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Abstract 

Linear (or bilinear) matrix inequalities are inequalities of the form: an affine (or a biaffine) 

combination of symmetric matrices is positive semidefinite. Since the advent of the Lya­

punov stability theory, it has been recognized that a number of control problems can be 

described by such matrix inequalities, but they had remained numerically intractable for a 

long time. However, due to the recent progress of performance of computers and develop­

ment of efficient algorithms such as an interior-point algorithm, linear matrix inequalities 

have become numerically solvable in the last decade. Under this situation, various ways 

to formulate control problems as linear matrix inequalities have been intensively stud­

ied. This is the so-called linear matrix inequality approach. Moreover, bilinear matrix 

inequalities which are more general than linear matrix inequalities have received attention 

because of the ability to naturally describe various control synthesis problems. In this 

thesis, we investigate control system analysis and synthesis by linear matrix inequalities 

and a numerical solution to bilinear matrix inequalities. 

We first present an analysis method for estimating sensitivity of performance of control 

systems with uncertainty. Here noticing that many control performance analysis problems 

are reduced to semidefinite programming problems, i.e., a problem that minimizes a linear 

function subject to linear matrix inequality constraints, we take two steps for the goal. 

In the first step, we propose a new form of complementarity condition and derive results 

of sensitivity analysis of semidefinite programming. In the second step, we apply the 

obtained results to sensitivity analysis of control systems. 

We then propose two types of control system synthesis methods based on linear ma­

trix inequalities. One is concerned with control system synthesis considering a tradeoff 

between evaluated uncertaint ranges and control performance. We here reduce the syn-
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thesis problem to a semi-infinite programming problem with bilinear matrix inequality 

constraints. An approximate method for the problem is presented, and its convergence is 

proved. The other is concerned with robust model predictive control with rate constraints. 

We here present linear matrix inequality conditions for rate constraints of inputs and out­

puts in the framework of a recently proposed model predictive control method based on 

linear mat rix inequalities. By a numerical example, we show that a good performance is 

obtained in practice by using the presented linear matrix inequality conditions. 

As a solution to bilinear matrix inequalities, we present a global optimization algo­

rithm based on the primal-relaxed dual method that is a global optimization method. 

We also modify the algorithm from the viewpoint of computational efficiency. A numer­

ical example is given to illustrate the geometrical interpretation and effectiveness of the 

proposed method. 
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Notation and Acronyms 

Notation 

~ real numbers 

n-dimensional real vectors 

~mxn m x n real matrices 

Amax(A) maximum eigenvalue of a symmetric matrix A 

Amin(A) minimum eigenvalue of a symmetric matrix A 

O"max(A) maximum singular value of a matrix A 

O"min(A) minimum singular value of a matrix A 

Tr A trace of a matrix A 

rank(A) rank of a matrix A 

diag(A1 , ... , An) block-diagonal matrix with Ai as its i-th block-diagonal element 

[aii] matrix with aii as its i-th row and j-th column element 

At Moore-Penrose inverse of A 

Co{ A 1 , ... , An} convex hull of matrices A 1 , .. . , An 

n x n identity matrix 

m x n zero matrix 

n x n zero matrix 

lX 

To reduce the number of parentheses required, we adopt the convention that opera­

tors Tr has lower precedence than multiplication, transpose, etc. Thus Tr AT B means 

Tr (AT B). 

Acronyms 

ARE algebraic Riccati equation 

BMI bilinear matrix inequality 

LMI linear matrix inequality 

LQG linear quadratic Gaussian 

LQR linear quadratic regulator 

MPC model predictive control 

SDP semidefinite programming, semidefinite program 



Chapter 1 

Introduction 

This thesis is concerned with the control system analysis and synthesis based on linear 

matrix inequalities (LMis) and bilinear matrix inequalities (BMis). In the past decade, 

LMis have received an increasingly broader acceptance as a useful tool for control system 

analysis and synthesis. On the other hand, BMis has been intensively investigated as 

a more general framework of LMis these days. In this chapter, we first review a gen­

eral historical background of such matrix inequalities approach and then summarize the 

contributions and organization of this thesis. 

1.1 Background of LMis and BMis in Control 

Theory 

The history of LMis and BMis in the analysis of dynamical systems goes back more than 

a century. The research began in about 1890, when Lyapunov published his seminal 

work introducing what we now call the Lyapunov theory. He showed that the differential 

equation 
d 
-x(t) = Ax(t) 
dt 

(1.1) 

is stable, i.e., all trajectories converge to zero, if and only if there exists a positive definite 

matrix P such that 

(1.2) 

1 
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The requirement AT P + PA < 0 (with P > 0) is what we now call the Lyapunov inequality 

on p, which is a special form of an LMI. He also showed that this first LMI could be 

explicitly solved. Indeed, we can pick any Q = QT > 0 and then solve the linear equation 
AT p + p A == -Q for a matrix P, which is guaranteed to be positive definite if system 

(1.1) is stable. In summary, the first LMI used to analyze the stability of a dynamical 

system was the Lyapunov inequality (1.2), which can be solved analytically by solving a 

set of linear equations. 
Since then many different kinds of LMis have been introduced in control theory, but 

only those of relatively small order were solvable by hand before 1950's. The next major 

breakthrough came in 1970's, when specific families of LMls such as the LMis appearing 

in the so-called positive real lemma were shown to be solvable, regardless of the size, by 

solving a certain algebraic Riccati equation (ARE). In a 1971 paper [64] on the quadratic 

optimal control, J. C. Willems was led to the LMI 

r AT p + p A + Q p B + cr 1 ~ 0, 
l BTP+C R 

and pointed out that it can be solved by studying the symmetric solutions of the ARE 

ATP + PA- (PB + CT)R-1 (BTP +C)+ Q == 0, 

which in turn can be found by exhibiting an eigenstructure of a related Hamiltonian 

matrix. This type of methods is a "closed-form" or "analytic" solution that can be 

used to solve special forms of LMis, since the standard algorithms that solve it are very 

predictable in terms of the effort required, which depends almost entirely on the problem 

size and not the particular problem data. 
In the early 1980's, it was recognized that the LMis that arise in system and control 

theory can be formulated as convex optimization problems that are amenable to computer 

calculation. Although this is a simple observation, it had some important consequences, 

the most important of which was that we could reliably solve many LMis for which no 

analytic solution had been found (or was likely to be found). 
In 1984, Karmarkar [32] introduced a new linear programming algorithm that solves 

linear programs in polynomial-time, like the ellipsoid method, but in contrast to the el­

lipsoid method, is also very efficient in practice. Karmarkar's work spurred an enormous 
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amount of work in the area of interior-point methods for linear programming (including 

rediscoveries of efficient methods that were developed but ignored in the 1960's). Essen­

tially, all of this research activity were concentrated on algorithms for linear and convex 

quadratic programs. 

Then in 1988, Nesterov and Nemirovskii [41] showed that the interior-point meth­

ods for linear programming can, in principle, be generalized to all convex optimization 

problems. The key element is whether there exits a barrier function with a certain prop­

erty called self-concordance [42, 39]. LMis are an important class of convex constraints 

for which readily computable self-concordant barrier functions are known, and therefore 

interior-point methods are applicable. 

Independently of Nesterov and Nemirovskii, several researchers generalized interior­

point methods from linear programming to the so-called semidefinite programming (SDP) 1. 

Special classes of the SDP have a long history in optimization. For example, certain eigen­

value minimization problems that can be cast into the frame of SDPs have been studied 

in combinatorial optimization [45]. The efficiency of recent interior-point methods for 

SDP, which is directly responsible for the popularity of SDP in control, has therefore also 

attracted a great deal of interest in optimization. Vast progress has been made in the last 

five years, and today almost all interior-point methods for linear programming have been 

extended to the SDP [54]. 

The SDP is a problem of the form 

m 

mJn{ cT xI Fa+ L xiFi 2:: 0}. (1.3) 
i=l 

The problem data are the vector c E ~m and m+l symmetric matrices Fa, ... , Fm E ~nxn. 

The inequality sign in (1.3) means that the symmetric matrix is positive semidefinite. 

Though the form of the SDP (1.3) appears very specialized, it turns out that it is fre­

quently encountered in systems and control. Examples include multicriterion LQG/LQR, 

synthesis of linear state-feedback for multiple plants, robustness analys·s and robust con­

troller design, gain-scheduling, and many others [8]. 

1 We shall use SDP to mean semidefinite programming as well as a semidefinite program, i.e., a semidef­

inite programming problem. 
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While the LMI approach is successful in the field of control, there still exist many 

important control problems which cannot (or are not known to) be equivalently expressed 

as SDPs. For example, the low order controller synthesis [26], multi-objective control 

and structure [48], distributed control synthesis [29], simultaneous optimization of control 

and structure [43). Even if these problems can be reduced to SDPs by some relaxation 

methods, the resultant control performance is often conservative. However, many of such 

control problems are naturally expressed as BMis. In view of this observation, Safonov 

(47] and Goh [24] introduced BMis as a unified description of a wide variety of control 

problems. Since then, several researchers have tried to develop algorithms for solving 

BMis [23, 16, 49, 33, 62, 4]. The BMI is the following form. 

nz ny nz ny 

Foo + L xiFw + L yjFoj + L L XiYjFij ~ 0, (1.4) 
i=l j=l i=lj=l 

where x E ~nz, y E Rny are variable vectors and coefficient matrices Fij E ~mxm are 

symmetric. For fixed y the BMI (1.4) reduces to an LMI in the variable x; for fixed x 

it reduces to an LMI in the variable y. The fundamental difference from LMis is that 

the BMI problem is nonconvex, and no non-exponential time algorithms for its solution 

are known to exist. In fact, it has been shown that the BMI problem is NP-hard [51). 

Nevertheless, some numerical algorithms for BMis have been investigated intensively with 

the aim of solving control design problems of practical size. Existing BMI methods are 

either local methods that alternate between optimization over y and over x [23, 21] , or 

global methods such as branch and bound methods [23, 16, 49, 18] , primal-relaxed dual 

methods [62, 4], and d.c. programming [36). 

1.2 Contributions and Organization of This Thesis 

The results obtained in this thesis are summarized as follows. 

• We propose some new methods for control system analysis and synthesis via LMis. 

In this thesis, we deal with LMI approaches to control problems from two viewpoints. 

One is an application of analysis methods in optimization theory. We propose a 
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method for estimating sensitivity of SDP with uncertainty and apply the method 

to sensitivity analysis of control systems. The other is to formulate new control 

objectives as LMis. As described above, development of numerical optimization 

involving LMis not only gave a unified approach to conventional control problems 

but also made it possible to solve new control problems. We propose a control design 

method considering a tradeoff in robust control and present LMI conditions for rate 

constraints in the framework of state-feedback control. 

• A global optimization method for solving BMis is developed. 

While LMis have become powerful tools for many control problems, there still exist 

some important control problems which cannot (or are not likely to) be described by 

LMis. For such control problems, BMis are more general and natural frameworks. 

However, it has been recognized to be difficult to efficiently solve BMis due to their 

biconvexity. In this thesis, we present a global optimization algorithm for the BMI 

problem based on the primal-relaxed dual method. This method is a global opti­

mization method for mathematical programming problems whose objective function 

and constraints are both biconvex. 

This thesis consists of two parts. In Chapters 3- 5, we investigate control system 

analysis and synthesis based on LMis. Chapter 6 are concerned with methods for solving 

BMis. The organization of this thesis is as follows. 

Chapter 2 gives preliminaries required in the following chapters. We describe the 

Schur complement, the S-procedure and elimination lemmas, which are useful in formu­

lating LMis for control problems. We also present some properties of LMis and BMis 

such as convexity and biconvexity, and give simple examples of LMis and BMis in control 

theory. 

Chapter 3 is concerned with sensitivity analysis of control systems with uncertainty. 

To this end, we first study the effect of perturbations in the SDP on the optimal solution 

and the optimal value function. A new form of con1plementarity conditions is proposed 

and the first-order partial derivatives of the optimal value function with respect to para­

metric variation are explicitly expressed by the problem data and the optimal solution. 
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Furthermore, the above result is applied to the sensitivity analysis of control systems with 

parametric uncertainties. 

Chapter 4 and 5 deal with control system synthesis based on LMis. 

In Chapter 4, we presents a design method of control systems such that a designer 

can flexibly take account of tradeoffs between evaluated uncertainty ranges and the level of 

control performance. The problem is reduced to a BMI problem and approximately solved 

by a sequence of LMis, and the convergence of the proposed approximation is proved. A 

numerical example shows the effectiveness of the proposed method in comparison with 

the standard robust control. 

Recently, an LMI-based model predictive control (MPC) technique has been proposed 

(35]. Many MPC techniques usually take into account constraints such as amplitude and 

rate limits and have therefore been very successful in industry. However, the MPC method 

(35] deals with only amplitude limits but not rate limits. In Chapter 5, we present LMI 

conditions for the rate limits in the framework of the LMI-based MPC technique. These 

additional constraints make the LMI-based MPC technique more practical since the rate 

limits as well as the amplitude limits, can be taken into consideration. 

In C hapter 6 , we present a global optimization algorithm for the BMI problem based 

on the primal-relaxed dual method. We also modify the algorithm from the viewpoint 

of computational efficiency. Numerical examples are given to illustrate the geometrical 

interpretation and effectiveness of the proposed method. 

In Chapter 7, we state the conclusion of this thesis and discuss future directions of 

our research. 

Chapter 2 

Preliminaries 

This chapter gives preliminaries required in the following chapters. We provide some 

lemmas for matrix inequalities and show simple examples of LMis and BMis. 

2.1 Some Lemmas for Matrix Inequalities 

A variety of control problems can be formulated as LMis and BMis by using techniques 

such as Schur complements, the S-procedure and elimination lemmas. Here we list some 

useful lemmas for matrix inequality formulation. 

2.1.1 Schur C omplements 

The so-called Schur complements [8, 30] are useful in conve ting nonlinear (convex) in­

equalities to LMI form. The case of strict inequalities is as follows. 

Lemma 2.1 The following conditions are equivalent for a real symmetric matrix 8: 

(i) 

(ii) 

7 



8 Chapter 2 

(iii) 

The above result can be generalized to nonstrict inequalities as follows [8]. 

Lemma 2.2 Suppose Q and R are symmetric. The condition 

is equivalent to 

where Rt denotes the Moore-Penrose inverse of R . 

2.1.2 The S-Procedure 

We often encounter a constraint where some quadratic function (or quadratic form) be 

negative whenever some other quadratic functions (or quadratic forms) are all negative. 

In some cases, this constraint can be expressed as an LMI in the data defining quadratic 

functions or forms; in other cases, we can form an LMI that is a conservative but often 

useful approximation of the constraint. The S-procedure is a technique for expressing 

such a constraint as an LMI. 

Let T0 , ... , Tp E ~nxn be symmetric matrices. Consider the following condition on 

T0 , ... ,Tp: 

(TT0( < 0 for all ( # 0 such that (TTi( ~ 0, i = 1, ... ,p. 

It is obvious that if 

p 

there exists 7 1 > 0, ... , 7p > 0 such that T0 - L riTi < 0, 
i=l 

(2.1) 

(2.2) 

then (2.1) holds. Note that (2.2) is an LMI in the variables T0 and r 1 , ... , Tp· It is a 

nontrivial fact that when p = 1, the converse holds, however, the following lemma holds 

[8]. 
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Lemma 2.3 LetT, S E ~nxn be symmetric matrices. The following conditions are equiv­

alent: 

(i) (TT( < 0 for all ( # 0 such that (T S( ~ 0. 

(ii) There exists 7 > 0 such that T- 7 S < 0. 

When there exists R such that S = RRT holds in Lemma 2.3, an alternative LMI 

condition are derived. Aft d fi · er e ntng a notation of matrices, we state this fact, namely, 

Finsler's lemma [8, 30]. 

Definition 2.1 For a given matrix ME ~nxm, M is a matrix satisfying 

ME ~n x(n-r), iVJTM = 0, iVJTM > 0, 

where r := rank M. 

