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Preface 

As service systems are used by many people, once the failure occurs, the 

damage may be enormous. To prevent the failure , therefore, preventive 

maintenance should be considered. However, the maintenance operations 

should not be applied frequently, because the customers in the systems are 

not served or even lost during the maintenance period. The problem of per

forming the maintenance suitably has been dealt with in queueing theory 

and reliability theory; the decision is made on the basis of only queue length 

in queueing theory and on the basis of only deterioration level in reliability 

theory. However, in service systems, it is important to make a decision with 

consideration on both the number of users who are troubled by the mainte

nance and the deterioration level of the system. For example , in a computer 

network system, more than one user is concurrently served, and the number 

of users changes as the time goes on. Since there may be bugs in programs, 

we sometimes update the program to remove such bugs. If the program is 

needed to operate the computer, especially if it is an operating system, we 

must stop the computer to update the program. To avoid many users being 

troubled by stopping the computer, we usually update the program while 

there are only few users, or we do not update the program if the defect is 

minor. If the defect is major, we must update the program immediately 

even if we lose several users. The decision when to update the program has, 

therefore, crucial influence on the system performance. 

In this thesis, we propose some models to analyze the optimal mainte

nance policy in such situations. The aim of this thesis is to characterize the 

structure of the optimal policy. We mainly deal with the switch curve struc-
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ture, which indicates that the preventive maintenance should be performed if 

the queue length is shorter than a threshold which is increasing with the de

terioration level. Though the existence of such switch curve structure seems 

to be obvious, we need some mathematical conditions to prove it rigorously. 

The switch curve structure and other properties proved in this thesis are 

helpful to compute the optimal policy in such systems. 
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Chapter 1 

Introduction 

1.1 Introduction 

Service systems such as telecommunication systems, e-mail systems and 

ATM systems at banks support our lives. In service systems, if service time 

and inter-arrival time are deterministic and service time is less than inter

arrival time, customers does not wait. However, in real service systems, 

the inter-arrival time and/ or service time are stochastic and the number of 

servers is finite. In this case, the customers may have to wait because it 

is possible that more customers than servers may arrive in a service time. 

For the analysis of these service systems, queueing theory has been studied 

to evaluate various performance measures such as waiting time distribution, 

expected queue length and loss probability of customers when the number 

of waiting customers is restricted. 

Though it is desirable that service system operates all the time, services 

in a real system may be interrupted by breakdowns such as hard disk crashes 

in a computer system. As a result of breakdowns, the customers in the 

system may be lost or have to wait until the system is recovered. Since a 

goal of the service system is to serve as many customers as possible or to 

serve customers as fast as possible, the loss of customers or the delay of the 

service should be avoided. 

A preventive maintenance such as hard disk replacement in a computer 

system may be useful to decrease the loss or delay. Some of the systems can 

1 
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be maintained while no customers use the system. For example, an ATM 

system can be maintained after the bank is closed. However, in a system with 

many users such as a web server, it is hard to find the time with no users in 

the system. Even if the system is empty at the start of maintenance, there 

are some customers who arrive during the maintenance. Therefore some 

customers are lost or kept waiting because most of the systems cannot serve 

the customer during the maintenance. 

For an appropriate maintenance in such systems, we need to know two 

stochastic processes, deterioration process and queue length process. The de

terioration process tells us how old the server is and when it is likely to break 

down. The queue length process tells us how many customers exist in the 

system and will exist in the system in the future. The queue length includes 

the customers in service throughout this thesis. Thus two processes tell us 

when the server will fail and how many customers will be troubled by the 

failure. However, the traditional reliability theory has considered only the 

preventive maintenance problems that contain deterioration process. There 

are few papers dealing with a maintenance problem of a deteriorating system 

with another stochastic process such as queue length process as we review in 

Section 1.2. Furthermore, in the maintenance problems studied in queueing 

theory, the time to failure is assumed to be exponentially distributed. With 

this assumption, the preventive maintenance is not necessary because the 

time to the next failure is independent of the operation time, which means 

the used system is as good as new. Thus, no preventive maintenance has 

been considered and only the queue length upon failure is concerned with 

the maintenance problems of queueing systems. The maintenance problems 

of queueing systems are reviewed in Section 1.3. 

In this thesis we analyze some maintenance problems, in which the main

tenance decision is made on the basis of the information of two stochastic 

processes, queueing process and deteriorating process. In a real system we 

tend to maintain the machine while it has less customers because the trouble 

caused by the maintenance are smaller than the trouble caused by the fail

ure. Therefore the maintenance decision is often made by considering both 
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the deterioration level of the machine and the number of users. We discuss 

such problems in Section 1.4. 

In maintenance problems, the decision is made on the basis of the state, 

which is the relevant information needed to describe the current condition of 

the system. The objective is to determine the optimal policy, which tells us 

the optimal action for each state. However, it is rare to obtain the optimal 

policy without numerical calculation. In the infinite state problems, which 

often appear in the queueing system when the queue length is not restricted, 

even the numerical calculation is hard to carry out because the memory size 

of the computer is restricted. Thus, without numerical calculation, several 

papers have discussed the properties of optimal policies. Various structures 

of optimal policies are introduced in Section 1.5. In this thesis we mainly 

discuss the switch curve structure, which often appears in problems with two 

state variables, queue length and deterioration level in our case. 

Maintenance problems in reliability and queuing theory are briefly re

viewed in Section 1.2 and Section 1.3, respectively. The maintenance models 

dealt with in this thesis are introduced in Section 1.4. The typical structures 

of optimal policies in queueing systems are introduced in Section 1.5. The 

outline of this thesis is given in the last section. 

1.2 Maintenance problems in reliability theory 

There are useful machines such as cars and computers. Unfortunately, these 

machines sometimes fail and we suffer from those failures. Reliability theory 

aims to avoid the failures as much as possible or to make the damage as 

small as possible. For this purpose, various theoretical models have been 

studied, among which several typical models are discussed in Barlow [2). In 

these models, the damage by the failure is considered as a cost. In addi

tion, the operating cost is incurred while the system works, and preventive 

maintenance cost is charged when it is performed. 

One objective of reliability theory is to minimize the total cost, which in

cludes preventive maintenance cost, operating cost, corrective maintenance 
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cost, and so forth. One way to minimize the cost is to perform the preventive 

maintenance on the basis of either the age of the system or the system state, 

where the age means the elapsed time since the system became as good as 

new, and the system state is assumed to indicate the deterioration level of the 

system. As a preventive maintenance policy based on age, the age replace

ment is introduced in Barlow [2]. Under the age replacement, the system is 

replaced when the age of the system reaches the planned time T which is 

determined in advance. If the system fails before T, it is also replaced at the 

replacement cost which is more expensive than that for the planned replace

ment. Given the failure distribution function F(t) (the probability that the 

system fails at age less than t), the optimal value of the planned time T that 

minimizes the total cost is obtained by renewal theory ( <;inlar [5]). 

The idea of the age maintenance is also applied to backup computer hard 

disks. To restore the system at a hard disk failure, it is required to keep the 

files on hard disks in a computer system by copying them on other media 

such as magnetic tapes. However, it is not desirable to backup the files very 

frequently because a backup takes much time and cost. Thus the optimal 

backup policy has been discussed in several papers. Sandoh(27] studies the 

optimal backup policy to maximize availability, which is the expected frac

tion of the time in the long run that the system operates satisfactory. The 

minimization of the expected cost per unit time over an infinite time span 

is also studied in Sandoh[28]. 

There is another type of reliability model which is based on semi-Markov 

process and we call it semi-Markovian degradation model. In this model, 

the system state which indicates deterioration level of the system is usually 

denoted by a discrete number. The system begins to operate from the initial 

state, which is usually the state as good as new. After a random time 

period elapses, the system state changes to another state. If this random 

time period is exponentially distributed, the model is called a Markovian 

degradation model. There is one absorbing state called failure state in the 

semi-Markov process. If the system state becomes the failure state after 

some transitions, the system fails and needs to be repaired. 

1.2. MAINTENANCE PROBLE!'v1S IN RELIABILITY THEORY 5 

This reliability model can be adopted if we can observe whether the 

system is about to fail or in a good state by inspecting the system. For 

example, in the maintenance of a building, the number of cracks on the 

wall may be a suitable measure of the system state because many cracks in 

the wall indicate that the building may collapse soon but no crack indicates 

that it is as good as new. If there are many cracks, the building will be 

rebuilt, which is considered as a preventive maintenance. As we see in the 

above example, the maintenance in a semi-Markovian degradation model is 

usually performed by observing the system state. 

Kawai [11] studies a Markovian degradation model in which a spare of the 

system is needed to replace the system upon failure or to apply a preventive 

maintenance. To keep one spare for the above purpose, the holding cost is 

incurred, indicating that it is costly to always keep the spare. However, if 

the spare is not at hand, it takes a random time before it is delivered after 

ordering. Therefore the damage caused by a failure without a spare is larger 

than the case of a failure with a spare. Thus it is important to determine 

whether to order the spare or not (ordering policy) in the states with no 

spare and whether to replace the system or not (replacement policy) in the 

states with a spare. It is shown that the optimal policy is (n, N)-policy type 

under a condition which implies that the system is more degraded as the 

state number becomes large. The (n, N)-policy means that a spare should 

be ordered if the state number is higher than n and there is no spare, and 

the replacement should be performed if the state number is higher than N 

and there is a spare. 

In the above model, the system state is assumed to be completely ob

servable. However, in some real systems, the system state is not always ob

servable. In such models, inspections that find out (or estimate) the system 

state are conducted. To determine when to inspect, the optimal inspection 

policy is also important to study as well as the optimal replacement policy. 

Kawai [12], Mine (21 ], and Ohnishi (22] deal with the optimal inspection 

policy in incomplete information models. 
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1.3 Queueing systems with breakdowns 

In queueing theory, main focus has been given to the analysis of such mea

sures as the expected waiting time and the expected queue length. Wolff [38) 

discusses several queueing models with detailed explanations and their ap

plications. The analysis of queueing systems is useful in designing various 

queueing systems; for example, to determine the number of ATMs in a bank, 

and to determine the buffer size in a computer system. These design prob

lems are considered as static control problems. 

In queueing systems, dynamic control problems such as service control, 

arrival control and customer assignment in a multiserver system are also 

studied in order to operate the system efficiently. The control of the number 

of ATMs in a bank is a typical example of the service control problem. In 

a bank, the number of ATMs is usually designed to serve the customers in 

busy hours. Thus all ATMs will work during busy hours, but in other hours, 

not all ATMs are necessary to serve customers. In such case, some of ATMs 

can be turned off, which makes the operating cost cheaper compared with 

uncontrolled systems. 

An assignment problem in a parallel queueing system is also familiar to 

us. A parallel queueing system is a multiserver system in which each server 

has its own queue and all servers are identical in their service ability. Each 

customer joins one of the queues upon arrival and cannot change the queue 

until the end of service. Although it seems natural to join the shortest queue 

(shortest queue discipline) to minimize the waiting time or total number of 

customers in the system, it may not be true if the service time distribution is 

general {Whitt [36]). Winston [37) shows shortest queue discipline is optimal 

if the service time in each server is exponentially distributed. Weber [34) 

proposes an assignment policy which sends the arriving customer to the 

queue with the least expected waiting time. This policy is optimal if the 

service time has an increasing hazard rate. The increasing hazard rate is 

defined to be that the probability of the service end is increasing as the 

elapsed service time increases. Johri (10) considers the system in which 

the service time depends on the queue length. It is shown the shortest 
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queue discipline is also optimal for this system under some mathematical 

conditions. Other various control problems are discussed in Walrand [33). 

Although usual control problems assume that servers do not fail or are 

available anytime, Awi [1) deals with a server subject to breakdown. The 

system is subject to breakdowns according to a Poisson process when the 

system has customers, and according to another Poisson process when it is 

empty. Upon breakdowns, a decision between fast (and expensive) repair and 

slow (and cheap) repair must be made to recover the system. The customers 

are kept waiting during the breakdown. The operating cost is incurred while 

the system is working, and the holding cost per customer per unit time is 

also incurred. Under some conditions of holding cost and operating cost, 

it is proved that a threshold policy is optimal; i.e., if the system has more 

customers than the threshold upon breakdown, the fast repair should be 

chosen, otherwise, the slow repair should be chosen. 

As we reviewed the maintenance problem in reliability theory in Sec

tion 1.2, preventive maintenance is usually considered in reliability models. 

However, in A wi [1], no preventive maintenance is considered because the 

failure time distribution is assumed to be an exponential distribution. Since 

exponential distribution indicates that the distribution of the time to failure 

for a used system is the same as the one for a new system, it is no use to 

replace the system before failure. Instead of considering preventive mainte

nance, in queueing system, the damage by a failure is considered to depend 

on the number of customers upon the failure, which is not considered in 

reliability theory. 

There are similar topics in stochastic scheduling problems. In scheduling 

problems there are several jobs in the queue. For each unfinished job in the 

queue, the holding cost is incurred. To decrease the holding cost, one of 

the jobs in the queue is selected and processed at the server for a stochastic 

service time. After the service is finished, the job is removed from the 

queue. Since the jobs are different in terms of holding cost and service time 

distribution, the total expected cost depends on the order of processed jobs. 

Thus, the objective is to determine the optimal sequence of jobs to minimize 
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the total expected cost. 

If the server fails in the above scheduling system, the holding cost is also 

incurred during the failure, which indicates that a breakdown while many 

jobs are in the queue is very costly. Glazebrook [8] deals with these schedul

ing problems for discrete and continuous time models in which a failure 

occurs after the time with a Bernoulli distribution in discrete time model 

and with an exponential distribution in continuous time model, respectively. 

It is proved that the optimal policy is an index policy. The index policy 

means that the index for each job can be calculated from the holding costs, 

the service distribution functions of all jobs and other parameters such as 

discount factor, and the job with the biggest index in the queue should be 

served at the server. Pinedo [24] discusses similar models under various cost 

criteria. These models are further discussed in Birge [3], [4]. In stochastic 

scheduling problems, the failure distributions are Bernoulli or exponential. 

Therefore preventive maintenance is not considered for the same reason as 

in a queueing system. 

1.4 Preventive maintenance in queueing systems 

As we reviewed in Section 1.2 and Section 1.3, no preventive maintenance 

policy which considers both the queueing process and the deteriorating pro

cess has been proposed. This thesis discusses the optimal preventive main

tenance problems in deteriorating queueing systems. 

In service systems, the server deterioration may yield inconveniences such 

as the increase of failure probability and the slow service. Therefore the 

maintenance should be performed to renew the system. It is usually under

taken in such a manner that the loss caused by the maintenance becomes 

as small as possible. In this thesis, the loss refers to the users who cannot 

use the system due to the maintenance and the failure. For examples, in 

a road maintenance, each car must choose other inconvenient roads during 

the maintenance and it brings in a loss. Thus the maintenance is usually 

planned at night because the traffic is less than that during daylight. In a 
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computer system, the maintenance should be planned '" hile the numbers of 

users and jobs in the system are small, because the users and the jobs will 

be lost or halted by the maintenance. 

Though the maintenance without hazarding customers is ideal, if the 

system is about to fail, we cannot wait for the system to become empty to 

avoid the large loss caused by the failure. From this point of view, this thesis 

proposes the optimal maintenance policy which considers both stochastic 

processes, queueing process and deterioration process. Our main interest is 

to analyze how the optimal action of maintenance changes as the observed 

data of the two processes changes. Typical properties of an optimal policy 

have been studied in various systems. We review the study of such properties 

in the next section. 

1.5 Structures of optimal controls 

In controlling queueing systems, simple properties usually exist between the 

state and the optimal action. These relations may be helpful to find out 

or calculate the optimal policy. For examples, the shortest queue discipline 

in parallel queueing systems and the index policy in scheduling problems 

determine the optimal policy. Although it is desirable that the optimal 

policy is obtained explicitly, it is impossible in most cases to obtain the 

optimal policy from the stated properties. Thus the properties which show 

us rough structure of optimal policies are important from the theoretical 

point of view. 

A common property that holds in many systems is the threshold property. 

Lin [20] and Walrand [32] study the threshold policy in a slow server system, 

in which there are two servers, a fast one and a slow one. In each server, the 

service time distribution is exponential, and the fast server has larger service 

rate than the slow server. Customers whose arrival process is assumed to 

be Poisson form a single queue, and the customer at the top of the queue 

can be assigned to either the fast or slow server, or kept waiting. Once the 

customer is assigned to either of the servers, he/she must stay there until the 
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y 

S(x) 
Action A is optimal. 

Action B is optimal. 

L--------------------------------+X 

Figure 1.1: The switch curve structure 

end of service. For this model, Lin [20] and Walrand [32] study the optimal 

policy to minimize the total expected discounted holding cost. They prove 

that the customer should be assigned to the fast server whenever it is idle, 

while the customer should be assigned to the slow server only when the fast 

server is occupied and queue length exceeds the threshold. In this problem, 

the utilization of the fast server and slow server depends on the queue length 

only. 

