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Abstract 

This thesis discusses circuit optimization for perfonnance enhancement in physical design. 

The target of the performance optimization methods discussed in this thesis is digital CMOS 

circuits. Due to steady improvement in LSI fabrication technology， LSI designers encounter 

various problems that are not critical so far. This thesis focuses on the following problems 

and proposes some solutions in physical design for each problem; power dissipation， delay 

tluctuation， and crosstalk noise problems. 

In this research， a delay and power optimization method by input reordering is developed. 

This method utilizes the characteristics di百erenceof delay and power between logically-

equivalent input pins for performance enhancement. The effectiveness is experimentally 

verified using 30 benchmark circuits. This method reduces power dissipation by 22.50/0 

maximum and by 5.9% on average. Delay time is also reduced by 6.7%. A gate sizing 

method that reduces glitches for power reduction is devised. This method optimizes power 

dissipation with a statistical glitch estimation method and an efficient gate sizing algorithm. 

The proposed method is experimentally examined using 10 circuits. Power dissipation is 

reduced by 16.2% maximum and by 10.4% on average further from minimum-area circuits 

that are regarded as minimum-power circuits by conventional methods. 

Next， a statistical timing analysis method that can handle local random delay ftuctuation 
is improved in accuracy. Also a delay and power optimization method by gate sizing based 

on statistical timing analysis is developed. A new measure that represents timing criticality 

at each cell is devised， which improves the efficiency of optimization algorithm. The pro-

posed method contributes to exclude over-design and under-design of LSI. This thesis also 
demonstrates some examples that perfo口nanceoptimization increases delay uncertainty， and 

verifies that the proposed statistical timing analysis method is e仔'ectiveas one of solutions 

for this problem. 

This thesis proposes a design methodology that transistor sizes are continuously varied 

inside cells while keeping cell-base design framework. This design methodology aims to 

design a high-performance circuit whose performance is close to that of full custom design. 

Exploiting this design methodology， a power reduction method that downsizes transistors 

inside cells after detail-routing is developed. The effectiveness is experimentally verified us-

ing 5 circuits. The proposed method reduces power dissipation by 659もonaverage without 

delay increase compared with usual cell-based circuits. The proposed design methodology 

can vary transistor sizes after detail申routingin spite of preserving interconnects. A crosstalk 

reduction method by transistor sizing， which utilizes this feature thoroughly， is developed. 
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This method estimates crosstal1くnoiseinside optimization loops using the interconnect infor-

mation extracted from detail-routed layout. Final1y the layout， which the optimization result 

is applied to， is obtained without any interconnect modifications. The experimental results 

in 2 circuits show that the maximum noise voltage is reduced by more than 350/0 without any 
delay increase. 
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Chapter 1 

Introduction 

This chapter discusses the research motivations and the contributions of this thesis. First the 

problems that LSI designers encounter in physical design phase are discussed. The trends 

of research for each problem are also discussed. These problems are expected to become 
more serious as fabrication technology advances， because these problems are originated in 

shrinking feature size. Then， the objective of this research and the organization of this thesis 

are explained. 

1.1 Problems in Physical Design Due to Deep Submicron 

Technology 

Due to severe competitions between LSI(Large Scale Integrated Circuit) design companies， 

the design of high-performance and high-functionality LSIs are requested to LSI designers. 

Although the number of devices that can be integrated on a single chip increases exponen-

tially as the process technology improves， the design-time assigned to an LSI design gets 

shorter， since the life-time of new products becomes short. Therefore， the demand for design 

automation keeps on rising， and design automation has been hoped to cover larger area of 

LSI design. So far， the design phase caIled “physical design" is one of the most advanced 

訂eain design automation， and the most p訂tof physical design can be automated using 

CAD(Computer Aided Design) tools. Here， in physical design， the layout of devices is gen-

erated and placed devices are connected by wiring. Also， the circuit is partially modified 

to satisfy performance requirements. With the invention of automatic placement and rout-

ing tools and logic synthesis tools， which construct a gate-level netlist from RTL(Resister 

Transfer Level) descriptions， a chip that contains more than million gates can be designed. 

With the advent of the deep submicron era， a set of issues that circuit designers are faced 

with is vastly different from those in traditional designs. Needless to say， some serious prob-

lems caused by DSM(Deep SubMicron) process emerge in physical design as well as in other 

design phases. Especially， the following issues are considered as severe problems; 1) inter-

connect delay， 2) power dissipation， 3) delay ftuctuation and 4) crosstalk noise. Hereafter， 

each problem is discussed. 
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1.1.1 Interconnect Delay 

Interconnects become one of the dominant factors that determine the circuit perfo口nance.

One of the reasons that interconnects limit performance is wiring capacitance. With increas-

ing chip dimensions， interconnect capacitance dominates gate capacitance， and the speed 

improvement expected from simple scaling does not apply to circuits that drive global wires. 

Simple scaling assumes a reduction in capacitive loading due to wires. This is true locally 

when a circuit is connected only to its neighbors， but for circuits that drive long global wires， 

the capacitive loading actually increases because chip size gets larger with shrinking. This 

delay increase caused by capacitive load of interconnect can be reduced by adjusting the 

driver strength. Many gate/transistor sizing methods that optimize the size of gate/transistor 

have been proposed [1，2，3，4，5，6，7]. Bu百erinsertion methods， which divide a heavy load 

into smaller loads and/or isolate a heavy load from critical path， are also studied [6， 7， 8， 9]. 

In addition to large capacitance loads resulting from long interconnects， the resistance 

of the lines also becomes a major concern. The most commonly cited DSM interconnect 

problem is that of rising RC wire delays. It can be clearly seen that wiring delay is capable 

of consuming the m司orityof the shrinking clock cycle time in DSM designs. The 50%-to-
50% delay which includes both gate and interconnect delay is expressed as follows[10]. 

Tso% - 0.377 RintCint + 0.693(RtrC川 +RtrCL + ~ntCL) ， (1.1) 

where， ~nt， Cint is the to凶 resistanceand capacitance of the interconnect. Rtr is the output 

resistance of the driver， and C L is the load capacitance connected to the end of the inter-

connect. The first term of 0.377 RintCint， which co汀espondsto the distributed RC delay， 

becomes dominant as the interconnect length increases， since the value of 九ntCintis pro-
portional to the square of the interconnect length. Table 1.1 shows the trend of interconnect 

predicted in Ref. [11]， and Table 1.2 lists the values of resistance， capacitance， and RC prod-

uct of interconnect in future technology. RC delay is increasing as the technology advances， 

though the low-resistive metal is used for interconnect and the low-dielectric insulators are 

developed. The distributed RC delay of interconnect cannot be reduced by increasing the 

driving strength， because it is independent of drier size. Dividing the interconnect into some 
segments by inserting repeaters is the most effective solution， and many techniques have 
been proposed [12， 13， 14， 15， 16]. Wire sizing is also effective to reduce wiring RC delay 

and has been researched[ 17， 18， 19， 20， 21， 22， 23]. 

As described above， the delay time caused by interconnect capacitance and resistance 

occupy a large amount of the total circuit delay in DSM technology. Traditionally， the phase 
of the logic design which utilizes logic synthesis tools is followed by layout design. In this 

phase， placement of cells and routes of interconnects are not fixed. The wire capacitance is 

statistically modeled according to the database that storages past designed circuits. The tim-

i ng design is executed based on this statistical model of wire capacitance. In DSM processes， 

the capacitance difference between the real interconnects after routing and virtually-assumed 

interconnects becomes a critical problem in timing design. The number of iterations between 

logic synthesis and physical design increases， and the timing convergence becomes difficult. 

In order to solve this timing closure problem， some CAD vendors have proposed the meth-
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Table 1.1: SoC Interconnect Technology Requirements[ 11]. 

Year l1 .12??J 2002 I 2005 I 2008 1 2014 1 

Gate Length[μm] 0.18 0.13 0.10 0.07 0.035 

Local(Cu): AR 1.4 1.5 1.7 1.9 2.2 

Intermediate(Cu): AR 2.0 2.2 2.4 2.5 2.9 

Global(Cu): AR 2.2 2.5 2.7 2.8 3.0 

Effective Dielectric Constant(κ) 4.0 3.5 2.2 1.5 く1.5

AR is a wiring aspect ratio de白nedas height/width. 

Table 1.2: Resistance(Cu) and Capacitance of Interconnects. 

Process Technology[μm] 11 0.18 I 0.13 I 0.10 I 0.07 10.035 I 

Resistance[r2/μm] 0.251 0.440 0.737 1.353 4.432 
Local Capacitance[tF/μm] 0.161 0.139 0.090 0.062 0.064 

RC product(lmm)[ns] 0.040 0.061 0.066 0.084 0.284 

Resistance[r2 /μm] 0.107 0.185 0.317 0.611 2.294 
Intermediate Capacitance[tF/μm] 0.197 0.173 0.110 0.074 0.076 

RC product(3mm)[ns] 0.190 0.288 0.314 0.407 1.569 

Resistance[r2 /μm] 0.036 0.060 0.104 0.207 0.813 
Global Capacitance[tF/μm] 0.219 0.195 0.121 0.081 0.080 

RC product(5mm)[ns] 0.197 0.293 0.315 0.419 1.626 

ods that combine logic synthesis and placement. These methods incrementally modify the 

circuit structure based on the cell placement， as well as adjusting the driving strength of cells 

and inserting buffers， which advances the timing closure. Thus， much energy and effort of 

m加 yresearchers have been concentrated on the interconnect delay problems， and hence the 

solutions for reducing interconnect delay have been intensively explored. 

1.1.2 Power Dissipation 

Recently， reducing power dissipation has become a m勾orconcern in LSI design. In CMOS 
circuits， most of energy is consumed by charging and discharging capacitance， and hence 
power dissipation is represented as follows. 

poueT=i f V3DZCtM) (1.2) 

where f is the operating frequency and VDD is the supply voltage. Ci is the capacitance of 
the i-th node and 九ω(i)is the switching probability of the i-th node. When all nodes訂e
assumed to have the same value of九ω(i)for simplicity， power dissipation is proportional to 
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the total capacitance in a circuit and the operating frequency. Due to the decrease in feature 

size， the operating frequency of the circuit increases. The total capacitance in a chip also in-

creases as the number of integrated devices and the die size become large. Consequently， the 

latest chips tend to consume more power dissipation even though supply voltage decreases. 

One of the major reasons why low power design is required is the increase in portable 

electronic equipments， such as laptop computers， cellular phones， and portable audio players. 

The power of these potable products are generally supplied from batteries， which limits the 

power dissipation of chips and encourages low power LSl design. High power dissipation 

involves overheating chips， which degrades perfo口nanceand reliability and reduces chip 

life-time. ln order to control the temperature， high power chips require costly specialized 

packaging and heat-sink a汀angements.High power dissipation means high cu汀entdensity 

in a circuit. The supply voltage in a circuit is reduced by resistive voltage drops， which 

degrades the performance and may cause a failure. The extensive cu汀entdensity in wires 

also causes electromigration problems. The metal atoms migrates because of the collision 

of metal atoms and electrons， which results in electrical opens and shorts. Therefore， the 

estimation and reduction methods of power dissipation紅estrongl y demanded in order to 

design a high-perfo口nance，high-competitive， high-reliable and low-cost chip. 

1.1.3 Delay Fluctuation 

The maximum operating speed is different in chip by chip， even when chips are fabricated 

using the same mask patterns， which is wide]y recognized as manufacturing variability. The 
circuit speed of fabricated chips is also different from the speed expected by circuit design-

ers. lt is because there are several sources that give rise to uncertainties in circuit delay. 

The sources that cause delay uncertainty can be categorized into two groups. The first group 

is physical ftuctuation which is caused by the variabilities of physical parameters， such as 

length and width of MOSFETs， electrical characteristics of MOSFETs， shapes of intercon-

nects， supply voltage and temperature， and so on. ln the fabrication process of LSI， fabri-

cating conditions necessarily ftuctuates. This manufacturing variability varies the size and 

characteristics of devices， which results in delay ftuctuation. The delay of each cell depends 
on supply voltage and temperaωre， and hence the change of operation condition is also a 

source of delay uncertainty. The second group of the uncertainty sources is design uncer-

tainty. The design uncertainty contains the e汀orsof cell delay model and RC extraction. 

It also includes noise， such as IR-drop， crosstalk， and etc. The problem is that the uncer-

tainty sources can not be eliminated completely even though the amount of ftuctuation may 

be reduced by various ways. Therefore， the design methodology that can consider the delay 

uncertainty is necessary to design high-performance and high-yield chips. 

From the appearance of ftuctuation， the ftuctuation can be classified into two categories. 

The first category is a global change that applies to all gates and wires similarly in a cer-

tain region. The second category is a random change that indicates a certain statistical dis-

tribution. As for the global change， the worst-case analysis method is widely-used. The 

bestltypicaνworst-case delay times are calculated for each gate and wire， and then the circuit 

delay time is evaluated using a suitable case value for pu中ose.This is a reasonable approach 
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for the global change. 

So far， the random change is scarcely considered， because the global change occupies 

a large mount of delay ftuctuation. When the local日uctuationis small compared with the 

global change， setting a little design margin is sufficient to consider the local delay uncer-

tainties. As the feature size becomes small， however， the effect of the local change becomes 

strong， and the local change can not be neglected now. References [24， 25] repo口thatthe 

local delay ftuctuation caused by manufacturing variability is comparable with the global 

delay change in DSM technology. ln the case that the design margin is set to large， it is 

sure that the under国designof circuits can be avoided. However the circuit is over-designed， 

i.e. the chip area and the power dissipation become large wastefully. Furthennore， as the 

performance requested for LSl design becomes high， there become many cases that the cir-

cuit performance can not be satisfied because of the settled over-margin. Therefore， in order 

to design a circuit with high performance and eliminate over-design， delay evaluation and 

optimization methods that can consider the random change are necessary. 

1.1.4 Crosstalk Noise 

lncreasing interconnect resistance is the main reason for the increased wiring RC delay in 

DSM technology. Resistance is inversely proportional to the cross-sectional area of the wire. 

Due to the rising need for higher densities on chip， wiring pitches are decreased rapidly at 

about the same rate as gate length. ln order to prevent resistance from increasing too quickly， 

line thickness( or height) is scaled at a slower rate， which results in taller， thinner wires. For 

example， Ref. [11] predicts an increase in wiring aspect ratio(AR=heightlwidth) of local 

wires from 1.4 at a 0.18μm process to 2.2 at a 0.07μm process(Table 1.1). These lines with 

high aspect ratio involve an undesirable secondary effect that a large amount of coupling 

capacitance is brought out. In addition， spacing between wires is shrinking quickJy in order 

to maintain high packing densities， coupling capacitance is further increased. It is reported 

that line-to-line capacitance between wires on the same level can be seen to make up over 

70% of the total wiring capacitance at lower levels even at 0.25μm technologies[26]. 

Because of coupling capacitances， two signals at adjacent wires are affected each other. 
When a signal transition occurs at the neighboring wire， the transition propagates through 

the coupling capacitance， and a noise appears at the co汀espondingwire. This noise， which 

is called crosstalk noise， has become a critical problem in DSM LSl design. The problem 

caused by crosstalk noise is classified into two categories; dynamic delay variation and de-

terioration in signal integrity. The dynamic delay variation depends on the relative timing of 

the transitions occurred at neighboring wires. When the transition timings are close enough， 

the delay time of each transition are varied. The direction of the transitions is also an im-

portant factor. When both transitions are in the same direction， each delay time becomes 

short. Conversely， the directions of the transitions are different， the delay time increases. 

The deterioration in signal integrity may cause a functional failure. When the swing voltage 

of noise becomes larger than the logical threshold voltage， the logical value of the output 

gate changes， which is a serious problem especially in dynamic circuits. In order to avoid 

these timing and functional failures， the estimation and reduction methods of crosstalk noise 
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are necessary for DSM LSI design. 

1.2 Overview of This Thesis 

As explained in Section 1.1， there are several severe problems in physical design field. The 

major four problems are explained; interconnect delay， power dissipation， delay ftuctuation 

and crosstalk noise. These problems depend on both circuit and layout. In DSM tech-

nology， a pa口oflogic/circuit design has to be merged into physical design， that is to say， 

circuit optimization techniques need to consider placement and wiring in order to design 

high-performance circuits. All of performance metrics， such as circuit delay， power dissipa-

tion， and circuit area， have to be optimized considering delay ftuctuation and crosstalk noise 
problems in order to ensure co汀ectbehavior of circuits. 

The first problem of interconnect delay is intensively studied， and many techniques to 

control and reduce the interconnect delay， such as gate/transistor sizing， buffer insertion 

and wire sizing， have been proposed. Compared with interconnect delay， the rest of prob-

lems have not been explored thoroughly. The conventional circuit optimization methods 

leave space for consideration in power dissipation. The design methodologies that consid-

ers local delay ftuctuation sufficiently have not been established. The estimation methods 

of crosstalk noise are now widely studied， but the e仔'ectivecircuit optimization methods to 

reduce crosstalk noise have not been proposed. The aims of this thesis are investigating the 

problems of power dissipation， delay ftuctuation and crosstalk noise， and developing solu-

tions for each problem. These problems are expected to become more serious， as fabrication 

technology improves. The methods proposed in this thesis are expected to become essential 

in future. This research contributes to design high-performance and high-reliability LSIs. 

Thanks to the steady improvement of fabricating technology， SoC(System On a 

Chip) is tuming into reality， i.e. a whole system can be integrated on a single chip. 

ASICs(Application Specific Integrated Circuit) that include System LSI are usually designed 

using a standard cell library. Generally， foundries or library vendors design and character-

ize standard cells beforehand， and provide a set of them as a standard cell library for each 

fabrication technology. The provided standard cell library is commonly used for design-

ing chips fabricated in the same fabrication technology. The detailed characteristics of each 

cell， such ぉ delaytime and power dissipation， can be easily obtained due to exhaustive pre-

characterization results， which make it easy to analyze the circuit performance and the circuit 

behavior. The design using a standard cell library is hence suitable for design automation， 

and is widely adopted. The framework of cell-base design for AS1Cs is well constructed. 

In cell-base design， circuit optimization during physical design is executed by replacing， 

inserting， and removing cells. 

Cell-base design， however， limits the extent of design freedom for the bene白tof the de-

sign facility. The ftexibility of transistor sizes is highly restricted， since the circuit has to be 

composed by the pre-designed cells. Consequently， cell-based circuits make a sacrifice of 

optimality， and contain redundancy， for example， in power dissipation. 1n order to reduce 

this redundancy and get the high-quality circuits close to those of full-custom design， a cell-
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layout generation system that can generate various driving-strength cells has been developed 

in our research group[27]. This system， which is called VARDS、canvary each transistor 

width inside a cell easily and ftexibly. Here， the cells， which are generated on the fty ac-

cording to the demand， are called “ondemand cellsぺThisprope口yenables transistor-level 
circuit optimization in the fol1owing design ftow while keeping the cel1-base design frame-

work. At first， a cell library that includes several driving-strength variations for each logic今

for example， x 1， x2， x4， x8， where this composition is the same with the conventional cell 

library. Using this cell library， logic synthesis and cell placement are executed as usual. 

Before andJor after routing， the circuit is optimized in transistor-level. According to the op-

timization result， the cell layouts are generated on the fty， and each cell is replaced by the 

corresponding ondemand cell. The ondemand cell layouts have the same s町ucture，i .e. the 

cell height is the same and the locations of power and ground metal are the same， which 

enables the layout design using a usual placement and routing too1. Thus， transistor-level 

circuit design can be realized， making the best use of cell-base design framework. Recently 

the parameterized standard-celllibrary， which is called “p-cell" library， is proposed[28]. The 

cells are p紅白neterizedby a continuous metric， gain. The logic synthesis is executed accord-

ing to the gain information of each logic cel1. Each cell layout is generated from the gain 

parameter， and the initiallayout is constructed by those cells. Thereafter the layout is opti-

mized by transistor-level circuit optimization techniques used in full-custom design method-

ology. This approach is based on full-custom design methodology for high-end chips， such 

as microprocessors used in mainframe computers， and aims to introduce a paロofcell-base 
methodology for design efficiency. Therefore the logic synthesis tool and the layout tool 

are di百'erentfrom the tools used in usual cell-base design framework. On the other hand， the 

target of the “ondemand cell" approach is SoC and ASICs. The proposed methodology is ex-

tending cell-base design to full-custom design in p訂twith the minimum e百ort，maintaining 

the cell-base design framework. 

The circuit optimization methods discussed in this thesis optimize a blocklmodule in 

LSIs. Reference [26] reports that RC distributed delay does not become dominant inside a 

block whose circuit scale is below 50k gates. Therefore， tuning driving strength， i.e. gate 

sizing and transistor sizing， is most effective and essential for the high-performance block 

design. The other methods to enhance the performance of blocks are buffer insertion and 

input reordering. The perfoπnance optimization by gate/transistor sizing and input reorder-

ing is studied in this thesis， and circuit optimization techniques for solving the problems 

discussed in Section 1.1 are discussed. This thesis focuses on gate/transistor sizing， and pro-

poses two optimization method for low power， and a performance optimization method that 

can handle delay ftuctuation. Also a power and delay optimization method by input reorder-

ing is discussed. In addition， this thesis proposes a transistor sizing method for crosstalk 

noise reduction. Conventionally interconnect optimization is widely executed. However， cir-

cuit optimization is hardly utilized for noise reduction， because circuit optimization involves 

interconnect modifications and interconnect modifications may spoil optimization results. 

The proposed method optimizes detail-routed circuits without any modifications thanks to 

“ondemand cell"， and hence reduces crosstalk noise efficiently by circuit optimization. 

This thesis is organized as follows. In Chapter 2， power and delay optimization by in-
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put reordering is discussed. Due to the cell structure， the power and delay characteristics 

among the input pins in a cell are di百erenteven though the logical function is the same. 

This method utilizes the characteristics di百erenceto improve perfo口nanceby reordering the 

input pins. In Chapter 3， a power optimization method by gate sizing is discussed. This 

method considers that glitch transitions heavily depend on delay characteristics， and this 

sensitivity of glitches is also utilized for power reduction. The proposed method reduces 

the number of glitches as well as the amount of capacitive load and short-circuit cu汀ent，

whereas the conventional methods assume the number of glitches to be constant. Chapter 4 

discusses a performance optimization method based on a statistical static timing analysis. 

This method focuses on the local ftuctuation component of delay uncertainties， and calcu-

lates the statistically-distributed circuit delay. The aims of this method are the realization of 

high-performance and high-reliability LSI design and the removal of over-design and under-

design of LSI. The performance optimization methods discussed in Chapters 2， 3 and 4 can 

be applied to both usual cell-base design and ondemand cell-base design. 

In Chapter 5， a post-layout transistor sizing method is discussed. This method ex-
ploits ondemand-cell generation system to reduce power dissipation， and realizes high-

perfoロnancecircuit design close to full custom design. This method can optimize the detail-

routed circuits without any modifications of interconnects， thanks to the feature of VARDS 

that the location of input and output pins are fixed while the transistor widths inside a cell 

are varied[27]. In Chapter 6， the delay uncertainty in the circuits optimized for performance 

enhancement is examined in a statistical way. Performance optimization has an aspect of 

path-balancing operation， i.e. the delay times of many paths are equalized. Due to the statis-

tical characteristics， the optimized circuit becomes more sensitive to delay uncertainty， which 

results in the increase in circuit delay. Some examples of this problem are demonstrated， and 

then the statistical static timing analysis method discussed in Chapter 4 is evaluated as one of 

solutions. The discussion in Chapter 6 applies to not only perfo口nanceoptimization in phys-

ical design but also perfo口nanceoptimization in other design phases. Chapter 7 discusses 

a transistor sizing method that reduces crosstalk noise in detail-routed circuits. Crosstalk 

noise is heavily depends on the interconnect structure， so crosstalk noise can not be esti-

mated until detail-routing completes. The circuit optimization for crosstalk noise reduction 

can be hardly executed after detailed-routing. This is because the wiring is also changed by 

circuit optimization， which may increase the crosstalk noise， or cause a new crosstalk noise 
problem. However， in the “ondemand cell" methodology， the transistor sizes inside cells can 

be optimized preserving interconnects as explained in Chapter 5. Crosstalk noise depends 

on the driving-strength of aggressive wire strongly， and hence crosstalk noise can be reduced 

by down-sizing transistors that drive the aggressive wires， with the information of a司jacent
wires extracted from the detail-routed layout. The methods discussed in Chapters 5 and 7 

exploit the feature of ondemand cells. Finally Chapter 8 concludes this thesis. 

Chapter 2 

Performance Optimization by Input 
Reordering 

This chapter discusses a method for power and delay optimization by input reordering. It is 

observed that the reordering has a significant effect on the power dissipation of the gate which 

drives the reordered gate. This is because the input capacitance depends on the signal values 

of other inputs. This property， however， has not been utilized for power reduction. Previous 

approaches focus on the reduction of the power dissipated by internaI capacitances of the 

reordered gate. A heuristic algorithm considering the total power consumed in the driving 

gate and the reordered gate is devised. ExperimentaI results using 30 benchmark circuits 

show that the proposed method reduces the power dissipation in all the circuits by 5.9% on 

average. There is a possibility that power dissipation is reduced by 22.5% maximum. In 

the case of delay and power optimization， the proposed method reduces delay by 6.7% and 

power dissipation by 5.3% on average. 

