ dθ. (3.179)

Thus the variation of the kinetic energy becomes

∂Wa

∂t
=

p2
ta0

2ma

∫
p̄2∂ f̂a

∂t
p̄2 sin θ dp̄ dθ. (3.180)

At first, the variation without radial diffusion is discussed. In this case, the variation of
the momentum distributio function is

∂ f̂a

∂t
= − 1

p̄2

∂

∂ p̄
p̄2Ŝ p −

1
p̄ sin θ

∂

∂θ
sin θŜ θ. (3.181)

Substituting Eq. (3.181) into Eq. (3.180),

∂Wa

∂t
= −

p2
ta0

2ma

∫ (
∂

∂ p̄
p̄2Ŝ p +

p̄
sin θ

∂

∂θ
sin θŜ θ

)
p̄2 sin θ dp̄ dθ (3.182)

is given. Using integration by parts for dp̄, Eq. (3.182) becomes

∂Wa

∂t
=

p2
ta0

ma

∫
p̄3Ŝ p sin θ dp̄ dθ. (3.183)

In the relativistic case, since the total kinetic energy is given by:

Wa = mc2
∫

(γa − 1) f̂a p̄2 sin θ dp̄ dθ, (3.184)

the expression of the variation of the kinetic energy is expressed as

∂Wa

∂t
=

p2
ta0

ma

∫
p̄3

γ
Ŝ p sin θ dp̄ dθ. (3.185)

Using these expressions, the kinetic energy variation can be evaluated.
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Next, the energy variation due to radial diffusion is discussed. The variation of the
stored energy in the region r1 < ρ < r2 is given by

∆E = 4π2R
∫ r2

r1

ρ dρ
[
mc2

∫
(γ − 1)

∂ f̂a

∂t
p̄2 sin θ dp̄dθ

]
(3.186)

Since the variation of the momentum distribution function due to radial transport is

∂ f̂a

∂t
= −1

ρ

∂

∂ρ
ρŜ ρ, (3.187)

the amount of energy transported radially is

∆E = −4π2Rmc2
∫

(γ − 1) p̄2 sin θ
[
ρŜ ρ

]r2

r1
dp̄dθ (3.188)

3.9.2 Temperatures
The definition of temperature was discussed in Sec. 3.1.3. However, the relation be-
tween kinetic energy density and temperature is valid only for Maxwellian distribution
function. Since heated plasma has non-Maxwellian distribution function, in general
temperature like parameter should be introduced.

The most simple one is the temperature which is adopted the relation between ki-
netic energy density and temperature of Maxwellian distribution function, namely:

Wa = mc2
(
4Θa +

K1(Θ−1
a )

K2(Θ−1
a )
− 1

)
na(ρ). (3.15)

Eq. (3.15) is the relation between relativistic kinetic energy and temperature. Form now
on, we call this averaged energy temperature. Since the averaged energy temperature
is strongly affected by fewer fast ion tail, it tends to be overestimated.

The other temperature like parameter evaluates temperature averaged over the parti-
cles thermal momentum. By considering around thermal momentum, the effect of less
fast ions is supressed; so we call this parameter as bulk temperature. For Maxwellian
distribution function, temperature satisfies the following relation in whole momentum
space:

Ts = −
ps fs

γs

(
∂ fs

∂p

)−1

(3.189)

If the number of fast ions is small, most of ions with the order of thermal momentum
(bulk ion) still satisfy Eq. (3.189). Therefore, we evaluate the bulk temperature Tbulk as
the average of Eq. (3.189) around the normalized thermal momentum (0 < p̄ <∼ 4).
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3.10 Numeical schemes

3.10.1 Boundary condition
In TASK/FP, the computational domain for the Fokker-Planck equation is taken as:

0 < p < pmax

0 < θ < π
0 < ρ < 1.

Therefore, the boundary of computational domain exists at p = 0, p = pmax, θ = 0,
θ = π, ρ = 0, and ρ = 1. The boundaries at p = 0, θ = 0, and θ = π are treated with the
boundary conditions:

fs(−p, θ) = fs(p, π − θ)
fs(p,−θ) = fs(p, θ)
fs(p, π + θ) = fs(p, π − θ).

Now the normal vector n̂ perpendicular to the p = pmax boundary is introduced. The
boundary condition at p = pmax is described as:

S · n̂ = 0 at p = pmax, (3.190)

namely:

Dpp = Dpθ = Fp = 0 at p = pmax. (3.191)

This means that the plasma can not enter or leave the integration domain. Thus the
number of plasma particles is conserved with this boundary condition.

If an electric field is present, then in the real problem some electrons will run away.
Now I wish to impose boundary conditions which allow this to happen. The p compo-
nent of the dc acceleration term is Fp ∝ (qsE/ms) cos θ. Since run away will occur in
the case of Fp > 0, the boundary condition on p = pmax, Eq. (3.191), can be rewritten
as:

Dpp = Dpθ = Fp = 0 for Fp < 0
Dpp = Dpθ = 0 for Fp > 0. (3.192)

3.10.2 Spatial differencing
In order to solve the Fokker-Planck equation, the differential equation should be con-
verted to algebraic equation by using the finite difference method. In this method, f is
represented by its values on a finite set of points and differentials are represented by the
differences between neighboring values.
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Figure 3.4: The numerical grid showing where the momentum distribution function and
the fluxes are defined in momentum space.

First, the numerical grid points for momentum space are discussed. A set of numer-
ical grid points is established by dividing p̄ and θ into NPMAX and NTHMAX equal
pieces. That is:

∆ p̄ = p̄max/NPMAX
∆θ = π/NTHMAX.

Each grid point is represented by two variables

p̄NP = NP × ∆p̄
θNTH = NTH × ∆θ

These grid points make cells. The momentum distribution function is represented by
its value at the center of each cell as is shown in Fig. 3.4.

f̂NP+1/2,NTH+1/2 = f ( p̄NP+1/2, θNTH+1/2)
for 0 ≤ NP < NPMAX, and 0 ≤ NTH < NTHMAX (3.193)

On the other hands, the fluxes are represented by the value at the points on the cell
boundary. The flux Ŝ p is defined by the value at the middle of θ grid point on a p̄ grid
line. And the flux Ŝ θ is defined by the value at the middle of p̄ grid point on a θ grid
line.

Similarly, numerical grid points for radial direction is also established by dividing
ρ into NRMAX equal pieces,

∆ρ = ρmax/NRMAX.

And then, each grid point is

ρNR = NR × ∆ρ
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Figure 3.5: The numerical grid showing where the momentum distribution function and
the fluxes are defined in radial direction.

Similar to the momentum space, the momentum distribution function is represented by
its value at the center of each radial grid points as is shown in Fig. 3.5. The flux of
radial transport is calculated on the radial grid point.

The evaluation of f̂ on grid lines, such as red circles in Fig. 3.4 and 3.5, uses a
method proposed by Chang and Cooper [50] extended to two dimension by Karney
[20]. It is found that the simple average of two points

f̂NP,NTH+1/2 =
1
2

(
f̂NP−1/2,NTH+1/2 + f̂NP+1/2,NTH+1/2

)
f̂NP+1/2,NTH =

1
2

(
f̂NP+1/2,NTH−1/2 + f̂NP+1/2,NTH+1/2

)
gives poor result due to the flow in momentum space. Chang and Cooper replace these
with

f̂NP,NTH+1/2 = (1 − δNP,NTH+1/2) f̂NP+1/2,NTH+1/2 + δNP,NTH+1/2 f̂NP−1/2,NTH+1/2

f̂NP+1/2,NTH = (1 − δNP+1/2,NTH) f̂NP+1/2,NTH+1/2 + δNP+1/2,NTH f̂NP+1/2,NTH−1/2,(3.194)

where the coefficients δi, j are given by:

δNP,NTH+1/2 = g

(
−∆θ F̂θ:NP,NTH+1/2

D̂θθ:NP,NTH+1/2

)
(3.195)

δNP+1/2,NTH = g

−∆ p̄
F̂p:NP+1/2,NTH

D̂pp:NP+1/2,NTH

 , (3.196)

and

g(w) =
1
w
− 1

exp(w) − 1
. (3.197)

The function g(w) has the properties

g(w) = 1 − g(−w)

g(w) =
1
2
− w

12
+
w3

120
for w � 1

g(−∞) = 1
g(0) = 1/2
g(∞) = 1.

49



The role of δi, j is to weight the averaging. This weighting is necessary because f̂ is
a strongly varying function of p̄. For example, non-relativistic Maxwellian varies with
exp(−p̄2).

Similarly, the momentum distribution function on a radial grid point is estimated as

f̂NR = (1 − δNR) f̂NR+1/2 + δNR f̂NR−1/2, (3.198)

where the δNR is given by:

δNR = g

−∆ρ F̂ρ:NR

D̂ρ:NR

 . (3.199)

The dependence of momentum distribution function on ρ is not so strong as p̄ depen-
dence.

3.10.3 Time advancing
In this section, the method for time advancing is discussed. The simplest way of time
advancing is the explicit scheme:

f t+1
s − f t

s

∆t
=
↔
A

t

s · f t
s +Hs, (3.200)

where subscript t, tensor
↔
A , an vector H denote the step number, the coefficient matrix,

and source term vector, respectively. In this scheme, ∆t must be chosen to be very small
for numerical stability. Too small time step is not applicable for transport code.