Lemma 2.4 (Finsler's lemma) Let R E ~nxm be a real matrix and T E ~nxn be a real 

symmetric matrix. The following conditions are equivalent: 

(i) There exists f.L > 0 such that T - J.LRRT < 0. 

2.1.3 Elimination Lemmas 

The following lemma is useful for eliminating variables in certain matrix inequalities [8]. 

Lemma 2.5 Let G be a real symmetric matrix and U and V be real matrices. Then the 

following conditions are equivalent: 

(i) There exists X such that 

G + uxvr + vxruT < 0. 

(ii) 

(2.3) 
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We can express (2.3) in another form using Finsler's lemma: 

Lemma 2.6 Let G be a real symmetric matrix and U and V be real matrices. Then the 

following conditions are equivalent: 

(i) There exists X such that 

G + uxvT + vxTuT < o. 

(ii) 

G- J-LUUT < 0, G- J-LVVT < 0 

holds for some J-L E ~ . 

2.2 Properties and a Simple Example of LMis and 

SDPs 

2.2.1 Properties of LMis and SDPs 

We now discuss some properties of an SDP: 
m 

min{cTx IF(x) :== Fo + L: xiFi ~ 0}. 
X i=l 

(2.4) 

Here, the problem data are the vector c E ~m and m+ 1 symmetric matrices Fo , · · ·, Fm E 

Rn xn. If F(x) ~ 0 and F(y) ~ 0, then, for all A, 0 ~A:::; 1, 

F(Ax + (1- A)y) == AF(x) + (1- A)F(y) ~ 0. 

Thus the constraint of the SDP (2.4) is convex, and therefore, the SDP (2.4) is a convex 
optimization problem. We see from this fact that every locally optimal solution of an 
SDP is globally optimal, and we can also regard the optimal solution of an SDP as the 
solution of the control problem reduced to the SDP. From the viewpoint of numerical 
computation, an SDP is an important class of convex optimization problems for which 
readily computable self-concordant barrier functions are known, and therefore, interior-

point methods are applicable [42, 39]. 
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Strictly speaking, the constraint of the SDP (2.4) 

m 

Fo + 2:xiFi ~ 0 
i=l 

is an affine matrix inequality (AMI). A connection between AMis and linear matrix in­
equalities of the form 

m 

"" x ·R· > 0 LJ t t_ 

i=l 

is discussed in a more general BMI framework in the next section. 

2.2.2 A Simple Example of LMis in Cont rol 

Consider the state-feedback stabilization problem for the linear time-invariant system: 

±==Ax+ Bu, (2.5) 

where x E ~n is the system state and u E ~m is the system input. Here A and B are 
appropriately dimensioned real constant matrices. The closed-loop system with state­
feedback u = K x is as follows: 

x == (A+ BK)x. (2.6) 

System (2.5) is said to be stabilizable (via linear state-feedback) if there exists a state­
feedback gain K such that the closed-loop system (2.6) is stable, i.e., all the eigenvalues of 
A + BK are in the open left half plane. From the Lyapunov theorem (8], the closed-loop 
system (2.6) is stable if and only if there exists P > 0 such that 

(A+ BK)TP + P(A + BK) < 0, 

or equivalently, there exists Q > 0 such that 

Q(A + BK)T + (A+ BK)Q < 0. (2 .7) 

These conditions are BMis in K and P or Q, but by a simple change of variables we 
can obtain an equivalent LMI condition. Define Y == KQ, so that for Q > 0 we have 
K == YQ- 1 . Substituting this into (2.7) yields 

(2.8) 
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which is an LMI in Q and Y. Thus system (2.5) is stabilizable if and only if there 

exists Q > 0 and Y such that LMI (2.8) holds. If this LMI is feasible , then function 

V(~) = ~TQ- 1 ~ assures stability of system (2.5) with state-feedback u = YQ- 1x. 

An alternative equivalent condition for stabilizability, involving fewer variables, can 

be derived using the elimination lemma. From Lemma 2.6, LMI (2.8) holds if and only if 

there exist Q > 0 and a scalar J.t such that 

(2.9) 

Since we can always assume J.t > 0 in LMI (2.9), and since this LMI is homogeneous in Q 

and J.t , we can take It = 1 without loss of generality, thus reducing the number of variables 

by one. If Q > 0 satisfies the LMI (2.9), a stabilizing state-feedback gain is given by 

From the elimination lemma (Lemma 2.5), another equivalent condition is 

(2.10) 

For any Q > 0 satisfying (2.10), a stabilizing state-feedback gain is 

where It is any scalar such that (2.9) holds (condition (2.10) implies that such a scalar 

exists) [8]. 

2.3 Properties and a Simple Example of BMis 

2.3.1 Properties of BMis 

We will now discuss some properties of a BMI: 

n:c n 11 n:c ny 

F(x, y) :== Faa + l: xiFiO + LYiFaj + L L XiYiFij > 0, (2.11) 
i=I j=I i=l j=l 

The variables are x E ~n:c and y E ~ny. The coefficient matrices Fii E Rm xm , i = 
1, ... , nx, j = 1, ... , ny are symrnetric. 

Preliminaries 13 

There are certain cases where the solution to BMI (2.11) is trivial, or where the BMI 

reduces to an AMI. For example, if Fii = 0 for all i = 1, ... , nx, j = 1, ... , ny, then 

F(x, y) > 0 is in fact an AMI in the pair (x, y). Also, obtaining a feasible solution for 

the BMI (2.11) is trivial whenever any one of the Fii except Faa is positive or negative 

definite. Further, note that if any of the AMis in x, i.e., Faa+ Ef~1 xiFia > 0, Faa + 

Faj + Ef~I xi(Fia + Fii) > 0, j = 1, ... , ny, has a solution, then the solution to the BMI 

problem (2.11) trivially follows. The same holds for the corresponding AMis in y. 

If BMI (2.11) is linear in at least one of the variables, say x, then F (x, y) > 0 if and 

only if F(Kx, y) > 0 for all "'> 0, i.e. , the feasible set of (2.11) will be unbounded if it is 

non-empty and maxAmin(F(x, y)) is either unbounded or negative. 

Further, if the BMI is actually linear in both x and y, then F(x, y) > 0 if and only if 

F(Kxx, Kyfi) > 0, for all "'x"-y > 0. Hence if the feasible set is non-empty, it is unbounded. 

We now investigate the underlying geometry of the problem of finding a feasible solu­

tion for a BMI. To this end, we define biconvexity of a set and a function, and describe 

some properties concerning them. 

Consider a set X x Y C Rnx x Rny, where X is convex in Rnx and y is convex in 

Rny. Define the x and y-sections of B as follows: Bx := {y E Y : ( x, y) E B} and 

By:= {x EX: (x, y) E B}. 

Definition 2 .2 (B iconvexity of a Set) The set B C X x Y is biconvex if Bx is convex 

for every x E X and By is convex for every y E y. 

Proposition 2 .1 The set B C X x Y is biconvex if and only if for every quadruple 

(xi, Yl) , (xi, Y2), (x2, Yl), (x2, Y2) E B, 

holds for every ({3, 'Y) E [0, 1] x [0, 1]. 

A biconvex set is not necessarily convex. For example, consider the shape "L" on 

the product space R x R; this is biconvex but not convex and also the level sets for 

f(x, y) = xy < 1, f(x , y) = xy < -1. The latter of which is not even connected but still 

biconvex. 
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Definition 2.3 (Biconvexity of a Function) A function f : X x Y -+ ~is biconvex 

in ( x, y) if it is convex in x for every fixed y E Y and convex in y for every fixed x E X. 

Proposition 2.2 A function f(x, y) is biconvex over X x Y if and only if for any (x1, YI), 

(x1, Y2), (x2, YI), (x2, Y2) E X x Y, 

f(xp, y7 ) ~ (1- ,8)(1- r)f(xl, Yl) + (1- ,B)'Yf(xl, Y2) + ,8(1- r) f(x2 , YI) + f3rf(x2, Y2) 

for every (,B, 'Y) E [0, 1] x [0, 1], where (xp, y7 ) :== ((1- ,B)x1 + ,Bx2, (1- 'Y)Yl + 'YY2)· 

Proposition 2.2 states that a convex function and a biconvex function have a similar 

property, i.e., just as one dimensional interpolation always overestimates a convex func­

tion, two dimensional interpolation always overestimates a biconvex function. A convex 

set and a biconvex set have a similar property as follows: 

Proposition 2.3 If f(x, y) is biconvex, then its level sets, Lc .- {(x, y) E X x Y 

f(x, y) ~ c}, c E ~' are biconvex for all c. 

While convexity and biconvexity have some similar properties, there is great difference 

between them. One of the reasons for the study of convexity of functions is that every local 

minimum is always the global minimum for convex functions. However, convexity is not 

a necessary condition for the local-global property, and in fact strict quasiconvexity is a 

sufficient condition for every local minimum to be the global minimum [13]. Unfortunately, 

biconvexity, as we have defined it, does not yield the local-global property. 

Here we will return to BMI (2.11). For the function defined by 

A(x, y) :== -Amin(F(x, y)), 

A(x, y) < 0 if and only if F(x, y) > 0. Thus we see that BMI (2.11) is solvable by reducing 

the minimization problem of A(x, y). For Lambda(x, y) , the following theorem holds. 

Theorem 2.1 The function A(x, y) is biconvex over ~n:z: x ~n:v. 

Proof The proof follows trivially from the well established fact that AMI/LMis are 

convex. • , 

Therefore, Propositions 2.2, 2.3 hold for A(x, y). Note that the BMI problem does not 

have the local-global property because of the biconvexity of F(x, y )' > 0. 
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2.3.2 Connection between Biafline and Bilinear Cases 

We now examine the relationships between the bilinear and biaffine matrix inequalities. 

For a given bilinear matrix function 

n:x: ny 

F(x, y) :== L LXiYjFij, 
i=l j=l 

a biaffi.ne matrix function 

n:x: ny n:x: n:v 

F(x, Y) :== Foo + L XiFio + LY}Foj + L L XiYiFii 
i=l j=l i=lj=l 

is easily generated, where F00 , Fio and Foj are all zero matrices. Therefore, we see that 

bilinear matrix inequality problems are a subset of biaffine matrix inequality problems. 

The following lemma shows that the converse is also true in the sense that every biaffine 

matrix inequality problem can be represented as a bilinear matrix inequality problem via 

a suitable argumentation of the Fij matrices. 

Lemma 2. 7 Let 

F(x, y) :== diag(io'Yo, F(x, y)), 

where 
n:z: ny 

F(x , y) := L L XiYiFij· 
i=O j=O 

If a pair (x, y) satisfies the bilinear matrix inequality F(x, y) > 0, then the pair (x, y) 

given by Xi == io Xi, i = 1, · · ·, nx, Yi == Jo Yi j == 1, ... , ny satisfies the biaffine matrix 

inequality F(x, y) > 0. 

Proof By construction, XoYo diag(1 , F(x , y)) == F(x, y). Dividing both sides of this 

equality by the positive scalar x0y0, we obtain the result. •• 
In view of Lemma 2. 7, it is clear that every biaffine matrix inequality can be refor­

mulated as a bilinear matrix inequality via a trivial augmentation of the Fij matrices. 

Thus we conclude that the two are mathematically equivalent. Accordingly, we use terms 

bilinear matrix inequality and biaffine matrix inequality interchang ably and refer to both 

as simply BMis. 
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2.3.3 A Simple Example of a BMI in Control 

We here show a simple example of a BMI. Consider the output feedback stabilization 

problem for the linear time-invariant system: 

x Ax + Bu 
(2.12) 

y - Cx, 

where x E ~n is the system state, u E ~m is the system input andy E ~P is the system 
output. Here, A, B and C are appropriately dimensioned real constant matrices. The 
closed-loop system with the output feedback u = K y is as follows: 

x = (A + BKC)x. (2.13) 

From the Lyapunov theorem, the closed-loop system (2.13) is stable, i.e., all the eigen­
values of A + B K C are in the open left half plane if and only if there exists P > 0 such 

that 

(A+ BKC)T P + P(A + BKC) < 0. 

Thus the system (2.12) is stabilizable via the output feedback if and only if there exists 
a symmetric matrix P and a matrix K such that the following BMI holds: 

[

-(A+ BKC)TP- P(A + BKC) 0 ] > 0. 
0 p 

(2 .14) 

Note that this BMI condition (2.14) cannot be converted to an equivalent LMI condition 
by the techniques described in the previous section. 

Chapter 3 

Sensitivity Analysis in SDP and Its 

Application to Control Systems with 

Uncertainty 

A general objective in control system design is to make the designed closed-loop system 
stable and achieve a specified control performance. However in the case where a control 
system includes uncertain parameters with estimated errors and/or changes, stability 
and performance are subject to these parameters. It is, therefore , important to obtain 
sensitivity information of stability and control performance with respect to such uncertain 
parameters. The sensitivity information is also useful for determining physical parameters 
such as damping and stiffness constants from the viewpoint of structural design (43] . 

The goal of this chapter is to give an analysis method for esfmating the sensitivi y 
of control performance via SDP, based on the results in [58, 59]. We first provide some 
results concerning sensitivity analysis of SDP and then apply them to control systems. 

3 .1 Sensitivity Analysis of SDP 

As stated in the previous chapter, SDP is a special form of convex programming, and 
so far , various properties of SDP have been studied from the theoretical and practical 
viewpoints [56, 34]. The optimality of SDP is one of the most important propertie and 

17 
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has been exploited to develop efficient interior-point algorithms. However, sensitivity 

analysis of SDP has been less studied until now. For convex (nonlinear) programming, it 

is well known that optimality and the so-called implicit function theorem play important 

roles in sensitivity analysis [11]. However the results of sensitivity analysis in nonlinear 

programming in [11] cannot be readily applied to SDP since the constraint of an SDP is 

in a matrix form but not a vector form. 

To cope with the above difficulty, we first propose a new form of complementarity 

condition. Using the proposed complementarity condition, we provide results concerning 

sensitivity analysis, i.e, a technique for estimating the sensitivity of the optimal solution 

and the optimal value function with respect to perturbations in SDP. 

3.1.1 Optimality of SDP 

We first present well-known results of optimality of SDP in order to prepare for sensitivity 

analysis of SDP. We then propose a new form of complementarity condition such that the 

Jacobian matrix of a vector equality related to optimality conditions is a square matrix. 

As a result, we can exploit the implicit function theorem in sensitivity analysis. 

Consider the SDP (denoted (Po) hereafter) with an uncertain parameter: 

'l/Jp (B) :== min cT x 
X 

subject to 
m 

F(x, B) :== Fo(B) + L xiFi(B) ~ 0, 
j=l 

where x E Rm is a vector variable, c E Rm is a constant vector and Fi (B) E Rn xn, j == 

0, . . . m are symmetric matrix functions of an uncertain parameter B E Rl. We assume 

that Fi (B) is continuously differentiable in (} . As seen in the previous chapter, the SD P (P 0 ) 

is convex for any fixed B. We are interested in analyzing the behavior of an optimal value 

function of the SDP (Po0 ) when a fixed parameter B0 is subject to perturbation. First, we 

deal with the SDP (Po0 ) with the fixed parameter 80 . The dual problem (denoted (D00 ) 

hereafter) associated with the SDP (P80 ) is 

'l/Jd(Bo) := max(- Tr Fo(Bo)G(y)) 
y 
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subject to 

Tr Fi(Bo)G(y) == Cj, j == 1, ... , m 

and 
q 

G(y) == '"' y·G · > 0 
~ J J- ' 
j=l 

where q := n(n + 1)/2, y E Rq is a vector variable and Gi E Rnxn, j == 1, ... , q are 

symmetric and linearly independent, i.e., the system of homogeneous linear equations 

'2:]=1 YiGi = 0 in q variables Y1, Y2 , · · . , Yq admits no nontrivial solution, and Tr A denotes 

the trace of a matrix A. 

Throughout this chapter, we make the following assumption for the SDPs (Poo) and 

(Doo)· 

Assumption 3.1 

1. Fi(Bo), j == 1, ... , m are linearly independent. 

2. There exists an interior and feasible solution (x0 , y0 ) of the SDPs (Po
0

) and (Do
0

) 

as follows: 

F(xo, Bo) > 0, G(y0 ) > 0, 

Tr Fi(Bo)G(y0 ) == Cj, j == 1, ... , m. 