2.1 Introduction 

In the various stages of the VLSI design， many techniques for power reduction have been pro-

posed， such as supply-voltage scaling[29， 30]， technology mapping for low power[31]， gate 

sizing[32]， input reordering[33， 34， 35， 36， 37]， and so on. The technique of input reordering 

has two advantages. The first advantage is that input reordering has little e汀ecton the layout 

area. The second is that other techniques can be combined easily with input reordering. In 

[33]， the authors proposed th瓜 aninput with high switching probability should be connected 

with a pin which has small input capacitance. Here， a small input capacitance means that 

the size of the input transistor is small. However， this strategy is not effective in cell-base 

design because the pins that are equivalent logically have the same transistor size in most 

standard cell libraries. In [34， 35， 36， 37]， the authors discussed input reordering for power 

reduction such that the reordering reduces the power dissipation inside the reordered gate. 

The input reordering， however， a百'ectsnot only the power dissipated inside the reordered 

gate but also the power dissipated by a fan-in gate and fan-out gates， where the fan-in gate 

9 
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is the gate which drives the reordered gate and the fan-out gates are the gates driven by the 

reordered gate. The effect of input reordering appeared in the fan-in gate comes from the 

fact that the input capacitance of the reordered gate differs depending on the signal values of 

other inputs， as explained in detail later. As a result， dynamic power dissipation of the fan-in 

gates changes according to the input reordering of the reordered gate. The variation of input 

capacitances has not been utilized for power reduction previously. This chapter discusses the 

effects of input reordering on power dissipation in the fan-in gate and the fan-out gates as 

well as in the reordered gate， and an improved method for power optimization which exploits 

the effects is proposed. 

This chapter is organized as follows. Section 2.2 discusses the effects of input reordering 

on power dissipation and delay. Section 2.3 discusses strategies of input reordering for power 

and delay optimization at each gate. Section 2.4 introduces an algorithm of input reordering 

for power and delay optimization for the whole circuit. Section 2.5 shows the experimental 

results of the proposed method. Finally Section 2.6 concludes the discussion. 

[Fan-in Gate ) 

IReo峨 redGate) 

Input Capacitance 

(川(8High) 
25fF (8 Low) 

(Fan-out Ga叫

Fan-in Gate Reordered Gate Fan-out Gate 

Dynamic Power 
Dissipation 

Power Consumed 
by Internal Capacitance 

I Short-circuit Current 
Transition Time 

Delay 2.2 The Effects on Power Dissipation and Delay 

This section discusses the m司joreffects of input reordering in the fan-in gate， the reordered 

gate and the fan-out gate. So far， only the e百'ectfor the reordered gate has been considered 

for performance optimization. It is shown that there is a notable e汀'ectof input reordering on 

power dissipation in the fan-in gate， which could be utilized for performance optimization as 

well. 

Figure 2.1: The Effect of Input Reordering in a 2-Input NAND Gate. 

poured into the input B. The input capacitance of B， C B， is calculated as 

，.， QB  
-ーしノB 一亡7一一.

VDD 
(2.1) 

2.2.1 Fan-In Gate Table 2.1 lists C B under various conditions of other inputs and the initial voltage of 

internal nodes. The rightmost column(Ratio) indicates the ratio of the input capacitance 

under various conditions with respect to the value when both of inputs A and B are kept 

high. From Table 2.1， it can be observed that the signal value of the input C a仔'ectsCB 
strongly. In other words， C B becomes small when the source of NB is floating from ground. 

Compared with the input C， the input A and the initial value of internal nodes have minor 

influence. Therefore the input capacitance is characterized under following two conditions; 

the condition that the source of the input transistor is connecting to ground， and the condition 
that the source is floating ground. 

The dynamic power dissipated by a fan-in gate varies by the input reordering of the re-

ordered gate(the gate that the fan-in gate drives). This is because the input capacitance of 

the reordered gate， i.e. the load capacitance of the fan-in gate， depends on the signal values 

of other inputs of the reordered gate. The di百'erenceis demonstrated numerically using an 

ex但nplefrom a real 0.7μm standard celllibrary. Fig. 2.1 shows a 2-input NAND gate with 

inputs A and B， two nMOSFETs NA and NB in series， being NA closer to the output. When 
the input B keeps low， the input capacitance of A is 25 fF. When the input B keeps high， 
the input capacitance of A becomes 41 fF which is 640/0 larger than the previous case. The 
difference of the input capacitance ( 16 fF) is larger than the internal capacitance( C B = 11 fF) 
which is the sum of the diffusion capacitances of the source(NA) and the drain(NB). 

The input capacitance of A depends on whether the source of NA is connecting to ground 

or not. Let us show that the input capacitance is small when the source of the input transistor 

is floating from ground， using a 3-input NAND gate (Fig. 2.2) as an example. Fig. 2.2 shows 

the method of measuring the input capacitance. A cuπent meter i is added to measure the 

cuπent poured into the input capacitance of B. The voltage source Vin generates a ramp 

waveform changing from 0 to llDD. The integration of the current yields the charge QB  

2ム2 Reordered Gate 

Internal capacitances in a reordered gate have an influence on the power dissipation， delay 

time， and transition time of the reordered gate. References [34， 35， 36， 37] discuss methods 

for power reduction by input reordering such that the number of charging and discharging 

the internal capacitances could be reduced. Let us take a 4-input NAND gate as an example 

to investigate how power dissipation and delay vary input by input. Table 2.2 Iists the power 
dissipation(dissipated energy， rigorously)， rise/fall delay times and transition times when the 
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Figure 2.2: The Method of Measuring the Input Capacitance in a 3-Input NAND Gate. 

output load capacitance is 60 fF and the transition time of the input signal is 0.4 ns. The gate 
is driven by input A or D， where input A is closest to the output and input D is closest to 

ground. The dissipated power(energy)， rise delay time and rise transition time of input D are 

larger than those of input A by 790/0， 690/0， 780/0， respectively. 

Rise delay/transition times as well as fal1 delay/transition times show input pin depen-
dencies. Even in transitions driven by a paralleトconnectedtransistor(eg. output rise/fall 

for NANDINOR gates)， there exists the distinct input-pin dependency. This is because the 

amount of capacitances to be charged， which includes the intemal capacitances between 

series-connected MOSFETs， depends on the location of the driving (input) pin. In Ref. [38]， 

the input-pin dependency of the transitions driven by a parallel-connected transistor is ne-

Table 2.1: Input Capacitance of B under Various Conditions. 

I Input A Input C Node nl Node n2 Input Capa- Ratio 

citance(fF) (%) 

High High ー ー 40 ー

Low High High ↑ ー 38 95 

Low High Low ー 37 93 

High Low ー High↑ 25 63 

High Low ー Low 24 60 

Low Low Hight High↑ 24 60 

Low Low High ↑ Low 26 65 

Low Low Low Low 26 65 

High: VDD  Hight: VDD一吟H Low:O 
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Table 2.2: TypicaI Characteristics of a 4-Input NAND Gate 

Pin A Pin D Pin D/Pin A 
Power(pJ) 3.8 6.8 1790/0 
Rise Delay(ns) 0.26 0.44 169% 
Fall Delay(ns) 0.l8 0.23 128% 

Rise Transition Time(ns) 0.41 0.73 178% 
Fall Transition Time(ns) 0.34 0.33 970/0 

glected in its timing optimization process. The above example means that this simplification 

is not reasonable. The dependencies in both transitions make a delay optimization process 
not so straightforward， as described later. 

2.2.3 Fan-out Gate 

Input reordering of the reordered gate affects the power dissipation of a fan-out gate. This 

is because the reordering changes the transition time of the input signal of the fan-out gate， 

which leads to the change in the short-circuit cu汀entof the fan-out gate. If the transition 
time is short， the short-circuit power dissipation in the fan-out gate becomes small. This 

effect， however， is secondary compared to those of the fain-in gate and the reordered gate. 
Therefore a further discussion on fan-out gates is omitted. 

2.3 Reordering Strategies 

This section discusses the reordering strategies for each effect discussed in the previous 

section. The overall algorithm which combines the strategies for optimizing the total perfor-
mance of the circuits wil1 be shown in the next section. 

2.3.1 Definitions 

The primary input signal x[n]， a叩 lchronizeddiscrete-time logic signal， is defined as 

x[n] = x(ηT) = x(t) It=nT， (2.2) 

where n is an integer and T is the period of the system clock. The signal probability P(x) 
and transition rate R(x) are defined as fol1ows. 

P(Z)=J込izlz[ni
nx(t) 

R(z)=ib-7? 

(2.3) 

(2.4) 
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Figure 2.3: AOI31 Gate. 

C 

Figure 2.4: Graph of 

AOI31 Gate. 

where nx(t) is the number oftransitions of x(t) between a time interval oflength t， and nx(t) 
includes glitch transitions. 

A static CMOS gate is represented as a directed acyclic graph (V， E)[36]. V = 
{πoγ ・・?ηp-l，y， vdd， gnd} is the set ofnodes， where (no， . . . ，np-l)紅ethe intemal nodes of 
the gate， (y) is the output node and (vddぅgnd)訂ethe power and ground nodes. E represents 
the 2q transistors (q of pMOS and q of nMOS) which connect the nodes in V. Each edge 

has a label representing the logical condition that the transistor corresponding to the edge 

is conductive. The graph of AOI31 gate(Fig. 2.3) is represented as Fig. 2.4. The boolean 

function H川 isdefined such that it represents a logical sum of all possible paths from vdd to 
nb  where each path is represented as a logical product of the label of the edges on the path. 

In the example of AOI31 gate， Hy is represented as (A + B + C) . D. Similarly Gnk is the 
boolean function that represents all possible paths from nk to gnd. Boolean function Knk→町
represents all possible paths from nk to nl. 

2.3.2 Power Dissipation in Fan-in Gate 

The strategy for reducing the power dissipated in fan-in gates is explained. To consider 

the effect that the input capacitance depends on other inputs， effective input capacitance is 

introduced as an integral average of the input capacitance. The input reordering changes 

the effective input capacitance. Therefore， if the input with high transition rate have smaller 

e仔'ectiveinput capacitance， the power dissipation in the fan-in gate becomes smaller. 

In Section 2.2.1， it is said that the input capacitance becomes small when the source of 
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the input n(p)-transistor is ftoating from ground(power supply)， which is not accurate for a 

complex gate. The input capacitance A of A013 1 gate (Fig. 2.3) is examined as an example. 

Suppose the inputs (B， C， D) are (0， 1， 1). The source of transistor NA is not connected 

to ground through the transistors NB and NC. The input capacitance of A， however， does 

not look small. lt is because the input transistor NA is connecting to ground through the 

transistor ND. Therefore in the case of n恥fOS，the input capacitance looks small when both 

the source and the drain are floating from ground. Similarly， in the case of pMOS， the input 

capacitance looks small when both the source and the drain are floating from power supply. 

Now， the calculation of the effective input capacitance is explained. The boolean func-

tion G IXi is defined such that it represents the logical condition that the source of NXj is 
connecting to ground， where NXj is the n-transistor of input Xi. 

Glxi = G川 7 (2.5) 

where nk is the node that coπesponds to the source of NXj・Alsothe boolean function G I'xi 
is defined such that it represents the logical condition that the drain of NXj is connecting to 

ground when NXj is not conductive. 

G1'xi = 2: Knj→nz . Gnj IXi=O， 
njεVn 

(2.6) 

where nl is the node that co汀espondsto the drain of NXj and 乞representsthe boolean 
OR operation.九 isa subset of V which consists of node (y) and all the nodes in the nMOS 
network. (Knj→n[ . Gnj IXi=O) means the logical condition that node nl is connected to ground 
via node nj when NXi is not conductive. Using Eqs. (2.5) and (2.6)， the boolean function 

FG Xi' which represents the condition that both the source and the drain of NXj are ftoating 
from ground， is represented as follows. 

FGx; = Glx;・G1'x (2.7) 

Similarly， the boolean functions H IXi and H 1λare de命削.

Hlxi = H:叫n' (2.8) 

where nm is the node that coπesponds to the source of PX j • PXj is the p-transistor of input 

Xi・

H1'xi = 乞 Knπ→π1・HnjIXi=l' (2.9) 
njεら

where nn is the node that co汀espondsto the drain of PXi. Vp is a subset of V which consists 
of node (y) and all the nodes in the pMOS network. The boolean function F HXi' which 
represents the condition that both the source and the drain of PXj are ftoating from power 

supply， is represented as follows. 

FHxt=HIX1.HIL (2.10) 
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Using Eqs. (2.7) and (2.10)， the e仔ectiveinput capacitance of Xi is represented as fol-

16 

Rise Delay(ns) 

Fall Delay(ns) 

lows. 

(2.21 ) 
βH" 一一一一 βσ一

R(川 )]Xi== R(Xi){P(ー」)P(川)+ P(~0~"l:止 )P(nk)}.
θXi δXi 

The power dissipation of the reordered gate (Pl1'reordered) is represented as follows. 
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where Cload is the load capacitance and p is the number of internal nodes and n is the nUffi-
ber of inputs of the reordered gate. Thus the inputs should be reordered so as to decrease 

PWreordered. 

(2.11) 

(2.12) 

(2.13) 

(2.l4) 

(2.15) 

(2.16) 

(2.17) 

cyf=CpxzP(FE)+CLZ??(FHxt)+CNXzP(Fむ)+C伐tp(FGxJ，

where Cþ~~t(C伐t) is the gate capacitance of PXj (NXi) when the source and the drain are 
ftoating from power supply(ground)， and CPXi(CNXJ is the gate capacitance when the drain 

is connecting to power supply(ground). 

1n the case of input B of A0131 gate(Fig. 2.4)， G 1 B， G 1ら，FGB，HIB， HIらandFHB 
are represented as follows. 

C， 
AD+l・0+0・C== AD， 
C.AD， 

D. (A + C) + (A + C) == A + C， 

1・A+ C == o. 

The delay of a gate di百ersnot only input by input but also by the direction of output tran-

sition(rise/fall). Even in transitions driven by a parallel四connectedtransistor( eg. output 
rise/fall for NANDINOR gates)， there exists the input-pin dependency as seen in Table 2ユ
Also the fall/rise delay of the pin with the smallest rise/fall delay is not necessarily the small-

est. Table 2.3 shows the delay time of 4-input NAND gate when the output load capacitance 

is 60fF and the transition time of the input signal is 1.5ns. Table 2.3 is different from Ta-
ble 2.2 in the condition of the input transition time. The rise delay of input A is smaller than 

the rise delay of D. However the fall delay of A is larger than the fall delay of D. Both rise 

and fall pin-to-pin delays for each input need to be considered instead of reducing them to a 

single pin-to-pin delay as is done in conventional timing optimization approaches [38， 39]. 

This implies that two delays(fall and rise delays) with each output should be associated. 

1n order to evaluate the contribution of each delay to the overall circuit delay， two 

slacks( rise_slαck， fall_slαck) a児 calculatedat each output and used as the measure of 
delay， where the slack is defined as the difference between the required arrival time and 

the latest arrival time[40]. For the delay optimization， the input order which makes 

min( rise_slαck， falLslαck) the largest is chosen. This strategy is greedy to minimize the 
delay， and does not increase the delay of a critical path. 

Delay 2.3.4 The effective input capacitance of B (C;J') is rep陀sentedas follows. 

(2.18) 

From the above discussion， the inputs should be reordered so as to decrease PWinput(the 
sum of the power dissipation of ch訂gingthe input capacitances). 

GIB 

GIら
FGB 

HIB 

HIら

FHB 

C;J' = CPB + CNBP(C・互D)+ cfJc;t P(C・五万). 

(2.19) 
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where n is the number of inputs of the reordered gate. 

Power Dissipation in the Reordered Gate 

CMOS complementary gates consist of series/parallel-connected MOSFETs. The internal 

capacitances between series-connected MOSFETs influence on power dissipation in the re-

ordered gate. An effective estimation method of the number of transitions at each internal 

node is proposed[36]. This method is utilized for the power estimation of the reordered gate. 

Here the method is explained briefly according to Ref. [36]. 

The power consumption of node nk produced by input Xi (Wnk IXi) is represented as 
follows. 

2.3.3 

Optimization Algorithm 

1n the previous section， two strategies for power reduction and one strategy for delay reduc-

tion are shown. This section discusses an algorithm which combines the three strategies for 

the total perfonnance optimization of the whole circuit. 

2.4 
WTLK|xz:==jcADh-h)Rh)|xzぅ

where C，川 isthe internal capacitance coπesponding to node 川• R(nk)lxi is the transition 
rate of the transitions caused by the input Xi at the node nk. 1f there訂eno simultaneous 
transitions， R( nk) IXi is represented as follows. 

(2.20) 
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(a) Power with delay constraint. (b) Delay. 

Figure 2.5: Optimization Algorithm in Each Gate. 

2.4.1 Optimization in Each Gate 

This section shows an algorithm which optimizes a gate considering three strategies， that is 

to say， the strategy for the power reduction in the fan-in gates， the power reduction in the 

reordered gate， and the delay optimization for each gate. 

First， the method to combine the power reduction strategy for the fan-in gates with 

that for the reordered gate is explained. Using two estimated power dissipations (PWinput 
and P~レordered) ， it is considered that the input ordering which minimizes the total power 

PW(ニ PWinput+ PWんordered)is the best for low power. All the permutations are tried， 
and the one with the sma11est PW  is chosen. If the delay constraint is imposed on the power 
optimization， the slack is calculated for each pennutation， and the ordering with the smallest 

PW  and positive slack is selected. This ftow is shown in Fig. 2.5(a). 
In the case of delay optimization， min叫(ris犯eι_slαck，Jαallし_slαack刈)is calculated for all the 
permutations， and the best order is selected. This flow is shown in Fig. 2.5(b). 

2.4.2 Optimization of the Whole Circuit 

For delay optimization， each gate is reordered with the strategy in Section 2.4.1， in a breadth-

first search order starting from a gate with all the inputs driven by primary inputs. A reorder-

ing of a certain gate may change the slack of a gate not only in the fan-out direction but also 

in the farトindirection. It is because that the required time of a gate in the fan-in direction 

changes and the rise slack and the fall slack of the gate change accordingly. So， the order 

which has been processed previously is not necessarily the best order. Even if all the gates 

in the circuit have been reordered once， there is a possibility that further delay reduction can 

be achieved. Therefore， the delay optimization requires iterative optimization. The delay 

2.5. EXPERIMENTAL RESULTS 19 

optimization loop finishes when the delay of critical path can not be decreased. In the case 

of power optimization， the algorithm in Section 2.4.1 is applied to each gate once， assuming 

input reordering does not change the transition rate. In the case of delay and power optimiza-

tion， delay optimization is executed first for minimizing the critical path delay. After that， 

power optimization is processed under the delay constraint as shown in Fig. 2.5(a). 

2.5 Experimental Results 

In this section， the results of performance optimization by input reordering is shown. All of 

experiments in this section are achieved with the condition below. Process parameters for a 

commercial 0.7μm process is used. The power dissipation is evaluated by an event-driven 

transistor-level power simulator with the option that enables to consider the dependence 

of input capacitance[41]. Input patterns are randomly generated with a signal probability 

of 0.5 and with a transition density of 0.5， where transition density represents the average 

number of transitions per cycle[42]. The number of applied patterns is 100， which is the 

adequate number for the power estimation at circuit level [43]. The circuits are operated 

synchronously. The cycle time of input patterns is 20ns， which is the sufficient time for all 

benchmark circuits to finish the behavior. The transition rate R at each gate is computed 

by logic simulation， and the signal probability P is calculated using SBDD(shared binary 
decision diagram) 1. The circuits used for the experiments are taken from ISCAS85 and 

LGSynth93 benchmark sets(See Table 2.4). The circuits are synthesized and mapped by a 

commercial logic synthesis too1. The target library includes basic gates and complex gates 
and selectors. These gates are the standard cells generated by P2Lib[44]. 

Table 2.4 lists the result of power optimization without delay optimization. The columns 

under “lnitial" show the power dissipation(delay) of the initial circuits. The circuits are 

optimized by input reordering with the following three strategies. 

A: The strategy which considers the dissipated power in the fan-in gates and the reordered 

gate (proposed). 

B: The strategy which considers the dissipated power only in the reordered gate (equiva-

lent to Ref. [36]). 

C: The strategy which maximizes the power dissipation using the proposed method. 

The columns of “'A:.' and “B" under “Reduction" represent the percentage of the power re-

duction (= Init41d戸2x 100(%)). The column “Di汀."explains the percentage of the 
di fference between出elargest and the smallest power dis勾ations(=与1x 100(%)). The 
column “CPU Time" lists a CPU time for reordering on a Sun Ultra 2. It does not include 
the time to calculate transition rate by logic simulation. 

From Table 2.4， it can be seen that power dissipation of alI circuits is reduced by the 

proposed method. The “Diff." column indicates that there is a possibility of reducing power 

1 BDD Manipulator ver 6.03 : Copyright 1992 Kyoto University (by Shin-ichi M町ATO).
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dissipation by 22.5% maximum. The proposed method (Column “'1¥.') reduces power dissi-

pation by 5.9 % on average and by 12.9 % maximum， whereas a conventional method， which 

considers the dissipated power only in the internal capacitances of the reordered gate， reduces 

power dissipation by 3.6 % on average and by 10.4 % maximum. The power optimization 

without delay optimization does not a百ectdelay so much. 

In Table 2.5， the result of power optimization with delay optimization is shown. The 

proposed method reduces delay by 6.7 % and power dissipation by 5.3 % on average. 

2.6 Conclusion 

This chapter discusses an improved method for power optimization of CMOS gates by input 

reordering. The dependence of input capacitance on the signal values of other inputs， as 

well as the possibility of charging/discharging internal capacitances， is utilized for the power 

reduction. The e百ectof the method is demonstrated experimentally using 30 benchmark 

circuits in a 0.7μm CMOS technology. The average reduction of power dissipation is 5.9 

%. By input reordering there is a possibility that power dissipation is reduced by 22.59も

maximum. ln the case of delay and power optimization， the proposed method improves delay 

by 6.7 % and power dissipation by 5.3% on average. Although the amount of improvement 

in power and delay is not drastic， input reordering can provide a steady improvement with 

almost zero penalty. 

2.6. CONCLUSION 

Table 2.4: Power Optimization without Delay Optimization. 

Power Dissipation Delay 

Circuit Initial Reduction(% ) Diff. Initial Reduc-
(mW) At B+ (0/0) (ns) tion(% ) 

sa02 2.69 3.5 0.4 13.0 4.25 3.2 

my_adder 4.60 6.3 6.2 5.8 11.8 0.1 

c432 5.57 12.9 9.9 19.4 10.2 4.0 

apex7 4.79 5.6 3.8 9.9 3.90 3.3 

clip 5.75 3.6 2.4 8.4 4.45 0.2 

terml 5.94 4.5 1.6 7.2 3.76 -2.0 

example2 4.46 5.2 1.6 22.3 4.02 3.5 

c499 3.92 1.9 0.3 10.9 4.63 0.7 

alu2 8.87 7.4 6.5 9.1 10.5 -0.6 

x4 7.30 9.3 10.3 22.5 3.77 ー0.7

dule2 4.00 4.4 0.7 17.1 5.08 3.9 

c1908 8.48 10.2 8.0 20.9 10.1 3.3 

i9 17.8 6.1 6.8 7.1 4.19 1.5 

i7 15.9 5.3 5.4 7.8 3.61 -1.1 
c1355 12.5 7.4 4.7 10.9 8.48 3.6 

e64 4.84 5.1 -1.1 12.5 4.42 -13.7 

table5 5.38 7.7 0.4 19.5 6.22 3.3 

apex6 15.0 5.7 6.5 10.9 4.44 3.9 

dalu 15.0 7.8 6.0 15.0 7.58 -3.6 

x3 14.5 2.5 1.3 5.3 3.26 -4.1 

table3 5.71 7.3 0.0 17.3 6.22 1.0 

仕g2 16.0 4.4 2.5 8.8 5.74 -0.4 

i8 25.8 7.8 7.4 7.2 7.71 1.7 

c3540 29.1 3.4 2.4 7.0 12.0 0.8 

apex3 10.8 7.2 2.8 15.3 6.68 1.0 

ex5p 14.2 5.6 5.6 10.4 7.12 5.7 

alu4 29.0 3.5 0.6 10.7 6.91 2.4 

apex2 25.6 1.7 -0.7 13.6 8.09 -2.5 

seq 27.7 5.1 1.5 13.3 8.30 5.1 

des 73.9 7.5 4.5 13.0 7.64 3.4 

L Average 5.9 3.6 12.4 0.9 

A↑: Proposed Method Bt : Conventional Method 

21 

CPU NO. 

Time of 

(s) Gate 

0.7 100 

42.1 112 

6.2 112 

0.7 135 

0.7 154 

0.7 171 

1.0 172 

55.7 176 

1.3 197 

2.9 201 

0.8 210 

503.2 249 

0.5 306 

0.5 314 

160.2 326 

0.8 327 

1.2 383 

7.1 391 

6.6 407 

0.7 447 

1.1 454 

2.3 476 

5.0 535 

9.5 585 

1.3 734 

1.1 935 

5.8 937 

16.8 1253 

6.1 1370 

29.8 1718 
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Table 2.5: Delay and Power Optimization. 
Circuit Delay Power Time 

Reduction(% ) Reduction(% ) (s) 

sa02 11.2 2.4 0.9 

my_adder 0.1 6.3 26.0 

c432 9.9 7.0 20.4 

apex7 9.9 3.9 0.9 

clip 5.7 3.1 1.1 

terml 9.6 2.4 0.9 

example2 7.9 5.2 1.2 

c499 7.6 0.7 30.7 

alu2 4.4 8.1 1.5 

x4 4.4 5.2 2.9 

dule2 11.9 3.4 1.2 

c1908 8.1 10.0 495.3 

i9 4.4 6.4 0.9 

i7 4.3 4.8 1.1 

c1355 9.1 6.5 115.1 

e64 2.9 4.9 1.5 

table5 8.3 7.3 1.9 

apex6 7.0 5.4 10.5 

da1u 7.1 8.2 10.0 

x3 7.3 2.9 1.5 

table3 4.9 7.1 2.2 

frg2 4.6 3.7 2.6 

i8 1.9 9.3 7.6 

c3540 6.4 2.6 21.2 

apex3 4.5 8.1 3.1 

ex5p 8.2 6.2 5.2 

a1u4 7.6 3.1 9.3 

apex2 7.8 2.1 21.7 

seq 6.3 4.4 10.6 

des 8.4 7.5 40.9 

Average 6.7 5.3 

Chapter 3 

Gate Sizing for Glitch Power Reduction 

This chapter discusses a method for power optimization that considers glitch reduction by 

gate sizing based on the statistical estimation of glitch transitions. The proposed method 

reduces not only the amount of capacitive and short-circuit power consumption but also the 

power dissipated by glitches. The effectiveness of the proposed method is verified exper-

imentally using 10 benchmark circuits with a 0.6μm standard cell library. The proposed 

method reduces power dissipation from the minimum-area circuits further by 10.40/0 on av-

erage and 16.2% maximum. It is also verified that the proposed method is effective under 
manufacturing variation. 