TASK/FP adopts a full implicit method for time advancing in stead of the explicit
method. The discretized equation to be solved is

f t+1
s − f t

s

∆t
=
↔
A

t+1

s · f t+1
s +Hs. (3.201)

Eq. (3.201) can be solved for f t+1
s :

f t+1
s =

(
↔
I −

↔
A

t+1

s ∆t
)−1

· (f t
s +Hs∆t

)
. (3.202)

Since
↔
A

t+1

s in RHS of Eq. (3.202) depends on f t+1
s , it is necessary to use

↔
A

t

s instead

of
↔
A

t+1

s at the first step. Then using obtained temporal f t+1
s , tensor

↔
A

t+1

s is calculated.
Iterating the sequence until the calculation converges, we obtain the solution f t+1

s . The
convergence criterion is expressed as:∣∣∣ f t,n+1

s − f t,n
s

∣∣∣
f t
s

≤ ε, (3.203)

where superscript n denotes the iteration number.

The formulation of the matrix
↔
A is shown in Appendix B.
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3.10.4 Parallel computing
The size of the momentum distribution function vector in Eq. (3.201) is NPMAX ×
NTHMAX × NRMAX, and that of the coefficient matrix is (NPMAX × NTHMAX ×
NRMAX)2 though it is a band matrix which has finite width of (NPMAX×NTHMAX).
Since the typical amount of the grid number is around 100, the coefficient matrix be-
comes very huge. Therefore, it is necessary to solve the matrix equation for large-scale
asymmetric matrix as fast as possible. For this purpose, TASK/FP is parallelized with
the parallel computing library, PETSc (The Portable Extensible Toolkit for Scientific
Computation) [51]. PETSc is a program library developed by S. Balay, et al. and is
used widely for numerical analysis in the field of aerodynamics and acoustics. The
primary features of PETSc are listed below.

• Open-sourced code
• Portable to UNIX and Windows
• Intensive error checking
• Three program languages, C, C++, and FORTRAN, are supported.
• Both real and complex calculation is enable.
• Several preconditionerare implemented.
• Several iteration method are implemented. Here we use the defoult one, GMRES

(Generalized minimal residual).

In TASK/FP, the calculation is split into processes, the number of which is a divisor
of the number of radial grid points. The reduction of computation time through parallel
processing is shown in the following. With a cluster computer with 128 cores on 16
nodes, the test calculation is done for combinations of different number of nodes and
cores. The test calculation describes temperature relaxation among electron and ions
and 64 radial mesh are used without radial diffusion.

The results of test calculation is listed in Table 3.2. And Fig. 3.6 shows that calcula-
tion time (user time and system time) 2 vs. the number of radial grid points per node for
different the number of cores for 64, 32, and 16 cores, respectively. These values are
the average of five trials. From Fig. 3.6, the more cores are used, the less calculation
time becomes. Moreover, it is found that cpu time is little affected by the number of
grid points per node. On the contrary, system time is strongly affected by the number
of grid points per node. Thus, cpu time depends strongly on the number of cores used.
On the other hand, system time depends on the calculation size per node.

2The total time (real CPU time or elapsed time) is the combination of the amount of time the CPU
spends performing some action for a program and the amount of time the CPU spends performing system
calls for the kernel on the program’s behalf. When a program loops through an array, it is accumulating
user CPU time. Conversely, when a program executes a system call, it is accumulating system CPU time.
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number of core 64 32 16
grid/core 1 2 3

number of node 16 8 16 8 4 16 8 4
grid/node 4 8 4 8 16 4 8 16
core/node 4 8 2 4 8 1 2 4

User time [s] 119 113 319 316 380 1037 935 1150
Sys. time [s] 141 198 459 583 842 1130 1677 2600

S/(U+S) 0.54 0.64 0.59 0.65 0.69 0.52 0.64 0.69

Table 3.2: The calculation times for the test calculation are listed.
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Figure 3.6: The user time (blue lines) and the system times (red lines) for different the
number of cores are shown. Horizontal axis denotes the number of grid points divided
by the number of nodes and vertical axis denotes the calculation time.
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Chapter 4

Verification of the code

In this chapter, the verification for each term of TASK/FP is shown. The properties of
Coulomb collision term, dc electric field term, quasi-linear term, and source term are
verified. The effect of bounce average is also confirmed.

4.1 Reaction rate

4.1.1 Reaction rate for Maxwellian distribution function
Here, our calculation results of reaction rate is compared with the literature values [1].
Fig. 4.1 shows the 〈σv〉 vs. temperature for D-D, D-T, and T-T reactions. In Fig.
4.1, lines indicate our calculation, and black points indicate the literature value. In
this calculation, deuteron and triton are set to have same temperature (TD = TT ) and
their momentum distribution functions are set to be Maxwellian. The value of D-D
reaction is sum of two reactions, Eq. (1.1) and (1.2). From Fig. 4.1, it is found that our
calculations have good agreements with literature values for each reaction.

4.1.2 Reaction rate for non-Maxwellian distribution function
Since NBI and RF waves deform the momentum distribution function of incident nu-
clei, the fusion reaction rate should include the effect of non-Maxwellian distribution
function. Here, the influence of non-Maxwellian distribution function on fusion reac-
tion rate is discussed. In order to deform the momentum distribution function, ICRF
wave and 1 MeV D-NBI are applied for heat source in these test calculations.

Figs. 4.2 show the examples of the contour of the deformed momentum distribution
function for deuteron (a) and triton (b) at 50 msec after onset of heatings in 2D momen-
tum space. The x and y axes denote normalized parallel and perpendicular momentum.
In a set of test calculations, both heating powers are set to be close, and they are around
16MW/m3. The deuteron neutral beam is injected with 1 MeV energy and pitch angle
θ = π/9. In Fig. 4.2-(a), its distribution spreads from the NBI source. Fig. 4.2-(b)
shows the momentum distribution function of triton. Since tritons are accelerated by
ion cyclotron resonance, their perpendicular momentum increase compared to parallel
moemntum. Moreover the fast triton generated by D-D reaction is also displayed in
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Figure 4.1: The comparison of 〈σv〉 between our calculation (lines) and the literature
value (black points) is shown.

Fig. 4.2-(b) at 1.05MeV ( p̄ ∼ 14). The fast tritons generated by D-D reactions are
distributed isotropically.

The influence of non-Maxwellian distribution on the fusion reaction rate is shown
in Fig. 4.3. The lines indicate 〈σv〉 calculated for Maxwellian, and the points indicate
that for non-Maxwellian distribution function. Since the temperatures of deuteron and
triton become different due to heating, the average of two bulk temperature, deuteron
and triton, is applied for the temperatures of heated deuteron and triton. The bulk
temperature is previously defined at Sec. 3.9.2. From Fig. 4.3, it is found that the
influence of non-Maxwellian on the fusion reaction rate is strong at low temperature
region rather than that of figh temperature region for each reactions. This is beause the
particles which fuse thermally are very few at low temperature. On the other hand, the
number of fusing fast particles are little affected by temperature. Especially, the amount
of fast deuteron injected by NBI is constant for each plot point.

The result shows that the fusion reaction rate should be considered with the effect of
non-Maxwellian distribution function, especially the effect of fast ions, in the tempera-
ture range of less than 10 keV for D–T reaction and less than the 50 keV for D–D and
T–T reactions. Since the typical plasma temperature in start up phase of ITER plasma
is less than 10 keV, kinetic treatment of fusion reaction rate is required at least in the
analysis of plasma heating in the start up phase.

54



0

16

8

0 8 16-8-16

p

p

⊥

//

0

16

8

0 8 16-8-16

p
p

⊥
//

(b)(a)

Figure 4.2: The examples of non-Maxwellian distribution function in moemntum space
are shown. (a) deuteron with NBI source, (b) triton accelerated by ICRF with fusion
generated source. Both of initial temperatures are set as 10 keV. In this case, p̄ = 1
corresponds to 5keV.
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non-Maxwellian (points) is shown.
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Figure 4.4: ICRF wave power absorption profiles (a) on poloidal cross section and (b)
in radial direction. In this example, plasma consist of four speices, electron, deuteron,
triton, and helium ion. Fig. 4.4-(b) shows the absorption profile for triton. ITER
magnetic configuration is applied, so toroidal magnetic field strength at magnetic axis
is 5.3T, and major radius is 6.2m. RF wave frequency is 55MHz.

4.2 Wave-plasma interaction

4.2.1 In the case of uniform magnetic field
The propagation of RF electric field which accelerate plasma particles is calculated by
TASK/WM. Figs. 4.4 shows the example of RF power absorption profile calculated by
TASK/WM. Although the RF electric field is obtained by TASK/WM on 2D poloidal
cross section, TASK/FP is spationally one dimensional. Therefore the quasi-linear dif-
fusion should be bounce averaged. In the case of uniform magnetic field, λ = 1 and
ψ(s) = 1 for all particles and orbits.

Figs. 4.5 show an example of time evolution of the momentum distribution function
of triton. It is found that the perpendicular momentum increases gradually due to the
second harmonic cyclotron resonance.

4.2.2 In the case of non-uniform magnetic field
Due to the non-uniform magnetic field effect, some particles are trapped in a weak
magnetic field region. These trapped particles are accelerated by the RF waves in the
different way from that of passing particles.

In non-uniform magnetic field, when the particle moves from weak magnetic field
point to strong magnetic field point, the parallel velocity decreases due to the conser-
vation of magnetic moment. It means the particle stays longer in the strong magnetic
field region than the weak magnetic field region. Especially, since the parallel velocity
of the trapped particle becomes nearly zero at the bounce point, the trapped particle
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Figure 4.5: Time evolution of the momentum distribution function of triton at ρ = 0.17
is displayed. This radial point is consistent to the peak of wave absorption. In this
example, the absorption power density is 0.90MW/m3.
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Figure 4.6: The trapped particle orbit and resonance surface are shown in two cases.
One has a resonance surface in high magnetic field region (left), and another has it
in low magnetic field region (right). These trapped particle orbits have a pitch angle
θB ≤ θ0 < π/2. If the trapped particle bounce on the resonance surface, the trapped
particle accelerate strongly.

stays relatively long time at the bounce points than the other region on the flux surface.
Therefore, the trapped particles which bounce at the resonance surface, as is shown in
Fig. 4.6, are accelerated strongly. Now we call such a pitch angle as θtip, and it satisfies
θB < θtip < π/2. Conversely, when the trapped particle orbits do not reach the reso-
nance surface, the particle has very little acceleration. Such a pitch angle is larger than
θtip, namely θtip < θ0 < π/2. Because of the difference of acceleration, the momentum
distribution function of heated species has two tips, as is shown in Figs. 4.7.