The assumption 1 is necessary for solving SDP via a type of primal-dual interior-point 

method. The assumption 2 guarantees that both SDPs (Po
0

) and (Do
0

) have optimal 

solutions [53, 34]. 

For the SDPs (Poo) and (Doo), optimality conditions can be stated as follows [56, 34]. 

Theorem 3.1 Under Assumption 3.1, (x*, y*) is an optimal solution of the SDPs (Po
0

) 

and (Do0 ) if and only if 

m 

F(x*, Bo) == Fo(Bo) + L xiFi(00 ) ~ 0, 
j=l 

q 

G(y*) == LYJGj ~ 0, 
j=l 

Tr Fj(Oo)G(y*) == Cj, j == 1, ... , m, 

F(x*, Bo)G(y*) + G(y*)F(x* , 00 ) == 0. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Then 

Namely, the primal optimal value coincides with the dual optimal value. 

Remark 3.1 In sensitivity analysis of nonlinear programming [11], the implicit function 

theorem is applied to a function related to equality conditions in optimality conditions. 

In order to take the same approach, the Jacobian matrix of the function with respect 

to uncertain parameters should be square. To this end, we propose the new type of 

complementarity condition (3.3). 

The forms of Tr F(x*, B0 )G(y*) = 0 or F(x*, B0)G(y*) = 0 are usually used as com­

plenlentarity conditions. If the primal feasibility (3.1) and the dual feasibility (3.2), (3.3) 
are both satisfied, the following lemma shows that these complementarity conditions are 

equivalent. 

Lemma 3.1 For any symmetric positive semidefinite matrices F, G E ~nxn, the follow­

ing conditions are equivalent: 

(i) TrFG = 0. 

(ii) FG = 0. 

(iii) FG + GF = 0. 

Proof It is easy to see that (ii) :=:::;::} (iii) and (iii) :=:::;::} (i) hold. Hence we have only to 

show (i) ====9- (ii) to prove the equivalence among (i), (ii) and (iii). 

Since F and G are positive semidefinite, there exist positive semidefinite matrices Ft, 
1 

G2 such that 
1 1 1 1 

F = F2F2, G = G2G2. 

Thus, when condition (i), i.e. , Tr FG = 0 holds, we have 

1 1 1 1 
TrF2G2G2F2 = 0. 

Since F~ G~ at pt is positive semidefinite, we have 

1 1 1 1 
F2G2G2F2 = 0. 
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Furthermore, since 
1111 11 11 F2G2G2F 2 = (F2G2)(F2G2)r, 

we obtain Ftct = 0, and therefore 

1 1 1 1 
FG = F 2F 2G2G2 = 0. 

This completes the proof. • 
The complementarity conditions of SDP give an eigenstructure between F and G as 

shown in the following lemma. This fact plays an important role in proving the results of 

sensitivity analysis in the next subsection. 

Lemma 3.2 Suppose that the conditions in Lemma 3.1 are satisfied. Then there exists 

an orthogonal matrix U such that 

ur FU = [ AOF 00 ] ' AF = diag(.X1(F), ... , ArF(F)), 

urau = [ 
0 0 

] , 
0 Aa 

Aa = diag(.X1(G), ... ,Ar0 (G)), 

where rp := rank(F), ra :=rank( G), and Ai(F), i = 1 ... rp and ' ·(G) 1· = 1 ' ' /\.J ' ' ••• ' r G 

are all positive eigenvalues ofF and G, respectively. Also, ra ~ n- rp holds. 

Proof Since F is positive semidefinite, there exists an orthogonal matrix Up such that 

U};FUF = [ A; ~ ] . (3.5) 

From condition (ii) in Lemma 3.1, i.e., FG::::: GF = 0 
' 

(3.6) 

Then define UJ,GUp = : [9ij], i, j = 1, ... , nand we can rewrite (3.6) as 

A1Yn A1Y1n 
A1911 Arp9lrp 

Arp9rpl Arp9rpn 
On x(n-rp) = 0. 

A19nl Arp9nrF 
O(n- rF )Xn 
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From ,Xi > 0, i == 1, ... , rp, it follows that 9ij == 0, i ~ rp or j ~ rp, and we obtain 

T [ 0 0 ] UpGUp == 0 G ' 

where G E ~(n-rp) x(n-rp) is positive semidefinite. Hence rfJ.GUp can be diagonalized by 

a block-diagonal orthogonal matrix 

· - [ lrF 0 ] Ua.- , 
o u6 

so that 

where ra :s; n- rp. Then using an orthogonal matrix defined by U :== UpUa , we see that 

F and G are simultaneously diagonalized by U as follows: 

[A; ~]' 

[~ :J· 
• 

Remark 3.2 If the optimality conditions (3.1)-(3.4) are satisfied for the SDPs (Po0 ) 

and (D80 ), we say that the strict complementarity condition holds if rank(F(x*, Bo)) + 

rank(G(y*)) = n holds. 

3.1.2 Sensitivity Analysis of SDP 

In this subsection, we give fundamental accounts on sensitivity analysis of SDP based on 

the results in [58, 59). This results are applied to control systems with uncertainty in the 

next section, so that we can evaluate sensitivity of control performance. 
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Before we begin to state the results of sensitivity analysis of SDP, we define the 

following function <1? associated with (3.3) and (3.4): 

(3.7) <P (x, y, B) = 
Tr Fm(B)G(y) - Cm 

Vec(F(x, B)G(y) + G(y)F(x, B)) 

where for a symmetric matrix A E ~nxn: 

A= 

Vec(A) E ~n(n+I)/2 is defined as follows: 

i.e. , Vee stacks the rows of A from the principal diagonal downwards in a column vector. 

We are now ready to evaluate the variation of the optimal value functions t/Jp ( 0) and t/Jd ( O) 

with respect to a variation in the parameter B. From now on, V' 8x denotes them x l Jacobi 

matrix whose ( i, j) element is 8xi (B)/ 8Bj. The following theorem is our main result. 

Theorem 3.2 For SDPs (Po0 ) and (Do0 ), suppose that the following conditions are sat­

isfied: 

(i) (x* , y*) is an optimal solution of the SDPs (P80 ) and (D
00

) (i.e., (3.1)-(3.4) in 

Theorem 3.1 hold); 

(ii) rank(F(x*, Bo)) +rank( G(y*)) == n holds, (i.e., the strict complementarity condition 

holds); 

(iii) The (m + q) x (m + q) matrix 

is nonsingular (i.e., the Jacobian matrix of<P with respect to (x, y) is nonsingular). 
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Then, there exist a neighborhood n of B0 and continuously differentiable functions x( B) : 

D ~ ~m and y(B): D ~ ~q satisfying the following conditions for all B ED: 

(a) x(Oo) == x* , y(Oo) == y* ; 

(b) x( 0) and y( 0) satisfy the above assumptions (i} - (iii} for the SDPs (Po) and (Do); 

(c) 

(d) 

Proof 

[ 
\1 0x ( 0) ] == 
\1 oY( B) 

- [\1 x<I>(x(O), y(O), 0) \1 y<I>(x(O), y(O), B)]-1 \1 o<I>(x(O), y(O), 0); (3.8) 

V o'if;p( B) - V o'if;d(O), 

V o'if;p(O) - cT\1 ox(O), (3.9) 
T 

- Tr ( W,-(O)G(y(O)) + F0 (0)G(JI;(O))) 

\1 o'if;d(O) - (3.10) 

- Tr ( ~(O)G(y(O)) + F0(0)G(~(O))) 

(a) Under the assumption (iii), using the implicit function theorem [11] with respect 

to (3.7), we can conclude that there exist a neighborhood n of Bo and continuously 

differentiable functions x(O): n ~ ~m and y(B): D-+ ~q satisfying (a) and 

<I>(x(O), y(O), 0) == 0 for all BE D. (3.11) 

(b) According to Lemma 3.2 and the assumption (i), (ii), there exists an orthogonal 

matrix U0 such that 

lJ5F(x(Oo),Oo)Uo -
[ 

A
0
Fo 0

0

] ' 

UlG(y(Oo))Uo [ 
0 0 

] 
- OAao' 
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where Apo E ~rpxrp and Aao E ~ro x ro are diagonal and positive definite, and 

rp + ra == n holds. Since F(x(O), 0) is symmetric for every 0, and the eigenvalues 

of F(x(O),B) and G(y(O)) are continuous functions of B, there exist an orthogonal 

matrix U(O) and a sufficiently small neighborhood n such that 

[ 
AF

0

(B) 
Up(O)T F(x(O) , O)Up(O) == 

Up(O)TG(y(O))Up(O) - [ B(O) 
C(B)T 

Ap(O) > 0, D(O) > 0, for all BED, 

Up(Oo) == Uo, Ap(Oo) == AFo, D(Oo) == Aoo, 

(3.12) 

(3.13) 

(3.14) 

where Ap(O) == diag(At, ... , Arp), A( B) == diag(a1, ... , ar
0

), B(O) == [bij] E ~rp xrp, 

C(O) E ~rpxro and D(O) == [dij] E ~roxro. Note that Up(O) diagonalize F(x(O), B). 

The satisfaction of (3.11) means that, forB near 00
, 

Tr Fj(O)G(y(O)) == Cj, j == 1, ... ,m (3.15) 

F(x(O), O)G(y(O)) + G(y(O))F(x(O), B) == 0. (3.16) 

From (3.12), (3.13) and (3.16), we have 

[ AF

0

(0) 0 ] [ B(O) C(O) ] [ B(O) C(O) ] [ AF(O) 
0 ] 

A(O) C(O)T D(O) + C(OJT 
-o 

D(B) 0 A(O) - ' 

(3.17) 

that is, 

Ap(B)B(B) + B(O)Ap(B) - 0, (3.18) 

Ap(B)C(B) + C(B)A(B) - 0, (3.19) 

A( B)D( B) + D( O)A( B) - 0. (3.20) 

We will now observe (3.18)- (3.20) to show that A(B) == 0, B(B) == 0 and C(O) == 0 

for 0 En. From the (i,j) element of each side in (3.18), 

(3.21) 
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Since Ai + Aj > 0, it follows that bij == 0, i.e., B(B) == 0. From the (i, j) element in 

(3.20), 
(3.22) 

Since D(e) > 0, we see that dii > 0. Thus we get ai = 0, i.e., A(B) == 0. From 
(3.19), notice that A(e) == 0 and AF(B) > 0, so that C(B) == 0. Consequently, we 

obtain for() E 0 

(3.23) 

(3.24) 

Furthermore, in the same way as in the proof of Lemma 3.2, we can show that 
there exists an orthogonal matrix T(e) which diagonalizes F(x(B), e) and G(x(O), e) 

simultaneously as follows: 

U(B)T F(x(B), B)U(B) - AF(e) > o, 
( 

AFO(B) 00 1 ' 
r 0 0 1 , Aa ( 0) > 0, l 0 A(e) 

where Aa(B) E ~raxra. Hence, for () E n, the following hold (i.e., assumptions (i) 

and (ii) hold for e E 0): 
m 

F(x(O), e) == Fo(B) + L: Xj(O)Fj(B) ~ 0, 
j=l 

q 

G(y(B)) == LYi(B)Gj ~ 0, 
j=l 

rank(F(x(B), e))+ rank(G(y(B))) == n. 

Moreover, [V x<P Y'y<P) is nonsingular for () En (i.e., the assumption (iii) holds for 
() E 0) when 0 is sufficiently small, since <I>(x(B), y(B), B) is continuously differen-

tiable in B 

(c) <1? (x( B), y( B) , B) == 0 can be differentiated with respect to e to yield explicit expres­
sions of the first partial derivatives of the vector function <I>(x(e), y(B), B). It follows 
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that 

[V x<P \7 y<I>] + \7 e<P == 0. 
[ 

\7 ex(e) ] 

\7 oY(B) 
(3.25) 

Since [V x<P Y'y<P] is nonsingular for() E n, we obtain (3.8). 

(d) Since x(e) and y(e) are continuously differentiable in e, we see that the optimal 

value functions 'l/Jp(e) and 'l/Jd(e) are continuously differentiable in e. Thus (3.9) and 
(3.10) hold fore E 0. 

• 
We show how to calculate the sensitivity in the case where () E n is fixed to be e0 . In 

this case, (c) in Theorem 3.2 is as follows: 

[ 
Y'ex(eo) ] 
'\loy(Bo) = - [V x<1>(x*, y*, Bo) '\1 y<1>(x*, y*, Bo)tl Vo<1>(x*, y*, Bo), 

where (x*, y*) is the optimal solution to the SDPs (P80 ) and (D80 ). For notational conve­
nience, we define F* := F(x*, 00 ) and G* :== G(y*). Then \7 <P(x* y* e ) n if;.( * * (} ) X ' ' 0 ' v y':l' X 'y ' 0 

and \7 o<P(x*, y*, Bo) are calculated as follows: 

\7 x<P(x*, y*, 80 ) 

[ 
Omxm ] 

= Vee (F1 (Bo)G* + G* F1 (80)) . Vee (Fm(Bo)G* + G* Fm(Bo)) '(
3

.
26

) 

\7 y<P(x*, y*, eo) 

TrF1(80)G1 

\7 o<I>(x*, y*, Bo) 

Tr 8Fm(6o) G* 
ae1 

Vee (F*Gq + GqF*) 

Tr 8F1(0o) G* 
88z 

Vee (8F(x*,Oo ) + G*8F(x"',Oo)) 
&fh ao1 

Vee (8F(x ,8o ) + G*8F(x*,8o)) aez ao1 

(3.27) 

(3.28) 
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3.2 Application to Control Systems with Uncertainty 

It is often desirable to estimate the sensitivity of the control performance against uncertain 

parameters of a control system. In this section, we describe how to apply the results in 

the previous section to such control systems. We here deal with the sensitivity of H 00 

norm of the following linear system with an uncertain parameter () E ~z. 

x - A(B)x + B(B)w 

y C(B)x 

where A(B), B(B), C(B) are continuously differentiable in B. The following lemma holds 

for the H 00 norm of the transfer function Gyw from w to y [8]. 

Lemma 3.3 Suppose A is a stable matrix. Then 

llGywlloo := IIC(s!- A)- 1 Blloo <I 

if and only if there exists P > 0 such that 

From Lemma 3.3, we see that IIGyw(B)ll~ is equal to the optimal value of the SDP (Po) 

where the variables are P and { 2 , the objective is { 2 , and the constraint is 

-A(B)TP- PA(B)- C(B)TC(B) -PB(B) 0 

-B(B)T P 

0 

0 ~ 0. 

p 

(3.29) 

Therefore, we can compute the sensitivity of IIGyw ( 6) II~ with respect to the parameter () 

by using the results in the previous section for the SDP (Po) 

Since LMI (3.29) has a block-diagonal structure: 

[ 
Fa(x, B) 0 ] 

~ 0, 
0 Fb(x, B) 

(3.30) 
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the variable G of the corresponding dual problem should have the same block-diagonal 

structure as LMI (3.30), i.e., G = diag(Ga, Gb), from the viewpoint of computational 

efficiency [55, 56]. Accordingly, <I> in ( 3. 7) is as follows: 

Tr F1 ( B)G(y) - c1 

<I>(x, Y, B) = Tr Fm(B)G(y) -em 

Vec(Fa(x, B)Ga(Y) + Ga(y)Fa(x, B)) 

Vec(Fb(x, B)Gb(Y) + Gb(y)Fb(x, B)) 

Note that computational efforts for the sensitivity as well as SDP are reduced because 

the dimension of <I> is reduced. 

3.3 Numerical Example 

In this section we apply the previous results to a control system with an uncertain pa­

rameter and compute the sensitivity of the H 00 norm of the control system. Consider the 

linear time-invariant system [44] 

where 

_!2.m_ 
Jm 

A·-.- 0 

1 

C·-.- 0 1 

x = Ax+Bw 

y=Cx, 

0 _!£.. 
Jm 

_!21. & 
Jl Jl 

-1 0 

0]' 

0 

B·-.- -1 

0 

and the parameter B := [Jt, Jm, Dt, Dm, Ks]T takes the nominal value ()0 = [1, 1, 1, 0.1, 5]T. 

