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Abstract 

The scope of the present study is implementation of efficient design procedure in practi

cal applications of the antenna array for communications and radar systems. Throughout 

the study the analytical modeling of hardware is investigated for developments of newly 

proposed antennas, analysis of the feeding structure, and the mutual coupling problems. 

The first objective is a proposal of a new type of collinear antenna array called the 

electromagnetically coupled coaxial dipole array antenna. The key feature of the antenna 

is a novel use of an electromagnetically coupled feed for the radiating element. The struc

tural simplicity of the new antenna overcomes difficulty in manufacturing of conventional 

antenna. Analyses of the input impedance and the radiation pattern, and a method of 

matching are described in detail. where simple useful formulas developed help design pro

cedure. Fabrication and measurement of a prototype array antenna support the theory. 

The second objective is implementation of analytical modeling of parallel plate region 

with an application to the circular iris. Any analysis of the circular iris has not been 

reported so far and the present study attacks the problem for the first time. A simple 

approximately closed form formula is obtained for the equivalent susceptance. The effect 

of the curvature of the circular iris appears to be a correction factor to the previously 

known expression of the linear iris. The correction factor goes to unity if the radius of 

the curYature is very large compared with the operating wavelength. Verification of the 

approximate formula is given through comparison with numerical solution by an exact 

integral equation formalism. 

The third objective is a proposal of the radial line planar monopulse antenna. The key 

feature of the antenna is use of multiple port feed of a radial line and it gives a new func

tion of synthesizing monopulse patterns which was not achieved by related conventional 

antennas. By an analysis of the mutual coupling between probes in the radial line with 

simple resultant expression of formulas, the mechanism of monopulse pattern synthesis is 
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made clear. A design procedures are developed for the uniform aperture field distribution, 

'~.:here fabrication and measurement of a prototype antenna support the design procedure. 

The fourth objective is to develop a method to analyze antenna couplings between 

arrays on a polyhedron structure. The present study attacks the problem for the first time . 

To compute efficiently a large number of pairs of the radiating elements, an approximately 

closed form formula is developed for the mutual admittance between microstrip antennas 

separated by a wedge with the aid of the geometrical theory of diffraction. Experimental 

v rification of the theory is given. Through several numerical simulations it is concluded 

that sidelobe level of the antenna array in the direction of the wedge gives significant 

contribution to the coupling. Therefore, null beam forming or low sidelobe operation in 

that direction is applicable to obtaining good isolation characteristics. 

The fifth objective is to develop a general scheme for the analysis of the mutual 

coupling betwe n radiating elements. The new feature of the study is unification of the 

previously known Fresnel approximation of mutual impedance and admittance integrals 

into imple and general forms including its extension to the high frequency geometries for 

the first time. The expression allows a physical interpretation as a product of radiation 

patterns multiplied b) a propagator of the environment and divided by the voltages or 

the currents at the feeding points of the two antennas, and gives an approximate first 

order universal relationship between antennas of arbitrary shape placed in the far field. 

For the application of the theory, two cases of microstrip antennas on a ground plane and 

on a polyhedron structure are given with experimental verification. 

The hardware and methods developed in the present study are considered to have 

vvide applicability for communications and radar systems. 
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Chapter 1 

Introduction 

1.1 Background of study 

The antenna array is composed of plural number of radiating elements with feeding 

structures. Each radiating element is excited simultaneously by appropriate amplitude 

and phase so as to synthesize desired radiation patterns. At the initial stage of the design 

for a particular application, the radiat ion characteristics are readily predicted by using 

the array factor argument [1). However, for realization of the hardware, implementation 

of design procedure is needed based on the knowledge of electromagnetics. The procedure 

has several stages of analysis as follows: 

• the radiating element, 

• the feeding structure, 

• the mut ual coupling between radiating elements, and 

• the farm scattering. 

As the hardware has a large number of parameters to be determined identification of 

dominant parameters is important with the aid of physical insight. Analytical modeling 

is suited for the purpose because the characteristics of antennas are described by the 
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olution of the -Maxwell's equations. If a simple analytical modeling is achieved with 

explicit mathematical relation between the parameters, it can be a source of efficient 

design procedure because the relation gives a guideline for optimization of parameters. 

Even if one desires more accurate results through numerical or experimental means, the 

relation acts as a powerful tool to minimize the time-consuming efforts. In the following, 

a summary of each stage of the analysis is given with representative methods of the simple 

analytical modeling. 

The analysis of the radiating element determines the input impedance and the radia

tion pattern for a single element. The analytical modeling is focused on treatment of the 

radiating element as a set of equivalent currents of simple forms [2) [3) . The ElectroMo

tive Force (EMF) method [4)[5) has wide class of applicability. The equivalent currents 

are determined by empirical or theoretical means . For example, a half wavelength dipole 

is modeled by a sinusoidal electric current. In this case, the empirical argument may 

be applicable to choose the shape of the current. To accommodate the modeling with 

some theoretical foundation, the Kirchhoff approximation [2) [3) for aperture fields is often 

used. Modeling of waveguide horn antenna [1) is an example . The aperture fields are 

approximated by incident wave from the feed waveguide. The vector products between 

the aperture fields and the normal vector of the aperture surface give the electric and 

magnetic equivalent currents. A related example is the cavity model [6) of the MicroStrip 

Antenna (MSA) [7), where the antenna is modeled by the equivalent magnetic currents 

at the edge. After the equivalent currents are determined, the radiation field is calculated 

by using the radiation integral. The far field approximation [2] [5] of the integral gives the 

radiation pattern. The complex radiation power including reactive contribution is calcu

lated by surface integrals with the observation points of the radiation integral chosen at 

the surface of the equivalent current . The input impedance is calculated by division of 

the complex radiation power by absolute square of amplitude of current at the feeding 
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port of the antenna. 

The analysis of feeding structure is carried out to obtain desired excitation distribution 

of the antenna array. If each radiating element is attached directly to an active module by 

using a single feeding line, neglect of detailed analysis is possible for the feeding structure. 

The approximation is widely used and adequately applicable to the active phased array 

antenna [8). On the other hand, appropriate modeling and analysis are needed in the case 

that plural radiating elements are excited by passive Beam Forming Networks (BFN) 

which govern the excitation distribution. The network formalism [2)[3)[9) in microwave 

theory is applicable. The modeling is achieved by use of the equivalent circuit, where 

each discontinuity in guiding structure is treated by appropriate introduction of local pa

rameters of the circuit. The array excitation distribution is obtained from amplitude and 

phase at the port of the circuit where the radiating element is attached. Precise modeling 

is possible if the circuit parameter is supported by the solution of the boundary value 

problem [3]. For example, consider the waveguide slot array antenna [10]. The equivalent 

circuit is described as series connection of shunt admittance of each slot. A variational 

expression [11] is obtained by using an integral equation with respect to equivalent cur

rents on the surface of the slot. Use of a sinusoidal current as the trial function gives 

simple expression of the shunt admittance. 

The analysis of the Mutual Coupling Between the Radiating Elements (MCBRE) 

determines actual performance of the antenna array under operation. MCBRA sometimes 

gives significant degradation of performance such as ripple in active element pattern, large 

variation of active impedance during the scanning of the beam, .. . etc. Two approaches 

are known for the analysis: the Finite Array Approach (FAA) - or Element by Element 

Approach (EEA) - and the Infinite Array Approach (IAA) [1)[8)[12). FAA treats the 

antenna array as finite set of radiating elements. Each feeding point of the radiating 

element is modeled by a port of a circuit with impedance matrix of the antenna array [1). 
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The interaction is treated element by element through the mutual impedance between 

the ports. The E 1F method is a representative example, where the mutual impedance is 

calculated in an analogous way of the self impedance. On the other hand, IAA positively 

utilizes the periodic structure of the antenna array. If the total number of radiating 

elements is very large each radiating element is treated as if it is located in an infinite 

periodic structure. Application of the Floquet theorem [3] reduces the problem to the 

case of a single radiating element. All the effects including MCBRE in infinite array 

environment are automatically contained in the Floquet mode expansion of the fields. 

The active element pattern and active impedance are calculated from the active reflection 

coefficient [1][12) obtained by the theory. TheE 1F method is also applicable [13) for IAA 

by applying the equivalent currents as the source of the periodic Green's function. 

The analysis of the farm scattering determines the performance of the antenna array 

under the presence of platform. If the field of view of the antenna is limited or nearby 

structure is complicated, reflected and diffracted waves from the farm cause degradation 

in the radiation pattern and impedance characteristics. In addition, if the system requires 

multifunction-operation such as simultaneous use of different antennas on the same plat

form. amount of interference must be analyzed between them under the presence of the 

farm. The Geometrical Theory of Diffraction (GTD) [14)[15] is adequately applicable to 

the class of problems. GTD is an extension of Geometrical Optics (GO), where the direct 

and reflected waves are treated as those of GO and the diffracted waves from canonical 

geometries such as the edge, the cylinder, .. . etc. are expressed by simple analytical 

formulas. Approximate modeling of the farm with combination of the canonical geome

tries [16] accommodates the use of GTD. To analyze the radiation pattern of the antenna 

array on the farm, each contribution of the farm scattering is treated by GTD ray t rac

ing for each radiating element. GTD can be applied to the interference problem beyond 

the scheme of GO where no GO ray exits between the two antennas . For example, con-
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sider two antennas separated by a thin fence. The interference is due to diffracted waves 

from the fence or equivalently the edge in the scheme of GTD. The mutual impedance is 

calculated by combination of the EMF method and the edge diffraction formula of GTD. 

To obtain simple analytical formulas for physical quantities, where closed form expres

sions are preferable, the following techniques are applicable: 

• neglect of higher order terms for rapidly convergent infinite series, 

• use of sum formulas for infinite series, 

• analytical evaluation of integrals through appropriate choice of the equivalent cur

rent in the integrand, 

• application of far field or asymptotic approximation of integrals, and 

• development of variational expression and appropriate choice of the trial function, 

where each approximation is supported by identification of small or large parameters 

compared with specific scales of the system for perturbation argument. As a result, 

dominant terms can be extracted for implementation of efficient design procedure. 
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1.2 Scope of study and organization of chapters 

The scope of the present study is implementation of efficient design procedure in practi

cal applications of the antenna array for communications and radar systems. Throughout 

the study. the analytical modeling of hardware is investigated in connection vvith each 

stage of the analvsis described in the previous section with the following concrete goals: 

• development of an efficient design procedure for newly proposed collinear antenna 

array: the electromagnetically coupled coaxial dipole array antenna in Chapter 2, 

where primary effort is made for modeling of the radiating element, 

• implementation of analytical methods in the parallel plate region with their appli

cations to the circular iris in Chapter 3 and newly proposed planar antenna array: 

the radial line planar monopulse antenna in Chapter 4, where modeling of feeding 

structure is attacked in detail, and 

• deYelopment of simple analytical method for the analysis of mutual coupling between 

radiating elements with its application to antenna arrays on a polyhedron structure 

in Chaters 5 and 6 where modeling of the mutual coupling and the farm scattering 

is sought . 

The study is described with the following organization. 

In Chapter 2 a design procedure is developed for a newly proposed omnidirectional 

antenna array, the electromagnetically coupled coaxial dipole array antenna. The key fea

ture of the antenna is a novel use of an electromagnetically coupled feed for the radiating 

element. The structural simplicity of the new antenna overcomes difficulty in manufac

turing of conventional antenna. The chapter is organized below. First, an exact solution 

for the TEM mode reflection coefficient of semi infinite coaxial cable is analyzed by using 
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the Wiener-Hopf technique. A simple approximately closed form expression is derived 

through application of sum formula for infinite sums and polynomial approximation for 

infinite integrals. Verification of the formula is given by comparing the numerical Yalues 

with the exact solution. Second the approximate formula is applied to calculate the self 

admittance of the radiating element. Third, the radiation pattern of the radiating ele

ment is analyzed by an integral equation formalism with analytical implementation of the 

Galerkin's method. Fourth, the feeding structure is modeled by an equivalent circuit. Ex

plicit design procedure is described including a method of matching. Finally, fabrication 

and measurement are given for a prototype array antenna. 

In Chapter 3, analytical formulations are developed for the parallel plate region with 

application to a circular iris in a parallel plate waveguide. Any analysis of the circular 

iris has not been reported so far, and the present study attacks the problem for the first 

time. First , by using modal analysis variational expression of an equivalent susceptance 

is obtained for the circular iris when TEM mode cylindrical wave is incident from the 

center. By extending the Schwinger's analysis to the case of cylindrical harmonics expan

sions, a simple closed form formula is obtained. The formula recovers known expression 

for linear iris when the radius of the circular iris is very large compared with the oper

ating wavelength. Second. alternatiYe formulation is developed through an exact integral 

equation formalism by developing the Green's function of a circular current in the parallel 

plate waveguide. Finally, verification of the approximate formula is given by comparison 

of numerical values between the two formulations. 

In Chapter 4, a design procedure is developed for a newly proposed planar antenna 

array, the radial line planar monopulse antenna, which is capable of monopulse tracking 

operations. The key feature of the antenna is use of multiple port feed of a radial line and 

it gives a new function of synthesizing monopulse patterns which has not been achieved by 

related conventional antennas. The chapter is organized below. First, the mutual coupling 
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of probes in a parallel plate waveguide is analyzed by the EMF method with a simple 

closed form result. Second. the analysis is applied to derive the condition for synthesis 

of monopulse patterns. Third. a design procedure is proposed for uniform aperture field 

distribution with algebraic relations between the parameters. Finally, fabrication and 

measurement for a prototype antenna is given for verification of the theory. 

In Chapter 5 an analysis is carried out for antenna cou piing between arrays on a 

polyhedron structure. The present study attacks the problem for the first time. First, by 

using the E~IF method with approximate evaluation of integral, a simple closed formula 

is derived for the mutual admittance between circular MSAs separated a wedge. The 

diffracted fields are treated by using GTD. Second, numerical simulations are carried out 

for antenna coupling under beam steering of the antenna arrav with the formula. Finally, 

experimental ,·erification of the theory is given. 

In Chapter 6. a simple and general first order expression of mutual impedance and 

admittance is derived for arbitrary class of antennas modeled by equivalent currents. The 

new feature of the study is unification of the previously known Fresnel approximation of 

mutual impedance and admittance integrals into simple and general forms including its 

extension to the high frequency geometries for the first time. The chapter is organized 

below. First, the reaction integral between arbitrary sources is evaluated by using the far 

field approximation where dyadic decompositions of the field quantities are introduced 

with respect to ray coordinates. The developed formulas are of the form, a product of 

radiation patterns multiplied by a free space propagator and divided by the voltages or the 

currents at the feeding points of the two antennas. Second, the theory is extended to the 

case of presence of wedges. Finally applications for MSAs are given with experimental 

verifications. 

In Chapter 7, summaries and conclusions are described. 
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Chapter 2 

Electromagnetically Coupled Coaxial 
Dipole Array Antenna 

2.1 Introduction 

In this chapter, a design procedure is developed for a newly proposed collinear an

tenna array which has an omnidirectional pattern in the horizontal plane. Figure 2.1 

shows the geometry of the antenna called the electromagnetically coupled coaxial dipole 

array antenna [17). It has the Electromagnetically Coupled Coaxial Dipole (ECCD) as 

the radiating element which is composed of a half wavelength metallic circular pipe fed 

electromagnetically by an annular ring slot on the outer conductor of the feeding coaxial 

cable. The metallic circular pipes act as radiating dipoles and their collinear arrangement 

in the vertical direction with in-phase excitation gives an array performance. 

There exist some kinds of collinear antennas. The COaxial COllinear antenna (COCO 

antenna) [18]-[21] employs a collinear arrangement of coaxial cables where the feeding 

structures are inverted in a half wavelength step so as to produce in phase excitations. 

Instead of using the coaxial cable, a printed COCO antenna with microstrip feed line is 

also reported [22]. An additional type is the Coaxial Dipole Antenna (CDA) [23]. The 
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radiating dipoles of CDA is fed by an annular ring slot which extends in radial direction 

from the outer conductor of the feeding coaxial cable. A modification of CDA is the 

bi-directional collinear antenna [24] which uses an arc parasitic plate attached near the 

radiating dipole of CDA. 

ECCD array antenna, as proposed in this chapter, is another modification of CDA 

which has an advantage of structural simplicity due to a novel use of an electromagnetically 

coupled feed for CDA. 

In Section 2.2, a \iViener-Hopf analysis [25]-[28] is carried out for the TE 1 mode 

reflection coefficient of a coaxial cable \vhich has a semi-infinite outer conductor [29]-[31]. 

The analysis deals with an exact solution as well as a simple approximate formula which 

is valid if the radius of the coaxial cable is much smaller than the operating wavelength. 

In Section 2 .3, the methods by Chen and Keller [32], and Lee and Mittra [33] are 

applied to derive the input admittance of the radiating element. 

In Section 2.4, an analysis of radiation pattern of ECCD is carried out with an inte

gral equation formalism by using the Green's functions of a perfectly conducting circular 

cylinder. 

In Section 2.5, an equivalent circuit for ECCD array is described. 

In Section 2.6, fabrication and measurement of a prototype array antenna are de-

cribed. 

In Section 2. 7, a summary of this chapter is given. 

10 

Feeding coaxial cable 

Circular pipe 

Annular ring slot 

a b 
....., .......... , .............. -

···········•· ·•················· ..... . 

/ 

••..•• • • .•• • ••••• A ..• I •••.. •• •• •• • • •••• ___ ••••••• '" z 
• ••••• 1 L ••••••••• y---- ~ 

~----~~--------_. port 1 2W port 2 

Figure 2.1: The electromagnetically coupled coaxial dipole array antenna. 
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2.2 TEM mode reflection coefficient for a semi-infinite 
coaxial cable 

In this section, a \\Tiener-Hopf analysis is carried out for the TEM mode reflection 

coefficient of a semi-infinite coaxial cable, as shown in Fig.2.2, when the TEM mode is 

incident from inside the cable . The structure is one of the canonical Wiener-Hop£ geome-

tries . Classic results for the TEM mode incidence are given in [29], and the case of higher 

order mode incidence is treated in [31], where some approximate formulas are developed 

when the radius of the coaxial cable is much larger than the operating wavelength. In this 

section, we derive an exact analytical expression as well as a simple approximate formula 

which is \·alid when the radius of the coaxial cable is much smaller than the operating 

wa\·elength. From now on. e-twt dependence is assumed for the fields. 

The problem has a rotational symmetry in the ¢ direction, and functional dependence 

of every physical quantity appears in the analysis is of the form f (p, z). We define a 

Fourier transform pair off with respect to z as follows: 

F(p,a) 1 ~oo j( ) iozd 
(27r )1/2 -oo p, z e z, (2.1) 

f(p ,z) 1 J oo F( ) iozd 
( 27r )1/2 -oo p, a e- a. (2.2) 

\\'e assume that the propagation constant of the medium is k = k1 + ik2 = wJJIE., 
k1 >> k2 > 0. k2 will be put equal to zero after the analysis . The relation between a and 

the radial spectrum function 1 is defined as foll ows ( see Fig.2.3 ) : 

a+ iT, a , T : real 

12 

(2.3) 

(2.4) 

b II\ 

a 'V 
........ ............... 'v 

..... - z 
••••................... 