Figs. 4.7 show the time evolution of the momentum distribution function of triton
at the peak of wave absorption, ρ = 0.17. Since our bounce average assumes zero
banana width, the momentum distribution function is symmertic around p‖ = 0 axis in
the trapped region.

4.3 Conductivity
When working with electron-electron collision operators, it is useful to have some
benchmark test against analytically in order to check their numerical implemention.
A useful benchmark test is provided by the electrical conductivity, which is the ratio of
electrical current to electric field in the limit of E → 0.

To numerically verify our model, we compare the electrical conductivity calculated
by our model with that in the previous work [20]. The electron-electron collision oper-
ator of the previous work is linearized one (for non-relativistic case),

Clin( fe(u)) = C( fe(u), fem(v)) +C( fem, fe(u)), (4.1)
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Figure 4.7: Time evolution of the momentum distribution function of triton with non-
uniform magnetic field effect is displayed. This radial point is consistent to the peak of
wave absorption. In this example, the absorption power density is 0.94MW/m3.
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Model Zi = 1 Zi = 2 Zi = 5 Zi = 10
Reference value [20] 7.429 4.377 2.078 1.133

Our calculation 7.370 4.335 2.054 1.118

Table 4.1: The electrical conductivity for various ion charge is shown with the DC
electric field 0.001V/m. The conductivities are normalized to neq2

e/meνte, where νte =

τ−1
te = Γ

e/e/v3
te.

Model Zi = 1 Zi = 2 Zi = 5 Zi = 10
Reference value [20] 7.160 4.180 1.963 1.064

Our calculation 7.041 4.110 1.930 1.046

Table 4.2: The relativistic electrical conductivity for various ion charge is shown with
the DC electric field 0.001V/m and Θ = Te/mec2 = 0.02. The conductivities are nor-
malized to neq2

e/meνte.

or truncated operator (for relativistic case)

Ctrun( fe(u)) = C( fe(u), fem(v)) +C( fem, f (1)
e (v)P1(µ)). (4.2)

On the other hand, our electron-electron collision operator is the non-linear operator

C( fe(u)) =
∞∑

l=0

C( fe(u), f (l)
e (v)Pl(µ)). (4.3)

which is explaned in Sec. 3.3 and 3.4. An approximate collision term which assumes
mi → ∞ is used for electron-ion collision term in all cases, because the ions are so
massive relative to the electrons. The exressions of the diffusion coefficients in this
limit are given by [20]:

De/i
cvv = Fe/i

cv = 0 (4.4)

De/i
cθθ = Γ

e/e Zi

2v
, (4.5)

where

Zi = −
qi lnΛe/i

qe lnΛe/e . (4.6)

In these calculations, non-uniform magnetic field effect is not included.
The conductivities for electrons are listed in Table 4.1 (non-relativistic) and 4.2

(relativistic) for each model. In these calculation, Legendre polynomials are calculated
up to l = 1. Since the agreement in the both tables is fairly good, the validity of
conductivity of our model is confirmed.
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Chapter 5

Multi-species heating without radial
transport

In general, fusion plasma consists of several species, and each species are heated by dif-
ferent heating schemes. Since the distortion level of the momentum distribution func-
tion is different for the each heating scheme, the time evolution of the momentum dis-
tribution function for each species should be calculated simultaneously. Fokker-Planck
component TASK/FP can calculate the evolution for multi-species simultaneously. In
this chapter, some simulation results for multi-species heating without radial transport
are presented.

5.1 Plasma parameters and initial conditions
We carried out numerical analysis of multi-species heating with the plasma parameters
simulating ITER as listed in Table 5.1. The plasma consists of four particle species,
electron, deuteron, triton, and helium ion, respectively. Each species is heated by dif-
ferent scheme, such as NBI, ICRF, ECH, and fusion reaction. NBI is particle and
energy source of deuteron. And its energy is transferred to the other species through
collisions. ICRF wave accelerates electron and triton through Landau resonance and
second harmonic cyclotron resonance. ECH wave also accelerates electron through
electron cyclotron resonance. Moreover, triton and helium ion have fast particle source
generated by fusion reaction. D-D reaction generates 1 MeV triton, and D-T and T-
T reaction generate 3.5 MeV and 1.25 MeV helium ions. These fast ion generations
are assumed to be isotropic. Furthermore, each species transfers its power to the other
species through collisions. The image of such a heating mechanism is illustrated in Fig.
5.1.

In the following sections, the non-linear Coulomb collision model is applied for
the collision term, and radial transport term is neglected. Because of the lack of radial
transport, the stored energy continue to increase and don’t saturate. The other models
adopted in this section are listed in Table 5.2.
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major radius R0 6.2m
minor radius a 2.0m
elongation κ 1.7
triangularity δ 0.33
magnetic field on axis B0 5.3T
initial temperature on axis T0 20.0keV
initial temperature on surface Ts 2.0keV
initial density on axis n0 1×1020/m3

initial density on surface ns 1 ×1019/m3

initial deuterium ratio nD/ne 0.5
initial tritium ratio nT/ne 0.5
NBI energy ENBI 1MeV
NBI pitch angle θNBI π/9
α particle energy Eα 3.5MeV
ICRF wave frequency fIC 55.0MHz
ECH wave frequency fEC 185GHz

Table 5.1: ITER like plasma parameters

MODEL
Motion Relativistic
Collision Non-linear
Orbit average Bounce average
Radial transport None
Absorption power Constant in time

Table 5.2: Adopted models

5.1.1 Initial state
At the beginning of our calculation, each momentum distribution function is Maxwellian,
and the radial profiles of temperature and density are distributed parabolic as is shown
in Figs. 5.2.

n(ρ) = (n0 − ns)(1 − ρ2) + ns

T (ρ) = (T0 − Ts)(1 − ρ2) + Ts

5.1.2 Heat source
The propagation of ICRF wave electric field is calculated by TASK/WM. Figs. 5.3
show the ICRF wave power absorption profiles. Using the wave electric field calcu-
lated by TASK/WM, TASK/FP obtains quasi-linear diffusion coefficients, and then,
calculates power absorption profile for electron and triton. The absorption profiles are
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Figure 5.1: The image of plasma heating. Each species is heated not only external
heating or fast ion source, but also collisional power transfer among species through
collision.
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Figure 5.2: Initial density and temperature profiles

shown in Fig. 5.4. Generally, since the dielectric tensor depends on the momentum dis-
tribution function of plasma species, the propagation will be affected by plasma heating.
In this chapter, however, the profile of wave electric field is assumed to be constant in
time. ECH and NBI power absorption profiles are also shown in Fig. 5.4. Here, on
the contrary of ICRF, ECH wave electric field is calculated by a simple model. In ad-
dition, these absorption profiles are also fixed in time. Therefore, the absorption power
by NBI, ICRF, and ECH during the simulation are 31.6MW, 20.5MW, and 20.4MW,
respectively.

On the other hand, since the fast ion generation rate by fusion reaction depends on
the momentum distribution function, the absorption power due to fusion-generated fast
ion source varies in time. The power of the source at initial state is 78.3MW for helium
ion, and the loss due to fusion reactions for deuteron and triton are −0.843 MW and
−0.581MW, respectively. The radial profile of the source power for helium ion is also
shown in Fig. 5.4. Because of the small values of the loss power due to the fusion
reactions, the power loss of deuteron and triton is not shown in Fig. 5.4.
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Figure 5.3: Wave absorption profiles calculated by TASK/WM. (a) power absorption
for triton, (b) radial profile of power absorption for each species.
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Figure 5.4: The power absorption profiles of ECH, ICRF, and NBI for each species.
ICRF absorption profiles for electron (green) and triton (purple) are calculated using
the wave electric field calculated by TASK/WM. These heat profiles are fixed in time
during the simulation of this chapter. The absorption powers for NBI, ICRF, and ECH
are 31.6MW, 20.5MW, and 20.4MW, respectively. ICRF absorption power consists of
4.72MW for electron and 15.8MW for triton. In this figure, the only α particle source
power varies in time.
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5.2 At 1 sec after the onset of heating
First, the simulation is done for 1 second with the several heatings introduced at previ-
ous section. Figs. 5.5 and 5.6 show the contour of the heated momentum distribution
function for each species at several radial points. Since the relaxation time of electrons
is very short compared to the other species, there is little distortion of the momentum
distribution function of electron. Conversely, since deuteron, triton, and helium ion
have slow relaxation processes rather than electron, the distortion of the momentum
distribution function is clearly observed. NBI absorption profile have gentle slope as
is shown in Fig. 5.4. Therefore the contour of the momentum distribution function of
deuteron becomes smaller gradually as point moves radially outward. In contrast, there
is a drastic difference between the contour of triton at ρ = 0.17 and ρ = 0.37 in Fig.
5.6. This is because the ICRF wave absorption profile has a strong peak at ρ = 0.17.
At the absorption peak, since tritons are accelerated by second harmonic cyclotron res-
onance, the perpendicular momentum of triton increase strongly. At other point, tritons
are hardly accelerated by wave, and then, only the fast triton source generated by D-
D reaction stands out. The contours of helium ions show the fast α particle source at
3.5MeV ∼ p̄ = 17, and these fast ions are becoming thermal ions through collisional
slowing down.