In the threshold policy, the decision depends on the one variable (i.e., 

the queue length in the above case). If the decision between two actions (say 

A and B) is concerned with two variables (say x and y), the switch curve 

structure of optimal policy is usually argued. The switch curve structure 

indicates that for each fixed value x = x' there is a threshold S(x'); i.e., 

action A is optimal for all (x', y) with y ~ S(x') and action B for all (x', y) 

with y < S(x'). This S(x) is an increasing function of x or could be parallel 

to y axis (Fig. 1.1). The function S(x) is called the switching curve. From 

the switch curve structure, we can know that the changes of optimal action 

only happen at most once in the direction of each axis. 

Hajek [9] deals with the switch curve structure in a control problem of 

a queueing network with two servers (Fig. 1.2), referred to as server 1 and 

server 2. 

1.5. STRUCTURES OF OPTIMAL CONTROLS 

Arrival 

Arrival send to 
either queue 

Arrival 

Queue 1 Server 1 

customers requiring 
repeated services 

Queue 2 Server 2 

Figure 1.2: The queueing network in Hajek [9] 

11 

departure 

departure 

Each server has its own queue, queue 1 for server 1 and queue 2 for 

server 2. The service time distribution is exponential and the holding cost 

depends on the queue lengths of queue 1 and queue 2. For this system, three 

controls are considered, the assignment of arrivals, the service rate control 

and the assignment of the customer requiring a repeated service. These 

controls aim at minimizing the total expected discounted holding cost over 

the infinite time horizon. 

Firstly, let us consider the assignment control of the arrivals. The arrival 

process consists of three Poisson processes; each process may have a different 

rate from other processes. The arrivals in the first process must be assigned 

to queue 1, and the ones in the second one to queue 2. However, the arrivals 

in the third one can be assigned to either queue 1 or queue 2. Hajek [9] 

shows that the optimal assignment policy of this arrivals has a switch curve 

structure if the holding cost is linear with respect to two queue lengths. 

In detail, the x and y axes in the state space corresponding to queue 1 

length and queue 2 length, respectively, is divided by a switching curve. 

The customer should be sent to queue 1 when the state is in the left upper 

side of the curve (i.e., queue 2 is too long compared with queue 1), and 

should be sent to queue 2 when the state is in the right lower side of the 

curve. 
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Queue 1 

send to 
queue 2 

Server 1 (controllable) 

Queue 2 Server 2 

Figure 1.3: The tandem queue in Rosberg [25) 

We next explain the service rate control. If no control is applied to the 

system, the servers process the customer with the given service rate (the 

service rate may be different from the other). The service rate control can 

increase the service rates of two servers, but the sum of the increases of two 

service rates is restricted to be less than constant Jl· The optimal service 

rate control also has a switch curve structure, that is, if the state is in the 

right lower side of the curve, we should give the maximum increase fJ, to 

server 1 (no increase to server 2), and vice versa. The switching curve for 

this control is generally different from the one for the arrival control. 

The last control deals with the customers who require repeated services. 

In this system, some customers reenter the system after his service. These 

customers must be assigned to queue 1 or queue 2. It is shown that the 

optimal assignment policy is similar to the arrival control. 

Rosberg [25) discusses the optimal control in a tandem queue system 

(Fig. 1.3). In the tandem queue system, two queueing systems are connected 

in series. Customers arrive at the first queue (queue 1), and after the service 

in the first server, they are sent to the second queue (queue 2). They depart 

from the system after the service in the second server is over. Rosberg [25) 

discusses the case in which the arrival to queue 1 is governed by a Poisson 

process, and both service distributions are exponential. The service rate of 
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the first server is controllable in the interval [0, JL]. The holding cost depends 

on two queue lengths, and the objective is to minimize the total expected 

discounted holding cost. It is shown that the optimal policy has the switch 

curve structure, which means that the service rate should be 0 when the state 

is in the left upper side of the switching curve and JL in the other side, where 

x axis and y axis represents the lengths of queue 1 and queue 2 respectively. 

See Veatch (31) and Glasserman [7) for more general control problems. 

1.6 Outline of the thesis 

In this thesis we deal with five maintenance models. We first introduce the 

basic approach for our models in Chapter 2. Semi-Markov decision process, 

value iteration method and uniformization are explained there. 

A simple combination of the queue length process and the deterioration 

process is an M I M 11 queueing system and a server with a failure distribution 

function. The notation of M I M I 1 means that the arrival process is a Poisson 

process, the service time distribution is exponential and one server exists in 

the system. Chapter 3 deals with this model in which the server fails after 

a random time and the maintenance can be performed periodically. This 

chapter is adapted from Koyanagi [15]. 

From Chapter 4 to Chapter 7, the deterioration process is expressed by 

a Markov process. The combination of an MIMI1 queueing system and 

Markovian degradation process is easily extended to the model in Chap

ter 5. Before Chapter 5, we consider another extension in Chapter 4, which 

is adapted from Koyanagi (16). Namely we discuss a maintenance policy 

for MIGI1 queueing system, which means that the service distribution is 

allowed to be general. Since general distribution includes exponential distri

bution, it is an extension of M I M 11 queueing system. Though the decision 

epochs in this model are more restricted than those in M I M 11 queue, the 

problem in Chapter 4 is considered as an extension of a maintenance problem 

of MIMil queue. 

In Chapter 3 and Chapter 4, the deterioration is assumed to affect only 
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the failure probability. From Chapter 5 to Chapter 7, we discuss the models, 

where the deterioration affects the queueing process as well. 

In Chapter 5, the maintenance problem of M/M/N queueing system is 

discussed. We assume that the service rate is affected by both the server 

state and the queue length. It is natural to consider that the service rate 

becomes slower as the server deteriorates. We consider such a model in 

Chapter 5, which is adapted from Koyanagi [18). 

In Chapter 6 and Chapter 7, we assume that the server deterioration 

affects the arrival rate, but that the system never fails. This model is con

sidered as a replacement problem of an amusement machine. As the time 

goes, the customers who enjoy the machine will decrease because the ma

chine becomes out-of-date. The system charges fees from customers, and the 

maximization of the collected fees is discussed. To regain the customers, the 

old machine is replaced to the new one. In Chapter 6, the customers in the 

queue can be cancelled by paying a cancel fee if there are customers upon 

maintenance. In Chapter 7, we deal with the case in which the customers 

in the queue can not be cancelled; i.e., in performing the maintenance, the 

system is first closed, serve all customers in the queue and then the main

tenance is performed. These chapters are adapted from Koyanagi [19) and 

[17], respectively. 

In these chapters, it is shown that the optimal maintenance policy in 

each case has a switch curve structure. Other properties are also discussed 

in Chapters 5, 6 and 7. 

Chapter 2 

Elements of Semi-Markov Decision Processes 

In our problems, semi-Markov decision processes are often used to determine 

the optimal policy. This chapter provides a summary of the properties of 

semi-Markov decision processes, and explains the value iteration method and 

uniformization (Serfozo [29]) which are used to obtain an optimal policy. 

2.1 Semi-Markov decision process 

A semi-Markov decision process is specified by 'state set', 'action set', 'tran

sition probability' and 'cost function'. 

State set S: The state setS is the set of the system state, where state is the 

information relevant to making decision. 

Action set As: The action set As is the set of actions which can be taken in 

states E S. 

Transition probability Q~s' ( t): The transition probability Q~s' ( t) specifies 

the transition probability to state s' within t time when the action 

a is taken in state s. 

Cost function C~ ( t): The cost function C~ ( t) is the expected cumulative cost 

when the action a is taken in states and transition time is t. Typically, 

c~ ( t) is expressed by 

(2.1) 

15 
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where f~ is the cost incurred upon the decision epoch and g~ is the 

cost per unit time incurred until the next transition happens. 

In this thesis, we assume that the state setS is a discrete and m-dimensional 

vector space. For s = (si, s2, ... , sm) E S, we assume Sk is a nonnegative 

integer. The action set As is also assumed to be discrete and finite. The 

transition probability Q~s' ( t) is often expressed in the form 

(2.2) 

where F:(x) is the distribution function of the transition time for action a 

in state s, and psas' (x) is the conditional transition probability from state s 

to s', given the transition time x. 

By these items, we can define a semi-Markov decision process as follows. 

(1) The process is observed at time 0, and the initial state s E S is iden

tified. 

(2) For the observed state s, action a is selected from the action set As. 

(3) The next state becomes s' within t time with probability Q~s' (t), after 

taking action a in state s. 

( 4) The cost incurred is given by the cost function c: ( x). 

( 5) The above steps are repeated indefinitely after the transition to state 

s'. 

In an infinite time horizon problem, the discounted cost is usually considered. 

In the discounted cost problem, the one unit cost after time x is evaluated 

as e-o:x at time 0, where a is called discount rate. Then, the cost function 

in the discounted cost problem is evaluated by 

(2.3) 
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To minimize the total expected discounted cost, the optimal policy is deter

mined by solving the following optimality equation: 

V(s) = 

(2.4) 

where 

r~ _ L; [><'In' e-"YdC:(y)dQ~,,(t), 
s'ES 0 O 

(2.5) 

q~,, = ['" e-"'dQ~,.(t). (2.6) 

This equation can be solved by various methods. Here, we introduce the 

value iteration method. 

2.2 Value iteration method 

The value iteration method updates the value vn ( s) as follows. 

Step 0. Give the initial value V 0 (s) for each sE S. 

Step 1. Calculate vn+1(s) by 

(2.7) 

Step 2. n := n + 1 and return to Step 1. 

There are various sets of conditions to secure the convergence of this itera

tion. To secure the convergence lim vn ( s) = V ( s), we assume that for all 
n---+oo 

s, s' E S ( s = ( s1, s2, ... , sm), s' = ( s~, s~, ... , s~)), the process satisfies the 

next conditions. 
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Condition 2.1 

There are constants Ck ~ 0 (k = 0, ... , m) and 0 < /3 < 1 that satisfy 

m 

(1) lr~l ~ Co + L Cksk for all s, a. 
k=l 

m m 

(2) L q~s' (Go+ L Cks~) ~ !3( Go+ L Cksk) for all s, a. 
s'ES k=l k=I 

m 

(3) IV0(s)i::; Co + L Cksk for all s. 
k=I 

Condition 2.1 ( 1) states that the cost between transition increases at most lin

early in Sk, and Condition 2.1(3) states that the initial value V 0 (s) should 

have the same property. Condition 2.1(2) assures that the mapping from 

vn (.) to vn+ 1 (.) is a contraction mapping with respect to weighted supre

mum norm (Wessels[35]). 

In this thesis, we deal with the decision process with two-dimensional 

states= (si, s2). The variable SI indicates the queue length and s2 indicates 

the deterioration level. To satisfy Condition 2.1, we assume the following 

conditions. 

Condition 2.2 

(1) Arrival process is assumed to be a Poisson process and the cost between 

decision epochs increases by 1 per lost arrival. 

(2) For all ( s1, s2), the cost f% incurred upon the decision epoch satisfies 

1: ::; C + s1. This means that the cost increases at most 1 as the queue 

length s1 increases by 1, and has an upper bound with respect to s2. 

(3) If the transition time has a general distribution H(x), we assume 

H(O) = 0 and 

0 < c S:: fa'"' tdH(t) S:: r < oo. (2.8) 

This means the expected transition time is positive and finite, which is 

usually assumed for semi-Markov decision process. 
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Let us denote the arrival rate by A: which means the expected number of 

arrivals is At for time t. Then the expected number of lost customers and 

the expected increase of queue length are less than At. Therefore: from 

Conditions 2.2(1), the cost function C~(t) satisfies the inequality 

(2.9) 

Furthermore, for s' = ( s~, s~), 

L Pss' (t)s~ ::; SI +At. (2.10) 
s'ES 

Using inequalities (2.8), (2.9) and (2.10), we can check Condition 2.1(1) and 

Condition 2.1 (2) as follows. 

(1) Condition 2.1(1) is satisfied because 

lr~l < L ['" l e-"'YdC~(y)dQ~5,(t) 
s'ES O O 

< L looo ( C + S1 + At)dQ~s' (t) 
s'ES 0 

< c + S} +AT. 

By defining Co = c + AT, cl = 1 and c2 = 0, Condition 2.1(1) is 

satisfied. 

(2) Condition 2.1(2) is checked as follows. 

First, there exists a p such that 

fa'"' e-"'tdH(t) s; p < 1 

because 

0 < c S:: fo"" tdH(t) S:: r < oo. 

Next, for s' = (s~, s~), 

L q~s'(s~ +Go) 
s'ES 
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2::100 

e-atpss~(t)dH(t)(s~ +Go) 
s1 ES O 

< l"" e-<>t ( St +Go + >.t )dH(t) 

< P( s1 +Go) + AT. 

By taking f3 asp< f3 < 1 and redefining Go= (G + AT)/(/3- p), it is 

shown that 

2: q~5,(s~ +Go) :S (3(s1 +Go). (2.11) 
s1 ES 

(3) Condition 2.1(3) is easily satisfied, for example, by taking V 0 (s) := 0. 

2.3 Uniformization 

In a queueing system, it is common to assume exponential distribution for 

the arrival and service time. In a semi-Markov decision problems, if the 

transition time is exponential, the transition rate from state s to s' can be 

denoted by A~51, for given states s , s' and the action a. This means that 

Q~5 1 ( t) is expressed by 

(2.12) 

where A~ = L A~51. We consider that the actions for each state s are num-
s1ES 

bered from 1 to (s. We also assume that the transition time is exponential for 

actions a= 1, 2, ... , ~5 , but is not exponential for actions a= ~s + 1, ... , (s. 

Eq. (2.4) then becomes 

V(s) = 
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min {r~ + 2:: roo e-atv(s')dQ~5~(t) }}· (2.13) 
€s+l<a<(s 1 sloo - - sE 

Since A~ depends on s and a, it is inconvenient to compare 

in terms of s and a. In this case, it is useful to apply uniformization to the 

original equation. Consider a modified optimality equation: 

U(s) = . { . { aA~ + 0' """' Aa 1 1 A- A~ ( )} m1n m1n r5 A + L- -A ss U(s) + A U s , 
l:Sa:S€s + Q s'ES + Q + Q 

min {r~ + 2:: roo e-atu(s')dQ~5~(t)} }, (2.14) 
€s+l:Sa:S(s s1 ES Jo 

where A is a constant that satisfies A > sup A~. This equation is satisfied if 
s,a 

we substitute U ( s) := V ( s). We can check this by considering the optimal 

action a* in Eq. (2.13). 

Case 1. If 1 ~a* ~ ~s in Eq. (2.13), equation 

and inequalities 

V(s) 

V(s) 

< r~ + L :~51 
V(s'), 

siES As+ a 

< r~ + E roo e-atv(s')dQ~s~ (t) 
s1 ES Jo 

for a -::j:. a* holds, because a* is the optimal action. 

From these relations, it is obvious 

(2.15) 

(2.16) 

(2.17) 

V(s) = ra* A~*+ a+ L A~;, V(s') +A- A~* V(s) (2.18) 
s A + a si ES A + a A + a 
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and 

V(s) < r~A~ +a+ L ,X~s' V(s') +A- A~ V(s), (2.19) 
A+a , 

5
A+a A+a 

sE 

(2.20) 

for a =1- a*. Thus, V(s) satisfies Eq. (2.14). 

Case 2. If ~s + 1 :5 a* $ ( 8 , the proof is similar to Case 1. 

Thus, we obtain the solution of Eq. (2.13) by solving Eq. (2.14) if the solu

tion is unique. Since the unique convergence is guaranteed by the contrac

tion mapping, we can obtain the optimal value V ( s) and optimal policy by 

applying the value iteration method to Eq. (2.14) instead of Eq. (2.13). 

These results are used in the subsequent chapters of this thesis. 

Chapter 3 

An M/M/I Queue under Periodic Observation 

3.1 Introduction 

This chapter studies an optimal maintenance policy for an M I M I 1 queueing 

system under a periodic observation. Customers arrive at the system in a 

Poisson stream and form a single queue. They are served at the server 

and their service times are exponentially distributed. For this queueing 

system, we assume that the server fails after a random time. The system 

is checked by regularly timed observations, and the failure can be detected 

upon the observation epoch. Upon the detection of the failure, the corrective 

maintenance which takes a random time starts to recover the system. The 

customer is lost whenever the server does not work. Thus the failure could 

produce a larger loss of the customer because the custome upon the failure, 

during the failure (until it is detected) and during the maintenance are lost. 

However, it is possible to avoid the failure and the subsequent corrective 

maintenance by performing a preventive maintenance upon the observation 

time. Although the customers upon the start of the maintenance and dur

ing the maintenance are lost, the loss may become smaller by the preventive 

maintenance than that caused by the future failure. Since the queueing sys

tem should serve as many customers as possible, we consider to minimize the 

number of the lost customers. For this purpose, in this thesis, we formulate 

this problem as a semi-Markov decision process and determine the optimal 

maintenance policy. The decision is based on the number of customers in the 

23 
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system and the age of the server. We then derive a switch curve structure 

of the optimal policy under some conditions. 

The organization of this chapter is as follows. In the next section we 

provide a detailed explanation of our model. In Section 3.3 we formulate 

our problem as a semi-Markov decision process. In Section 3.4 we derive 

properties of the value functions. In Section 3.5, the switch curve structure 

of the optimal policy is derived from the properties obtained in Section 3.4. 

The last section concludes our results. 