Figure 2.2: Semi-infinite coaxial cable. 

a -plane 

k 

-k 

Figure 2.3: Branch cut for t he radial spectrum function 1 in the a-plane . 
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For the geometry in Fig.2.2, non zero field components are expressed by using the vector 

potential A = z'l/J (p , z ) as follows [26]: 

(2.5) 

(2.6) 

(2.7) 

'1/) (p, z) satisfies the following wave equation: 

~~ (p fJ 'ljJ ) + fJ2 7J; + k2 'l/J = 0. 
p 8p 8p 8z2 

(2.8) 

Let the incident TE 1 mode current Ji(z) have the following form in a~ p ~ b : 

Io = const. (2.9) 

The boundary conditions for the field components are given as follows: 

Ez(a z) = 0, ( -oo < z < oo), (2.10) 

Ez(b-,z) = Ez(b+ z) = 0, (-oo < z < 0), (2.11) 

Ez(b- z) = Ez(b+, z) = Ez(b , z) , (0 < z < 00)' (2.12) 

Hcp (b+ z) - Hcp(b-. z) = H¢(b, z), (0 < z < oo), (2.13) 

where b+ and b- mean b + E and b- E. (E --+ +0) , respectively, and this convention is 

applied throughout the chapter. The edge condition for the end of the outer conductor is 

given as follows: 

E (b z) r"V z- 1/ 2 
z ' ' 

(z--+ 0), 

(z--+ 0). 

(2.14) 

(2.15) 

Let the Fourier transform of '1/J(p, z) with respect to z be w(p, a), then (2.8) is equivalently 

expressed as follows: 

[~~ (p~ · ) - , 2
] w(p, a)= o, p f)p f)p (2 .16) 
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where r is defined in (2.4). From now on, we put subscripts + or - on the function which 

is regular in the upper half plane ( T > - k2 ) or regular in the lower half plane ( T < k2 ) in 

Fig.2.3, respectively. In general , a Fourier transform F(a) of a function f( z ) is naturally 

decomposed into the sum of F, (a) and F_(a) [25]-(28] 

F(a) F+(a) + F_(a) , (2.17) 

F+(a) 1 100 !( ) i<U 
(21r )1 /2 0 

z e dz , (2.18) 

F_(a) 1 JO J( ) ioz 
(21r )1/2 -oo z e dz. (2.19) 

By using (2.5),(2.10) , and the fact that the field decays asp--+ +oo , solutions for (2.16) 

are expressed as follows: 

w(p. a) 

W(p,a) 

Ko(!P) 
w+(p,a)+'lf _(pa)=A(a) ( )' 

Ko rb 
B(a) Io(! p)Ko(!a)- Ko(!p)Io(!a) 

Io(rb)Ko(!a)- Ko(rb)Io(! a) 

(p 2 b) (2.20) 

(a~ p ~b) , (2.21) 

vvhere, A(a) and B(a) are unknown functions. In the above formula, we have introduced 

normalization functions for the later convenience. We define the Fourier transform of 

Ez(P, z ) and Hcp(p, z) with respect to z as E(p, a) and H(p, a), respectively. By using 

(2.5), (2.7), (2 .20), and (2.21), we have the following relations: 

'2 -. A(a), 
'lWE 

rKl(rb) A( ) 
Ko(! b) a' 

' 2 -. B(a) 
'lWE 

B( ) Il( r b)Ko(ra) + Kl(rb)Io(ra) 
r a Io(!b)Ko(!a)- Ko(!b)Io(!a). 

The boundary conditions (2.11), (2.12), and (2.13) lead to the following relations: 

E_(b+, a) 

E_(b-, a) 
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0, 

0, 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 



E+(b-, a) = E+(b, o:), 

(27r~l/2fo'"' I'(z)eiozdz, 

ilo 
(27r)112 (a + k). 

(2.28) 

(2.29) 

The formulas (2.22), (2.24), (2.26), (2.27), and (2.28) give expressions of A(a) and B(o:) 

as follows: 

iwE 
A( a)= B(a) = E+(b, a)-

2 
. 

I 

Next, we introduce an unknown function J_(a) as follows: 

27rb{H_(b+, a)- H_(b-, o:)} = J_(a). 

(2.30) 

(2.31) 

Subtracting (2.25) from (2.23), and using (2.29), (2.30), and (2.31), we have the following 

Wiener-Hop£ equation with respect to E+ and j_ : 

(2.32) 

Ko(lb) 
L(a) = Ko(la) {Io(lb)Ko(la)- Ko(lb)Io(la)}. (2.33) 

L(o:) can be factorized in a product form L(a) = L+(a)L_(a). The procedure is given in 

Appendix A. We rewrite (2.32) as follows: 

ilo 
(21r)1/2 (o: + k) {(o:- k)L_(a) + 2kL_(-k)} +(a- k)L_(o:)J_(a) 

27rwci 2ki0iL_(-k) 
(a+ k)L+(a) E+(b, a)+ (27r)1/2(a + k). (2.34) 

The left-hand and right-hand sides of the above formula are regular in T < k2 and; > -k2 , 

respectively, in the a-plane. Furthermore they are both regular in ITI < k2 . Then the 

theorem of identity states that the both sides of (2.34) are identical to an integral function 
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P( o:) [25]-[28]. By using the edge condition and the results of Appendix A, the following 

relations are obtained in IT I < k2 as Ia I ----+ oo : 

-1/2 
a ' 

J_(a) H_(b , a) rv o:-312 , 

L_(o:) rv L+(a) rv 0:-l/2 . 

(2.35) 

(2.36) 

(2.37) 

By using the above properties, we see that the left-hand side of (2.34) decays as a-112 , 

and the right-hand side decays as a- 1 in 1;1 < k2 when lal -t oo. Then the Liouville's 

theorem states P(a) = 0 [25]-[28]. Thus the solution of the Wiener-Hopf equation (2.32) 

i given as follows: 

(2.38) 

where r; = #· By using (2.25), (2.30), and (2.38), H¢(P, z) is expressed in the region 

a ::; p ::; b as follows: 

U(p, z) 

u(p,o:) 

1 /oo H( ) iazd (27r )1 / 2 -oo p, o: e- a, 

kloi 
-

2 
L_( -k)U(p, z), 

271" 

fc u(p, o:)e-iazda 

L+(o:) II(Ip)Ko(la) + KI(Ip)Io(la) 
1 . Io(lb)Ko(la)- Ko(lb)Io(la) · 

(2.39) 

(2.40) 

If the radius of the coaxial cable is much smaller compared with the operating wavelength 

where only the TEM mode can propagate, the poles of the integrand of U (p, z) are located 

in a-plane as shown in Fig.2.4. In Fig.2.4, the poles in the upper and lower half planes 

correspond to the modes in the negative and positive z-axis, respectively. The pole at 

a = k represents the reflected TEM mode from the discontinuous end of the coaxial cable. 

The pole at a = - k cancels the incident TEM mode in the positive z region. 
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By using the relations 

b 
Io(!b)Ko(J'a)- Ko(rb)Io(ra)---+ ln -, (!---+ 0), 

a 
(2.41) 

(2.42) 

the magnetic field H¢(p, z) for the reflected TEM mode from the end of the coaxial cable 

is calculated by the residue of the pole at a = k . Then the reflected current Ir (z) is 

obtained as follows: 

JT( z) = 21raH¢(a. z ) 

= fo {L (k)}2 -zkz 
ln(b/ a) + e · 

(2 .43) 
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17: 
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• an Evanescent mode poles 
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• 
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0 

TEM mode pole 
• 
• 

a -plane 

TEM mode pole 

. k 

(J 

• Evanescent mode poles 

• 

Figure 2.4: The integration contour C and poles of the integrand of U(p, z) in the a-plane. 
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The ratio of Ir (z) to Ji(z) gives the reflection coefficient R(z) of the semi-infinite coaxial 

cable as follows: 

1 

L+(k ) = ~ {Jo (ka )No(kb)- No (ka)Jo(kb)} _H-7--~l..,.....c) -----=--[ 
(l)(kb)l 2 

2 H0 (ka) 

[
k (b - a) { n k(b-a)}] 

. exp i n 1 + In 2 - 2 - Ce - In ni 

[ 

oc ( k ) -k(b-a)/(m ri)J 

· ni]l 1+ Cln exp{~(k , a , b)} , 

~ (k, a, b) q(k, b) - q(k , a), 

q(k ,x) laoo f (w k , X )dw, 

f (w , k ,x) - 1--· In 1+ X[ 2 1 l ( k ) 
n nwx {J0 (wx)} 2 +{N0 (wx )} 2 )k2 -w2 ' 

Jk2 - w2 i v'w2 - k2 , 

where Ce::: 0.5772 is Euler's constant and an i defin ed as follows : 

'l n7r 
Cln rv -b-' 

-a 

(n=1 , 2, 3, ..... ) , 

( n --+ oo or a, b << A). 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

Although (2.44) gives the exact solution, it has a disadvantage of practical applications 

because it contains infinite integrals as well as an infinite product. In general, a and b for 

ECCD are very small compared with the operating wavelength A. In the following , we 

derive a simple approximate formula for R which is valid when 0.001A ~a b ~ 0.1A. 

The infinite integral given by (2 .4 7) is evaluated numerically and an effort has been 

made to find an approximate numerical formula. Special care is needed for the numerical 
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evaluation of (2.4 7) because the integrand has numerical singularities. The corresponding 

procedure is given in Appendix B. It has been observed that a polynomial of logarithmic 

variables improves the convergence with respect to the order of the series in this case. 

The resultant expression of (2.47) in the domain 0.001 ~ x/ A ~ 0.1 is as follows: 

q(k. x ) q(kx ) = Q(x/ A) (2.51 ) 

Q(x·) - 0.16073 + 0.017312lnx + 0.0093628(ln x )2 + 0.00072849(ln x) 3 

+i { -0.023700- 0.029142ln x - 0.0047721 (ln x )2 - 0.00021525(ln x )3 } . 

The above formula approximates the exact values within 3% errors. The part of infinite 

product is approximated as follows: 

00 ( k ) - k(b- a)/(i ·m ) 

II 1+-
n =l Cln 

e-C,k (b-a)J(i~) ;r ( 1 + k(bi~ a)) , 

"' exp [ {k(b ~a)}'] , (2.52) 

where , the following formulas have been applied: 

innj(b-a) (2.53) 
e - Cez/a oo ( z ) -z/(an ) II 1 +-

n = l an f(1 + zja) ' 

exp{-~~ (Dl (z/a--+ 0). (2.54) 

The error due to the approximation of an given in (2.53) in the domain 0.001A ~ a, b ~ 

0.1A is within 10%. The remaining parts of (2.45) are approximated as follows: 

n b 
2{Jo(ka)No(kb)- No(ka )Jo (kb)}::: In;;: , (2.55) 