Figs. 5.7 show the radial profile of two kind of temperatures. Here, the bulk temper-
ature is estimated in the p < 4pth(ρ) region1. The main heat source of deuteron is NBI,
and the energy of NBI is 1MeV= p̄ = 10. Thus, only the injected deuterons slowed
down to around the thermal momentum are estimated in bulk temperature. This is the
reason of the large differences between the deuteron averaged energy temperature and
bulk temperature. With the similar reason, there are some differences for the temper-
ature profile of triton at the vicinity of the wave absorption peak. On the other hand,
since the momentum distribution of electron is thermalized sufficiently, there are little
difference between averaged energy temperature and bulk temperature.

Figs. 5.8 show the time evolution profiles of two kind of temperature which is
volume averaged. As same as the radial profiles of temperatures, it is found that injected
deuteron is not sufficiently thermalized yet. Moreover, for triton, because the strong
distortion of the momentum distribution function occurs only at the vicinity of the peak
of absorption, there are little differences between volume averaged temperatures.

It have been clear by shown in the previous chapter that the fusion reaction rate
is strongly affected by the existence of fast ions. Since the averaged energy temper-
ature which is estimated with fast ions increases for each species, the source power
of fusion reaction also increases. Due to the plasma heating, the source power of fu-
sion reaction for helium ion increases from 78.3MW to 109.5MW. Figs. 5.9 show the
power absorption profiles at 1 sec after the onset of heatings. From Fig. 5.9-(b), the in-
crease of the source power is remarkable at the vicinity of the peak of wave absorption,
0.05 < ρ < 0.2. It is consistent with the radial profile of averaged energy temperature
of deuteron and triton.

Fig. 5.10-(a) shows the radial profiles of collisional power transfer density for each

1 p = p̄pth(0)
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Figure 5.5: The contour of the momentum distribution functions of electron and
deuteron in 2D momentum space at several radial points are shown. The radial point
ρ = 0.17 is consistent to the point of the ICRF wave absorption peak for triton.
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Figure 5.6: The contour of the momentum distribution functions of triton and helium
ion in 2D momentum space at several radial points are shown.

67



(a) (b)

   0

40

 120

 0  0.5  1.0
ρ

av
er

ag
ed

 e
n

er
g

y
 t

em
p

er
at

u
re

 [
k

eV
]

D

e

T

80

   0

 80

 0  0.5  1.0
ρ

B
u

lk
 t

em
p

er
at

u
re

 [
k

eV
]

D

e

T

40

Figure 5.7: Two kind of temperature profiles at 1 sec are shown. (a) averaged energy
temperature. (b) bulk temperature.
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Figure 5.8: The time evolution of volume averaged T and Tbulk. T and Tbulk denote
averaged energy temperature and bulk temperature, respectively.
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Figure 5.9: The power absorption profiles at 1 sec after the onset of heating are shown.
Right figure shows the input power profiles of fast α particles at initial state and 1 sec
later.
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Figure 5.10: The collisional power transfer profiles are shown. (a) The radial profile at
1 sec after. (b) The time evolution profile.

species. When the value of the density for the species s is positive, the species s gain
power through collisions with the other species. From 5.10-(a), fusion generated α
particles lose its energy through collision, and the power transfers to electron. The
profiles of electron, deuteron, and triton have a spike at ρ = 0.17. The spike of electron
and deuteron is positive one, conversely, triton profile has a negative spike. The spike
is a result of the generation of fast triton due to ICRF acceleration. This is because, in
the extremely fast region, triton-electron collision is dominant, and in the slightly fast
region, triton-deuteron collision is dominant.

Fig. 5.10-(b) denotes the time evolution of the collisional power transfer for each
species. In this simulation, since the energy sink is not included, the simulation can
not reach a steady state. From Fig. 5.10-(b), it is found that the collisional power
gain of electron is increasing. This is because, the temperatures of ions are continue to
increase, and the source power of fusion reaction also continue to increase.

5.3 Artificial loss in order to obtain a steady state
Now we introduce artificial energy loss mechanism in order to obtain steady state with-
out radial transport. The artificial loss consists of loss term − f /τL and compensating
source term fmaxwell/τL, where τL is a typical relaxation time. Including the loss term,
the stored energy saturates with density conservation and without radial transport.

We simulate the plasma heating for 1 sec with the artificial loss term and the same
parameters to the previous section. Figs. 5.11 show the time evolution of volume aver-
aged T and Tbulk. From both figures, it is found that the both temperature of deuteron
and triton saturate in time. Conversely, the temperatures of electron still increases. This
is because the power transfer from fast α particle to electron is large, and then the power
is still greater than the loss power due to the sink term. Figs. 5.12 are the power trans-
fer profiles. From Fig. 5.12-(b), is is found that the collisional power transfers also
saturates. It means the all heating power for electron saturates. Therefore, the electron
temperatures saturate when the tail of the momentum distribution function of electron
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Figure 5.11: The time evolution of volume averaged (a) T and (b) Tbulk for each species
except helium ion.
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Figure 5.12: The collisional power transfer profiles are shown. (a) The time evolution
profile. (b) The radial profile at 1 sec after.

develop and loss power due to − f /τL increases to the level of the all heating power.
Figs. 5.13 show the radial profiles of the two temperatures. Due to the power loss,

the peak of temperatures become smaller than the case without loss term. The decrease
of the peak of temperature denotes the decrease of fast ions. The lack of the fast ions
cause the fusion reaction power decreasing. Figs. 5.14 show the radial profile and time
evolution profile of the source power generated by fusion reaction. From Figs. 5.14, it
is certain that the increase of the fusion reaction power is weak compared the the case
without loss.

Figs. 5.15 and 5.16 show the contour of the momentum distribution function for
each species at the peak of the resonance, ρ = 0.17, in several time steps. Compared
with Figs. 5.5 and 5.6, it is clear that the development of a tail in the momentum
distribution function is weak. Moreover, it is found that the development of the tail of
the momentum distribution function becomes slow as the time step advances. From
Figs. 5.11 and 5.12-(b), it is presumed that each species reaches steady state around
400ms, and the guess is confirmed by Figs. 5.15 and 5.16.
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Figure 5.13: Two kind of temperature profiles at 1 sec are shown. (a) averaged energy
temperature. (b) bulk temperature.
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Figure 5.15: The contour of the momentum distribution function for (a) electron and
(b) deuteron at ρ = 0.17 in several time step are shown.

72



(a) (b)

t = 10ms

0

20

10

0 10 20-10-20

p

p

⊥

//

0

20

10

0 10 20-10-20

p

p

⊥

//

t = 100ms

0

20

10

0 10 20-10-20

p

p

⊥

//

0

20

10

0 10 20-10-20

p

p

⊥

//

t = 300ms

0

20

10

0 10 20-10-20

p

p

⊥

//

0

20

10

0 10 20-10-20

p

p

⊥

//

t = 700ms

0

20

10

0 10 20-10-20

p

p

⊥

//

0

20

10

0 10 20-10-20

p

p

⊥

//

t = 1000ms

0

20

10

0 10 20-10-20

p

p

⊥

//

0

20

10

0 10 20-10-20

p

p

⊥

//

Figure 5.16: The contour of the momentum distribution function for (a) triton and (b)
helium ion at ρ = 0.17 in several time step are shown. The fast α particle source at
p̄ ∼ 11 and p̄ ∼ 19 denote T-T and D-T reaction sources.
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Chapter 6

Multi-species heating with radial
transport

In the previous section, the plasma heatings without radial transport are analyzed. The
results show that the radial profiles have a strong peak at the peak of absorption, and
when the artificial loss is not included, the plasma temperatures continue to increase.
In practice, however, the radial transport causes the broadening of the profiles, and the
power loss due to the energy transport to out of the plasma will balance to the heating
power. Moreover, in general, the transport depends on the momentum of the particle.
Therefore, some radial transport models, introduced in Sec. 3.6, are implemented.

In this chapter, simulation results for multi-species heating with radial transport are
shown.

6.1 Case without momentum dependence of Dρ

6.1.1 Initial conditions
Parameters

We carried out numerical analysis of multi-species heating again with the plasma pa-
rameters simulating ITER plasmas listed in Table 6.1. Only the ion density rates are
different from that of previous chapter. The initial α particle density rate is set to
nα/ne = 0.01. This is because when the fusion generated α particle becomes greater
than the initial density, it gives bad effect to the iteration convergency and the calcula-
tion accuracy.

Models

In the following sections in this chapter, the same models which is applied in the previ-
ous chapter are used except radial diffusion model. Table 6.2 shows the models adopted
in the calculation of this section. In this chapter, the value of the radial diffusion coeffi-
cients are set as D(0) = 0.1m/s2 and D(1) = 1.0m/s2, where D(0) and D(1) are defined
in eq. (3.139).
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major radius R0 6.2m
minor radius a 2.0m
elongation κ 1.7
triangularity δ 0.33
magnetic field on axis B0 5.3T
initial temperature on axis T0 20.0keV
initial temperature on surface Ts 2.0keV
initial density on axis n0 1×1020/m3

initial density on surface ns 1 ×1019/m3

initial deuterium ratio nD/ne 0.49
initial tritium ratio nT/ne 0.49
initial α particle ratio nα/ne 0.01
NBI energy ENBI 1MeV
NBI pitch angle θNBI π/9
α particle energy Eα 3.5MeV
ICRF wave frequency fIC 55.0MHz
ECH wave frequency fEC 185GHz

Table 6.1: ITER like plasma parameters.

MODEL
Motion Relativistic
Collision Non-linear
Orbit average Bounce average
Radial transport Without momentum dependence (Sec. 6.1)

With momentum dependence (Sec. 6.2)
Absorption power Constant in time

Table 6.2: Adopted models

Initial distribution

The initial temperature and density profiles are parabolic and the initial momentum
distribution function is Maxwellian for each species as same as the previous chapter.
Only the values of nD, nT , and nα at ρ = 0 and ρ = 1 are changed.