3.2 Model 

We consider an M/ M /1 queueing system with arrival rate .A(> 0) and ser

vice rate t-t(> 0). The server fails after a random time and the failure time 

distribution function is denoted by F(x). We assume it has density function 

f(x). The queue length process and the failure process is assumed to be 

independent. To prevent a failure and to recover from a failure, we have 

a preventive maintenance action and a corrective maintenance action, re

spectively. The server is observed at periodic interval T measured from the 

instant when the server begins operating or restarts after either the preven

tive or the corrective maintenance. The opportunity of maintenance comes 

upon an observation epoch. If the server fails, we detect the failure upon the 

next observation and start the corrective maintenance. If a failure occurs, 

we lose all the customers who are in the system upon the failure or arrive 

at the system while the system is in failure or the corrective maintenance is 

taken place (Fig. 3.1). If the server is working upon the observation time, 

preventive maintenance can be performed, though the customers are lost 

upon the start of the maintenance and during the maintenance (Fig. 3.2). 

The distribution functions of the preventive and the corrective main

tenance time are denoted by H 1 ( x) and H 2 ( x), respectively. The system 

becomes new by maintenance, and the next observation time is measured 

from the end of maintenance. We consider that the unit cost is incurred for 

each lost customer, and we minimize the total expected discounted cost with 
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gueue 
length 

0 T 2T 

X :Failure 

Cost during failure and maintenance 
(Lost arrivals) 

Cost upon failure 
Restart 

n-~~--~----------------~•time 

kT Corrective maintenance 

o : Observation 
a : Observation (Failure detection) 

Figure 3.1: Corrective maintenance case 

gueue 
length 

Cost during maintenance 
(Lost arrivals) 

~ 

Cost upon maintenance 
Restart 

L......l..-------cl------o- .. · · · · · · · .. n-------{R:L-----------------~•time 

0 T 2T kT Preventive maintenance 

o : Observation 

Figure 3.2: Preventive maintenance case 

discount factor a. 
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25 

We formulate our problem as a semi-Markov decision process. While the 

system is working, the decision epoch comes every T time, which is the 

observation epoch. The end of the maintenance, i.e, the restart of the system 

is also a decision epoch. Upon an observation epoch, if state ( i, k) is observed, 

it shows that the queue length is i (including the customer in service) and 

observation time kT has been measured from the epoch when the server 

started to work. For convenience, we denote the failure state by k = oo. 

The decision is made on the basis of the state upon the observation. 
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Upon an observation epoch, we may find that the server is failed. In 

this case, we only take the corrective maintenance action. If the server is 

working upon the observation, we choose whether performing the preventive 

maintenance or continuing service to minimize the lost customers. 

The lost customers are 

(I) the customers who were in the system upon the failure or arrived during 

the period of failure and corrective maintenance, 

(2) the customers who were in the system upon the preventive maintenance 

or who arrived during the period of preventive maintenance. 

We consider to determine the optimal action for state ( i, k) to minimize the 

total expected discounted cost. The semi-Markov decision problem consists 

of the following elements. 

State and Action 

The state set is given by S = {(i, k)li = 0, 1, ... , and k = 0, 1, ... , oo}. For 

a states E S, the action set As is {1, 2} for (i, k) (k < oo) and {3} for (i, oo) 

where Action 1, Action 2 and Action 3 indicate the preventive maintenance, 

the service and the corrective maintenance, respectively. 

Transition Probability 

We consider two stochastic processes, queue length process and failure pro

cess. For the queue length process, Pij (x) denotes the probability that the 

j customers are in the system at time x, when i customers were in the sys

tem at time 0. For the failure process, the probability fk that the system is 

working at time kT and fails before the next observation is expressed by 

f 
= F(kT) - F(kT + T) 

k- F(kT) ' 
(3.1) 

where G(x) means 1- G(x). 

Since two processes are independent, we have the following transition 

probabilities. If Action 1 is taken at ( i, k) ( k < oo), the next transition 
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time has a distribution function H 1 (t) and the next state becomes (0, 0). If 

Action 2 is taken at ( i, k) ( k < oo), the next transition will occur after T 

time. The transition probability from ( i, k) to (j, k + 1) is Pij (T) ( 1- fk) and 

the transition probability from (i, k) to (0, oo) is fk· Since the customers are 

lost upon and during the failure, the system is empty when we detect the 

system failure. At (0, oo ), only Action 3 can be taken. The next transition 

time has a distribution function H2(t) and the next state becomes (0, 0). 

Cost Function 

The expected cumulative cost (lost arrivals) is >..t when the system stops 

t time, because of the Poisson arrivals with rate >... Thus, the expected 

discounted arrivals N ( t) for the time interval t is 

(3.2) 

(1) For Action 1 in state (i, k), the expected cost until the next transition 

is 

(3.3) 

where 

hm = fooo e-at Hm(t)dt (m= 1, 2). (3.4) 

By Condition 2.2(3), 0 < hm < 1/a holds. 

(2) For Action 2 in state ( i, k), the expected cost until the next transition 

is 

{T e-<>x f(k~ +)x) [Li(x) + N(T- x)]dx, (3.5) 
Jo F kT 

where 
00 

Li(t) = L jPij(t). (3.6) 
j=O 

The function Li(t) indicates the expected queue length at timet, start

ing from queue length i at time 0, 
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(3) For Action 3, the expected cost until the next transition is 

(3.7) 

For the queueing process, the following lemma should be noted. 

Lemma 3.1 

The following properties hold for Pij(t) and Li(t) of Eq. (3.6). 

d 
(1) dt Li(t) ~ .-\. 

00 

(2) I)Pi+lj(t) - Pij(t)] 2: 0 for alll. 
j=l 

Proof. 

The first property is obvious from the definition of Poisson arrival, which 

means that the arrival probability for a small time interval bt..t is .-\bt..t+o(bt..t). 

For the second and the third properties, define m~;) as follows: 

(0)- {1 (i =j) 
mij = 0 (otherwise), 

(3.8) 

J-L/(.A + !1-) (i=j=O) 

mP) = A.j(.-\ + J-L) (j = i + 1) 
~J -

J-L/(.A + !1-) (j=i-1) 
(3.9) 

0 (otherwise), 
00 

(n) = """' (n-1) (1) 
mij - L mik mkj · (3.10) 

k=O 

Then we have the following expression of Pij ( t). 

(3.11) 
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00 00 

It is easy to show that L m~;) is increasing in i for all k, and L[jm~:)lj-
j=k j=l 

jm~7)J ~ 1. Properties (2) and (3) are easily proved from these inequali

ties. 0 

Optimality Equation 

To derive the optimality equation, we define the following functions with 

respect to ( i, k). 

V(i, k): The optimal cost function for state (i, k). 

M(i, k): The cost function when we perform preventive maintenance upon 

a decision epoch, and operate the system optimally thereafter. 

W(i, k): The cost function when we continue service upon the decision epoch, 

and operate the system optimally thereafter. 

D(i, k): The optimal action for state (i, k), 

D(i k) = { 1 if preventive maintenance is optimal, 

' 2 if continuing service is optimal. 

Through the standard use of semi-Markov decision process, we derive the 

following equations for this problem, where /3 = e-a:T: 

M(i,k) = i + Ah1 + {o V(O,O)e-"'dH1(t) 

= i + A.h1 + (1- (}hl)V(O, 0), 
00 

W(i, k) = /3(1- fk) L Pij(T)V(j, k + 1) 
j=O 

+ {T e-axf(k~ +)x) [L;(x) + N(T- x)Jdx 
Jo F kT 

(3.12) 

(3.13) 

Since the preventive maintenance time does not depend on k, M(i, k) is 

independent of k. Therefore, M(i, k) is denoted by M(i) in the rest of this 
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chapter. The first term of Eq. (3.13) denotes the discounted cost in the case 

that the server does not fail until the next observation, and the second and 

third terms are the costs incurred before the failure detection and after the 

failure when the server fails. 

By these functions, the values of V(i, k) and D(i, k) are obtained as 

follows: 

V(i, k) 

D(i, k) 

= min{M(i), W(i, k)}, 

= { 
2
1 when M(i) < W(i, k) 

when M(i) 2: W(i, k). 

We apply the value iteration method of Section 2.2 to obtain V(i, k). 

Value iteration method 

Step 0. n := 0 and V 0 (i, k) := 0 for all i, k. 

Step I. 
00 

wn+l(i, k) := ,8(1- fk) L Pij(T)Vn(j, k + 1) 
j=O 

+ ,Bfk[Ah2 + (1- ah2)Vn(o, 0)] 

(3.14) 

(3.15) 

(3.16) 

+ {T e-axf(kT + x) [Li(x) + N(T- x)]dx, (3.17) 
Jo F(kT) 

vn+1(i,k) := min{Mn+1 (i), wn+1(i,k)}. (3.18) 

Step 2. n := n + 1 and return to Step 1. 

We derive some properties of the cost functions in the next section. 

3.4 Properties of the cost function 

The following conditions are assumed in this section to examine cost func

tions. The properties of the cost functions proved in this section are needed 

to prove the switch curve structure of the optimal policy in Section 3.5. 
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Condition 3.1 

The distribution functions F(x), H 1 (x) and H2(x) satisfy the following con

ditions. 

(1) The failure distribution function F(x) has the IFR (increasing failure 

rate) property, i.e., (F(x)- F(x + y))/ F(x) is increasing in x for all 

y > 0. 

(2) The inequality Hl(x):::; H2(x) holds for all x 2:0. 

(3) F(x), H1(x) and H2(x) satisfy Condition 2.2(3). 

Condition 3.1(1) tells that the failure probability is increasing as the time 

goes. Condition 3.1 (2) tells that the time for corrective maintenance is 

stochastically longer than that for preventive maintenance. Note that fk 

is increasing by Condition 3.1(1), and h1 :::; h2 holds by Condition 3.1(2). 

Lemma 3.2 

The function vn(i, k) in the value iteration method satisfies 

(1) vn(o, 0) :::; A/a, 

(2) vn(i, k):::; vn+1 (i, k) :::; i +A/a for all i, k, 

(3) Ah 1 + (1- ah1 )Vn(o, 0):::; Ah2 +(I- ah2)Vn(o, 0). 

Proof of (I). 

Lemma 3.2(1) is obvious for n = 0. If vn(o, 0) :::; A/a, then 

vn+l (0, 0) ::; Mn+l (0) = Ah1 + (1 - ahl)Vn(O, 0) 

:::; Ah1 + (1- ahi)Aja = Aja. 

Thus, by induction, vn(o, 0) :::; A/a holds for all n. 

Proof of (2). 

It is obvious that V 0 (i, k) :::; V1(i, k) holds. It is also easy to show that 

if vn- 1(i, k) :::; vn(i, k), then vn(i, k) :::; vn+1(i, k). Hence, the inequality 

vn+l ( i, k) :::; i +A/ a is obtained since 
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Proof of (3). 

The third property is proved as follows. 

We apply Condition 3.1(2) and Lemma 3.2(1) to obtain the last inequality. 

This completes the proof. D 

Lemma 3.3 

wn ( i' k) is increasing in k. 

Proof. 

First we prove that if vn(i , k) is increasing in k , then wn+1(i , k) is also 

increasing ink. From Eq. (3.17) , we have 

00 

wn+l(i, k) = /3(1- !k) L Pij(T)Vn(j, k + 1) 
j=O 

+ !3!k[.Ah2 + (1- o:h2)Vn(o , O) + Li(T)] 

- (3fkL;(T) + {T e-axf(k~ +)x) [L;(x} + N(T- x)]dx 
Jo F kT 

= {3Rn(i, k) + sn(i, k). (3.19) 

Here, we define 

00 

Rn(i, k) =: (1- fk) L Pij(T)Vn(j, k + 1) 
j=O 

+ Jk[>-.h2 + (1- o:h2)Vn(o, 0) + Li(T)], (3.20) 

sn(i, k) = {T e-O;X f(kT +X) [Li(x) + N(T- x)]dx- /3fkLi(T).(3.21) 
Jo F(kT) 

Let us now prove that both Rn(i, k) and sn(i, k) are increasing in k. It is 

seen that 

Rn(i, k + 1)- Rn(i, k) 
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00 

= (1- fk+I) L Pij(T)Vn(j , k + 2) 
j=O 

+ fk+l[.Ah2 + (1- o:h2)Vn(O, 0) + Li(T)] 
00 

- (1- fk) L Pij(T)Vn(j, k + 1) 
j=O 

- Jk[.Ah2 + (1- o:h2)Vn(o, 0) + Li(T)] 
00 

2:: (1- fk+I) L Pij(T)Vn(j, k + 2) 
j=O 

+ fk+l[.Ah2 + (1- o:h2)Vn(o, 0) + Li(T)] 
00 

- (1- fk) L Pij(T)Vn(j, k + 2) 
j=O 

- jk[.Ah2 + (1- o:h2)Vn(O, 0) + Li(T)] 

= (fk+l - fk)[.Ah2 + (1- o:h2)Vn(O, 0) + Li(T) 
00 

- L Pij(T)Vn(j, k + 2)]. 
j=O 
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(3.22) 

From Condition 3.1(1), the relation fk+l - fk 2: 0 holds. For n = 0, we find 
00 

that .Ah2+(1-ah2 )V0 (0, O)+Li(T)-L Pij(T)V0 (j, k+2)] = .Ah2+Li(T) 2: 0 
j=O 

holds. For n > 0, we have 

00 

L Pij(T)Vn(j, k + 2) 
j=O 
00 

~ L Pij(T)[j + .Ah1 + (1- o:h1)vn- 1(0, 0)] 
j=O 
00 

~ L Pij(T)[j + >-.h1 + (1- o:h1 )Vn(o, 0)] 
j=O 

~ .Ah2 + (1 - o:h2)Vn(O, 0) + Li(T). 

Therefore, Rn(i, k + 1) 2: Rn(i, k) holds from (3.22). Thus, the function 

Rn ( i, k) is increasing in k. 
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For sn ( i, k), we apply the integration by parts, using the following rela

tions: 

d- -
j(kT + x) = dx (F(kT)- F(kT + x)), (3.23) 

d 
dx (e-ax[Li(x) + N(T- x)]) 

= -e-ax ( aL;(x)- d~ L;(x) +A) . (3.24) 

Then, we have 

Sn(. k) [F(kT) - F(kT + x) ( -axL ( ) A ( -ax -aT))] T 
'l, = F ( kT) e i x + ~ e - e 

0 
T - -

+ { e-ax F(kT)- F(kT + x) (a.L·(x)- !!:_L·(x) + .-\)dx 
lo F(kT) 

1 
dx 

1 

- ,BfkLi(T) 
T - -

= f e-axF(kT)- F(~T + x) (aL;(x)- dd Li(x) + .-\)dx.(3.25) 
lo F(kT x 

Since (a.Li(x)- d~Li(x) + .-\) 2: 0 holds and (F(kT)- F(kT + x))/ F(kT) is 

increasing ink, sn(i, k) is increasing ink. We can conclude that wn+1(i, k) 

is increasing ink, because both Rn(i, k) and sn(i, k) are increasing ink. 

It is obvious that if wn+ 1(i,k) is increasing ink, then yn+1(i,k) is 

also increasing in k. Therefore wn ( i, k) is increasing in k for all n. This 

completes the proof. 0 

Lemma 3.4 
vn(i + 1, k)- vn(i, k) ~ 1 and wn(i + 1, k)- wn(i, k) ~ 1 hold for all i, k. 

Proof. 

First, it is obvious that V 0 (i + 1, k) - V 0 (i, k) :S 1 holds. We prove that 

wn+l (i + 1, k)- wn+l (i, k) ~ 1 with the inductive hypothesis vn(i + 1, k)

vn ( i, k) :S 1. Let us define 

n(-k) {Vn(O,k) fori=O, 
V 'l, = vn(i, k)- Vn(i- 1, k) fori 2: 1. (

3
.
26

) 
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By inductive hypothesis, vn(i, k) :S 1 holds fori 2: 1. Using Lemma 3.1(2) 

and (3), we can find that wn+l ( i, k) satisfies the following inequality. 

wn+l(i + 1, k)- wn+l(i, k) 
00 j 

= ,8(1- fk) (L Pi+lj(T) L vn(m, k + 1) 
j=O m=O 

00 j 

- L~j(T) L vn(m,k + 1)) 
j=O m=O 

+ {T e-axf(k~ +)x) [Li+l(x)- L;(x)]dx 
Jo F kT 

:::; {3(1- fk) [ f: vn(m, k + 1) f: (Pi+lj(T)- P;j(T))l 
m=O J=m 

{T e-ax f(kT + x) dx 
+ Jo F(kT) 

= {3(1 - fk) [f
1 

vn(m, k + 1) Jf;,. (Pi+lJ (T) - P;J (T)) l 
- T -

_ -arF(kT+T) 1 _ f a.e-axF(kT+x)dx 
e F(kT) + Jo F(kT) 

:::; {3(1- fk) [f
11
f;,. (Pi+lj(T)- P;j(T))l 

+ f3(fk- 1) + 1 - {T o:e-axF(k~ +)x) dx 
Jo F kT 

:S ,8(1 - fk) [Li+l (T) - Li(T)] 

{T F(kT + x) 
+ /3(fk- 1) + 1- Jo a.e-ax F(kT) dx 

T -
< - { e-axF(kT + x) dx < 1. 
-

1 Jo a. F(kT) -

To complete the induction, we show that yn+l ( i + 1, k + 1) - yn+l ( i, k + 
1) :S 1 holds by wn+l (i + 1, k + 1) - wn+l (i, k + 1) :S 1. This is easy by 

min{ a, b} -min{ c, d} :S max{ a-c, b-d}. Thus by induction, the inequalities 

vn(i + 1, k) - vn(i, k) :S 1 and wn(i + 1, k) - wn(i, k) :S 1 hold. This 

completes the proof. D 
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Since this model satisfies Condition 2.2, limn~oo wn(i, k) = W(i, k) and 

limn~oo vn(i, k) = V(i, k) hold. Thus, we have the following lemma. 