3.1 Introduction 

In the various stages of VLSI design， many techniques for power reduction have been pro-

posed， such as suppJy-voltage scaling[29， 30]， technology mapping for low power[31]， input 

reordering[4S， 37]， gate sizing[4， 46， 47， 48]， and so on. This paper focuses on gate sizing 

which is an effective method not only for delay optimization[l] but also for power opti-

mization. The circuit under optimization is a CMOS combinational circuit designed in a 
synchronous design sty le. 

The dynamic power dissipation， which is the dominant source of power dissipation， is 

directly related to the number of signal transitions in a circuit. A signal transition can be 

classified into two categories; a functional transition and a glitch. It is well known that 
glitches occupy a considerable amount of the signal transitions in a circuit. Reference[ 49] 

indicates that the glitch power dissipation accounts for 20% to 70%， and Ref.[43] tells 7% 

to 43%. Also glitches are extremely sensitive to delay characteristics[50]. Therefore glitch 

reduction by optimizing delay characteristics is a reasonable approach for power reduction. 

This chapter proposes a gate sizing method considering glitch reduction for low power 

design. Conventional approaches for power reduction optimize the amount of capacitive 

load[4， 48] or the amount of capacitive load and short-circuit current[47， 51] based on the 

transition activity information obtained beforehand. Recently， some glitch power reduction 

methods are proposed[52， 53]. In order to eliminate glitches completely， the authors[52] 

23 
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adjust the gate delay time and insert buffers such that the time difference between the latest 

arrival time and the earliest arrival time at each gate becomes smaller than its gate delay 

time. ln practical circuits， the time difference between the latest and earliest arrival time is 

much larger than the gate delay time at most of gates. Also the gate delay is not allowed to 

be excessively long， because the transition time constraints are usually given for maintaining 

the accuracy in timing analysis and the hot-carrier reliability. The cost， i.e. the number of 

inserted bu仔ers，required to remove glitches entirely is not small， and hence the power dissi-

pation of the circuit optimized to eliminate glitches completely is not minimum. Therefore 

Ref. [52] can not minimize the power dissipation. Reference [53] proposes a glitch power印-

duction method by gate freezing. Gate freezing replaces some existing gates with “F-Gates" 

that do not propagates glitches according to the given control signal. ln this method， the tim-

ing of the control signal is critical and essential not only to reduce glitches but also to ensure 

theco汀ectbehavior of a circuit. If the timing of the control signal is varied by manufacturing 

variability or the timing calculation error， the functional signals may not propagate through 

the circuit. Therefore gate仕eezing[53]requires extensive verification to avoid functional 

failures caused by delay ftuctuation. The proposed method reduces not only the amount of 

capacitive and short-circuit power consumption but also the power dissipated by glitches ex-

plicitly with an improved glitch estimation technique. The proposed method reduces glitch 

power dissipation by gate sizing， and hence the co汀'ectfunctional behavior is guaranteed 

against delay fluctuation caused by manufacturing variability and delay calculation eπor. 

3.2 Statistical Glitch Estimation 

This section explains an estimation method for glitch activities based on a statistical ap-

proach. Glitches can be separated into the following two components. 

generated glitches: the glitches that are generated by functional (non-glitch) transitions. 

propagating glitches: the glitches that are generated previously at a gate in the fan-in di-

rection and propagate through the gate. 

The proposed optimization method consists of two techniques; a statistical estimation 

method of glitch activities and an optimization algorithm for gate resizing. For the estimation 

of glitch activities， glitches are classified into two classes; generated glitches and propagating 

glitches. As for the generated glitches， a statistical estimation method proposed by Lim and 

Soma[54] is adopted. The propagating glitches， however， are not considered in their method， 

and therefore a statistical estimation method is developed. The optimization algorithm has 

been designed to have the ability of escaping from a bad local solution while keeping small 

computational costs. 

As for the generated glitches， a statistical estimation method is proposed by Lim and 

Soma[54]. However， the effect of propagating glitches is not taken into account. Some 

part of the generated glitches may be immediately blocked by the fan-out gates. Other pa口，

however， will propagate through the circuit until they are suppressed or reach to primary 

outputs. Therefore the e百ectof the propagating glitches cannot be neglected. 

The voltage swing of glitches is not always VDD・Theenergy dissipated by charging and 
discharging the load capacitance is proportional to the voltage swing. Treating all glitches 

as full-swing transitions cause an overestimation of the power dissipated by glitches. There-

fore the estimation method of the generated glitches[54] is improved such that the power 

dissipated by P訂tial-swingtransitions can be considered. 

ln real circuits， there exist uncertainties in delay characteristics， which may spoil the 

effect of power optimization. For example， after a clock distribution tree is designed， the 

skew time at each ftip-ftop(latch) can be estimated. However， the estimated skew time has 

some e汀ors.Also， the skew time ftuctuates owing to the statistical variation of the transistor 

characteristics and the wire capacitance. The skew fluctuation affects the transition timing at 

the primary inputs in combinational circuits， and consequently influences the glitch genera-

tion. Therefore the estimation method that can consider skew fluctuations is contrived. This 

consideration increases the tolerance of glitch reduction to actual phenomena in real circuits. 

3.2.1 Preparations 

In real circuits， there exist statistical perturbations of circuit parameters such as skew 

fluctuations and variabilities in gate delay， which may affect glitch activities and thereby 

cannot be neglected. Also， not all glitches have full-swing transitions. Treating all glitches 

as full骨swingtransitions may cause an excessive overestimation of glitch power dissipation. 

This chapter proposes a practical power optimization method considering actual phenomena， 

such as skew fluctuations and partiaトswingtransitions. 

The primary input signal x[η]， a synchronized discrete-time logic signal is defined as 

x[n] = x(nT) = x(t)lt二 ηT， (3.1 ) 

where n is an integer and T is the period of the system clock. The signal probability P( x) 
and the transition density D (x )訂edefined as follows[42]. 

This chapter is organized as follows. Section 3.2 discusses the statistical glitch estimation 

method considering propagating glitches， skew ftuctuations and pa口iaトswingtransitions. 

Section 3.3 explains the optimization algorithm of gate resizing. Section 3.4 shows some 

experimental results of the proposed method. Finally Section 3.5 concludes the discussion. 

P(Z)=J込拾の]， (3.2) 
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where Xo is an initial logic value. The switching probabilities P町x)，p01(x)， PlO(X) and 
pll (x) are the probabilities that the signal of gate x changes as 0→0，0→1， 1→0， 
l→1， respectively. These probabilities have the following relations. 

pOO(x) + pOl(X) + plO(X) + pll(X) = 1， 

D(x) 
P町x)ニ P10(z)=-z-

pll(X) + plO(X) = P(x). 

Transition rate R(x) is defined as 

ηx (t) 
R(z)=Jlt-「う

where nx(t) is the number of transitions of x(t) between a time intervaI of le時tht. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

In order to consider short-circuit power dissipation， a power estimation method based 

on look-up tables is utilized. In this method， the total power dissipation PT1ヘincluding
short-circuit power dissipation， is represented as follows. 

PW=jzpmαble( i)R(け (3.8) 

where n is the number of gates and PVV;ωle (i) is the energy that is consumed at the gate 
i when the output changes. The values of PVV;ωle (i) are given by Iook-up tables which 
includes the power dissipated by the short-circuit cu汀ent. The look-up tables are two-

dimension tables with load capacitance and input transition time as variables and they are 

characterized beforehand by circuit simulation. Equation (3.8) is used as the objective func-

tion of power optimization. 

Path delays are derived using a static timing calculation method. As for gate delay calcu-

lation at each gate， two dimensionallook-up tables with capacitive load and input transition 

time as p紅白netersis used. The look-up tables of the gate delay and the transition time of 

the output signal are characterized by circuit simulation. 

3.2.2 Previous Work on Generated Glitch 

First， the estimation method for generated glitches[54] is explained. The condition for glitch 

generation is to hold the folIowing two conditions simultaneously(Fig. 3.1). 

Condition 1: The input patternωk is the pattem that can cause glitches. 

Condition 2: The interval time ( between successive transitions at di百erentinputs is larger 

than the gate delay time T. 
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Figure 3.1: An Input Pattem and Condition for Glitch Generation in a 2-Input AND Gate. 

The probability satisfying Condition 1 and the probability satisfying Condition 2 are cal-

culated separately. The pattem probability Ppatt(Wk) is the probability that the input pattern 

州 occurs.The generation probability Pge山々)is the probability that the input pattern州
satisfies Condition 2， and is represented as follows: 

九π(ωk)= Il~ f(α)f(グ)制s， (3.9) 

whereαand s are the arrival times of the respective signals in 凶 ，f is the distribution func-
tion that represents the number of transitions as a function of arrival time. Ak is the area 
that satisfies Condition 2 in the α-s space(Example， Fig. 3.2). In Fig. 3.2， parameters 
αmin (smin) and αmω(smω均 resentthe earliest and the latest arrival times respectively. 
Parameter T.α(Ts) represents the gate delay time of signal o:(s). Using Ppatt and 乃伽 gener-
ated glitch rate Rgen (i) is represented as follows. 

Rgen (i) == fclk .玄{Pgen(州).九αtt(ωk)}ぅ

where fclk is the c10ck frequency. 

3.2.3 Propagating Glitch 

The propagating glitch rate RpTOp(x) is defined as fol1ows: 

ηprop-x (t) 
Rprop(x) =民 y;

(3.10) 

(3.11) 

where nprop-x (t) is the number of propagating glitches at the gate x between a time interval 
of length t. From the definitions， the total transition rate R can be represented using D， Rgen' 
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Figure 3.2: Surface Integral Area of the Distribution Function f. 
Figure 3.3: The Condition that Allows a Glitch Propagating through a 2-input AND Gate in 

the Case that the Gate Delay is Smaller than the Glitch Width. 

Rprop， fclk as follows: 

R(x) = fclk . D(x) + 2・{Rgen(x)+んrop(X)} (3.12) 

Equation (3.14) assumes that there is a sufficient time interval between the transitions， so 

this equation may overestimate propagating glitches. There is a possibility that the overes-

timation of propagating glitches at each gate causes an excessive overestimation along with 

the signal propagation. Therefore the lower bound of propagating glitches should be esti-

mated. Please consider the situation that a glitch comes from the input A in a 2-input AND 

gate (Fig.3.3). If the input B retains high， the glitch propagates through the gate. If the in-
put B keeps low， the glitch never propagates through the gate. But if there is a transition at 

the input B， glitch propagation through the gate depends on the timing of the transition. ln 

order to take the lower bound of the estimation， the timing-dependent glitch propagation is 

neglected. Therefore the estimation of the propagating glitch rate becomes: 

The multiplication factor of two in the second term comes from that a single glitch causes 

two transltlons. 

Now， an estimation method of the propagating glitch rate Rprop is explained. Here， the 
disappearance of the glitches whose time widths are shorter than the delay of the propagating 

gate is ignored. If the inputs of a gate have no correlation with each other and there is a 
sufficient time interval between the input transitions， the following equation holds at any 

gates[42]. 

ふ (ay¥ 
内)= L P( ~~ )R(Xi)， σ.13) 
i=l aXi 

where Xi is the i-th input of the gate， Y is the output and n is the total number of inputs. From 

the definition of Rpr叩， if the glitches at the inputs have no coπelation and have sufficient 
time interval between the transitions， Rprop can be represented as follows. 

九rop(Y)=土P(払 {R山 i)+丸山i)} 
i=l OXi 

min{ Rprop(Y)} = pl1 (b)・{Rgen(α) + Rpr叩 (α)}
+pll(α)・{Rgen(b) + Rprop(b)}. 

(3.17) 

(3.14 

The above equation is obtained by setting plO in Eq. (3.16) to be zero. Similar discussion 
can be made for other kinds of gates. Therefore the lower bound of the propagating glitch 

rate Rprop is calculated from Eq. (3.14) as: 

ln the case of 2-input AND gate， Eq. (3.14) is represented as follows. Rprop(Y) =土{Rgen(Xi)+んT山)}• P(会)1
U 山1. IplO=pOl=O 

(3.18) 

Rprop(Y) = P(b)・{Rgen(α)+ Rprop(α)} 
+P(α)・{Rgen(b) + Rprop(b)} 

Using Eq. (3.6)， Eq. (3.15) is transformed to: 

Rprop(ν) = {pll (b) + plO (b)} . {Rgen (α) + Rprop(α)} 
+{ pll (α) +p川α)}. {Rgen ( b) + Rprop ( b) } 

(3.15) 

3.2.4 Partial-Swing Transitions 

(3.16) 
The energy dissipated by charging and discharging the load capacitance C is propo口ional

to the voltage swing. When the voltage swing is VDD/2， the dissipated energy which is 
町 m 削 edas C 午 VDDis恥 halfof the energy of a full-swing transition. Treating 



30 CHAPTER 3. GATE SIZING FOR GLITCH POWER REDUCTION 3.2. STATISTICAL GLITCH ESTIMATION 31 

5 A possible shape might be a normal distribution. However， the estimation of the mean 

and the deviation of the normal distribution is not simple. Also， as will be shown in Section 

3.4.1， the assumption of the normal distribution is not always reasonable in a real circuit. 

Here using an uniforrn distribution is proposed. The vaIidity of this assumption wil1 be 

examined experimentally in Section 3.4.1. The uniform distribution function f is represented 
as follows: 

4 

〉、句_.
o'l 

~ 3 
(J) 

0 

22 
0 
〉

f(t) = 1 ・{U(t-αmin) -U(t -αmω)}ぅ
αmαx αmη 

(3.22) 

0.5 1 1.5 
Time Di行erence(ns)

2 2.5 
where αmαx is the latest arrival time and αmin is the fastest arrival time. 

When the distribution function f is uniforrn， h(α， s) of Eq. (3.21) can be transformed as 
follows. 

Figure 3.4: Relationship between the Swing Voltage and the Di百erenceof the Arrival Time 

in 2-input NAND Gate. 
仰 J)=!U(α-sーづ)0::;α-s 
1 U(β-α -T~) 0三グ-α7

(3.23) 

where T' is derived from the following equation. 

a partial-swing transition as a full-swing transition causes an overestimation of the energy 

dissipated by glitches. Therefore an approach is devised such that a partial-swing transition is 

converted into an equivalent fraction of a fuIl-swing transition based on the dissipated energy. 

For example， a transition that the voltage swing is VDD/2 is regarded as 0.5 transition. 
Fig. 3.4 shows the relationship between the voltage swing Vsw and the difference of the 
arrival timeγ(=α-s or s-α) in a 2-input NAND gate. The relationship under two output 
load conditions is examined by circuit simulation， and it is approximated as a 1inear function. 

! U(γ-T')dγ= ! h(γ)dγ 
In the case of Eq.(3.19)，三(Ts)is rep陀 sentedas T，α(η). 
Using Eqs.(3.22) and (3.23)， Eq.(3.20) can be transforrned as foIIows(Fig.3.5). 

乃en(ωk) = ! l~ れα)f(グ)ぬω 日)

sw = {与γ0三γ三2ア
i下bDγ >2T 

(3.19) 

area(A~) 

(αmαz一αmin)(smax -smin) ， 
(3.26) 

Similarly， in the other gates， such as multi-stage gates， the relationship between 日wandT
is examined， and it is approximate as a linear function. 

Using this conversion， Eq. (3.9) can be improved as follows. 

where area(A~) represents the shaded area in Fig. 3.5. 

んn(ωk)= ! ! f(a)f(伽 (α，s)dαds， 
w(αぅs)

h(αヲグ)= 抗 D 

(3.20) 

Q

V

Q

問

3.2.5 Distribution Function 
向niril---

戸=α-d

(3.21) 

The rigorous derivation of the distribution function f requires two processes. The白rstpro-
cess is to search all paths and ca1culate the delay of each path. The complexity of this process 

is O(nd) where n is the average fan-in and d is the maximum circuit depth. The second pro-

cess is to evaluate the activating probability of each path. This process requires the derivation 

of the sensitization conditions for all the paths， and hence overall complexity is practicaIIy 

infeasible. Therefore a simple and reasonable shape should be assumed for the distribution 

function f. 

。 αmaxα 

Figure 3.5: Surface Integral Area of the Distribution Function f Considering Partial-Swing 
Transitions. 
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3.2.6 Skew Fluctuation 

After a clock distribution tree is designed， the skew time at each ftip-ftop(latch) can be es-

timated. However， the estimated skew time has certain amount of estimation eπors. Also， 

the skew time varies due to manufacturing variability. Therefore skew ftuctuation should 

be considered in glitch estimation. It is assumed that the distribution of the skew time is 

normal(μ，σ) and μis the estimated skew time. Normally distributed skew at each primary 

input appears as the skew in the arrival time at the input of each gate. The distribution of 

the skew is well approximated by normal[55]. Hence Pgen(Wk) under skew ftuctuation is 
approximated as the weighted average over five sampling points. 

ル (ωk) = 0.4叫んf(α)仰)制グ (3.27) 
k 

+ 0.1491 i~ 的一 σ)f(グ-仰dß
k 

+ 0叫i~ 的一 σ)仰+σ)ω
k 

+ 0ω1 i~ 的 +σ)仰一 σ)ω
k 

+ 0ω1 i~ 的 +σ)f(グ +σ)叫
k 

3.3 Optimization Algorithm for Power Reduction 

Given the estimation of glitch transitions， a good measure of overal1 power dissipation is 

obtained. Discrete (cell-based) gate sizing is executed for power optimization of a CMOS 

combinational circuit using the estimation method. This section explains the optimization 

algorithm for power reduction. 

A heuristic algorithm that has both the merit of rapid convergence and the ability to get 

out of a bad local solution is developed. Here， the algorithm under delay and transition time 
constraints is explained. A ftow-chart of the algorithm is shown in Fig. 3.6. 

Optimize delay: The circuit is optimized by a similar algorithm to this power optimization 

until the delay constraints are satisfied. The detail is explained later. 

Calculate sensitivity: At each gate， the sensitivity of the objective function Eq.(8) is eval-

uated both for sizing-up and sizing-down operations. If a sizing operation violates 

delay constraints or transition time constraints， the sensitivity is not calculated and the 

operation is eliminated from sizing candidates. 

Resize: Gates are selected according to the sensitivity and they are resized. The number of 

the gates resized simultaneously is at most Max_Change. 
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Figure 3.6: The Power Optimization Algorithm under Delay Constraints. 

Delay O.K.?: There is a possibility that timing violation occurs because at most 

Max_Change gates are resized at once. It is judged whether the delay constraints are 

satisfied or not. 

Finish?: If the iteration count goes over a pre-defined value MaxJteration， or if no gates 

are resized， the optimization procedure finishes. 

Decrease Mac_Change: Max_Change is reduced by a factor of Reduce..Rate. 

The uncertainty of gate delay is aggravated by a signal that has an excessIve transition 

time， i.e. the calculation e汀orof gate delay increases and gate delay becomes sensitive to 

manufacturing variability. AIso the long transition time deteriorates hot-carrier reliability. 

Therefore the transition time of the signals should be restricted. The sensitivity is calcu-

lated when the sizing does not violate the constraints of transition time. This restriction of 

transition time helps to maintain the accuracy of timing analysis and the reliability. 

In the case of power optimization， the objective function is Eq. (3.8). As Eq. (3.8) in-

cludes short-circuit power dissipation， the power optimization considering overal1 power 
dissipation can be executed. Since at most Mαx_Change gates are resized at a time， there is 

no guarantee that the overal1 resizing results in the improvement of the objective function. 

The evaluated sensitivity for each gate is only valid for single resizing of the corresponding 

gate. This simultaneous resizing is regarded as a perturbation to the circuit. The amount of 

perturbation is reduced as the number of Max_Change is decreased through the iteration. 

In the beginning of the optimization， i.e.， when Max_Change is large， many gates are 

resized simultaneously. In this case， the amount of perturbation is large， and solution space 

is expected to be explored globally. Parameter Max_Change is gradually reduced at the 
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Figure 3.7: The Delay Optimization Algorithm Used in Power Optimization. 

rate of Reduce _Rate， and the amount of peロurbationdecreases. The gradual reduction of 
M似 _Changehas a similar role to the temperature reduction in simulated annealing. The 
ratio of reduction can control the speed of convergence and the search area of solutions. 

At the final stage， Max_Change becomes small and this algorithm behaves like a greedy 
algorithm. A greedy algorithm is suitable for finding a local optimal solution， which merit is 

exploited in the proposed algorithm at the final stage. With the help of the perturbation and 

the greediness， it can be expected to reach to a good solution quにkly.Tuning the parameters 

MaxJteration， Max_Change， and Reduce_Rate， the amount of perturbations and convergence 
speed can be adjusted. Consequently the computation time and quality of the solution can 

be controlled. 

The delay optimization executed in the power optimization is similar with the power 

optimization algorithm. Fig. 3.7 shows the flow of the delay optimization. First， the sen-

sitivity of the circuit delay is evaluated for both size-up and size-down operations. In the 

sensitivity calculation， the timing information is updated at the gates in the downstream cone 

from the gates that drive the resized gate. Then the gates to be resized are chosen based 

on the sensitivity， and they are resized. The number of the gates resized simultaneously 

is at most Max_Change. If the delay constraint is satisfied， or if no gates are resized， the 
optimization finishes. Otherwise， the value of Max_Change is reduced and go back to the 
sensitivity calculation. The parameters MaxJteration， Max_Change， and Reduce_Rate are 
assigned separately for delay and power optimization. 

3.4 Experimental Results 

This section shows some experimental results. First， the accuracy of the proposed glitch esti-

mation method is verified experimentally. Next， power optimization results are demonstrated 

and the e百ectivenessof the proposed method is verified. Finally， it is shown that the proposed 

method can reduce glitches under the fluctuation of skew times and wire capacitances. 

The circuits used for the experiments are an ALU in a DSP for mobile phone[67] 
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(dsp_alu) and the circuits included in ISCAS85 and LGSynth93 benchmark sets(C3540， 

ex5p， misex3， alu4， C5315， i10， seq， C7552， des). These circuits are synthesized and 

mapped by a commerciallogic synthesis tool[56] such that the area is minimized under the 

transition time constraint of 1.5ns. The target library is a standard celllibrary used for actual 

fabrication in a 0.6μm process with three metallayers. The library includes basic and com-

plex gates. Buffer and inverter have six varieties in the driving strength and other gates have 

three varieties. The transition density D and signal probability P at each gate are calculated 
by logic simulation. The power dissipation is evaluated by a commercial transistor-level 

power simulator[41]. Input patterns are randomly generated with a signal probability of 0.5. 

The number of applied patterns is 1000， which is the adequate number for the power estima-

tion at circuit level[ 43]. The cycle time of the input patterns is 100ns， which is a sufficient 

time for all benchmark circuits to finish the behavior. The constants for power optimiza-

tion MaxJteration， Reduce_Rate and initial Max_Change are set to 50， 0.90， 0.4 x (number 
of gates)， respectively. The objective function is Eq. (3.8) which represents dynamic power 

dissipation including short-circuit power dissipation. The proposed method can therefore 

optimize circuits considering overall power dissipation. 

3.4.1 Distribution Function 

The validity of the uniform distribution function 1 ， which is used for generated glitch es-
timation， is examined. The uniform distribution and the normal distribution are compared 

with the distribution that is extracted from the logic simulation. 

The distribution function 1simulαted(t) is constructed from the logic simulation results. 
The number of the applied input pattern is 10000， and C3540 and des circuits are used 

for the experiment. The mean and the deviation are extracted from !simulated(t) and the 
normal distribution function 1normαl (t) is built. The unifonn distribution function (Eq. 3.22) 

is !uniform. The e 汀or between 1siml問u叫山uαated( tり)and 11ηz叩町O

Er針針'vヤh汁r門門.マγrornorマT

Errγ'ort、unげniげfo併rmiおsalso de白nedsimilarly. 
Errornormαl and Erroruniform are compared at all gates. In C3540 circuit， Error・normal
is smaller than Error uniform at the gates of 550/0. On the other hand， Error・uniformis smaller 
than Error normal at the gates of 55% in des circuit. Also the summations of Error normal 
and Error uniform for all gates are scarcely different， and the difference is within 10/0. Even 
though the mean and the deviation are derived accurately， there is not a distinct di百erencein 

the error of the distribution function between ! normal (t) and f unif orm (t). The comput剖ional
cost to construct f unif併m(t)is much less than that of fnormal(t). It can concIuded that the 
uniform distribution is a reasonable and adequate shape for the use in glitch optimization. 

3.4.2 Glitch Estimation 

Now the accuracy of the proposed glitch estimation method is examined. The number of 

glitch transitions is estimated at every node in a circuit and it is compared to the value ob-



37 

Table 3.1: Accuracy Comparison of Power Estimation between Conventional and Proposed 

Method. 