H~ 1 ) ( kb) ln(kb/ 2) + Ce - in / 2 
~~~ ~ ---------------
Hal) (ka ) - ln (ka/ 2) + Ce - in / 2 · 

(2.56) 
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The final expression of R( z) is given as follows: 

R( z) 

A1 

ln (kb/ 2) + Ce - in /2 exp {2(.1\f _ ikz) } , 
ln(ka/ 2) + Ce -in /2 

Q u) _ Q (~) + { k(b ~a)}' 

+ k ( b - a) i { 1 + ln 2 - ~ - C e - ln k ( b ~ a) } . 
n 2 nz 

(2.57) 

(2.58) 

To see the validity of (2.57) , a comparison is plotted in Fig.2.5 between the approximate 

values calculated by (2.57) and the exact values in the case of a = O.OL\ and 0.015..\ ::; 

b :S 0.1..\. The correspondence between them is appropriate for practical applications. 

1 

Exact 90 
--------- Approximate al ...., 

(Q -::c 
a: 0.5 0 -c. 

(Di 
(01 

-90 

0 -180 
0.05 0.1 

b/ .A., ( a=0.01 A ) 

Figure 2.5: Comparison between the exact formula (2.44) and the approximate formula 
(2.57). 
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2.3 Input admittance 

In this section , the TElVI mode reflection coefficient for the semi-infinite coaxial cable 

is applied to an analysis of the input admittance of ECCD in Fig.2 .1. From now on, we 

write R = R(O) in (2.57). We derive an approximate form of the current distribution 

I( z) on p = a with the methods by Chen and Keller [32), and Lee and Mittra [33] . In 

this case, we treat the region between the circular pipe and the feeding coaxial cable in 

Fig.2.1 as a cavity where the TEM mode is the only propagation mode and the effect of 

nd discontinuities is contained in R . \1\/e define IinJ(z) as a current on p = a which is 

excited by the annular ring slot when the discontinuities of the coaxial line are absent. We 

also define Icav(z) as currents due to multiple reflections between the ends of the cavity 

when the TEM mode current in IinJ(z) is incident. Icav( z) is identified as the Neumann 

series which can be summed up in a closed form. For more details , see the derivation of 

Eq.(5.2) in Reference [33]. I( z) is approximately calculated by superposition of IinJ(z) 

and Icav(z) as follows: 

I (z) IinJ(z) + Icav(z), (2.59) 

IinJ(z) Io U(z) + Inp(z), (2.60) 

Icav ( Z) I U(l 1) + RU(l2)U(l1 + l2) RU( _ l ) 
0 1 - R2{U(ll + l2)}2 z 1 

I U(l2) + RU(l1)U(l1 + l2) RU( l ) 
+ 0 1 - R2 { U ( l1 + l2) }2 z + 2 ' (2.61) 

U(z) = eiklzl (2.62) ) 

where the term I0U( z) and Inp(z) in (2.60) correspond to the currents due to the TEM 

mode and non-propagating modes, respectively. If the annular ring slot in Fig.2.1 is 

excited by a voltage ~v, the input admittance Yu of ECCD is given as follows: 

Yn = 
I(w) +I( -w) 

2~v 
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(2.63) 



~nf +} ~av, (2.64) 

YinJ 
IinJ(w) + IinJ( -w) 

(2.65) 
2~v 

Ycav 
Icav(w) + Icav( -w) 

(2 .66) 
2.6.v 

\Ve calculate YinJ· vVe assume that the width 2w of the annular ring slot is much smaller 

compared with A, and it can be modeled by the following uniform magnetic current A1cp : 

~I ( ) = { -{~v/(2w)}6(p- a) , 
11 ¢ p, z 0 

1 

(lzl < w), 
(lzl ~ w). 

(2.67) 

The only non-zero component of the magnetic field inside the coaxial cable is H¢(P, z). 

'0/e define the Green's function G with respect to M¢ as follows: 

H¢(P, z) = iwE. /_: dz' 1b p' dp' G(p, zip', z')M¢(P', z'), 

!__ {~!___ (pG)} + a2
G + k2 G =- 6(P ~ p') 6(z- z'). 

8p p8p 8z2 p 

G can be constructed as follows: 

eiklz-z' [ 1 oo p (p)P (p') , ------,--- + - L n n e->-n[z-z I 
22kpp' ln(bja) 2 n=l AnFn 

= JL(PnP)- o(Pna)- Nl(PnP)Jo(Pna), 

VP;- k2
, 8{pPn(P)}j8pip=b = 0, 

2 [{ J0 (pna) }
2 l 

1r 2p~ Jo (pnb) - 1 
. 

By using (2.67), (2.68), and (2.70), IinJ(z) is calculated as follows: 

(2.68) 

(2.69) 

(2. 70) 

(2. 71) 

(2. 72) 

(2.73) 

2naH¢(a, z), (2 .74) 

Yo b..v. sin(kw) U(z)- iJrk .6v f 1- e-2>-nw [ { Jo(Pna) }2- 1] --1 

2 kw rJW n=t A~ Jo(Pnb) 

1o.6v·U(z)- i7rk.6vL 1-e- 2>-nw [{Jo(Pna)}2 -1]-L 
2 TJW n=l A; Jo(Pnb) 

(2.75) 

Yo 
27r 

(2. 76) 
TJ ln(b/a)' 
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where (2. 75) is obtained by assuming kw << 1. The first term and the last summation part 

in (2.75) are identified with I0 U(z) and Inp(z) in (2.60), respectively. Bv comparing the 

coefficients of U(z) in the first terms in (2.60) and (2.75) we have the following relation: 

}(J 
Io = -.6v . 

2 

Yin! is obtained by (2.65) and (2.75) as follows: 

(2.77) 

(2. 78) 

'"here the approximation U(±w) = eiklwl ~ 1 is made as in (2.75). Ycav is readily obtained 

by (2.61), (2 .66), and (2.77) as follows: 

1r rv Yo R {U(li)F + {U(l2)F + 2R{U(lt + l2)} 2 

cav - 2 1 - R2{[/ (ll + l2) }2 ' (2.79) 

where the approximations U(±w- lt) ~ [;'(LI) and U(±w + l2 ) ~ U(l2 ) are made. By 

using (2.62), (2.64), (2.78), and (2.79), we finally obtain Yn as follows: 

(2.80) 

In the case of h = l2 = l , (2.80) becomes, 

- - rv Yo . 1 + Re2ikl - ink 00 1- e-2AnW [{ Jo(Pna) }2- l-1 
Yu(ll-l2-l)- 2 1-R 2ikt L A2 J( b) 1 

e rJW n=l n 0 Pn 
(2.81) 

When R = 0 the first term in (2.81) reduces to Ya/2 which represents the admittance 

in the case of two coaxial lines connected and fed at the center. If we put R = -1 and 

l = 1/4A in (2 .81), then Y11 = oo; i.e. when each end of the coaxial cable is open-circuited 

and the location of the annular ring slot is a quarter-wavelength away from the ends, the 

annular ring slot is short-circuited, which meets the physical insight. 

To verify the applicability of the derived formula, measurements have been carried 

out. S parameters Su and S21 are measured for the two ports 1 and 2 in Fig.2 .1 of 
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the feeding coaxial cable with characteristic impedance z1. An equivalent circuit for the 

geometry consists of a transmission line with characteristic impedance ZJ loaded with 

input impedance Z11 of ECCD and Z1 in series. 511 and 521 are calculated as follows: 

Su 
Zu 

(2.82) 
Zu + 2ZJ' 

521 
2Z1 (2.83) 

Zn + 2ZJ' 

Zu 1/Yu (2.84) 

Figure 2.6 shows comparisons between the measured and calculated values. The param-

eters are l1 = l2 = 0.21).10 , a= 0.0092).10 , b = 0.023).10 , w = 0.0041).10 , and z1 = 50D, 

where ). 10 corresponds to the free space wavelength at the frequency f 0 . 
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Figure 2.6: Comparison between calculated and measured values for 511 and 521 of ECCD 
in Fig.2.1 , where l1 = l2 = 0.21Ato , a = 0.0092AJo , b = 0.023).10 , w = 0.0041).10 , and 
Z1 = 50D. 
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2.4 Radiation patterns 

In this section, the radiation pattern of ECCD is analyzed. We model the circular 

pipe and the annular ring slot in ECCD as rotationally symmetric electric and magnetic 

currents, respectively, which are located above a perfectly conducting infinite circular 

cylinder of radius a as shown in Fig.2.7. Fields of the currents are expressed through the 

Green's functions of the circular cylinder. The current distribution of the circular pipe is 

determined by an integral equation vvith respect to the electric field boundary condition 

on the surface of the pipe and then the radiation pattern is obtained. 

The non-zero fields Eie) (p, z), E~e) (p, z), and H~e)( p, z) of the z-directed electric current 

Jz(zl) at the radius bare given by (2.5) to (2.7) with the vector potential '1/J( p, z) replaced 

bv Az (p z). Az (p, z) is calculated by the Green 's function of the infinite circular cylinder 

as follm~ s [34]: 

! l I (e) I I 

Az(p,z)= _
1
dz G (p,zlb,z)Jz(z) , (2.85) 

G(e) (p, zlb Z
1

) = ib !oo daeia[z-z' l H6::;~<P> ) { lo(~<p<JH6 1 )(~<a) ~ H61 )(~<P< )Jo(~<a)}, 
4 -oo H0 (K;a) 

(2.86) 

where P> and P< represent the larger and the smaller values of p and b, respectively, and 

K; is given in (2.4). The non-zero fields of the ¢-directed magnetic current M<t>( zl ) on the 

surface of the circular cylinder are given as follows [34] : 

1 8H(m) 
E(m)(p, z) = -. - 4> , 

p 2Wc 8z 
(2 .87) 

E (m)( ) = ~~~ ( H (m)) 
z p, z a P ¢ , 

WEP p 
(2.88) 

H~m)(p,z) = iwE 1: dz
1

G(m)(p ,zla,z
1

)M¢(Z
1

), (2.89) 

c (m)( I I)- -~~oo d inlz-z'I~ Hp)(K,p) p, z a, z - 2 ae ( l ) . 
1r -oo K; H 0 (K;a) 

(2.90) 
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Figure 2. 7: Geometry of ECCD and rotationally symmetric electric and magnetic currents 
on a perfectly conducting infinite circular cylinder. 
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If we treat M<P as a known source which gives an incident wave of the scattering problem, 

the following integral equation for Jz is obtained by the electric field boundary condition 

on the surface of the circular pipe: 

E(m) (b z) + E(e) (b z) = 0 
z ' z ' ' 

(lzl ~ l). (2.91) 

We use the Galerkin's method to solve the above integral equation. We expand Jz(z) 

with a class of expansion functions 'lln(z), (n = 1, 2, 3, ... ) as follows: 

(2.92) 
n=1 

(2.93) 

where Xn, (n = 1, 2, 3, ... ) are unknown coefficients to be determined. The integral equa

tion (2.91) is equivalent to the following form in the Galerkin's sense, 

(n=1,2,3, ... ). (2.94) 

After some calculations, (2.94) reduces to the following simultaneous linear equations with 

respect to Xn by assuming M<t>(z) = M 0o(z- z0 ) for simplicity: 

00 

LAmnXn = Pm, 
n=l 

(2.95) 

_ rJbfnoo 2Hal)(K,b) (1) (1) 
Amn- - 2k do:Bmn(a)K, (l) {Jo(K,b)Ho (K,a)- Ho (K,b)Jo(K,a)},(2.96) 

o H0 (K,a) 

Bmn(a) = Cm(a)Cn(a) + Sm(a)Sn(a), (2.97) 

M, lnoo H(1)(/'\,b) 
Pm = --

0 da ~l) {Cm(a) cos(azo) + Sm(a) sin(azo)}, (2.98) 
rr o H 0 (1'\,a) 

Cn(a) = [L dz'll(z) cos(az), (2.99) 

n 1f cos ( al) { ( _ 1) n _ 1} 
(2al)2 - ( nrr )2 ' (2.100) 

Sn( a) = f_L dz\ll (z) sin( az ), (2.101) 

nrr sin ( al) n 

= (2o:l) 2 - ( nrr )2 { ( - 1) + 1} · (2.102) 
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An approximate solution is obtained by replacing the summation in (2.95) with finite 

N terms and a matrix inversion. Now we calculate the radiation pattern of the current 

distribution. We neglect contribution of Mrp for the radiation pattern by assuming that 

the dimension of the annular ring slot is much smaller compared with the circular pipe. 

The magnetic field H~e) of Jz is calculated by (2. 7) and (2.85) as follows: 

(2.103) 

(2 .104) 

(p 2 b). 

(2.105) 

In the far field region, an asymptotic approximation can be employed for the integral in 

(2.105) with the aid of the following formula [34): 

j_: daF(a, K,)H~1 )(K,p)ein l zi F ( k cos B k sin B) ~eikR-i(n+ 1 )7r 12 
' 11 ' 

z 11 cos B, 

p RsinB, 

R jp2 + z2. 

The final expression of the far field is given as follows: 

E (e) H(e) 
B rJ rp ' 

rJkbsinB (l) 
. {l) . {Jo(kbsinB)H0 (kasinB) 

R 22H0 (ka sm B) 
N 

- H6 1
) (kb sin B)Jo(ka sin B)} L XnDn (k cos B) , 

rl dz\ll n (z )e-iaz' 
1-l 

n=l 

nrr {( 1)n -ial ial} 
(2al)2- (nrr)2 - e - e · 

31 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

(2.110) 

(2.111) 

(2.112) 

(2.113) 



Figure 2.8 shows the calculated and measured radiation patterns of ECCD in Fig.2. 7, 

where the parameters are the same as those of Fig.2 .6 in the previous section with l = 

Calculated 

Measured 
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~ 

aJ 
-c 'I: 

\, ......_,. \, 
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' I \ 
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I ~ ' \ 0 \ 
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I 

-20 
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Elevation angle 
180 

fJ (deg) 

Figure 2.8: Calculated and measured radiation pattern of ECCD, where the parameters 
are the same as those in Fig.2 .6. 
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2.5 Array p erformance 

ECCD array antenna with n radiating elements is analyzed by an equivalent circuit 

for collinear antennas [10][35][36)[37] shown in Fig.2.9. The feeding point of the array 

is located at the distance d0 measured from the first radiating element. The end of the 

feeding coaxial cable, which is located at the distance dn from the last radiating ele-

ment , is terminated with a load of impedance ZL. dm , (m = 1, 2, ... , n- 1) represents 

the spacing between m-th and (m + 1)-th radiating elements. k1 and Zf represent the 

propagation constant and the characteristic impedance of the feeding coaxial cable, re

spectively. Zm, (m = 1, 2, ... , n) represents the self impedance of m-th radiating element 

which is calculated as follows: 

(2 .114) 

where Ym stands for the self admittance of m-th radiating element calculated by (2.80). 

The input impedance Zin of the array antenna is calculated by using the F-matrices 

F~ and Fm , (m = 1, 2 ... , n) of the equivalent circuit as follows: 

Zin 
\ T 

I ' 
(2.115) 

( ~ ) FoF1z F1F2z F2 · · · Fn-lF: Fn ( i~ ) , (2 .116) 

VL ZLIL, (2.117) 

pZ 
m ( ~ Zm) 

1 ' 
(2.118) 

Fm ( COS Om 
( -i/ZJ) sinBm 

-iZt sin Om ) 
COS Bm ' 

(2.119) 

em kJdm , (2.120) 

where V, I and VL , IL represent the voltage and current at the feeding port and those at 

the termination , respectively, F~ repre ents the F-matrix of the serial impedance Zm , and 

the effect of length dm of the feeding coaxial cable is contained in F m. It is noted that 
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(2.117) is sufficient to determine (2.115) because Zin(VL, IL) in (2.115) depends only on 

the ratio of VL to IL. The voltage Vm and current Im seen from the feed side at the m-th 

radiating element are given as follows: 

(2.121) 

where 6.vm = ImZm, (m = 1, 2, ... , n) gives the array excitation distribution. 

v k, k, VL 
Zin_,. 

••• I 

z, I z, I 

-- --

Figure 2.9: Equivalent circuit for ECCD array antenna. 
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2.6 Fabrication and measurements 

A four element array antenna as shown in Fig.2.10 has been fabricated. The antenna 

is designed to have a uniform aperture field distribution. The parameters of the radiating 

elements are all identical to those of Figs.2.6 and 2.8 in the previous sections. The inner 

and outer radii of the feeding coaxial cable are 0.0026.\10 and 0.0085.\10 , respectively. The 

cable is filled with dielectric material of dielectric constant Er = 2.0. The spacing d1 , d2 , 

and d3 between the radiating elements are all identical to 0.71>.10 which corresponds to 

1>.9 , where .\9 = A to ! JE;. The feeding coaxial cable is open ended. The distance d4 is 

( 3/4) >. 9 betvveen the feeding point of the last radiating element and the open end of the 

cable. Near the feeding point of the array, an impedance matching section is formed. 

The section consists of a quarter wavelength impedance transformer with a coaxial cable. 

The impedance matching is carried out as follows: By varying the distance d0 between 

the feeding point of the array and that of the first radiating element (see Fig.2.10), the 

imaginary part of Zin can be canceled where Zin is calculated by (2.115). Now we have 

Zm = Zr = real. The characteristic impedance Zt of a quarter wavelength impedance 

transformer is determined by Zt = J ZrZJ to realize the matching, where z1 is the 

characteristic impedance of the feeding coaxial cable. The designed parameters of the 

transformer are as follows: The inner and outer radii of the coaxial cable are 0.0026>.10 

and 0.010.\10 , respectively, and the length of the coaxial cable is (1/4)>.10 where Er = 1 

inside, and d0 = 0.44>.9 . Figure 2.11 shows a comparison between calculated and measured 

values of the return loss of the fabricated array, where the input impedance is designed 

to be matched at ]0 . The correspondence between the two values is considered to be fair, 

however, not negligible disagreements are observed. The phenomenon is considered to 

be due to the following reasons: First, the mutual couplings are neglected between the 

radiating elements outside the feeding cable. Second, the region near the open end of the 
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feeding coaxial cable is simply modeled by the transmission line model in Fig.2.10 , and 

some treatments , e.g. inclusion of radiation effects , may be needed. Finally, more precise 

modeling of the transition between the radiating element and the feeding coaxial cable is 

considered to be important to improve the correspondence in Fig.2.11 as well as those in 

Fig.2 .6. Figur 2.12 shows the radiation characteristics of the array. The efficiency of the 

antenna, measured gain versus calculated directive gain , is 91%. A good omnidirectional 

pattern in Azimuth (Az) angles as well as a uniform aperture field illumination in Elevation 

(El) angles is observed. 

a quarter wavelength 
impedance transformer 

Feeding 
point 

Zr z, I 

: kf I 

I 
I I 

.z~ 
I f I 

I 

: k, : 
I I 
I I 

~z~ 
I f I 

I 

open end 

\ 

I I 

~ z ~ 
I f I 
I I 

Figure 2.10: Geometry and equivalent circuit of a prototype four-element ECCD array 
antenna, where the parameters of radiating elements are the same as those in Fig.2.6, 
Er = 2 inside the feeding coaxial cable except in the quarter wavelength impedance trans
former where Er = 1, the inner and outer radii of the transformer are 0.0026).10 and 
0.010Afo , respectively, and d0 = 0.44,\9 . 
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Figure 2.11: Return loss (power) of ECCD array antenna in Fig.2.10. The antenna is 
designed to be matched at fo. 
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Figure 2.12: Radiation characteristics of the four-element ECCD array antenna in 
Fig.2.10, where the angles e and ¢ are defined in Fig.2. 7. 
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2.7 Summary 

A design procedure is developed for a newly proposed collinear antenna array called the 

electromagnetically coupled coaxial dipole array antenna. The antenna has an advantage 

of structural simplicity suitable for manufacturing due to a novel use of an electromag-

netically coupled feed . To model the edge of the radiating element, Wiener-Hopf analysis 

is carried out for the TEM mode reflection coefficient of a coaxial cable which has a semi-

infinite outer conductor. The analysis deals with an exact solution as well as a simple 

approximate formula which is valid if the radius of the coaxial cable is much smaller than 

the operating wavelength. Comparison between values of the exact and the approximate 

formula is made with good correspondence. The approximate formula is utilized to cal-

culate the input admittance of the radiating element, where the multiple reflections from 

the edges are taken into consideration. The dominant term of the input admittance allows 

physical inspection with resemblance to two coaxial cable ended by the reflection coeffi-

cients connected and fed at the center. Comparison between calculated and measured 

values of S-parameters supports the theory. An analysis of radiation pattern of radiating 

element is carried out with an integral equation formalism by using the Green's functions 

of a perfectly conducting circular cylinder. Use of sinusoidal expansion function allows 

analytical evaluation of integrals in the Galerkin's method. The calculated and measured 

radiation patterns are in good agreement. To model the array antenna including feeding 

structure an equivalent circuit is introduced as serial connection of the self impedances of 

the radiating elements. A procedure for matching is introduced with the modeling of the 

matching section. Fabrication and measurement of a prototype array antenna support 

the theory. 

An efficient design procedure can be implemented with the analytical modeling as well 

as simple formulas for the radiating element developed in this chapter. The antenna is 
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suited for basestation antennas for mobile communication systems which require omni-

directional patterns. Applications are also expected for other systems such as boundary 

layer radars. 
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Chapter 3 

Equivalent Susceptance of a Circular 
Iris in a Parallel Plate Waveguide 

3 .1 Introduction 

In this chapter analytical formulations are developed for the parallel plate region with 

an application to a circular iris in a parallel plate waveguide (38]. 

The iris in a parallel plate waveguide is considered to be one of the canonical geometries 

of waveguide component with its applications to feeding structures of antenna arrays. A 

number of studies have been reported [3][39][40), however they are limited to the shape 

of linear iris. The circular iris in a parallel plate waveguide has a suitable geometry to 

realize the matching of the feeding probe in a waveguide. In this case, the effect of the 