Then, using the primal-dual interior-point method [56] to compute the H 00 norm of the 

transfer function Gyw(B0 ) from w toy, we obtain 

IIGyw(Bo) I leo = 0.9109. 
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Table 3.1: Sensitivity of H 00 norm 

Jz Jm Dz Dm K s 

7.4949 X 10-1 1.5967 X 10 1 - 8.2812 X 10 1 7.9334 X 10 1 3.4219 X 10 4 
Proposed method 

7.4947 X 10- 1 1.5967 X 10 1 -8.2809 X 10 1 7.9331 X 10- 1 3.4226 X 10 4 
Finite difference met hod 

From the primal and dual optimal solution (x* , y*) , we can see that conditions (ii) and 
(iii) in Theorem 3.2 are satisfied since the following conditions hold: 

rank(F(x* , Bo)) = 5, 

rank(G(y*)) = 2, 

rank([\7 x4>(x* , y* , Bo) \7 y4>(x*, y*, Bo)]) = 23. 

Now, we calculate the sensitivity \7 ollGywlloo in two ways. First, we use the method 
of finite differences. Using the SDP software of [55], we calculate Hoo to an accuracy of 
l .O x 1o - 10. We assume a perturbation size of 1.0 x 10- 5

. Next, we calculate the sensitivity 

by using the proposed method. 
Table 3.1 shows the results. Note that both sensitivity results calculated by the 

finite difference method and the proposed method are almost the same, but the proposed 
method gives the exact sensitivity value. Also note that the H 00 norm of the above control 

system is insensitive with respect to Ks· 

Chapter 4 

Control System Design Considering 

a Tradeoff between Uncertainty and 

Performance 

This chapter presents a design method of control systems in such a way that a designer 
can flexibly take account of tradeoff's between evaluated uncertainty ranges and the level 
of control performance. The results of this chapter are based on [63) . 

Robust control theory has been highly successful in the past two decades. The majority 
of contributions are however made upon the assumption that we can take a fixed set of 
uncertainty and then we attempt to give a guaranteed level of performance for all plants 
that belong to such a prespecified class of uncertainties. In other words, we aim at a 
worst-case design. 

Whilst this leads in general to a very safe design, a possible drawback is that such a 
class of uncertainty gives a hard bound, and the worst-case design tends to give a rather 
conservative result. Furthermore, the uncertainty bounds usually employed are determin­
istic, and no further detailed information is imposed. On the other hand, the uncertainty 
encountered in practice may be subject to a certain (probabilistic) distribution, and it 
is possible that we may impose less stringent performance on the plant data t hat may 
appear less frequently. The standard robust control theory is not adequate for dealing 
with such a situation. 

31 
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In view of this observation, several approaches have been proposed. For example, 

studies on the average performance [5, 6, 14, 31, 57], and a robust control method with 

distribution condition [52]. In particular, various randomized algorithms [31, 57] have 

been proposed as a new, attractive method for dealing with this problem. 

We here study however, from a slightly different viewpoint, the tradeoff between the 

evaluated uncertainty range and control performance, and reduce the design problem to 

a semi-infinite programming problem with BMI constraints. 

4.1 Conservativeness of Standard Robust Performance 

Control 

Let us begin by considering the following example [19]: 

d -x(t) = A(t)x(t) + Bu(t) 
dt 

0 0 1 0 

0 0 0 1 
A(t) = 

-k(t) k(t) - f(t) f(t) 

lOk(t) -10k(t) lOf(t) -lOf(t) 

0 1 

0 0 
B= xo == x(O) == 

1 0 

0 0 

0.08 ~ k(t) ~ 0.32, 0.008 ~ f(t) ~ 0.032. 

Introduce a polytope 0(0) parametrized by 0 E R as follows: 

A1 (0) = Ao + BA1, 

Aa(O) = Ao + BA3, 

A2(B) = Ao + BA2, 

A4(0) == Ao + 8A4, 

(4.1) 

(4.2) 
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0 0 1 0 

0 0 0 1 
Ao = 

-0.2 0.2 -0.02 0.02 

2 -2 0.2 -0.2 

0 0 0 0 

A1= 
0 0 0 0 

-0.12 0.12 -0.012 0.012 

1.2 -1.2 0.12 -0.12 

0 0 0 0 

Aa = 
0 0 0 0 

-0.12 0.12 0.012 -0.012 

1.2 -1.2 -0.12 0.12 

For each fixed (), O(B) gives a set of uncertainty, and we see that 

A(t) E 0(1) (4.3) 

holds for all t. Thus the system with parameter variations (4.1), (4.2) can be rewritten 

as the system with polytopic uncertainty (4.1) , (4.3). 

Consider the following performance index for system (4.1), (4.3): 

J(()) = sup {
00 

(x(t)TQx(t) + u(t)TRu(t))dt, 
A(·)En(O) Jo 

where Q > 0 and R > 0. A straightforward objective is to minimize this functional for 

each uncertainty set 0(0). Unfortunately this objective is not easily tractable (partly 

because of supremum taken over the uncertainty set), so we relax this problem to a 

minimization problem of an upper bound of the performance index. 

Derive an upper bound of the above performance index according to [1] as follows: 

Suppose that a quadratic functional 7/JT P'ljJ with P > 0 satisfies 

d 
dt x(t)T Px(t) < -x(t)T ( Q + KT RK)x(t ) (4.4) 

for all t 2:: 0, and for all x and u satisfying ( 4.1) with x(T) = 0. Integrating both sides 

from 0 to T, we obtain 
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and hence this functional gives a upper bound for J(6). Replace the objective with that 
of the minimization of this functional with state-feedback control law u = Kx. 

Now condition ( 4.4) holds for all x and u if 

(A(t) + B(t)K)T P + P(A(t) + B(t)K) + Q + KT RK < 0 

for all t ~ 0, which in turn is equivalent to 

With the change of variables W == p-1 and Y = K p-1
, we get the matrix inequality 

Thus the modified problem can be solved via the following LMI problem with K == YW-
1

: 

min 1 
-y ,W,Y 

subject to 

w At+ Ai w +BY+ yT BT w yT 

w -Q-1 0 < 0, i==1, ... ,4 

y 0 -R-1 

and 

[ :0 ; ] > o. 

From here on, we consider this modified problem, and take 1 as the performance index. 
We first illustrate a tradeoff between uncertainty bounds and the performance, and then 
show the conservativeness resulting from the standard worst-case design. 

Suppose that we are given a parameter distribution as depicted in Figure 4.1 based 
on some a priori knowledge and/or measurement: 

case 1: 0.08 ~ k(t) ~ 0.32, 0.008 ~ f(t) ~ 0.032; 

case 2: 0.12 ~ k(t) ~ 0.28, 0.012 ~ f(t) :::; 0.028. 
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Figure 4.1: Parameter distribution 

Case 1 corresponds to 0(1) whereas case 2 represents 0(2/3). Clearly 0(2/3) c 0(1), 
and the standard robust control setup solves a design problem for case 1, since it covers 
all the parameter uncertainties. 

We now solve the above LMI problem for both cases 1 and 2 with Q ==I, R == 1, and 
obtain the matrices K1 and K2 that minimizer's for 0(1) and 0(2/3), respectively. We 
then analyze the control performance for 6 in the closed-loop systems obtained with K 1 

and K 2 . 

subject to 

p > 0 

and 

i = 1, ... ,4, 

where /1 (6) and 12(6) are the above 1's according as the feedback gain is K 1 or K 2 . Figure 
4.2 shows the plots of 11 ( 6), 12 ( 6). It shows the relation between the uncertain parameter 
ranges evaluated for synthesis and the resultant control performance. The relation exhibits 
a tradeoff between evaluated uncertainty ranges and control performance. 
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Since the parameter distribution is known as* in Figure 4.1, we see that the plant data 

appear more frequently for a smaller e. On the other hand, r2 ( 0) shows better performance 

for a smaller (), i.e., a smaller uncertainty range, in comparison with r1(0). Hence K1 

obtained in standard robust control is more conservative from the viewpoint of the average 

performance, while K 2 is more adequate when taking the parameter distribution into 

account. 

In view of such a tradeoff, one obviously wishes to find a compromise between perfor­

mance and robustness. 

4 .2 Control System Design Considering the Tradeoff 

between U ncertainty and Performance 

In this section, we first give a more general plant model such that the parameter distribu­

tion can be reflected on the control performance. We then give the problem formulation 

and discuss a property of tradeoff curves on control synthesis and analysis. Finally, we 

present an approximate method for this problem. 

Control System Design Considering a Tradeoff 

All) 

AJCI) 

Figure 4.3: Matrix polytope (L = 5) 

4.2.1 Models with Parameter Distribution 

Consider the following linear system with time-varying parameters: 

A(~)x(t) + Bu(t), 

A(~) E n(e), 

x(O) = Xo, 

37 

(4.5) 

where x E ~n:r is the state of the plant, u E ~nu is the control input and A is a ma­

trix valued function of an uncertain random variable ~ E ~ne, and 0(0) is a polytopic 

uncertainty set parametrized by () E (0, 1 J as follows: 

n(e) := Co{A1(0), ... , AL(e)} 

A1(0) := Ao + v1(e)A1, v1(0) = 0, 

AL(e) := Ao + vL(e)AL, vL(O) = o, 

Ao E Co{A1, ... , AL}· 

Here v1(0), ... , vL(e): [0, 1] ~ [0, 1] are monotone increasing functions. Figure 4.3 shows 

an example of 0(0) where e = 0, 0.5 , 1, and L = 5. 

For the system introduced above, note 



38 Chapter 4 

Our objective is to find a controller such that the control performance is weighted with 

some kind of weighting functions that takes data distribution into account. 

4.2.2 Control System Design Considering the Tradeoff 

Let us first take the following performance index for the plant (4.5). 

where Q > 0, R > 0. 

J(B) = sup roo (x(t)T Qx(t) + u(t)T Ru(t))dt 
A(·)EO(O) Jo 

As already noted in the previous section, it is difficult to minimize this functional. We 

thus consider the following relaxed problem which gives an upper bound for J(B). 

"Ys( B) := min "'( 
"f,W,Y 

(4.6) 

subject to 

< 0, i = 1, .. . ,L 

and 

The (performance) analysis counterpart (for each fixed K) is given by computing the 

following "'(K: 

"YK(B) :=min "Y 
"f,P 

(4.7) 

subject to 

"Y - x'{; Pxo > 0, P>O 

and 

< 0, i = 1, ... , L. 

These problems are a family of LMI problems parametrized by B. If Y (B) and W (B) are 

the optimal solutions of the LMI problem (4.6) for a fixed B, then K(B) := Y(fJ)W(e) -
1 
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gives the optimal gain matrix. Clearly there exists a tradeoff between the size of the 

evaluated uncertainty range B and control performance Is (B). 

Definition 4.1 (U-P tradeoff curve) Define a U-P (Uncertainty-Performance) trade­

off curve to be the one given by the optimal value function ls(B) for the plant (4.5) and 

the LMI problem ( 4.6). Also, define a U-P controller to be an optimal solution K ( O) on 

U-P tradeoff curves. 

In the closed-loop system with controller K, a tradeoff between the size of uncertainty 

and the controller is provided by the optimal value function "YK(B) of the LMI problem 

(4.7). 

Definition 4.2 (Guaranteed performance curve) Define a guaranteed performance 

curve to be the optimal value function "YK(B) for the plant (4.5), the control law u = Kx 

and the LMI problem ( 4. 7). 

These curves "Ys(O) and "YK(B) are both monotone increasing and piecewise smooth. 

But they are not convex in general. In connection with this, the following proposition 

holds. 

Proposition 4.1 For the U-P tradeoff curve rs(B) and the guaranteed performance func­

tion /K(Oo)(B) in the closed-loop system with U-P contr·oller K(B0 ) , the following relations 

hold: 

Proof Define For given B, "'( , define the feasibility sets of the LMI problems ( 4.6) and 

( 4. 7) respectively as follows: 

Rs(B, !) .- {(W, Y)l Wand Y satisfy (4.6)}, 

RK(0
0
)(B, ! ) .- {(W, Y)l W = p - l, Y = K(Bo)P- 1, and P satisfies (4.7)}. 

Putting W =p-I, Y = KP- 1 in (4.6), and using the Schur complement (e.g., [8]) yields 

the constraint (4.7). Since K(B0 ) is a constant matrix in RK(Oo)(B,"'(), RK(Oo)(B, "'() ~ 

R s(B, !) follows. This readily implies "YK(Oo)(B) 2:: "Ys(B). On the other hand, if we regard 
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K as a free parameter, then the reverse procedure yields (4.6) from the constraint (4.7). 

This means that the optimal solution Y(B0 ), W(B0 ) and the optimum rs(Bo) for (4.6) 

satisfies (4.7) with P = W(Bo)-1, K = Y(B0 )W(B0 )-
1

, 'Y == 'Ys(Bo). Hence the lower bound 

'Y s (B) is attained at () = Bo. • 
Figure 4.4 shows the U-P tradeoff curve (solid) and the guaranteed performance curves 

r K(o) , 'YK (l/J), 'YK(2; 3) and 'YK(l) (dashed). ote also that since Q is assumed to be positive 

definite, the closed-loop stability is guaranteed for every B if the guaranteed performance 

curve remains to be finite in the overall region. 

Clearly the U-P tradeoff curve rs(B) gives the lowest bound for the relaxed perfor­

mance, and at any specific point 80 , rK(Oo) agrees with 'Ys(B0 ). However, at other points 

there is a gap between the two. If we could observe (} and use K(B) adaptively, then we 

would be able to attain the best performance rs(B). This cannot be achieved by a single 

controller, but it is still desirable to reduce the performance gap in the over all range of 

8: 

Problem 1: Find a single control law u = Kx that gives rise to an acceptable guaranteed 

performance curve r K(B) for system (4.5). 

To this end, we introduce a weighting function w(B) : [0, 1] --+ R+ for rK(fJ). The 

idea here is that we can make a compromise in the performance curve, by placing more 
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weights on those B's where the above gaps are to be small. On the other hand, one can 

place less emphasis on those B's that are of less interest to us. Such a weight is thus a 

design parameter, and in this chapter we suppose that it enters into the objective function 

f ( 'YK, w; B) either additively or multiplicatively as follows: 

• Additive weighting function 

f(rK, w; B)= 'YK(B) + w(B). 

• Multiplicative weighting function 

/(')'K , w; B) = 'YK(B)w(B). 

One way of dealing with this situation is to employ the probability density distribution 

J-L(B) that governs the probability for A(() to belong to the set O(B) : 

Of course, J-L(B) cannot be known exactly, but it may be approximated by some weight 

function derived from the empirical data when we try to identify the plant parameters . 

Problem 1 is a minimization problem of a weighted objective function f('YK, w; B) 

subject to LMI constraints ( 4. 7) for all B E [0, 1]. Thus a solution of Problem 1 is given 

by a solution K of the following min-max problem. 

min max f ('YK w · B) 
'YK(B),K,P(O) OE[O,l] ' ' 

subject to 

P(B) > 0 

and 

< 0, i = 1, ... , L , 

where 'YK(B) and P(B) are variables depending on B. Note that K does not depend on B. 

This min-max problem is hard to tract, but it can be reduced to the following equivalent 

minimization problem: 

min v 
v,'YK(O),K,P(fJ) 

(4.8) 
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subject to 

v- f(!K, w; B) ~ 0, r K(B) - x~ P(B)xo > 0, P(B) > 0 

and 

( (A;(O) + BKfP(O)+ ) KT 
P(B)(Ai(B) + BK) + Q < 0, i = 1, ... ,L, for all BE [0, 1]. 

K -R-l 

Unfortunately this semi-infinite programming problem (i.e., problem with an infinite num­

ber of constraints) is a non-convex optimization problem and is not easily solvable. We 

will present an approximate solution for this in the next section. 