3.4. EXPERIMENTAL RESULTS 

Circuit Simulation Estimated 
Power Time Power Error Time #gates 
(mW) (s) (mW) (%) (s) 

C3540 16.8 600 13.7 -18.5 0.02 766 

ex5p 6.23 188 7.72 23.9 0.03 1041 

misex3 13.2 442 14.2 7.6 0.03 1142 

alu4 17.1 494 16.9 -1.2 0.03 1252 

C5315 35.1 1115 28.0 -20.2 0.03 1334 

i10 26.3 928 21.5 -18.3 0.03 1528 

seq 14.8 520 15.5 4.7 0.04 1658 

C7552 54.4 1483 41.9 -23.0 0.03 1670 

des 43.1 1423 39.1 -9.3 0.06 2453 

dsp_alu 193 11912 172 ー10.9 0.25 6062 
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Figure 3.8: Accuracy Comparison of Glitches between Conventional and Proposed Method 

(i10). 

than that for a transistor-level power simulator， which enables to use the estimation method 

inside the optimization loop considering glitch reduction. 

tained by transistor-leveI simulation[41]. The glitch transitions are estimated in the following 

two ways. 

Conventional Method: Only generated glitches are estimated (equivalent to [54] except for 

the simplified calculation of f function). 

Next the e百'ectivenessof the proposed optimization algorithm is examined. The proposed 

optimization algorithm is compared with a simple greedy algorithm and the simulated an-

nealing method. The simple greedy algorithm calculates the sensitivity for all gates and 

resize a single gate with the largest sensitivity. After resizing the gate， the sensitivity of each 

gate is recomputed. If there are no gates which reduces the object function， the optimization 

loop finishes. The simple greedy algorithm is the same with the proposed algorithm in the 

case thatM似 _Change，Reduce..Rate and MaxJteration are set to 1， 1.0 and ∞respecti vel y. 
The simulated annealing method is implemented as follows. A reconfiguration(move) is to 

select a gate randomly and resizing the gate to a size which is randomly decided. As for 

annealing schedule， temperature T is held constant during 100 x (number of gates) reconfig-
urations or 10x(number of gates) successful reconfigurations. The temperature is decreased 

by the factor of 0.90. Table 3.2 shows the comparison of the optimization algorithms. The 

experiment is carried out using Eq.(3.8) as the object function. The column “Reduction" 

represents the percentage of the power reduction from the initial circuits. Here， in order to 

evaluate the optimization algorithm only， the power dissipation is estimated by the proposed 

glitch estimation method and Eq. (3.8). The column ‘'Time" indicates CPU times for the 

optimization on an Alpha Station. In misex3 circuit， the greedy algorithm is trapped into a 

bad local solution and hence the reduction remains 8.8%， whereas the simulated annealing 

Optimization Algorithm 3.4.3 

Proposed Method: Both generated and propagating glitches are estimated. 

Fig. 3.8 shows the accuracy comparison of glitch estimation between the conventional 

method and the proposed method in i1 0 circuit. The horizontal axis represents the number 

of glitches estimated by transistor-level simulation. The vertical axis represents the number 

of glitches estimated by the conventional method or the proposed method. The correlation 

coefficient is calculated between simulated values and estimated values. The correlation co-

efficient of the proposed method is 0.84， whereas the coefficient of the conventional method 

is 0.38 in i10 circuit. The average correlation coefficients of the proposed method over 10 

benchmark circuits are 0.74 and the coefficients of the conventional method is 0.38. 

The accuracy of the estimated power dissipation is examined. The power dissipation is 

estimated using the proposed glitch estimation method that can consider propagating glitches 

and p訂tial-swingtransitions. Table 3.1 shows the result of power estimation. The column 

“Power" under “Simulation" represents the power dissipation evaluated by a transistor-level 

power simulator. The column “Error" under “Estimated" represents the estimation e汀orof 

the proposed method for the power dissipation. The column 

time for power estimation on an Al怜phaStation. The average e汀orof the power estimation 
is 13.80/0. The CPU time required for the proposed method is more than 6000 times shorter 
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Table 3.2: Cornparison of Optirnization Algorithms in Power Reduction and CPU Time. 

Circuit Greedy Simulated Annealing Proposed 
Power Power Poweτ 

Reduction Time Reduction Time Reduction Time 
(0/0 ) (s) (%) (s) (0/0) (s) 

C3540 6.0 36 6.6 6784 6.3 30 

ex5p 19.7 336 25.1 14933 24.4 119 

misex3 8.8 93 14.8 25037 15.2 101 

alu4 5.9 93 12.2 13363 10.7 101 

C5315 12.0 101 11.1 10914 12.2 63 

i10 4.0 291 5.4 26682 5.8 189 

seq 9.4 327 10.7 77027 12.6 277 

C7552 6.6 94 6.3 21961 6.4 98 

des 11.3 557 13.1 50878 12.4 413 

dsp_alu 5.8 11584 7.4 1150867 5.7 7842 

average 9.0 11.3 11.2 

and proposed methods achieve more than 14 % reduction. The proposed algorithm reduces 

the power dissipation by 11.20/0 on average， whereas the greedy algorithm reduces by 9.0%. 

Also the CPU time spent for the proposed method is 79% of that for the greedy algorithm 

on average. Compared with the simulated annealing， the proposed algorithm can find a solu-

tion close to that of the simulated annealing， while spending only 0.6% of the CPU time on 

average. 

3.4.4 Power Optimization 

Here， the resu1t of power optimization is shown. First， power dissipation is optimized without 

delay constraints. The given transition time constraint is 1.5ns. The initial circuits consist 

of the min-sized gates， except the gates up-sized for satisfying the transition time constraint， 

since the circuits are generated for minimizing訂ea.The overall capacitive 10ad of the initial 

circuits is almost minimum. Table 3.3 shows the result of the power optimization. The power 
dissipation before/after optimization is eva1uated by a transistor-level power simulator. The 

column “Power(Delay) Reduction" represents the reduction of the power(delay) from the 

initial circuit. The column “Area Increase" shows the increase of the tota1 cell area from the 

initial circuit. The proposed method increases the area by 5.2% on average. However the 

number of transitions are reduced by 8.50/0， which main1y contributes to the power reduction 

of 10.40/0. This means that the power dissipation of the circuits with the minimum active area 

is not minimum. It is notable that the delay is also reduced in al1 circuits， although the delay 

is not included in the objective function nor the constraints. The reduction of delay is 25.0% 

on average. Glitch reduction has an aspect of path balancing. The path balancing is enforced 

by reducing longer path delays， which leads to the reduction of the critical path delay. 
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~ble}}: J>~~er Optimization under No Delay Constraints. 
Power Delay Area #Toggle 

Circuit Reduction Reduction Increase Decrease 
(%) (%) (%) (%) 

C3540 5.9 9.1 2.9 5.5 
ex5p 4.8 8.4 17.9 6.4 
misex3 14.6 34.0 4.6 8.4 
alu4 12.5 31.1 4.0 8.1 
C5315 16.2 17.6 4.1 18.4 
i10 8.6 30.8 6.0 5.7 
seq 9.7 29.0 4.2 4.8 
C7552 12.5 16.6 1.6 12.7 
des 5.6 49.8 4.1 3.7 
dsp_alu 14.0 23.2 2.2 11.0 

average 10.4 25.0 5.2 8.5 

Next the result of power optimization under delay constraints is presented and it is com-
pared with the result with those of conventional methods. The circuit C5315 is optimized 

under a variety of delay constraints and the power dissipation is measured using a transistor-
level power simulator. The circuit is optimized in the following three methods. 

Delay Optimization: optimize de1ay only and do not care about power dissipation. 

Conventional Method: optimize power dissipation based on the transition information of 
the initial circuit throughout the optimization process. 

Proposed Method: optimize power dissipation by the proposed method. 

The poweトdelaytrade-o仔curveof each method is shown in Fig. 3.9. The initial circuit is 

located near the top right comer of the figure. Achievab1e delay times by the three methods 

are the same. The fastest circuits by the three methods have 5.9ns de1ay time. However the 

power dissipation is di釘erentand， as expected， the proposed method provides the lowest. 

Because the reduction of the delay time and path balancing lie in the same direction， it is 

seen that delay reduction does not increase power dissipation so much. Indeed， the fastest 

circuit obtained by the delay optimization method has the total cell area 14 % larger than 

that of the initial circuit， while the power dissipation is almost the same as that of the initial 

circuit. Co汀espondingincrease in capacitive load is compensated by the reduction of glitch 

activity which is a by-product of the delay optimization. The conventional method which 

assumes constant glitch activities throughout the optimization process does not work wel1， 

compared with the proposed method. It is because the glitch activities are changing in the 

optimization process. In order to reach good solutions， the fact that glitches are affected by 

gate resizing has to be considered. Explicitly exploiting the possibility of glitch reduction， 
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10 Figure 3.10: Power Reduction under Skew Fluctuations (C5315). 

Sizing(A): optimization that does not consider skew fluctuations. 

Sizing(B): optimization that consider skew fluctuations. 
Figure 3.9: Power-Delay Trade-Off Curve (C5315). 

ln actual circuits， there訂evarious factors that change delay characteristics， such as skew 

fluctuations， variations in transistor characteristics and wire capacitances. The tolerance of 

the proposed method to uncertainties in delay characteristics is examined. 

First， power dissipation is examined under skew ftuctuations. The skew time at each 

primary input is assumed to ftuctuates according to the normal distribution(O，σ). Power 

dissipation is optimized by the following two methods. 

日uctuationcompensates not only skew fluctuations but also the eηor in delay calculation as 

a by-product. 

Because of manufacturing variability， wire capacitance fluctuates. Also wire load esti-

mation contains a certain amount of e汀or.Therefore the gate delay has some amount of 

uncertainty. Power dissipation is evaluated under wire load fluctuations. Wire capacitance 

is assumed to ftuctuate according to the normal distribution(O，σ). 100 sets of wire load訂e

generated and power dissipation is evaluated using them. The ratio of total gate capacitance 

and the total wire capacitance is about 1:2 in this circuit. The relationship between power 

reduction and the amount of wire capacitance fluctuations is shown in Fig.3.11. The average 

reduction at each 3σvalue is almost the same. Even in the worst case of 3σ ニ 40%，the 

power dissipation is reduced by 14.8%. It can be seen that the proposed method is effective 
under uncertainties in delay characteristics that exist in fabricated circuits. 

the proposed method further reduces the power dissipation. lt can be seen that the gate sizing 

considering glitch reduction is an effective method for power reduction. 

3.4.5 Tolerance to Skew Fluctuation and羽TireCapacitance Variation 

Sizing(A): optimization that does not consider skew fluctuations， i.e. only the first term in 

Eq. (3.27) is considered. 3.5 Conclusion 

100 sets of skew patterns are generated for 3σof skew ftuctuation being 0.5ns and 1.0ns. 

In this fabrication process， the delay time of a single inverter with fanout loading three is 

0.1 ns. The number of applied pattern for power evaluation is 100 because of the enormous 

simulation cost. Fig. 3.10 shows the relationship between the amount of power reduction 

and skew fluctuations. It can be seen that the proposed method can reduce power dissipation 

under skew fluctuation. Owing to the consideration of the skew ftuctuation， the average value 

of the power reduction becomes about 1 % larger. ln the case of 3σ= 0.5ns， Sizing(B) is 

much e仔ectivethan Sizing(A). The reason is guessed such that the consideration for skew 

This chapter proposes a power optimization method by gate sizing. The proposed method 

optimizes not only the amount of capacitive load and short-circuit cu汀entbut also the number 

of glitch transitions. A statistical glitch estimation method， which can consider propagating 

glitches， partial-swing transitions and skew fluctuation， is devised. The proposed gate re田

sizing algorithm has both the merit of rapid convergence and the ability to get out of a bad 

local solution. The e百ectof the proposed method is experimentally verified using 10 bench-

mark circuits with a 0.6μm standard cell library. The power dissipation is reduced from 

the minimum-area circuits by 10.4 % on average and by 16.2 % maximum. lt is observed 

that the conventional method， which assumes that glitches do not change by gate resizing， 

does not achieve sufficient power reduction. On the other hand， the proposed method can 

Sizing(B): optimization th剖considersskew fluctuations(Sec. 3.2.6). 
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Figure 3.11: Power Reduction under Wire Capacitance Fluctuations (C5315). 

reduce power dissipation further guided by the proposed glitch estimation method. It is also 

verified that the proposed method is e百ectiveunder manufacturing variability such as skew 

time fluctuation and wire capacitance variation. 
This chapter discusses a gate resizing method for performance enhancement based on sta-

tistical static timing analysis. The proposed method focuses on timing uncertainties caused 

by local random fluctuation. The proposed method aims to remove both over-design and 

under-design of a circuit， and realize high-performance and high-reliability LSI design. The 

effectiveness of the proposed method is examined by 6 benchmark circuits. The experimen-

tal results show that the proposed method can reduce the delay time further from the circuits 

optimized for minimizing the delay without the consideration of delay fluctuation. 

4.1 Introduction 

There are several sources that cause the uncertainties of circuit delay time， such as man-

ufacturing fluctuation， estimation e汀orof wire capacitance and resistance， uncertainties of 

wire capacitance during physical design， supply voltage and temperature change， diversity 

in signal waveforms， and so on. These sources can be classified into two categories. The first 

category is a global change that applies to all gates and wires similarly in a certain region. 

The second category is a random change that indicates a certain statistical distribution. As 

for the global change， there is a traditional and widely-used method to consider the delay 

time uncertainties. In this method， three values(bestJtypical/worst-case values) are prepared 

for the delay time of each gate and wire. Then the circuit delay time is calculated using 

each-case value for pu中oseby pu中ose.This is a reasonable approach for the global change. 

On the other hand， the random change is not well considered in LSI design. Due to the 

random change， the delay time of each gate and wire has a certain probability distribution. 

In one case， a certain amount of design margin is set to avoid the effect of the delay time 

uncertainties by the random change. In this method， the decision of the design margin is 

difficult， which results in excessive design margin and over-design of the circuits. In another 

43 
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case， the delay time of each gate and wire is defined as the worst-case value， for example， 

mean+3σ. ln this case， the estimated delay time of a critical path is pessirnistic， and the delay 

of the shortest path can not be considered. Therefore， in order to design a circuit with high 

confidence and eliminate over-design， a statistical static timing analysis method and a circuit 

optimization method considering the random change are necessary. 

gate 

朽

ち

This chapter proposes a perfonnance optimization method considering the random 

change based on statistical timing analysis. As for statistical timing analysis， there are sev-

eral proposals [57， 58， 59， 55， 60]. The methods proposed in Refs. [57， 58， 59] are Monte 

Carlo simulation-based techniques， so these methods are not suitable for performance opti-

mization method from the point of computation time. The method proposed by Berkelaar 

in Ref. [55， 60] is based on a static timing analysis method. This method does not require 

any simulations， and the complexity of the timing analysis is linear to the circuit scale. So 

the timing analysis can be done in a realistic computation time. Although this method works 

well for the estimation of the mean delay， it underestimates the worst delay(corresponding 

to mean+3σ， for example)[55]， because of the definition of the worst-case delay and the ap-

proximation method used in Ref. [55]. In a statistical analysis， it is important to estimate a 

statistically well-defined worst-case value. Therefore the worst-case delay is defined in a sta-

tistical manner， and a technique to improve the accuracy of the worst-case delay estimation 

is devised. This method is utilized for perfonnance optimization. 

Tn 

Figure 4.1: Gate Delay Model. 

4.2 Statistical Static Timing Analysis 

In this section， a statistical timing analysis method is discussed. First， the basic concept of 

the statistical static timing analysis proposed in Ref. [55] is explained. Next， approximation 
methods of the delay distribution used in the statistical static timing analysis are discussed. 

This chapter then proposes a new measure“criticality“that represents the timing criticality 
at each gate. 

ln the case of the performance optimization based on statistical static timing analysis， 

slack[ 40]， which represents the timing criticality at each gate and is widely used for per-

formance optimization under deterministic delay model， can no longer be a useful measure 

under statistical environment. This chapter therefore proposes a new measure“criticality" 

that represents the timing criticality at each gate， and device perfonnance optimization al-

gorithms utilizing the “criticality". ln Ref. [60]， the gate sizing problem is formulated as 

a nonlinear programming problem， where the objective function and the constrains are ex-

pressed as analytic forms. ln this method， the delay should be represented by a simple an-

alytical equation， which degrades the accuracy of the delay calculation. On the other hand， 

the proposed method can utilize any gate/wire delay calculation methods. 

4.2.1 Static Timing Analysis 

First a conventional(not statisticaI) static timing analysis method is explained briefty. Sup-

pose a gate that has n-input and l-output ports(Fig. 4.1). Ti is the latest arrival time of 

signals at the i-th input. ti is the gate delay time from the i-th input to the output. Ti and 

ti have different values for rise and fall transitions. In Section 4.2， rise/fall transitions訂e
not distinguished for simplifying the explanation. But the reaI implementation in Section 4.5 

considers the delay difference for rise/fall transitions. The latest arrival time of the signal 
transitions at the output， Tout， is represented as folIows. 

Tout ==イヂ(1i+ ti)・ (4.1) 

The proposed performance optimization method has various applications， such as uncer-

tainties of wire capacitance during physical design， local ftuctuation in transistor characteris-

tics， local variation of supply voltage and temperature， and so on. The proposed performance 

optimization method can eliminate over-design of a circuit and contribute high-perfonnance 

and high-reliability LSI design. 

Using Eq. (4.1)， the latest arrival time at each gate can be calculated incrementally without 
tracing al1 paths. 

4.2.2 Statistical Static Timing Analysis 

This chapter is organized as follows. Section 4.2 discusses the statistical static tim-

ing analysis method. Section 4.3 explains the perfo口nanceoptimization algorithms of gate 

sizing. Section 4.4 discusses some applications of the proposed performance optimization 

method. Section 4.5 demonstrates some experimental results. Finally， Section 4.6 concludes 

the discussion. 

ln a conventional static timing analysis， each delay time of gates and wires is a constant 

value. On the other hand， under the existence of uncertainties in circuit delay time， each 

delay time is not a constant and it has a statisticaI distribution， which is considered for delay 

calculation in the statistical static timing analysis. The basic concept of the statistical static 

tIming analysis has been proposed in Ref. [55]. This method is explained briefty. Next， 
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the worst-case delay of the circuit with delay ftuctuation is defined， and a technique that 

improves the accuracy of the worst-case delay calculation is discussed. 

The distribution of the latest signal arrival time at the i-th input is modeled as a nonnal 

distribution of a stochastic variable T with meanμTi and standard deviation σTi. It is also 

assumed that the gate delay time from the i-th input to the output is distributed normally with 

a stochastic variable t， meanμti and standard deviation σti・
Here， Eq. (4.1) is converted for the statistical timing analysis. The probability density 

function fi is defined such that fi expresses the distribution of Ti+九 Thedistribution of li 
be∞mes a normal distribution N (内+μti'ゾσ主+σr)・Thecumulative distribution function 
Fi is defined as follows. 

assumed to be nonnal. Figs. 4.2 and 4.3 show an example of the difference between Jout 

and the nonnal distribution. The function lout represents Eq. (4.8) under the following con-

ditions. The mean and standard deviation of 11， the mean and standard deviation of J2 and 
n are 3， 1， 3.6， 0.6 and 2 respectively. The mean m and standard deviation σof lout are 
calculated according to the definition， and the nonnal distribution N(m，σ) is generated. If 
the distribution of 10ut is exactly nonnal， X1 in the following equation becomes equal to m + 

3σ. 

0.998側=にんt(x)dxヲ (4.9) 
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where the value 0.9986501 is the probability of a normal distribution between -∞andm十
3σ. But in reality， X1 of 1，。ωisdi百erentfrom m + 3σ. The value X1 is 6.00， whereas m + 
3σis 5.64. This di百erencederives from the fact that the curve of lout falls slower than it 
rises. If the worst-case delay is defined as m + 3σ， the lower probability of x :::; m + 3σ 

becomes smaller than 99.87%. The actual value of the lower probability varies depending 

on the shapes of 11 and f2・Onthe other hand， when the worst司casedelay is de白nedas Xl， 
the lower probability of X :::; X1 becomes a fixed value of 99.87%. In statistical analysis， 
evaluating the delay time with a fixed lower probability is important. Therefore the worst-

case delay is defined as Xl in Eq. (4.9). When the delay with the di仔erentlower probability 
is evaluated， the value of the left term in Eq. (4.9) should be changed accordingly. Hereafter， 

the worst-case delay is defined as X1 in Eq. (4.9). 
Next， the approximation of fout to a normal distribution is discussed. In Ref. [55]， 1，仰tis 
approximated as a nonnal distribution to reduce computational costs. The proposed method 

also approximate fout to a normal distribution. Here， the approximation methods of lout are 
examined from the viewpoint whether the worst-case delay X1 can be calculated accurately. 
Eq. (4.9) is rewritten using Eq. (4.8) as follows. 

印)=乙λ(χ)dχ (4.2) 

As an example of statistical max operation， C = max(A， B)， with stochastic variables 
A， B and C， is examined. In this case， the following relation holds at any x. 

P(C三x)= P((A三x)n (B三x))， (4.3) 

where P( Condition) rep陀 sentsthe probability that Condition is satisfied. When the statis-

tical correlation between A and B is ignored， Eq. (4.3) can be transfonned as folIows. 

P(C三x)= P(A三x). P(B三x). (4.4) 

The probability density functions of A， B and C are defined as f A 1 f B and f c. Eq. (4.4) can 
be expressed as follows. 

ん(x)=IA(x)乙fBdけん(x ) . j_x
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(4.10) Di百erentiatingEq. (4.5)， the following equation can be obtained. 

(4.6) 
The value X1 of each fi is close to or smaller than X1 of f，。ω.In the range of x between 
Xl and ∞， the cumulative distribution function Fj (x) is almost l. In order to calculate the 
worst-case delay X1 accurately， the approximation accuracy of fi where x is larger than X1 is 

important. Therefore fout should be approximated well in the region where x is close to and 
larger than X1 of f，。ω，which contributes the accurate calculation of X1 at the fan-out gates 
that the gate drives. Two approximation methods of lout to a normal distribution N(m，σ) are 
compared. 

Eq. (4.6) can be rewritten as follows. 

P(C = x) = P(A = x) . P(B三x)+ P(B = x) . P(A :::; x). (4.7) 

Extending Eq. (4.6) for n stochastic variables， the probability density function fout， which 
corresponds to the distribution of the latest arrival time Tout， can be represented as follows. 
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Method 1 Calculate the mean m and the standard deviation σof fout according to the defi-
nlt1on. 

The probability density function of the overall circuit delay time can be obtained by applying 

the probability density function at each primary output to fi. 
The definition of the worst-case delay under the statistical delay model is discussed. The 

distribution of the latest arrival time， fout. is di百'erentfrom a normal distribution， though 

Method 2 Find the values of Xo and Xl that satisfy Eqs. (4.9) and (4.11). The mean m is 

calculated as (xo十Xl)/2 and the standard deviation σis (X1 -xo)/6. 

0.0013ω=にんt(x)dx (4.11 ) 
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Figure 4.2: Di百'erencebetween fout and a Nonnal Distribution. Figure 4.4: Approximation to Nonnal Distribution(Magnified). 
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example， suppose the value of the left tenn in Eq. (4.9) becomes 0.97725， which co汀esponds

to the probability of X ::; m + 2σin a nonnal distribution. The value of left tenn in Eq. (4.11) 
becomes 0.02275. The standard deviation σis calculates as (Xl - xo) /4. 
The discussion so far assumes that the distribution of gate delay is nonnal and hence 

the probability density function fi is a nonnal distribution. In this case， the probability 

density function f out， although it is not a nonnal distribution， can be approximated to a 
nonnal distribution. Two methods for the approximation are shown. Please notice that the 

essence of the statistical static timing analysis explained from Eqs. (4.2) through (4.10) does 

not require that fi is normal. Thus， if the probability density function fi is not nonnal， 

Eq. (4.8) can be still applied to calculate the probability density function fout・Inthis case， 

another appropriate function for fi and f out Is needed， or numerical calculation of fi and 

fout is required. In any case， through the successive calculation of the probability density 

function from the primary input to the prim訂youtput， statistical static timing analysis can 

be perfo口ned.
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Figure 4.3: Difference between fωt and a Normal Distribution(Magnified). 

4.2.3 Criticality 

Method 1 is adopted in Ref. [55]. ln Method 2， a value Xo corresponds to m -3σof a 

normal distribution and Xl to m + 3σfrom the viewpoint of the lower and upper probability. 
Method 2 adjusts Xl of the approximated nonnal distribution to Xl of f仰 t.Fig. 4.4 shows the 
approximation results of Method 1 and Method 2. Method 1 underestimates the delay time. 

On the other hand， in Method 2， the distribution shape of fout where X is larger than Xl is well 

approximated. Therefore， Method 2 is suitable for the approximation to calculate the worst-

case delay Xl accurately. When the definition of the worst-case delay is changed， i.e. the 

value of the left tenn in Eq. (4.9) becomes other value， Method 2 is modified as follows. For 

ln the case of a conventional(not statistical) static timing analysis method， slack is a useful 

measure that represents the timing criticality at each gate[40]. Many perfonnance optimiza-

tion algorithms using slack have been proposed[ 61， 62， 45]， and slack helps to reduce the 

computation time required for the optimization considerably. But in the statistical static tim-

ing analysis， slack can not be used as a measure of timing criticality. Since slack is defined 

as the time difference between the required arrival. time and the latest arrival time， the re四

quired arrival time at each gate is computed from the primary outputs. In statistical static 

timing analysis， the required arrival time at each input can not be calculated independent of 

the arrival times at the other inputs. It is because the arrival time at the output is affected by 
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all the inputs' arrival time(Eq. (4.8)). Thus， the required arrival time can not be propagated. 