curvature should be included for the design procedures, where approximate applications 

of the formula for the linear iris may give some errors. To obtain accurate modeling of 

the feeding structure by using the equivalent circuit approach, the corresponding formula 

is desired for the equivalent susceptance in the case that the TEM mode cylindrical wave 

is incident from the center. 

This chapter treats the problem by using modal analys is of the parallel plate region 
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with the following organization of sections. 

In Section 3.2, a simple approximate formula is obtained by using the variational 

method by Schwinger [3][40], where the theory is generalized to the cylindrical wave 

incidence. The previously known formula for an equivalent susceptance of the linear iris 

[3][39][40] is recovered when the radius of the circular iris is sufficiently larger than the 

wavelength. 

In Section 3.3, an exact integral equation is formulated with respect to unknown 

currents on the surface of the circular iris. In the formulation, the Green's function of 

rotationally symmetric currents in the parallel plate waveguide with a perfectly absorbing 

dummy load at the center is introduced and its derivation is described . The integral 

equation is solved by the Galer kin's method with a class of sinusoidal expansion functions . 

The equivalent susceptance is expressed by using the calculated currents. 

In Section 3.4 , a comparison is made between the values calculated by the approxi

mate formula and the Galerkin 's method. The correspondence between them shows good 

agreement. 

In Section 3.5, a summary of this chapter is given. 
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3.2 Approximate formula for equivalent susceptance 

Consider a circular iris of infinitesimal thickness as shown in Fig.3.1 with a radius d 

and a height l in a parallel plate waveguide of a height h < >.. / 2, where )... is an operating 

wavelength such that the TEM mode is the only propagation mode . To facilitate an 

equivalent circuit correspondence, where normally the two ends of the equivalent circuit 

are terminated with the characteristic impedance of the feed line or the dummy load , a 

perfectly absorbing dummy load is placed at the center of the circular iris which is chosen 

to be the origin of the cylindrical coordinate system. With this scheme, for example the 

effect of feed region can be treated by using appropriate equivalent circuits for feeding 

probes [41]. With an introduction of unknown coefficients {an}n=D,l,2, ... , {bn}n=O,l,2, ... , R, 

and T , the z-component of the electric field Ez and the ¢-component of the magnetic field 

H¢ inside the waveguide are expressed as follows, where eiwt dependence is assumed for 

the fields: 

(3.1) 

(3.2) 

and 

(3.3) 

(3.4) 

(p ?. d) , 
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Figure 3.1: The circular iris in a parallel plate waveguide. 
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X 

2w 
k = T = w.JiiOEO, 

1<~ = k2 
- (~) 

2

, (Im(~<n) :0: 0), ~<o = k, 

~<n = -hn = -jJ (n;)'- k', 

Yo = Iff;= ~' Yn = :n Yo, 

where Eo and J-Lo are permittivity and permeability of the free space, respectively. 

(3.5) 

(3.6) 

(3.7) 

For the convenience of the analysis, the reflection coefficient R of the dominant TEM 

mode is defined in a special form as follows: 

H (2) (k ) H(t) (k ) v ( ) v' + o P + v'- o P 
p H62

) ( kd) H61) ( kd) ' 
(3.8) 

v'-
R = V'+' 

(3.9) 

where V(p) is the modal voltage of the dominant TEM mode in the radial line, and 

v+ and v- represent the amplitudes of traveling waves in the positive and the negative 

directions with respect to p, respectively. A common definition of the voltage reflection 

coefficient Ro in the equivalent circuit for the radial line is taken as follows [39]: 

V(p) v+ H62
) (kp) + v- H61

) (kp), 

v-
v+ 

(3.10) 

(3.11) 

Because the following simple relation exists between R and R0 , the present definition 

applies without a loss of generality : 

H61)(kd) 
Ro= R H62) (kd) . 

(3.12) 

In the following analysis, we generalize the variational method by Schwinger [3][40] 

from the case that the plane wave is incident to the linear iris to the case that the cylin-

drical wave is incident to the circular iris. The boundary conditions about the continuity 
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of E z and H rp at p = d give the following equations: 

Ez(p=d) E( z ), 
00 n1rz 

a0 (1 + R) +I': an cosh' 
n=l 

00 n1rz 
aoT+ LbnCOSh, 

n=l 
(0 :s z :s h), (3.13) 

where a function E( z ) is defined as Ez at p =din (3.13), and the notation will be used in 

the following analysis. After multiplying (3.13) by a class of functions {cos( n1r z j h) }n=O,l 2, ... 

and integrating them with respect to z in the domain 0 ::; z ::; h, we have the following 

relations: 

1 rh 
a0 (1 + R) = aoT = h lo dzE(z), 

2 rh n1rz 
an= bn = h Jo dzE(z) cosT· 

(3.15) 

(3.16) 

By using (3.15) and (3 .16) , the coefficients T and bn in (3 .14) can be eliminated with the 

following result: 

2YoaoR ~ Ynan n1rz 
D(kd) + 2 ~ D(Knd) cosh = O, (l<z:Sh), 

D( z) = 1rz H6 1)(z)H62)(z), 
2 

lim D(z) = 1, 
lzl-+oo 

where (3.19) is deduced with the aid of the following formula: 

(lzl -+ oo). 
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(3.17) 

(3.18) 

(3.19) 

(3.20) 

By using the relations of (3.15) and (3.16) , a0 and an in (3.17) are replaced with the 

integrals of E(z), and the following relation is obtained: 

2R Yo rh I ( I) ~ Yn n7rZ rh I ( I) n1rZ1 
- 1 + R · -D-( k-d-) J 

0 
dz E z = 4 ~ D ( Knd) cos h · J 

0 
dz E z cos h , 

(l < z :s h). (3.21) 

The first factor in the left-hand side of the above formula corresponds to a shunt suscep

tance B in the equivalent circuit for the radial line [39] as shown in Fig.3.2 where k is 

the propagation constant of the dominant TEM mode and the characteristic impedance 

Zc of the radial line at p = d is normalized to unity. We summarize here the relations for 

the circuit in Fig.3.2 as follows [3]: 

2R 
jB= ---

1 +R 
R = 1 - Yin = _ j B 

1 +Yin 2 + jB' 

inner side of the iris 
( 

k 
Zc= 1 

jB 

outer side of the iris 
) 

k 
Zc= 1 

Figure 3.2: The equivalent circuit for a circular iris in a radial line. 
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(3.22) 

(3.23) 



where }~n is the normalized input admittance of the circuit. After multiplying both sides 

of ( 3.21) bv E( z) and integrating them with respect to z in the domain 0 ::; z ::; h, the 

susceptance B is expressed by using (3.22) with the following result: 

{ }

2 
oo 1 h n1r z 

4k L D( d) 1 dzE(z) cos-
B - n=l In Kn 0 h 

- 1 { h }
2 

D(kd) fa dz' E(z') 

(3.24) 

vVe show that the above formula is stationary about its correct value with respect to the 

first order variation 6 of E(z). From (3.24) we have, 

0 [ D(~d) { { dzE(z) r B] = D~:d) { dz' E(z') · { dzOE(z) 

1 { h }

2 

+ D(kd) fa dzE(z) 6B 

oo 1 lh n1fz' 
8k L D( d) dz'E(z') cos-h 

n=l In Kn 0 

l h n1rz 
· dz6E(z) ·cos-. 

0 h 
(3 .25) 

(3.25) is rearranged as follows: 

1 { h }

2 

D(kd) fa dzE(z) 6B = 
2 {h { 2R Yo {h 

Yoj Jo dz6E(z). 1 + R. D(kd) Jo dz'E(z') 

00 
Y, n1rz 1h n1rz'} 

+4 L ( n ) cos-h . dz'E(z') cos-h- ' 
n=l D Knd 0 

= 0, (3.26) 

where we have used (3.21) in the last equation. Because the factor before 6B in the first 

equation of (3.26) is non-zero, we have 

6B = 0. (3.27) 

Next we derive an approximate formula for B. From (3.20) the following asymptotic 

expansion is obtained: 

1 1 1 (1) _D_(_d_) = - + 64 3d2 + O 4 ' 
In Kn In In In 

(In--too). (3.28) 
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Moreover, rn is expanded as follows: 

(n --too). (3.29) 

By using the above formulas, the partial terms in (3.24) is approximated as follows: 

00 1 n1rz n1rz' h 00 1 n1rz n1r z' 2::: cos-. cos--::::- 2::- cos-. cos--. (3.3o) 
n=l lnD( Knd) h h 7f n=l n h h 

The following sum formula [3] is known: 

00 1 n1rz n1rz' 1rl 00 1 L - cos - · cos -- = ln sec - + L - cos nB · cos nB' 
n=l n h h 2h n=l n ' 

(3.31) 

where B is a monotone increasing function of z in the domain l ::; z ::; h with its range 

0 ::; B ::; 7r. B satisfies the following relation: 

7r z . 2 7fl 2 7rl 
COS - = - SID - + COS - · COS B 

h 2h 2h . (3.32) 

B' is defined with respect to z' in the same way as the above. By using (3.30) and (3.31), 

(3.24) is approximated as follows: 

4khD(kd) 17r dB 17r dB' F(B)F(B')L(B, B') 
B~ .~o~~~o ________ ~~---

- " {f dO"F(O") r ' 
7rl 00 1 

L(B, B') = ln sec -h + L- cos nB ·cos nB', 
2 n=l n 

F(B) = E(z) ~~-

(3.33) 

(3.34) 

(3.35) 

For the first order approximation, we put F =canst. in (3.33). Now we have the following 

approximate formula for the equivalent susceptance B: 

B :::: 4khD(kd) ln sec 1rl. 
7r 2h 

(3.36) 

If the radius d of the circular iris i much larger than the operating wavelength, (3.36) 

recovers the previously known formula for the linear iris [39][40], i.e. D(kd) --t 1 in this 

case if kd --t oo from (3.19). 
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3.3 Integral equation formalism for equivalent sus
ceptance 

In this section. a numerical solution is developed through an exact integral equation 

formalism for the equivalent susceptance. The result will be applied later to examine the 

validity of the approximate formula (3.36) derived in the previous section. 

First of all, we construct the Green's function for Ez with respect to a z-directed 

rotationally symmetric electric current element Jz with a radius p' as shown in Fig.3.3, 

where the geometry of the parallel plate waveguide is identical to that of Fig.3.1. The 

present structure is adequately analyzed by a vector potential which has only non-zero 

component in z [3), and we write it Az. Non-zero components of the electric field inside 

the waveguide are expressed as follows: 

1 
(3.37) 

JWoJ-LoEo 8z8p ' 

Ez = 1 ( 82 + k2) A 
JWoJ-LoEo 8z2 z, 

(3.38) 

where Ep is the p-component of the electric field. We define the Green's function G(e) for 

Az with respect to lz as follows : 

Az(P, z) = J-Lo j dz'G(e)(p, zip', z')Jz(z'). (3.39) 

G(e) satisfies the following equation: 

(V'2 + k2 )G(e)(p, zip', z' ) = -o(p- p')o(z- z'), (3.40) 

ac(e) I -az - o. 
z=O,h 

(3.41) 
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Figure 3.3: Rotationally symmetric electric current element in a parallel plate waveguide 
with a dummy load at the center. 
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In the above formulas , (3.41 ) is derived thorough the boundary conditions for Ep on the 

upper and lower surfaces of the parallel plate waveguide with a postulate that G (e) is 

separable with respect top and z. Then we assume G(e) in the following form: 

00 

G(e) ( I 1 1) _ '""' ( 1) ( 1) n1rz p, Z p , Z - ~ 9n p, P fn Z COSh ' 
n=O 

(3.42) 

''here 9n and f n are unknown functions. From (3.40) and (3.42) , the following equations 

are obtained: 

-6(p- pi) , (3.43) 

00 n1rz L f n(Z1
) cosh = 6( z - Z1

). 

n=O 

(3.44) 

\Ve construct a solut ion of (3.43). As the center of t he parallel plate waveguide is loaded 

wit h a perfectly a bsorbing dummy load , no t raveling wave exits in the positive radial 

direction of p in t he domain 0 ~ p ~ p1
• In p 2:: p1

, t he fields are decreased to zero as 

p ----7 oo, or t he radiation condition [3] is satisfied . Homogeneous solutions of (3 .43) are 

given by cylindrical functions of the zero-th order under the condition (3.6) as well as the 

above statements. Thus we have 9n as follows: 

{ 

(1) ( ) 
1 AHo "-nP, 

9n(P, P) = BH(2) ( ) 
0 K..nP ' 

(p ~ p'), 
(p 2 p'). 

(3 .45) 

The following conditions are obtained by the continuity of Ez at p = p1 and the condition 

given by integrat ing (3.43) with respect to p in an infinitesimal domain (p' - .6., p' + 

.6) (.6 ----7 + 0): 

9n(P1 + fl , p') - 9n(P1
- fl, p') = 0, (!:l ----7 +0), 

d ( 1 1) d ( 1 1) dp9n P + .6. , P - dp9n P - .6, P = -1, (.6 ----7 +0). 

From (3.45) to (3.4 7) , 9n is constructed as follows: 

I 

( I) - 7rp (1) ( ) (2) 
9n p, P - 4j Ho K..nP< Ho (KnP>), 
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(3.46) 

(3.47) 

(3.48) 

where P> = p and P< = p1 if p 2 p', and in the case of p < p1
, P> = p1 and P< = 

p. Multiplying both sides of (3.44) by { cos(n1rz/ h)}n=o,1,2, ... and integrating them with 

respect to z in the domain 0 ~ z ~ h, fn is constructed with the following result : 

fn(z) 
En n1rz 
-cos-
h h ' 

{ 
1, (n=O) , 
2, (n 2 1). 

From (3.42) , (3.48) , and (3.49) we have G(e) as follows: 

f 00 I 

(e)( , , 1rp '""' (1) (2) n1rz n1rz 
G p, z jp, z ) = 4h. ~ EnHo (KnP<)Ho (KnP>) COSh· COS-h . 

J n=O 

(3.49) 

(3.50) 

(3.51) 

From (3 .38) , (3.39) , and (3.51) , the des ired Green's function G for Ez with respect to Jz 

is finally constructed as follows: 

Ez(p, z ) = j dz'G(p, zip' , z 1)Jz(z1
), (3.52) 

Now we analyze the scattering problem of the circular iris in Fig.3.1 by using the 

Green 's function G in the above. Consider an incident TEM mode cylindrical wave E! 

which has a non-zero component only in the z-axis as follows: 

(3.54) 

Let Jz be an induced current distribution on the surface of the circular iris for the scat-

tering problem. The z-component of the scattered field E; is calculated by using (3.52) 

with p1 = d. Because of the boundary condition that the total tangent electric field on 

the surface of the circular iris is zero, we have the following integral equation with respect 

to Jz at p = d: 

(0 ~ z ~ l). (3.55) 
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We use the Galer kin's method to solve (3.55). Let { Cv }v=o,1,2, ... be a class of unknown 

coefficients and { W v} v=o,1 ,2 , ... be a class of expansion functions. Jz is expanded as foBows: 

v 

{ 
sin {~(2v -l)(z -l)}, 

'llv(z) = 
0, ( l :s z :s h). 

(0 :s z :s l)' 

(3.55) is equivalent to the following in the Galerkin's sense: 

fol dzw,\ · (E: + E;) = 0, (A= 0, 1, 2, ... ). 

(3.56) 

(3.57) 

(3.58) 

After some calculation (3.58) reduces to the following linear equations with respect to 

{ Cv }v=O,l,2, ... , and they can be approximately solved by truncation with finite terms. 

(A=0,1,2, ... ), (3.59) 
v 

(3.60) 

(3.61) 

(3.62) 

By using the determined coefficients { Cv }v=o,1,2, ... , the z-component Ez of the total electric 

field in p :S d is calculated as follows: 

(3.63) 

(3.64) 

where E~0 represents the term due to higher order modes with wavenumbers ,n, (n 2:: 1). 

As Ro in (3.63) corresponds to that of (3.11), the susceptance B comparable to (3.36) is 
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obtained by using (3.12) and (3.22) with the following result: 

TJ7rlkd H (l) (kd) ""'F 
2h . o L moCm 

B= J m 

T}7rlkd (1) ""' 
1- ---;u;:-Ho (kd) LFnoCn 

n 

(3.65) 
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3.4 Validity of the approximate formula 

In this section , validity of the approximated formula (3.36) for the susceptance B is 

examined by numerical calculations. Extensive numerical calculations show that in the 

range of d > 0.02,\ , 0.02 < h < 0.48\ and 0.1 < l/h < 0.9, the calculated values by the 

approximate formula agree with the exact values by the Galerkin's method within 5%. 

However , it must be noted that the uniform line current is applied as a source of incident 

wave in this idealized mathematical model, where the applied current is always uniform 

and invariant under the presence of the iris. Figure 3.4 shows typical calculated curves 

of B as a function of the height l of the circular iris shown in Fig.3.1 with h = 0.4,\ and 

d = 0.3A. In Fig.3.4, the solid line represents the values by the approximate formula 

(3.36) , and the broken line corresponds to the numerical solution (3.65) by the Galerkin's 

method developed in the previous section. Good agreement between them supports the 

validity of the approximate formula. 
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Figure 3.4: Calculated susceptance with the characteristic impedance of the radial line 
normalized to unity through the approximate formula (3.36) and numerical values (3.65) 
by the Galerkin 's method, where the number of sinusoidal expansion functions for the 
current is 32 with 128 expansion modes of the Green's function. 
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3.5 Summary 

Implementation of analytical modeling is investigated for parallel plate region with 

an application to the circular iris. By using modal expansions with respect to cylindri

cal harmonics, a variational expression of the equivalent susceptance is obtained for the 

equivalent circuit of the dominant TEM mode. The expression is stationary with respect 

to the first order variation of the electric field on the surface of the circular iris. By extend

ing the method by Schwinger to the case of cylindrical harmonics expansions, a simple 

approximate closed form formula is obtained for the equivalent susceptance. The effect 

of the curvature of the circular iris is contained in a correction factor for the previously 

known formula for the linear iris. If the radius of the curvature is very large compared 

with the operating wavelength, the correction factor goes to unity, which recovers the 

result of the linear iris. For verification of the approximate formula, an exact integral 

equation is formulated by constructing the Green's function for circular current elements 

in the parallel plate waveguide loaded by a perfectly absorbing dummy load at the cen

ter. The Galerkin's method is used for numerical solution. Accuracy of the approximate 

formula is verified by comparison with the numerical solution. 

The method developed in this chapter is considered to be a typical example for ana

lytical modeling of the waveguide components used for the feeding structure of antenna 

arrays. As the derived circuit parameter is based on the solution of the boundary value 

problem, the accurate modeling is possible. 
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Chapter 4 

Radial Line Planar Monopulse 
Antenna 

4.1 Introduction 

In this chapter, a design procedure is developed for a newly proposed planar antenna 

array, the Radial Line Planar Monopulse Antenna (RLPMA) as shown in Fig.4.1 [42]. 

The antenna is highly efficient because of a waveguide feed, and is capable of synthesizing 

monopulse L: and fl patterns by a novel use of a multiple port fed radial line. If the 

radial line is fed by two probes with in pha e or out of phase excitations, monopulse L: or 

1:::. patterns, respectively, can be synthesized in one direction. If one desires a monopulse 

tracking operation in both azimuth and elevation angles, four feeding probes are used as 

shown in Fig.4.1. 

There exit a number of the Radial Line Planar Antennas (RLPAs) [43]-[48]. The origi

nal art was performed by Goebels and Kelly [43] in 1961 as the annular slot array antenna 

fed by the radial line. Goto [44] proposed the Radial Line Slot Antenna (RLSA) in 1980 

for Direct Broadcast from a Satellite (DBS) in Japan. Since then in collaboration with 

Ando et al. [45], extensive studies were carried out, and now RLSA is regarded as one of 
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the standard forms of planar antennas for DBS applications [49](50]. RLSAs have an ad

Yantage of structural simplicity. however , realization of uniform aperture field illumination 

with a high antenna efficiency is not an easy task. This is due to the following reasons: As 

radiation due to a reflected wave from the end of the radial line produces a cross polarized 

radiation when the antenna is operated in a circular polarization, a traveling wave feed 

of radiating slots must be employed, and this requires the slots near the termination to 

have infinite admittances coupled to the radial line if the loss free excitation condition is 

required. The difficulty has been relaxed by employing an approximate uniform [49] or 

the optimum non-uniform aperture field distribution [51] with a matching spiral near the 

termination. 

Recently, other types of RLPAs have been proposed [46)-[48], using probes as a feeding 

structure of the radiating element. Nakano et al. [46] first proposed probe fed low profile 

helical antennas as the radiating elements, and further developed extremely low profile 

curl antennas [47). Shibata et al. [48] used probe fed microstrip antennas as radiating 

elements. The probe fed RLPAs have an advantage that they can achieve a loss free 