Figure 4.5 gives a geometrical interpretation of the problem ( 4.8). The solid curve 

shows the guaranteed performance curve rK(B) for a feasible solution K. The shaded 

region shows the set 

{(B,!) I 1-x~P(O)x'[; > 0, P(B) > 0, 

( 
(Ai(B) + BK)T P(O)+ ) KT 

P(O)(Ai(O) + BK) + Q < 0, i = 1, ... , L} 

K 

for K and the dashed curve shows t he boundary of the level set 

Sv := {(B, !) I v- f(!, w; B)~ 0 }. 

The optimization problem ( 4.8) is to minimize v such that the intersection of Sv and :FK 

is not empty for all (} E [0, 1]: 

min {v I :FK n Sv =I= 0, for all (} E [0, 1 ]}. 
v,K,P(O) 

(4.9) 

If v remains constant even when a larger value is assumed at w(B) (to give more weight 

at B), the supremum of 1 for S, becomes smaller. The shape of the boundary of Sv thus 

depends on the weight w(B) . H nee problem (4.9) may be interpreted as that of finding 

K that gives 'YK(B) (i.e., the boundary of :FK) as close as possible to the desired shape of 

the boundary of Sv determined by w(B). 
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'Y 

e 

Figure 4.5: Geometrical interpretation of ( 4.8) 

4.2 .3 Approximate Method 

To remedy the difficulty in solving (4.8), we replace the constraints by those induced by 

picking only a finite number of points for B. Take B1 , ••. , BM from B E [0, 1] so that only 

M performance levels of uncertainty can be taken into account. The problem ( 4.8) is then 

reduced to the following problem: 

subject to 

v- f(!K , w; Bj) ~ 0, 

( 
(Aij + BK)T Pi+ ) KT 

PJ(AiJ + BK) + Q 

K 

min v 
v,-r;,K,Pi 

< 0, i = 1, ... , L , 

(4.10) 

j = 1, ... , M, 

where Aij = Ai(BJ), Pi = P(BJ), rj = r K(Bi) and f(!K, w; BJ) is a linear function of rJ· 

This is an optimization problem with a finite number of BMI constraints. 

In doing this, one needs to guarantee that this procedure can converge to the optimal 

solution when we increase the number of points (}j· While this may not give a practical 

bound, we can at least answer this question in the following form: 
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Theorem 4.1 Fix a sufficiently large M > 0 and we suppose that search of K occurs in 

the ball BM := {K : IIKII ~ M}. Suppose that the semi-infinite problem (4.8) admits 

an optimal value Vopt, where controllers K are to be found in B M. Suppose also that the 

function f appearing in (4.8) or (4.10) is continuous in its variables. Then 

Vopt =sup VJ 
J 

(4.11) 

where the right-hand side denotes the supremum of all VJ 's that are a solution to (4.10} 

over all finite sets J of points of B in [0, 1]. 

In other words, the true optimal value may be obtained as a limit of the above finite-point 

approximations. 

Proof Let us first fix a small 8 > 0 and consider the BMI constraints in ( 4.8) and ( 4.10) 

with margin 8, i.e., we consider v- f("fK, w; 8j) ~ 8, 

( 
(Aij + BK)T Pj+ ) J(I' 

Pj(Ai; + BK) + Q ~ -8! 

K -R-1 

and "/; - x'[; P;xo ~ 8 in place of those in ( 4.10) etc. By suitably changing the signs, 

we represent these constraints as r(eN, K, v) ~ -8 where eN denotes the finite set 

{ 81, ... , (} N}. For the constraint corresponding to ( 4.8) on the over all range in (), we 

denote it by f(K, v) ~ -8 since it does not depend on 8. If we need to refer to such a 

constraint at each point B, we will denote it by r(B, K, v) keeping its dependence on ()by 

the lower case letter. Needless to say, r(K, v) := SUPo::;9:51 r(B, K, v). 
We first consider the convergence property with this margin 8 taken into account. Note 

first that since the original problem (corresponding to 8 = 0) is assumed to be feasible for 

v == Vopt, there exists, for any v > Vopt, a K with IlK II ~ M such that f((), K, v) < 0 for 

all (). Since this constraint is a continuous function in (), this inequality actually implies 

r(B, K, v) ~ -8 < 0 for some 8 > 0. Thus the modified problem is solvable for at least 

sufficiently small 8. 

We prove equality (4.11) for this case first. It is clear that 

Vopt ~sup VJ 
J 
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because each term inside the supremum on the right means less constraint than that on 

the left. We need to prove the reverse inequality, i.e., the left-hand side can be attained 

as a limit of terms on the right. Take a sequence of finite sets eN such that 

• eN c eN+1 for all N, i.e., eN+1 is a refinement of eN; 

The union of all such eN gives a dense subset of [0, 1]. Let {vN} be the corresponding 

optimal value under constraint r(eN, K, vN) ~ -8. Without loss of generality, we may 

assume that {vN} is monotone increasing (non-decreasing). Then for each N there exists 

KN such that r(eN, KN, vN) ~ -8. Since the ball BM of matrices is compact, there 

exists a subsequence of KN that is convergent to K in BM. Let v := sup vN. Then by 

continuity, we have f(K, v) ~ -8. This means that the right-hand side is not less than 

the left-hand side in (4.11). This implies the desired equality for this case. 

The optimum for the original problem with 8 = 0 is obtained as the infimum of the 

above cases for 5 > 0, although in the limiting case the existence of an optimal controller 

K is no longer guaranteed. In any event, by the continuity of the constraints, the equality 

( 4.11) for 8 > 0 carries over to the limit, and this completes the proof. • 

While the theorem above guarantees the convergence of the approximation a prac­

tical and global method for a general BMI problem applicable to the present situation 

is unfortunately not known at present. By solving LMI problems iteratively, however, a 

suboptimal solution can be obtained. In the next section, we obtain a solution from U-P 

controllers by a line search on () E [0, 1]. 

4.3 Numerical Example 

We take the numerical example in Section 4.1 again. Suppose that the distribution of 

uncertain parameters is given by some measurement as in Figure 4.2 and that the plant 

( 4.1) is obtained from the density function J-l( B). Considering the distribution of uncertain 

parameters, we set a multiplicative weighting function: 

w(O) := J-l(B) = (7- 60)/4 
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Figure 4.6: 'YK• (B), 8:FK· and 8Sv· 

and select performance levels: 

Bl = 0, B2 = 1/3, B3 = 2/3, B4 = 1. 

The following results is obtained by the method of the previous section: 

K* == [-6.10 4.07 - 3.78 - 1.08], v* = 62.1, B* = 0.75. 
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The approximate guaranteed performance is 13.3 in this case while that in the case of 

K(1) it is 17.8. We see that the proposed method is better from the viewpoint of the 

average performance. Figure 4.6 shows the guaranteed performance curve 'YK• (B) (solid), 

the points ( o) of the boundary of :F K• and the points ( *) on the boundary of Sv• . 

4.4 Extensions to the H 00 Case 

Although the presented method has been devoted to the LQR design framework, it can 

be easily extended to the design method based on other performance indices. In the H 00 

robust control design, we consider the following system: 

d 
dtx(t) - A(~)x(t) + B1w(t) + B2u(t) 

z C1x(t) + Dn w(t) + D12u(t) 

A(~) E n(B), 

Control System Design Considering a 'Iradeoff 47 

where w E ~nw is the exogenous input, z E Rnz is the control output, and x , u, ~ and n 
are defined in the same manner as the LQR case. Also, the [2 induced norm is used as 

the Hoo performance index. For the above system and performance index, the synthesis 

problem corresponding to ( 4.6) is as follows: 

i'oo,s(B) := Vroo,s(O), 

'Yoo,s( B) :== min 'Y 
-y,W,Y 

subject to 

c1w + D12Y Du -{I 

and 

W>O. 

The analysis problem corresponding to ( 4. 7) is as follows: 

subject to 

and 

i'oo,K(B) := V'Yoo,K(B), 

'Yoo,K( B) := min 'Y 
-y ,P 

Du 

P>O. 

< 0, i = 1, ... ,L, 

< 0, i = 1, ... , L, 

The rest of the development is similar to that given in the previous sections. 
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LMI-based Model Predictive Control 

with Rate Constraints 

Model predictive control (MPC) has become an increasingly popular control design method 

in the process industries. Although there exist many different MPC techniques, they are 

all based on the same concept: They involve the solution of an on-line optimization prob­

lem subject to various constraints in order to determine optimal future control inputs. 

Usually, only the first control action is implemented and at the next sampling time, sys­

tem measurements are used to update the optimization problem. Such a computation is 

no longer a burden with today's advanced computing power. However, the fundamental 

issue in such a scheme is that it is generally difficult to guarantee robust stability and 

performance. 

Kothare et al. [35] proposed a robust MPC method based on LMis. The method allows 

consideration of amplitude constraints on the control input and output and guarantees 

stability for uncertain systems. Moreover, the method has the ability to deal with a 

variety of constraints in the framework of the state-feedback synthesis [8]. 

On the other hand, the MPC method does not deal with such rate constraints. In 

general, actuators have a limited rate as well as a limited range of action, as is the case 

of control valves which are limited by a maximum slew rate as well as a fully closed and 

fully open position. In practice, both amplitude and rate of the control input are usually 

taken into account in several existing MPC techniques [22, 10, 9] . In some cases, the rate 
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of the control output is also controlled by such reasons as constructive safety [9, 7). 

In this chapter, we present LMI conditions for the rate limits of the control input and 
output in the framework of the robust LMI-based MPC. A numerical example illustrates 
that the MPC method with these rate constraints provides better performance. The 

results of this chapter are based on [60). 

5.1 Robust LMI-Based MPC 

Kothare et al. [35] deal with two types of system models for robust control, i.e, polytopic 
systems and linear systems with structured feedback uncertainty. In this chapter, we focus 
on only polytopic system models, but the results for linear system models with structured 

feedback uncertainty can be derived in a similar manner [60]. 
We will state the outline of robust LMI-based MPC [35]. Consider the following linear 

system: 

x(k + 1) - A(k)x(k) + B(k)u(k) 

y(k) - Cx(k) 

[A(k) B(k)] E !1 

0 - Co{[A1 B1], [A2 B2], ... , [AL BL]}, 

(5.1) 

(5.2) 

where u(k) E ~nu is the control input, x(k) E ~n:z: is the state of the plant, y(k) E ~nv is 

the control output, and the set n is the polytope. 

In the MPC framework, the robust performance objective to be minimized at each 

sampling time k is as follows: 

min max J(k), 
u(k+iik),i~O [A(k+i) B(k+i)]Ef2,i~O 

(5.3) 

where 

J(k) = f (x(k + ilk)TQ1x(k +ilk)+ u(k + ilk)T Ru(k +ilk)) 
i=O 

and Q
1 , R are symmetric weighting matrices; Q1 ~ 0, R > 0. Here 
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u(klk): control action to be implemented at time k; 

x(klk): state measured at time k; 

y(klk): output measured at time k; 

u(k +ilk): control action at time k + i; computed by the optimiza­

tion problem (5.3) or the SDP in Theorem 5.1 at time 

k; 

x(k +ilk): state at time k + i, predicted based on measurements at 

time k; 

y(k +ilk): output measured at time k+i, predicted based on mea-

surements at time k. 
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The problem (5.3) is a min-max problem. The maximization is over the set n and corre-
sponds to choosing that time-varying plant [A(k+i) B(k+i)] En, i ~ 0 which, if used as 
a model for predictions, would lead to the largest or worst-case value of J(k) among all 
plants in n. This worst-case value is minimized over present and future control actions 
u(k +ilk), i = 0, 1, ... , m. This min-max problem, though convex for finite m, is not 
computationally tractable, and as such has not been addressed in the MPC literature. 

We address problem (5.3) by first deriving an upper bound on the robust performance 
objective. We then minimize this upper bound with a constant state-feedback control law 
u(k +ilk) = Fx(k +ilk), i ~ 0. 

Consider a quadratic function V(x) = xT Px, P > 0 of the state x(klk) of the system 
(5.1) with V(O) = 0. At sampling time k, suppose V satisfies the following inequality for 
all x(k +ilk), u(k +ilk), i ~ 0 satisfying (5.1), and for any [A(k + i) B(k + i)] En, i ~ 0: 

V(x(k + i + llk))- V(x(k +ilk)) 

~ - (x(k+ilk)TQix(k+ilk)+u(k+ilk)TRu(k+ilk)). (5.4) 

For the robust performance objective function to be finite, we must have x( oojk) = 0 and 

hence, V(x(ooiO)) == 0. Summing (5.4) from i = 0 to i = oo, we get 

- V(x(klk)) ~ -Joo(k). 

Thus 

max Joo(k) < V(x(klk)). 
[A(k+i) B(k+i)]Ef2,i~O -

(5.5) 
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This gives an upper bound for the robust performance objective. Thus the goal of the 

robust MPC algorithm has been redefined to synthesize, at each time step k, a con­

stant state-feedback control law u(k +ilk) == Fx(k +ilk) to minimize this upper bound 

V(x(klk)). As is standard in MPC, only the first computed input u(klk) = Fx(klk) is 

implemented. At the next sampling time, the state x(k + 1lk + 1) is measured and the op­

timization is repeated to recompute F. The following theorem gives us conditions for the 

existence of the appropriate P > 0 satisfying (5.4) and the corresponding state-feedback 

matrix F [35]. 

Theorem 5.1 Let x(k) = x(klk) be the state of the uncertain system {5.1) measured at 

sampling time k. Assume that there are no constraints on the control input and output. 

The state-feedback matrix F in the control law u(k +ilk) = Fx(k +ilk), i ~ 0 which 

minimizes the upper bound on the robust performance objective function at sampling time 

k is given by 

(5.6) 

where Q > 0 andY are obtained from the solution (if it exists) to the following SDP: 

min r 
'f',Q,Y 

subject to 

[ x(~ik) x(kik)T ] 
~ 0, 

Q 
1 

yrR~ Q QAr + yTBT QQf J J 

AiQ + BiY Q 0 0 
1 ~ 0, j = 1, 2, ... , L. 

Q{Q 0 'Yl 0 

R~Y 0 0 ri 

Proof Min'mization of V(x(klk)) = x(kik)T Px(kjk), P > 0 is equivalent to 

min{ 'Y I x(klk)T Px(klk) ~ 'Y }. 
"f,P 

Defining Q = rP-1 > 0 and using Schur complements, this is equivalent to 

min'Y 
"Y,Q 

(5.7) 

(5.8) 

(5.9) 
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subject to 

[ 
1 x(klk)T] 

> 0, 
x(klk) Q -

which establishes (5. 7) and (5.8). It remains to prove (5.6) and (5.9). The quadratic 

function V is required to satisfy (5.4). Substituting u(k +ilk) == Fx(k +ilk), i ~ 0 and 

the state space (5.1), inequality (5.4) becomes: 

x(k + ilk)T ((A(k + i) + B(k + i)F)TP(A(k + i) + B(k + i)F)- p 

FTRF + Q1) x(k +ilk)~ 0. 

This is satisfied for all i ~ 0 if 

(A(k + i) + B(k + i)F)TP(A(k + i) + B(k + i)F)- P + FTRF + Q
1 
~ 0. (5.10) 

Substituting P == 'YQ-
1

, Q > 0, Y = FQ, pre- and post-multiplying by Q (which leaves 

the inequality unaffected) , and using Schur complements, we see that this is equivalent to 

Q QA(k + i)T + yrB(k + i)T 
1 

yTR~ QQ[ 

A(k + i)Q + B(k + i)Y Q 0 0 
1 ~ 0. (5.11) 

QfQ 0 ri 0 

R!Y 0 0 'Yl 

Inequality (5.11) is affine in [A(k + i) B(k + i)]. Hence it is satisfied for all 

if and only if there exist Q > 0, Y == FQ and r such that 

1 

Q QAr + yrB?" QQf yrRt 
J J 

AJQ+BJY Q 0 0 
1 ~ 0, j == 1, 2, ... , L. 