Lemma 3.5 

(1) W(i, k) is increasing ink. 

(2) V(i + 1, k)- V(i, k) ~ 1 and W(i + 1, k)- W(i, k) :::; 1 hold. 

3.5 Structure of the optimal policy 

Based on Lemma 3.5, we obtain the following theorem that describes a 

structure of the optimal policy. 

Theorem 3.1 

If D(i, l) = 2, then D(j, k) = 2 for all k:::; l and j 2: i. 

Proof. 

First, we note that W(i, l) ~ M(i) holds by D(i, l) = 2. Then we can prove 

the inequality W(j, k) ~ M(j) as follows: 

w (j' k) < w (j' l) :::; w ( i' l) + j - i 

< M ( i) + j - i = M (j). 

Thus D(j, k) = 2. Lemma 3.5(1) and Lemma 3.5(2) are used for the first 

and the second inequality, respectively. This completes the proof. D 

This theorem states that the optimal policy has a switch curve structure 

(Fig. 3.3). The switch curve structure indicates that the two-dimensional 

state space is divided by an increasing function, with the optimal action 

changes across the function. In other words, the optimal action changes at 

most once as the queue length i (the observation time k) increases for the 

fixed observation time k (the queue length i). 
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k 

Increasing function 

Preventive maintenance 

Continue service 

0 

Figure 3.3: The switch curve structure of the optimal policy 

3.6 Conclusion 

In this chapter, we investigated a maintenance problem for an M I M I 1 queue 

with a failure distribution function of the system. The system is observed 

periodically and the maintenance can be started upon the observation time. 

We considered the discounted cost of the lost customers which is incurred 

when the system stops by the failure and the maintenance. The semi-Markov 

decision process was used to analyze the optimal policy. Our policy was de

fined on the two-dimensional state space, where the state indicates the queue 

length and the number of the observations. We showed that the optimal 

maintenance policy has a switch curve structure under some mathematical 

conditions. 



Chapter 4 

An M/G/l Queue with Deteriorating Server 

4.1 Introduction 

This chapter deals with an optimal maintenance policy for a deteriorating 

server. The customer arrives at the system in a Poisson process and he/she 

is served by a server with a general service time distribution. A Markov 

process is considered to represent the deteriorating process of the server. 

The process has multiple states that indicate the deterioration level of the 

server. The server state changes after an exponential time whose transition 

rate may depends on the state. There is one failure state and the failure 

occurs when the server state becomes the failure state. When the server 

fails, the failure is detected immediately and the corrective maintenance 

starts. The deteriorating process and the queue length process is always 

monitored. With this observation, the preventive maintenance can be taken 

to avoid the failure. After the maintenance, the server state becomes as 
good as new, though we lose the customers in the system upon the start of 

the maintenance and the arrivals during the maintenance. A unit cost per 

lost customer is incurred. Our objective is to find the optimal maintenance 

policy that minimizes the total expected discounted cost over an infinite 

time horizon. The problem is formulated as a semi-Markov decision process 

whose state space is a pair of the queue length and the server state. It is 

shown that the optimal control has a switch curve structure under some 

conditions. 

39 



40 CHAPTER 4. M/G/1 QUEUE WITH DETERIORATING SERVER 

The organization of this chapter is as follows. The next section provides a 

detailed explanation of our model. In Section 4.3, we formulate our problem 

as a semi-Markov decision process. In Section 4.4, we derive the properties of 

the value functions. In Section 4.5, the switch curve structure of the optimal 

policy is derived from the properties proved in Section 4.4. The last section 

concludes our results. 

4.2 Model 

We consider a single server queue with Poisson arrivals at rate .X. The 

customers form a single queue and their service times are i.i.d. with a dis

tribution function G(x), which is assumed to have a density function g(x). 

The server has s + 2 states that are numbered from 0 to s + 1. The num

ber indicates the deterioration level of the server. It is assumed that the 

server deteriorates in this order, i.e., state 0 indicates the server is as good 

as new and state s + 1 is the failure state. The transitions are governed by 

a Markov process whose transition rate from state i to j is denoted by rij. 
s+l 

By uniformization, we can assume L rij is equal to a constant r for all i. 
j=O 

We consider a maintenance problem for this system. The corrective 

maintenance is immediately performed when the server fails. The decision 

between the preventive maintenance and the operation of the system is made 

upon the decision epochs. The decision epochs are the departure time, the 

transition time of the server state when the system is empty, and the ar

rival time to the empty system (Fig. 4.1). Note that no decisions during 

service are made even if the server state changes. The functions H 1 (x) and 

H2(x) denote the distribution functions of the time for preventive mainte

nance and corrective maintenance, respectively. Upon the beginning of the 

maintenance, all the customers in the system are lost and the arriving cus

tomers during maintenance are also lost. One unit cost per lost customer is 

incurred and we consider the minimization of the total expected discounted 

cost over an infinite time horizon with discount factor a. 

4.2. MODEL 

Queue 
length 

Server 
state 

s+l ~-------------------------------------,,--

0 

Decision epochs 

0 Deterioration 

Corrective 
maintenance 

~ Arrival of a customer 
to the empty system during the empty system 

0 Departure of a customer X Failure 

Figure 4.1: The decision epochs 

41 
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4.3 Formulation 

In this section, we define the semi-Markov decision process for our problem. 

State and Action set 

The system state is expressed by a pair of the queue length i ( i 2: 0) and the 

server state k ( 0 :S k :S s + 1). The preventive maintenance is referred to 

as Action 1 and continuing service is referred to as Action 2, which can be 

taken in state (i, k) (k::; s). Action 3 is the corrective maintenance, which 

must be taken in state ( i, s + 1). 

Transition Probability 

The transition probabilities are expressed by using following probabilities. 

Pi(x): The probability that i customers arrive at the queue during time x. 

Since the Poisson arrival is assumed, it holds that 

Note that 
00 

L iPi(x) = :>..x. 
i=O 

Tkl(x): The probability that the server state is l after time x, given the 

initial state k. 

By these notations, we can express as follows the transition probability 

Q((i,k),(j,l)) ( t) from state ( i, k) to (j, l) within time t for each action a. 

(1) For Action 1, the next state becomes (0, 0) and the transition time 

distribution is HI( t). Thus, 

Q((i,k),(O,o))(t) = Hl(t). 

4.3. FORMULATION 

(2) For Action 2, we have the following cases: 

Q((i,k) ,(j,l)) ( t) = 

l Pj-i+t(x)nl(x)g(x)dx if i ;::- 1 and l ~ s, 
l Pj-i(x)G(x)dTks+!(x) if i ;::- 1 and l = s + 1, 

fo' 'Ykle-<F +>-)xdx if i = 0 and j = 0, 
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fo' >.e-<F +A)xdx if i = 0, j = 1 and k = l. 

(3) For Action 3, the next state becomes (0, 0) and the transition time 

distribution is H2(t). Thus, 

Cost Function 

The cost functions are calculated in a manner similar to Chapter 3. 

(1) For Action 1 in state (i, k) (k::; s) and Action 3 in state (i, s + 1), the 

expected discounted costs from the start to the end of maintenance are 

i + )..h 1 and i + :>..h2, respectively ( hm is defined by Eq. ( 3 .4)). 

(2) For Action 2, no cost is incurred until the next transition. 

Optimality Equation 

For the optimality equation, we define the following cost functions. 

V(i, k): The optimal cost function for state (i, k). 

M(i, k): The cost function when Action 1 is taken upon the transition to 

(i, k) and taking the optimal policy thereafter. For the same reason 

as in Chapter 3, M(i, k) is denoted by M(i). 

W(i, k): The cost function when Action 2 is taken upon the transition to 

(i, k) and taking the optimal policy thereafter. 
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D(i, k): The optimal action for state (i, k). 

D(i,k) = { ~ when M(i) ::; W(i, k), 

when M(i) > W(i, k). 

By a similar argument as in Chapter 3, the optimality equation becomes as 

follows. 

W(O,k) = ~ r[I:rktV(O,l)+.XV(l,k)], 
a+ + l=O 

M(i) = i + ..\h1 +(I - ahi)V(O, 0), 

W(i, k) = f t ["' e-<>x Pj(x)Tkt(x)V(i + j- 1, l)g(x)dx 
j=O l=O O 

+fIn'"' e-<>xpj(x)G(x)V(i + j,s + 1)dTks+J(x) (i 2: 1), 
j=O 0 

V (i, k) = min[M(i), W( i, k )] (k ::; s ), 

V(i, s + 1) = i + ..\h2 + (1 - ah2)V(O, 0). 

The value iteration method for this problem is defined as follows. 

Value iteration method 

Step 0. n := 0, V 0 (i, k) := W 0 (i, k) := M 0 (i) := i +..\fa. 

Step 1. 1 [s+l l 
wn+l(O,k) := A r LT'klvn(O,l) +..\Vn(l,k)' 

Q + + l=O 

( 4.1) 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

wn+J (i, k) := f t L'" e-<>X Pj(x)nt(x)g(x)Vn(i + j- 1, l)dx 
j=O l=O O 

+fIn"" e-""Pj(x)G(x)Vn(i + j,s + 1)dTks+J(x) (i 2: 1), 
j=O 0 

Mn+ 1 (i) := i + ..\h1 + (1- ah1)Vn(O,O), 

vn+ 1(i, k) := min[Mn+ 1(i), wn+1(i, k)] (k::; s), 

vn+1 (i, s + 1) := i + :>..h2 + (1- ah2)Vn(O, 0). 
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Step 2. n := n + 1 and return to Step 1. 

We derive some properties of V(i, k) and lV(i, k) in the next section. 

4.4 Properties of the cost function 

To derive the property of the cost functions, we assume that the following 

conditions hold. 

Condition 4.1 

The transition rate T'ij and the distribution functions G ( x), H 1 ( x) and H 2 ( x) 

satisfy the following conditions. 

s+l 
(1) L T'kt is increasing in k for all m. 

l=m 

( 2) H 2 ( x) 2 H 1 ( x) for all x. 

(3) ..\ ::; g(x)/G(x) for all x. 

(4) H1(x), H2(x) and G(x) satisfy Condition 2.2(3). 

Condition 4.1 ( 1) tells that the server is more likely to move to deteriorated 

states as its deterioration level becomes higher. Condition 4.1 ( 2) tells that 

the time for corrective maintenance is stochastically larger than that for 

preventive maintenance. This condition is a sufficient condition for h1 :5 h2. 

Condition 4.1(3) tells that the service rate is always larger than the arrival 

rate, which secures that the queue length does not grow infinitely as the 

time goes. 

Lemma 4.1 (Stoyan {30]) 

Under Condition 4.1(1), the following relations holds. 

s+1 
(1) L Tkt(x) is increasing ink for all m. 

l=m 
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s+l s+l 

(2) For any increasing sequence ft, the sums LTkz(x)fz and L 'Yktfz are 
l=O l=O 

both increasing in k. 

Lemma 4.2 

vn(i, k) and wn(i, k) are decreasing inn. 

Proof. 
First, we show V 1(i,k) :S V 0 (i,k) and W 1(i,k)::; W 0 (i,k). 

Fori~ 1, 

00 s roo 
W 1 (i, k) = L L Jo e-ax Pj(x)Tkz(x)g(x)(i + j- 1 + >..la)dx 

j=O l=O O 

00 roo 
+ L Jo e-axpj(x)G(x)(i + j + >..la)dTks+l(x) 

j=O 0 

= fooo e-"xTks+l(x)g(x)(i + Ax -1 + )..j01)dx 

+ fooo e-"xG(x)(i + Ax + Aj01)dTks+l(x) 

roo d - -
= J 

0 
e-ax ( i + >..x + >..I a) dx (-T k s+ 1 ( x) G ( x)) dx 

- fooo e-"xTks+!(x)g(x)dx 

= [e-"'x( -Tks+l (x)G(x))(i + Ax + A/01) r 
+ fooo Tks+l(x)G(x)(Ae-<>x- {i + Ax + )..j01)01e-"x)dx 

- fooo e-"xTks+!(x)g(x)dx 

4.4. PROPERTIES OF THE COST FUNCTION 

::; i + )../01 + fooo Tks+!(x)(AG(x)- g(x))e-"'xdx 

::; i + >..I a = w 0 
( i, k). 

Condition 4.1(3) was applied to obtain the above last inequality. 
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The following calculation shows that M 1 ( i) ::; i +>..I a and V1 ( i, s + 1) ::; 

i +>..la hold. 

M 1(i)::; i + >..h1 + (1- ahi)>..Ia = i +>..la, 

V 1 (i, s + 1) ::; i + >..h2 + (1- ah2)>..la = i +>..la. 

Since M 1 (i), W 1(i,k) and V 1(i,s + 1) are less than or equal to i +>..la, it 

is obvious that V 1(i,k)::; i+>..la. Thus W 1 (i,k)::; W 0 (i,k) and V 1 (i,k)::; 

V 0 (i, k) hold. 

Next, we show wn+2 (i, k) ::; wn+ 1(i, k) and vn+2 (i, k) ::; vn+1(i, k), 

using the inductive hypothesis wn+1(i, k) ::; wn(i, k) and vn+ 1(i, k) ::; 

vn(i, k). 

wn+2 (0, k)- wn+1(0, k) 

= ~ r [I: 'Ykz(vn+l (0, l) - vn(o, l)) + >..(vn+l (1, k) - vn(1, k) )] 
Q + + l=O 

::; 0. 

The inequality wn+2 (i,k)::; wn+1(i,k) (i ~ 1) and Mn+2 (i) :S Mn+ 1(i) are 

shown in a similar manner. It is also obvious that vn+2 (i, k) ::; vn+ 1(i, k) 

holds because wn+2(i, k) ~ wn+I (i, k) and Mn+ 2(i) ~ Mn+I (i). This 

completes the proof. 0 

We now prove the following lemma. 

Lemma 4.3 

(1) W(i, k) and V(i, k) are increasing ink. 

(2) V(i + 1, k)- V(i, k) ::; 1. 
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Since wn(i , k) and vn(i , k) converge to W(i, k) and V(i , k) as n ---t oo, 

respectively, by Condition 2.2, it is sufficient to prove above properties for 

wn(i, k) and yrn(i, k). 

Proof of (1). 

It is obvious that W 0 (i, k) and V 0 (i, k) are increasing in k. Assuming 

wn(i, k) and vn(i, k) are increasing in k, we show below that wn+l(i, k) 

and vn+ 1 ( i' k) are also increasing in k. 

It is easily proved that wn+ 1 ( 0' k) is increasing in k by induction and 

Lemma 4.1(2) . We show that wn+ 1(i, k) for i ~ 1 is increasing in k as 

follows. 

oo s+l 00 

wn+l (i , k) = L L In e-QX Pj(x)Tkt(x)g(x) 
j=O l=O O 

[Vn ( i + j - 1, l) - vn ( i + j - 1, s + 1)] dx 

+ f t looo e-ax Pj(x)Tkl(x)g(x)Vn(i + j- 1, s + l)dx 
j=O l=O 0 

By the inductive hypothesis and Lemma 4.1(2), the first term 

oo s+l 00 L L In e-QX Pj(x)Tkt(x)g(x)[Vn(i + j- 1,l)- vn(i + j- 1, s + 1)]dx 
j=O l=O O 

is increasing in k. The second and third terms are calculated as follows. 

00 roo 
+ L Jo e-ax Pj(x)G(x)Vn(i + j, s + 1)dTks+l (x) 

j=O 0 

= fooo e-"'x[>.x- 1 + vn(i, s + 1)]Tks+l (x)g(x)dx 

+ fooo e-"'x[>.x + Vn(i, s + 1))G(x)dTks+!(x) 

=- fooo e-"'xTks+!(x)g(x)dx 
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- {

00 

e-ax[.Ax + Vn(i , s + 1)]~(G(x)l\s+l(x))dx lo dx 

=- fooo e-"xTks+l(x)g(x)dx 

- [e-ax(.Ax + Vn(i,s + 1))Tks+l(x)G(x)J: 

-a fooo e-"x[>,x + vn(i, s + 1 )]Tk s+i (x)G(x)dx 

+>.loco e-"'xTks+l(x)G(x)dx 

= vn(i,s + 1)- a fooo e-"'x[>.x + vn(i,s + 1)]Tks+l(x)G(x)dx 

+ fooo e-"'x(>.G(x)- g(x))1\s+!(x)dx. 

By Condition 4.1(3), .AG(x)- g(x) s; 0 holds for all x, and Tks+I(x) IS 

decreasing in k by Lemma 4.1(1). Thus wn+1(i, k) is increasing in k. It 

is also obvious that if wn+l ( i, k) is increasing in k, then vn+l ( i, k) is also 

increasing in k. 