uniform aperture field illumination because the excitation probes of the radiating elements 

can be fed by a standing wave in the radial line with a short circuited termination of its 

end. However at that moment, the probe fed RLPAs were only experimentally designed 

[46]-[48] and thus analytical studies have been expected to appear. 

In the following sections, we investigate fundamental characteristics of RLPMA as well 

as an analytical procedure to achieve the uniform aperture field distribution of probe fed 

RLPAs. 

In Section 4.2, the mutual coupling of probes in a radial line is analyzed by the EMF 

method, and experimental verification is given. The result obtained will be extensively 

used in the forthcoming sections. 

In Section 4.3, a phenomenological analysis about fundamental characteristics of RLP-
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MAs is presented, giving an understanding of why the monopulse patterns can be syn

thesized by RLPMAs. 

In Section 4.4, a design procedure of a uniform aperture field distribution for RLPMA 

is proposed. This procedure is also applicable to the conventional probe fed RLPAs [46]

[48). 

In Section 4.5, a design example as well as an experimental verification of RLPMA is 

described. 

In Section 4.6, a summary of this chapter is given. 
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Radiating elements (View from positive z-axis) 

Positions of excitation probes 
of the radiating elements 

y 

Four feeding probes 
of the radial line 

j z Excitation probes of the radiating elements 
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-
1
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Four feeding probes of the radial line 

Figure 4.1: Radial line planar mono pulse antenna. 
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4.2 Probes in a radial line 

In this section , an analysis is carried out for the mutual coupling between two probes 

in a radial line , and an experimental verification is given. For the fields , ejwt dependence 

is assumed. The self impedance of a probe in a radial line was studied extensively by 

vVilliamson et. al. , and accurate results were obtained [52] . In this section we give 

a simpler analysis by using the EMF method with a sinusoidal electric current on the 

surface of the probe. The resultant expressions are simple for both the self and mutual 

impedances, and approximately closed form expressions of the mutual impedance and the 

mutual coupling coefficient will be extensively used throughout the arguments in the later 

sections . 

Consider a single isolated probe which is located at the center of the radial line, and 

extension of the center line of the probe is identified by the z-axis of the cylindrical 

coordinates (p, ¢, z). On the surface of the probe, we assume a rotationally symmetric 

surface current density J(z) which is independent of ¢. In this case , z-component of 

electric field Ez (p , z) inside the radial line is expressed by the following Green's function 

G(p, z jp' , z') [53]: 

rl r27r 
lo dz' lo d¢'aG(p, z ja, z')J(z'), 

G(p, zj p' , z') - ryk J0 (kp')H~2 ) (kp) 
4h 

rJj 00 
2 , n1rz n1rz' 

+ 1rkh L rnlo( 'YnP )Ko('YnP) COSh· COS-h- , (4.1) 
n=l 

where J0 (x) , H62)(x) , I0 (x) , and K0 (x) are cylindrical functions, a and l are the radius and 

the insertion length of the probe, respectively, k is the TEM mode propagation constant, 

and TJ = 1207r. The height of the radial line is h, and from now on we assume that the 
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TEl\1 mode is the only propagation mode. The derivation of ( 4.1) is the same as that 

of the Green s function in the previous section except the term AH61
) ( K-nP). (p s; p' ) in 

(3.45) being replaced by AJ0 (K-nP) (p s; p') to impose the finite condition of fields at the 

center of the radial line. Figure 4.2 shows the geometry of two probes in a radial line. 

The mutual impedance Zij between the two probes i and j is obtained by using the EMF 

method with sinusoidal currents Ii and Ij on the surfaces Si and S1 of the probes i and 

j , respectively, as follows: 

z .. 
t) 

I t 
I ( ) sin k ( li - zi) 

t 0 . kl l 
Slll i 

(4.3) 

(4.4) 

(4.5) 

where ai and aj are radii , and li and lj are insertion lengths of the probes i and j, 

respectively. In the above formulas , we have assumed that the currents Ii and Ij are 

real , and their feeding point intensities are Ji (0) and Ij (0). The Green's function ( 4.1) 

is denoted symbolically as G(iJj). The self impedance Zii of the probe i is obtained by 

performing the two surface integration on the same surface Si. The integrals in ( 4.:3) are 

carried out by using the addition theorem [2) of cylindrical functions with the results, 

'T/ (2) 2 kli 
4kh Jo(kai)H0 (kai) tan 2 

_ kryj ~ 1 ( ·)K ( ·) {cos kli - cos(nnlt/ h) }2 

h ~ 0 r nal 0 rnal 2 . 2 kl ' 
7f n=l f n Slll i 

ry6o (2 ) kli klj 
4
kh Jo(kai)lo(kaj)H0 (kd) tan 2 ·tan 2 

kryj 00 

- 1rh L 6nlo(rnai)Io(rnaj)Ko(rnd) 
n=l 

{coskli - cos(nnldh)}{cosklj- cos(nnlj/h)} 
rv2 sin kl · · sin kl · tn t J 

(type 1) 
(type 2), 
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(4 .6) 

(4.7) 

(4.8) 

where d is the distance between the center points of the probes. 

Q· l 

[. 
I 

d [j 
. . 
1 J 
(type 1) 

u _n __ j 
1 

(type 2) 

Figure 4.2: Two probes in a radial line. 
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\iVhen li is not too close to h a useful approximate expression of Zii can be obtained bv 

using the procedures shown in Appendix C with the following result: 

_!j_Jo(ka ·)H(2)(ka ·) tan2 kli- kh27Jj P(1rli)- k7]j ~ Q 
4kh 1 0 1 2 21r4 ai h 1rh ~ n, 

(4.9) 

P(x) ((3)c(x) 

+ { c(x) (In 2x2 - 3) + ~ + ~ ln 2x- ~} x2 
4 4c(x) 2 4 

{ 
5c(x) 1 1 } 4 

- 576 + 192c(x) + 72 x 

{
17c(x) 1 1} 6 

- 172800 + 11520c(x) + 5400 x + ( 4.10) 

c(x) tan2 (~>) , ( 4.11) 

= {Io(!nai)Ko(lnai) _ h3 
} {coskli- cos(n7rli/h)f 

Qn 12 21r3a n 3 sin2 kl · ' n 1 t 

(4.12) 

where ((x) is the Riemann zeta function and ((3) ::: 1.202. In the above formula, Qn 

corrects the error due to the asymptotic approximations in Appendix C. M = 2 or 3 gives 

the sufficient accuracy for practical applications. In that case that the distance between 

the two probes is much larger than the operating wavelength, the infinite series of Zij 

can be adequately approximated by the first term because K 0 ( In d) decays exponentially 

when the argument grows large, 

(4.13) 

The mutual coupling coefficient in the scattering matrix between the probes i and j is 

calculated as follows: 

s .. _ 2Zij/Zo 
11

- (Zii/Zo + 1)(Zjj/Zo + 1)- Z't/Z6' 
( 4.14) 

where Z0 is the characteristic impedance of the feed lines which are attached to the probes. 

To see the validity of the derived formulas, measurements have been carried out. 

Figure 4.3 shows comparisons between the measured and calculated values of Sij. Good 

agreement between them supports the theory. 

66 

I I I I I I 

N Calculated -

Measured -
••••••••••• 

==' 
(/) 

0 
-

I I I 

('"_ 
....-d - so mm 

-
-10 

~ 
~ 

;:-

~ 

--~ ~ ( - - _..., r----; .__ 
~ ~ ....... 

'd = 100 mm 
~ v 
-·-

-20 

-30 

3. 0 3. 6 4. 2 4. 8 5. 4 6. 0 

Frequency (GHz) 

Figure 4.3: Comparison between calculated and measured values of Sij (type 1 coupling). 
The parameters are a1 = a2 = 0.65mm, l 1 = l2 = 15.0mm, and h = 18.0mm. Comparison 
has been made with d = 50, lOOmm throughout the frequency range from 3.0 to 6.0 GHz. 
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4.3 Monopulse pattern synthesis 

In this section, a phenomenological analysis is carried out about the synthesis of 

monopulse patterns by using the multiple port fed radial line. In Fig.4.1, the four feeding 

probes of the radial line are identical in dimensions, and their positions of the center 

points are identical in the radial direction and equally spaced in angles: The positions of 

the probes 1 to 4 are (p, c/>(deg)) = (b, 45°), (b, 135°), (b, 225°), and (b, 315°), respectively. 

The feeding points of the radiating elements are arranged in concentric circles centered 

at the origin of the radial line. 

The mutual coupling S1i between the f-th feeding probe of the radial line and the i-th 

excitation probe which is attached to the i-th radiating element can be approximately 

expressed as follows: 

Co 
2/Zo 

( 4.15) 

(4.16) 

( 4.17) 

where the distance d between the centers of the two probes is assumed to be large enough 

compared with the operating wavelength so that the formula ( 4.13) in the previous section 

is applicable, and we have further assumed IZij/Zol << 1 in (4.16). ZJJ and Zii in (4.16) 

are the self impedance of the f-th feeding probe of the radial line and the i-th excitation 

probe of the radiating element, respectively, and Z0 is the loaded impedance of the probes. 

In this analysis, we assume that the input impedance of the radiating element fed by probe 

i and t he characteristic impedance of the feed line attached to the probe f are all identical 

to Z0 . Other parameters are the same as those in the previous section, except thaLt the 

attached subscripts f and i represent quantities of the f-th feeding probe of the radial 

line and the i-th excitation probe of the radiating element, respectively. 
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From now on, we ignore damping of power in the radial line due to radiation of the 

radiating elements as a wave travels in the radial line . Then an excitation distribution 

Di of the array is approximately expressed, by using the excitation coefficients A 1 of the 

four feeding probes, as follows: 

(4.18) 

4 
" (2) I C1 L AtHo (kiPi- PJ I), ( 4.19) 
f=l 

Co7]6o kl f kli 
4kh lo(kaf )Jo(kai) tan T ·tan 2 , ( 4.20) 

where Pi and p~ are positions of the probes i and f , respectively. 

The monopulse I: pattern can be realized by setting, 

(4.21) 

With the above excitations, Di is expressed as follows after some calculations using the 

addition theorem of cylindrical functions: 

00 

4ClAJo(kb)H62
) (kp) + 8C1A L 14n(kb)H~~) (kp) ( -1r cos 4n¢>, ( 4.22) 

n=l 

( 4.23) 

where p = I Pi I, b = I P~ j, and the last formula applies when kb is small. ( 4.23) shows 

that Di is approximately 2J0 (kb) times that of an equivalent RLPA with a single probe 

excitation at the center when the excitation coefficients A 1 are normalized by a unit 

power; i.e. A1 = 1/2. 

The monopulse 6 pattern can be synthesized, for example, in the x-z plane by setting, 

( 4.24) 

In this case the expression of Di is as follows: 

D · t 

00 

4/2C1A :2.:: 12n-l(kb)H~~)_ 1 (kp) cos{(2n- 1)¢>} exp{j~(tn- n)}, (4.25) 
n=l 2 

4v'2C1AJ1 (kb )Hi2\kp) cos¢>+ 0( (kb )3
), ( 4.26) 
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where tn = 1 when n is an odd integer and tn = 0 when n is an even integer. The last 

formula is valid when kb is small enough. In ( 4.26) , the term of cos¢ produces out of 

phase excitations of radiating elements whose positions are symmetric with respect to the 

center point of t he radial line. This realizes the ~ pattern when the radiating elements 

are arranged on concentric circles symmetrically with respect to the origin of the radial 

line. By symmetry considerations, it is clear that all the higher order modes in ( 4.25) 

never affect the null depth of the .6. pattern if the radiating elements are arranged in the 

sam e symmetry as those of the four feeding probes. 

To s:y nthesize the ~ pattern in the y-z plane, we choose , 

( 4.27) 

It is not ed that the monopulse patterns can be formed by using only two feeding probes 

of the radial line. This type of antenna may be applicable to a system which employs a 

monopulse tracking by using azimut hal only rotation. In this case, we put the two feeding 

probes of t he radial line , for example in the x-axis, whose position coordinates (x, y) are 

(b, O) and ( - b, 0) . The E pattern is formed by setting A1 = A2 =A with the result, 

00 

Di = 2C1AJ0 (kb )H62)(kp ) + 4C1A 2::: 12n (kb)H~~ (kp) cos(2n¢). ( 4.28) 
n = l 

The .6. pattern can be excited by setting A 1 = - A2 = A wit h the result , 

00 

Di = 4C1A L 12n - l ( kb )H~~)_ 1 (kp) cos{(2n- 1)¢}. ( 4.29) 
n =l 
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4.4 Design of uniform aperture field distribution 

In this section, a design procedure of uniform aperture field distribution of RLPMA 

is described. This procedure is also applicable to the conventional probe fed RLPAs [46)

[48]. To achieve the uniform aperture field distribution for RLPA, a natural arrangement 

of the radiating elements is the concentric circle arrangement with the elements placed 

and excited uniformly on the aperture. For Circularly Polarized RLPA (CPRLPA) , the 

above condition is realized by determining the spacing of the radiating elements in order 

to satisfy the conditions of effective aperture area of one radiating element and of grating 

lobe suppression. The excitation phases are adjusted in phase by rotating the radiating 

elements . In the case of Linearly Polarized RLPA (LPRLPA), we choose the radii of the 

concentric circles in a half wavelength step in the radial direction to suppress the grating 

lobe , and the radiating elements are rotated by 180° for side by side concentric arrange

ment circles to realize in phase excitation. The desired amplitude excitation distribution 

can be realized by adequately choosing the insertion lengths of the excitation probes of 

the radiating elements. In these designing procedure, it is important to include the effect 

of damping of power in the radial line due to the radiation from the radiating elements: 

From now on, we call it the radiation damping. It is also noted that if the insertion length 

of the probe is varied , the excitation phase also varies because of a variation of the probe 

reactance. This effect is not a significant restriction for CPRLPA in a construction of the 

hardware because we can suppress it by rotating the radiating elements by certain angles. 

For LPRLPA the radius of the concentric arrangement circles must be slightly modified 

so as to realize the in phase excitation. In the following subsections, we consider two 

different feed cases: 

• Traveling wave feed case, and 

71 



• Standing wave feed case. 

Assumptions are made that the field inside the radial line can be well approximated 

by that of an equivalent single probe fed RLPA, i.e. the statement concerning ( 4.23) 

holds furthermore rotationally symmetric characteristics are never distorted regarding 

the shape of wavefront and amplitude of the TEM propagation mode which emanates 

from the feeding probe. The mutual couplings between feeding probes of the radiating 

elements are neglected. The mutual coupling effect of the radiating elements in the free 

space region outside the radial line and its influence on the feed distributions are also 

neglected. Although the above mentioned rather crude approximations are made, simple 

conditions can be obtained about the realization of uniform aperture field distribution, 

and design procedures of the antenna parameters appear to be effective as we will see 

below. 

Before starting the analysis , we mention here the following fundamental limitation 

of the magnitude ISij 12 of the mutual coupling between two probes i and j in a radial 

line. The two probes i and j are inserted in a radial line with insertion length li and 

l1 , respectively, and the distance between the two center points of the probes is d. The 

following upper bound exists: 

where a(li, lj) is calculated by using (4.13) and (4.14) with the result, 

a(li lj) = { ZoTJlo(kai)Jo(ka1 ) tan(kli/2) tan(klj/2) }
2 

J21ikh(Zo + Zii)(Zo + Zjj) 

When li is fixed, the upper bound of ISiJI 2 is expressed as follows: 

( 4.30) 

(4.31) 

( 4.32) 

where aM AX is the maximum of a( li = canst., lj). For a practical application, lj = h gives 

a good estimate for aM AX. 
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4.4.1 Traveling wave feed 

When the end of the radial line is terminated by a matched load, the radiating elements 

are fed by the traveling wave in the radial line which decreases due to the radiation 

damping as the wave travels in the radial direction. The radiating elements are arranged 

in concentric circles t, (t = 1, 2, ... , T) with their centers at the center of the radial line. 

The total number of the radiating elements on the t-th circle is N(t), and the dimensions 

of the excitation probes of the radiating elements on each one circle are assumed to be 

identical. The excitation distribution S(t) of the radiating element on the t-th circle with 

the radiation damping taken into consideration is approximately calculated as follows by 

using the mutual coupling coefficient S0(t) of two isolated probes given by (4.14): 

S(t) 

S(1) 

So(t) IT { 1- N(n)ISo(n)l2f 12
, 

n=l 

So (1), 

( 4.33) 

( 4.34) 

where the above formulas can be derived by employing a standard circuit theory with the 

assumption that the radiation damping in each circle n is very small compared with the 

total power; i.e. N(n)IS0 (n)l 2 << 1. It is noted that the above formula can be equivalently 

expressed as follows: 

{ 
t-1 }1/2 

S(t) = So(t) 1-]; N(n)IS(n)l 2 (4.35) 

The condition for uniform amplitude distribution with the constant power p for all 

radiating elements is described as follows: 

JS(t)1 2 = p =canst .. ( 4.36) 

By using ( 4.35) and ( 4.36), the above condition reduces to the following, 

{ 

t 1 }-1 
ISo(t) 1

2 = p- 1 
-]; N(n) ( 4.37) 
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The loss free condition, i.e. radiation of all input power fed to the radial line by the 

radiating elements, is expressed as follows: 

p = {~ N(n)} -I ( 4.38) 

From (4.37) and (4.38), the loss free uniform amplitude excitation is realized when the 

following condition holds for JS0 (t)j 2 : 

ISo(tW = {t, N(n)} -I ( 4.39) 

When the array arrangement is N(n) = N 1n, which gives the uniform density arrangement 

of the radiating elements, for example N1 = 6 in Fig.4.1, the above equation is sin1plified 

to the following: 

Is (t)J2 = 2 0 Nl{T(T + 1) - t(t- 1) }" 
( 4.40) 

As described previously, the upper bound of the probe mutual coupling ( 4.32) must be 

satisfied as well. When the radius of the arrangement circle t is tdt, the upper bound 

condition ( 4.32) is expressed as follows: 

1 
< 

~tt' 
( 4.41) 

kdt 
--
a.MAX. ( 4.42) ~t 

The equations ( 4.39) and ( 4.40) have monotonically increasing properties as t grows large, 

and thus their maxima occur at t = T. Therefore, if the following condition is satisfied, 

the condition ( 4.41) is satisfied for all t: 

N(T) 
-y;-2~T· ( 4.43) 

It must be noted that this condition should never be realized by actual hardware if we 

use the matched load termination, because this condition requires the probes on the circle 
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T to radiate out all the incident power; i.e. the condition essentially requires the probes 

to have infinitely strong coupling to the radial line. However, the loss free condition is 

satisfied if the short circuited termination is introduced. In this case, the probes on the 

circle T can be fed by standing waves, and this enables the actual hardware to satisfy 

the condition (4.43) if jS0 (T)j 2 is large enough as explicitly shown in (4.44) below. An 

appropriate choice of a position of the short circuited termination is a quarter wavelength 

away in the radial direction from the circle T, and reflected waves from the termination 

can be superposed in phase at the position ofT with this structure. By using the large 

argument asymptotic approximation of Hankel function in ( 4.17), and superposing the 

incident and reflected wave contributions of S0 (T), it is verified that JS0 (T) J2 can be 

approximately replaced with j2S0 (T) j2 in this case. The condition of uniform amplitude 

excitation for the circle T then becomes as follows: 

j2S0(T)j 2 = 1/N(T) :s; 4/~rT. ( 4.44) 

For the other traveling wave fed probes, the following must be satisfied: 

{ 

T }-1 
jS0 (t)j 2 = ~N(n) ~ 1/~tt. ( 4.45) 

It is noted that the condition is automatically satisfied by all the other circles t < T- 1 

if the last inequality is satisfied by the (T- 1)-th circle. When N(t) = N 1 t and all ~t are 

identical to~' the above condition (4.45) reduces simply to the following: 

(2T- 1)N1 

T- 1 2 ~' ( 4.46) 

which is compatible with (4.44) as well. Whenever the above conditions (4.44)-(4.47) are 