Heat source

As same as in the previous chapter, the propagation of ICRF wave electric field calcu-
lated by TASK/WM is used to the calculation of quasi-linear diffusion term in TASK/FP.
The ICRF wave propagation is shown in Fig. 5.3. And then the initial power absorption
profile of ECH, ICRF, NBI, and fast α particle generated by fusion reaction are shown
in Fig. 5.4. The absorption power of NBI, ICRF, and ECH are constant in time and the
values are 31.6MW, 20.2MW, and 20.4MW, respectively.
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6.1.2 At 3 second after the onset of heatings
The simulation is carried out for 3 second with the several heating scheme. Figs. 6.1
and 6.2 show the contour of the heated momentum distribution function for each species
at four radial points. As same as Figs. 5.5, since the relaxation time of electrons is
very short compared with the other species, there are little distortion of the momentum
distribution function of electron. Conversely, the momentum distribution function of
the other species deformed strongly by the heatings. While there are large differences
among Figs. 5.5, 5.6 and Figs. 6.1, 6.2 for the momentum distribution function of
deuteron and triton, especially for triton. In the case without radial transport, there are
few fast ion where the absorption power is weak as is shown in Fig. 5.6-(a). On the
contrary, in the case with radial transport, there are not a few fast ions at the outer region
as Fig. 6.2-(a). This is because the fast ion generated at the peak of power absorption
diffuses to the less absorption region by the radial diffusion term. The reason of the clear
differences between Fig. 5.6-(a) and 6.2-(a) is that the profile of power absorption for
triton has strong spikes compared with the other species. Therefore the same transport
phenomena happens for the other species.

Figs. 6.3 show the radial profile of two kind of temperatures, averaged energy
temperature and bulk temperature, at 3 second. The bulk temperature is estimated at
the p < 4pth(ρ) region. Unlike the Figs. 5.7 and 5.13, the spike of temperature is not
appeared in Figs. 6.3 due to the radial transport. The time evolution profile of two kind
of temperatures are shown in Figs. 6.5. The temperatures are volume averaged. Unlike
the case with artificial loss, sec. 5.3, it is found from Figs. 6.5 that the plasma does
not reach a steady state. Moreover, since the temperature profile of deuteron and triton
become broad, the source power profile of fusion generated α particle also becomes
broad (Fig. 6.5-(b)) compared to that of the previous section (Fig. 5.9-(b)). Similarly,
collisional power transfer profile (Fig. 6.6-(a)) also become broad, especially around
the peak of wave absorption, ρ = 0.17. Additionally, since the plasma has not reached
s steady state, the collisional power transfer also does not saturate.

Figs. 6.7 show the radial profile of the radial power transfer by radial diffusion term
for each species (a) at initial state and (b) at 3 sec after. It is found that the heated
profile (Fig. 6.7-(b)) is similar to the profile of power absorption rather than that of the
temperature. This is because that the radial power transfer strongly depends on ∂ f /∂ρ,
and the peaked absorption makes ∂ f /∂ρ large.

Fig. 6.8 show the radial profile of the total input power, ∆P, for each species. The
total input power is sum of the absorbed power Pabs (Fig. 6.5-(a)), the collisional power
transfer Pc (Fig. 6.6-(a)), and the radial transported power PDr (Fig. 6.7). In an initial
state, the power absorption profile holds a dominant position of the total input power
profile. On the other hand, at 3 sec after the onset of heating, the collisional power
transfer profile holds a dominant position of the total input power profile, especially for
electron and triton. This is because that the most of the power absorption profile for
electron and triton are cancelled by the radial power transfer profiles as is shown in Fig.
6.7-(b), and the collisional power transfer develops as the plasma is heated.

Moreover, from Fig. 6.8-(b), it is found that the value of ∆P for electron is greater
than that of the other species. One of the reason is that the density of electron is much
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Figure 6.1: The contour of the momentum distribution functions of electron and
deuteron in 2D momentum space at several radial points are shown. The radial point
ρ = 0.17 is consistent to the point of the ICRF wave absorption peak for triton.
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Figure 6.2: The contour of the momentum distribution functions of triton and helium
ion in 2D momentum space at several radial points are shown.
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Figure 6.3: (a) The averaged energy temperature and (b) the bulk temperature for each
species at 3 sec are shown.
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Figure 6.4: The time evolution of volume averaged (a) T and (b) Tbulk.
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Figure 6.6: The collisional power transfer, Pc, profiles are shown. (a) The radial profile
at 3 sec after. (b) The time evolution profile.

(a) (b)

 0

-0.2

 0.2

 0  0.5  1.0
ρ

P
D

r 
  
[M

W
/m

 ]3

D

e

T

α

 0

-1.2

 0  0.5  1.0
ρ

P
D

r 
  
[M

W
/m

 ]3

D e

T

α

Figure 6.7: The radial profiles of the power transferred by radial diffusion term , PDr,
are shown. (a) Initial profile. (b) the profile of 3 sec after.
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Figure 6.9: The time evolution profile of (a) PDr and (b) ∆P are shown.

higher than that of the other species. The other reason is that the temperature of electron
is still less than that of the other species at 3 sec.

Figs. 6.9 show the time evolution of (a) radial power transfer and (b) total input
power. As is shown in Fig. 6.9-(a), since the radial power transfer is developing, the
plasma will reach the steady state at some future time. From Fig. 6.9-(b), it is found
that the ∆P for deuteron and triton are decreasing at 3 sec. On the other hand, that of
electron is still increasing. From this, it is speculated that it will take a lot of time for
electron to reach the steady state than the other species.

6.2 Case with momentum dependence of Dρ

As same as the case without momentum dependence of Dρ, the propargation of ICRF
wave electric field calculated by TASK/WM is used to the calculation of quasi-linear
diffusion term in TASK/FP. The ICRF wave propargation is shown in Fig. 5.3. And then
the initial power sbsroption profile of ECH, ICRF, NBI, and fast α particle generated by
fusion reaction are shown in Fig. 5.4. The absorption power of NBI, ICRF, and ECH
are constant in time and the values have same value that of previous section.

6.2.1 At 3 second after the onset of heatings
The simulation is done for 3 second with the several heatings. Figs. 6.10 and 6.11
show the contour of the heated momentum distribution function for each species at
four radial points. There are large differences among Figs. 6.2-(c), 6.11-(c) for the
momentum distribution function of triton. Compared with the case without momentum
dependence of Dρ, it is found that the fast tritons are less around plasma edge. This
is because the fast triton generated by the fusion reaction and cyclotron acceleration
aroud plasma core is less transfered due to the momentum dependence of Dρ.

Figs. 6.12 show the radial pprofile of two kind of temperatures, averaged energy
temperature and bulk temperature, at 3 second. Compared with the Figs. 6.3, the
temperature of electron and ions become high temperature because the fast ions which
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Figure 6.10: The contour of the momentum distribution functions of electron and
deuteron in 2D momentum space at several radial points are shown. The radial point
ρ = 0.17 is consistent to the point of the ICRF wave absorption peak for triton.
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Figure 6.11: The contour of the momentum distribution functions of triton and helium
ion in 2D momentum space at several radial points are shown.
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Figure 6.12: (a) The averaged energy temperature and (b) the bulk temperature for each
species at 3 sec are shown.

are not thermalized stay around the plasma core. With the same reason, the peak of the
temperature profiles become narrow compared with Fig. 6.3.
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Chapter 7

Conclusion

Throughout our research presented in this thesis, we have devoted to two aspects; one
is to develop the kinetic transport code TASK/FP, which is a component of integrated
code TASK, and the other is to analyze the plasma heating with ITER like parameters
by the use of TASK/FP.

Formulation
In Chapter 3, the fundamental equation which describes the time evolution of the mo-
mentum distribution function was formulated.

Reduction of the phase space variables In general, the momentum distribution func-
tion has seven variables, three momentum variables p, three spatial variables r, and time
t. In our kinetic transport code TASK/FP, the number of variables of the momentum
distribution function is reduced to four, the momentum parallel to the magnetic field
line p‖, the momentum perpendicular to the magnetic field line p⊥, normalized minor
radius ρ, and time t by using the assumption of azimuthal symmetry in momentum
space, that of toroidal symmetry in real space and the bounce average.

Relativistic effect Since our kinetic transport code simulates the transport in high
temperature fusion plasmas, the relativistic effect was included in the formulation. The
relativistic effects appear not only as a momentum distribution function but also in
several terms such as, the Coulomb collision term, the quasi-linear term, and the fusion
reaction rate. Thus they were also included in the formulation.

Collision term In a fusion plasma with auxiliary heating, the momentum distribution
function of background plasma often deviates from the Maxwellian distribution func-
tion. In order to include the non-Maxwellian effect into the Coulomb collision term,
the collision term is described by the non-linear collision model [20, 40]. Owing to the
use of the non-linear collision term, the density, the momentum, and the energy of the
plasma are conserved through the collision. In the calculation of the non-linear col-
lision term, the integration whose integrand include the non-Maxwellian background
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momentum distribution function can not be calculated analytically, but should be cal-
culated numerically. Since the numerical calculation requires a lot of computational
resources, the requirement was reduced by using the Legendre expansion.

Radial transport In TASK/FP, the one-dimensional radial transport term was im-
plemented. The transport model was formulated in order to describe the turbulence
transport due to microscopic instabilities. In order to include the finite gyro radius ef-
fect on energetic ions, the momentum dependence of the radial transport coefficient is
included in the model.