Proof of (2). 
It is obvious that V 0 (i + 1, k) - V 0 (i, k) s; 1 holds. Using the inductive hy

pothesis vn(i+1, k)- vn(i, k) s; 1, we show that vn+ 1(i+1, k)- vn+l(i, k) s; 
1. To show vn+1 (1, k)- vn+ 1 (0, k) s; 1, the next two cases are considered. 

Case 1. Dn+l (0, k) = 1. 

Case 2. Dn+l(O,k) = 2. 
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Next we show vn+ 1(i + 1, k)- vn+ 1(i, k)::; 1 holds fori 2: 1. 

Case 1. nn+ 1(i, k) = 1. 

Case 2. nn+I (i, k) = 2. 

vn+l(i + 1,k)- vn+l(i,k)::; wn+l(i + 1,k)- wn+l(i,k) 
00 s roo 

= 2:2: Jo e-ax Pj(x)Tkz(x)g(x) 
j=O l=O 0 

[Vn(i + j, l) - vn(i + j- 1, l)]dx 
00 roo 

+ 2: Jo e-ax Pj(x)G(x)dTks+I(x) 
j=O 0 

[Vn(i + 1 + j,s + 1)- vn(i + j,s + 1)]dx 
00 s roo ::; 2:2: Jo e-ax Pj(x)Tkz(x)g(x)dx 

j=O l=O O 

This completes the proof. 0 

4.5 Structure of the optimal policy 

By Lemma 4.3, we have the following theorem. 
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Theorem 4.1 

If D(i, l) = 2, then D(j, k) = 2 for all k::; l and j 2: i. 

Proof. 

For (i, l) and (j, k), we have 

V (j, k) ::; V (j, l) ::; j - i + V ( i, l) < j - i + M ( i) = M (j). 

The first inequality holds by Lemma 4.3 ( 1), and the second inequality is 

obtained by applying Lemma 4.3(2) repeatedly. The last inequality holds 

because D(i, l) = 2 implies V(i, l) = W(i, l) < M(i). The strict inequality 

V(j, k) < M(j) indicates that V(j, k) = W(j, k), i.e., D(j, k) = 2. This 

completes the proof. D 

This theorem states that the optimal policy has a switch curve structure 

as illustrated in Fig. 4.2. This figure suggests that the optimal action changes 

at most once as the queue length i increases for a fixed server state k and 

the change is from preventive maintenance to continuation of the service. 

It also suggests that the optimal action changes at most once as the server 

state k(::; s) increases for a fixed queue length i and the change is from 

continuation of the service to preventive maintenance. 

4.6 Conclusion 

This chapter studied a maintenance problem for an M I G I 1 queue whose de

teriorating process is expressed by a Markov process. The system is always 

observed and the preventive maintenance can be started upon the depar

ture of a customer, upon the arrival to the empty system and upon the 

deterioration during the empty system. If the system fails, the corrective 

maintenance starts immediately. We considered the discounted cost of the 

lost customers which are produced when the system stops by the failure or 

the maintenance. For this system, a semi-Markov decision process was for

mulated to analyze its optimal policy, in which the state is defined by a pair 
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Corrective maintenance 
s+l 

Increasing function 

Preventive maintenance I 

I 
Continue service 

Figure 4.2: The optimal maintenance policy 

of the queue length and the server state. For this problem, we showed that 

the optimal maintenance policy has the switch curve structure under some 

mathematical conditions. 

Chapter 5 

A Queue with Decreasing Service Rate 

5.1 Introduction 

In Chapter 3 and Chapter 4, we discussed the system whose service ability 

is not affected by server deterioration. In this chapter, we study a model in 

which the server state affects the service speed. The model is also extended 

to the situation where the server faces multiple users through terminals. By 

the server deterioration, the service speed at terminals becomes slower and 

the failure of the server means that all terminals become unavailable. The 

server state is recovered by two kinds of maintenance, preventive mainte

nance and corrective maintenance. The decision epochs are the arrival time 

of a customer, the departure time of a customer and the transition time 

of the server state. A preventive maintenance can be performed upon any 

decision epoch except the transition to the failure state, and the corrective 

maintenance must be performed upon the failure. After the maintenance, 

the server state returns to the new state. However, the system loses all the 

customers who were in the system upon the start of maintenance or who 

have arrived during maintenance. 

Our model could be applied to the maintenance of a workstation with 

multiple terminals. To perform maintenance in such systems, it needs to stop 

service for users or transfer the customers to other systems. To avoid such 

inconvenience as possible, we deal with the minimization of the customers 

who are lost by the maintenance and the failure. 

53 
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It may be intuitively obvious that the preventive maintenance should be 

performed when there are few users in the system and the server is in a 

deteriorated state. We show such a property under certain conditions, by 

proving a switch curve structure of the optimal policy. 

5.2 Model 

We consider a queueing system with Poisson arrivals at rate A. The server 

has s + 2 states numbered from 0 to s + 1. The number indicates the 

deterioration level of the server. State 0 indicates that the server is as good 

as new and state s + 1 indicates the failure state. States 1, ... , s indicate the 

increasing levels of deterioration in this order. The server state is assumed 

to change according to a Markov process. The transition rate from state k 
s+l 

to l is denoted by rkl· By uniformization, we can assume that L rkl is equal 
l=O 

to a constant r for all k. The server has N terminals at which customers 

are served. The arriving customers while the system is full are lost. The 

system state is expressed as (i, k), indicating the queue length i (0 ~ i ~ N), 

including the customers in service, and the server state k ( 0 ~ k ~ s + 1). 

The service rate 11(i,k) indicates the transition rate from (i,k) to (i -1,k), 

i.e., one of the customers departs from the system. If the server fails, we 

must start the corrective maintenance immediately. Preventive maintenance 

can be performed when the system state changes (i.e., upon arrival, upon 

departure or upon server state transition). After the maintenance, the server 

returns to state 0. The distribution functions of preventive and corrective 

maintenance time are H1(x) and H2(x), respectively. It is assumed that the 

preventive maintenance time has the same distribution function for all k. In 

our model, customers in the system are lost upon the start of maintenance 

and the arrivals are also lost during maintenance. Since the system should 

serve as many customers as possible, we consider the number of the lost 

customers as a cost. 

The problem is to determine the action (preventive maintenance or ser

vice) to minimize the total expected discounted number of lost customers, 
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in an infinite time horizon with discount factor a. 

5.3 Formulation 

The problem is formulated as a semi-Markov decision process in this section. 

State and Action set 

The system state is expressed by a pair of the queue length i and the server 

state k. The preventive maintenance is referred to as Action 1 and continuing 

service is referred to as Action 2 which can be taken in state ( i , k) ( k ~ s). 

Action 3 is the corrective maintenance which is taken in state ( i, s + 1). 

Transition Probability 

(1) For Action 1 and Action 3, the next state becomes (0, 0) and the 

transition time distribution are H1 (t) and H2(t), respectively. 

(2) We apply the uniformization in Section 2.3 for Action 2. Let us define 

11 

(} 

~ax 11 ( i, k), 
t,k 

r +A+ 11 . 

(5.1) 

(5.2) 

By uniformization, the transition probability Q;
5

, (t) for Action 2 be

comes 

( 1 - e-Ot) A/(} 

( s = ( i, k), s' = ( i + 1, k), i :S N - 1) 

(1- e-0t)l1(i, k)/B 

( s = ( i, k), s' = ( i - 1, k), i ~ 1) 

(1 - e-0t)rkt/B 

( s = ( i, k), s' = ( i, l), k ~ l) 

(1- e-0t)(11- 11(i, k) + rkk)/B 

( s = ( i, k) , s' = ( i, k), i ~ N - 1) 

(1- e-0t)(l1- 11(i, k) +A+ rkk)/B 

(s = (N, k), s' = (N, k)) 

(5.3) 
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Cost Function 

For Action 1 and Action 3 in state ( i, k), the costs until the next transition 

are the same as in Chapter 4, i.e., i + >..h1 and i + >..h2, respectively, where 

hm is defined by Eq. (3.4). 

For Action 2 in state ( N, k), the arrivals are lost until the next tran

sition happens. If it takes time t before the next transition, the expected 

cumulative cost is >..t. The cost until the next transition is then obtained by 

calculating Eq. (2.5), 

{'" {l e-<>y Ady} 9e-01dt = A/(9 +a). (5.4) 

Optimality Equation 

We define the following cost functions for the optimality equation. 

V(i, k): The optimal cost function for state (i, k). 

M(i, k): The cost function for the policy of performing preventive main

tenance upon transition to ( i, k) and taking the optimal behavior 

thereafter. M(i, k) will be denoted by M(i) in the following, be

cause it is independent of k. 

W ( i, k): The cost function for the policy of continuing service upon transition 

to ( i, k) and taking the optimal behavior thereafter. 

D(i, k): The optimal action for state (i, k), 

D z k = ( 
. ) { 1 if preventive maintenance is optimal (M ( i) < W ( i, k)), 

' 2 if continuing service is optimal (M(i) ~ W(i, k)). 

For these functions, we obtain the following optimality equations: 

M(i) = i + >..h1 + (1- ahl)V(O, 0), 

1 [s+l 
W(i, k) =- L /ktV(i, l) + >..V(i + 1, k) 

A l=O 

(5.5) 
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+ !L(i,k)V(i -l,k) + (!L- !L(i,k))V(i,k)] (0 :<:; k :<:; s) , (5.6) 

V(i, k) = min{M(i), TV(i, k)} (0:::; k:::; s), (5.7) 

V(i, s + 1) = i + >..h2 + (1- ah2)V(O, 0), (5.8) 

where V( -1, k) = V(O, k), V(N + 1, k) = V(N, k) + 1 and A= B +a. 

Value iteration method 

The value iteration method is defined as follows. 

Step 0. n := 0 and V 0 (i, k) := 0 for all i, k. 

Step 1. Mn+ 1 (i) := i + >..h1 + (1- ahl)Vn(o, 0), 

1 [s+l 
wn+l(i,k) :=A Lrklvn(i,l) + >..vn(i + l,k) 

l=O 

+ /L ( i' k )Vn (i - 1' k) + (/L - /L ( i' k)) vn ( i' k)] ' 

vn+1(i, k) := min[Mn+ 1 (i), wn+ 1(i, k)] (0:::; k:::; s), 

vn+l(i, s + 1) := i + )..h2 + (1- ah2)vn(o, 0). 

Step 2. n := n + 1 and return to Step 1. 

In the next section, we derive some properties of V ( i, k) and W ( i, k) to 

analyze the optimal policy. 

5.4 Properties of the cost functions 

In this chapter, we assume the following conditions: 

Condition 5.1 

s+l 
( 1) L /km is increasing in k for all l. 

m=l 

(2) H 2 (x) ~ HI(x)forallx, andH1(x) andH2(x) satisfy Condition2.2(3). 
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( 3) J.L ( i, k) is decreasing in k and increasing in i. 

Condition 5.1 ( 1) tells that the server is likely to enter a higher state as 

the level of deterioration increases. Condition 5.1(2) tells that the time 

for corrective maintenance is stochastically longer than that for preventive 

maintenance. Under Condition 5.1(2), the inequality h 1 ::; h2 holds. Con

dition 5.1(3) tells that the service rate decreases as the server deteriorates, 

and the service rate increases as the queue length increases. 

We prove the following properties. 

Lemma 5.1 

(1) V(O, 0) ::; .A/a for all i, k. 

(2) V(i, s)::; V(i, s + 1). 

Proof. 

By Condition 2.2, vn(i, k) converge to V(i, k) as n -+ oo. Thus, it is suf

ficient to prove above properties for vn(i, k). This is used in the proofs of 

Lemma 5.2 and Lemma 5.3. 

Both properties hold for n = 0. 

The first property holds because if vn(o, 0) ::; .A/ o:, then 

yn+l (0, 0) :S .Ah1 + (1 - o:h1 ).A/ 0: = .A/ 0:. 

The second property is shown as follows. 

The last inequality holds by Condition 5.1(2) and vn(o, 0) ::; .A/a. This 

completes the proof. 0 

Lemma 5.2 

V(i, k) and W(i, k) are increasing in i and k. 

Proof. 

It is trivial for n = 0. 
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It is obvious that if vn(i, k) and wn(i, k) are increasing in i, then vn+ 1(i, k) 

and wn+l ( i, k) are also increasing in i. With the inductive hypothesis that 

vn(i,k) and wn(i,k) are increasing ink, we prove that vn+1(i,k) and 

wn+1(i, k) are increasing ink as follows: 

1 [s+l 
wn+l (i, k) = A L !kl vn(i, l) + .AVn(i + 1, k) 

l=O 

+{I( i, k)Vn( i- 1, k) + ({1- {l(i, k)) vn(i, k) l 
The first term is increasing in k by Lemma 4.1(2). The second term is also 

increasing in k by the inductive hypothesis. The third and fourth terms 

satisfy the following. 

Jl(i, k)Vn(i- 1, k) + (Jl- Jl(i, k))Vn(i, k) 

::; Jl(i, k + l)Vn(i- 1, k) + (Jl- Jl(i, k + 1))Vn(i, k) 

::; Jl(i, k + 1)Vn(i- 1, k + 1) + (11- J.L(i, k + 1))Vn(i, k + 1). 

The first inequality holds because vn (i - 1, k) ::; vn ( i, k) and 11 ( i, k) > 
J.L ( i, k + 1). Thus wn+ 1 ( i, k) is increasing in k. 

Since wn+ 1(i,k) is increasing ink and vn+1 (i,s)::; vn+ 1(i,s+1) holds, 

yn+l ( i, k) is also increasing in k. This completes the proof. o 

Lemma 5.3 

(1) W(i + 1, k)- W(i, k) ::; 1- aj A. 

(2) V(i + 1, k)- V(i, k) s; 1. 

Proof. 

Properties (1) and (2) trivially hold for n = 0. For n > 0, it holds that 

wn+l(i + 1, k)- wn+l(i, k) 

:::; ~ [r+ .>. + J-1 + J.l(i,k)- J.l(i + 1,k)l :::; 1- afA. 

The first inequality holds by vn(i + 1, k) - vn(i, k) < 1, and the last in

equality holds by Condition 5.1(3). 
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Next, vn+1(i + 1, k)- vn+ 1(i, k) ~ 1 is obvious from 

m in { x, y} - min {a, b} ~ max { x - a, y - b} 

and vn+1(i + 1, s + 1)- vn+1(i, s + 1) = 1. Then, by induction, Lemma 5.3 

holds. This completes the proof. D 

These lemmas are used to obtain the switch curve structure of the optimal 

policy and restrict the region of the switching curve. 

5.5 Structure of the optimal policy 

In this section we discuss properties of the optimal policy. 

Theorem 5.1 

If D(i, l) = 2, then D(j, k) = 2 for all k ~ l and j 2: i. 

Proof. 

M(i) 2: W(i, l) holds because D(i, l) = 2. Then, 

M(j) = M(i) + j- i 2: W(i, l) + j- i 2: W(i, l) + W(j, l)- W(i, l) 2: W(j, k). 

The second inequality holds by Lemma 5.3(1), and the last inequality holds 

by Lemma 5.2. This completes the proof. D 

Furthermore, the following theorem tells that the preventive maintenance 

area is restricted. 

Theorem 5.2 

For a fixed i 2: 1, define K ( i) as follows, 

K(i) = max{k I rks+l,\(h2- h1)- p(i, k) ~ ai- ,\ + ah1-\}. (5.9) 

Then D(i, k) = 2 fork~ K(i). 

5.5. STRUCTURE OF THE OPTIMAL POLICY 

Proof. 

Since V(i, k) ~ M(i) for 0 ~ k ~sand i 2: 1, it holds that 

W(i, k) :<::; * [:t "'kzM(i) + "'ks+l V(i, s + 1) + >.(M(i) + 1) 
l=O 

+ f.l(i, k)(M(i)- 1) + (f.l- f.l(i, k))M(i)l 

= * [(r- rks+dM(i) + rks+l {M(i) + (h2- h1)(-\- aV(O, 0))} 

+ ,\M ( i) + ,\ + ~-tM ( i) - p( i, k)] 
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= M(i)- * [aM(i) + ~-t(i, k)- ,\- rks+l(h2- hi)(-\- aV(O, 0))] 

= M(i)- ± [ai + a-\h1 + a(1- ah!)V(O, 0) + p(i, k) 

- ,\ - rk s+ 1 ( h2 - h 1) ( ,\ - a V ( 0, 0))] 

= M(i)- * [ai + a-\h1 + p(i, k)- ,\- rks+l (h2- hi),\ 

+ { rk s+dh2- hi)+ (1 - ah!) }aV(O, 0)] 

~ M(i)- * [ai + a-\h1 + p(i, k)- ,\- rks+dh2- hi),\]. 

From the last inequality, for a fixed i, W(i, k) ~ M(i) holds if 

Since rks+1-\(h2 -hi) is increasing in k by Condition 5.1(1) and (2), and 

p(i, k) is decreasing ink by Condition 5.1(3), the above inequality holds for 

k ~ K(i). This completes the proof. D 

By Theorem 5.1 and 5.2, the optimal policy has the switch curve struc

ture as shown in Fig. 5.1. The state space is divided by an increasing function 

(switching curve), with the optimal action changes across the function, and 

the switching curve exists above K(i). 
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service rates indicate that the customers are served at four terminals and six 

terminals are used as waiting rooms. The transition of server deterioration 

is either to proceed to the next state or to enter the failure state directly. 