QfQ 0 'Yl 0 

R~Y 0 0 ri 

The feedback matrix is then given by F == YQ-1 . This established (5.6) and (5.9). • 
Remark 5.1 Strictly speaking, the variables in the above optimization should be denoted 

by Qk, Fk, Yk etc. to emphasize that they are computed at time k. For notational 
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convenience, we omit the subscript. We will, however, briefly utilize this notation in the 
robust stability proof. Closed loop stability of the receding horizon state-feedback control 
law given in Theorem 5.1 will be established in Section 5.3 

We show the lemma associated with the state of the system, which is used in the 

proofs of sufficient LMI constraints [35, 8]. 

Lemma 5.1 Consider the system (5.1). At sampling time k, suppose there exist Q > 0, 
'Y andY(= FQ) such that {5.9} holds. Also, suppose that u(k +ilk)= Fx(k +ilk), i ~ 0. 

Then if 

or equivalently, 

then 

max x(k + ilk)T Q- 1x(k +i lk) < 1, i ~ 1, 
(A(k+j) B(k+j)]En,j~O 

(5.12) 

or equivalently, 

max x(k + ilk)T Px(k +ilk) < ry, i ~ 1. 
(A(k+j) B(k+j)]En,j~O 

Thus E = { z 1 zT Q z ~ 1} = { z I zT P z ~ 'Y} is an invariant ellipsoid for the predicted 

states of the uncertain system. 

Proof From the proof of Theorem 5.1, we know that (5.9) and (5.10) are equivalent and 

that (5.10) implies (5.4). Thus 

Therefore, 

x(k + i + 1lk)TPx(k + i + 1lk)- x(k + ilk)T Px(k +ilk) 

< -x(k + ilk)TQ1x(k +ilk)- u(k + ilk)T Ru(k +ilk) 

< 0 since Ql > 0. 

x(k+i+1lk)TPx(k+i+1lk) < x(k+ilk)TPx(k+ilk), i 2:0, (x(k+ilk) =/= 0) . (5.13) 

Thus, if x(klk)T Px(klk) ~ ry, then x(k + 1\k)T Px(k + 1\k) < 'Y· This argument can be 
continued for x(k + 2lk), x(k + 3lk), ... and this completes t he proof. • 
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5.1.1 Amplitude Constraints 

In this subsection, we show sufficient 1111 constraints on the amplitude limits of the 
input (35, 8]. We consider Euclidean norm (12 norm) bounds and component-wise peak 
(zoo norm) bounds on the amplitude of the control input and output. Here, for a vector 
x, define 

Lemma 5.2 (Amplitude constraint on the input (l2 norm case)) For the system 
{5.1}, if there exist Q > 0 andY satisfying {5.8}, {5.9} and 

(5.14) 

then 

Lemma 5.3 (Amplitude constraint on the input (l 00 norm case)) For· the system 
{5.1), if there exist Q > 0 andY satisfying {5.8}, {5.9} and 

then 

[ 
X Y ] > 0 with Xjj ~ a2, j = 1, 2, ... , nu, yT Q -

5.2 Rate Constraints on the Input and Output 

(5.15) 

Many MPC techniques usually take into account constraints such as amplitude and rate 
limits and have therefore been very successful in industry. In [35, 8], however, no LMI 
conditions for rate limits have been shown. In this section, we present LMI conditions for 
the rate limits of the input and output. 
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5.2.1 Rate Constraints on the Input 

We first present LMI constraints on the rate limits of the input. In the case of l2 norm, 

we obtain the following lemma. 

Lemma 5.4 (Rate constraint on the input (Z2 norm case)) For the system {5.1}, 

if there exist Q > 0 andY satisfying {5.8), {5.9), {5.14} and 

( 
f31Q _ QAf+~BJ-Q]~o, j=1,2, ... ,L, (5.16) 

AiQ + BJ Y Q o 1 Q 

then 

rr:gc II u ( k + i + 11 k) - u ( k + i I k) II~ ::; fJ1· 

Proof Using Lemma 5.1 and Q- 1yTYQ- 1 ::; a 1Q-1 from (5.14), the following relation 

holds: 

< 

rr~or II u ( k + i + 11 k) - u ( k + i 1 k) II~ 

~age IIF(A(k + i) + B(k + i)F- I)x(k + ilk)ll~ 

m~x IIYQ-1(A(k + i) + B(k + i)YQ-1
- J)zll~ 

zEe,t2:0 

max IIYQ-1 (A(k + i) + B(k + i)YQ-1
- J)Q1/2 ~11~ 

~T~~1,i2:0 

maxamax (YQ- 1(A(k + i) + B(k + i)YQ-1
- I)Q112

)
2 

i>O 

rr:agcAmax ( Ql/2 (AT(k + i) + Q-lyTBT(k + i)- I) Q-lyTyQ-1 

- . ( A(k + i) + B(k + i)YQ-1 -I) Q112
) 

< rr>~XAmax ( Q-1
/

2 
( QAT(k + i) + yT BT(k + i)- Q) a1Q-1 

- · (A(k + i)Q + B(k + i)Y- Q) Q-112
) • 

Therefore, if 

Q-112 ( QAT(k + i) + yT BT(k + i)- Q) a1Q-1 

. (A(k + i)Q + B(k + i)Y- Q) Q-112 
::; (311, for all i ~ 0, (5.17) 

then rr~'1f llu(k + i +Ilk)- u(k + ilk)ll~::; {31 is satisfied. Since Q > 0, (5.17) is equivalent 

to 
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· (A(k + i)Q + B(k + i)Y- Q) ::; {31Q, for all i ~ 0. 

Furthermore, using Schur complements [8], we can see that (5.17) is equivalent to 

[ 
{31 Q QAT ( k + i) + J7T BT ( k + i) - Q ] > 0 

A(k+i)Q+B(k+i)Y-Q .1... - ' 
for all i ~ 0. 

01 

Since the last inequality is affine in [A(k + i) B(k + i)], it is satisfied for all 

if and only if 

[ 
f31 Q Q A :f + yT B:f - Q ] 

J J > 0 
A3·Q + B3·Y- Q 1 Q - ' 

01 

j = 1, 2, ... , L 

• 
In the case of zoo norm, we obtain the following lemma. 

Lemma 5.5 (Rate constraint on the input (l00 norm case)) For the systern {5.1), 

if there exist Q > 0 andY satisfying {5.8}, {5.9}, {5.15) and 

[ 
f32Q AiQ + Bi Y - Q ] > . _ 

T T T 1 - 0, J - 1, 2, ... 'L, 
QAi +Y Bi -Q 

02
Q 

then 

rr~'tx II u ( k + i + 11 k) - u ( k + i 1 k) II~ ::; fJ2. 

Proof Using Lemma 5.1, the following relation holds: 

~~ llu(k + i + Ilk)- u(k + ilk)ll~ 

- rr~ox IIF (A(k + i) + B(k + i)F- I) x(k +ilk) II~ 

< m~x IIYQ-1 (A(k + i) + B(k + i)YQ-1 - I) zll 2 
zEe,~~O oo 

max IIYQ-1 (A(k + i) + B(k + i)YQ-1
- I) Q112~11 2 

eTe~1,i;:::o oo 

< JJla~ [YQ-1 (A(k + i) + B(k + i)YQ- 1 - 1) Q112 
~~O,J 

Q1/2 (AT(k + i) + Q-1yTBT(k + i) _I) Q-1yT] .. 
JJ 

~~ [YQ-1 (A(k + i)Q + B(k + i)Y- Q) Q- 1 
z~O,J 

( QAT(k + i) + 17T BT(k + i)- Q) Q- 1 T] .. . 
JJ 
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Since we have YQ- 1YT ~X, m~xXii ~ a 2 from (5.15), it follows that if 
J 

YQ- 1(A(k + i)Q + B(k + i)Y- Q)Q-1 
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. ( QAT(k + i) + yT BT(k + i)- Q) Q- 1yT ~ ~: YQ- 1Yr, for all i:;::: 0, (5.18) 

then 

rr~agc llu(k + i + 1lk)- u(k +ilk) II~~ !32 

is satisfied. Furthermore, if 

(32 Q - (A(k + i)Q + B(k + i)Y- Q)Q-
1 

Q2 

. ( QAT(k + i) + yT BT(k + i)- Q) ~ 0, for all i ~ 0, 

then (5 .18) holds. From Schur complements and [A(k + i) B(k + i)] E n, we can see that 

the above inequality is equivalent to 

• 

5.2.2 Rate Constraints on the Output 

In this subsection, we present LMI constraints on rate limits of the output. In the case 

of l2 norm, we have the following lemma. 

Lemma 5.6 (Rate constraint on the output (l 2 norm case)) For the system (5.1), 

if there exist Q > 0 andY satisfying (5.8) , (5.9) and 

l 
Q (AiQ + BiY- Q)TC 1 ~ O, j = 1, 2, ... ,L, 

cT(QAj + yTBJ- Q) v1I 
(5.19) 

then 

rr:r II y ( k + i + 11 k) - y ( k + i I k) II~ ~ v1. 

Proof Following the line of proof of Lemma 5.4. • 
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In a similar manner, zoo bounds on the output can be translated to sufficient LMI 
constraints. The development is identical to the preceding development for the l2 norm 
constraint if we replace C by Cl and T by 1}, l = 1, 2, . . . , ny in (5.19), where 

Y1(k) 

y(k) = = Cx(k) = x(k). 

Remark 5.2 For the system with structured feedback uncertainty [35], LMI constraints 
similar to those presented here can be derived by using the S-procedure [60]. 

5.3 Robust Stability 

In this section, we state robust stability of the closed-loop when we use the receding 
horizon state-feedback control law given in Theorem 5.1 [35]. 

Theorem 5.2 Let the state x(klk) of the uncertain system (5.1) be measurable. Then, the 

state-feedback matrix Fin the control law u(k+i lk) = Fx(k+ilk) , i ~ 0, which minimizes 
the upper bound V(x(klk)) on the robust performance objective function at sampling time 
k and satisfies a set of specified input and output constraints is given by 

F = YQ- 1
, 

where Q > 0 and Y are obtained from the solution (if it exists) to the following linear 
objective minimization problem: 

min 'Y 
'Y,Q,Y 

subject to (5.8}, (5.9} and the LM!s corresponding to the input and output constraints in 
lemmas described in the previous sections. 

Proof From Lemma 5.1, we know that (5.9) imply that E is an invariant ellipsoid for 
the predicted states of the uncertain system ( 5.1). Hence the arguments in the previous 
section used to translate the input and output constraints to sufficient LMI constraints 
hold true. The reset of the proof is similar to the proof of Theorem 5.1. • 

In order to prove robust stability of the closed loop, we need to establish the following 
lemma [35] . 
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Lemma 5. 7 (Feasibility) Any feasible solution of the optimization in Theorem 5.2 at 

time k is also feasible for all times t > k. Thus, if the optimization problem in Theorem 

5. 2 is feasible at time k, then it is feasible for all times t > k. 

Proof Let us assume that the optimization problem in Theorem 5.2 is feasible at sampling 

time k. The only LMI in the problem which depends explicitly on the measured state 

x ( k I k) of the system is the following: 

[ 
1 x(kjk)T] 

x(kik) Q 2: O. 

Thus, to prove the lemma, we need only prove that this LMI is feasible for all future 

measured states x(k +ilk+ i), i 2:: 1. 

Now, feasibility of the problem at time k implies satisfaction of (5.9), which, using 

Lemma 5.1, in turn imply that (5.12) is satisfied. Thus, for any [A(k + i) B(k + i)] E 

n, i 2:: 0, we must have 

Since the state measured at k + 1, that is, x(k + 1lk + 1), equals (A(k) + B(k)F)x(klk) 

for some [A(k) B(k)] En, it must also satisfy this inequality, i.e., 

or 

[ 
1 x(k+1lk+1)T] . ) 

> 0 (us1ng Schur complements . 
x(k+1lk+1) Q 

Thus the feasibility solution of the optimization problem at time k is also feasible at time 

k + 1. Hence the optimization is feasible at time k + 1. This argument can be continued 

for time k + 2, k + 3, ... to complete the proof. • 
Theorem 5.3 (Robust stability) The feasible receding horizon state-feedback control 

law obtained from Theorem 5. 2 robustly asymptotically stabilizes the closed loop system. 
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Proof To prove asymptotic stability, we will establish that V(x(kik)) = x(kik)TPkx(kik), 

where Pk > 0 is obtained from the optimal solution at time k, is a strictly decreasing 

Lyapunov function for the closed-loop. 

First, let us assume that the optimization in Theorem 5.2 is feasible at time k = 0. 

Lemma 5. 7 then ensures feasibility of the problem at all times k > 0. The optimization 

being convex, therefore, has a unique minimum and a corresponding optimal solution 

( 'Y, Q, Y) at each time k 2:: 0. 

Next, we note from Lemma 5. 7 that "'(, Q > 0, Y (or equivalently, 'Y, F = YQ-1, 

P = [Q-
1 

> 0) obtained from the optimal solution at time k are feasible (of course, not 

necessarily optimal) at time k + 1. Denoting the values of P obtained from the optimal 

solutions at time k and k + 1 respectively by Pk and Pk+I, we must have 

x(k + 1/k + 1)Tpk+Ix(k + 1/k + 1) ~ x(k + 1/k + 1)T Pkx(k + 1/k + 1). (5.20) 

This is because Pk+I is optimal whereas Pk is only feasible at time k + 1. 

And lastly, we know from Lemma 5.1 that if u(k + i/k) = Fkx(k + i/k), i 2:: 0 (Fk is 

obtained from the optimal solution at time k) , then for any [A(k) B(k)J E n, we must 

have 

(x(k/k) # 0) (5.21) 

(see (5.13) with i = 0.) 

Since the measured state x(k + 1jk + 1) equals (A(k) + B(k)Fk)x(k/k) for some 

[A (k) B(k) ] E D, it must also satisfy inequality (5.21). Combining this with inequal­

ity (5.20) we conclude that 

x(k + 1jk + 1)T Pk+Ix(k + 1jk + 1) < x(kjk)T Pkx(k/k), (x(k jk) =/; 0). 

Thus x(k/k)T Pkx(k jk) is a strictly decreasing Lyapunov function for the closed-loop, which 

is bounded below by a positive definite function of x(k/k) (see (5.5)). We therefore 

conclude that x(k) -t 0 ask-too. • 
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5.4 Numerical Example 

In this section, we show an example which illustrates the effectiveness of the presented 

LMI conditions for rate constraints. Consider the following system [35] 

x(k + 1) 
[ 

1 0.1 ] x(k) + [ 0 ] u(k) 
0 1- 0.1a(k) 0.0787 

·- A(k)x(k) + Bu(k) 

y(k) [1 O]x(k) := Cx(k) 

where 0.1 ~ a(k) ~ 10. The parameter a(k) is assumed to be arbitrarily time-varying in 

the indicated range of variation. Then we see that A(k) En= Co{Ab A2}, where 

- [ 1 0.1 ] A2- · 
0 0 [ 

1 0.1 ] 
Al= ' 

0 0.99 

Thus the uncertainty set n is a polytope, as in (5.2). At each sampling time k, the robust 

performance objective is as follows: 

J(k) = f (y(k +ilk?+ 0.00002u(k + ijk) 2
) · 

i=O 

We give an initial state of x(O) = [1 O]T. Here, a(k) is randomly time-varying between 

0.1 and 10. 

Rate constraint on the input. We first consider the rate constraint on the input. 

Figure 5.1 shows (a) the amplitudes and (b) the rates of the control inputs of the system. 

The dashed line shows the input response when only an amplitude constraint lu(k)l 2 ~ 4 

is imposed. The corresponding LMI is (5.14) with a1 = 4. The solid line shows the input 

response when the same input amplitude constraint lu(k) 1
2 ~ 4 and a rate constraint 

!u(k + 1) - u(k)l2 ~ 4.5 are imposed. In this case, the LMI constraints (5.16) with 

{31 = 4.5 as well as (5.14) with a 1 = 4 are added to the SDP in Theorem 5.1. Notice that 

the rate is reduced under the consideration. 

Rate constraint on the output Next, we consider the rate constraint on the output. 

Figure 5.2 shows (a) the amplitudes and (b) the rates of the control outputs of the system. 
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The dashed line shows the output response when no output constraint is imposed. The 

solid line shows the output response when a rate constraint jy( k + 1) - y( k) 12 ~ 0.05 is 

imposed. The corresponding LMI is (5.19) with v1 = 0.05. Notice that the rate is reduced 

under the consideration. 