satisfied, we can obtain the RLPA with the uniform aperture field distribution by using 

the traveling wave feed for the circles t < T, and the standing wave feed for T-th circle. 

In the next subsection we consider the case when the above conditions are not satisfied. 

In these occasions, standing wave feed of more than one arrangement circles must be 

employed. 
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4.4.2 Standing wave feed 

When the standing wave feed is used for more than one arrangement circles, the rela-

tion between So(t) and S(t) must be modified along the discussion about the replacement 

of /S0 (T)/ 2 with /250 (T)/ 2 described in the previous subsection. The new relations between 

So(t) and S(t) are as follows: 

S(t) 

s(t) 

s (1) 

s(t) 

s(t) + s(t) 

So(t) IT { 1- N(n) /So(n)l 2f 12
, 

n=l 

~ T 1/2 
S (T) = eilflr S0 (T) JI { 1- N(n)/S0 (n)/ 2 } , 

n=l 

( 4.47) 

( 4.48) 

( 4.49) 

( 4.50) 

(4.51) 

where S (t) and S (t) correspond to the excitation coefficients of the radiating element on 

the t-th arrangement circle which are produced, respectively, by the incident wave from 

the center and the reflected wave from the short circuited end of the radial line. The factor 

exp(j'I/Jt) represents phase difference at the t-th arrangement circle between the incident 

and reflected waves. ( 4.48)-( 4.51) can be easily derived by physical insight, for example, 

as for ( 4.50) the product part n;=l represents the radiation damping in the period of the 

wave propagation from the center to the termination of the radial line, while the part 

n~=t+l represents the same effect while the reflected wave departs from the termination 

and arrives at the t-th arrangement circle. The phase of S(t) is determined by the TEM 

mode wavefront. 

Let 1, 2, ... , L- 1 be the arrangement circles which are fed by the traveling wave from 

the center of the radial line , and let L, L + 1, ... , T be the rest of the circles which are fed 
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b) the standing wave by using the reflected wave from the end of the radial line as well 

as the incident wave from the center. The uniform amplitude excitation condition for 

the radiating elements on the circles t = 1, 2, ... , L - 1 is given by ( 4.39) in the previous 

subsection, with the upper bound condition for /S0 (t)/ 2 given in (4.45). For the circles 

K = L L + 1, ... T the condition is determined by using (4.47)-(4.51) as follows: 

T -l 

IS(K)I2 = iS(K) + 5(K)I 2 = {,f; N(n)} {4.52) 

( 4.52) gives simultaneous equations with respect to /So (L) /2 , /So (L + 1) /2 .... , 

and they can be solved by numerical means. After the solution is obtained, they must 

be examined to be compatible with the condition (4.41). If the solution is incompatible 

with that condition, the number of the standing wave feed circles is increased, and then 

the same procedure is tried. 
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4.4.3 Design procedures 

Vv'e summarize here practical procedures to design CPRLPA and LPRLPA which 

have the uniform aperture field distribution. The following procedures have an advantage 

of simplicity because the numerical optimization procedures can be carried out indepen

dently for each arrangement circle. This advantage comes from the fact that the objective 

functions expressed by S0 (t) are uniquely fixed for all the arrangement circles t. 

1. CPRLPA 

(a) Place the radiating elements uniformly on the aperture; 

(b) Determine the objective values of !So( t) 1
2 ; 

(c) se a numerical optimization procedure to determine the insertion length of 

the excitation probe of the radiating element for each circle t independently; 

(d) Calculate the resultant excitation phases of the radiating elements by ( 4.47); 

and 

(e) Rotate the radiating elements to fix the excitation phases identical. 

2. LPRLPA 

(a) Place the radiating elements uniformly with radii of the arrangement circles 

side by side in a half wavelength step; 

(b) Determine the objective values of I So ( t) 1
2 ; 

(c) Calculate a phase (/)M of S0 (M), where M is an arbitrary chosen arrangement 

circle; 

(d) Set the objective value to IS0 (t)lexp(j¢M) for So(t),t = .. ,M -2,M,M+2, .. , 

and to ISo(t)l exp(j¢M + j1r), for So(t), t = .. , M- 1, M + 1, .. ; and 
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(e) By using the insertion length of the excitation probe of the radiating element 

and the radius of the arrangement circle for each t as variables, carry out 

a numerical optimization procedure, independently for each t, to realize the 

objective values of So(t). 

Strictly speaking, the above procedure for LPRLPA will not give a perfect solution for 

the uniform aperture field distribution because the density of the radiating elements on 

the aperture may deviate from the uniform density. However , in practical applications, 

this factor will not give a significant effect to the antenna performance. When one desires 

further accuracy, simultaneous optimization procedures with 2T variables must be applied. 

The contents of 2T variables are probe insertion lengths and radii of each arrangement 

circles. 
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4.5 Design example and experiment 

A RLPMA as shown in Fig.4.1 with N(t) = 6t and T = 5, has been fabricated by using 

the design procedure described in the previous sections. In this example , the standing 

wave feed of two arrangement circles T- 1 and T is used. The feed region parameters 

of the fabricated antenna with the operating wavelength A are a1 = 0.02A, l1 = 0.24A, 

d = 0.33A , and h = 0.27 A. The radii of feeding probes of the radiating elements are all 

identical to 0.02A, the radii of the arrangement circles are 0.48A, 0.95A 1.39A, 1.94A and 

2.42). respectively in the radial direction , and the insertion lengths of the probes on the 

re pective circles are 0.12). 0.16A, 0.19A , 0.16)., and 0.17 A. Linearly polarized microstrip 

antennas which are all resonant at the operating wavelength are used as the radiating 

elements. Figure 4.4 shows the measured and calculated monopulse patterns in the y-z 

plane (E-plane) . Almost the same characteristics are observed in the x-z plane as well. 

The agreement between the calculated and measured values in the I: pattern supports 

the theory described in the previous section. In the ll pattern, the calculated values are 

plotted without considering the radiation damping. The measured I:/ ll ratio is more 

than 40 dB . These results show the capability of RLPMA for the monopulse tracking 

operation. 
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Figure 4.4: E-plane monopulse I: and ll patterns of RLPMA. 
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4.6 Summary 

A design procedure is developed for a newly proposed planar antenna array, the radial 

line planar monopulse antenna. The antenna is highly efficient because of a waveguide 

feed. and is capable of synthesizing monopulse E and ~ patterns by a novel use of a 

multiple port fed radial line with in phase or out of phase excitations of sets of feeding 

probes. By using the EMF method, an analysis of the mutual coupling between probes 

in the radial line is carried out with the result of simple closed form expressions. The 

mechanism of monopulse pattern synthesis is made clear through modal expansions in 

the radial line. It is concluded that the dominant mode excited by feeding probes gives 

significant contribution for the monopulse pattern synthesis if the feeding radius of the 

probes are placed near the center of the radial line. For E pattern, the dominant mode 

has no angular dependence which gives in phase excitation of radiating elements. For 

~ pattern, it has sinusoidal dependence in angle which gives out of phase excitation 

for opposite pairs of radiating elements with respect to the center of the radial line. 

Simple design procedures are developed for the uniform aperture field distribution by 

using algebraic relations obtained between the parameters. Perfect antenna efficiency can 

be obtained by means of the standing wave feed. A prototype antenna has been fabricated 

and the radiation characteristics have been measured. The measured result supports the 

theory and verifies the capability of the antenna for the monopulse tracking operation. 

The feature of the antenna is suited for application to mobile satellite communications 

systems . 

The method developed in this chapter is considered to give a typical example of the 

analytical modeling of the feeding structure of antenna arrays. 
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Chapter 5 

An Analysis of Antenna Coupling 
Between Arrays on a Polyhedron 
Structure 

5.1 Introduction 

In this chapter, an analysis is carried out for antenna coupling between arrays on a 

polyhedron structure [54) . The effect of the antenna farm scattering is treated through 

an application of GTD combined with the EMF method. 

Multifunction antennas are required for recent communication systems and radar sys

tems. Antenna arrays on a polyhedron structure are one of good candidates for such 

systems because of their capability of simultaneous operations for different signals from 

different directions. However, a difficulty arises in designing such an antenna. In the pe-

riod of simultaneous operations, interference between arrays may cause some damage to 

the hardware such as receiving modules. Accurate estimation of a level of the interference 

is needed. The analysis of antenna coupling between arrays on a polyhedron structure has 

not been reported so far. As a related topic, Bailey [55) suggested a method to analyze 

mutual coupling between circular waveguide fed apertures in a rectangular ground plane 
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where the effect of edge diffracted field from the finite ground plane for the self and mutual 

admittance was included. In this chapter , we extend the method to the calculation of 

antenna coupling between arrays on a polyhedron structure which have linearly polarized 

circular I\ISAs as radiating elements. 

In Section 5.2, an analvsis is carried out for mutual couplings between two isolated 

circular I\.1SAs located on different faces of a perfectly conducting wedge . I\1SAs are 

treated by the cavity model (6]. Radiation field of one of the antennas is incident to 

a wedge , and then the Keller's GTD diffraction coefficients are used for diffracted field 

which is incident to the other antenna. The EMF method is applied to the calculation of 

the mutual admittance between them and gives a closed form result. The mutual coupling 

between two elements is calculated from the result . 

In Section 5.3, the method is extended to the calculation of antenna coupling between 

arra} s on a polyhedron structure. The antenna coupling is defined as mutual couplings 

between a radiating element in one array and all radiating elements in the other array. 

In Section 5.4, experimental verification of the method is carried out. The 1nutual 

coupling has been measured between a circular MSA and a phased array which has 128 

circular 11SA elements located on different faces of a polyhedron . Good agreement is 

obtained between the measured and calculated levels in the period of beam steering of 

the array. 

In Section 5.5, several numerical simulations which describe properties of the antenna 

coupling are given. 

In Section 5.6, a summary of this chapter is given. 
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5.2 Theory 

First of all , we derive an approximate formula for mutual coupling between two linearly 

polarized circular MSAs separated by a wedge. Figures 5.1 and 5.2 show the geometry of 

two circular MSAs located on different faces of a wedge. 

The radiated magnetic field H 1 from equivalent magnetic current element Jrn 1 of 

MSAl is given with eJwt dependence of field quantities as follows [56]: 

( 5.1) 

where Arn1 is the magnetic vector potential for the current element. Arn1 is given by the 

cavity model [6] as follows: 
Eo e-jkp 

Arnl = -
4 

--Jrnl, 
7r p 

Jrn1 = K J1 (kua)Krnl = K J1 (kua) cos( ¢I - ¢IO)i¢1l 

(5.2) 

(5.3) 

where K is a constant , ¢1 is the angle of a current element, ¢10 is the location angle 

of the feeding probe of the MSA, k11 a = 1.84118 (T M 11 mode) , and a is the equivalent 

radius of the circular MSA by taking the fringing effect [7] [56] into consideration, 

{ 
2h 1ra } t a= a 1 + -(ln- + 1.7726) 

a'!rfr 2h 
(5.4) 

where h and fr are the thickness and the dielectric constant of the dielectric substrate, 

respectively, and a is the radius of the MSA. 

In order to use GTD, we employ far field approximation to H 1 as follows: 

(5.5) 

where k = w..JEOiiO, r; = 1207r , and /31 is defined customarily [14] as follows : 

(5.6) 
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Figure 5.2: Simplified model for the mutual coupling. 

Figure 5.1: Microstrip antennas on different faces of a wedge . 
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The diffracted field Hd from a perfectly conducting wedge is given as follows [14]: 

fy 
h 

- (15, ,[;2,[;1 + Dh$2$1) · H1 ( Q) J s(s: p) e-;k,, 

sin (1r /"Y)e-F~- [ 1 1 

, y'2;k"sino cos(7r/"Y)- cos{(<J; - <J; ') /"Y } =f cos(7r/"Y)- cos{( 

(5.7) 

+ 1/J') h } l 
(5.8) 

where H 1 ( Q) is the incident field from MSA1 at the diffraction point Q, pis the distance 

between the magnetic current element of MSA1 and the diffraction point Q, and the 

distance s between that of MSA2 and Q is defined in the same way, as shown in Figs.5.1 

and 5.2. The Keller 's GTD diffraction coefficients in Eqs.(5.7) and (5.8) are adapted, 

because they are adequately applicable to our case where the observing point is well 

below the shadow boundary. 

The mutual admittance Y21 between MSA is defined by using the EMF method [56] 

a follow : 

(5.9) 

\\here , Jrn2 is the equivalent magnetic current element of MSA2 defined in the same form 

as Jrn!, and the superscript * represents complex conjugate. vl and v2 are feed point 

voltages of MSAs 1 and 2, respectively, and they are given as follows: 

(5.10) 

where p0 is the distance between the center of MSA and the feeding point. 

In practice, antenna arrays are mounted on the faces of a polyhedron. We make an 

assumption to the diffraction coefficients as ?jJ = { 1f and <j;' = 0. Then they become as 

follows: 

Ds 0, (5.11) 

Dh 
sin(1r / r )e-j ~ 2 

(5.12) 
r y'2;k sino cos( 1r /r) + 1 
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The assumption makes the analysis simple, where the geometry of the problem becomes 

equivalent to Fig.5.2. The geometry is interpreted as that of the mutual coupling between 

MSAs on the same ground plane separated by a fictitious wedge. The model is applicable 

because deviation of the diffracted field with wedge angle 1 is contained in the diffraction 

coefficient Dh and the other parts in Jrn 2 * · Hd in (5.9) do not depend on f. 

We have Y21 as follows: 

ka2
j { J1(kua) }

2 rr d¢ rr d¢ J5hg -jk(p+s) 

47r7J Jl(knPo) }_1r lj_1r 2Jps(p+s)e ' 
(5 .13) 

g = - ( Km2 * · ;32) (;Jl · Kml) · (5.14) 

We derive an asymptotic expression for Y21 . It is assumed that the distances d1 and d2 

from the centers of the MSAs 1 and 2 to the edge, respectively, are much larger than the 

equivalent radius of MSA, i.e. , d1 , d2 >> a. Next, we use in (5.14) the following identities 

obtained from Fig.5.2: 

qt + ss 

These identities give the following relations: 

p 

s 

p+s 

sin n 0 
-.- {d1- r1 · x +cot no· (r1 · y)}, 
smn 
sin n 0 
-.- { d2 + r2 · x - cot no · ( r2 · y)} , 
smn 

89 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 



We expand parts of the integrand as follows: 

J ps(p + s) 

A 

1 
~ Dh A, 

..jdtdz(dt + dz) 
1 

1 + -{r1 · i- cotao · (r1 · y)} 
2dt 
1 

- -{r2 · i- cotao · (r2 · y)} 
2dz 

1 
- 2(dt + d2) (r2 - rt). i, 

sin(1r /1)e-j~ 2 

1v'2rl sin a 0 • cos( 1r /!) + 1' 

g ~ (Krn2 * · y) (Krnl · y) 

(r2-rt)·y{(K * ~)(K ~) (K * ~)(K ~)} 
dl + dz m2 . X rnl . Y + m2 . Y rnl . X . 

In the above approximations , we have used the following formulas: 

rJl (s·:Q)i- (s·i)y, 

-rJz, 

s·i ~ 
{ ( r2 - rl) . y p rv 

1 
- 2 ( d1 + dz )2 = 1' 

s·:O ~ 
(r2-ri)·y 

d1 + dz 
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Employing formulas in Appendix D, we finally obtain the following result: 

(5.20) 
e-jk(d1 +d2) 

Y2t ~ PDh Q, 
Jd1d2(d1 + dz) 

(5 .29) 

Q A1 cos ¢10 ·cos ¢zo 

1 
+ kdt (Az cos cP10 ·cos ¢zo + A3 sin ¢ 10 ·cos ¢20 ) 

(5 .21) 

1 
+ kdz (A2 cos cP10 ·cos ¢zo + A3 cos ¢ 10 ·sin ¢20 ) 

(5 .22) 

A4 sin ¢10 · sin ¢zo 
+ k(dl + d2) ' 

(5.30) 

(5.23) 

P= 1rka2
j { lt(kna) }

2 

47] Jl(kupo) 

A1 = {Jo(ka)- J2(ka)} 2
, 

(ka) 2
j _ _ { _ ( 2 ) _ } 

A2 = 
2 

{Jo(ka)- Jz(ka)} Jo(ka) + 1- (ka) 2 J2(ka) , 

(5.24) 
A3 = -jcota0 · {J0(ka)- J2(ka)}J2(ka), 

A4 = -4}Jo(ka)J2(ka). 

It is noted that the above approximate formula of }21 can be applied to H-plane coupled 

(5.25) 
elements as well as E-plane coupled elements. Y2 1 does not vanish when MSAs are coupled 

(5.26) by H-plane because we have summed up every coupling between infinitesimal equivalent 

(5.27) magnetic current elements as can be seen in Fig.5.2. Thus the expression is considered 

(5.28) 
to be of the second order approximation. It is also noted that the first order term in the 

above expression of Y21 can be interpreted as the product of the radiation pattern of each 

MSA in the direction of the edge corrected with GTD propagator. The aspect will be 

extensively studied in Chapter 6 in a general framework of the first order approximation. 
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In the case that MSAs are on the same ground plane where the coupling is due to the 

GO waves, use of the half space Green 's function with an analogous analysis gives the 

following result [57]: 

{ 
1 1 } -jkd 

Y21 ~ C1 kd + C2 (kd) 2 e-jkd COS cP10 ·COS cP20 + C3 ~kd) 2 Sin cP10 ·Sin cP20 1 (5.31) 

Co= 1r(ka)2 j { Jl(kna) }
2 

2TJ J1 (knPo) 

C1 = Co{Jo(ka)- J2(ka)}2, 

C2 = Co{(ka) 2
- 1} [{Jo(ka)}2- {J2(ka)}2), 

C3 = 2Coj[{Jo(ka)}2 + {J2 (ka)} 2
], 

where the geometry of 1v1SAs is the same as those in Fig.5.2 except for absence of the 

fictitious wedge and d being treated as the distance between the MSAs. The expression 

has the second order asymptotic approximation with respect to kd ---+ oo. 

The mutual coupling coefficient S21 between two elements is calculated as follows: 

-2(Y2dY) 
521 = (1 + Y11 /Y) 2 - (Y2I/Y) 2' 

(5.32) 

where Y11 is the self admittance of MSA calculated by the conventional methods [7] [56], 

and Y is the characteristic admittance of transmission line. 

5.3 Antenna coupling 

It is appropriate to define antenna isolation SAi between arrays on a polyhedron struc

ture as the mutual couplings between a radiating element i in one array and all radiating 

elements of the other array A, because interference occurs between them. 

S Ai is calculated as follows: 

L SnJn, (5.33) 
nEA 

fneJin, L JlnJ 2 = 1, (5.34) 
nEA 

where n is a number of radiating elements in the array A, the sum LnEA runs over all the 

radiating elements in A, Sni is the mutual coupling between radiating element n in the 

array A and the radiating element i in the array B, 1: is an exciting amplitude, and ¢n is 

an exciting phase of n. In the above expressions, we assume that the exciting power for 

the array A is normalized by a unit power. 



5.4 Experimental verification 

Figsures 5.3 and 5.4 show the configuration of the experiment. The scatterer is a 

rectangular parallelepiped which has the size of 36.\ x 36.\ x 55.\, where .\ is the operating 

wavelength. A linearly polarized circular MSA array is mounted on the face A, and an 

isolated MSA which has the same characteristics of the element in A is mounted on the 

other face B separated by a wedge. E-plane and E-plane coupling is chosen throughout 

the measurement. Figure 5.5 shows the size and physical parameters of the MSA. The 

array has 25dB sidelobe levels by means of a deterministic density tapering method [58] 

with 128 exciting elements as shown in Fig.5.6. The signal from a network analyzer is 

amplified by a linear amplifier and is divided into 128 phase shifters. The output port of 

the isolated MSA is connected to the other port of the network analyzer. The experiment 

has been carried out in an anechoic chamber. 

Figure 5.3 shows the direction of main beam of the array. The mutual coUlplings 