Fusion reaction rate The fusion reaction rate is given by the double integration of
the background and incident momentum distribution functions. In the conventional
calculation of the fusion reaction rate, however, both of the momentum distribution
functions are assumed to be Maxwellian. In order to include the effect of fast ions,
we numerically integrate the non-Maxwellian momentum distribution function. Since
the momentum space retains only two variables, in our numerical code p‖ and p⊥, the
gyro-phase average is used to calculate the relative velocity.

Bounce average Since the magnetic field is non-uniform in tokamak plasma, the
poloidal angle dependence appears in the momentum distribution function. Therefore,
the Fokker-Planck equation should be averaged over the poloidal motion of the parti-
cles. In the non-uniform magnetic field, there are two kind of guiding center orbits,
passing and trapped. The orbit of the trapped particle guiding center does not circu-
late around the magnetic axis, but bounce on the magnetic surface. In TASK/FP, the
Fokker-Planck equation is bounce averaged using the method derived by Killeen et al.
[49].

Coding
In the latter half of Chapter 3, the numerical scheme of our code is described.

Numerical grid and differencing We use a finite computational domain in three di-
mensional phase space for the calculation of the Fokker-Planck equation. The equation
formulated in the above is discretized in the three phase space variables. The full im-
plicit method is adopted for the scheme of the time advancing.

Multi-species In general, the fusion plasma consist of several particle species. There-
fore, it is required that time evolution of the momentum distribution function of each
species should be calculated simultaneously.

Parallel computing Although the variables of the momentum distribution function
are reduced to four, the required amount of computation for long time simulation is
still huge. In order to solve the matrix equation for large-size asymmetric coefficient
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matrix as fast as possible, we parallelized our code by using the parallel computing
library, PETSc [51]. By this implementation, we achieved a considerable reduction of
the computation time.

Verification
In Chapter 4, the properties of the Coulomb collision term, DC electric field term, quasi-
linear diffusion term, and source term were numerically examined. The benchmark test
of the Coulomb collision term and DC electric field term was done for the electrical
conductivity. The confirmation of the properties of the quasi-linear term and the effect
of the non-uniform magnetic field effect is given by the deformed distribution function.
The influence of the existence of fast ions to the reaction rate was also confirmed.

Simulation of multi-species heating without radial transport
In Chapter 5, the analysis of multi-species plasma heating was done by using TASK/FP.
The plasma which consists of four species, electron, deuteron, triton, and α particle is
considered and the time evolution of their momentum distribution functions were cal-
culated. The ECRF, ICRF, NBI, and fusion reactions (D–D, D–T, T–T) were included
as heat sources.

From the results of the calculation without radial transport, it was found that the
heating mechanism which is different for each species was described. The triton is
accelerated by the second cyclotron harmonics of ICRF in addition to the strong accel-
eration of fast triton generated by D–D reaction. The momentum distribution function
of deuteron injected 1 MeV NB was relaxed through the slowing down due to the col-
lision with electron and pitch angle scattering due to the collision with ions. The fast α
particles generated by D-T and T–T reactions is isotropic and slowed down owing to the
collision mainly with electron. The electron was accelerated by ICRF and ECRF and
heated by collision with fast ions. Because of the fast collisional relaxation of electron,
however, the momentum distribution function of electron was only weakly deformed.

Simulation of multi-species heating with radial transport
In Chapter 6, the analysis of multi-species plasma heating with radial transport was
carried out by the use of TASK/FP. In the presence of radial transport, the fast ions
generated in the central part of the plasma diffuse to the plasma edge, and the heating
profile becomes broad. In the case of radial transport with the momentum dependence

Dρ ∝ 1/
√

1 + p2/p2
th, the fast ions less diffuse. Therefore, the heating profile becomes

narrower compared with the case without momentum dependence.

Future perspective
There are several improvements required for comprehensive kinetic analysis of heating
processes in fusion plasmas. TASK/FP should include the finite gyro radius effect, more
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realistic turbulence transport model and the coupling with radial and toroidal electric
field. Additionally, the coupling with full wave analysis code TASK/WM is required
for the self-consistent wave heating analysis. Moreover, the validation of our code
through the comparison with the experimental observation is necessary. With these
improvements, the integrated simulation code will be available for the prediction of
the plasma performance, the planning of operation scenario, and the development of
plasma control.
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Appendix A

Derivations related with first kind
Legendre function in collision term

A.1 Derivation of the derivatives of Rosenbluth poten-
tials in non-relativistic collision operator

The derivative of the Legendre harmonics, Pl(µ) (µ = cos θ), are derived in this sec-
tion. The derivative of the Legendre harmonics is given by the following reccurence
equation:

(µ2 − 1)
∂

∂µ
Pl(µ) = lµPl(µ) − lPl−1(µ). (A.1)

Similarly, the derivative of the second order of Pl(µ) is given by the reccurence equa-
tion:

∂2Pl(µ)
∂µ2 =

1
sin2 θ

{
2µ
∂Pl(µ)
∂µ

− l(l + 1)Pl(µ)
}
. (A.2)

From these equations, we obtain:

∂Pl(µ)
∂θ

=
1

sin θ
{µPl(µ) − Pl−1(µ)} (A.3)

∂2Pl(µ)
∂θ2 = −

(
l

sin2 θ
+ l2

)
Pl(µ) +

l cos θ
sin2 θ

Pl−1(µ). (A.4)

A.2 The calculation of the functions jl[k]∗ and yl[k]∗ in
Sec. 3.4.2

As shown in eq. (3.115), the functions jl[1]a and yl[1]a are expressed in terms of first
kind Legendre function, Pl

a(γ).

jl[1]a(u/c) =
√
πc/2uP−l−1/2

a−1/2 (γ)

yl[1]a(u/c) =(−1)−l−1
√
πc/2uPl+1/2

a−1/2(γ). (3.115)
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Figure A.1: The image figure which shows the method in order to obtain P−l−1/2
a−1/2 (γ) and

Pl+1/2
a−1/2(γ) for 1 ≤ l is shown. The black circles denote the expressions of eqs. (A.8) or

(A.9). The red circles are obtained by the two below circles. The blue circles are given
by the relation Pµ

ν(γ) = Pµ
−ν−1(γ).

The first kind Legendre function which is needed for the calculation of the functions,
jl[1]a and yl[1]a, is given by the reccurence equation;

Pµ
ν−1(γ) − γPµ

ν(γ) + (ν − µ + 1)
√
γ2 − 1Pµ−1

ν (γ) = 0. (A.5)

We can rewrite the equation by the replacements of µ = −l − 1/2 and ν = a − 1/2;

P−(l+1)−1/2
a−1/2 (γ) =

1

(a + l + 1)
√
γ2 − 1

(
γP−l−1/2

a−1/2 (γ) − P−l−1/2
a−3/2 (γ)

)
. (A.6)

Similarly, the equation can be rewritten into;

P(l+1)+1/2
a−1/2 (γ) =

1√
γ2 − 1

{
(a − l − 1)γPl+1/2

a−1/2(γ) − (a + l)Pl+1/2
a−3/2(γ)

}
. (A.7)

As shown in Fig. A.1, we can obtain the every expression of jl[1]a and yl[1]a for 0 < a <
2 by using eqs. (A.6) and (A.7) and the following equations:

P−1/2
−1/2(γ) =

√
2
πz
σ

P−1/2
1/2 (γ) =

√
2z
π
= P−1/2

−3/2(γ)

P−1/2
3/2 (γ) =

√
2z
π
γ (A.8)

P1/2
−1/2(γ) =

√
2
πz

P1/2
1/2(γ) =

√
2
πz
γ = P1/2

−3/2(γ)

P1/2
3/2(γ) =

(
1
z
+ 2z

) √
2z
π
, (A.9)
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where z = u/c and

σ = sinh−1 z = ln
(
z +

√
1 + z2

)
. (A.10)

In order to obtain the relativistic non-linear collision coefficients to the order of
l = 2, from eqs. (3.121), the functions jl[1]a and yl[1]a are required to the order of l = 4.
Therefore we catalog all the required functions jl[1]a and yl[1]a for 0 ≤ l ≤ 4:

j0[1]0 =
σ

z
, y0[1]0 = −

1
z

j0[1]1 = 1 , y0[1]1 = −
γ

z

j0[1]2 = γ , y0[1]2 = −
1 + 2z2

z
(A.11)

j1[1]0 =
γσ − z

z2 , y1[1]0 = −
γ

z2

j1[1]1 =
zγ − σ

2z2 , y1[1]1 = −
1
z2

j1[1]2 =
z
3
, y1[1]2 = −

(1 − 2z2)γ
z2 (A.12)

j2[1]0 =
1

4z3

{
(2γ2 + 1)σ − 3γz

}
, y2[1]0 = −

1
z3 (1 + 2γ2)

j2[1]1 =
1

6z3

{
(γ2 + 2)z − 3γσ

}
, y2[1]1 = −

3
z3γ

j2[1]2 =
1

24z3

(
2γz3 − 3γz + 3σ

)
, y2[1]2 = −

3
z3 (A.13)

j3[1]0 =
1

36z4

{
(6γ2 + 9)γσ − (11γ2 + 4)z

}
, y3[1]0 = −

3γ
z4 (3 + 2γ2)

j3[1]1 =
1

48z4

{
(2γ2 + 13)γz − 3(4γ2 + 1)σ

}
, y3[1]1 = −

3
z4 (1 + 4γ2)

j3[1]2 =
1

120z4

{
2γ2z3 − (7γ2 + 8)z + 15γσ

}
, y3[1]2 = −

15γ
z4 (A.14)

j4[1]0 =
1

576z5

{
(24γ4 + 72γ2 + 9)σ − (50γ2 + 55)γz

}
, y4[1]0 = −

3
z5 (8γ4 + 24γ2 + 3)

j4[1]1 =
1

720z5

{
(6γ4 + 83γ2 + 16)z − (60γ2 + 45)γσ

}
, y4[1]1 = −

15γ
z5 (4γ2 + 3)

j4[1]2 =
1

1440z5

{
(4γ2z2 − 24γ2 − 81)γz + (90γ2 + 15)σ

}
, y4[1]2 = −

15
z5 (6γ2 + 1).