Rate constraint on the input and output Finally, we consider the rate constraint 

on both the input and the output. Figure 5.3 shows (a) the rates of the inputs and (b) 

the rates of the outputs. The dashed lines show the input and output responses when 

no rate constraint is imposed. The solid lines show the input and output responses when 

rate constraints !u(k + 1)-u(k) 12 ~ 4.5 and jy(k + 1)- y(k) 1
2 ~ 0.05 are imposed. Notice 

that the rates of both the input and the output are reduced under the consideration. 
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Figure 5.1: Amplitudes and rates of the inputs with rate constraint (solid) and without 

rate constraint (dashed). 
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Figure 5.2: Amplitudes and rates of the outputs with rate constraint (solid) and without 

rate constraint (dashed). 
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Figure 5.3: Rates of the inputs and the outputs with rate constraints (solid) and without 

rate constraints (dashed). 

Chapter 6 

Global Optimization Algorithms for 

the BMI Problem 

Since the so-called LMI approach was studied in the field of control engineering, BMis 
have received much attention because BMis are more general than LMis and have the 

ability to naturally characterize many control synthesis problems that are considered to 

be hard. The following is a list of such problems: the low order controller synthesis [26], 

multi-objective control and structure [48], distributed control synthesis [29], simultaneous 

optimization of control and structure [43]. Since Safonov, Goh and others [47, 24] in­

troduced BMis as a unified description of these various control synthesis problems, some 

numerical algorithms for BMis have been investigated intensively with the aim of solving 
control synthesis problems of practical size [23, 40, 16, 49, 62, 17, 61, 4]. 

In this chapter, we present a global optimization algorithm for the BMI problem based 

on the primal-relaxed dual method; this method is a global optimization method for 

mathematical programming problems whose objective function and constraints are both 

biconvex [12, 37]. We also modify the algorithm from the viewpoint of computational 

efficiency. A numerical example is given to illustrate the geometrical interpretation and 

effectiveness of the propos d method. This chapter is based on the results of [61, 62]. 
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6.1 BMI Problem Formulation 

• • D pT E ~mxm i E We first formulate the BMI problem. For g1ven matnces rii = ii , 

{0 1 n } J. E {0 1 . . . n } we define the biaffine function F: ~n:z: x ~ny ~ ~mxm 
l l • • • l X l l l ' y l 

as follows: n:z: ny n:z: ny 
F(x, y) := Foo + Z:xiFiO + LYjFoj +?:?: XiYiFij· 

i=l j=l ,=1 J=l 

(6.1) 

We assume that F(x, y) is defined on X x Y , where X C ~n:z: and Y C ~ny denote 

bounded hyper-rectangles: 

X .- [xf, xf] X [x~, xr] X · .. X [x~:z:' x~J 

y .- [yf, yf] X [y~, yf] X .•. X [y~Y' y~J 

L U L< U< -oo < xi < xi < oo, -oo < Yj Yi oo. 

Note that suppose 

then X = {x 1 Fx(x) ~ 0} holds. Here we consider the following optimization problem 

with a BMI constraint: 
Definition 6.1 (BMI Optimization P roblem (OP)) 

Jop := min {A I F(x, A, y) ~ 0}, 
x,>.,yEY 

where A is a scalar variable and F(x, ..\, y) := diag(F(x, y) +.Aim, Fx(x)). 

Remark 6.1 There exists a solution (x, y) EX x Y to the BMI F(x, y) > 0 if and only 

if the optimal value of (OP) is negative. 

As stated in [23], the primal-relaxed dual approach proposed in [12] cannot be applied 

to the BMI eigenvalue problem [23, 25, 16, 49] 

min Amin(F(x, y)), 
xEX,yEY 

since closed form formulae for the gradients of a Lagrangian formulated for this problem 

are unavailable. However, the BMI optimization problem (OP) defined above has been 

shown to be solvable by the primal-relaxed dual approach [62, 4]. 
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Basic ideas of primal-relaxed dual approaches date back to the generalized Benders 

decomposition method [20], which can solve only some special problems. Recently, these 

approaches have received significant attention in the area of global optimization since 

Floudas and Visweswaran (12] proposed a global optimization algorithm for a larger class 

of problems, i.e., mathematical programming problems whose objective and constraints 

are both biconvex. 

In the following three sections, we will present a global optimization method for (OP) 

based the primal-relaxed dual method [12]. 

6.2 Primal and Relaxed Dual Problems 

In the primal-relaxed dual approach, an original problem is decomposed into a primal 

problem and a relaxed dual problem which give upper and lower bounds of the optilnal 

value of the original problem, respectively. In this section, we introduce these problems 

for (OP). 

Define the following problem as the primal problem (P): 

k ·- • - k JP .- m1n{..\ I F(x, ..\, y ) ~ 0}, 
x,>. 

where k will denote the k-th iteration in the subsequent algorithm and yk E Y. Since (P) 

is the problem (OP) where the variable y is fixed to be yk, it represents an upper bound 

on the optimal value of (OP), i.e., J; ~ Jop. Note that (P) is an SDP and therefore can 

be solved efficiently. 

Next, for the purpose of deriving the relaxed dual problem for (OP), we introduce a 

Lagrangian associated with the problem (OP): 

L(x, ..\, y, Z) := ..\- Tr{F(x, ..\, y)Z}, (6.2) 

where Z = zr E ~(m+2n:z:)x(m+2n:z:) is the Lagrange multiplier corresponding to the LI\rfl 

constraint of the primal problem (P). Then we see that 

{ 
A' if F (X' A' y) 2: 0 supL(x, A, y, Z) = 

z2:o +oo, otherwise. 
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Therefore, for any y E Y, (OP) is rewritten as a min-max problem without the constraint 

F(x, :>.., y) ~ 0 as follows: 

_min .A= minmaxL(x, .A, y, Z) 
x ,J..,F(x,.X,y)~O x,.X Z~O 

Moreover, since (P) is a convex optimization problem and satisfies Slater's constraint 

qualification [38], the strong duality theorem [38] holds for (P), i.e., the following relation 

holds for any y E Y: 

minmaxL(x, :>.., y, Z) = maxminL(x, :>.., y, Z). 
x,.X Z~O Z~O x,.X 

Hence the problem (OP) is equivalent to the following problem: 

min {J.L I J-t ~min L(x, :>.., y, Z) for all Z ~ 0}. 
yEY,/-L x,.X 

(6.3) 

This problem is very difficult to solve since it contains an infinite number of constraints. 

To cope with this difficulty, we introduce the following relaxed problem with a finite 

number of constraints: 

J~ := min {J-t I 1-" ~ min L(x, A, y, zk) for all k = 1, ... 'K}, 
yEY,IJ. x,.X 

where zk ~ 0 is the optimal Lagrange multipliers corresponding to the primal problem (P) 

for y = yk. This problem is referred to as the relaxed-dual problem (RD) of the original 

problem (OP). Note that the problem (RD) contains fewer constraints than (6.3), and 

hence provides a valid lower bound for the original problem (OP), i.e., J~ ~ Jop· 

6.3 Properties of the Relaxed Dual Problem 

In this section, we discuss properties of the relaxed dual problem (RD) and describe that 

the properties give a basic idea to solve (RD). 

We first give the following property of the Lagrangian L(x, :>.., y, zk): 

Property 6 .1 Suppose that zk is the optimal Lagrange multipliers corresponding to the 

problem {P) and that Ik is the set of i 's for which V xiL(x, .A, y, zk) is a function of y. 

Then the following properties hold. 
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(i) Lagrangian L(x, :>.., y, zk) is independent of:>... 

Proof 

(i) It follows from the Kuhn-Tucker conditions [38] that 

Therefore 

L(x, .A, y, zk) (1- Tr{ diag(Im, 02n:c)Zk} ).A- Tr{ diag(F(x, y), Fx(x))Zk} 

- Tr{ diag(F(x, y), Fx(x))Zk}. 
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(ii) The property is obvious since 'V XiL(x, :>.., yk, zk) = 0 holds from the Kuhn-Thcker 

conditions. 

• 
Next, we will focus our attention on the problem (RD). The problem (RD) is still 

difficult to solve since it contains an inner minimization problem which is denoted as an 

inner relaxed dual problem (IRD): 

min L(x, .A, y, zk). 
x,). 

However, using special properties such as Property 6.1, we can solve the problem (RD) by 

decomposing it into tractable subproblems which contains no inner minimization problems 

[62, 4]. The following property of (IRD) enables such a decomposition [62]. 

P roperty 6.2 Let Bj,j = 1, ... , 2n:z: indicate combinations of lower/upper bounds of the 

variables xi, i = 1, ... , nx, e.g., xB1 = (xf, x~, xf, ... , x~:z;)T for B 1 = (L, L, u, ... , L), 

and let B := { B1, · · · , B2n:c} be the set of all bound combinations. Suppose that xk (y) is a 

function of y such that, for every y E Y, 
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Then, for every y E Y, 

L(xk(y), A, y, zk) 

minL(xB;' A, y, z k) 
B;EB 

subject t o "V Xi L(x , A, y , z k) ~ 0, if x~i = xf } for all i E Ik 

'V Xi L(x , A, y, zk) :::; 0, if x~j = xf 

Chapter 6 

. (6.4) 

Proof In Property 4.2 in [12] , a biconvex Lagrangian is considered, so that an inequality 

sign "~" holds instead of the equality sign in (6.4). In our case, however, Lagrangian (6.2) 

is bilinear over X x Y. Noting this bilineari ty, we can complete the proof in a similar 

way. • 
Suppose that the relaxed-dual problem (RD) has one inequality constraint and that 

the optimal solution is (x*, y*). Then, Property 6.2 states that the optimal solution x* 

is achieved at an extreme point of X and the optimal solution y* is obtained by solving 

linear programs for all extreme points of X. We will illustrate this fact in the subsequent 

numerical example. 

R emark 6.2 From Property 6.2, we see that we can solve the problem (RD) with one 

more constraint by solving some linear programs. Note t hat, however, the number of the 

linear programs is often huge, and therefore, solving all linear programs is not efficient 

from the computational point of view. In [12], to cope with the difficulty, the lower 

bound of the optimal value of (RD) given by fewer linear programs is used in the global 

optimization algorithm of (OP). 

The following property shows that a lower bound of the optimal value of the problem 

(RD) is obtained from some subproblems. 

Property 6.3 At the K -th iteration, 

{i} defin e ..J(k , K) , k < K to be the set of j 's such that 

1 10r a ~ E ; 
"V x· L(x, A. , yK, z k) ~ 0, if x~J = x f } .c ll . I k 

"V Xi L(x , A, yK ' zk) ::; 0, if x~i = xf 
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{ii} define J.tstor(K , Bl) and ystor(K , Bl) to be the optimal solutions of the following sub­

pro blem {SUBP1} associated with {RD): 

min J.t 
yEY ,p, 

subject to 

J-t ~ L(xB;, A, y , z k) 
B } for j = ..J(k , K ), "V XiL(x, A, y , zk) ~ 0, if xi j = xf 

" L( k) B u for all i E I k k = 1, . .. , K _ 1 
v xi x, A, y, Z ::; O, if xii = xi 

and J-l ~ L(xBz' A, y, zK) 

"V XiL(x , A, y, z K) ~ 0, if xfl = xf } 

"V Xi L(x, A, y , zK) ::; 0, if xf1 = xf 
for all i E IK . 

Then, for the optimal value J-tfin of the problem {RD) and J-t~in := minB
1
EB J.tstor(K , Bl) , 

J-l~in ::; J.tifn holds. 

Proof This property corresponds to Property 4.4 in [12]. According to the context in 

[12], it follows the result since Property 6.2 is more special than Property 4.2 in [12]. • 

Remark 6.3 Note that :J(k, K) is uniquely determined for any combination of K and 

k (k < K ) for the BMI problem (OP). Also note that (SUBP1) is a linear program with 

variables y and 1-l· 

6.4 Primal-Relaxed Dual Algorithm for BMis 

In this section, we present a global optimization algorithm for the BMI problem based on 

the primal-relaxed dual method. Roughly speaking, the algorithm consists of the following 

two procedures: 

(i) Solve the primal problem (P ) for y = yk and update t he obtained upper bound. 

(ii) Solve t he subproblems of the relaxed dual problem (RD) and update the obtained 

lower bound. 
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These two procedures are to be repeated until the difference between the upper and lower 

bounds becomes less than the prescribed tolerance €(> 0). 

Algorithm 6.1 {BMI Primal-Relaxed Dual Algorithm) 

Step 0. Initialization of Parameters. 

Let pUBD and MLBD be a very large positive number and a very large negative 

number, respectively. Select a convergence tolerance parameter € ( > 0) · Set K = 1 

and select an initial fixed value y1 E Y. 

Step 1. Primal Problem. 

Store the value of yK. Solve the primal problem (P) for Y = YK · Store the optimal 

Lagrange multiplier zK. Update the upper bound so that 

where pK is the solution of the K -th primal problem. 

Step 2. Selection of Lagrangians from the Previous Iterations. 

F k - 1 2 K- 1 select the Lagranman corresponding to j = :J(k, K). or - ' ' ... ' ' o· 

Step 3. Relaxed Dual Problem. 

For all Bt E B, solve the subproblem (SUBPl) and store the solutions J.tstor(K, Bz), 

ystor(K, Bz). 

. B d d K+l Step 4. Selection of a New Lower oun an Y · 

· · K d set MLBD - 11·K Also, From the stored set J-Lstor, select the m1n1mum Mmin' an - rmin· 

· d 1 f star K+l Delete 11K. and yK+l from select the corresponding store va ue o Y as Y · rmm 

/1-stor and ystor, respectively. 

Step 5. Check for Convergence. 

Check if pUBD _ MLBD ::; €. If yes, stop, else set K = K + 1, and return to Step 1. 
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Remark 6.4 In Step 3 of the algorithm, the relaxed-dual problem (RD) is decomposed 

into the subproblems (SUBP1) that are formulated as linear programming problems. By 

solving these subproblems, we obtain a lower bound on the optimal value Mifn of the 

original problem (RD), i.e., J-L!in computed in Step 4 is a lower bound of J-Lifn· Note that 

the convergence and global optimality of the algorithm is proved in [12, 36] although it 

should be noted that (RD) is not solved exactly. 

Remark 6.5 Note that the optimal Lagrange multiplier zk (i.e., the dual optimal solu­

tion) as well as the optimal solution of the problem (P) can be computed by using com­

puter programs developed to solve SDPs based on the primal-dual interior-point method 

such as [55]. Also note that since (P) is always feasible for any yk E Y, we need not cope 

with the case where (P) is infeasible as in [12]. 

6 .5 Modification of the Algorithm 

In this section, we present a modified algorithm from the viewpoint of practical efficiency. 

We see that the number of constraints of the subproblem (SUBP1) in Step 3 is O(K), 

i.e., it grows linearly with the number of iterations K. In many numerical experiments, 

this increase in the number of the constraints leads to inefficiency in solving one sub­

problem, so that the algorithm requires a very long time to terminate. Also, some of 

these constraints are often redundant as shown in the subsequent numerical example. 

Therefore, one method for improving computational efficiency is to select only active con­

straints of the previous subproblem in Step 2. In such a selection of Lagrangians, one 

subproblem contains a constant number of constraints, and therefore, we can expect that 

whole efficiency of the algorithm is improved. In view of this observation, we propose a 

new method for selecting Lagrangians in accordance with the following definition: 

Defin it ion 6.2 At the Kth iteration, define Jact(K) to be the set of(}, k)'s, k < K such 

that 

K -1 L( B; , K zk) J-lmin = X ' A' Y ' ' (6.5) 

i.e., :lact(K) is the set of(}, k)'s corresponding to the active constraints of the subproblems 

at the previous iteration. 
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By the above selection method of Lagrangians, Algorithm 6.1 is modified in Step 2 

and Step 3 as follows: 

Algorithm 6.2 (Modified BMI Primal-Relaxed Dual Algorithm) 

Step 0. Initialization of Parameters. 