between the array and the MSA have been measured for the beam scan within a range 

of -90° ::; e ::; 90°. The measurement has been carried out at one degree step, and time 

fluctuation of the measured signal at every e has been averaged by utilizing the function 

of the network analyzer. 

Figure 5. 7 shows a comparison between the measured and calculated values. Good 

agreement between them supports the theory. 
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Figure 5.3: Antennas on a polyhedron used in the experiment. 
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Figure 5.4: Configuration of the experiment. 
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Figure 5.5: Physical parameters of the microstrip antenna. 
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5.5 Numerical simulations 

Some numerical simulations are given to clarify the characteristics of antenna coupling 

between arrays on a polyhedron structure. 

Figure 5.8 shows a simulation model. Two arrays are mounted on a conducting poly

hedron. Each array has goo linearly polarized circular MSAs, where 30 x 30 radiating 

elements are arranged in a square lattice of 0.5A spacing. The size and physical param

eters of the MSA are the same as those of Fig.5.5. The antenna coupling S2i is defined 

as the mutual coupling between radiating element i in the array 1 and all radiating ele

ments in the array 2. The array 2 is excited with a unit power, and the two arrays are 

coupled by E-plane. In Fig.5.8, e and ¢ define the direction of the main beam of the 

array 2. Figure 5.g shows examples of the simulation with parameters ¢ = oo, D == 20A, 

and D = 40A. For each D , five cases of e are plotted. In Fig.5.g, points of the lattice 

represent the radiating elements in the array 1. Figure 5.10 shows antenna couplings for 

radiating element i 0 which is the nearest element to the array 2 (see Fig.5.8). In Fig.5.10, 

e is varied continuously within the range of -goo ::; () ::; goo. Figure 5.11 shows the case 

that the beam of the array 2 is steered to a different direction ¢ = goo. 

From the above results, some characteristics of the antenna coupling are known. As 

shown in Fig.5 .10, S2io increases when 0 is steered to wide angles. The reason is described 

as follows: When 0 in Fig.5.8 is steered to wide angles, the field from the shoulder of the 

main beam of the array 2 becomes incident to the wedge between the array 2 and i 0 .. Then 

intensity of the diffracted field becomes high. As seen in Fig.5.10, the same phenomenon 

is observed around e = -goo. The reason is that the spacing of the elements in the array 

2 is 0.5A, a grating lobe arises at the direction 0 = +goo when the beam is steered at 

0 = -goo. As seen from Fig.5.g, the other elements in the array 1 have almost the same 

characteristics as those of i 0 described above. When the beam is steered to a direction 

g8 

around which the array 1 does not exist ( ¢ = goo), S2io becomes remarkably weak as 

shown in Fig.5.11, because intensity of the incident fields to the wedge between the array 

1 and the array 2 becomes weak in this case. From the above observation it is concluded 

that sidelobe level of the antenna array in the direction of the wedge gives significant 

contribution the coupling. Therefore , null beam forming or low sidelobe operation in that 

direction is applicable to obtaining good isolation characteristics. 

direction of 
the main beam 

e 

array2 

y 

X 

array1 

Figure 5.8: Simulation model. 
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5.6 Summary 

An analysis is carried out for antenna coupling between arrays on a polyhedron struc

ture. The antenna coupling is treated as mutual couplings between a radiating element 

in one array and all radiating elements in the other array. To deal with a large number 

of pairs of the radiating elements, an approximate formula is developed for the mutual 

admittance between circular MSAs separated by a wedge. The MSAs are treated by the 

cavity model and the diffracted field is expressed by mean of GTD. Approximate analyti

cal evaluation of the mutual admittance integral is achieved for the case that the radius of 

MSA small is compared with the distances in the geometry. The resultant expression is of 

a simple closed form with the second order approximation which is applicable to H-plane 

and H-plane coupling as well as E-plane and E-plane coupling between the MSAs. The 

expression is also given in the case of MSAs on the same ground plane with the same or

der of approximation. For experimental verification of the method, the mutual couplings 

are measured between MSA and a phased array which has 128 circular MSA elements 

located on different faces of a polyhedron. Good agreement is observed between the mea-

sured level of coupling in the period of beam steering of the array and calculated level 

by the theory. Several numerical simulations are given to understand properties of the 

antenna coupling. It is concluded that sidelobe level of the antenna array in the direction 

of the wedge gives significant contribution to the coupling. Therefore, null beam form

ing or low sidelobe operation in that direction is applicable to obtaining good isolation 

characteristics. 

The effect of antenna farm can be adequately treated by means of the analytical 

modeling developed in this chapter. 

103 



Chapter 6 

Simple Expression of Antenna 
Coupling by Using a Product of 
Radiation Patterns 

6.1 Introduction 

In this chapter, a simple and general first order expression of mutual impedance and 

admittance is derived for arbitrary class of antennas modeled by equivalent currents [60]. 

The dominant terms of the mutual admittances in Chapter 5 is recovered within the 

framework of this scheme. 

The analysis of mutual couplings in antenna arrays [1] is, in general, difficult due 

to the limitation of computational time. In addition, varieties of radiating elements 

have varieties of analytical expressions , where most of the formulas are complicated and 

require some efforts to develop software for specific problems. Some universal treatments 

of the antenna coupling should be sought to realize the efficient computation. One idea 

is employment of far field approximations for largely separated radiating elements. Friis 

[61] developed a simple formula, known as the Friis Transmission Formula, through his 

physical insight by using the energy conservation argument. The usefulness of the formula 
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is , no doubt, for designing of link budget in communications and radar systems , while 

it lacks the information of phase. Some extensions of the transmission formula in the 

Friis' form which contain the phase terms and antenna polarization are reported [62][63]. 

The Fresnel approximation can be employed for the mutual impedance and admittance 

integrals given by the EMF method [4][5]. Although the resultant expressions appear to 

be of simple forms, direct physical interpretations of field quantities are lost in contrast 

to those in the Friis' form. Some intermediate forms of the integral applicable to general 

antennas should be sought. 

In the following sections, the first order universal relations are developed for the prob

lem by using the far field approximation. 

In Section 6.2, the far fields of the current elements are given with an introduction of 

dyadic decompositions of the field quantities with respect to ray coordinates. 

In Section 6.3, decomposition of the mutual impedance and admittance integrals are 

studied analogous to the Friis' form for arbitrary antennas with their given equivalent 

currents. The reaction integral [64][65] between two antennas is employed for the expres

sion, and far field approximations are made. The developed formulas are of the form, 

a product of radiation patterns multiplied by a free space propagator and divided by the 

voltages or the currents at the feeding points of the two antennas. 

In Section 6.4, the antenna coupling under the presence of a wedge is treated as an 

extension of the theory through a modification of the propagator by using GTD [14]. 

In Section 6.5, two cases of MSAs on a ground plane and on a polyhedron structure 

are treated for the application of the theory, and experimental verification is given. 

In Section 6.6, a summary of this chapter is given. 
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6.2 Far fields of current elements 

Consider an electric current element J ( r') and a magnetic current element M ( r '), as 

shown Fig.6.1, located at r', the far fields E(r) and H(r) of the currents are given as 

follows [2] [5] with eiwt dependence of field quantities: 

E(r) 

H(r) 

EA(r) 

EF(r) 

HA(r) 

HF(r) 

Ar(r) 

Fr(r) 

A(r) 

F(r) 

R 

s 

7] 

EA(r) + EF(r), 

HA(r) + HF(r), 

-jwAr(r), 

jw77s x F(r) , 

-j~s x A(r), 
r; 

-jwFr(r), 

(1- ss). A(r), 

(1- ss). F(r), 

-jkR 
f-Lo _e - J (r') 
47r R ' 

-jkR 
~-e-M(r') 
47r R ' 

lr- r'i, 
I 

r-r 
R ' 

ff;, k = w .jjiOEO' 
0 

( 6 .1 ) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

where A and F represent vector potentials with respect to J and M , and Eo and p,0 are 

permittivity and permeability of free space, respectively. 
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r 

J, M 
Figure 6.1: Currents and ray coordinates. 
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vVe introduce a ray coordinate system ( v, u, s) and define the following two dyadic 

operators P and f': 

p 

s 

v 

u 

1 - ss = uu + vv, 

UV - VU =: S X · 

V X U, 

- U X S, 

S XV, 

(6.14) 

(6.15) 

(6 .16) 

(6.17) 

(6.18) 

where P acts as a projection operator transverse to s, and f' represents a vector product 

operation with respect to s. It is noted that the transverse vectors v and u can be chosen 

in any rotation angles with respect to s if the conditions (6.16) to (6.18) are satisfied. 

:\ow (6. 3) to (6.6) are rewritten as follows: 

EA TJJJF·J, (6.19) 

EF -gf'. M, (6.20) 

HA gf'. J, (6.21) 

HF 
g -
-P·M, 
'T} 

(6.22) 

k e-jkR 

(6 .23) g ---
4Kj R 

Let X and Y be vectors like J and M, the following relations are easily obtained 

and will be used later: 

X·F·Y 

X .f'.y 

(P ·X) · (P · Y) , 

(F·X) · (f'·Y). 

108 

(6.24) 

(6.25) 

6.3 Simple expression of antenna coupling 

Let us consider two antennas named 1 and 2 both located in free space as shown in 

Fig.6.2. The mutual impedance Z 21 and admittance Y21 between the two antennas are 

calculated by the reaction integral, where the expressions are stationary with respect to 

field quantities as follows [2)[65]: 

Z21 
1 

- !1!2 < 1, 2 >, (6.26) 

y21 
1 

1/ 1 v2 < 1, 2 >, (6.27) 

< 1, 2 > = { dr1 { dr2(J2 · E(t) - M 2 · H( 1)). 
Jv1 Jv2 (6.28) 

In the above formulas, the antennas are modeled by the equivalent electric and magnetic 

current elements Jt, M 1 , J 2 , and M 2 where the subscripts 1 and 2 represent the quantity 

with respect to antennas 1 and 2, respectively, and the convention is utilized throughout 

the chapter. E(t) and H(t) are electric and magnetic fields of the form (6.1) and (6.2), 

respectively, which are radiated by J 1 and M 1 of antenna 1 and received by antenna 2. 

The domains of integrations in (6.28) are the volumes v1 and v2 of the two antennas. Ii 

and ~ ' i E {1 , 2} are the current and the voltage applied at the feeding point of antenna 

i, respectively. If the exact current elements are known, (6.28) gives the exact value. 

However, in practical applications , use of approximate forms of current elements may 

approximate (6.28) like those of the EMF method and the aperture distribution method 

by using the Huygens principle with respect to closed surfaces surrounding each antenna. 

For example, the former may be suited for dipoles and the latter may be applicable to 

horn antennas . 
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antenna 1 antenna 2 
Figure 6.2: Coordinates of two antennas. 
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If the two antennas are located in the far zone to each other, a simple expression can 

be derived for the reaction integral (6.28) by using the far field approximations. The 

result is as follows: 

< 1,2 > (6.29) 

e-! 
1. r; li driPi · Ji(ri) exp(jksi · ri) , (6.30) 

h~ 11 -- driPi · Mi(ri) exp(jksi · ri) , (6.31) 
1. r; v, 

e~ 
'1. -1, drif\ · Mi(ri) exp(jksi · ri), (6.32) 

h-! 
1. 

li drif'i · Ji(ri) exp(jksi · ri), (6.33) 

k e-jkd 

(6.34) g ---
' 47rj d 

d IP2- PII , (6.35) 

s1 P2- PI 
(6.36) 

d 

.52 -s1, (6.37) 

where p 1 and p 2 are the reference points of antennas 1 and 2. The distance d between 

them and the unit vector .5 1 from antennas 1 to 2 are defined as in (6.35) and (6.36), 

respectively. The reference points can be chosen freely and conveniently so as to define 

the center points of antennas. Pi and f'i represent (6.14) and (6.15), respectively, where 

( v, u, s) are replaced with (vi, ui, si), and g is the free space propagator between the two 

antennas. The formulas (6.30) to (6.33) are radiation patterns of antenna i in the direction 

of si, where ef and h{ , X E { J, M} represent the electric and magnetic field patterns 

of source X E {J, M} , respectively. The terms in (6.29) are interpreted as products 

of radiation patterns, in the direction of the two antennas seeing each other, multiplied 

by the free space propagator g and constants TJ or 1/r;. The last constants guarantee 

the dimension of< 1, 2 > being power if we introduce the circuit correspondence of the 
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electric and magnetic fields as the voltage and current, respectively. 

'Ne briefly describe the derivation of (6.29) in the case of the first term as an example. 

The term comes from J 2 · E~) . The component of the reaction integral is calculated by 

using the far field approximation as follows: 

= 2_eJ · eJ 
2 1" 

7] 

In (6.38) the following approximations are employed to derive (6.39): 

s 81 = -82, 

k e-jk{d+.h ·(T2-r1 )} 

g 
4nj d 
gejk(h ·T2+st·T1 ), 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

where s in (6.12) is approximately replaced by (6.36) under the condition (6.45) below. 

The factorization in (6.40) is carried out through the relation (6.24) . The other terms in 

(6.29) are analogously obtained by using (6.24) , (6.25), and (6.42) to (6.44). 

The condition of validity of the far field approximations is described as follows: 

max(jr1 1)/d << 1, and max(jr2!)/d << 1, (6.45) 

where max(jril) , i E {1, 2} is defined as the absolute maximum of the displacement vector 

Ti around Pi in each volume vi of the integral (6.38). Although the theory correctly gives 

contribution of the field to the 1/d order for any type of antennas, it is noted that the 

theory always gives zero value if one of the radiation patterns is zero in the direction of 

the other antenna. In the case of antennas being closely spaced and the 1/ ~ order or the 
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higher order contributions of the field are dominant , the theory cannot be applied. For 

example , E-plane and E-plane coupling of nearby dipoles on the same plane , H-plane and 

H-plane coupling of nearby MSAs on the same ground plane, . .. etc. should be treated 

by some other theories including the contribution of near field terms. Even if the 1/ d 

term does not disappear, i.e. the radiation pattern is not zero , the present theory gives 

erroneous values if the near field terms are predominant in the coupling. Thus the theory 

should be applied to the antennas well separated so as to satisfy the condition of (6.45). 
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6.4 Antenna coupling under the presence of a wedge 

In this section, the method developed in the previous section is extended to the case of 

antennas under the presence of a perfectly conducting wedge. We assume, for simplicity, 

that the two antennas 1 and 2 are located in the shadow region of the wedge where the 

diffracted fields are dominant and no GO terms are present. In the case that GO terms 

exist , each contribution should be separately added by using the free space propagator 

in the previous section with appropriate ray tracing for direct and reflected waves, where 

the direction of each ray coordinate of antenna is chosen in accordance with the traced 

rays. 

The diffracted electric and magnetic fields E(l ) and H (l) of antenna 1 due to the 

wedge are given as follows [14]: 

-(Dh~2~l + Ds~2~I) · E~1 )U, 

- (Ds~2~1 + iJhS2S1) · H~1 )U, 

u ~e-jk', 

(6.46) 

(6.47) 

(6.48) 

- s sin(rr/')')e-j'lr/4 
[ 1 1 ] 

Dh = 1 .;2;ksina cos(rr/1')- cos{(?j; -1/;')/1'} =F cos(rr/1')- cos{(?/J + 1/;')/1'} ' 

(6.49) 

where E~1 ) and H~1 ) are electric and magnetic fields, respectively, of antenna 1 at the 

diffraction point q of the wedge, Ds and Dh are the Keller's GTD diffraction coefficients, 

and the rest of the parameters in (6.46) to (6.49) are defined in Fig.6.3. 
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H(1) 

Figure 6.3: Wedge geometry. 
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The reaction integral (6.28) is approximately expressed as follows : 

1J - J Me- M Me- J 1Jc- M < 1 2 > ,....., - e · GE · e - '11h · H · h - '11h · H · h + - e · E · e ' - TJ 2 1 '/ 2 1 '/ 2 1 TJ 2 l. ' 

(6 .50) 

(JE -G(Dh-J;2-J;l + Ds~2~I ) , (6 .51) 

(JH -G(Ds-J;2-J;l + Dh~2~1) , (6 .52) 

G 
k e jk(d1 +d2) 

(6.53) -· 
41fj J d I d2 ( d l + d2) ' 

where Ds and Dh represent the value of (6.49) when the center points of the two antennas 

are used for the GTD ray tracing. As the derivation of (6.50) is analogous to that of 

(6.29), we omit the proof here. 
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6.5 Applications 

In this section, two applications are given for the analysis of the mutual coupling 

between circular MSAs. 

Consider two MSAs 1 and 2 with the identical radius of a. By using the cavity model 

[6][7][56], they can be modeled by a circular magnetic currents Mi , i E {1 , 2} as follows: 

(6.54) 

(6.55) 

where K is a constant , a is the equivalent radius of MSA where k11 a = 1.84118 for the 

T .t\1u mode operation h is the thickness of the dielectric material where MSA is printed, 

Er is the relative dielectric constant , (p' , ¢', z') is the local coordinate systems of MSA 

i with the orientation at the center of MSA i where ¢' is the unit vector for the angle 

variable , and ¢i is the angle of feeding point of MSA i. The voltage Vi of the feeding point 

of MSA i is given by the following formula: 

Vi = K l1 (kuPo)h, (6.56) 

where p0 is the radius of feeding point of MSA . 
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6.5.1 MSAs on a ground plane 

For the first application of the theory developed in the previous section, we analyze the 

mutual coupling between two MSAs on a ground plane as shown in Fig.6.4 . From (6.27) 

and (6.29), the mutual admittance Y21 between the two MSAs 1 and 2 is approximately 

expressed as follows: 

'T} hM hM y;21 :::::: --- . 2g . 
FIV2 2 1' 

(6.57) 

where the half space propagator 2g is used to consider the effect of the ground plane. By 

using (6.54), we have the following formula: 

(6.58) 

The final expression of} 21 is as follows: 

(6 .59) 

It is noted that the above formula recovers the first term of (5.31) in Chapter 5 where an 

asymptotic expansion with respect to a/ d << 1 to the second order is employed in Y21· 

Thus the present theory correctly gives the first order contribution in the limit a/ d --+ 0. 

The change in sign between (5.31) and (6.59) comes from the difference in definition of 

the feeding angle of MSA. 

Figure 6.5 shows a comparison between the calculated and measured values of 1521 12 

between the two MSAs withE-plane and E-plane coupling, i.e. (PI = 0 and (h = 1r, where 

Y11 = 0.0192 + j0.0029, Y = 0.02 Er = 2.2, a= 0.182A, p0 = 0.053A, and h = 0.029A at 

the operating wavelength A. The experiment has been carried out in an anechoic chamber 

with S-parameter measurements by using a network analyzer. In Fig.6.5, the solid line 
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represents calculated values by the present theory with the contribution of 1/d term only, 

and the broken line represents calculated values due to the EMF method [6][7][56) by 

assuming the same magnetic current of (6.54) and it includes all the near field terms 

without the far field approximation. Although significant deviation of values are observed 

within the region of less than a half wavelength spacing of antennas, the correspondence 