(A.15)
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A.2.1 The case with small z

In the numerical code, the numerical instability occurs with the value of jl[1]a (l ≥ 2) for
small z. Therefore, in order to avoid the trouble, σ and γ should be expanded in terms
of infinitesimal z:

σ ∼ z − 1
6

z3 +
3

40
z5 − 5

112
z7 +

35
1152

z9

γ ∼ 1 +
1
2

z2 − 1
8

z4 +
1

16
z6 − 5

128
z8. (A.16)

In TASK/FP, the both approximation is applied for the range of the value z < 10−2, and
the approximation of σ is only applied for the range of the value 10−2 < z < 10−1. With
the both of approximation, the expressions of jl[1]a are given by:

j2[1]0 ∼
1
4

{
4

15
z2 −

(
15

112
+

3
80

)
z4

}
(A.17)

j2[1]1 ∼
1
6

(
3
12

z2 − 29
80

z4
)

(A.18)

j2[1]2 ∼
1

24

(
8
5

z2 − 4
7

z4
)

(A.19)

j3[1]0 ∼
1

36

(
81
80
− 75

112

)
z3 (A.20)

j3[1]1 ∼
1

48

{(
11
16
− 9

10
+

75
112

)
z3 +

(
1
8
+

15
28

)
z5

}
(A.21)

j3[1]2 ∼
15

120

{(
29

240
− 5

112

)
z3 −

(
11

336
+

3
320

)
z5
}

(A.22)

j4[1]0 ∼
1

576

(
125
128
+

3675
1152

− 249
70

)
z4 (A.23)

j4[1]1 ∼
1

720

(
−105 ×

(
35

1152
− 5

224
− 3

320
− 1

96
− 5

128

)
− 480

105

)
z4 (A.24)

j4[1]2 ∼
1

1440

(
301
128
+

3675
1152

− 225
56

)
z4 (A.25)
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Appendix B

Matrix formulation

As shown in Sec. 3.10.3, the Fokker-Planck equation is given by:

∂ f s

∂t
=
↔
A s · f s +Hs, (B.1)

for species s. Moreover, the bounce averaged Fokker-Planck equation is also given by:

∂λ f s

∂t
=
↔
A0s · f s + λ〈Hs〉, (B.2)

where λ and
↔
A0 denote bounce averaged parameter defined at Sec. 3.8 and the bounce

averaged coefficient matrix. In this section, the formulation of coefficient matrix
↔
A is

discussed.

B.1 Discretization
From here, we discuss the bounce averaged Fokker-Planck equation. As shown in Sec.
3.8, eq. (B.2) can be rewritten as:

∂λ f
∂t
=
↔
A0 f + λ〈H〉

= − 1
p2

0

∂

∂p0
p2

0S p0 −
1

p0 sin θ0

∂

∂θ0
sin θ0S θ0 −

1
ρ0

∂

∂ρ0
ρ0S ρ0 + λ 〈H〉 , (B.3)

where S p0, S θ0 and S ρ0 are the bounce averaged flux

S p0 = −Dpp0
∂ f
∂p0
− Dpθ0

1
p0

∂ f
∂θ0
+ Fp0 f (B.4)

S θ0 = −Dθp0
∂ f
∂p0
− Dθθ0

1
p0

∂ f
∂θ0
+ Fθ0 f (B.5)

S ρ0 = −Dρ0
∂ f
∂ρ
+ Fρ0 f . (B.6)

In the following, the subscript 0 whcih is the label of the bounce average is omitted for
simplicity.
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↔
A · f is discretized around the neighbor of the grid point (NR,NTH,NR) = (i, j, k)

as:

(A f )i+1/2, j+1/2,k+1/2 =
1

p2∆p

(
S p(i+1, j+1/2,k+1/2) − S p(i, j+1/2,k+1/2)

)
+

1
p sin θ∆θ

(
S θ(i+1/2+ j+1,k+1/2) − S θ(i+1/2, j,k+1/2)

)
+

1
ρ∆ρ

(
S ρ(i+1/2, j+1/2,k+1) − S ρ(i+1/2, j+1/2,k)

)
. (B.7)

The fluxes are given by:

S p(1,1/2,1/2) = Dpp
f3/2,1/2,1/2 − f1/2,1/2,1/2

∆p

+Dpθ
[ε(1,3/2,1/2) f(3/2,3/2,1/2) + δ(1,3/2,1/2) f(1/2,3/2,1/2)] − [ε(1,−1/2,1/2) f(3/2,−1/2,1/2) + δ(1,−1/2,1/2) f(1/2,−1/2,1/2)]

2∆θ
−Fp[ε(1,1/2,1/2) f(3/2,1/2,1/2) + δ(1,1/2,1/2) f(1/2,1/2,1/2)] (B.8)

where 1 − δ = ε and the subscript (i + a, j + b, k + c) is reduced to (a, b, c). Moreover,
the grid point of diffusion and friction coefficients in RHS is same with that of flux in
LHS. Thus the notation of the grid point of D and F in RHS are reduced. Similarly,

S p(0,1/2,1/2) = Dpp
f1/2,1/2,1/2 − f−1/2,1/2,1/2

∆p

+Dpθ
[ε(0,3/2,1/2) f(1/2,3/2,1/2) + δ(0,3/2,1/2) f(−1/2,3/2,1/2)] − [ε(0,−1/2,1/2) f(1/2,−1/2,1/2) + δ(0,−1/2,1/2) f(−1/2,−1/2,1/2)]

2∆θ
−Fp[ε(0,1/2,1/2) f(1/2,1/2,1/2) + δ(0,1/2,1/2) f(−1/2,1/2,1/2)] (B.9)

S θ(1/2,1,1/2) =

Dθp
[ε(3/2,1,1/2) f3/2,3/2,1/2 + δ(3/2,1,1/2) f3/2,1/2,1/2] − [ε(−1/2,1,1/2) f−1/2,3/2,1/2 + δ(−1/2,1,1/2) f−1/2,1/2,1/2]

2∆p

+Dθθ

f1/2,3/2,1/2 − f1/2,1/2,1/2

∆θ
− Fθ[ε(1/2,1,1/2) f1/2,3/2,1/2 + δ(1/2,1,1/2) f(1/2,1/2,1/2)]

(B.10)

S θ(1/2,0,1/2) =

Dθp
[ε(3/2,0,1/2) f3/2,1/2,1/2 + δ(3/2,0,1/2) f3/2,−1/2,1/2] − [ε(−1/2,0,1/2) f−1/2,1/2,1/2 + δ(−1/2,0,1/2) f−1/2,−1/2,1/2]

2∆p

+Dθθ

f1/2,1/2,1/2 − f1/2,−1/2,1/2

∆θ
− Fθ[ε(1/2,0,1/2) f1/2,1/2,1/2 + δ(1/2,0,1/2) f(1/2,−1/2,1/2)]

(B.11)
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(a) (b)

p direction
θ direction

NP

NP+1

NTH

NTH+1

Sp
^

Sθ
^

ρ

NR NR+1

Sρ
^

Figure B.1: Numerical grid and grid point of the fluxes, S p, S θ, S ρ are shown.

S ρ(1/2,1/2,1) = Dρ

f(1/2,1/2,3/2) − f(1/2,1/2,1/2)

∆ρ
− Fρ

{
ε(1/2,1/2,1) f(1/2,1/2,3/2) + δ(1/2,1/2,1) f(1/2,1/2,1/2)

}
(B.12)

S ρ(1/2,1/2,0) = Dρ

f(1/2,1/2,1/2) − f(1/2,1/2,−1/2)

∆ρ
− Fρ

{
ε(1/2,1/2,0) f(1/2,1/2,1/2) + δ(1/2,1/2,0) f(1/2,1/2,−1/2)

}
(B.13)

B.2 New notation
Since the expressions become long, the new notation should be introduced in order to
be short the expressions. As shown in fig. B.2 and from eq. (), only the fluxes S p on
the grid point (NT H,NR) = ( j + 1/2, k + 1/2) and S θ on the grid point (NP,NR) =
(i + 1/2, k + 1/2) are required for the calculation of (A f )1/2,1/2,,1/2. Therefore, the
notation S p(i, j+1/2,k+1/2) and S p(i+1, j+1/2,k+1/2) are enabled to reduce S p0 and S p1. Sim-
ilarly, S θ(i+1/2, j,k+1/2) and S θ(i+1/2, j+1,k+1/2) can be reduced to S θ0 and S θ1, moreover,
S ρ(i+1/2, j+1/2,k) and S ρ(i+1/2, j+1/2,k+1) are S ρ0 and S ρ1. The diffusion and friction coeffi-
cients also can be reduced by the same method.