Let pUBD and MLBD be a very large positive number and a very large negative 

number, respectively. Select a convergence tolerance parameter € (> 0). Set K = 1 

and select an initial fixed value y1 E Y. 

Step 1. Primal Problem. 

Store the value of yK. Solve the primal problem (P) for y = yK. Store the optimal 

Lagrange multiplier zK. Update the upper bound so that 

where pK is the solution of the K-th primal problem. 

St ep 2. Selection of Lagrangians from the Previous Iterations. 

Select the Lagrangians corresponding to Jact(K) determined at the K -1th iteration. 

Step 3. Relaxed Dual Problem. 

For all Bl E B, solve the subproblem (SUBP2) 

J-Lstor(K, Bt) = 

minJ-L 
yEY,JJ. 

subject to 

J.l ~ L(xBi' ).., y, zk) 

"V XiL(x, ).., y, zk) ~ 0, if x~j = xf } . k 
k . Bj _ u for all 't E I 

"V xiL(x, ).., y, Z ) ~ 0, 1f xi -xi 

and 1-L ~ L(xBz, A, y, zK) 

'\7 x.L(x, A, y, zK) ~ 0, if xfz. = xf }. . K 
for all 't E I 

v XiL(x, A, y, zK) ~ 0, if xfl = xf 

and store the solutions J-tst.or(K, Bt) , ystor(K, Bt)· 

for all (j, k) E Jact(K) 
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Step 4. Selection of a New Lower Bound and yK+l. 

From the stored set f..Lstor, select the minimum J.l~in' and set MLBD = J.l~in· Also, 

select the corresponding stored value of ystor as yK+l. Delete 1-L~in and yK+I from 

f..Lstor and ystor, respectively. 

Step 5. Check for Convergence. 

Check if pUBD - MLBD ~ €. If yes, stop, else set K = K + 1, and return to Step 1. 

R emark 6.6 Only active constraints of the subproblem (SUBP2) at the previous iter­

ation K- 1 are selected as constraints of the subproblem (SUBP2) at the iteration K. 

Since the number of the active constraints is independent of K, the number of constraints 

selected from Jact is independent of K. For this modified algorithm, the convergence and 

global optimality are proved as in [12, 37]. 

Remark 6 . 7 The lower bound computed by Algorithm 6.2 is less than or equal to the 

lower bound computed by Algorithm 6.1 at every iteration, i.e., Algorithm 6.2 is more 

relaxed than Algorithm 6.1. On the other hand, Algorithm 6.2 requires less computation 

time than Algorithm 6.1 at every iteration. While we cannot conclude which of the 

algorithms is better from the viewpoint of theoretically computational efficiency, we can 

expect that practical efficiency for many BMI problems is improved as illustrated in the 

subsequent numerical example. 

6.6 Branch and Bound Algorithm for BMis 

In this section, we present a global optimization algorithm for BMis based on the branch 

and bound approach [23]. So far, some improvements for BMI branch and bound algo­

rithms have been discussed [16, 49, 18]. We here show one of the improved branch and 

bound algorithms. 

In the branch and bound approach, the following problem is considered in order to 

solve the BMI F(x , y) > 0. 
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Definition 6.3 (BMI Eigenvalue Problem) Given the hyper-rectangle Q := X x Y 

and the function F: Q ~ ~mxm defined by (6.1), define 

A(x, y) :== -Amin(F(x, y)). 

The BMI eigenvalue minimization problem is 

min A(x, y) 
(x,y)EQ 

(6.6) 

Let <I>( Q) denote the optimal value function of the BMI eigenvalue minimization prob­

lem, i.e., <I> (Q) := min(x,y)EQ A(x, y). Clearly, there exists a solution (x, y) E Q to BMI 

(6.1) if and only if <I> (Q) < 0. The basic requirement for a branch and bound algorithm 

is the existence of two functions, <I>L and <I>u , on the family of hyper-rectangles Q such 

that the following conditions hold [2, 3] : 

Cl. <I>L(Q) gives a lower bound and <I>u(Q) gives an upper bound on <I>(Q), i.e., 

<PL(Q) ~ <I>(Q) ~ <I>u(Q) 

for every hyper-rectangle Q. 

C2. Let Size( Q) denote the length of the longest side of the hyper-rectangle Q, then as 

Size(Q)-+ 0, <I>u(Q)- <I>L(Q) -t 0 uniformly. 

It is shown that the branch and bound algorithm converges in a finite number of 

steps if the the conditions C1 and C2 are satisfied [3]. Several types of <PL(Q) and <I>u(Q) 

satisfying these conditions have been given in [23, 16, 49, 18]. We present simple functions 

among them as below. 

A simple <I>L(Q) [23] is given by 

<PL(Q) := min {,\I FL(x, A, y, W) 2: 0}, 
A,(x,y)EQ,WEW 

(6.7) 

where 

n:z: n 11 n:r: ny 

FL(x,y, W ) := Foo + L:xiFw + LYi Foj + LL Wij Fij, 
i=l j=l i=lj=l 
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W :=={WE ~n:z: Xny I w~ < W·· < w'!.} 
?.J - 'I.J - ?.J ' 

A simple <Pu ( Q) [16] is given by 

<I>u(Q) := -Amin(F(x*,y*)), 

where (x*, y*) is the optimal solution to the minimization problem (6.7). 

Note that <I>L(Q) is computed by solving the SDP whose feasible region is enlarged in 

comparison with the equivalent SDP to the problem (6.6), and therefore, <I>L(Q) gives a 

lower bound of <I> ( Q). 

Once we have the functions <I>u(Q) and <I>L(Q) as shown above, it is straightforward 

to adapt the branch and bound algorithm given in [2 , 3] to globally minimize <I>(Q). 

Algorithm 6.3 (BMI Branch and Bound Algorithm) 

Step 0. Fix € > 0. Set k := 0, Qo := Q, So := Q0. L0 :== <I>L(Q0), U0 :== <I>u(Q0). 

Step 1. Select Q from Sk such that Lk == <I>L(Q). Sk+l :== Sk- {Q}. 

Step 2. Split Q along its longest edge into Q1 and Q2 . 

Step 5. Pruning: sk+l :== sk+l- {Q I <I>L(Q) > uk+l}· 

Step 7. Check if Uk- Lk < t:. If yes, stop, else set k :== k + 1, and return to Step 1. 
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-0.5 0 0.5 1 
X 

Figure 6.1: Contour plot of -Amin(F(x, y)) 

6.7 Numerical Example 

Consider the BMI optimization problem with the following BMI [23, 16, 33]: 

10 0.5 2 -9 -0.5 0 

F(x, y) 0.5 -4.5 0 +X -0.5 0 3 

2 0 0 0 3 1 

1.8 0.1 0.4 0 0 -2 

+ y 0.1 -1.2 1 + xy 0 5.5 -3 > 0, 

0.4 1 0 -2 -3 0 

X X Y - [-0.5, 2) X [-3, 7). 

Figure 6.1 shows the contour plots of -Amin(F(x, y)) . It should first be noted that 

there are three local minima shown by x, and that (x, y) = (1.05, 1.42) gives the global 

minimum. Obviously, this optimization problem is non-convex. 

We solve this problem by the three types of global optimization algorithms: 

• PRDl: the primal-relaxed dual method (Algorithm 6.1); 
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Figure 6.2: La~angians and f(y) a the it ra ion K - 1 

• PRD2: he modified primal-r !axed d al met d ( lgorithrn .2); 

• BB: the branch and bound method (Algorithm 6.3). 

Before we mention the numerical results, we give the geometrical interpretation of the 

primal-relaxed dual algorithms PRD1 and PRD2 by using the above example. The La­

grangians and 

f(y) :=- min{.X I F(x, A, y) ~ 0} 
x,>. 

at iterations K = 1-4 are shown in Figures 6.2-6.5, respectively, where Lf is the jth 

Lagrangian at the Kth iteration, i.e, Lf := L(xBi, A, y, zK). In Figures 6.2- 6.5, * and o 

denote the pairs (yK+l, J.L~in) computed by the algorithms PRD1 and PRD2, respectively. 

Now we give a geometrical explanation of the algorithm from the first to the fourth 

iteration. 

Iteration 1. Consider the starting point of y1 = 2. By solving the primal problem 

(P) for y1 = 2 at K = 1, we have the optimal solution and the Lagrange multiplier Z1. 

Note that the subproblems solved in Step 3 are same in both algorithms PRDl and PRD2. 
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The subproblem for x8 1 = -0.5 is 

B 2. and the subproblem for x 2 = 1s 

The optimal solutions of these two subproblems are (7, -6.5245) and ( -3, -11.5853) for 

(y, J.L). Thus, after the first iteration, there are two solutions of (J.L, y) in the stored set. 

From these solutions, the solution corresponding to the minimum J-l is chosen. In this 

case, the solution (y, /-L~in) = ( -3, -11.5853) is chosen. Hence the fixed value for the 

second iteration is y2 = -3. The selected solution is then deleted from the stored set. 

Note that the piecewise linear function formed from the Lagrangians Li L~ in Figure 6.2 

is (6.4) in Property 6.2, i.e., 

L(x1 (y), A, y, Z 1
) 

min L(x8
i' A, y, Z1) 

BjE{L U} 

subject to \1 xL(x, A, y, Z1) 2:: 0, if x8
i = xL' 

t"'7 L( ' zk) < o ·f Bj - u v X x, A, y, - '1 X -X 

(6.8) 

and therefore, L(x(y), A., y, Z1) is minimized in Step 3, 4 in the algorithm PRDl and 

PRD2 by solving the above two subproblems. At the first iteration, the results of these 

algorithms are completely same. 

Iteration 2. Solve the primal problem (P) for y2 = -3. Then we have the Lagrange 

multiplier Z2 and update the upper bound. The algorithm PRDl gives J(l, 2) = 2 

and the algorithm PRD2 gives Jact (2) = (2, 1). Thus the Lagrangians selected in Step 

2 are same in both algorithms, and therefore, the subproblems of (RD) solved in both 

algorithms are same at the second iteration. The subproblem for x81 = -0.5 is 

and the solution is (y, J-L) = ( -3, 3.4757). The subproblem for x82 = 2 is 

min {I-ll 1-l 2:: L~ (y), y - y1 ~ o, J.t ~ L~ (y), y - y2 ~ o}, 
yEY,J.L 
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Figure 6.3: Lagrangians and f (y) at the iteration K = 2 
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and the solution is (y, J.L) = (0.4450, -4.0573). From the set which stores these solutions, 

the lower bound in Step 4 is updated as Jl~in == -6.5245, and y3 = 7 is selected for the 

next iteration. Note that minimization in Steps 3 and 4 is performed over the piecewise 

linear function shown by the solid line in Figure 6.3. 

Iteration 3. The algorithm PRDl gives J(l, 3) = 1 and J(2, 3) = 2, and the 

algorithm PRD2 gives Jact(3) = (1, 1). Thus the number of constraints of the subproblems 

in the algorithm PRD2 is less than in the algorithm PRDl by the constraints related 

to L~. ote that, however, the results solved in both algorithms give the same J.t~in = 

-4.0620. Therefore we see that the subproblems in Algorithm 6.1 includes some redundant 

constraints. For reference we show the optimal solution of the problem (RD) as<> in Figure 

6.4. Notice that the lower bound of the optimal value of (RD) is obtained at the third 

iteration while (RD) is exactly solved at the first and second iterations. 

Iteration 4. At the forth iteration, the piecewise linear function formed from the 

Lagrangians in the algorithm PRDl is different from that in the algorithm PRD2. These 

piec wise linear functions are shown in Figure 6.5. The lower bound in the algorithm 

PRDl is larger than that in the algorithm PRD2 because the constraint of L~ is active in 
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Chapter 6 

From the above explanation at each iteration, we see that the function f (y) is under­

estimated by the Lagrangians. 

In the following, we present the numerical results. For the tolerance t: = lo-s, perfor­

mance of three global optimization algorithms is shown in Table 6.1. For all computation, 

MATLAB software is used on Sun SPARCstation 20. Also, the primal problem (P) is 

solved by SP (MATLAB Version) [55], and the command lp in the MATLA.B optimiza­

tion toolbox is performed for the subproblems of (RD). It is seen from Table 6.1 that 

the algorithms PRD1 and PRD2 is more efficient than the algorithm BB. Also note that 

Table 6.1: Performance of algorithms 

PRDl PRD2 BB 

CPU time (sec.) 4.6 2.8 105.5 

Number of iterations 29 26 815 
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Figure 6.5: Lagrangians and f(y) at the iteration K = 4 

Table 6.2: Performance of algorithms 

PRDl PRD2 BB 

Average CPU time (sec.) 6.3 3.3 340.7 

Average number of iterations 29.2 29.3 1512.8 
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the algorithms PRD2 terminate faster than the algorithm PRDl, while the number of 

iterations in the algorithm PRD2 is slightly more than that in the algorithm PRDl. The 

convergence of lower/upper bounds in the algorithms PRD1 and PRD2 are shown in 

Figure 6.6. 

To illustrate the effectiveness of the proposed method for other examples, we show 

the average results for the problem with 10 BMis whose coefficient matrices of F(x, y) 

are randomly generated. Here all conditions are as same as those in the above example. 

Table 6.2 shows the average performance for these problems. 

Note that we have the almost same result as Table 6.1, i.e., the proposed algorithms 
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5 

PRDl and PRD2 are more efficient than the algorithm BB, and the algorithm PRD2 

terminates faster than the algorithm PRDl. 

Chapter 7 

Conclusion 

In this thesis, we have investigated control system analysis and synthesis based on LMis 

and an optimization method for solving BMis. We state the conclusions of each chapters 

in the following. 

In Chapt er 3, we have presented a technique for estimating the sensitivity of the 

optimal solution and the optimal value function with respect to perturbations in SDP. 

Also, we have applied this result to control systems with parametric uncertainties. Al­

though the numerical example was restricted to the case of the H 00 norm, our result can 

be applied to the problems including the other design objectives, e.g., the H 2 norm and 

the 1-entropy, which are formulated as SDP. 

In Chap ter 4 , we have shown that control system design problem with the tradeoff 

between evaluated uncertainty ranges and control performance is reducible to an opti­

mization problem with an infinite number of BMI constraints. An approximate method 

for the problem has been presented, and its convergence has been proved. In a numer­

ical example, this method has given a better performance than standard robust control 

methods from the viewpoints of the tradeoff. 

Chapter 5 has presented the LMI conditions for the rate constraints of the input and 

output in the framework of the robust LMI-based MPC [35]. A numerical example has 

shown that the MPC method with these input and output constraints provides a good 

performance, although the presented LMis are sufficient conditions for the rate limits. It 

should be noted that the presented LMI conditions can be also used in the framework of 
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the standard state-feedback synthesis. 

In Chapter 6, we have presented a global optimization algorithm for the BMI problem 

based on the primal-relaxed dual method, and modified this algorithm from the viewpoint 

of computational efficiency. We also have described the branch and bound algorithm for 

BMis, and have compared it with the presented methods. Numerical examples have been 

given to illustrate the geometrical interpretation and effectiveness of the proposed method. 

We now discuss future directions of our research. The numerical examples in Chapter 

6 have shown that only very small BMis can be solved in practical time. In fact, however, 

further improvement or alternative directions are required to solve BMis corresponding 

to control problems of practical size. From this point of view, two directions should be 

considered as follows. 

The first direction is to develop a method for solving a more restrictive class of BMis 

that arises in control. In fact, most of BMis that arise in control are more restrictive 

than the BMI formulated in this thesis. As a study related to this direction, MPEP 

(Matrix Product Eigenvalue Problems) was proposed [65]. The MPEP is a subclass of 

BMI problem and can express even control problems which cannot (or are not likely to) 

be cast into LMis. At present, a method for solving the MPEP is proposed but it is not 

still practical for control problems of practical size (65). 

The second direction is a probabilistic approach to BMis. In [31, 57, 50], probabilistic 

approaches are shown to be useful for some robust control analysis and synthesis pro h­

I ems even though these problems are not tractable in the deterministic framework. The 

randomized algorithms in these papers may be also useful for solving BMis. In this case, 

we should exploit inherent properties of BMis such as biconvexity. 
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