AIso the combination of the mean m and the standard deviation σat each gate， which sat-

isfies the delay constraint， is not determined uniquely. So， the required arrival time can not 

be de白ned.This chapter therefore introduces a new measure“criticality" that represents the 

timing criticality at each gate. 

Before the detailed explanation of “criticality"， the concept of“criticality" is explained. 

Under the statistical delay model， many paths have a possibility to become the longest path. 

In other words， many gates have an e百'ectto the distribution of the total circuit delay. To 

speak more rigidly， all gates have an inftuence to the circuit delay distribution although 

the magnitude of the influences is di百erent.Therefore， the timing criticality at each gate 

should be defined as the magnitude of the statistical inftuence to the circuit delay distribution. 

Namely， the gate that has a strong statistical inftuence to the total delay distribution should 

be de白nedas critical. The statistical impact of each gate delay to the total circuit delay is 

modeled as the measure of timing criticality named “criticality"， using a heuristic numerical 

expression. In this model， large“criticality" represents high timing criticality， thus the gate 

with large “criticality" should be resized for reducing the circuit delay. When “criticality" 

is zero， the gate has no statistical inftuence to the circuit delay distribution. So， the gate 

with small “criticality" could be downsized for reducing power dissipation without delay 

increase. Given the measure of“criticality"， the proposed method can choose a candidate of 

gate resizing efficiently. Hereafter， the details of “criticality" is explained. 

The term in the bracket of Eq. (4.8) represents the following probability. 

fi(X)・IIFj(x) = P(Ii + ti = x) . II P(Tj + tj三x). (4.12) 
jヲei j手t

The input with the high probability of Eq. (4.12) a仔'ectsthe distribution of Tout at x strongly. 
The probability of Eq. (4.12) expresses the magnitude of the inftuence that the i-th input 

gives to fout at x.“inf luence/' is defined such that it represents the influence proportion of 
the i-th input in the range of x三Xlas follows. 

州 uencez=C11fλ(x)む(x) ほ p(C2 • x)dxヲ
""1 jヲ正t

(4.13) 

where C1 is a normalization coefficient to satisfy 玄~influencei = 1 and C2 is a constant. 
A term exp( C2 • x) is multiplied in order to emphasize the region of large arrival time. 
However， this is not a primary tenn for the definition of influencei. Also， according to the 
experiments， the value of C2 is not so sensitive to influencei. The value of C2 is empirically 
decided such that the value exp( C2・x)increases by 50% when time x increases by 0.1 ns 
around the time of interest. When inf luencei is 1， f，ωt 1n xさXlis determined by the i-th 
input and the other inputs do not affect fout. Conversely， when influencei is 0， the i-th input 
does not influence on fout in x ~ x} at all.“Inftuence" at each primary output on the overall 
circuit delay time can be similarly obtained by applying the probability density function at 

each primary output to h・
Now the calculation method of “criticality" that represents the timing criticality at each 

gate is explained.“Cri tical i ty“at each gate is defined as the amount of the contribution to the 
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Gate G1 

Gate G 

criticality( G) 

Figure 4.5: Propagation of “Criticality" . 

circuit delay by the paths that go through the gate.“criticality“is propagated from primary 

outputs to primary inputs. Suppose Fig. 4.5 given for anαample. i (G) is defined such that 
the i(G)-th input is connected with gate G. A term influenCei(G) (Gj) means how much the 
i(G)ーthinput a仔ectsthe timing at gate G j in xどXl・Inother words， influenCei(G) (Gj) 
represents how easily the timing criticality propagates from gate Gj to gate G. There-
fore“criticality“propagated from gate Gj to gate G is represented as influencei(G) (Gj) . 
c凶 icality(Gj).

criticαlity(G) = ~ influenCei(G) (Gj) . criticality(Gj)， (4.14) 

where m is the number of fan-outs for gate G. At primary outputs，“inf1uence" means the 
timing criticality itself. lt is because the primary output with large“inf1uence" affects the 
circuit delay strongly， i.e. the timing criticality is high. So，“criticality“at primary outputs is 

set to 1， which enables that Eq. (4.14) is hold even when Gj is a primary output.“criticality" 
can be calculated by the breadth-first trace from the primary outputs. 

The complexity of this statistical timing analysis method and the calculation of “critical-

ity“is linear to the circuit scale. This property of the complexity make it possible to estimate 

and optimize the circuit delay of a large circuit. 
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4.3 Optimization Algorithm 

This section explains a performance optimization algorithm based on statistical static timing 

analysis by gate resizing. Two algorithms are shown， one is for delay optimization and the 

other is for power(area) optimization. These algorithms utilizes“criticality“explained in the 

prevlous sectlon. 

4.3.1 Delay Optimization 

The delay optimization algorithm is shown below. 

Step 1: put all gates into list L. 
Step 2: if L is empty or delay constraint is satisfied， finish optimization. 
Step 3: find the gate with maximum criticality in L. 
Step 4: resize the gate to the size with minimum delay. 
Step 5: if there are no sizes to reduce delay， remove the gate from list L 

and go back to Step 2. 

Step 6: go back to Step 1. 

First all gates are put into the list L of the resizing candidate. When the candidate list 
L is empty or the delay constraint is satisfied， the optimization process finishes. The gate 

with maximum criticality in L is searched. 1t is because the gate with large criticality a仔ects

the circuit delay time strongly. The size of the gate is changed four times， i.e. 2 size-up， 1 
size-up， 1 size-down， and 2 size-down， and evaluate the circuit delay for each case. The size 

that the circuit delay decrease the most is chosen， and the gate is resized to the size. If the 
resizing does not decrease the circuit delay， the gate size is restored and the gate is removed 

from L， and the optimization process goes back to Step 2. Otherwise， the optimization 

process goes back to Step 1. The proposed algorithm searches a solution greedily， so the 

proposed algorithm necessarily reaches the condition that the circuit delay does not decrease 

by resizing the gates in the circuit. 1n this condition， as the steps between Step 2 and Step 

5 are repeated， the number of the elements in the list L decreases. Finally the 1ist L becomes 
empty and the optimization procedure finishes in Step 2. 

4.3.2 Power(Area) Optimization under Delay Constraint 

The gate resizing algorithm for power(area) reduction is explained. 

Step 1: put all gates into list L. 

Step 2: if L is empty， finish optimization. 
Step 3: find the gate with minimum criticality in L. 
Step 4: resize the gate to the size with minimum power dissipation without 

delay violation. 
Step 5: if there are no gate sizes to choose， remove the gate from list L and 

go back to Step 2. 

Step 6: 90 back to Step 1. 
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First all gates are put into the list L of the resizing candidate. When the candidate list L is 

empty， the optimization process finishes. The gate with minimum criticality in L is searched， 

because the gate with small criticality scarcely inftuences on the circuit delay. The size of the 

found gate is changed to 2 size-down and 1 size-down from the initial size， and the circuit 

delay and the power dissipation are evaluated for each case. The found gate is down-sized 

to the size that makes the power dissipation minimum without the delay violation. 1f the 

resizing does not reduce power dissipation without delay violation， the gate is removed from 

L and the optimization process goes back to Step 2. Otherwise， the optimization process 

goes back to Step 1. At the end of the optimization， there become no gates to reduce power 

dissipation without delay violation. The list L becomes empty by the repetitions between 
Step 2 and Step 5， and finally the optimization procedure finishes. 
The optimization algorithm explained above has the possibility of falling into a bad local 

minimum solution. 1n order to escape from a bad local minimum solution， the circuit delay 

is optimized a little bit， such as 0.1 % of its circuit delay， using the algorithm in Sec. 4.3.1. 

After that， the above algorithm is applied again. This loop is repeated for several times. 

4.4 Applications 

This section shows some applications of the statistical timing analysis method and the optト

mization algorithm explained in previous sections. Performance optimization based on the 
statistical timing analysis has a considerable possibility to contribute high-performance and 
high-reliability LSI design. 1t is assumed that the gate delay ftuctuation discussed in this 

section can be approximated to a normal distribution. If the distribution is not normal， sta-
tistical timing analysis can be still performed as described in Sec. 4.2.2. In this case， the 

modification of the method for expressing the probability density functions is needed. 

4.4.1 Uncertainties of Wire Capacitance during Physical Design and 

Uncertainties in Signal Waveforms 

As the inftuence of wire on the circuit delay increases， timing closure has become a serious 
problem. This problem is caused by the uncertainties of wire capacitance during physical 

design. Also， the wire capacitance estimated from a final layout has a certain amount of 

e汀ors.Because of the simple definition of the transition time， there are many di仔erent

waveforms that have the same transition time， which causes the gate delay uncertainty. When 

the gate delay is derived from the two-dimensional look-up table with capacitive load and 

transition time as parameters， the gate delay is represented as folIows. 

delαy=α。+α1・ttran+α2・CLoad+α3・ttran. Cloα小 (4.15) 

where α0，α1ぅα2and α3 are the constants decided by the look-up table， CZoαd is the load ca-

pacitance and ttrαn is the transition time of the input signal. If the uncertainties of Cload at 
each design phase and ttran can be modeled properly， the distribution of the gate delay can be 
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derived. Then， the proposed perfo口nanceoptimization method can eliminate the excessive 

design iteration and the over-design. 

4.4.2 Local Fluctuations in Transistor Characteristics， Supply Voltage 
and Temperature 

The local variation of the transistor characteristics is represented as the fluctuation of the 

device parameters(Vt， s，…) and the process parameters(tox， W， L，…). The operating 
parameters(均D，Temp) aIso ftuctuate IocaIly. The gate delay time del仰 canbe represented 
as a function of Pi， where Pi corresponds to each device， process， or operating parameters. 
When the local changes are not so large， the change of the gate delay time ddelαy can be 
represented as follows. 

ddelαy= :Ldi・dPi， (4.16) 

where di is a constant. ln the case of the local fluctuation， dPi varies according to a certain 
statistical distribution. The distribution of the gate delay time can be obtained. With the 

derived delay distribution， the circuits can be optimized considering the local fluctuations. 

4.5 Experimental Results 

In this section， some experimental results are shown. First the accuracy of the worst-case 

delay estimation is verified. The next experiment demonstrates the delay fluctuation caused 

by the timing uncertainties of local random change. Finally the de1ay and power optimization 

results under the condition that the wire capacitance fluctuates are shown. 

The circuits used for the experiments are taken from ISCAS85 and LGSynth93 bench-

mark sets. These circuits are synthesized and mapped by a commercial logic synthesis 

tool[56] under a reasonable wire load model such that the power dissipation is minimized 

under the following four delay constraints. The circuits labeled “一1¥'are generated under the 

minimum as well as reachable delay constraints of the respective circuits. The delay con-

straints given to the circuit with “_B"，“_C" and“_.D" are made loose gradually in this order. 

The ratio of the total gate capacitance and the total wire capacitance is about 1: 1. The target 

library is a standard cell library used for actual fabrication in a 0.35μm process with three 

metal layers. The library includes basic and complex gates. Buffer and Inverter have eleven 

varieties in the driving strength and other gates have six varieties. A typical delay time at 

each gate is calculated based on two-dimensional look-up tables with capacitive load and 

slew as parameters. The delay difference between rise/fall transitions is considered. The en-

ergy dissipated at each gate， which includes capacitive and short-circuit power dissipation， 

is derived from a look-up table with capacitive load and slew as parameters. The look-up 

tables of the gate delay， the transition time of the output signal and the power dissipation are 

characterized by circuit simulation. As for the power evaluation， it is assumed that all gates 

have the same switching probability of 0.2 and the cycle time of the input pattems is 100ns. 
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4.5.1 Accuracy of Worst-Case Delay Calculation 

The accuracy of the worst-case delay calculation is verified. Each gate delay time is assumed 

to ftuctuate according to nonnal distribution. The mean is the typical gate delay time and 

the standard deviation is 200/0 of its gate delay time. The worst-case delay time de白ned

as Xl in Eq. (4.9) is evaluated. Three methods are compared， Monte Carlo simulation， the 

statistical static timing analysis with Method 1 (Section 2.2) which is equivalent to Ref. [55]， 

and the proposed statistical static timing analysis with Method2(Section 2.2). In Monte 

Carlo simulation， the number of evaluation is 100，000. The comparison of the accuracy iおS 
shown in Table 4.1し.The column under 

臼uctωua幻tiぬon.The columns “Monte Carlo"，“SSTA[55]"，“Proposed SSTA" coπespond to the 

results of Monte Carlo simulation， the statistical static timing analysis in Ref. [55] and the 

proposed statistical static timing analysis respectively. The columns “Delay" are the worst-

case delay time of the circuits with delay ftuctuation.“Increase" means the proportion of 

the difference between the typical(no ftuctuation) delay and the worst-case delay with delay 

ftuctuation.“E汀or"represents the estimation e汀orcompared with Monte Carlo simulation. 

The range of the estimation e汀orin the proposed method is -0.8 rv 2.9%， and the average 

e汀oris 1.4%. As for SSTA[55]， the range is -6.7 rv -2.7%， and the average is 4.3%. The 
improvement of the approximation to normal distribution contributes a better calculation of 
the worst-case delay Xl・

4.5.2 Circuit Delay Fluctuation -Case Study -

The circuit delay ftuctuation caused by the timing uncertainties of local random ftuctuation 

is demonstrated. First the delay uncertainty sources are discussed， and an assumption of the 

delay uncertainty sources is made. Then the result of the statistical static timing analysis 
under this assumption is shown. 

Assumption of Delay Fluctuation Sources 

As for the sources of delay ftuctuation， two sources are considered; manufacturing variability 
and design uncertainties of wire capacitance. 

Manufacturing Variability 

The manufacturing variability consists of two components; the variability in transistor 

characteristics and the variability in interconnect structure. First the transistor characteristics 

is discussed. The ftuctuation is composed of local components(different for individual gates 

in a circuit) and global components(the same for all gates in a circuit)[25]. In the process 

used for the experiments， the worst-case delay evaluated from the given worst-case SPICE 

parameters is 300/0 larger than the typicaトcasedelay. Thus， if the ratio of the local f1uctuation 

component and the global ftuctuation component is assumed to be 2: 1， 3σof the local delay 
variability becomes 20%. 
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Table 4.1: Accuracy of Worst-Case Delay Calculation. 

Typ. Monte Carlo SSTA[55] Proposed SSTA 

Circuit Delay Delay Increase Delay Error Delay Error 

(ns) (ns) (%) (ns) (0/0 ) (ns) (%) 

C432..A 4.48 5.57 24.3 5.39 -3.2 5.65 1.3 

C432_B 4.97 6.10 22.7 5.90 -3.3 6.19 1.5 

C432_C 5.91 7.13 20.6 6.94 -2.7 7.26 1.8 

C432工〉 6.92 8.58 24.0 8.35 -2.7 8.79 2.4 

C3540..A 6.71 8.28 23.4 7.97 -3.7 8.43 1.8 

C3540_B 7.18 8.77 22.1 8.45 -3.6 8.95 2.1 

C3540_C 7.97 9.65 21.1 9.30 -3.6 9.80 1.6 

C3540_D 8.92 10.69 19.8 10.32 -3.5 10.90 2.0 

C5315_jミ 6.00 7.73 28.8 7.31 -5.4 7.83 1.3 

C5315_B 6.97 8.58 23.1 8.26 -3.7 8.74 1.9 

C5315_C 7.98 9.74 22.1 9.48 -2.7 10.02 2.9 

C5315_D 8.90 10.77 21.0 10.47 -2.8 11.03 2.4 

C7552..A 4.84 6.12 26.4 5.86 -4.2 6.20 1.3 

C7552_B 5.02 6.28 25.1 5.98 -4.8 6.33 0.8 

C7552_C 5.99 7.39 23.4 7.07 -4.3 7.48 1.2 

C7552_D 6.95 8.53 22.7 8.18 -4.1 8.68 1.8 

alu4..A 3.31 4.25 28.4 4.00 -5.9 4.23 ー0.5

alu4_B 3.99 5.10 27.8 4.76 骨6.7 5.10 0.0 

alu4_C 4.95 6.18 24.8 5.82 -5.8 6.14 -0.6 

alu4_D 5.83 7.26 24.5 6.80 -6.3 7.20 ー0.8

des_A 3.60 4.73 31.4 4.52 -4.4 4.78 1.1 

des_B 3.98 5.26 32.2 5.00 -4.9 5.26 0.0 

des_C 4.96 6.50 31.0 6.12 -5.8 6.46 ー0.6

des_D 5.91 7.52 27.2 7.17 -4.7 7.59 0.9 

24.9 4.3 1.4 

Next the variability in interconnect structure is examined. Reference[63] analyzes the 

decomposition of the delay variability due to manufacturing fluctuation. The analysis indi-

cates that the interconnect is responsible for 12 to 18% of the total delay variability and the 

rest (82 to 88%) is contributed by transistors. With this ratio of each contribution， 3σofthe 

total delay variability becomes 24%. Thus， in this case study， the standard deviation of the 

delay due to transistor and interconnect variabilities is estimated to be 8%. 

Design Uncertainties of Wire Capacitance 

The estimated wire capacitances during layout design are di百'erentfrom the capacitances 

of the finaI layout. At cell placement design phase， there are uncertainties in wire route and 
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Figure 4.6: Distribution of Wire Capacitance Uncertainties at Cell Placement Design Phase. 

adjacencies. Recently the proportion of the coupling capacitance between adjacent wires 

increases， which results in the increase of uncertainties at placement phase. The ratio of the 

estimated capacitance at placement phase compared with the capacitance of the final layout 

is evaluated using a 32-bit CPU circuit(about 13k cells). Fig. 4.6 shows the distribution of 

the estimation e町orof the wire capacitance at cell placement phase. Even when the cell 

place is白xed，there is the wire capacitance uncertainty of which the standard deviation is 
250/0 of the estimated capacitance. 

RC extraction tools have a certain amount of estimation e汀ors.The amount of e汀orsin 

capacltance extraction may vary depending on the used algorithm (2D， quasi 3-D， 3D etc.) 

as well as on the complexity of the interconnect strucωres under extraction. It is not easy to 
estimate the uncertainty in the extraction， but the standard deviation of 10% is thought to be 
a reasonable guess. 

Summary of Uncertainties 

From the above discussion， the assumption of the delay uncertainty sources is summa-
rized as follows. 

Manufacturing Variability The delay time of each gate fluctuates such that the mean delay 

is its typical delay time and the standard deviation is 80/0 of its typical delay. 

Extraction Error The extracted wire capacitance has the e汀orof which σis 100/0 of the 
extracted value. 

Uncertainty at Placement The wire capacitance estimated at cell placement design phase 

has the uncertainty of wire capacitance. The mean is the estimated value and the 

standard deviation is 25% of the estimated value. 
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ResuIts 

The worst-case delay time is evaluated as Xl in Eq. (4.9)， which co汀espondsto mean+ 3σin 

a normal distrib山on，under each uncertainty source. The result of statistical timing analysis -st削 nin Table 4.2. The column u耐 r“Typ.Delay" is批 circuitdelay time with no delay 
ftuctuation. The columns “Manufacturing Variability"，“Extraction Error" and “U ncertain ty 

at Placement" coπespond to the results under each uncertainty source respectively. The 

columns “Delay" are the worst-case circuit delay time with delay ftuctuation.“Inc." means 

the percentage of the delay time increase caused by delay ftuctu剖ion.引V+EE"is the 
result under both manufacturing variability and extraction e汀or.This situation co打esponds

to the final delay evaluation of the completed circuit using an accurate RC extraction too1. 

“MV+EE+UP"means the situation that the circuit delay is estimated at cell placement design 

phase. So， the result under all three ftuctuation sources is listed below “MV+EE+UP"・The

column “CPU Time" represents the CPU Time for timing analysis on Alpha Station. 

Due to manufacturing variability， extraction error， and uncertainty at placement， the 

worst-case circuit delay increases by 9.2%， 2.4% and 8.2% on average from the delay with唖
outnuctllation，respectively-The amountof increase varies from circuit to circuit under the 

sameuncertaintv sources-For example，the increase caused by the uncedainty at placement 
m g e s fr o m 4 . m t o 1 4 . 7 % ， w h i c h i n d i c at e s t削hat瓜tt恥h恥e1m叫m仰p似 ofun肌n即1叩cer抗伽t
d必i仔er向entin each circuit. 
In the evaluation of the circuit from the final la勾you凶lt(“MV+EE"
9.80/0 on average from the typi比caldelay. This result indicates that the circuit design does 
not succeed without the consideration of local delay uncertainties.In the Case of the dedlay 

estimation at cell p判lacαeme叩ntdesign phase(“MV+EE+UP" 

delay time increases by 13.40/0. 

4.5.3 Delay and Power Optimization under Wire Capacitance Uncer-

tainties 

The delay and power optimization results under wire capacitance uncertainties is demon-

strated.The wire capacitance is assumed to nuctuate according toa normal distribution.The 

mean is the value used in the logic synthesis-The standard deviation iS50%of its mean 

value， which coπesponds to the delay uncertainties of 200/0 or less. 
First， the delay optimization results is shown. The circuits is optimized to minimize the 

delay time. Please note that the initial circuits used for this experiment訂esynthesized and 

optimized for minimizing the circuit delay under the deterministic delay model.Table 43 

shows the delay optimization results.“Initial" and “Optimized“co汀espondto the initial 

circuit before the optimization and the circuit optimized for delay minimization respectively-

“Area"is calculated as the sum of the cell area-The proposed method reduces the delay time 

by 8.40/0 on average. This result shows出atthe circuit opmized without the considejati?n 
ofnuctuations is not optimal-The optimization method considering statlstlcaI varlat10IllS 

e仔ectivefor getting better circuits. 
Next， the power optimization results(Table 4.4) are shown. The power dissipation is 
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Table 4.2: Delay Fluctuation 
Manufacturing Extraction Uncertainty MV+EE MV+EE 

Typ. Variability Error at Placement +UP CPU 
Circuit Delay Delay Inc. Delay Inc. Delay Inc. Delay Inc. Delay Inc. Time #Gates 

(ns) (ns) (%) (ns) (%) (ns) (%) (ns) (%) (ns) (%) (s) 
C432_A 4.48 4.89 9.2 4.52 0.9 4.76 6.3 4.90 9.4 4.98 1 1.1 0.03 178 

C432_B 4.97 5.39 8.5 5.02 1.0 5.19 4.4 5.40 8.7 5.49 10.5 0.03 154 

C432_C 5.91 6.37 7.8 6.00 1.5 6.21 5.1 6.40 8.3 6.52 10.3 0.03 144 

C432J) 6.92 7.60 9.8 7.08 2.3 7.41 7.1 7.63 10.3 7.82 13.0 0.03 130 

C3540_A 6.71 7.32 9.1 6.77 0.9 7.04 4.9 7.32 9.1 7.39 10.1 0.17 871 

C3540..B 7.18 7.78 8.4 7.25 1.0 7.51 4.6 7.79 8.5 7.89 9.9 0.16 835 
C3540_C 7.97 8.61 8.0 8.13 2.0 8.56 7.4 8.63 8.3 8.94 12.2 0.16 703 

C3540..D 8.92 9.59 7.5 9.06 1.6 9.46 6.1 9.62 7.8 9.86 10.5 0.16 657 
C5315_A 6.00 6.60 10.0 6.13 2.2 6.44 7.3 6.62 10.3 6.82 13.7 0.28 1∞l 
C5315...B 6.97 7.61 9.2 7.15 2.6 7.54 8.2 7.65 9.8 7.89 13.2 0.25 946 
C5315_C 7.98 8.69 8.9 8.17 2.4 8.59 7.6 8.73 9.4 9.01 12.9 0.25 932 

C5315J) 8.90 9.65 8.4 9.12 2.5 9.62 8.1 9.70 9.0 10.04 12.8 0.26 919 

C7552_A 4.84 5.33 10.1 4.93 1.9 5.16 6.6 5.34 10.3 5.47 13.0 0.29 1339 

C7552...B 5.02 5.49 9.4 5.11 1.8 5.34 6.4 5.51 9.8 5.63 12.2 0.29 1248 
C7552_C 5.99 6.49 8.3 6.08 1.5 6.43 7.3 6.52 8.8 6.72 12.2 0.31 1127 
C7552J) 6.95 7.56 8.8 7.12 2.4 7.52 8.2 7.61 9.5 7.86 13.1 0.32 1087 

alu4_A 3.31 3.63 9.7 3.37 1.8 3.58 8.2 3.64 10.0 3.74 13.0 0.24 1386 

alu4...B 3.99 4.40 10.3 4.11 3.0 4.38 9.8 4.43 11.0 4.61 15.5 0.26 1219 
alu4_C 4.95 5.35 8.1 5.10 3.0 5.46 10.3 5.40 9.1 5.67 14.5 0.31 1184 

alu4...D 5.83 6.30 8.1 6.06 3.9 6.50 11.5 6.37 9.3 6.72 15.3 0.34 1167 
des_A 3.60 4.02 11.7 3.70 2.8 3.98 10.6 4.04 12.2 4.20 16.7 1.00 2252 

des_B 3.98 4.44 10.6 4.16 4.5 4.51 13.3 4.47 12.3 4.75 19.3 1.26 1927 
des_C 4.96 5.50 10.9 5.23 5.4 5.69 14.7 5.58 12.5 5.94 19.8 1.25 1769 

des...D 5.91 6.49 9.8 6.14 3.9 6.62 12.0 6.55 10.8 6.93 17.3 0.87 1714 

|Average" - 11 9.2 巳土L 8.2 11 - 1 9.8 1 - i 13.411 

optimized under the delay constraints of the initial delay time. The proposed method reduces 

power dissipation by 9.3% on average and area by 5.1 % without the increase of de]ay time. 