The following table shows the values of rkl, and other rkl 's are equal to zero. 

rkk rkk+l rks+l 

k=O 1.5 0.1 0.4 

1 1.4 0.1 0.5 
2 0.7 0.1 1.2 

3 0.6 0.2 1.2 
4 0.4 0.3 1.3 

5 0.3 0.4 1.3 

6 0.2 1.8 

Figure 5.1: The structure of the optimal policy In this problem, H 1 ( x) and H 2 ( x) are deterministic and defined as follows, 

5.6 Numerical example 

In this section we show a numerical example of our model. 

We calculate the optimal policy for a problem with N = 10, s = 6, arrival 

rate .A = 7, discount factor a = 0.25, F = 2 and J.L = 20. The following table 

shows the values of J.L(i, k). 

6 3 6 9 12 12 12 12 12 12 12 

5 3 6 9 12 12 12 12 12 12 12 

4 4 8 12 16 16 16 16 16 16 16 

3 4 8 12 16 16 16 16 16 16 16 

2 5 10 15 20 20 20 20 20 20 20 

1 5 10 15 20 20 20 20 20 20 20 

k=O 5 10 15 20 20 20 20 20 20 20 

i = 1 2 3 4 5 6 7 8 9 10 

The service rate J.L(i, k) increases linearly for i (1 < i ::; 4). Thus, these 

Hl(x)={O (O~x<2) 
1 (2 ~ x), 

H
2
(x) = { 0 (0 ~ x < 8) 

1 (8 ~ x). 

With these parameters, which satisfy Condition 5.1, K(i) becomes 

i 1 2 3 4 5 6 7 8 9 10 

K(i) 0 0 1 2 2 2 2 2 2 2 

From this table, we can see that, for example, it is optimal to continue service 

if the server state k ~ 2 fori= 4, ... , 10. 

The optimal policy D(i, k) computed by the value iteration method. The 

iteration is terminated when ~ax IVn+l (i, k)-vn(i, k)i/Vn(i, k) < 10-6 . Af-
t,k 

ter the iteration is terminated, the optimal policy is derived from Eq. (5.5)-
(5.8). The following table shows the optimal action D(i, k), where the num

ber '1' in the table means that preventive maintenance is optimal, and '2' 
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means that continuing service is optimal. K ( i) is expressed by '2'. 

Server Optimal policy D ( i, k) 

state k 

6 1 1 1 2 2 2 2 2 2 2 2 

5 1 1 1 2 2 2 2 2 2 2 2 

4 1 1 2 2 2 2 2 2 2 2 2 

3 1 2 2 2 2 2 2 2 2 2 2 

2 1 2 2 2 2 2 2 2 2 2 2 
1 2 2 2 2 2 2 2 2 2 2 2 

0 2 2 2 2 2 2 2 2 2 2 2 

0 1 2 3 4 5 6 7 8 9 10 

Queue length i 

This table illustrates the switch curve structure of optimal policy whose 

switching curve exists above K ( i). 

5. 7 Conclusion 

We dealt with the optimal maintenance policy of a queueing system with 

multiple terminals handled by a deteriorating server. In this chapter, it was 

assumed that the deterioration affects both the time to failure and service 

rate. 

We analyzed the structure of the optimal policy to minimize the number 

of lost customers, and proved a switch curve structure of the optimal policy, 

under some reasonable conditions, by using semi-Markov decision process. 

Furthermore, we derived that the region of the switching curve is restricted. 

Chapter 6 

A Queue with Decreasing Arrival Rate 

6.1 Introduction 

In Chapter 5 we studied a system whose service speed becomes slower as it 

deteriorates. In this chapter we study an optimal maintenance policy for a 

queueing system whose arrival rate decreases as it deteriorates. Customers 

arrive at the server in a Poisson stream and are served at a server, which is 

subject to multiple states. Each state indicates a level of popularity. The 

arrival rate depends on the server state and it decreases as the server loses 

popularity. The transitions of the server state are governed by a Markov 

process. The service time distribution is exponential and the service rate 

does not change by deterioration. By performing maintenance we can re

cover the server state completely, though all the customers in the system are 

lost upon the beginning of maintenance. The customers who arrive during 

maintenance are also lost. The system collects a fee from each customer, 

and, therefore, it is desirable to keep high popularity. In this chapter two 

systems are considered, which are different in the time when the fees are 

charged. 

Model A: The system collects a unit fee from each customer upon arrival. If 

there are any customers upon the beginning of maintenance, the 

system pays back the fees to them upon the start of maintenance. 

65 



66 CHAPTER 6. QUEUE WITH DECREASING ARRIVAL RATE 

Model B: The system collects a unit fee from each customer upon depar

ture and there is no repayment to customers who are lost due to 

maintenance. 

For these two systems, our objective is to maximize the total expected dis

counted profit over an infinite time horizon. We use a semi-Markov decision 

process to formulate the problem and establish the properties of the optimal 

maintenance policy under certain conditions. 

6.2 Model 

We consider a single server queue with Poisson arrivals and a server with 

exponential service time. The customers form a single queue, whose capacity 

is denoted by N and they are served by the server with service rate J-l· The 

server has s+l states which are numbered from 0 to s. The number indicates 

the popularity of the server. In state 0 the server has the highest popularity, 

and the server becomes less popular as the state number ascends. The arrival 

rate depends on the server state k, and the arrival rate at state k is denoted 

by Ak· The transitions of the server state are governed by a Markov process 

and the rate from state k to l is denoted by l'kl· As stated in Chapter 5, 
s 

we can assume L l'kl = r for all k. We consider no failure in this chapter, 
l=O 

because popularity is irrelevant to failure. 

The system receives a unit fee from each customer upon arrival in Model A 

or upon departure in Model B. Thus, it is desirable to keep the high arrival 

rate to earn fees. To recover the server state, we can perform maintenance 

of the server. After maintenance, the server returns to state 0. However, if 

there are customers in the system upon the beginning of maintenance, we 

lose the customers and pay back the fee to each lost customer in Model A 

but pay nothing in Model B. We also lose the customers during maintenance, 

i.e., we cannot earn money during maintenance. The maintenance time is 

generally distributed with the distribution function H ( x). The system state 

is expressed by the queue length i and the server state k. The system is con-
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tinuously monitored. When the system state changes, we determine whether 

to perform maintenance or to continue service. Our objective is to maximize 

the total expected discounted reward with discount factor a. 

6.3 Model with fees upon arrivals 

In this section we deal with the system which receives a unit fee from each 

customer upon arrival. Upon the start of maintenance, if there are any 

customers in the system, we lose them and must pay back the fees to them. 

We discuss the optimal policy for this model in the following subsections. 

6.3.1 Formulation 

The elements of the decision process are similar to those in Chapter 5. State 

(i, k) is a pair of the queue length i and the server state k. The state 

transition is similar to those in Chapter 5 because the deterioration process 

is Markovian and interarrival time and service time is exponential, though 

the arrival rate depends on the server state. We then omit the detail of the 

decision process and start from the optimality equation. For the optimality 

equation, we define the following functions. 

VA(i, k): The optimal reward function for state (i, k). 

M A ( i, k): The reward function for the policy of performing maintenance 

upon transition to (i, k) and taking optimal behavior thereafter. 

This will be denoted by MA(i) in the following, since it is a func

tion of i only. 

WA(i, k): The reward function for the policy of continuing service upon tran

sition to ( i, k) and taking optimal behavior thereafter. 

D A(i, k): The optimal action for state (i, k), where 

D (i k) = { 1 if it is optimal to perform maintenance (MA(i) > WA(i, k)), 
A ' 2 if it is optimal to continue service (MA ( i) :::; W A ( i, k)). 
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Note that there is no corrective maintenance because the failure never occurs. 

Through the standard manner of semi-Markov decision process theory, 

we obtain the following optimality equation, where 

are used. 

A _ maxAb 
k 

A = A + 1-l + r + a, 

VA(i, k) = max{MA(i), WA(i, k)}, 

MA(i) = -i + hV(O, 0), 

WA(O, k) = ~ [Ak(VA(1, k) + 1) + J.LVA(O, k) 

s 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

+ L'YklVA(O,l) +(A- Ak)VA(O,k)], (6.5) 
l=O 

WA(i, k) = ~ [Ak(VA(i + 1, k) + 1) + J.LVA(i- 1, k) 
s 

+ L'YklVA(i,l) +(A- Ak)VA(i,k)] (1::; i::; N -1),(6.6) 
l=O 

WA(N,k) = ~ [AkVA(N,k) + J.LVA(N -1,k) 
s 

+ L 'Ykl VA(N, l) +(A- Ak)VA(N, k)]. (6.7) 
l=O 

The constant h is defined by 

(6.8) 

We assume Condition 2.2(3) for H(x) to secure 0 < h < 1. 

By the following value iteration method, the values of VA ( i, k) and W A ( i, k) 

are obtained. -

Value iteration method 

Step 0. n := 0, and Vi(i, k) := 0 for all (i, k). 
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Step 1. M~+ 1 (i) := -i + hV,4(0,0), 

Wl+ 1 (0, k) := ~ [Ak(F,4(1, k) + 1) + 1-LV4(0, k) 
s 

+ L'YktV.4(0,l) +(A- Ak)\1A(O,k)], 
l=O 

w~+l (i, k) := ~ [ Ak(V,4(i + 1, k) + 1) + J-LV,4(i- 1, k) 

s 

+ L 'Ykl V,4(i, l) +(A- Ak)V,4(i, k)] 
l=O 

(1 ::; i ::; N- 1), 

Wl+ 1(N, k) := ~ [Ak V,4(N, k) + J.LV,4(N- 1, k) 

s 

+ L'YktV.4(N,l) +(A- Ak)V,4(N,k)], 
l=O 

v;+l (i, k) := max{Ml+1(i), Wl+1(i, k)}. 

Step 2. n := n + 1 and return to Step 1. 

6.3.2 Analysis 

To show the structure of the optimal policy, some properties of V,4 ( i, k) and 

W.4 ( i, k) are shown in this subsection. We assume the following conditions 

in this section. 

Condition 6.1 

(1) The arrival rate Ak is decreasing ink. 

s 

(2) For all u, L rkl is increasing in k. 
l=u 

Condition 6.1 ( 1) tells that the arrival rate becomes lower as the server loses 

popularity. Condition 6.1(2) tells that the server is likely to enter a higher 

state as the server state becomes higher. 

The following lemma gives an upper bound of V,4(i, k). 
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Lemma 6.1 

V,4(i, k) S >..ofo:. 

Proof. 

The result is trivial for n = 0. For general n, assuming V,4(i, k) S 'Aofo:, we 

show v;+ 1 
( i, k) s >..o I o:. 

M~+1 (i) = -i + hV,4(0, 0) S h>..ofo: S >..ofo:, 
1 s 

Wl+1(i, k) ~ A[Ak(Ao/o: + 1) + J-LAo/o: + L rktAo/o: +(A- Ak)Ao/o:] 
l=O 

1 s A[>..o + JlAo/o: + r>..ofo: + >..A.o/o:] 

= 'Aofo:. 

Since both M~+1 (i) S 'Ao/o: and W1+ 1(i, k) S 'Ao/o: hold, the inequality 

v;+1(i, k) S 'Ao/o: follows. This completes the proof. D 

Lemma 6.2 

V,4(i, k) and W_4(i, k) have the following properties, respectively. 

V,4(i + 1, k)- V,4(i, k) ~ -1 and W_4(i + 1, k)- W.4(i, k) ~ -1. 

Proof. 

The lemma obviously holds for Vi ( i, k). Next we prove 

from the inductive hypothesis that V,4 ( i + 1, k) - VX ( i, k) ~ -1. 

( 1) When 0 S i S N - 2, 

w1+1(i + 1, k)- w1+ 1 (i, k) 

= ~ [>..k(V,4(i + 2, k)- V,4(i + 1, k)) + J1(V,4(i, k)- V,4(i- 1, k)) 

s 

+ L rkc(V,4(i + 1, Z)- V,4(i, Z)) 
l=O 
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+ ( >.. - >..k) ( V,4 ( i + 1, k) - V,4 ( i, k))] 

1 s 
~ - [->..k - J-L - L rkt - ( >.. - >..k)] 

A l=O 

1 
= A[-A + o:] ~ -1. 

(2) When i = N - 1, 

W1+ 1(N, k)- W1+ 1(N- 1, k) 

= ~ [ ->..k + J1(V,4(N- 1, k)- V,4(N- 2, k)) 

s 

+ 2:: rkc(V,4(N, l)- V,4(N- 1, Z)) 
l=O 

+ (>..- >..k)(V,4(N, k)- V,4(N- 1, k))] 

1 
> -[-A+ o:] > -1. -A -

This shows W1+ 1(i + 1, k)- Wl+ 1 (i, k) ~ -1. It is then obvious that 

vn+l(i + 1 k) - vn+l (i k) > -1 
A ' A ' - ' 
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because max{ a, b} - max{ c, d} ~ min{ a - c, b - d}. This completes the 

proof. 0 

Lemma 6.3 

V,4(i, k) and W_4(i, k) are decreasing ink. 

Proof. 

Lemma 6.3 is trivial for Vi(i, k). Then we prove 

using the inductive hypothesis that 

V,4(i, k + 1) S V,4(i, k). 

We show W1+ 1(i, k + 1) s W1+1 (i, k) in the following. 
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( 1) The proof for 0 ~ i ~ N - 1 is done as follows. 

w~+ 1 (i, k + 1)- w~+1 (i, k) 

= * [.xk+l(V_4(i + 1, k + 1) + 1)- .Xk(VA'(i + 1, k) + 1) 

+ J.L(V,4(i- 1, k + 1)- VA'(i- 1, k)) 
s s 

+ Lrk+llV_4(i,l)- LrktV_4(i,l) 
l=O l=O 

+ (-\- -\k+dVX(i, k + 1) - (-\- -\k)VX(i, k)] 

~ * [.xk+l(V_4(i + 1, k + 1) + 1)- .Xk(V_4(i + 1, k) + 1) 

+(.X- .Xk+I)V_4(i, k + 1) -(.X- .Xk)V,4(i, k)] 

~ *[.xk+l(V_4(i + 1,k + 1) + 1)- .Xk(V_4(i + 1,k + 1) + 1) 

+(.X- .Xk+1)V,4(i, k + 1)- (.X- .Xk)V,4(i, k + 1)] 

= *(.Xk+l - .Xk)(V_4(i + 1, k + 1) - V_4(i, k + 1) + 1) 

~ 0. 

By Lemma 4.1(2) the first inequality holds, and the last inequality 

holds by Condition 6.1(1) and Lemma 6.2. 

(2) The proof fori= N is done as follows. 

w~+ 1 (N, k + 1)- w~+1 (N, k) 

= * [ .Xk+l V_4(N, k + 1) - .Xk VA'(N, k) 

+ J-L(V_4(N- 1, k + 1)- V_4(N- 1, k)) 
s s 

+ Lrk+llV_4(N,l)- LrktV_4(N,l) 
l=O l=O 

+(.X- .Xk+I)V_4(N, k + 1)- (.X- .Xk)VA'(N, k)] 

~ ~ [.X V,4 ( N, k + 1) - .X V_4 ( N, k)] 

~ 0. 
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The inequality v;+ 1(i,k+ 1) ~ v;+1(i,k) is obvious from w~+ 1 (i,k+ 1) ~ 

w~+l (i, k). This completes the proof. 0 

Since V,4(i, k) and W_4(i, k) converge to V(i, k) and W(i, k), respectively, 

as n-+ oo by Condition 2.2, we have the following lemma. 

Lemma 6.4 

( 1) V A ( i, k) ~ A.o /a. 

(2) VA(i + 1, k)- VA(i, k) 2 -1 and WA(i + 1, k)- WA(i, k) 2 -1. 

(3) VA(i, k + 1) ~ VA(i, k) and WA(i, k + 1) ~ WA(i, k). 

Furthermore, if .Xo ~ Jl holds, the following lemma can be proved. 

Lemma 6.5 

If .Xo ~ Jl, then WA(i, k) 2 MA(i) fori 2 1. 

Proof. 

Since VA(i, k) 2 MA(i) holds by Eq. (6.3), 

1 
WA(i, k) 2 A[.XkMA(i) + J-LMA(i- 1) + (r + .x- .xk)MA(i)] 

= *((.X+ J-l +F)( -i + hVA(O, 0)) + Jl] 

= -i + hV(O, 0) +~[-a( -i + hVA(O, 0)) + Jl] 

2: MA(i) +*[-a( -i + h'Ao/a) +M] 

2:: MA(i) + *(-A.o + J-L] 

2 MA(i). 

Therefore, WA(i, k) 2 MA(i) holds fori 2 1, if .Xo ~ J1 holds. This completes 

the proof. 0 

We use Lemma 6.4 to prove the switch curve structure of the optimal 

policy, and use Lemma 6.5 to restrict the switch curve structure. 
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6.3.3 Structure of the optimal policy 

By the lemmas shown in the previous subsection, we show the structure of 

the optimal policy in this subsection. 

The following theorem shows a monotone property of D A ( i, k). 