Meanwhile, from eq. (B.2) and figs. B.2-(a), (c), 11 momentum distribution func-
tions are required for the calculation of (A f )1/2,1/2,,1/2. Each momentum distribution
function exists on the half mesh point. The notations of these grid point can be reduced
as shown in figs. B.2-(b), (d). By using these new notations, eq. (B.8)∼(B.13) can be
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(a) (b)

NP

NP+1

NTH

NTH+1

f

1/2, 1/2, 1/2

3/2, 1/2, 1/2

3/2, -1/2, 1/2

1/2, -1/2, 1/2

-1/2, -1/2, 1/2

-1/2, 1/2, 1/2

3/2, 3/2, 1/2

1/2, 3/2, 1/2

-1/2, 3/2, 1/2

NP

NP+1

NTH

NTH+1

f

000

+00

+-0

0-0

--0

-00

++0

0+0

-+0

(c) (d)

ρ

NR NR+1

f

1/2, 1/2, 1/2 1/2, 1/2, 3/21/2, 1/2, -1/2

ρ

NR NR+1

f

000 00+00-

Figure B.2: Numerical grid and grid points of the momentum distribution function
around (NP,NTH,NR)= (i + 1/2, j + 1/2, k + 1/2) are shown.

rewritten as:

S p1 = Dpp1
f+00 − f000

∆p

+Dpθ1
[ε(1, 3/2, 1/2) f++0 + δ(1, 3/2, 1/2) f0+0] − [ε(1, −1/2, 1/2) f+−0 + δ(1, −1/2, 1/2) f0−0]

2∆θ
−Fp1[ε(1, 1/2, 1/2) f+00 + δ(1, 1/2, 1/2) f000] (B.14)

S p0 = Dpp0
f000 − f−00

∆p

+Dpθ0
[ε(0, 3/2, 1/2) f0+0 + δ(0, 3/2, 1/2) f−+0] − [ε(0, −1/2, 1/2) f0−0 + δ(0, −1/2, 1/2) f−−0]

2∆θ
−Fp0[ε(0, 1/2, 1/2) f000 + δ(0, 1/2, 1/2) f−00] (B.15)

S θ1 = Dθp1
[ε(3/2, 1, 1/2) f++0 + δ(3/2, 1, 1/2) f+00] − [ε(−1/2, 1, 1/2) f−+0 + δ(−1/2, 1, 1/2) f−00]

2∆p

+Dθθ1
f0+0 − f000

∆θ
− Fθ1[ε(1/2, 1, 1/2) f0+0 + δ(1/2, 1, 1/2) f(000)] (B.16)
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S θ0 = Dθp0
[ε(3/2, 0, 1/2) f+00 + δ(3/2, 0, 1/2) f+−0] − [ε(−1/2, 0, 1/2) f−00 + δ(−1/2, 0, 1/2) f−−0]

2∆p

+Dθθ0
f000 − f0−0

∆θ
− Fθ0[ε(1/2, 0, 1/2) f000 + δ(1/2, 0, 1/2) f(0−0)] (B.17)

S ρ1 = Dρ1
f00+ − f000

∆ρ
− Fρ1

{
ε(1/2, 1/2, 1) f00+ + δ(1/2, 1/2, 1) f000

}
(B.18)

S ρ0 = Dρ0
f000 − f00−

∆ρ
− Fρ0

{
ε(1/2, 1/2, 0) f000 + δ(1/2, 1/2, 0) f00−

}
. (B.19)

B.3 Formulation
Using eqs. (B.2)∼(B.13), the element of vector, A f(1/2,1/2,1/2), can be described in terms
of the momentum distribution function, f∗∗∗, at the neighbor of the element as:

A f(1/2,1/2,1/2) =

[
Dpθ1ε(1, 3/2, 1/2)

2p2∆p∆θ
+

Dθp1ε(3/2, 1, 1/2)

2p sin θ∆p∆θ

]
f++0

+

[
Dpp1

p2∆p2 −
Fp1ε(1, 1/2, 1/2)

p2∆p
+

Dθp1δ(3/2, 1, 1/2)

2p sin θ∆θ∆p
−

Dθp0ε(3/2, 0, 1/2)

2p sin θ∆p∆θ

]
f+00

+

[
−

Dpθ1ε(1, −1/2, 1/2)

2p2∆p∆θ
−

Dθp0δ(3/2, 0, 1/2)

2p sin θ∆p∆θ

]
f+−0

+

[
Dpθ1δ(1, 3/2, 1/2)

2p2∆p∆θ
−

Dpθ0ε(0, 1/2, 1/2)

2p2∆p∆θ
+

Dθθ1

p sin θ∆θ2 −
Fθ1ε(1/2, 1, 1/2)

p sin θ∆θ

]
f0+0

+

[
−

Dpp1

p2∆p2 −
Fp1δ(1, 1/2, 1/2)

p2∆p
−

Dpp0

p2∆p2 +
Fp0ε(0, 1/2, 1/2)

p∆p

− Dθθ0

p sin θ∆θ2 −
Fθ1δ(1/2, 1, 1/2)

p sin θ∆θ
− Dθθ0

p sin θ∆θ2 +
Fθ0ε(1/2, 0, 1/2)

p sin θ∆θ

−
Dρ1

ρ∆ρ2 −
δ(1/2, 1/2, 1)Fρ1

ρ∆ρ
−

Dρ0

ρ∆ρ2 +
ε(1/2, 1/2, 0)Fρ0

ρ∆ρ

]
f000

+

[
−

Dpθ1δ(1, −1/2, 1/2)

2p2∆p∆θ
+

Dpθ0ε(0, −1/2, 1/2)

sp2∆p∆θ
+

Dθθ0

p sin θ∆θ2 +
Fθ0δ(1/2, 0, 1/2)

pp sin θ∆θ

]
f0−0

+

[
−

Dpθ0δ(0, 3/2, 1/2)

2p2∆p∆θ
−

Dpθ1ε(−1/2, 1, 1/2)

2p sin θ∆pδθ

]
f−+0

+

[
Dpp0

p2∆p2 +
Fp0δ(0, 1/2, 1/2)

p2∆p
+

Dθp1δ(−1/2, 1, 1/2)

2p sin θ∆p∆θ
+

Dθp0ε(−1/2, 0, 1/2)

2p sin θ∆p∆θ

]
f−00

+

[
Dpθ0δ(0, −1/2, 1/2)

2p2∆p∆θ
+

Dθp0δ(−1/2, 0, 1/2)

2p sin θ∆p∆θ

]
f−−0

+

[
Dρ1

ρ∆ρ2 −
ε(1/2, 1/2, 1)Fρ1

ρ∆ρ

]
f00+ +

[
Dρ0

ρ∆ρ2 −
δ(1/2, 1/2, 0)Fρ0

ρδρ

]
f00−. (B.20)
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NTH

NP

NTHMAX

NPMAX

NR=k surface

Figure B.3: The configuration of array of f is decided by the rule descibed in this figure.

The momentum distribution function vector, f , has NPMAX × NTHMAX × NRMAX
elements. The array of the elements is decided by the order descibed in fig. B.3.
Namely, the momentum distribution function at the grid point (NP,NTH,NR)= (i, j, k)
is contained in the [NPMAX×NTHMAX× (k−1)+NTHMAX× (i−1)+ j]th element
of the vector.

The structure of the matrix
↔
A is determined by the array of f and eq. (B.20).
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Appendix C

Bounce average of divergence

C.1 derivation of the bounce averaged expression
The bounce average of the divergence of the flux is expressed as Eq. (3.163):

〈∇ · S〉φB
≡ 1

τB

∫ sB

0

ds
v0| cos θ|

[
− 1

p2
0

∂

∂p0
p2

0S p −
1
p0

cos θ
ψ sin θ0 cos θ0

∂

∂θ0
sin θS θ −

1
ρ0

∂

∂ρ0
ρ0S ρ

]
(3.163)

At first, for simplicity, we consider the transformation of the expression for S p and
S θ. This expression can be rewritten by using the bounce average parameter, λ =
v0| cos θ0|τB, as:

〈∇ · S〉 |p,θ = −
1
λ

[
1
p2

0

∂

∂p0
p2

0

∫ sB

0

| cos θ0|
| cos θ| S p ds +

1
p0 sin θ0

∂

∂θ0

∫ sB

0

sin θ
ψ

S θ ds
]

= −1
λ

[
1
p2

0

∂

∂p0
p2

0
λ

τB

∫ sB

0

ds
v0| cos θ|S p +

1
p0 sin θ0

∂

∂θ0

λ

τB

∫ sB

0

ds
v0| cos θ|

cos θ sin θ
ψ cos θ0

S θ

]
= −1

λ

 1
p2

0

∂

∂p0
p2

0λ
〈
S p

〉
φB
+

1
p0 sin θ0

∂

∂θ0
sin θ0λ

〈
cos θ sin θ

ψ cos θ0 sin θ0
S θ

〉
φB

 . (C.1)

C.1.1 Transformation of bounce variable
Since the arclength, s, and infinitestimal element, ds, appeared in the definition of
the bounce average depend on the normalized minor radius, ρ, the variable s should
be transformed into the other variable which is independent from ρ. Therefore the
arclength is transformed into the poloidal angle φ. The relations between s and φ are
given by:

s = sB
φ

φB
,

sB

φB
= q(ρ)R0. (C.2)
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Using these relations, the definition of the bounce average can be rewritten as:

〈Q〉 ≡ 1
τB

∫ sB

0

Q
v0| cos θ|ds

=
sB

τBφB

∫ φB

0

Q
v0| cos θ|dφ (C.3)

Therefore the bounce average of the divergence of flux S ρ can be expressed as:

〈∇ · S〉 |ρ =
1
τB

∫ sB

0

ds
v0| cos θ|

(
− 1
ρ0

∂

∂ρ0
ρ0S ρ

)
=

sB

τBφB

∫ φB

0

dφ
v0| cos θ|

(
− 1
ρ0

∂

∂ρ0
ρ0S ρ

)
= −q(ρ)R0

λ

1
ρ0

∂

∂ρ0
ρ0v0| cos θ0|

∫ φB

0

S ρ

v0| cos θ|dφ

= −q(ρ)R0

λ

1
ρ0

∂

∂ρ0
ρ0

λsB

τBφB

∫ φB

0

φB

sB

S ρ

v0| cos θ|dφ

= −q(ρ)R0

λ

1
ρ0

∂

∂ρ0
ρ0

λ

q(ρ)R0

〈
S ρ

〉
. (C.4)

Thus, from Eq. (C.1) and (C.4), Eq. (3.164) is given.
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