4.6 Conclusion 

In this chapter， a perfoロnanceoptimization method based on statistical static timing analysis 

is proposed. A technique that improves the accuracy of the worst-case delay analysis is 

developed. A new measure that represents the timing criticality at each gate is devised， and 

the optimization algorithm utilizing the measure is shown. The accuracy of the worst-case 

delay calculation is verified experimentally. The maximum estimation e汀oris within 3%. 

The delay ftuctuation is evaluated under some of the delay uncertainty sources. The results 

also demonstrate that the proposed method can reduce delay and power dissipation from the 

circuits optimized without the consideration of ftuctuation. 
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Initial Optimized CPU 

Circuit Delay Area Power Delay Delay Area Power Time 
(ns) (mm2) (mW) (ns) Reduction(% ) (mm2) (mW) (s) 

C432__A 5.22 0.017 33 4.86 6.9 0.018 34 12 

C3540λ 7.60 0.083 147 7.00 7.9 0.088 159 462 

C5315_A 7.17 0.089 138 6.39 10.9 0.093 147 260 

C7552_A 5.58 0.134 234 5.19 7.0 0.138 243 695 

alu4_A 3.96 0.122 244 3.65 7.8 0.126 254 224 

des_A 4.56 0.214 383 4.11 9.9 0.214 389 2836 

Table 4.3: Delay Optimization. 
Chapter 5 

Post-Layout Transistor Sizing for Power 
Reduction in Cell-Base Design 

吋一 8.4 This chapter discusses a transistor sizing method that down-sizes MOSFETs inside a cell 

to eliminate redundancy of cell-based circuits as much as possible. The proposed method 
reduces power dissipation of detail-routed circuits while preserving interconnects.The ef-
fectiveness of the proposed method is expedmenuHy evaluated using 5circuits.The power 
dissipation is reduced by 77%maximum and 65%on average without delay increase. 

5.1 Introduction 

|Averagel 5.1 9.3 

Cell-base design has a well-established framework for the development of ASICs， and has 

been widelydop凶 On山 o伽 h叫 cell-b蹴 dcircuits inherently contain redu仙川，
for example，1n power dissipation.In this chapter，a post-layout trmsistor sizing method 
for power reduction is proposed-The proposed method aims to reduce the redundancy of 

cell-base design and to obtain high perfoロnancecircuits close to full-custom quality while 
keeping the cell-base design framework.MOSFETs inside a cell is down-sized continuously， 
and the corresponding cell layout is generated on the ny-The cell layout generation system 
usedintheproposedmethod does notchangethe location ofinputand outputpins while the 

transistor widths inside a cell are varied[27]. Exploiting this feature， the proposed method 

can optimize detail-routed circuits， without any mod出i白catio∞ns of in凶附terc∞O∞n町r附 t岱s，using the 
preclse wire capacitance values extracted from the detail-routed circuits. 

Many transistor sizing methods for delay and power optimization have been proposed[l， 

3，64，2，51.These methods need to derive the delay time of each cell at any MOSFET 

size. Refs.[I， 3， 64] utilize Elmore delay model. ln this delay model， the optimal solution of 

the problem can be obtained using a simple variable-transfonnation method. However. the 

accuracy of the delay model is not high enough， and hence the optimized circuits may violate 

the delay constraints. In Refs. [2， 5]， the cell delay is approximated as a linear function of the 

cell size， and transistor sizing is formulated as a Iinear optimization problem. This method 

also can obtain the optimal solution of the formulated problem. However， the linearization 

Initial Optimized CPU 

Circuit Delay Area Power Area Area Power Power Time 
(ns) (mm2) (mW) (mm2) Reduction(% ) (mW) Reduction(%) (s) 

C432_A 5.22 0.017 33 0.016 5.9 29 12.1 3 

C3540_A 7.60 0.083 147 0.079 4.8 135 8.2 100 

C5315_A 7.17 0.089 138 0.087 2.2 131 5.1 79 

C7552_A 5.58 0.134 234 0.126 6.0 209 10.7 409 

alu4_A 3.96 0.122 244 0.116 4.9 220 9.8 290 

des_A 4.56 0.214 383 0.199 7.0 346 9.7 5447 

Table 4.4: Power Optimization 
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of the cell delay may introduce e汀orsin timing analysis. 

Recently， the delay time due to wire capacitance occupies a considerable pa口ofthe to-

tal circuit delay. Many of the previous transistor sizing methods[ 1， 3， 2， 5] concentrate on 

circuit-level optimization， and the consideration on layout is not enough. When the optimiza-

tion result is applied to the layout， routing is affected， i.e. wire capacitances in the resulting 

layout become different from the initial circuit before transistor sizing. The variation of 

wire capacitance may cause a violation of delay constraints. In Ref. [64]， transistor sizing， 

re-routing and compaction techniques are perforrned to the circuit repeatedly for better con-

sideration on layout. In a DSM process， coupling capacitances between adjacent intercon-

nects in the same metallayer or two successive metallayers become dominant. The accurate 

capacitance evaluation of all the interconnects inftuenced by re-routing and compaction be-

comes computationally intensive and hence the repeated evaluation inside the optimization 

loop may become impractical. 

The proposed method handles detail-routed circuits designed in cell-base design style. 

The proposed method down-sizes MOSFETs inside a cell for power reduction without any 

modifications of wiring using accurate values of wire capacitance. The proposed method 

uses a cell layout generation system called VARDS[27] that can generate cell layout with 

variable transistor width while keeping the location of terminals unchanged. In order to get 

the accurate cell delay time， the proposed method utilizes four-dimensional look-up tables 

with four variables; gate widths of PMOS and NMOS transistors， input transition time， and 

load capacitance. 

This chapter is organized as follows. Section 5.2 explains the post-Iayout transistor sizing 

method. Cell layout generation， cell delay model， and transistor sizing algorithms are dis-

cussed. Section 5.3 demonstrates some experimental results. Finally， Section 5.4 concludes 

the discussion. 

5.2 Post-Layout Transistor Sizing 

This section explains a transistor sizing method for power reduction preserving intercon-

nects. First cell layout generation for post-layout transistor sizing is discussed. Next， a 

cell delay model that can calculate delay time for any PMOS and NMOS transistor sizes is 

shown. Then， the noise margin constraints that guarantee the co汀ectbehavior of the circuits 

are discussed. Finally， a transistor sizing algorithm for power reduction is explained. 

5.2.1 Cell Layout Generation 

ln order to apply the optimization result to the layout without any modifications of intercon-

nects， the following features are required for celllayout generation. 

• Each transistor width can be varied easily and ftexibly. 

• The location of each pin is fixed even when transistor widths are varied. 

5.2. POST-LAYOUT TRANSISTOR SIZING 

(a) AIl甘釘lsistorwidths are 

the maximum. 
(b) Every transistor width 

is different. 

Figure 5.1: Examples of AOI21 Cell Layout. 
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The fixed locations of inputJoutput pins are needed to preserve interconnects. A cell 

layout generation system VARDS， which satisfies the above two requirements， has been 

proposed[27]. Fig. 5.1 shows an example of AOI21 celIs whose height is 9 interconnect 

pitches. The AOI21 cell in Fig. 5.1 (a) is generated such that al1 transistor widths are the 
maximum. Fig. 5.1 (b) is an example that every transistor width is different. 

5.2.2 Cell Delay Model 

In the proposed method， PMOS and NMOS transistors inside a cell are resized separately. 

The proposed method hence requires a cell delay model that has four variables，日ノムWn，tt，
and cl， where 同(Wn) is the gate width of PMOS(NMOS) transistor， t枕tiおsthe tran創釦n悶l
of the input signal， and cl is the capacitive load. Four-dimensionallook-up tables with four 

variables WPl Wn， tt， and cl are built beforehand using a circuit simulator. Cell delay time 
is derived from the look-up tables using the following three-step interpolation(Fig. 5.2). In 

the case of a multi四stagecelI， the cell is divided into single-stage cells， and the delay time of 
each single-stage cell is calculated. 

Stepl: Find four neighboring points(P1l PゎP3l P 4) around the evaluation point(P ev)， in 
two-dimensional 陀-Wnspace 

Step2: Calculate the delay time at each point of P1l P2， P3， P4 using Eq. (5.1) in two-
dimensional tt-cl space . 

Step3: Inte中olaterise/fall delay time using Eq. (5.2/5.3) in lt乃-l1九 spacefrom the four 
values at P1l P2l P3， P4 calculated at Step2. 
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Evaluation 
Point(Pev) cl 

Wp 

Steo 1: 
Find P1 ，P2，P3，P4 

Steo 2: 
delay=A+B*世
+C*cl+D*抗合cl

Steo 3: 
rise_delay=E+n八Np
+G*Wn+H*Wn/Wp 

Figure 5.2: Derivation of Cell Delay. 

delαy = A + B . tt + C . cl + D . tt . cl， 

rise_delay = E + F 干;T +G. Wn + HよWn1l 

r r p • トp

fαμelayニ I+JW2+KEL+L wム
r r η..  n 

energy = M + N .日ヤ+0・Wn+p.阪Tp'Wn， 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

where， A， Bヲ… 1P are coefficients to be detennined such that the four values of the neigh-
boring points are assigned to each interpolation equation. The transition time of the output 

signal is calculated similarly. In the case of the dissipated energy， Eq. (5.4) is used for the 

inte中olationat Step3. 

5.2.3 Noise Margin Constraints 

Adequate amounts of noise margins are important to ensure the co汀ectbehavior of the cir-

cuits. The noise margins are defined as N MH = VOH一V1Hand NML = V]L一VOL.The 
noise margin depends on the ratio sR， which is expressed as sn/ sp， where sn(p) is the n(p)-

device transconductance. The range of s R that guarantees proper noise margins is calculated. 
The upper bound sR(mαx) can be derived from the following two equations[65， 66]. 

2Vout -VDD +時p+ sR(mαx)時π
V]L = ぅ (5.5)

1 + sR(max) 

sR(max)(川L一 VTn)2二一(Vout-VDD)2 (5.6) 

+2(川L-VDD-lケp)(Vout -VDD). 

Similarly， the lower bound sR(min) can be obtained from the following two equations. 

3R(min) (2九ut+時n)+ VDD +時p
竹H= 乃， (5.7) 

1 + sR(min) 
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sR(min) [2(V1H -VTn)μ -Vo~t] 
= (VIH -VDD一vrp)2，

65 

(5.8) 

where 時p，時nare the threshold voltages of PMOS and NMOS transistors. The pro-
posed method resizes PMOS and NMOS transistors for power reduction within the range 

of sR(min)くsR<sR(mαx)・

5.2.4 Transistor Sizing AIgorithm 

A transistor sizing algorithm for power reduction based on sensitivity calculation is devised. 

The proposed algorithm executes iterative optimization that decreases 6size gradually， where 
6size is a variable that represents the amount of transistor width reduced in a single iteration. 

Stepl: Set 6size to an initial value. 

Step2: If 6size is smaller than a pre-defined value， the optimization procedure finishes. 

Step3: At each cell， evaluate the sensitivity， i.e. the amount of power reduction when the 

transistor widths decrease by 6size' If the violations of noise margin or transition time 
constraints occur， sensitivity calculation is not performed. 

Step4: Select the cell with the best sensitivity. If there are no cells with positive sensitivity， 

hal ve 6 size and go back to Step2. 

StepS: Decrease the transistor widths of the selected cell by 6size， and update the timing 
infonnation of the cells a百'ectedby the down-sizing. If delay violation occurs， cancel 

the down-sizing. 

Step6: Find the cell with the next best sensitivity. If there are no cells with positive sensi-

tivity， go back to Step3. Otherwise， go back to StepS. 

First， the above algorithm is executed for power reduction such that PMOS and NMOS 

transistors are resized simultaneously with the same sn/ゐratio.Next power dissipation is 
optimized resizing PMOS and NMOS transistors independently， and then the final optimiza-

tion result is obtained. 

5.3 Experimental Results 

In this section， some experimental results are shown. First the accuracy of the cell delay 

model based on look-up tables is demonstrated. Next the power optimization results are 

shown. 

Celllayouts are generated using VARDS[27] in a 0.35μm process with three metallayers. 

The cel1 height is 13 interconnect-pitches， and the size ratio of PMOS and NMOS transis-

tors is 1. In transistor sizing， MOSFETs are down-sized within the range that VARDS can 

generate cell layouts. The maximum transistor width of standard driving-strength(x 1) cells 



66 CHAPTER 5. POST-LAYOUT TRANSISTOR SIZING FOR POWER REDUCTION 

Table 5.1: Average Error of Cell Delay Model Based on Look-up Tables. 
Tran- Variables of 1nterpolation 

Cell sltlon Wp，Wn， tt，cl ltVP1 wn 
tt、cl (Wp， wn fixed) (tt， cl fixed) 

INV nse 0.003ns 0.002ns O.OOlns 

1.90/0 1.4% 1.00/0 

fall 0.004ns 0.002ns 0.002ns 

1.30/0 0.9% 0.4% 

NAND2 nse 0.003ns 0.002ns O.OOlns 

2.1% 1.5% 0.9% 

fall 0.005ns 0.002ns 0.003ns 

1.0% 0.6% 0.4% 

NOR2 nse 0.002ns O.OOlns O.OOlns 

1.20/0 0.80/0 0.6% 

falI 0.005ns 0.002ns 0.003ns 
1.2% 0.70/0 0.5% 

is 6.2μm， and the value of W/L is 15.5. The transistor width can be reduced to 0.9{Lm. Ref-
erence [26] reports that the optimal value of WIL is around 20. The transistor width of the 

library used in the experiments is smaller than the reported value. 

5.3.1 Accuracy of CeIl Delay Model 

First the accuracy of the cell delay model is examined. INV， 2-input NAND and 2・input

NOR cells of standard driving-strength(x 1) are used for this experiment. 1n the case of 

NAND and NOR cells， the characteristics of the input pin that is close to the output tenninal 

are evaluated. The delay time derived by the interpolation in Sec. 5.2.2 is compared with 

the delay time evaluated by circuit simulation at the following 6561 points. The gate widths 

of PMOS and NMOS transistors仰いltVn)are varied to 0.9， 1.2， 1.5， 2.0， 2.5， 3.2， 4.0， 5.0， 
and 6.2μm， respectively. The eva1uation points of the input transition time (tt) are 0.02， 

0.125， 0.25， 0.375， 0.5， 0.65， 0.8， 1.0， and 1.2ns， a1so the points of load capacitance (cl) 

are 0.005， 0.025， 0.05， 0.075， 0.1， 0.15， 0.2， 0.35 and 0.5pF. The combinations of 同 and
Wn that the noise m訂ginbecomes smaller than 0.25VDD訂eexcluded. When the absolute 
value of the de1ay time is extremely small， the re1ative e町orbecomes meaninglessly large 

while absolute e汀oris sufficient1y small. The relative eπor is not hence calcu1ated when the 

delay time is less than O.Olns. The size of 100k-up tables is 5x5x5x5. Tab1e 5.1 shows the 

eπor of the cell de1ay model. The interpo1ation eπor of the delay time derived in WP-Wn 
space is comparable with the e汀orcalcu1ated in tt-cl space. It therefore can be seen that the 

interpolation in Wp-Wn space by Eqs. (5.1) and (5.2) is reasonable. The average e汀orof the 

de1ay time calculated from 4・dimensional100k-up tables of Wp， Wn， tt， and cl is less than 
2%. Compared with the interpolation in tt-cl space， the average e汀orincreases by 0.50/0. 
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5.3.2 Power Optimization Results 

The power optimization results are shown. The circuits used for the experiments are an ALU 

in a DSP for mobile phone[67] (dsp_alu) and the circuits included ISCAS85 and LGSynth93 

benchmark sets (C3540， alu4， C7552， des). These circuits are synthesized under two dif-

ferent constraints [56]: minimizing the circuit delay， and minimizing the circuit area. Also 

two transition time constraints， 0.5ns and 1.0ns are given. Thus， each circuit is synthesized 

under four di仔erentconstraints in total. The layouts of the synthesized circuits are ，gen-

e則 ed，and the wire capacitance values extracted from the layouts for transistor sizing are 

utilized. The circuit scale is 943 to 12460 cells. The cell library used for generating initial 

circuits includes six varieties in driving-strength for INV and BUF (x 1， x2， x3， x4， x6 and 

x8). 1n the case of NAND2， NAND3， AND2， AND3， NOR2， NOR3， OR2， OR3， A0121， 

OA121 celIs， there are four varieties(x 1， x2， x3， x4). The circuit delay time is evaluated by 

a transistor-1evel static timing analysis too1[68]， and the power dissipation is estimated by 

a transistor-level power simulator[ 41]. The input pattems are randomly generated with a 

transition probability of 0.5. The number of applied pattems is 100， which is the adequate 

number for power estimation at circuit level[43]. The cycle time of the input pattems is 
100ns. 

Power dissipation is optimized under the delay constraints of the initial circuits' delay 

time. The initial value of dsize in the optimization a1gorithm(Sec. 5.2.4) is 12.4μm， and the 

termination value is 0.1μm. The constraints that the noise margin is larger than 0.25¥-匂Dare 

given. Table. 5.2 shows the power optimization results. The column “Total Width" represents 

the sum of the gate widths of MOSFETs in the circuit.“CPU Time" represents the CPU time 

required for power optimization on an Alpha Station. The proposed method reduces power 

dissipation by 77% maximum and 65% on average. The tota1 transistor width is reduced to 

25% of the initia1 circuits. The power reduction in small circuits is larger than the one in 

large circuits， because large circuits usually have heavier wire load. In the case of the largest 
circuit dsp_alu， the power dissipation is reduced by about 50%. In some circuits， the circuit 
delay increases though the initial delay time is given as the delay constraints. One reason 

is that the optimized circuits become sensitive to the eπor of cell delay model， which will 

be discussed in Chapter 6. Further examination of the reasons is required， considering the 
accuracy of the delay calculation tool as well. 

The following discussion examines the optimization result of des circuit generated for 

minimizing circuit delay under the transition time constraint of 0.5ns. Fig. 5.3(a) shows a 

p訂tof the initiallayout. Fig. 5.3(b) co汀espondsto the transistor-sized layout of the same 10-

cation. The transistor sizes inside celIs become di仔erentin instance by instance. PMOS and 

N恥10Stransistors inside each cell are resized separately. Also the routing is perfectly pre-

served. The proposed method generates celllayouts on the fty according to the optimization 
results， and replaces cells without any interconnect modifications. 

First the re1ationship between the amount of power reduction and the increase of driving-

strength varieties is demonstrated. Halving dsize in the optimization a1gorithm(Sec. 5.2.4) 
co汀espondsto halving the intervals of driving-strength and increasing driving-strength vari-

eties twofold. The driving-strength varieties are classi白edinto 10 levels(Table 5.3). Fig. 5.4 
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(a) lnitial Circuit. 

(b) Optimized Circuit. 

Figure 5.3: A Part of Layout(des， Fastest， Transition Time Constraint 0.5ns). 

5.3. EXPERIMENTAL RESULTS 69 

Table 5.2: Power Optimization Results(Cel1 Height: 13 Interconnect Pitches). 

Transition lnitial Circuits Oplirnized Circuits 
Circuit Time Design Total Power Total CPU #cells 
Constraints Constraints Delay Power Width Delay Power Reduction Width Time 
(ns) (ns) (mW) (mm) (ns) (mW) (%) (mm) (s) 

C3540 0.5 Fastest 5.3 6.1 27.0 5.3 1.6 74 5.64 100 1039 
Min-Area 6.9 4.8 21.8 7.1 1.3 73 4.33 62 943 

1.0 Fastest 4.4 6.7 26.7 4.6 1.7 75 5.75 111 1207 
Min-Area 6.1 3.5 13.0 6.5 0.9 74 2.54 37 895 

alu4 0.5 Fastest 2.9 5.1 42.6 3.1 1.9 63 12.6 213 1613 
Min-Area 4.0 4.2 33.8 4.1 1.4 67 8.70 145 1403 

1.0 Fastest 2.2 4.6 33.2 2.5 l.9 59 10.4 200 1568 
Min-Area 3.6 3.1 18.7 3.7 1.1 65 4.53 76 1361 

C7552 0.5 Fastest 4.2 14.5 49.0 4.4 3.4 77 9.74 279 1995 
Min-Area 6.2 12.7 37.0 6.5 3.0 76 7.00 160 1687 

1.0 Fastest 3.3 14.1 44.6 3.5 3.2 77 9.21 275 2043 
Min-Area 5.1 8.5 22.1 5.1 2.1 75 4.38 97 1619 

des 0.5 Fastest 3.2 14.4 84.7 3.4 5.1 65 20.6 925 3414 
Min-Area 4.2 11.1 63.4 4.5 4.3 61 15.3 560 2908 

1.0 Fastest 2.7 13.4 68.0 2.8 5.3 60 18.8 772 3327 
Min-Area 3.4 8.5 41.1 3.7 3.7 56 10.6 371 2859 

dsp_alu 0.5 Fastest 8.8 79.8 347 9.4 37.1 54 115 20304 12547 
Min-Area 18.1 75.9 299 17.7 39.9 47 109 15436 11765 

1.0 Fastest 7.2 66.2 235 8.1 28.2 57 65.7 9203 12460 
Min-Area 15.3 54.3 169 15.8 26.3 52 44.9 4831 10892 

|Average! ! -! - 65 

Table 5.3: Driving-Strength Level. 
Level #driving-strength 6size PN ratio I 

varieties(到V) (μm) 

LevelO 6 (lnitial) . ー

Level 1 11 12.4 Fixed 

Leve12 23 6.2 Fixed 

Level3 44 3.1 Fixed 

Leve14 85 1.55 Fixed 

Level5 166 0.775 Fixed 

Leve16 332 0.388 Fixed 

Level7 659 0.194 Fixed 

Level8 1314 0.097 Fixed 

Leve19 1.7M 0.097 Varied 

indicates the relationship between power dissipation and driving-strength level. The power 

dissipation is reduced as the driving-strength varieties increase. 
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Fastest， Transition Time Constraint 0.5ns). 

Figure 5.6: Distribution of Slack(des， Fastest， Transition Time Constraint 0.5ns). 
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Figure 5.7: Capacitance Reduction(des， Fastest， Transition Time Constraint 0.5ns). 

。

Distribution of Transistor Widths(des， Fastest， Transition Time Constraint Figure 5.5: 
0.5ns). 

Then the capacitance reduction in the circuit is demonstrated(Fig. 5.7)・Theproposed 

method does not modify any interconnects，so wire capacitance does not change.The gate 

capacitance of MOSFETs is reduced by 77%，which results in 61%reduction of the total 
capaCItance. 

The peak cu汀entreduction is shown. 100 input pattems are given， and the peak cu汀ent

is evaluated at each time-step within a cyc1e. Fig. 5.8 indicates the peak cuπent of the initial 
and optimized circuits. The horizontal axis represents the time within a cycle of 3.4ns. The 

peak cu汀entis reduced by 74%. Path-balancing effect of the proposed method contributes 

to the peak cu汀entreduction， as wel1 as gate capacitance reduction. The transition timing 

of each cell is well distributed throughout a cycle. Reducing the peak cu汀entis effective tL 

Next the distributions of transistor widths in the optimized circuit are shown(Fig. 5.5). 

The transistor width of a standard driving-strength(x 1) cell is 6.2μm， and the transistor width 

can be reduced to 0.9μm. Many MOSFETs are down-sized c10se to the lower limit ofO.9μm. 
Compared with PMOS transistors， the gate widths of NMOS transistors are small. The 

sum of PMOS gate widths is 11.2mm， which is 19% larger than the sum of NMOS gate 

widths(9.4mm). 

Fig. 5.6 expresses the slack distributions of the initial and optimized circuits. By transis-

tor sizing， the number of the cells with 0 or almost 0 slack increases drastically. The sum 

of slack in the optimized circuit is 1241 ns， whereas the sum of slack in the initial circuit is 

3122ns. The total slack is reduced by 60%. 
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avoid IR drop problem. AIso， the cu汀entreduction is a useful way to evade electromigration. 

The mean time to failure(MTF)of electromigration tf is expressed as follows[691. 

tf = AWP LqJ-nexp(EαjkT)ぅ (5.9) 

where J is current density， Eαis activation energy， W is the width of metal， L is the length， 

and n is a constant close to 2. The current reduction of 740/0 increases MTF 15 times. Thus， 
the proposed method can increase the tolerance to IR drop and electromigration problems， 

and contribute to high-reliability LSI design. 
The power optimization results， when the initial circuits are generated using a low-poャer
cell library，are shown The delay time ofeach initial circuit is given as the delay C∞O∞nst戸ωln
The cell-height 0ぱft出hiおslow-power library i臼s9 interconnect p戸it舵che凶s，and the standard transistor 
size is 3.4μIII-The results are shown in Table 5.4.Even when the low-power cell library is 

used for initial circuits， the proposed method reduces power dissipation by more than 500/0 

on average. 

5.3.3 Effectiveness of Interconnect Preservation 

The proposed method optimizes a detail-routed circuit without any wiring modifications 

The effectiveness of the interconnect preservation is Vedad.In a conventional translstor 

sizing methods， the layout is modified using an ECO(Engineering Change Order) technique 

in 04er to pmewe the placement and wid時 asmuch as possible. But a cer 

variation in wire capacitance is not avoidable. 
The effect of this capacitance variation is examined statistically It is assumed that the 

wire capacitance varies according to a normal distribution N(m，σ) because of interconnect 
modibtions，i.e.EC0.The mean m is the initial value used in transistor sizing，and the 

standard deviation σis 200/0 of the initial value. The delay distribution is obtained using a 

Monte Carlo technique. The number of delay evaluation is 10，000. Fig. 5.9 shows the delay 

variation in the optimized des circuit. As you see， the interconnect modifications increase 

the circuit delay.The circuit whose delay time is the same with the initial circuit(336ns)can 

be hardly obtained. The circuit delay of “mean+3σ" is 3.60ns， which is larger than the delay 
without wiring Inodiacations by 7%.The proposed method Can avoid this delay increase， 

thanks to the interconnect preservatlon. 