Theorem 6.1 

If DA(i,l) = 2, then DA(j,k) = 2 for all k ~land j 2: i. 

Proof. 

The first inequality holds by Lemma 6.4(3), and we obtain the second in

equality by applying Lemma 6.4(2) repeatedly. This completes the proof. 0 

Theorem 6.1 shows that if it is optimal to continue service for some state, 

it is also optimal to continue service for the states with longer queue and 

better server state. 

The next theorem is a direct result of Lemma 6.5. 

Theorem 6.2 

If -Xo ~ J-l, then DA(i, k) = 2 fori 2: 1. 

This theorem gives a sufficient condition under which we should not 

perform maintenance whenever there are customers in the system. 

6.3.4 Numerical example 

We give a numerical example here. 

Let us consider a problem with server state set {0, 1, ... , 6}, service rate 

1-l = 12.0 and system capacity N = 20. Arrival rate and transition rate are 

shown below. 

-Xo = 18.0, A1 = 12.0, A2 = 11.0, 

A3 = 7.0, .X4 = 6.0, As= 5.0, A6 = 4.0, 

loo= 0.0098, !Ol = 0.0002, T'll = 0.0095, !12 = 0.0005, 

!22 = 0.0090, !23 = 0.0010, !33 = 0.0075, !34 = 0.0025, 

!44 = 0.0060, !45 = 0.0040, !55 = 0.0010, !56 = 0.0090, !66 = 0.0100. 
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The discount factor a is 0.01 and the maintenance time is deterministic, and 

is -100log0.1, which means h = 0.1. 

The optimal policy is derived by value iteration method as in Section 5.6, 

and we obtain the following optimal policy. 

Server Optimal policy D A ( i, k) 

state k 

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0 5 10 15 20 

Queue length i 

The result fits Theorem 6 .1. 

The result for Theorem 6.2 is obtained by setting J-l = -Xo = 18.0. 

Server 

state k 
Optimal policy D A ( i, k) 

~----------------------------------~ 
6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0 5 10 15 20 

Queue length i 

This optimal policy shows that maintenance is not optimal when there are 

any customers in the system. 
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6.4 Model with fees upon departures 

In this section we deal with the system which receives a unit fee from each 

customer upon his/her departure. Upon the start of maintenance, if there are 

any customers in the system, we can clear them without any cost. We discuss 

properties of the optimal policy for this model in the following subsections. 

6.4.1 Formulation 

We define VB(i, k), Ms(i, k), Ws(i, k) and Ds(i, k) in a similar way as done 

in Section 6.3. As we see in the following that Ms(i, k) is a constant in 

Model B, it is denoted as Ms. For these functions, the following optimality 

equation holds. 

1 s 
Ws(O,k) = A[.AkVs(1,k) +f.lVs(O,k) + LT'ktVs(O,l) 

l=D 

+(.A- .Ak)Vs(O, k)], (6.9) 

WB(i, k) = H Ak VB(i + 1, k) + p(VB(i- 1, k) + 1) + t Tkl VB(i, 1) 
l=O 

+(.A- .Ak)Vs(i, k)] (1 ~ i ~ N- 1), (6.10) 

Ws(N, k) = * [ .Ak Vs(N, k) + f.l(Vs(N- 1, k) + 1) 

s 

+ LrktVs(N,l) +(.A- .Ak)Vs(N,k)], 
l=O 

Ms = h Vs(O, 0), 

Vs(i, k) = max{Ms, Ws(i, k)}. 

6.4.2 Analysis 

( 6.11) 

(6.12) 

(6.13) 

We consider the value iteration method to obtain the solution of the equa

tions (6.9)-(6.13), and define VB(i, k), M~ and WlJ(i, k) in the same way as 

that in Section 6.3. We also assume Condition 6.1 in this subsection. 
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Lemma 6.6 

(1) VB(i, k) ~ 11/a. 

(2) VB ( i, k) and l-ll_~ ( i, k) are increasing in i. 

(3) VB(i, k) and WlJ(i, k) are decreasing ink. 

The proofs of Lemma 6.6(1) and Lemma 6.6(2) can be done in the same 

way as in Lemma 6.1, and therefore we omit it. 

Lemma 6.6(3) is proved by induction. It is obvious for V~(i, k). Next, 

we prove that w~+1 (i, k + 1) ~ w~+1 (i, k), using the inductive hypothesis 

VB ( i, k + 1) ~ VB ( i, k). For 1 ~ i ~ N - 1, 

w~+1 (i,k + 1)- w~+1 (i,k) 

= * [ Ak+l VB(i + 1, k + 1) - Ak VB(i + 1, k) 

+ f.l(VB(i- 1, k + 1)- VB(i- 1, k)) 
s s 

+ Lrk+llVB(i,l)- ~rktVB(i,l) 
l=O l=O 

+(.A- .Ak+1 )VB(i, k + 1)- (.A- .Ak)VB(i, k)] 

~ * [ Ak+ 1 VB ( i + 1' k + 1) - Ak VB ( i + 1' k) 

+(.A- .Ak+I)VB(i, k + 1)- (.A- .Ak)VB(i, k)] 

~ ~ [ Ak+ 1 VB ( i + 1' k + 1) - Ak VB ( i + 1' k + 1) 

+(.A- .Ak+I)VB(i, k + 1)- (.A- .Ak)VB(i, k + 1))) 

= ..!_(.Ak+1- Ak)(VB(i + 1, k + 1)- VB(i, k + 1)) 
A 

~ 0. 

The first inequality follows from the inductive hypothesis and Lemma 4.1(2), 

and the last inequality holds by Condition 6.1(1) and Lemma 6.6(2). 

For i = 0 or i = N, the proofs are similar and omitted. This completes 

the proof. D 

Thus the following lemma is obtained for the same reason as in Lemma 6.4. 
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Lemma 6.7 

(2) VB(i, k) and WB(i, k) are increasing in i. 

(3) VB(i, k) and WB(i, k) are decreasing ink. 

Though Lemma 6.7 indicates that the optimal policy for Model B has the 

same structure as that of Theorem 6.1, the following lemma shows that the 

structure of Theorem 6.2 holds in Model B without the condition Ao :S J.l· 

Lemma 6.8 

Fori 2: 1, WB(i, k) 2: MB holds. 

Proof. 
. 1 

WB('l,k) 2: A[AkMB + /-l(MB + 1) + TMB + (..\- Ak)MB] 

1 
=A[(..\+ /-l + r + a)MB- aMs + 1-l] 

2: MB· 

The last inequality follows from MB = hV(O,O) :::; V(O,O) < 1-lfa. This 

completes the proof. 0 

By Lemma 6. 7(3) and Lemma 6.8, we obtain the following structure of 

the optimal policy for Model B. 

Theorem 6.3 

(1) If DB(O, k) = 1, then DB(O, l) = 1 for l 2: k. 

( 2) DB ( i, k) = 2 for i 2: 1. 

Proof. 

It holds that Ms > WB(O, k) by DB(O, k) = 1. Then, by Lemma 6.7(3), 

it holds that MB > WB(O, l). Theorem 6.3(2) is obvious from Lemma 6.8. 

This completes the proof. 0 

This theorem means that we should perform maintenance only when 

there is no customer in the system and the server state is higher than some 

specified state. 
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6.4.3 Numerical example 

Here we supply a numerical example for Model B. The parameters are the 

same as the first case of Model A; that is, J.L = 12.0 < Ao. In Model A, the 

optimal policy had a switch curve structure. However, in Model B, we have 

the following optimal policy, which shows that the maintenance should be 

undertaken only when the system is empty. 

Server 

state k 

Optimal policy DB ( i, k) 

~----------------------------------~ 
6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0 5 10 15 20 

Queue length i 

6.5 Conclusion 

We discussed the optimal maintenance policy for a server with decreasing 

arrival rate. We dealt with the two models, and proved a switch curve 

structure of the optimal policy under some conditions. We also studied a 

sufficient condition under which we should perform maintenance only when 

the system is empty. Our results also hold for the following extended models. 

(1) The system capacity could be infinite. 

(2) The constant maintenance cost R is incurred for each maintenance. 

The proofs are done in the same way, only by replacing the terms 

hV(O, 0) by -R + hV(O, 0). 
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(3) Though we assumed the server state becomes 0 with probability 1 

after the maintenance, we can consider a model in which the server 

becomes state l (l = 0, 1, ... , s) with probability Pl· This means that 

the server does not necessarily become new by the maintenance. The 

proofs are done in the same way, only by replacing the terms h V ( 0, 0) 
s 

by h LPlV(O,l). 
j=O 

Chapter 7 

A Queue with Decreasing Service Rate and 

Non-cancelable Customer 

7.1 Introduction 

In a production system, a system which produces a new product tends to 

receive more orders and earns more money than other systems. As the 

product becomes less popular, the orders will decrease and the manager will 

decide to change the product to a new one. The order in a production system 

is considered as the customer in a queueing system, if the production starts 

after we have orders, that is, no inventory system. Though we dealt with 

a model of this kind in Chapter 6, we assumed that the customers in the 

queue can be cancelled. In this chapter, we deal with the system where the 

customers in the queue can not be cancelled. In this system, we perform 

maintenance in the following procedure. 

( 1) Decide to perform maintenance. 

(2) Reject all arriving customers and serve the customer in the system. 

(3) Start maintenance after the system becomes empty. 

Thus, the total time needed to the maintenance is the sum of the time needed 

to serve the customers in the queue and the maintenance time. 

We consider the same situation as in Chapter 6 in other settings. The 

server state changes in a Markov process. The customers arrive at the sys-

81 



82 CHAPTER 7. QUEUE WITH NON-CANCELABLE CUSTOMER 

tern according to Poisson process whose arrival rate depends on the server 

state. The server state becomes higher as the time goes, and the arrival 

rate decreases. The customer is served at the server in exponential service 

time. A unit fee is received upon arrival in Model A, and received upon 

departure in Model B. A semi-Markov decision process is formulated to find 

the optimal policy that maximizes the income from customers. 

7.2 Model 

The system in this chapter has Poisson arrivals and an exponential server. 

The system capacity is N, and the service rate is f.-L· The server has s + 1 

state which are numbered from 0 to s. The number indicates the popularity 

of the server. In state 0 the server is most popular, and becomes less popular 

as the number becomes large. Therefore, )..k is assumed to be decreasing in 

k. The transitions of the server state are governed by a Markov process 

and the rate from state k to l is 'Ykl· The server state can be recovered by 

maintenance. We assume that once the customers enter the system, they 

must be served. Thus, the manager can complete a maintenance procedure, 

according to the following steps. 

( 1) Close the system and reject all the arrivals until the maintenance is 

completed. 

(2) Serve all the customers in the system. 

(3) Start maintenance when the system becomes empty. 

( 4) Open the system again after maintenance. 

The distribution function of the maintenance time is denoted by H(x). Af

ter the maintenance, the server recovers completely. The manager decides 

whether to perform maintenance, observing the queue length i and server 

state k. We consider two models, Model A and Model B. In Model A, the 

system receives a unit fee from customer upon arrival and in Model B upon 

departure. 
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We assume that the manager wants to maximize the total expected dis

counted reward. We derive a structure of the optimal policy under some 

conditions. 

7.3 Model with fees upon arrivals 

In this section we deal with Model A, i.e., the system that receives a unit 

fee from each customer upon arrival. We assume the following conditions to 

prove a structure of the optimal policy. 

Condition 7.1 

(1) )..k 2:: Az for k ~ l. 

( 2) J.L 2:: >-.o . 

s 

(3) L 'Ykl is increasing in k for all u. 
l=u 

s 

Here we again assume that L 'Ykl = r holds for all k. These conditions are 
l=O 

almost the same as Condition 6.1, except that we add Condition 7.1(2) in 

this section. 

7.3.1 Formulation 

The decision process is defined in a way similar to Chapter 6. The sets of 

actions and system states are the same. 

V A ( i, k): The optimal reward function for state ( i, k). 

M A ( i, k): The reward function for the policy of performing maintenance 

upon transition to (i, k) and taking optimal behavior thereafter. 

Since this function depends only on i, it will be denoted by MA(i) 

in the following. 

W A ( i, k): The reward function for the policy of continuing service upon tran

sition to ( i, k) and taking optimal behavior thereafter. 
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DA(i,k): The optimal action for state (i,k), where 

. { 1 if it is optimal to perform maintenance (MA(i) > WA(i, k)), 
DA(z,k) = 2 .f. . . 1 . . (M(.)< W (. k)) I It IS optima to continue service A z _ A z, . 

We obtain the following optimality equation. 

1 s 
WA(i,k) = A[Ak(VA(i + 1,k) + 1) +J.LVA(i -1,k) + L'"YklVA(i,l) 

+(.A- Ak)VA(i, k)] (0 ~ i ~ N), 

MA(i) = (-~-"-)i hVA(O,O), 
J-L+a 

V A ( i, k) = max {M A ( i), W A ( i, k)}, 

where 

.A _ max.Ak, 
k 

A _ .A + J.L + r + a, 

h _ f" e-"1dH(t), 

l=O 

VA( -1, k) - VA(O, k) and VA(N + 1, k) := VA(N, k)- 1. 

The problem in this chapter is different from other problems in this thesis, 

in that the cost functions are not linear with respect to i. 

The value iteration method is defined in a similar manner, and we define 

V,4(i, k), M.4(i) and W,4(i, k) accordingly. With initial value Vi(i, k) := 0, 

they are calculated as follows. 

W1+ 1(i, k) := ~ [.Ak(V.4(i + 1, k) + 1) + J.LV.4(i- 1, k) 

s 

+I: rkl V.4(i, l) +(.A- .Ak)V.4(i, k)] (O ~ i ~ N), (7.1) 
l=O 

MA+1(i):= C~JihVA'(O,O), 
v:+l (i, k) := max{M_4(i), W1(i, k)}, 

(7.2) 

(7.3) 
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where V.4( -1, k) and V.4(N + 1, k) are defined by V4( -1, k) = V.4(0, k) and 

V.4(N + 1, k) = V.4(N, k)- 1, respectively. 

Before studying the structure of the optimal policy, we prove some prop

erties of these functions. 

7.3. 2 Analysis 

First, we have the next lemma. 

Lemma 7.1 

(1) VA(i,k) ~ J.Lfa. 

(2) VA(i + 1, k)- VA(i, k) ~ -1 and WA(i + 1, k)- WA(i, k) ~ -1. 

(3) WA(i,k + 1) ~ WA(i,k) and VA(i,k + 1) ~ VA(i,k). 

Proof of (1) . 

This proof is similar to the proof of Lemma 6.1, and is omitted. 

Proof of (2). 

The inequality for V1(i, k) is obvious. We prove W1+ 1(i+1, k)-W1+ 1(i, k) ~ 
-1 andMA+1(i+1)-MA+1(i) ~ -1 from inductive hypothesis V.4(i+1,k)

V.4 ( i, k) ~ -1. For 0 ~ i ~ N - 1, 

w1+1(i + 1, k)- w1+1(i, k) 

= ~ [ .Ak(V.4(i + 2, k)- V.4(i + 1, k)) + J.L(V.4(i, k) - V.4(i- 1, k)) 

s 

+I: rkl(VA(i + 1, Z)- VA(i, Z)) 
l=O 

+(.A- .Ak)(V.4(i + 1, k)- V.4(i, k))] 

~ ~ [-Ak - J.L - r - (.A - Ak)] ~ -1, 

MA+ 1(i + 1)- MA+ 1(i) 

( 
J.l )i+l ( J.l )i = -- hV.4(0,0)- -- hV.4(0,0) 

J.L+n J.L+n 
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( 
J.L ) i ( -Q ) n = -- -- hVA(0,0)2:-l. 

J.L+a J.L+n 

By above two inequalities, the inequality v;+1 (i + 1,k)- v;+1(i,k) 2: -1 

is obvious from 

max{x,y}- max{a,b} 2: min{x- a,y- b}. 

Lemma 7.1(2) is then proved, for the same reason as in Lemma 6.4. 

Proof of (3). 

V1(i, k + 1) ~ V1(i, k) is obvious. We show that V,4(i, k + 1) ~ V,4(i, k) 

implies W1+ 1(i,k + 1) ~ W1+ 1(i,k). 

W1+ 1 (i,k + 1)- W1+ 1(i,k) 

= ~ [ )..k+ 1 ( V,4 ( i + 1, k + 1) + 1) - )..k ( V,4 ( i + 1, k) + 1) 

+ 11(V,4(i- 1, k + 1)- V,4(i- 1, k)) 
s s 

+I: rk+ll V,4(i, l)- :L rkz V,4(i, l) 
l=O l=O 

+ (>..- )..k+I)V,4(i, k + 1)- (>..- Ak)V,4(i, k)] 

~ ~ [>..k+l(V,4(i + 1, k + 1) + 1)- >..k(V,4(i + 1, k + 1) + 1) 

+ (>..- )..k+l)V,4(i, k + 1)- (>..- >..k)V,4(i, k + 1)] 
= ~ [>..k+I(V,4(i + 1, k + 1) + 1)- >..k(V,4(i + 1, k + 1) + 1) 

- )..k+l V,4(i, k + 1) + )..k V,4(i, k + 1)] 

1 
=A (>..k+l- >..k)(V,4(i + 1,k + 1)- V,4(i,k + 1) + 1) ~ 0 

The first inequality holds by Condition 7.1(3) and V,4(i, k + 1) ~ V,4(i, k). 