between the measured and calculated values for well separated spacing is considered to 

be in good agreement. 

feeding point 

a d a 

MSA 1 MSA2 

Figure 6.4: MSAs on a ground plane. 
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Figure 6.5: Comparison between calculated and measured values of the mutual coupling 

between MSAs (E-plane and E-plane coupling) on a ground plane. 
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6.5.2 MSAs on a polyhedron structure 

For the second application, we treat the case that the MSAs are placed on a polyhe-

dron structure where multiple wedge diffractions are dominant. The simplest case of the 

coupling is shown in Fig.6.6, where the polyhedron is expanded on a plane surface and 

the corresponding GTD ray tracing results in the geodesic between MSAs 1 and 2. }21 is 

obtained by modifying (6.52) to the multiple diffraction case with the following result: 

TJ M - M -vi v2 h2 . G. hl , (6.60) 

-k n+l { n+l n+l }-l/2 { 1 n (t)} ~ ~ 
-. exp(- jk L ds) (II dz)( L dm) n-l II Dh f3n+lf3l· (6.61) 
47rJ s=l l=l m=l 2 t=l 

In the above formula, the factor 1/2n-l is introduced to correct the diffraction coefficients 

D~t), t E {2, 3, ... , n} for the t-th wedge diffraction where contributions of image sources 

are absent. It is noted from (6.49) that Ds is identically zero when the MSAs are placed 

on the surface of the polyhedron. If we choose the ray coordinate of MSAs as u1 = ~1 

and u2 = ~n+l' then we have }21 as follows: 

In the case of n = 1, the above formula correctly recovers the first term of (5.30) in 

Chapter 5 where the second order approximation is employed. Contributions due to the 

other multiple diffractions can be treated in the same way by GTD ray tracing, and the 

results have the same form as (6.62) except for the distances and diffraction coefficients 

being replaced by the corresponding values. Figure 6.7 shows a comparison between the 

calculated and measured values between the MSAs separated by a wedge withE-plane and 

E-plane coupling, where the contributions due to the multiple diffractions are negligible 

because the other edges of the scatterer are well distant (more than 20A) form the MSAs. 
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The parameters of the MSAs are identical with those in the previous subsection. The 

experiment has been carried out in an anechoic chamber with S-parameter measurements 

by a network analyzer. A linear amplifier has been inserted to enlarge the dynamic range 

of the equipment. This guarantees -90 dB of measurable level to the reference level of 

S21 = 0 under the presense of -100 dB of noise floor level. Good agreement supports the 

theory. 

wedge 1 wedge 2 • • • wedge n 

M feeding point 

a a 
MSA1 MSA2 

Figure 6.6: MSAs on a polyhedron structure. 
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Figure 6. 7: Comparison between calculated and measured values between MSAs (E-plane 
and E-plane coupling) separated by a wedge . 
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6.6 Summary 

A general scheme is investigated for analytical modeling of the mutual coupling be

tween radiating elements in antenna arrays and related problems of antenna farm. Simple 

expressions of the mutual impedance and admittance are obtained by using far field ap

proximations of the reaction integral betvveen two antennas modeled by given equivalent 

currents. The expression allows a physical interpretation as a product of radiation pat

terns multiplied by a propagator of the environment and divided by the voltages or the 

currents at the feeding points of the two antennas , which gives an approximate first order 

universal relationship between antennas of arbitrary shape placed in the far field. As the 

formulas are expressed by local ray coordinates by means of dyadic decomposition of field 

quantities , physical inspection gives modification of the theory under the presence of high 

frequency geometries. For a model of antenna coupling on a polyhedron structure, the 

theorv is extended to the case of multiple diffraction due to wedges, where GTD is used 

for the expression of the diffracted fields. For the application of the theory, two cases of 

MSAs on a ground plane and on a polyhedron structure are given. The theory correctly 

recovers the results of Chapter 5 by the first order approximation. Good correspondence 

between calculated and measured values supports the theory. 

The theory is adequately applicable to the analysis of mutual couplings between largely 

separated radiating elements in antenna arrays and related problems of antenna farm. 
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Chapter 7 

Conclusions 

This study is devoted to implementation of efficient design procedures in practical 

applications of antenna arrays by using analytical modeling of the hardware. Throughout 

the study, the analytical modeling of hardware is investigated for the radiating element, 

the feeding structure, the mutual coupling between the radiating elements, and the farm 

scattering. In the following, summary and conclusion of each chapter are given. 

In Chapter 2, a design procedure is developed for a newly proposed collinear antenna 

array called the electromagnetically coupled coaxial dipole array antenna. The antenna 

has an advantage of structural simplicity suitable for manufacturing due to a novel use 

of an electromagnetically coupled feed. Primary effort has been made for the analytical 

modeling of the radiating element. First, to model the edge of the radiating element, 

Wiener-Hopf analysis is carried out for the TEM mode reflection coefficient of a coaxial 

cable which has a semi-infinite outer conductor. A simple closed form formula is obtained 

with good accuracy. Second, the formula is utilized to calculate the input admittance 

of the radiating element, where the multiple reflections from the edges are taken into 

consideration. The dominant term of the input admittance allows physical insight in 

the scheme of the equivalent circuit. Third, an analysis of radiation pattern of radiating 

element is carried out with an alternative integral equation formalism. Fourth, as a 
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model of the array antenna including feeding structure , an equivalent circuit is introduced 

as serial connection of the self impedances of the radiating elements. A procedure for 

matching is introduced with the modeling of the matching section. Finally, fabrication 

and measurement of a prototype array antenna support the design procedure. 

In Chapter 3, implementation of analytical modeling is investigated for parallel plate 

region with an application to the circular iris. First, by using modal expansions with 

respect to cylindrical harmonics , a variational expression of the equivalent susceptance is 

obtained for the equivalent circuit of the dominant TEM mode. The expression is sta

tionary with respect to the first order variation of the electric field on the surface of the 

circular iris. A simple approximate closed form formula is obtained for the equivalent sus

ceptance. The effect of the curvature of the circular iris is contained in a correction factor 

for the previously known formula for the linear iris. If the radius of the curvature is very 

large compared with the operating wavelength, the correction factor goes to unity, which 

recovers the result of the linear iris. Second, numerical solution is constructed by using 

an exact integral equation formalism. Finally, verification of the approximate formula is 

given by comparing its values with those of the numerical solution. The content gives a 

typical example for analytical modeling of the feeding structure of antenna arrays, where 

accurate modeling is achieved through the use of circuit parameters based on solutions of 

the boundary value problem. 

In Chapter 4 a design procedure is developed for a newly proposed planar antenna 

array, the radial line planar monopulse antenna. The antenna is highly efficient because 

of a waveguide feed, and is capable of synthesizing monopulse patterns. First, by using 

the EMF method, an analysis of the mutual coupling between probes in the radial line is 

carried out with the result of simple closed form expressions. Second, the mechanism of 

monopulse pattern synthesis is made clear through modal expansions in the radial line. 

third , simple design procedures are developed for the uniform aperture field distribution 
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by using algebraic relations obtained between the parameters where the perfect antenna 

efficiency can be obtained by means of the standing wave feed. Finally, fabrication and 

measurement of a prototype antenna support the design procedure. This chapter gives a 

typical example of the analytical modeling of the feeding structure of antenna arrays. 

In Chapter 5, an analysis is carried out for antenna coupling between arrays on a poly

hedron structure. First, to compute efficiently a large number of pairs of the radiating 

elements, an approximate formula is developed for the mutual admittance between circu

lar MSAs separated by a wedge, where GTD is used for the expression of the diffracted 

field . Approximate analytical evaluation of the mutual admittance integral is achieved 

with a simple closed form expression of the mutual admittance between the MSAs. Sec

ond , experimental verification of the theory is given. Finally through several numerical 

simulations supported by the formula it is concluded that sidelobe level of the antenna ar

ray in the direction of the wedge gives significant contribution to the coupling. Therefore, 

null beam forming or low sidelobe operation in that direction is applicable to obtaining 

good isolation characteristics. With the procedure, the effect of antenna farm can be 

calculated effectively. 

In Chapter 6, a general scheme is investigated for analytical modeling of the mutual 

coupling between radiating elements in antenna arrays and related problems of antenna 

farm. First, simple expressions of the mutual impedance and admittance are obtained by 

using far field approximations of the reaction integral between two antennas modeled by 

given equivalent currents. The expression allows a physical interpretation as a product 

of radiation patterns multiplied by a propagator of the environment and divided by the 

voltages or the currents at the feeding points of the two antennas. This gives an approxi

mate first order universal relationship between antennas of arbitrary shape placed in the 

far field. Second, extension of the theory is readily achieved for high frequency geometries 

by physical insight. As a model of antenna coupling on a polyhedron structure, antenna 
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couplings due to multiple diffracted fields by wedges are treated by using GTD. Finally, 

two cases of MSAs on a ground plane and on a polyhedron structure are given for the 

application, where the theory correctly recovers the results in Chapter 5 by the first order 

approximation. Good correspondence between calculated and measured values supports 

the theory. The theory is adequately applicable to the analysis of mutual couplings be

tween largely separated radiating elements in antenna arrays and related problems of the 

farm scattering. 

The hardware and methods developed in the present study are considered to have wide 

applicability for communications and radar systems. The electromagnetically coupled 

coaxial antennas is applicable to basestation for mobile communication systems which 

require omnidirectional antennas. Thanks to the advantage in manufacturing and simple 

design procedure developed in the present study future applications are also expected to 

other systems such as boundary layer radars. The radial line planar antenna is capable of 

supporting monopulse tracking operation with the highly efficient feeding structure. The 

feature is suited for its application to mobile satellite communication systems. Proposed 

analysis method for the mutual coupling with its extension to the farm scattering problems 

is expected to have general applications to practical systems due to its capability of 

efficient computation. 

Implementation of the efficient design procedure requires selection of dominant pa-

rameters and optimal determination of their values. Good amount of physical insight is 

needed at every stage of the design. The analytical modeling can sublimate the hardware 

into mathematical formulas. The resultant relation shall be of a simple form which well 

describes the physical phenomena. It is hoped that the methodology shall survive decades 

regardless of trends in the antenna engineering. 
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Appendix A 

Factorization procedure for L(a) in 
Chapter 2 

We decompose L(a) into two functions £ (1)(a) and £( 2)(a) as follows: 

L (1)(a) L(2)(a) , 

Io(rb)Ko(ra)- Ko(rb)Io(ra), 

7r 2 { Jo (K,a )No (K,b) - No (K,a )J0 (K,b)}, 

Ko(rb) 
Ko(ra)' 

As the integral function £ (l) (a) is even with respect to a, the following factorization into 

the infinite product form is possible (25]-[28]: 

L~)(a) L~)( -a), 
00 _ a(b-a) 

{ £(!) (0)} 1/2e-xPl(a) li ( l + :J' ui 

xll) (a) = a(b1C~ a) [ 1 - c, - ln { a(b1C~ a) n 
where, an is a zero point of £(l) (a) in the upper-half a-plane, and it is located at an rv 

n1rij(b- a) as n ---7 oo. x(1)(a) has been determined such that L~)(a) has an algebraic 
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growth as lad ---t oo in IT I < k2; in this case L~\et) rv et- 1/ 2 . It can be also shown that 

L~ ) (a) "'et- 1/ 2. 

For L(2)(et), the Bates and Mittra factorization formula for K 0 ('ya) [26] is applied, 

Ko('Ya) = G(a), 

G+(a)G_(a), 

G+(a) ["i (1) r { ika ia"'( (<>- "'~) } 
2 H0 (ka) exp - 2 +--:;-In -k- + q(a, a) 

' 
q(a, a) fooo f(w , a, a)dw, 

f(w, a, a) - 1--· ln 1+ a [ 2 1 ] ( <> ) 
7r 1rwa {J0(wa)}2 + {N0(wa)}2 Jk2 - w2 ' 

Jk2- w2 iJw2 - k2, 

G+(et) rv 1 { iaa (2et)} et-1 4 exp ---:;-In k , (lui ---t oo, T > -k2). 

From the above formulas , L(2) ( et) is factorized as follows: 

L~)(et)L~)(a), 

L~)(-a), 

-xC2)(o) lHa1
)(kb)l

112 

{ ik(b-a) i!'(b-a) 1 (a-!') ( b)} e (1) exp - + n -k- +f. a,a, 
H0 (ka) 2 1r , 

q(et, b) - q(a, a), 

et(b-a)
1 

2et 
1ri n k' 

where, L~)(et) rv 1 and L~)(a) rv 1 can be shown in ITI < k2 as lal---t 00. 

Now we have L_(a) = L~)(a)L~)(a) rv a-112 and L+(a) = L~)(a)L~)(a) rv a-112 , 

which prove (2.37). 
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Appendix B 

N urnerical evaluation of integral 
q(k, x) in Chapter 2 

By replacing integration variable w with t = wx in (2.47) , the infinite integral q(k , x) 

is arranged as follows: 

q(k,x) = .!_ rX) dt [1 - 2_ . 1 
]ln (1 + kx ) 

1r Jo 1rt {Jo(t)}2 + {No(t)}2 J(kx)2 _ t2 ' 

q(kx), 

Q(xj A), 

where , 

Q(x) - ~ roo dt [1- ~ · 1 ] In (1 + 2
1rx ) 

- 1r lo 1rt {Jo(t)}2 + {No(t)}2 J(21rx)2 _ t2 · 

For convenience, we define the integral I(x) as follows: 

I(x) q(x) 

.!_ roo dt [1 - ~ · 1 
]ln (1 + X ) 

1rlo 1rt {J0 (t)}2+{N0 (t)}2 Jx2-t2 · 

In the following, numerical evaluation of I(x) is investigated. The integrand has numerical 

singularities at t = 0 and x. The property of convergence is not clear when t ---t oo. We 
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divide the domain of integration as follows: 

I(x) = tl + 1K + {L + /,X-e2 + 1x+e3 +1M + {N + roo, 
Jo e- 1 JK L x-e-2 x+e-3 JM JN 
(0 < Cl < K < L <X- C2 <X< X+ C3 < M < N), 

where the meaning of the division will be understood later. By writing the integrations in 

the domains (0 c1), (c1 K), · · ·, (N, oo) as I 1 , h , · · ·, I8 , respectively, numerical evaluations 

of them are investigated. 

(i) Evaluation of I 1 

I 1 is approximated as follows: 

ln 2 [ 2 r~ dt 1 l 
---;- E

1 
- ; lo t 1 + (2/rr )2{ Ce +In( t/2)} 2 ' 

_ln_2 [cl + tan-1 {~. ___ 1 ___ }] 
1r 2 Ce + ln(ci/2) ' 

where the following approximations are made: 

ln (1 + J x ) :::: ln 2, ( 0 < E 1 << 1), 
x2- t2 

Uo{t)}2 + {No(t)}'"" r + (~) 
2 

( c, +In~)', (0<t<<1). 

Note that, 

lim I 1 = 0. 
E"J-+0 

(ii) Evaluation of I 2 

K shall be selected adequately so as to relax the singular property of the integrand 

around t = 0. In addition, change of integration variable t = un +c 1 improves convergence 

characteristics with the following form of I 2 : 

I2 = '!!:_ {(K-e-L)I fn duun-lln (1 + X ) [1- 2 1 l 
1r lo Jx2- t2 1rt {J0 (t)} 2 + {No(t)F · 

(t=un+El) 
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(iii) Evaluation of h 

L shall be selected adequately so as to relax the singular property of the integrand 

around t = x. The integral can be evaluated without particular caution in the domain 

(K,L). 

(iv) Evaluation of I 4 

I 4 corresponds to integration around the singularity of the integrand at t = x. Change 

of variable analogous to that of I 2 improves the convergence. In this case, we choose 

t = x - c2 - un with the following resultant form of the integral: 

I4 = '!!:_ {(x-L-e-2)1/n duun-lln (1 + X ) [1- 2 1 l 
1r lo Jx2- t 2 1rt {lo(t)p + {No(t)F 

(t = X - E2 - un) 

(v) Evaluation of I 5 

Is corresponds to integration along the contour C; in the complex t-plane, where C; 

is a semicircle which surrounds the branch point t = x in the lower half t-plane. If we 

choose E as the radius of the semicircle , i.e. 0 < c2 = c3 = E << 1, the following formula 

is obtained: 

1 [ 2 1 l 
; 1 - 1rx {Jo(x)}2 + {No(x)p A(c, x), 

A(E,x) 1 dt ln (1 + J x ) , 
c; x 2 - t 2 

-iE d()et8 ln 1 + , lo7r . ( X ) 

o ..,fiei(8/ 2) J2x + Eei8 

From the above formula, the following relation is obtained: 

1fE 1 
I A ( E, x) I r-v 2 ln ~ ---+ 0, ( E ---+ 0) . 
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Then we have the following estimate for Is: 

lis I ~ I [l- 1r

2
x {Jo(x)F ~ {No(x)}' l ~ ln ~~-+ 0' (c -t 0). 

(vi) Evaluation of h 

Analogous operation applies as those of I 2 and I 4 . Change of integration variable to 

t = x + c3 + un gives the following , where M shall be chosen so as to relax the singularity 

of the integrand at t = x: 

h = '!!_ r(M-x-c3)lf n dUUn-lln (1 - iX ) [1 - 2_ . 1 l 
rr lo Jt2 - x 2 · rrt {J0(t)}2 + {N0 (t)}2 ' 

(t=x-E2-un). 

(vii) Evaluation of 17 

N shall be chosen so as to accommodate the asymptotic estimate of the integrand 

as described in (viii). The integral can be evaluated without particular caution in the 

domain ( M, N). 

(viii) Evaluation of I 8 

Is is estimated by asymptotic expansions. With the help of the following formula: 

(t -too), 

parts of the integrand are approximated as follows: 

{ Jo(t) }2 + { N0 (t) }2 H~ 1 ) (t)H~2 ) (t), 

:t { 1 + 6~t2 + 0 ( t~) } ' ( t -t 00) ' 

1 (1 '/,X ) 
n - Jt2- x2 ~ -i; + 0 { ( ~) l (X jt -+ 0) . 
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From the above formula , Is is estimated as follows: 

Is rv ~ (XJ dt {-x- + 0 (~)} (x << N -too), 
rrlN 64it3 t4 ' 

12~7ri . ~2 + 0 (~3) ' (x << N -too). 

By using the results of (i) to (viii), I(x) can be evaluated with the desired accuracy. 
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Appendix C 

Derivation of ( 4. 9) in Chapter 4 

The summation part X of ( 4.6) is as follows: 

X ~!,( ·)K( ·){coskli-cos(n1rldh)F 
~ o !nat o !nat 2 . 2 kl , 
n=l ln Sill i 

(C.l) 

'Yn j(n1rjh)2 - k2 . 

The following approximations are made by using the large argument asymptotic expan

sions of cylindrical functions: 

h 

'Yn n1rjh. 

Substituting (C.2) and (C.3) into (C.1), then X becomes, 

(C.2) 

(C.3) 

Straightforward calculations using some identities of the trigonometric functions and the 

following sum formula [3] give the final expressions in (4.9) and (4.10): 

f cos~x 
n =l n 

() 12 32 14 1 6 ( 3 + -x ln x - -x - -x - --x + .... 
2 4 288 86400 

(0 ~X~ 21f). 
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Appendix D 

Table of integrals for Chapter 5 

The integrals in Section 5.2 have been carried out by the following formulas [59]: 

i: dxcosx · cos(x- y) · dzcosx = 1r{J0(z)- J2(z)}cosy, 

i: dx sin x · cos(x- y) · dzcosx = 1r{ lo(z) + J2(z)} sin y, 

j_rrrr dx cos2 x · cos(x- y) · ejzcosx = 1rzj { Jo(z) + ( 1- : 2 ) J2(z)} cosy, 

l rr · J2(z) 
dx Sin2 X· COS( X- y) · e!zcosx = 27fj-- COSy , 

- 7r z 

l rr dxcosx · sinx · cos(x- y) · dzcosx = 27fjJ2 (z) siny, 
- 7r z 

j_rrrr dx cos x · sin2 x · cos(x- y) · dzcosx = 7f { lo(z) + ( 1- : 2) J2(z)} cosy. 
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