5.4 Conclusion 

This chapter proposes a power reduction method that down-sizes MOSFETs in a cell without 

anv interconnect Inodiacations-The effectiveness of the proposed method is experimentdly 

verified using 5 benchmark circuits. The power dissipation is reduced by 77% maximum 

and 65%。…veragewithout delay increase. It is verified that the proposed method also 
contributes to high-reliability LSI design. 
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Table 5.4: Power Optimization Results (Cell Height: 9 Interconnect Pitches). 

Transition Initial Optimized 
Circuit Time Design Power 

Constraint Constraint Power Power Reduction 
(ns) (mW) (mW) (0/0) 

C3540 0.5 Fastest 5.0 1.7 66 
Min四Area 2.8 1.2 57 

1.0 Fastest 4.6 l.7 63 
Min-Area 2.1 0.84 60 

alu4 0.5 Fastest 3.8 l.9 50 
Min-Area 2.7 l.4 48 

l.0 Fastest 3.5 l.8 49 
Min-Area 2.0 0.98 51 

C7552 0.5 Fastest 11.0 3.9 65 
Min-Area 7.4 2.9 61 

1.0 Fastest 9.8 3.3 66 
Min-Area 5.5 2.2 60 

des 0.5 Fastest 10.0 4.8 52 

Min-Area 6.9 4.0 42 

1.0 Fastest 10.9 5.2 52 
Min-Area 5.2 3.1 40 

dsp_alu 0.5 Fastest 55.5 3l.7 43 
Min-Area 52.2 34.0 35 

l.0 Fastest 45.5 23.7 48 

Min-Area 36.9 24.4 34 

|Average I 52 
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Chapter 6 

Increase in Delay Uncertainty by 
Performance Optimization 

This chapter discusses a statistical effect of performance optimization to uncertainty in circuit 

delay. Performance optimization has an e百ectof balancing the delay of each path in a circuit， 

i.e. the delay of long paths are shortened and the delay of short paths are lengthened. In these 

path-balanced circuits， the unce口aintyin circuit delay， which are caused by delay calculation 

error， manufacturing variability， ftuctuation of operating condition， etc.， becomes worse by 

a statistical characteristic of delay. Thus， a highly-optimized circuit may not satisfy delay 

constraints. This chapter demonstrates some examples that uncertainty in circuit delay is 

increased by path-balancing， and raises a problem that perfo口nanceoptimization increases 

statistical1y-distributed circuit delay. 

6.1 Introduction 

In VLSI design， many techniques for reducing circuit delay are utilized at each design phase 

in order to satisfy given timing constraints. For example， division into pipeline stages， clock 

scheduling， logic composition， technology mapping， gate/transistor sizing， bu百erinsertion， 

wire sizing and timing driven layout synthesis are used. These methods detect the longest 

path and optimize the circuit for reducing the longest path delay. Recently， reducing power 

dissipation becomes one of the most principal subject in VLSI design. Many perfonnance 

techniques， including the methods mentioned above， are hence utilized not only for delay re・

duction but also for reducing power dissipation. In some of these methods， blocks/cells， 

where timing constraints are not tight， are slowed down to reduce power consumption. 

Therefore， performance optimization can be regarded as a operation that shortens long paths 

and lengthens short paths in a circuit. The delay times of many paths in a circuit are equalized 

by performance optimization. This equalization is called path-balance. 

There are several sources that cause uncertainties in circuit delay time， such as e汀orin de-

lay calculation， manufacturing variability， and ftuctuation of operating conditions. The eπor 

in delay calculation includes error of delay model， diversity in signal waveforrns， extraction 

75 
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Figure 6.1: Effect of max Operation(n is varied). 
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CHAPTER 6. INCREASE IN DELAY UNCERTAINTY 

e汀orof wire capacitance， and so on. The manufacturing variability consists of ftuctuations in 

transistor characteristics and wire shapes. Also the operating condition， i.e. supply voltage 

and temperature， varies. Due to these sources of delay uncertainty， the delay time of each 

gate and wire is not a dete口ninisticvalue. It necessarily has a certain probability distribution. 

In the circuits optimized for performance enhancement， the delay uncertainty of each gate 

inftuences the circuit delay strongly. It is because a path-balancing operation increases the 

number of long paths that have possibilities to become the longest path. Due to the statistical 

characteristic of delay， the average value of statistically-distributed circuit delay becomes 

large when the number of long paths increases. This statistical e百'ectis discussed in detail in 

Sec. 6.2 using a simple example. So far， this increase of statistically-distributed circuit delay 
caused by path-balancing has not been well discussed. Unless the statistical delay increase is 

considered properly， optimized circuits may not work well. In order to guarantee the circuit 

speed， the statistical effect of path-balancing operation needs to be understood and handled 

well. 
In this chapter， the effect of path-balancing to unce口aintyin circuit delay is examined. 

The inftuence on circuit delay is experimentally evaluated under some sources of delay un-

certainty. This chapter raises a notice that perfo口nanceoptimization increases statistical1y-

distributed circuit delay， and hence give a caution that more attention should be paid to the 

statistical effect of path-balancing in order to guarantee circuit delay time， when circuits are 

optimized for performance improvement. Finally a statistical static timing analysis method 

that is discussed in Chapter 4 is evaluated as one of solutions of this problem. 

This chapter is organized as follows. Section 6.2 explains the statistical characteristic of 
circuit delay time. Section 6.3 shows the reason why performance optimization increases 
statistically-distributed circuit delay. Section 6.4 demonstrates some experimental results of 

statistical delay analysis and discusses the statistical effect of path-balancing to circuit delay 

uncertainty. Finally， Section 6.5 concludes the discussion. 
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Statistical Characteristic of Circuit Delay Time 

The circuit delay， which is the maximum path delay time in a circuit， Dcircuit is represented 

as follows. 

6.2 

Figure 6.2: E百'ectof max Operation(σis varied). 

times are close to the maximum path delay. From this example， it can be seen that the 

distribution of Dcircuit shifts to the right， i.e. in the direction that the circuit delay increases， 
when the number of the long paths increases. 

(6.1) 

where Di is the path delay time of the i-th path， and n is the number of the paths in the 

clrcult. 

Let us show a simple example of the statistical e百ectcaused by the max operation. 

Dcircuit = m?-x Di (i = 1，2，…?η) ， 

Another example is shown. The value n is fixed to 100， and the standard deviation σof 

Xi is varied. Fig. 6.2 shows the distribution of y. When the standard deviation of Xi increases， 
the average and the standard deviation of y becomes large. lt can be seen that the ave昭 eand

the standard deviation of DctTcuzt become large，when the standard deviation of zt increases. 

(6.2) 

Suppose that Xi is distributed according to a normal distribution N(6， 1). The distribution 

of y is evaluated under several values of n. Fig. 6.1 shows the distribution of y. When n 
increases， the average of y becomes large and the standard deviation of y becomes small. 

The increase of n corresponds to the increase of the number of long paths whose path delay 

y = maxxi (i = 1，2， ・・?η).
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Figure 6.3: Path-Balancing E百ectCaused by Performance Optimization. Figure 6.4: Distributions of Path Delay(des). 

6.3 Increase in Circuit Delay Uncertainty by Performance 

Optimization 

library is a standard cell library generated by VARDS[27] in a 0.35μm process with three 
metal layers. These circuits are placed and routed， and the wire capacitances are extracted 
from the layouts.These circuits are initial(not path-balanced)circuits.The number of gates 
used in dsp_alu and des are 14370 and 3837， respectively. 

1n order to obtain the path-balanced circuits， a transistor sizing method is utilized for 
perfoロnanceoptimization. The initial circuits are optimized by continuous transistor siz-
ing for minimizing power dissipation under the delay constraint such that the delay does not 
increase from the initial value. The optimization method used for the experiments is a heuris-
t1c method that reduces power dissipation greedily based on the result of sensitivity analysis， 

which is discussed in chapter5.Figs.6.4and 65represent the distributions of path delay in 

the initial and optimized circuits.It can be seen that the number of paths whose path delays 

are close to the longest path delay increases drastically， which coηesponds to the increase of 
n in Fig. 6.1. 

Performance optimization generally consists of delay and power/area optimization. The 

delay optimization methods find long paths and optimize the circuit for reducing the 
longest path delay. Conversely， some of power/area optimization methods slow down 
the blocks/cells， where the given timing constraints are not tight， in order to reduce 
power dissipation， such as gate/transistor sizing[4， 48， 47， 61， 71]， multiple supply volt-
age technique[30]， multiple threshold voltage technique[72] and so on. Therefore， circuits 

are modified by performance optimization such that long paths are shortened and short paths 
are lengthened. This operation that the delay times of many paths in the circuit are equalized 

is called a path-balancing operation. Fig. 6.3 explains the concept of path-balancing. 

The path冒balancingoperation increases the number of the paths whose path delays are 
close to the maximum path delay(Fig. 6.3). These long paths have the possibilities of becom-

ing the longest path in the circuit. So， the increase of the number of long paths co汀esponds
to the increase of n in Fig. 6.1. Performance optimization therefore increases statistically-
distributed delay by the statistical phenomenon shown in Fig. 6.1. 

6.4.1 Analysis of Delay U ncertainty 

6.4 Experimental Analysis 

First the impact of delay calculation e打orto the circuit delay uncertainty is evaluated in the 
initial and optimized circuits. An e汀ormodel of gate delay is assumed such that the e汀or

of each gate is distributed according to a normal distribution with 3σ= 1 0% of its typical(no 
error)delay.The calculation method of typical gate delay is explained in Section 5.2.2. 

The distribution of circuit delay is obtained by a Monte Carlo analysis. The method of 

Monte Carlo analysis is same with the method explained in Section 4.5. Delay ftuctuation 

is assigned to each gate in the circuit randomly according to the given normal distribution， 
and evaluate the circuit delay using a static timing analysis technique. The number of delay 

evaluation is 10，000. The results are shown in Figs. 6.6 and 6.7. The bar labeled “Typical" 
represents the delay time calculated using the typical(no error) delay time for each gate. 

The statistically-distributed delay of the optimized circuit increases as expected.In des 

1n this section， some experimental results of statistical delay analysis are shown. The results 

demonstrate that statistically-distributed circuit delay increases by path-balancing operation. 

The ALU part of a vector processor(dsp_alu)[67] and the circuit(des) included in 

LGSynth93 benchmark set are used for the experiments. These circuits are synthesized and 

mapped by a commercial logic synthesis tool[56] under tight delay constraints. The target 
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Figure 6.6: Circuit Delay Distributions under a Delay Error Model of 3σ=100/0(des). 

circuit(Fig. 6.6)， the average delay of the optimized circuit is 2.98ns， whereas the average of 

the initial circuit is 2.90ns. The average delay increases by 3% by path-balancing although 

the circuit delay calculated from the typical delay for each gate does not change after the 

optimization. Also， the delay distribution of the path-balanced circuit moves far to the right 

of the typical delay. Therefore， in the case that the circuit is optimized considering only 

the typical delay， the statistical1y-distributed delay of the optimized circuit hardly satisfy the 

delay constraints. 

Next， the relationships between the accuracy of gate delay and the distribution of circuit 

delay is examined. Three models of gate delay uncertainties are assumed such that each gate 

delay ftuctuates normally with 3σ=5， 10 and 15% of its typical delay. ln the case of a convex 

gate delay model for continuous transistor sizing， it is reported that 3σof the estimation eηor 
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in simple gates is 5 to 23% [73]. ln this gate delay model， the eπor model of3σ=15% might 

be a reasonable assumption. The model of 3σ=5 % is guessed to coπesponds to the delay 

calculation using well-designed look-up tables characterized at many points (capacitive load， 

lnput transltlon time， transistor sizes). Fig. 6.8 expresses the distributions of circuit delay 

under three e汀ormodels. As the value of 3σincreases， the average and standard deviation 

of the circuit delay distribution becomes large， which is the same phenomenon shown in 

Fig. 6.2. Compared with the initial circuits， the increase of the statistically-distributed delay 

in the optimized circuit is large. Even when the accurate delay model with 3σ=50/0 is used 

in performance optimization， there is a distinct delay difference between the statistically-

distributed delay and the typical delay in the optimized circuit. 
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Table 6.1: Accuracy of Statistical Static Tirning Analysis in Worst-Case Delay Calculation. 

3σof Monte Carlo SSTA 

Circuit Gate Delay Worst-Case Worst-Case Error 

Error (%) Delay (ns) Delay(ns) (%) 

5 2.93 2.93 0.0 

Initial 10 2.97 2.97 0.0 

15 3.01 3.02 0.3 

5 2.96 2.96 0.0 

Optimized 10 3.02 3.02 0.0 

15 3.09 3.10 0.3 
噌

---A
A
U
 

Average 

Figure 6.9: Circuit Delay Distributions under M勾orDelay Uncertainty Sources(des). 

and the average e汀oris 0.10/0. SSTA method can calculate the worst-case delay accurately 

1汀espectiveof the initial and the optimized circuits. Table 6.2 represents the comparison of 

CPU time needed to derive the worst-case delay. The column “Monte Carlo" corresponds to 

the Monte Carlo simulation whose nurnber of delay evaluation is 10，000. Each CPU time is 

the average CPU time of six calculations shown in Table 6.1. SSTA method calculates the 

worst-case delay as more than three thousand times as fast as the Monte Carlo simulation 

with 10，000 delay evaluations. SSTA method requires only threefold CPU time of the Monte 

Carlo simulation whose evaluation number is one. In other words， SSTA needs threefold 

CPU time of the usual static timing anaJysis， although the average eπor of SSTA is 0.1 %. 

6.5 Conclusion 

This chapter examines the statistical effect of path-balancing operation to uncertainty in cir-

ωit delay. Some examples that u恥 ertaintyin circuit delay is increased by path-balanci昭 are

demonstrated. This chapter raises a notice that path-balancing increases uncertainty in cir-

cuit delay， and demonstrate a problem that a highly-optimized circuit may not satisfy delay 
constramts. 

Table 6.2: CPU Time of Worst-Ca~e Delay Analysis. 
M onte Cωa 巾 IS凱ta矧ti附s託山t

#evaluation: 10k I #eva]uation:ll T百lmln時gAna旧a討ly戸s幻i
6044s I 0.6s I 1.9s 

Finally， the effect of circuit delay uncertainty caused by m勾orsources of delay ftuctua-
tion is demonstrated. Three sources are considered; manufacturing variability of transistor 

characteristics， the extraction e汀orof wire capacitance， and delay calculation e汀or.

The delay calculation eπor is assumed to be normal which is the same model of the above 

experiments. The situation is supposed that each gate delay is calculated using usuallook-up 

tables， whose number of sampling points is not large. ln this case， 3σof the cell delay eπor 

is guessed to be 10%. The magnitudes of extraction eπor and manufacturing variability are 

discussed in Section 4.5.2， and are not hence explained further. The standard deviation of 

extraction e汀oris set to be 5%. As for the variability in transistor characteristics， the gate 

delay is assumed to ftuctuate with 3σ=15%. 

Fig. 6.9 shows the distributions of circuit delay under three sources of delay uncertainties. 

Three sources are assumed to be independent. Mean+3σof the path-balanced circuit is 

3.16ns， which is 90/0 1arger than the typical delay. Namely， there is a possibility that the 

delay constraint is violated as much as 9%. 

Worst-Case Delay Calculation 

The increase of the statistically-distributed circuit delay is different between the initial and 

the path-balanced circuits(Figs. 6.6， 6.7， 6.8). So， setting a design m訂ginto avoid the delay 

violation is difficult and seems not to be a good way. To avoid this problem， statistical delay 

calculation[55] and the performance optimization based on statistical delay model[60， 70] 

are desired. Then the statistical static timing analysis(SSTA) method[70]， which is discussed 

in Chapter 4， is applied to the initial and optimized circuits. The circuits and the e汀ormodels 
of gate delay are the same with those used in the previous experiment. The worst -case delay 

Dworst is evaluated， where Dworst is defined as Xl in Eq. 4.9. Dω併 stco汀espondsto the value 

ofm+3σin a normal distribution. 

Table 6.1 shows the accuracy of the statistical static timing analysis(SSTA) method dis-

cussed in Chapter 4. The column “3σof Gate Delay Error" represents the value 3σof gate 

delay uncertainties. SSTA method computes the worst-case delay Dworst within 0.30/0 e汀or，

6.4.2 



Chapter 7 

Post-Layout Transistor Sizing for 
Crosstalk N oise Reduction 

This chapter discusses a post-layout transistor sizing method for crosstalk noise reduction. 

The transistors inside cells are downsized after detail-routing is completed. The proposed 

method estimates crosstalk noise analyticalIy in a 2-7r noise model， and optimizes crosstalk 

noise under delay constraints. The e仔'ectivenessof the proposed method is experimentalIy 

examined using 2 circuits. The maximum noise voltage is reduced by more than 350/0 without 

delay increase. 

7.1 Introduction 

Crosstalk noise problem heavily depends on interconnect structure， i .e. coupling length， 

spacing between adjacent wires， and coupling position， and hence many techniques of routω 

ing and interconnect optimization for crosstaBくnoisereduction are proposed[74， 75， 76， 77， 

78， 79， 80， 81， 82， 83， 84]. Buffer insertion is also e仔'ectivefor noise reduction， and some 

methods are proposed[85， 86]. References [87， 88， 89] discuss the e仔'ectivenessof transistor 

sizing for crosstalk noise reduction， but practical implementations are not shown. Recently， 

Ref. [90] proposes a transistor sizing method for crosstalk noise reduction. ln this method， 

crosstalk noise is estimated by Ref. [89]， and circuit area is minimized under delay and 

crosstalk noise constraints. This transistor sizing method does not mention the layout mod-

ification after optimization. When the optimization result is applied to the layout， a certain 

amount of interconnects are changed， which may spoil the optimization result， or may cause 

a new crosstalk noise problem. ln the experiments， very small and randomly-generated cir-

cuits are optimized， so the effectiveness of Ref. [90] is not clear. 

Recently， several crosstalk noise models are proposed. By soIving telegraph equations， 

the analytical formulae for peak noise is obtained[lO， 91]. But these methods handle only 

fully-coupled interconnect structure， and can not be applied to general RC trees. In Refs. [89， 

92]， the aggressive wire and the victim wire are transfo口nedinto the L-type RC circuit， 

and the closed-fonn expressions of peak noise a陀 obtained.However， the resistance of the 

85 
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interconnect is not well considered in this model. In DSM technology， the wire resistance is 

not negligible， and the coupling location becomes one of the impo口antfactor for crosstalk 

noise estimation. Reference [93] assumes that the input signal is a step function， which 

results in overestimation of noise voltage. Recently some estimation methods that can handle 

distributed RC network and saturated-ramp input signal are proposed[94， 95]. In Ref. [95]， 

moment matching technique is utilized for deriving transfer functions. Moment matching 

technique requires high computational cost， and hence this method is not suitable for the 

iterative optimization that needs to calculate crosstalk noise innumerably. Reference[88] 

reports that Ref. [94] overestimates crosstalk noise when the transition time of the aggressor 

is much larger than the victim net delay. 

This chapter proposes a post-layout transistor sizing method for crosstalk noise reduc-

tion. The proposed method optimizes detail-routed circuits without any interconnect modi噌

白cations.The interconnect information required for crosstalk noise estimation can be com-

pletely obtained after detail-routing. Also the optimization result of transistor sizing can be 

applied to the layout completely， because the proposed method utilizes the transistor siz-

ing framework that can downsize the transistors inside cells preserving interconnects as de-

scribed in Chapter 5. Thanks to these features， the proposed method reduces crosstalk noise 

efficiently. As for crosstalk noise estimation， a 2-1f noise model with improved aggressor 

modeling [96] is used. The 2-πnoise model is first proposed in Ref. [88]. This model can 

consider the location of coupling， the e仔'ectof distributed RC networks， and the slew of in-

put signal， which are not well characterized in previous models[lO， 91， 89， 92， 93， 94， 95]. 

However， in Ref. [88]， the voltage waveform of the aggressor wire at the coupling point is 

approximates as a saturated ramp waveform. But in reality， the waveform is close to the 

exponential function， which yields estimation e汀orsof crosstalk noise. Also the derivation 

of the slew of the ramp signal is not discussed. Another issue arises in the transformation of 

general RC trees to the 2-πnoise model. Not all types of RC trees are discussed in Ref. [88]. 

ln the proposed method， the exponential waveform is adopted as the signal of the aggressors 

for accuracy improvement of crosstalk noise estimation. The Elmore-like derivation method 

of the aggressive waveform is devised. The transformation method that can apply all types 

of RC trees to the 2-πnoise model is developed. The optimization algorithm for crosstalk 

noise reduction that explores solution space e百'ectivelyunder delay constraints is also de-

vised. Due to these advancements， the proposed method can estImate the crosstalk noise 

analytically for any RC trees， and can reduce crosstalk noise by downsizing the transistors. 

This chapter is organized as follows. Section 7.2 explains the estimation method of 

crosstalk noise. Section 7.3 shows the optimization algorithm for crosstalk noise reduction. 

Section 7.4 demonstrates some experimental results. Finally， Section 7.5 concludes the dis-

cusslon. 

7.2 Crosstalk Noise Estimation 

This section explains the estimation method of crosstalk noise. The proposed method uses 

the 2-πnoise model[88] for crosstalk estimation. The proposed method approximates the 
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Figure 7.1: Two Coupled Interconnects. 

signal of the aggressors as an exponential function for improving accu即 y.The analytic 

wavetorm expressions for the aggressors and the victim are explained. The developed trans-
formation method from practical circuits into the 2-πmodel is discussed. 

The interconnect structure that two interconnects are pa口ial1ycoupled in Fig. 7.1 is con-

sidered. The partial1y田coupledinterconnects in Fig. 7.1 are modeled as an equivalent circuit 

shown in Fig. 7.2. Rul is the effective driver resistance of the victim net. The node nv2 
corresponds to the middle point of the coupling interconnects. Ru2 is the resistance between 
the source and nv2， and Ru3 is the resistance between nv2 and the sink. Cc is the coupling 
capacitance between the victim and the agg陀ssor.The capacitances Cv1， Cv2 and Cv3 are 
represented as C1/2， (C1 + C2) /2，組 dC2/2 + Cl respectively， where C1 is the wire capac-
itance from the source to nv2， C2 is the wire capacitance from nv2 to the sink， and Cl is the 
capacitance of the receiver. The parameters of the aggressive wire， Rα1， Rα2， Rα3， C，α1， C，α2， 
Cα3， are determined similarly. 

The proposed estimation method separates the victim net and the aggressive net into 

two equivalent circuits， as one of the approximate solutions for deriving a simple closed-

form expression of noise waveform; the victim is represented as the circuit of Fig. 7.3， and 

the aggressor is Fig. 7.4. At the victim wire(Fig. 7.3)， the aggressive wire is replaced as a 

voltage source. The model circuit of the victim interconnect in Fig. 7.3 becomes the same 
with the 2-1f noise model proposed in Ref. [88]， 

7.2.1 Analytic Waveform on Victim Interconnect 

The analytic voltage waveform at the end of the victim net， that is to say， the waveform of 

crosstalk noise is derived in the 2・1fvictim wire model. In the circuit of Fig. 7.3， Vnoise in s 
domain is represented as follows. 

(Rv1Ru2CVlS + RVl十九2)CcSに1015e(s)=/CLQg(s)? 
αS3 + bs2 + ds + 1 (7.1) 

where 仏bうdare represented as follows. 

α = RVl♂Rv2R九t旬叫J3よCα'vl(Cv2 + Ccω'c)C.仏 (σ7.2わ) 

b = Rv叫1ρC川R九v2庖2メ(Cv2+ Cc + Cv3ω3υ) +R九v3戸CαU凶ω3υ)十 Rv3C，αU川Cαv2 + C，ιω，Lり'c)(R凡凡U叫Jl汁+R九v2)
d == R九t匂叫Jl(Cv1 + Cv2 + Cc + Cv3) + Rv2( 



88 CHAPTER 7. TRANSISTOR SIZING FOR CROSSTALK NOISE REDUCTION 7.2. CROSSTALK NOISE ESTIMATION 89 

Ra1 

Aggressor 
Ra2 

Eq. (7.1) can be converted as follows. 

Ra3 い =(土+土+土)九gg(8)， (7.5) 

where the poles 81，82， and S3 are the roots of αS3 + b82 + d8 + 1 == O. When the relationship 
of sl《 S2《 S3issatided，the most dominant pole S3is represented as1/d.In this case， 
Eq. (7.5) can be approximated as fol1ows. 

高Cv1

Victim 

(Rv1 + Rv2 )Cc8 
L7zme(s)=c  vds) 

TvS + 1 ・ agν 

where Tv == d. The voltage source of九ggis assumed to be an exponential function. 

(7.6) 

Figure 7.2: An Equivalent Circuit of Two Partially-Coupled Interconnects for Crosstalk Es-

tlmatlon. 
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(7.8) 

Using Eq. (7.8)， Eq. (7.6) is converted as follows. 

J令ユ
(R叫 +Rv2)CcVdd e(S) == 
(Tv8 + 1)(Ta8 + 1) 

The equation of the noise voltage in time domain Vnoise (t) is陀P陀 sentedas follows. 

(7.9) 

(Rvl +凡J2)Cc九d
九oise(t)ニー (e- 1"~ - e可). 

T.α- Tv 
(7.10) 

From the result of differentiating Eq. (7.10)， the noise voltage becomes the peak voltage 
九eαkat the time tpeak. 