The last inequality holds by Lemma 7.1(2). 

1t is obvious that v;+ 1(i,k + 1) ~ v;+1(i,k) from w1+1(i,k + 1) ~ 

W1+ 1(i,k). Thus, Lemma 7.1(3) is proved, for the same reason as in 

Lemma 6.4. This completes the proof. 0 

7.3. MODEL WITH FEES UPON ARRI\1~4.LS 

Lemma 7.2 

(1) WA(i, k) 2: MA(i) fori 2: 1. 

(2) WA(O, k) 2: MA(i) fork such that Ak 2: hJ.L(J.L + a)/(J.L +a- h11). 

Proof of (1). 

For 1 ~ i ~ N- 1, we have 

WA(i, k) = ~ [>..k(VA(i + 1, k) + 1) + J.LVA(i- 1, k) 

s 

+ :L rkzvA(i, Z) + (>..- >..k)VA(i, k)] 
l=O 

2: ~ [>..k(MA(i + 1) + 1) + J.LMA(i- 1) + 

FMA(i) + (>..- Ak)MA(i)] 

1[ ( J.L) . (J.L+O) . = A Ak J.L + Q MA('l) + Ak + 11 -J.L- MA('l) 

+ FMA(i) + (>..- Ak)MA(i)] + ~ 
= MA(i)- )..k (-

0
-) MA(i) + )..k 2: MA(i). 

A J.L+n A 

For i = N, the proof is similar, and is omitted. 

Proof of (2). 

First we can derive the following inequality by VA(i, k) 2: MA(i). 

WA(O,k) 2: ~[>..k(MA(1) + 1) + 11MA(O) + FMA(O) + (>..- Ak)MA(O)] 
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= ]__ [ AkJ.L MA (0) + )..k + J.LMA (0) + F MA (0) + (>.. - Ak)MA (0)] 
A 11 +a 

= MA(O) + ~ {- ca~ka +a) MA(O) + Ak} 
;:> MA (0) + ~ {- c:A: + hJJ-) + Ak} . 

. ( h11>..k ) . hJ.L(I1 + a) Thus, 1f )..k - -- + hJ.L 2: 0 1.e., )..k 2: h holds, then 
11+a J.L+a- J.L 

WA (0, k) 2: MA (0) holds. This completes the proof. 0 
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We obtain a structure of the optimal policy from Lemma 7.1 and 7.2. 

Theorem 7.1 

(1) If DA(O,k) = 1, then DA(O,l) = 1 for l2: k. 

(2) D A (0, k) = 2 for k such that Ak 2: hJ-l(/-L +a)/ (1-l +a - h{L). 

(3) DA(i,k)=2fori2:1. 

Proofs are omitted because it is direct from Lemma 7.1 and 7.2. 

7.3.3 Numerical example 

We confirm our result by a numerical example in this section. We calculate 

value functions for a system with capacity N = 10, server state {0, ... , 7}, 

discount factor a = 1.0 and 1-L = 10.0. The distribution function of mainte

nance time is assumed to be 

H(x) = { ~ X< 1.0 

X 2: 1.0, 

that is, h = 1/e. 

The arrival rates for server states are 

Ao = 9.0, A1 = 8.0, A2 = 7.0, A3 = 6.0, 

A4 = 4.0, As = 3.0, A6 = 1.0, A7 = 0.5. 

The transition rates of server states are 

rOO = 1.5, 1'01 = 0.1, 1'07 = 0.4, 

1'11 = 1.4, 1'12 = 0.1, 1'17 = 0.5, 

[22 = 0.7, 1'23 = 0.1, 1'27 = 1.2, 

1'33 = 0.6, 1'34 = 0.2, 1'37 = 1.2, 

1'44 = 0.4, 1'45 = 0.3, 1'47 = 1.3, 

1'55 = 0.3, 1'56 = 0.4, 1'57 = 1.3, 

1'66 = 0.2, 1'67 = 1.8, 1'77 = 2.0. 
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Since these parameters satisfy Condition 7.1, we should continue service if 

the state is (0, 0), (0, 1), (0, 2) or (0, 3) by Theorem 7.1(2), because 

Since Ao ~ J-l, D A ( i, k) = 2 holds for i 2: 1 by Theorem 7.1 ( 3). The optimal 

policy is calculated by value iteration method as follows. 

Server Optimal policy D A ( i, k) 

State k 

7 1 2 2 2 2 2 2 2 2 2 2 

6 1 2 2 2 2 2 2 2 2 2 2 

5 2 2 2 2 2 2 2 2 2 2 2 

4 2 2 2 2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 

1 2 2 2 2 2 2 2 2 2 2 2 

0 2 2 2 2 2 2 2 2 2 2 2 

0 1 2 3 4 5 6 7 8 9 10 

Queue length i 

7.4 Model with fees upon departures 

We examine in this section the case in which the customer pays upon depar

ture. VB(i, k), WB(i, k), MB(i) and DB(i, k) are defined in a similar manner 

as in the previous section. 

7.4.1 Formulation 

The optimality equation is obtained as follows: 

WB(i, k) = * [Ak VB(i + 1, k) + J-l(VB(i- 1, k) + 1) 
s 

+ l:rklVB(i,l) +(A- Ak)VB(i,k)], (7.4) 
l=O 
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MB(i) =!!:. [1- (-1-L-) i] + (-11
-) i hVB(O, 0), 

a 1-L+a 11+a 

VB ( i, k) = max {M B ( i), W B ( i, k)}, 

M B ( i) is obtained by the following relation 

MB(i + 1) = r)() /le-(JJ.+o:)x(MB(i) + 1)dx = - 11 -(MB(i) + 1), 
k 11+a 

where MB(O) = hVB(O,O). 

(7.5) 

(7.6) 

We define the value iteration method with initial value V~(i, k) := 0 for 

all (i, k). 

w~+ 1 (i, k) = * [>..k V_B(i + 1, k) + 11 (V_B(i- 1, k) + 1) 

s 

+ '2.:rktV_8(i,l) + (>..- >..k)VB(i,k)], (7.7) 
l=O 

Mn+ 1(i) =!!:. [1- (-1-L-)i] + (-1-L-)i hVn(O,O), (7.8) 8 a 1-L+a 1-L+a 
8 

V_8+ 1(i, k) = max{M~+ 1 (i), w~+1 (i, k)}. (7.9) 

In Model B, we assume the following. 

Condition 7.2 

( 1) >..k ~ >..t for k :=; l, 
s 

(2) rkl = o for k ~ z and L rkl is increasing ink for an u. 
l=u 

7 .4.2 Analysis 

To prove the properties of the optimal policy, we prove the following lemma 

in this subsection. 

Lemma 7.3 

(1) VB(i, k) ::; 11/a. 
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(2) WB(i + 1, k) ~ WB(i, k) and VB(i + 1, k) ~ VB(i, k). 

(3) WB(i, k + 1)::; WB(i, k) and Vs(i, k + 1) ::; Vs(i, k). 

(4) Fori~ 1, WB(i, k) ~ MB(i). 

(5) WB(O, k) ~ MB(O) fork such that Ak ~ hi-L(I-L + a)/(1-L +a- h11). 

Proof of (1). 

Lemma 7.3(1) is easily proved, and therefore omitted. 

Proof of (2). 

We prove w~+1 (i + 1, k) ~ w~+1 (i, k) and M~+ 1 (i + 1) ~ M~+ 1 (i) from in

ductive hypothesis V_B(i + 1, l) ~ V_B(i, l) as follows. 

w~+1 (i + 1, k)- w~+1 (i, k) 

= * [>..k(V_B(i + 2, k)- V_B(i + 1, k)) + 11(V_8(i, k)- V_B(i- 1, k)) 
s 

+ L rkt(V_B(i + 1, l)- V_B(i, t)) 
l=O 

+ (>..- >..k)(V_B(i + 1, k) :- VB(i, k))] 

~ 0. 

M~+1 (i + 1)- M~+1 (i) 

= -
11 -(M_B(i) +I)- M_B(i) 

ll+a 

= ~M_B(i) + _1-L_ ~ 0. 
11+a 1-L+a 

(7.10) 

(7.11) 

The last inequality holds by Lemma 7.3(1). V_8+ 1(i + 1, k) ~ V_8+ 1 (i, k) is 

obvious from inequalities (7.10) and (7.11). Then Lemma 7.3(2) is shown 

for the same reason as in Lemma 6.4. 

Proof of (3). 

The inequalities are shown as follows. 

w~+l (i, k + 1)- w~+l (i, k) 

::; ~ [ Ak+ 1 V_B ( i + 1' k + 1) - Ak VB ( i + 1' k)) 
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+(A- Ak+I)V.8(i, k + 1)- (A- Ak)V.8(i, k))] 

~ * [ Ak+ 1 V.B ( i + 1, k + 1) - Ak V.B (i + 1, k + 1)) 

+(A- Ak+I)V.8(i, k + 1)- (A- Ak)V.8(i, k + 1))] 

1 
= A(Ak+l- Ak)[V.8(i + 1, k + 1) - V.B(i, k + 1)] 

~0 (7.12) 

The first and second inequalities follow from Condition 7.2(2) and induc

tive hypothesis V.B(i, k + 1) ~ V.B(i, k). The last inequality holds by Condi

tion 7.2(1) and Lemma 7.3(2). It is obvious from (7.12) that v_;;+ 1(i, k+1):::; 

v_;;+ 1(i,k) holds. Then Lemma 7.3(3) is shown for the same reason as in 

Lemma 6.4. 

Proof of (4). 

We can derive the following relations. 

W 8 (i, k) = * [Ak V8 (i + 1, k) + J1(V8 (i- 1, k) + 1) 
s 

+ 2:rktVs(i,l) +(A- Ak)Vs(i,k)] 
l=O 

> * [AkMB(i + 1) + J-L(Ms(i- 1) + 1) 

+ r Ms(i) +(A- Ak)Ms(i)] 

= H>.k c: J (MB(i) + 1) + ll (JL: (X) MB(i) 

+T Ms(i) +(A- Ak)Ms(i)] 

= MB(i)- Ak (-a-) M8 (i) + Ak _J-L_ 
A 11+a AJ-L+a 

> MB(i). 

The last inequality holds by Lemma 7.3(1). 

Proof of (5). 

Fori = 0, we have the following inequality. 

7.5. CONCLUSION 

= -A1 
[ AkfL M 8 (0) + Ak + 11Ms(O) + FMs(O) 
Jl+a 

+(A- Ak)MB(O)] 

= MB(O) + ~ {- (;~ko +ex) MB(O) + >.k} 

? MB(O) + * {- c:>.: + hll) + >.k}. 
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This indicates that if Ak 2: hJ1(J1 + a)/(11 +a- hJ-L), then Ws(O, k) 2: 1\1B(O) 

holds. This completes the proof. 0 

From this lemma we have the following theorem. 

Theorem 7.2 

(1) If Ds(O, k) = 1, then Ds(O, l) = 1 for l 2: k. 

(2) Ds(O, k) = 2 fork such that Ak 2: hJ.l(J-L + a)/(J-L +a- hJ-L). 

(3) Fori 2: 1, DB(i, k) = 2. 

Since the result is similar to that in Model A, numerical example is omitted. 

7.5 Conclusion 

We discussed the optimal maintenance policy for the server with decreasing 

arrival rate under the assumption that the customers in the queue must be 

served. Therefore, the start of maintenance is postponed until we serve all 

the customers remaining in the system if we decide the maintenance when 

there are any customer in the system. After we decide the maintenance, 

the arrivals are lost while we serve the customers and take the subsequent 

maintenance. We dealt with two models, which are different as to when to 

receive the fee. We showed a structural theorem of the optimal policy under 

some conditions. The structure shows that the maintenance action should 

not be taken when there are any customers in the queue. We also showed 

that the maintenance should be taken when the system is empty and the 

deterioration level exceeds a certain number, which is easily calculated from 

given parameters. 



Chapter 8 

Conclusion 

8.1 Summary of the thesis 

This thesis dealt with various preventive maintenance problems that arise in 

queueing systems. Many systems need maintenance, but customers usually 

suffer from inconvenience caused by the maintenance. In reliability theory, 

the inconvenience is evaluated by the cost which is incurred during mainte

nance. Since the cost of maintenance usually depends on only the deteriora

tion level of the system, the optimal maintenance policy also depends only 

on the deterioration level, as we reviewed in Section 1.2. In queueing sys

tems, which involve scheduling problems, maintenance problems have been 

also studied. As we reviewed in Section 1.3, the inconvenience is due to the 

delay or holding cost caused by the failure. Though we usually consider the 

preventive maintenance in reliability theory, no preventive maintenance is 

considered in such queueing systems because the failure time distribution is 

exponential. In these problems, the optimal policy determines which mainte

nance action should be taken upon failure, if there are several maintenance 

actions with different costs and times, or which job should be processed 

before the failure in scheduling problems. 

In this thesis, we assume that the failure time of the queueing system 

is not exponential. The failure time is expressed by a general distribution 

function in Chapter 3, and by the time before the server state becomes 

the failure state in a Markov process in Chapters 4 -7. As the optimality 

95 
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criterion, we considered the number of lost customers caused by maintenance 

and failure in Chapters 3, 4 and 5, and the reward which is taken from the 

customers in Chapters 6 and 7. 

In Chapter 3, we considered an M I M 11 queueing system, in which the 

server may fail according to a failure distribution function. This is a basic 

combination of queueing theory and reliability theory, because the M I M 11 
queueing system is a fundamental model in queueing theory and the failure 

distribution function is a basic element in reliability theory. Under the as

sumption that the server is checked periodically, we proposed a maintenance 

policy which is based on the observation times and queue length. The state 

space becomes two-dimensional, where coordinates indicate the number of 

observations and queue length. For this state space, we proved that the op

timal policy has a switch curve structure under some appropriate conditions 

on the failure time distribution and the maintenance time. 

As another basic model, we can consider an M I M I 1 queueing system 

with Markovian degradation process. In Chapter 4, the system was further 

extended for the M IG 11 queue with Markovian degradation process, which is 

an extension of M I M I 1 queue with Markovian degradation process, because 

the service time distribution is allowed to be general. Again, the state space 

becomes two-dimensional, where coordinates indicate the queue length and 

the server state. We proved a switch curve structure of the optimal policy 

for this problem under some conditions on the service time distribution, the 

transition rate of the server state and the maintenance time. 

Chapter 5 dealt with a queueing system which has N terminals to serve 

customers and all the terminals are controlled by one server. In a network 

system, a server may be considered as a printer or a file server. The server 

deteriorates according to a Markovian degradation process. As the server 

deteriorates, it is assumed that the service at a terminal becomes slow. Since 

the capacity of the system is restricted, the customers who arrive while the 

system is full are also counted as loss. For this system, we proved that the 

optimal policy has a switch curve structure, and restricted the region of the 

switching curve by giving the bound of the preventive maintenance area. 
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In Chapters 6 and 7, two queueing systems were studied, where arrival 

rate decreases as a result of the deterioration of the server. The objective 

is to maximize the total amount of fees which is collected from customers. 

As this type of system, we can give an example of a production system. In 

a production system, the number of orders will decrease as the production 

becomes out-of-date, where deterioration is considered as the age of the 

production. In Chapter 6, we assumed that the maintenance starts whenever 

we decide to do so. If there are customers in the system, they are removed 

by paying the cancel cost. In Chapter 7, we assumed that the customers in 

the system cannot be cancelled, and the maintenance starts after serving all 

these customers. Both systems has almost the same properties of the optimal 

policy. This indicates that the maintenance action while the customers are 

in the system is not optimal, and the maintenance action should be taken 

when the system is empty and the deterioration level becomes higher than 

a specified state. 

8.2 Future study 

In this thesis , we studied basic maintenance problems of queueing systems. 

We assumed several conditions in order to obtain theoretical results of the 

optimal policy. We may try to extend the results for the following models 

as future studies. 

( 1) We assumed that the maintenance time or cost is the same in all states 

except the failure state. This assumption could be true if the main

tenance is to replace the old machine to the new one without salvage. 

However, in general, the time or cost depends on the deterioration level 

of the system, because the maintenance for the older machine is usu

ally more expensive. If we assume that the maintenance time depends 

on the deterioration level, it will be difficult to prove a switch curve 

structure of the optimal policy, because the proof of the monotone 

property for the deterioration level becomes difficult. 
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(2) In Chapters 5, 6 and 7, it was considered that the deterioration process 

affects the queue length process. But we have not dealt with the system 

where the queue length process affects the deterioration process. In a 

real system, it may be more appropriate to consider that the system 

which has served more customers is more likely to fail. This model, 

however, needs a continuous state space to express the time during 

which the server serves the customers. The continuous state space 

also makes it difficult to analyze the optimal policy. 

(3) We consider that the customers are lost when the server fails, and 

the cost is incurred for the lost customers. As another cost, we may 

consider the system in which the customers are kept waiting during the 

maintenance, and the holding cost is incurred for the waiting customers 

in this model. 

Though we can consider other models by combining a queueing system with 

a reliability model, the systems including two general distributions will be 

theoretically difficult to analyze, and we probably need to develop numerical 

methods to solve the problems associated with such systems. 
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