万Cv3 九eαk
(九J1+ Rv2)Cc日d/7u¥-fz

¥アαノ

(Rv1 + Rv2)Cc Vdd (九γ右主7
¥ TvJ 

tpeak ==ムLlogE
7てα- Tv Tv 

(7.11 ) 

Figure 7.3: Model of Victim Wire. (7.12) 

(7.13) 

Ra1 Ra2 '0g!' Ra3 

ずa2+Cc ~Ca3 

7.2.2 Derivation of Aggressor Waveform 

In the proposed crosstalk noise model， the aggressive signal九gg(t)is expressed as Eq. (7.7). 
Here， deriving the-time constant 九， that is to say， the time constant at node na2 in Fig. 7.4， 
is explained. 

In Elrnore delay model， the delay tirne between node ηα1 and node nα2， D1→2， is repre-
sented as folIows[97]. Figure 7.4: Model of Aggressive Wire. 

D1→2 = Rα1 (C，α1 +C，α2 + Cc + C，α3) + Rα2(C，α2 + Cc + C，α3). (7.14) 
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1n lumped RC networks， RC product means the transition time that a signal changes from 

0% to 63%. Therefore， D1→2 co汀espondsto the time constant at node ηα2， l.e. T，α・

九 =Rαl(Cα1+ Cα2 + Cc + Cα3) + Rα2(C，α2 + Cc + Cα3). (7.15) 

The relative inaccuracy of Eq. (7.15) increases as Rα3 becomes large compared with 
Rα1 and Ra2・Thisis because the capacitance C，α3 is shielded by the resistance Ra3， and 

the e仔'ectivecapacitance of Ca3 becomes small. This effect is called “resistive shielding". 
1n Ref. [98]， a method to calculate an e百ectivecapacitance of RC networks is proposed. 

Using this method， the downstream network from node na2 can be replaced by an effective 

capacitance Cα3ef f' The effective capacitance C，α3ef f is derived such that the amount of 

charge accumulated in Ca3 and the amount of charge accumulated C，α3ef f become the same 

until a time T， where T is the Elmore delay time from node nα1 to node na2' The e百'ective

capacitance Cα3ef f is given by 

Cα3eff 

T 

'Tdj 

Cα3 (1 -e-T川 )， 

Rαl(C，α1 +C，α2 + Cc + Cα3) + Rα2(C，α2 + Cc + C，α3) ， 

Rα3C，α3・

Eq. (7. ]5) then becomes as follows. 

(7.] 6) 

(7.17) 

(7.] 8) 

九 =Rαl(C，α1+Cα2 + Cc + Cα3εff) + Rα2(C，α2十 Cc+C，α3eff). (7.19) 

7.2.3 Driver Modeling 

1n the proposed crosstalk noise model， a driving CMOS gate is replaced as a resistance. The 

characterization of driving gates is explained. Replacing恥10SFETswith resistors， a single-

stage gate can be modeled as a pulトupresistance ιapulトdownresistor Rn， and an intrinsic 
output capacitance Cp(Fig. 7.5). A capacitance Cout is the load capacitance. MOSFETs are 
non-linear elements， so the value of resistance depends on the operating condition of the 

MOSFET. As for the aggressive wire， the output voltage swings fully between VDD  and 

VSS. On the other hand， the voltage of the victim wires changes only around VDD or 竹S.
Therefore， the resistance Rp is represented as two values; the d巾 ingresistance of aggressors 
RDp， and the holding resistance of victims RHp・Theresistance Rn is also represented as two 
values， RDn and RHn. 
First， the driving resistance RDp is discussed. The propagating delay tpD， which is the 

time difference between an input trip point of 0.5VDD and output trip points of 0.37(falling， 

tPDf) and 0.63(rising， tPDr)， is examined. Suppose the output signal changes low to high. 

The output voltage九utis represented as follows. 

九ut(t)= VDD  (1ー仰一向p(Cp+Cout)). (7.20) 

From the definition， the equation of vcωt(tPDr) = 0.63VDD is satis白ed.The delay time t P Dr 
is hence expressed as follows. 

tpDT=RDp(CM+Cp)ln{1}2RDp(Cout十Cp)・
1 -0.63 

(7.21 ) 
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Figure 7.5: Driver Model. 

The pull叩 resistanceRDp is detennined from circuit simulation results. The delay time 
tPDr is evaluated by circuit simulator under two conditions of Cout， and two sets of tPDr and 

Cout are applied to Eq. (7.21)， which can decide the unknown parameters RDp and Cp. Thus 

the pull-up resistance of agg児 ssorRDp is characterized. The pull-down resistance RDn can 
be calculated similarly. 

The output voltage， i.e. the noise voltage of the victim wires varies nearby VDD or竹S.
When the noise voltage is not so large， the hold resistance RHp can be represented as the 
resistance in the case that the output voltage is ~匂D. The value of the resistance RHv can be 
obtained by the operating condition analysis of circuit simulation. Similarly， the resistance 

RHn is represented as the resistance characterized in the case that the output voltage is 日s・

7.2.4 Application to Generic RC Trees 

In generic RC trees， many of RC trees have multiple sinks. Multiple sinks means that the 

tree contains branches. They also have multiple a司jacentaggressive wires. Here， the method 
to apply generic RC trees to the 2・7rvictim wire model(Fig. 7.3) is discussed. 

島'IultipleAggressors 

In linear systems， the principle of supe中ositionholds. When the noise amplitude is not 

1 arge ， i.e. as long as CMOS gates can be treated as a linear resistance， the noise wavefonn 

at the sink of the victim can be represented as the superposition of the noise wavefonn from 

each aggressive wire. 1n this case， the maximum noise voltage at the トthsink of the victim 
net， Vmax，z， is represented as follows. 

凡ω =L~会批J→z ， (7.22) 
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恥lultipleSinks 

The noise at the i-th sink 5i caused by the j -th aggressor is considered. In this case， the 
trees are separated into two cases; Fig. 7.6 and Fig. 7.7. In Case 1 of Fig. 7.6， the path 

between the source SO and the sink Si contains the node connected with the aggressor， ncc. 
Conversely， in Case 2 ofFig. 7.7， the node ncc is not on the path between the source 50 and 
the sink 5i. The node ncc is included within the k-th branch Bk. Reference [88] discusses 
the method to apply RC trees of Case 1 to the 2-πvictim wire model. However the trees of 

Case 2 are not considered. Therefore a transformation method from the trees of Case 2 to 

the trees of Case 1 is devised. After this transformation， the method of Ref. [88] is applied 

to RC trees. 

First， the method to build the 2-7f victim models(Fig. 7.3) from the trees of Case 1 is ex-

plained briefly[88]. The total capacitance of the k-th branch is Cbk・Thebranch capacitances 
Cbk are added into Cv1， C1ふ andCv3 in Fig. 7.3 in the following manner: 

， ， ， ， 
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where n is the number of the aggressors， and t今eak，j→iis the noise voltage at the i-th sink 
caused by the j -th aggressor. The proposed method evaluates the peak noise voltage at the 
sink caused by each aggressors separately， and calculates the maximum noise voltage Y~α叩

by Eq. (7.22). 刊。
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Figure 7.6: An Interconnect with Branches(Case 1). 

• When a branch Bk is between 50 and ncc， the resistance between 50 and nk， RSO-nk' 
is represented as RSO-nk =α. RSO-ncc' where 0 ~α 三 1. Then α. Cbk is added to 
Cゅ and(1 -α) . Cbk is added to Cv1 • 
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. When a branch Bk is between nce and 5i， the resistance between ncc and 5i， Rπcc-Si' 
is represented as Rnk-Si = s . R町 c-Si'where 0 ~ s ::; 1. Then s . Cbk is added to 
Cゅ and(1 -s) . Cbk is added to Cv3・
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Figure 7.7: An Interconnect with Branches(Case 2). 

Next， the transformation method from Case 2 to Case 1 is explained. At first， the 

coupling capacitance is moved from the node nee to the node nk(Fig. 7.7). This simple 

movement， however， may cause the overestimation of noise voltage. Though the amount 

of the inftuence from the aggressor is decreased by the resistance between nk and nce， this 

degradation is not considered at all. The proposed transformation method treats this degra-

dation as the increase in the time constant of the voltage source T.α・TheElmore delay from 

ncc to nk is added to ~α ・ Finally，the capacitance of the branch Bk is connected to nk， i.e. Cbk 
is added to Cv2・Bythe above procedure， the trees of Case 2 are converted to the trees of 
Case1. Afterward， 2-7f models are obtained by the method of Ref. [88]. 

constraints. First， the optimization algorithm for the localized problem that includes one vic-

tim net and its a司jacentnets is explained. This section then shows the overall algorithm that 
builds and solves the local optimization problems， considering the global optimality under 
delay constraints. 

7.3.1 Optimization Algorithm in Each Victim Net 

From the discussion in the previous section， crosstalk noise can be estimated for any inter-

connects in a circuit. In this section， the optimization algorithm for crosstalk noise reduction 

is discussed. The proposed algorithm reduces crosstalk noise under delay and transition time 

First， the noise reduction algorithm for似 1victim net is explained. The proposed me伽 d

downsizes the drivers of the adjacent aggressive wires in order to reduce the amount of 

crosstalk noise at the victim wire. When the driving strength of the aggressive wire becomes 

weak， i.e. the driver resistance Rα1 becomes large， the time constant of the aggressive voltage 

source T.αincreases(Eq. (7.15)). From Eq. (7.12)， the maximum noise voltage ちeakat the 
victim net consequently decreases. 

In order to choose the driver of the aggressive wire to be downsized ef白ciently，a measure 

7.3 Optimization Algorithm 
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prioritνis devised. 
η 

pγωritYi == slαcki . 2:::: Vpeαゎ→]) (7.23) 
3 

where V~eαk ， i→j is the noise voltage at the j-th sink caused by the i-th aggressive net， and n is 

the number of sinks. The value slacki represents the timing margin at the i-th aggressive net， 

and is de白nedas the time di仔erencebetween the required time and the arrival time[40]. The 

measure prioritYi becomes large in the case that the i-th adjacent net causes a large amount 

of noise and the timing constraint at the i-th aggressive net is not tight. Using this measure， 

the proposed algorithm can白ndthe aggressive net efficiently that has strong inftuence on the 

crosstalk noise at the victim net yet has little inftuence on the circuit delay. 

Step 1: Calculate priority(Eq. (7.23)) for each adjacent aggressive net， and put al1 the ag-

gressive nets into list Ll. 

Step 2: Choose the aggressive net with the maximum prio行tyfrom list Ll・

Step 3: Downsize the driver of the chosen aggressive net within the limit that the delay 

constraints and the transition time constraints are satisfied. The best size of the driver 

is decided such that the value of (げ+げ)becomes the smallest， where Vv is the noise 
voltage at the victim net， and Va is the noise vo1tage at the aggressive net. Remove the 

aggressive net from Ll・

Step 4: If the noise voltage becomes smaller than the target value vtαrget， or if the list Ll 
becomes empty， finish the optimization procedure. Otherwise go back to Step 2. The 

value vtαrget is explained in the following section. 

7.3.2 Overall Optimization Algorithm 

Section 7.3.1 discusses the optimization algorithm for the localized problem that contains 

one victim net and its adjacent aggressive nets. Next， the overall algorithm is discussed. 

This algorithm aims to reduce both the maximum noise voltage in a circuit and the number 

of nets with large amounts of noise. 

The optimization iterates the fol1owing procedure from Stage 1 to Stage 4 for several 

times， as the value threshold is gradually decreased. The parameter threshold is used for 

selecting the nets to be optimized， and it ranges from 0 to 1. The nets whose noise voltages 

are larger than the product of threshold and the maximum noise voltage in the circuit are 

chosen as the optimization candidates. ln the beginning， threshold is set c10se to 1 in order 
to reduce the maximum noise voltage intensively. ln the end， threshold is set c10se to 0， and 
the most of the nets in the circuit are optimized. 

Stage 1: Calculate the crosstalk noise at each net in the circuit. 

Stage 2: Find the maximum voltage of crosstalk noise Vmω in the circuit， and put the nets 

whose noise voltages are larger than にnaxX threshold into the candidate list Lo. 
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Stage 3: Choose the net with the maximum noise voltage in the list Lo， and execute the 

optlmlzation explained in Sec. 7.3.1. The value of Vmax x threshold is given to the 
ophmization as the target value. Remove the net from the list Lo 

Stage 4: If the list Lo becomes empty， finish the optimization procedure. Otherwise go back 
to Stage 3. 

When the timing constraints are given， the timing margin at each net should be utilized ef-
ficiently for reducing the crosstalk noise. Therefore the sequence of the nets to be optimized 

is critical and essential to obtain high-quality circuits. ln order to reduce the maximum noise 

voltage， the proposed algorithm gives priority to the net with large noise. Stage 2 excludes 

the nets whose noise voltages are smaller than V~ax x threshold from the the optimization 
candidates. ln Stage 3， the nets訂eoptimized in order of the amount of noise voltage. 

ln Stage 3， the target noise value Vmax x threshold is given to the localized optimization 

problem，in order to control the local optimization from the viewpoint of global optimality-

Theoptimimion result that the noise voltage is minimized in the localized problem may 

incur a bad local-minimum solution globaIly. This is because the timing margins， which 

may be utilized for reducing the noise at other nets， are wasted. The proposed algorithm 

hence stops the local optimization when the noise voltage becomes smaller than the target 

value.Thanks to the good sequence of the net tobe optimized and setting the target noise 

value， the proposed method can reach a good solution under the delay constraints. 

7.4 Experimental Results 

This section shows some experimental results. First the accuracy of the crosstalk noise mode1 

is demonstrated. Next the optimization results for crosstalk noise reduction are shown. 

The circuits used for the experiments are an ALU in a DSP for mobile phone[67] 

(dspalu)and the circuits included LGSynth93benchmark sets(des).These circuits are 

synthesized for minimizing the circuit delay[56]. The circuit scale of dsp_alu is 12547 ceUs， 

and the number of cells in des is 3414. The layouts of the synthesized circuits are generated. 

The 1ayout area of dsp_alu is 5.3(2.3x2.3)mm2， and the area of des is O.64(0.8xO.8)mm2• 

RC trees of interconnects are extracted from the layouts by a quasi-3D RC extract too1[99]. 

The coupling capacitances below 10tF are extracted as the capacitance to the ground， where 
the coupling capacitance of 10tF coπ'esponds to the length of 230μm. The supply voltage 
is 3.3V. 

Celllayouts are generated using VARDS[27] in a 0.35μm process with three metallayers. 

The layout generation system VARDS can vary transistor widths in a cell while keeping the 

location of each pin. Exploiting this feature， the proposed method optimizes a detail-routed 

circuit without any wire modifications. The height of the generated cells is 13 interconnect-

pitches， and the size ratio of PMOS and NMOS transistors is 1. In transistor sizing， MOS-

FETs are down-sized within the range that VARDS can generate celllayouts. The maximum 

transistor width of standard driving-strength(x 1) cells is 6.2μm. The transistor width can be 
reduced to 0.9μm. 
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Crosstalk Estimation 

The accuracy of the crosstalk noise model is discussed. First， the peak voltage of the 

crosstalk noise is evaluated using the model circuit shown in Fig. 7.2. In this model cir-

cuit， the appropriateness of the fol1owing three points can be experimentally verified; the 

separation into two circuits of Fig. 7.3 and Fig. 7.4， the approximation used in Eq. (7.6)， and 

the derivation of the time constant九 inEq. (7.19). The peak voltage of the crosstalk noise is 

evaluated by circuit simulation， the conventional method[88]， and the proposed method. In 

the conventional method[88]， the signal from the aggressive wire九gg(t)is represented as a 
saturated lump function. 
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Figure 7.10: An Example of the Crosstalk Noise Waveform. 

the signal waveform from the aggressor， the estimation accuracy improves. Fig. 7.10 shows 

an example of the wavefonns evaluated by circuit simulation and the proposed method. The 

waveform of the crosstalk noise is estimated precisely by the proposed method. 

Next， the crosstalk noise is evaluated in more actual circuits， i.e. the drivers and the 

receivers are CMOS gates and the RC trees have branches. The circuits used for this exper-

iment are included in des circuit. Fig. 7.11 shows the estimation results of peak crosstalk 

noise. The average eπor of the maximum noise estimation is 22.3% and 10mV in the pro-

posed method. In order to examine the e仔ectivenessof the transformation method from 

Case 2 to Case 1 discussed in Sec. 7.2.4， the crosstalk noise is evaluated by the following 

simple method. The coupling capacitance is moved from the node ncc to the node nk， and 

the capacitance of the branch Bk is connected to nk (Fig. 7.7). This simple method does not 

adjust the time constant of the aggressive signal九， which is the di百erencebetween the pro-

posed method and this simple method. Fig. 7.12 shows the estimation results by the simple 

method. There is not a significant di百erencebetween Fig. 7.1 1 and Fig. 7.12. The average er-

ror of the simple method is 22.6%， which is only 0.3% larger than the proposed method. This 

is because the interconnect resistance is not high in the 0.35μm technology， and hence the 

resistance between nk and ncc scarcely affects the crosstalk noise. Therefore， the crosstalk 

noise is evaluated in the circuit of Fig. 7.13 by circuit simulation， the simple method， and the 

proposed method， assuming a 0.13μm technology. The values of resistance and capacitance 

are calculated under the interconnect structure shown in Table 1.1. The driver resistances 

of the victim and the aggressor is 1 kn， and the input capacitance of the receivers is 10fF. 
The variable x represents the distance between the junction and the start point of coupling. 

Fig. 7.14 shows the results. The peak noise voltage decreases as the distance x increases. 

The proposed method shows the tendency for noise to decrease， whereas the noise voltage 

estimated by the simple method is constant. However， the shape of decrease is different from 
the simulation results. Further improvement is required. 

However the calculation method of tr is not explained. In this experiment， the transition 

time tr is calculated as ~αx 2.7. The coefficient of 2.7 is determined such that the sum of the 

absolute e汀orbetween the simulation results and the results estimated by Ref. [88] is mini-

mized. The parameters extracted from the actual RC trees in the layout of des are utilized 

asRα1，Rα2，Rα3， (7al， (7a2， (7a3， RVl' liv2， liv3， (7vl1 (7v2，(7v3・Thepeak noise is evaluated for 
all the coupled interconnects in des circuit. Fig. 7.8 shows the estimation results by the 

proposed method. The horizontal axis is the noise voltage evaluated by circuit simulation 

and the vertical axis is the voltage estimated by the proposed method. The diagonal line 

represents the idealline with 0 e打or.The proposed method estimates the peak noise voltage 

accurately. The average estimation e汀oris 1.6%. Fig. 7.9 represents the result by the conven-

tional method. Compare with the proposed method， the estimation accuracy is not high. The 

average e汀orof the conventional method is 28.1%. By adopting an exponential function as 
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Figure 7.8: Peak Noise Estima-

tion in Fig. 7.2 Model by Proposed 

Method(des). 
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Figure 7.14: Peak Noise Evaluation in the Circuit of Fig. 7.13. Figure 7.12: Peak Noise Estimation with 

CMOS Gates and Branch Trees by Simple 

Method(des). 

Figure 7.11: Peak Noise Estimation with 

CMOS Gates and Branch Trees by Pro-

posed Method(des). 
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Figure 7.15: Optimization Results for Crosstalk N oise Reduction (des). O.5mm 

109 to 4. The CPU times required for the optimization on an Alpha Station are 111 seconds 

in des(3.4k cells)， and 6726 seconds in dsp_alu(13k cells). After the detailed-routing， the 

crosstalk noise can be reduced considerably by only downsizing the transistors inside cells 

while preserving the interconnects. The circuit delay is also preserved. 

Conclusion 

This chapter proposes an optimization method for crosstalk noise reduction by transistor siz-

ing. The proposed method optimizes the detail-routed circuits such that MOSFETs inside 

7.5 

Figure 7.13: Interconnect Structure used for Crosstalk Noise Evaluation. 

The optimization results for crosstalk noise reduction are shown. The circuits are optimized 

under the delay constraints of the initial circuits' delay time. The given constraint of the 

transition time is 1.0ns. Figs. 7.15 and 7.16 show the distributions of the maximum noise 

voltage before and after the optimization. In des circuit， the maximum noise voltage is 

reduced from 0.40V to 0.20V by 50%. The distribution is also shifted in the direction that 

the noise voltage decreases. In dsp_alu circuit， the maximum noise is reduced from 0.99V 

to 0.62V by 370/0. The number of nets whose noise voltages are over O.5V is decreased from 

Crosstalk Reduction 7.4.2 



TRANSISTOR SIZING FOR CROSSTALK NOISE REDUCTION CHAPTER 7. ハUハU
'
E
E
A
 

Chapter 8 

Conclusion 

も
苛

与・K
~ 、ト

250 

200 

150 

100 

50 

ω
v
o
Z壮

0.9 0.4 0.5 0.6 0.7 0.8 

Peak Noise Voltage[V] 
0.3 

0 
0.2 

This thesis discusses performance optimization techniques in physicaI design. In DSM tech-

nology， interconnect delay， power dissipation， delay ftuctuation and crosstaIlく noisebecome 

the severe problems that limit， or rather deteriorate the circuit perfo口nance.Reducing inter-

connect delay is intensively studied， and effective soIutions are developed. Compared with 

interconnect delay， other problems are not sufficiently considered. This thesis focuses on 

power dissipation， delay ftuctuation and crosstallくnoise，and proposes solutions in physical 

design for each problem. The proposed techniques are expected to be more essential and 

contribute to design high-performance and high-reliability LSIs in future technology， since 

these problems originate in shrinking feature size. 

In Chapter 2， a performance optimization method by input reordering is discussed. The 

input pins， whose logical functions are the same though， in a cell have the di仔'erentch訂-
acteristics in delay and power dissipation， which is utilized for delay and power reduction. 

The effectiveness of the proposed method is experimentally examined using 30 benchmark 

circuits. Power dissipation is reduced by 22.50/0 maximum and by 5.9% on average. The pro-

posed method also reduces delay time by 6.7%. lt is verified that input reordering improves 

circuit performance steadily with almost zero penalty. 

Chapter 3 discusses a gate sizing method that reduces glitch power dissipation. A statisti-

cal glitch estimation method and a gate sizing algorithm that explores solution space globally 

are developed. Thanks to them， the proposed method can optimize the number of glitches 

as well as capacitive load and short circuit power dissipation， whereas conventional meth-

ods assume the number of glitches to be constant. Power dissipation is reduced by 16.2% 

maximum and by 10.4% on average further from the minimum-area circuits， where the con-

ventional methods consider the minimum-area circuits as the minimum-power circuits. 

Chapter 4 discusses a performance optimization method based on statistical timing anal-

ysis. This method aims to remove both over-design and under-design for high-performance 

and high-reliable LSI design. The proposed method focuses on the local delay ftuctuation， 

and calculates the statistically-distributed circuit delay. Slack， which represents the timing 

criticality at each cell under a deterministic delay model and is widely used for performance 

optimization， can not be defined under the statistical delay model. Therefore a new measure 

of timing criticality for statistical delay model is devised， and the optimization algorithm us-

nu 

Figure 7.16: Optimization Results for Crosstalk Noise Reduction (dsp_alu). 

cells are downsized without any interconnect modifications， based on the crosstalk noise 

estimation by analytic noise expressions. The e百ectivenessof the proposed method is ex-

perimentally Vedaed using 2benchmark circuits.The maximum noise voltage is reduced by 

more than 35%without delay increase，which contributes to high-reliability LSI design. 
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ing this measure is developed. The worst-case delay can be estimated within 30/0 e汀orby the 

statistical timing analysis method. lt is verified that the proposed method can reduce delay 

and power dissipation from the circuits optimized without considering delay ftuctuation. 

Chapter 6 discusses that performance optimization involves undesirable secondary e仔ect

that the optimized circuits become sensitive to delay uncertainty. Some examples of the 

increase in delay uncertainty are demonstrated， and this chapter cautions that perfo口nance

optimization may cause an involuntary delay violation. 1t is also verified that the statistical 

timing analysis discussed in Chapter 4 is effective as one of solutions of this problem. 

Chapter 5 and Chapter 7 show the perfo口nanceoptimization methods based on a design 

framework that can vary transistor sizes inside a cell flexibly without any interconnect mod-

ifications. This framework aims to design a circuit whose performance is close to that of 

full-custom design， making the best use of usual cell-base design tools. Chapter 5 discusses 
a power reduction method that downsizes transistors after detail-routing. Power dissipation 

can be reduced as much as possible without delay violation， since the optimized layout can 

be obtained preserving interconnects. The proposed method reduces power dissipation by 

77% maximum and 65<3もonaverage without any delay increase from the cell-based circuits. 

This method also contributes to increase the reliability of the circuits by reducing cu汀ent

density. 

1n Chapter 7， a transistor sizing method for reducing crosstalk noise is discussed. This 
method optimizes the detail-routed circuits， estimating crosstalk noise based on the intercon-

nect information extracted from the layout. The conventional circuit optimization techniques 

involves a certain amount of wiring variation when the optimization result is applied to the 

layout， which makes it difficult to optimize crosstalk noise by circuit optimization. However， 

the proposed method can reduce crosstalk noise efficiently， because the proposed method 

can vary transistor sizes inside cells without interconnect modifications. The analytic ex-

pressions of peak crosstalk noise are derived and used for crosstalk noise estimation. The 

optimization algorithm for crosstalk noise reduction that can consider delay constraints well 

is developed. Utilizing them， the crosstalk noise is reduced by downsizing the drivers of the 

aggressive wires. The effectiveness of the proposed method is examined using 2 circuits. 

The maximum noise voltage can be reduced by more than 350/0 without any delay increase. 

The future work inc1udes constructing an overall design methodology that optimizes alI 

metrics of circuit perform釦 cesimuItaneously， such as delay， power dissipation， and area， 
considering delay uncertainty and crosstalk noise. 
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